1
|
Ruiz-Conca M, Gardela J, Olvera-Maneu S, López-Béjar M, Álvarez-Rodríguez M. NR3C1 and glucocorticoid-regulatory genes mRNA and protein expression in the endometrium and ampulla during the bovine estrous cycle. Res Vet Sci 2022; 152:510-523. [PMID: 36174371 DOI: 10.1016/j.rvsc.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/08/2022] [Accepted: 09/18/2022] [Indexed: 10/14/2022]
Abstract
The bovine reproductive tract exhibits changes during the estrous cycle modulated by the interplay of steroid hormones. Glucocorticoids can be detrimental when stress-induced but are relevant at baseline levels for appropriate reproductive function. Here, an analysis of quantitative real-time PCR was performed to study the bovine glucocorticoid-related baseline gene transcription in endometrial and ampullar tissue samples derived from three time points of the estrous cycle, stage I (Days 1-4), stage III (Days 11-17) and stage IV (Days 18-20). Our results revealed expression differences during stages, as expression observed in the ampulla was higher during the post-ovulatory phase (stage I), including the glucocorticoid receptor NR3C1, and some of its regulators, involved in glucocorticoid availability (HSD11B1 and HSD11B2) and transcriptional actions (FKBP4 and FKBP5). In contrast, in the endometrium, higher expression of the steroid receptors was observed during the late luteal phase (stage III), including ESR1, ESR2, PGRMC1 and PGRMC2, and HSD11B1 expression decreased, while HSD11B2 increased. Moreover, at protein level, FKBP4 was higher expressed during the late luteal phase, and NR3C1 during the pre-ovulatory phase (stage IV). These results suggest that tight regulation of the glucocorticoid activity is promoted in the ampulla, when reproductive events are taking place, including oocyte maturation. Moreover, most expression changes in the endometrium were observed during the late luteal phase, and may be related to the embryonic maternal recognition. In conclusion, the glucocorticoid regulation changes across the estrous cycle and may be playing a role on the reproductive events occurring in the bovine ampulla and endometrium.
Collapse
Affiliation(s)
- Mateo Ruiz-Conca
- Division of Children's and Women Health (BKH), Department of Biomedical and Clinical Sciences (BKV), Obstetrics and Gynecology, Linköping University, 58185 Linköping, Sweden; Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Jaume Gardela
- Division of Children's and Women Health (BKH), Department of Biomedical and Clinical Sciences (BKV), Obstetrics and Gynecology, Linköping University, 58185 Linköping, Sweden; Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Sergi Olvera-Maneu
- Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Manel López-Béjar
- Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Manuel Álvarez-Rodríguez
- Division of Children's and Women Health (BKH), Department of Biomedical and Clinical Sciences (BKV), Obstetrics and Gynecology, Linköping University, 58185 Linköping, Sweden; Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
2
|
Han DT, Zhao W, Powell WH. Dioxin Disrupts Thyroid Hormone and Glucocorticoid Induction of klf9, a Master Regulator of Frog Metamorphosis. Toxicol Sci 2022; 187:150-161. [PMID: 35172007 PMCID: PMC9041550 DOI: 10.1093/toxsci/kfac017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Frog metamorphosis, the development of an air-breathing froglet from an aquatic tadpole, is controlled by thyroid hormone (TH) and glucocorticoids (GC). Metamorphosis is susceptible to disruption by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an aryl hydrocarbon receptor (AHR) agonist. Krüppel-like factor 9 (klf9), an immediate early gene in the endocrine-controlled cascade of expression changes governing metamorphosis, can be synergistically induced by both hormones. This process is mediated by an upstream enhancer cluster, the klf9 synergy module (KSM). klf9 is also an AHR target. We measured klf9 mRNA following exposures to triiodothyronine (T3), corticosterone (CORT), and TCDD in the Xenopus laevis cell line XLK-WG. klf9 was induced 6-fold by 50 nM T3, 4-fold by 100 nM CORT, and 3-fold by 175 nM TCDD. Cotreatments of CORT and TCDD or T3 and TCDD induced klf9 7- and 11-fold, respectively, whereas treatment with all 3 agents induced a 15-fold increase. Transactivation assays examined enhancers from the Xenopus tropicalis klf9 upstream region. KSM-containing segments mediated a strong T3 response and a larger T3/CORT response, whereas induction by TCDD was mediated by a region ∼1 kb farther upstream containing 5 AHR response elements (AHREs). This region also supported a CORT response in the absence of readily identifiable GC responsive elements, suggesting mediation by protein-protein interactions. A functional AHRE cluster is positionally conserved in the human genome, and klf9 was induced by TCDD and TH in HepG2 cells. These results indicate that AHR binding to upstream AHREs represents an early key event in TCDD's disruption of endocrine-regulated klf9 expression and metamorphosis.
Collapse
Affiliation(s)
| | | | - Wade H Powell
- To whom correspondence should be addressed at Biology Department, Kenyon College, 202 N College Rd, Gambier, OH 43022. E-mail:
| |
Collapse
|
3
|
Fraga DB, Camargo A, Olescowicz G, Padilha DA, Mina F, Budni J, Brocardo PS, Rodrigues ALS. Ketamine, but not fluoxetine, rapidly rescues corticosterone-induced impairments on glucocorticoid receptor and dendritic branching in the hippocampus of mice. Metab Brain Dis 2021; 36:2223-2233. [PMID: 33950381 DOI: 10.1007/s11011-021-00743-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/22/2021] [Indexed: 12/19/2022]
Abstract
Although numerous studies have investigated the mechanisms underlying the fast and sustained antidepressant-like effects of ketamine, the contribution of the glucocorticoid receptor (GR) and dendritic branching remodeling to its responses remain to be fully established. This study investigated the ability of a single administration of ketamine to modulate the GR and dendritic branching remodeling and complexity in the hippocampus of mice subjected to chronic corticosterone (CORT) administration. CORT was administered for 21 days, followed by a single administration of ketamine (1 mg ∕kg, i.p.) or fluoxetine (10 mg ∕kg, p.o., conventional antidepressant) in mice. On 22nd, 24 h after the treatments, GR immunocontent in the hippocampus was analyzed by western blotting, while the dendritic arborization and dendrite length in the ventral and dorsal dentate gyrus (DG) of the hippocampus was analyzed by Sholl analysis. Chronic CORT administration downregulated hippocampal GR immunocontent, but this alteration was completely reversed by a single administration of ketamine, but not fluoxetine. Moreover, CORT administration significantly decreased dendritic branching in the dorsal and ventral DG areas and caused a mild decrease in dendrite length in both regions. Ketamine, but not fluoxetine, reversed CORT-induced dendritic branching loss in the ventral and dorsal DG areas, regions associated with mood regulation and cognitive functions, respectively. This study provides novel evidence that a single administration of ketamine, but not fluoxetine, rescued the impairments on GR and dendritic branching in the hippocampus of mice subjected to chronic CORT administration, effects that may be associated with its rapid antidepressant response.
Collapse
Affiliation(s)
- Daiane B Fraga
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Anderson Camargo
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Gislaine Olescowicz
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Dayane Azevedo Padilha
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Francielle Mina
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Josiane Budni
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Patricia S Brocardo
- Department of Morphological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
4
|
Somvanshi PR, Mellon SH, Yehuda R, Flory JD, Makotkine I, Bierer L, Marmar C, Jett M, Doyle FJ. Role of enhanced glucocorticoid receptor sensitivity in inflammation in PTSD: insights from computational model for circadian-neuroendocrine-immune interactions. Am J Physiol Endocrinol Metab 2020; 319:E48-E66. [PMID: 32315214 DOI: 10.1152/ajpendo.00398.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although glucocorticoid resistance contributes to increased inflammation, individuals with posttraumatic stress disorder (PTSD) exhibit increased glucocorticoid receptor (GR) sensitivity along with increased inflammation. It is not clear how inflammation coexists with a hyperresponsive hypothalamic-pituitary-adrenal (HPA) axis. To understand this better, we developed and analyzed an integrated mathematical model for the HPA axis and the immune system. We performed mathematical simulations for a dexamethasone (DEX) suppression test and IC50-dexamethasone for cytokine suppression by varying model parameters. The model analysis suggests that increasing the steepness of the dose-response curve for GR activity may reduce anti-inflammatory effects of GRs at the ambient glucocorticoid levels, thereby increasing proinflammatory response. The adaptive response of proinflammatory cytokine-mediated stimulatory effects on the HPA axis is reduced due to dominance of the GR-mediated negative feedback on the HPA axis. To verify these hypotheses, we analyzed the clinical data on neuroendocrine variables and cytokines obtained from war-zone veterans with and without PTSD. We observed significant group differences for cortisol and ACTH suppression tests, proinflammatory cytokines TNFα and IL6, high-sensitivity C-reactive protein, promoter methylation of GR gene, and IC50-DEX for lysozyme suppression. Causal inference modeling revealed significant associations between cortisol suppression and post-DEX cortisol decline, promoter methylation of human GR gene exon 1F (NR3C1-1F), IC50-DEX, and proinflammatory cytokines. We noted significant mediation effects of NR3C1-1F promoter methylation on inflammatory cytokines through changes in GR sensitivity. Our findings suggest that increased GR sensitivity may contribute to increased inflammation; therefore, interventions to restore GR sensitivity may normalize inflammation in PTSD.
Collapse
Affiliation(s)
- Pramod R Somvanshi
- Harvard John Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - Synthia H Mellon
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, California
| | - Rachel Yehuda
- Department of Psychiatry, James J. Peters Veterans Affairs Medical Center, Bronx, New York
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Janine D Flory
- Department of Psychiatry, James J. Peters Veterans Affairs Medical Center, Bronx, New York
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Iouri Makotkine
- Department of Psychiatry, James J. Peters Veterans Affairs Medical Center, Bronx, New York
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Linda Bierer
- Department of Psychiatry, James J. Peters Veterans Affairs Medical Center, Bronx, New York
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Charles Marmar
- Department of Psychiatry, New York Langone Medical School, New York, New York
| | - Marti Jett
- Integrative Systems Biology, U.S. Army Medical Research and Materiel Command, U.S. Army Center for Environmental Health Research (USACEHR), Fort Detrick, Frederick, Maryland
| | - Francis J Doyle
- Harvard John Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
5
|
Lüling R, Singer H, Popp T, John H, Boekhoff I, Thiermann H, Daumann LJ, Karaghiosoff K, Gudermann T, Steinritz D. Sulfur mustard alkylates steroid hormones and impacts hormone function in vitro. Arch Toxicol 2019; 93:3141-3152. [DOI: 10.1007/s00204-019-02571-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/04/2019] [Indexed: 11/28/2022]
|
6
|
Cochlear Glucocorticoid Receptor and Serum Corticosterone Expression in a Rodent Model of Noise-induced Hearing Loss: Comparison of Timing of Dexamethasone Administration. Sci Rep 2019; 9:12646. [PMID: 31477769 PMCID: PMC6718671 DOI: 10.1038/s41598-019-49133-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/14/2019] [Indexed: 12/20/2022] Open
Abstract
Glucocorticoid (GC) is a steroid hormone secreted from the adrenal cortex in response to stress, which acts by binding to cytoplasmic glucocorticoid receptors (GRs). Dexamethasone (DEX) is a synthetic GC exhibiting immunosuppressive effects in both human and rodent models of hearing loss. While clinical evidence has shown the effectiveness of DEX for treatment of various inner ear diseases, its mechanisms of action and the optimal timing of treatment are not well understood. In the present study, intergroup comparisons were conducted based on the time point of treatment with DEX: (1) pretreatment; (2) posttreatment; and (3) pre&post-noise. The pre&post DEX treatment group showed a significant improvement in threshold shift at 1 day post-noise exposure as compared to the TTS (transient threshold shift)-only group at 8 and 16 kHz. Both TTS and PTS (permanent threshold shift) significantly reduced cochlear GR mRNA expression and increased serum corticosterone and cochlear inflammatory cytokines. The pre&post DEX treatment group showed a significant decrease in serum corticosterone level as compared to other DEX treatment groups and TTS-treated group at 3 days after acoustic trauma. Our results suggest that the timing of DEX administration differentially modulates systemic steroid levels, GR expression and cochlear cytokine expression.
Collapse
|
7
|
Flores S, Cooper DS, Opoka AM, Iliopoulos I, Pluckebaum S, Alder MN, Krallman K, Sahay RD, Fei L, Wong HR. Characterization of the Glucocorticoid Receptor in Children Undergoing Cardiac Surgery. Pediatr Crit Care Med 2018; 19:705-712. [PMID: 29677033 PMCID: PMC6086750 DOI: 10.1097/pcc.0000000000001572] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Postoperative administration of corticosteroids is common practice for managing catecholamine refractory low cardiac output syndrome. Since corticosteroid activity is dependent on the glucocorticoid receptor, we sought to characterize glucocorticoid receptor levels in children undergoing cardiac surgery and examined the association between glucocorticoid receptor levels and cardiovascular dysfunction. DESIGN Prospective observational cohort study. SETTING Large, tertiary pediatric cardiac center. SUBJECTS Children undergoing corrective or palliative cardiac surgery. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS A prospective observational cohort study was conducted in 83 children with congenital heart disease. Total glucocorticoid receptor levels were measured in the peripheral WBCs using flow cytometry. In addition, blood samples were collected for total cortisol levels. The primary outcome studied was the time to being inotrope free. An increase in glucocorticoid receptor level from postoperative day 1 to postoperative day 3 was associated with a longer time to being inotrope free (hazard ratio, 0.49 [0.29-0.81]; p = 0.01) in the univariate analysis. This association remained significant after adjusting for age, weight, cardiopulmonary bypass time, cross clamp time, Risk Adjustment for Congenital Heart Surgery-1 score, and postoperative steroid use (hazard ratio, 0.53 [0.29-0.99]; p = 0.05). Postoperative day 3 glucocorticoid receptor level showed a trend to have longer time to being inotrope free (hazard ratio, 0.66 [0.42-1.02]; p = 0.0.06). The cortisol levels minimally increased during the study duration and did not correlate with glucocorticoid receptor levels. CONCLUSIONS Increasing glucocorticoid receptor levels in peripheral WBCs of children undergoing cardiac surgery are associated with a longer time to being inotrope free. Cortisol levels minimally increased during the study duration. These results suggest that exposure to high-dose perioperative corticosteroids may suppress the hypothalamic-pituitary-adrenal axis leading to increase in glucocorticoid receptor levels in response to a low cortisol environment. Further studies are required to better delineate the interplay between glucocorticoid receptor levels, cortisol levels, corticosteroid exposure, and postoperative inotropic requirements.
Collapse
Affiliation(s)
- Saul Flores
- Department of Pediatrics, Section of Critical Care Medicine, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Division of Critical Care, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - David S. Cooper
- Department of Pediatrics, The Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Amy M. Opoka
- Department of Pediatrics, Division of Critical Care, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Ilias Iliopoulos
- Department of Pediatrics, The Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Sarah Pluckebaum
- Department of Pediatrics, The Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew N. Alder
- Department of Pediatrics, Division of Critical Care, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Kelli Krallman
- Department of Pediatrics, Division of Critical Care, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Rashmi D. Sahay
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Lin Fei
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Hector R. Wong
- Department of Pediatrics, Division of Critical Care, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
8
|
Tan XW, Ji CL, Zheng LL, Zhang J, Yuan HJ, Gong S, Zhu J, Tan JH. Corticotrophin-releasing hormone and corticosterone impair development of preimplantation embryos by inducing oviductal cell apoptosis via activating the Fas system: an in vitro study. Hum Reprod 2017; 32:1583-1597. [DOI: 10.1093/humrep/dex217] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Affiliation(s)
- Xiu-Wen Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City 271018, Shandong Province, PR China
| | - Chang-Li Ji
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City 271018, Shandong Province, PR China
| | - Liang-Liang Zheng
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City 271018, Shandong Province, PR China
| | - Jie Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City 271018, Shandong Province, PR China
| | - Hong-Jie Yuan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City 271018, Shandong Province, PR China
| | - Shuai Gong
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City 271018, Shandong Province, PR China
| | - Jiang Zhu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City 271018, Shandong Province, PR China
| | | |
Collapse
|
9
|
Zheng LL, Tan XW, Cui XZ, Yuan HJ, Li H, Jiao GZ, Ji CL, Tan JH. Preimplantation maternal stress impairs embryo development by inducing oviductal apoptosis with activation of the Fas system. Mol Hum Reprod 2016; 22:778-790. [PMID: 27475493 DOI: 10.1093/molehr/gaw052] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/25/2016] [Indexed: 12/14/2022] Open
Abstract
STUDY QUESTION What are the mechanisms by which the preimplantation restraint stress (PIRS) impairs embryo development and pregnancy outcome? SUMMARY ANSWER PIRS impairs embryo development by triggering apoptosis in mouse oviducts and embryos,and this involves activation of the Fas system. WHAT IS KNOWN ALREADY Although it is known that the early stages of pregnancy are more vulnerable than later stages to prenatalstress, studies on the effect of preimplantation stress on embryo developmentare limited. Furthermore, the mechanisms by which psychological stress impairs embryo development are largely unknown. These issues are worth exploring using the mouse PIRS models because restraint of mice is an efficient experimental procedure developed for studies of psychogenic stress. STUDY DESIGN, SIZE AND DURATION Mice of Kunming strain, the generalized lymphoproliferative disorder (gld) mice with a germline mutation F273L in FasL in a C57BL/6J genomic background and the wild-type C57BL/6J mice were used. Female and male mice were used 8-10 weeks and 10-12 weeks after birth, respectively. Female mice showing vaginal plugs were paired by weight and randomly assigned to restraint treatments or as controls. For restraint treatment, an individual mouse was put in a micro-cage with food and water available. Control mice remained in their cages with food and water during the time treated females were stressed. PARTICIPANTS/MATERIALS, SETTING, METHODS Female mice were exposed to PIRS for 48 h starting from 16:00 on the day of vaginal plug detection. At the end of PIRS, levels of glucorticoids (GC), corticotropin-releasing hormone (CRH)and redox potential were measured in serum, while levels of GC, GC receptor (GR), CRH, CRH receptor (CRHR), Fas and Fas ligand (FasL) protein, mRNAs for brain derived neurotrophic factor (BDNF) and insulin-like growth factor-1 (IGF-1), oxidative stress (OS) and apoptosis were examined in oviducts. Preimplantation development and levels of GR, Fas, redox potential and apoptosis were observed in embryos recovered at different times after the initiation of PIRS. The gld mice were used to confirm a role for the Fas system in triggering apoptosis of embryos and oviducts. MAIN RESULTS AND THE ROLE OF CHANCE Compared to those in control mice, while the number of blastocysts/mouse (5.0 ± 0.7 versus 11.1 ± 0.5), cell number/blastocyst (49.1 ± 1.3 versus 61.5 ± 0.9), percentages of term pregnancy (37.5% versus 90.9%) and litter size (3.7 ± 0.1versus 9.6 ± 0.6) decreased, blood CRH (560 ± 23 versus 455 ± 37 pg/ml), cortisol (27.3 ± 3.4 versus 5 ± 0.5 ng/ml) and OS index (OSI: 2.8 versus 1.7) increased significantly (all P < 0.05) following PIRS. In the oviduct, while levels of CRH (1175 ± 85 versus 881 ± 33 pg/100 mg), cortisol (28.9 ± 1.7 versus14 ± 4 ng/g), CRHR (2.3 ± 0.3 versus 1.0 ± 0.0), FasL (1.31 ± 0.06 versus 1.08 ± 0.05 ng/g), Fas (1.42 ± 0.13 versus 1.0 ± 0.0) and apoptotic cells (19.1 ± 0.5% versus 8.4 ± 0.4%) increased, levels of GR proteins (0.67 ± 0.14 versus 1.0 ± 0.0) and Igf-1 (0.6 ± 0.09 versus 1.0 ± 0.0) and Bdnf (0.73 ± 0.03 versus 1.0 ± 0.0) mRNAs decreased significantly (all P < 0.05 versus control) after PIRS. Mouse embryos expressed GR and Fas at all stages of preimplantation development and embryo OS (GSH/GSSG ratio: 0.88 ± 0.03 versus 1.19 ± 0.13) and annexin-positive cells (blastocysts: 31.4 ± 3.8% versus 10.96 ± 3.4%) increased significantly (P < 0.05) following PIRS. Furthermore, the detrimental effects of PIRS on embryo development and oviductal apoptosis were much reduced in gld mice. Thus, PIRS triggered apoptosis in oviductal cells with activation of the Fas/FasL system. The apoptotic oviductal cells promoted embryo apoptosis with reduced production of IGF-1 and BDNF and increased production of FasL. LIMITATIONS, REASONS FOR CAUTION Although important, the conclusions were drawn from limited results obtained using a single model in one species and thus they need further verification using other models and/or in other species. Furthermore, as differences in stressed samples were modest and sometimes not significant between gld and wild-type mice whereas differences between control and stressed samples were always present within gld mice, it is deduced that signaling pathways other than the Fas/FasL system might be involved as well in the PIRS-triggered apoptosis of oviducts and embryos. WIDER IMPLICATIONS OF THE FINDINGS The data are important for studies on the mechanisms by which psychological stress affects female reproduction, as FasL expression has been observed in human oviduct epithelium. LARGE SCALE DATA Not applicable. STUDY FUNDING AND COMPETING INTERESTS This study was supported by grants from the National Basic Research Program of China (Nos. 2014CB138503 and 2012CB944403), the China National Natural Science Foundation (Nos. 31272444 and 30972096) and the Animal breeding improvement program of Shandong Province. All authors declare that their participation in the study did not involve factual or potential conflicts of interests.
Collapse
Affiliation(s)
- Liang-Liang Zheng
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Shandong Province,Tai-an City 271018, PR China
| | - Xiu-Wen Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Shandong Province,Tai-an City 271018, PR China
| | - Xiang-Zhong Cui
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Shandong Province,Tai-an City 271018, PR China
| | - Hong-Jie Yuan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Shandong Province,Tai-an City 271018, PR China
| | - Hong Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Shandong Province,Tai-an City 271018, PR China
| | - Guang-Zhong Jiao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Shandong Province,Tai-an City 271018, PR China
| | - Chang-Li Ji
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Shandong Province,Tai-an City 271018, PR China
| | - Jing-He Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Shandong Province,Tai-an City 271018, PR China
| |
Collapse
|
10
|
Ohba K, Leow MKS, Singh BK, Sinha RA, Lesmana R, Liao XH, Ghosh S, Refetoff S, Sng JCG, Yen PM. Desensitization and Incomplete Recovery of Hepatic Target Genes After Chronic Thyroid Hormone Treatment and Withdrawal in Male Adult Mice. Endocrinology 2016; 157:1660-1672. [PMID: 26866609 PMCID: PMC4816733 DOI: 10.1210/en.2015-1848] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/03/2016] [Indexed: 02/08/2023]
Abstract
Clinical symptoms may vary and not necessarily reflect serum thyroid hormone (TH) levels during acute and chronic hyperthyroidism as well as recovery from hyperthyroidism. We thus examined changes in hepatic gene expression and serum TH/TSH levels in adult male mice treated either with a single T3 (20 μg per 100 g body weight) injection (acute T3) or daily injections for 14 days (chronic T3) followed by 10 days of withdrawal. Gene expression arrays from livers harvested at these time points showed that among positively-regulated target genes, 320 were stimulated acutely and 429 chronically by T3. Surprisingly, only 69 of 680 genes (10.1%) were induced during both periods, suggesting desensitization of the majority of acutely stimulated target genes. About 90% of positively regulated target genes returned to baseline expression levels after 10 days of withdrawal; however, 67 of 680 (9.9%) did not return to baseline despite normalization of serum TH/TSH levels. Similar findings also were observed for negatively regulated target genes. Chromatin immunoprecipitation analysis of representative positively regulated target genes suggested that acetylation of H3K9/K14 was associated with acute stimulation, whereas trimethylation of H3K4 was associated with chronic stimulation. In an in vivo model of chronic intrahepatic hyperthyroidism since birth, adult male monocarboxylate transporter-8 knockout mice also demonstrated desensitization of most acutely stimulated target genes that were examined. In summary, we have identified transcriptional desensitization and incomplete recovery of gene expression during chronic hyperthyroidism and recovery. Our findings may be a potential reason for discordance between clinical symptoms and serum TH levels observed in these conditions.
Collapse
Affiliation(s)
- Kenji Ohba
- Cardiovascular and Metabolic Disorders Program (K.O., B.K.S., R.A.S., R.L., S.G., P.M.Y.), Duke-NUS Medical School, Singapore, Singapore 169857; Department of Endocrinology (M.K.-S.L.), Tan Tock Seng Hospital, Singapore, Singapore 229899; Singapore Institute for Clinical Sciences (M.K.-S.L.), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore 117609; Department of Physiology (R.L.), Universitas Padjadjaran, Bandung, West Java 45363, Indonesia; Departments of Medicine (X.-H.L., S.R.) and Pediatrics and Committee on Genetics (S.R.), The University of Chicago, Chicago, Illinois 60637; and Department of Pharmacology (J.C.G.S.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore 119228
| | - Melvin Khee-Shing Leow
- Cardiovascular and Metabolic Disorders Program (K.O., B.K.S., R.A.S., R.L., S.G., P.M.Y.), Duke-NUS Medical School, Singapore, Singapore 169857; Department of Endocrinology (M.K.-S.L.), Tan Tock Seng Hospital, Singapore, Singapore 229899; Singapore Institute for Clinical Sciences (M.K.-S.L.), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore 117609; Department of Physiology (R.L.), Universitas Padjadjaran, Bandung, West Java 45363, Indonesia; Departments of Medicine (X.-H.L., S.R.) and Pediatrics and Committee on Genetics (S.R.), The University of Chicago, Chicago, Illinois 60637; and Department of Pharmacology (J.C.G.S.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore 119228
| | - Brijesh Kumar Singh
- Cardiovascular and Metabolic Disorders Program (K.O., B.K.S., R.A.S., R.L., S.G., P.M.Y.), Duke-NUS Medical School, Singapore, Singapore 169857; Department of Endocrinology (M.K.-S.L.), Tan Tock Seng Hospital, Singapore, Singapore 229899; Singapore Institute for Clinical Sciences (M.K.-S.L.), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore 117609; Department of Physiology (R.L.), Universitas Padjadjaran, Bandung, West Java 45363, Indonesia; Departments of Medicine (X.-H.L., S.R.) and Pediatrics and Committee on Genetics (S.R.), The University of Chicago, Chicago, Illinois 60637; and Department of Pharmacology (J.C.G.S.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore 119228
| | - Rohit Anthony Sinha
- Cardiovascular and Metabolic Disorders Program (K.O., B.K.S., R.A.S., R.L., S.G., P.M.Y.), Duke-NUS Medical School, Singapore, Singapore 169857; Department of Endocrinology (M.K.-S.L.), Tan Tock Seng Hospital, Singapore, Singapore 229899; Singapore Institute for Clinical Sciences (M.K.-S.L.), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore 117609; Department of Physiology (R.L.), Universitas Padjadjaran, Bandung, West Java 45363, Indonesia; Departments of Medicine (X.-H.L., S.R.) and Pediatrics and Committee on Genetics (S.R.), The University of Chicago, Chicago, Illinois 60637; and Department of Pharmacology (J.C.G.S.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore 119228
| | - Ronny Lesmana
- Cardiovascular and Metabolic Disorders Program (K.O., B.K.S., R.A.S., R.L., S.G., P.M.Y.), Duke-NUS Medical School, Singapore, Singapore 169857; Department of Endocrinology (M.K.-S.L.), Tan Tock Seng Hospital, Singapore, Singapore 229899; Singapore Institute for Clinical Sciences (M.K.-S.L.), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore 117609; Department of Physiology (R.L.), Universitas Padjadjaran, Bandung, West Java 45363, Indonesia; Departments of Medicine (X.-H.L., S.R.) and Pediatrics and Committee on Genetics (S.R.), The University of Chicago, Chicago, Illinois 60637; and Department of Pharmacology (J.C.G.S.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore 119228
| | - Xiao-Hui Liao
- Cardiovascular and Metabolic Disorders Program (K.O., B.K.S., R.A.S., R.L., S.G., P.M.Y.), Duke-NUS Medical School, Singapore, Singapore 169857; Department of Endocrinology (M.K.-S.L.), Tan Tock Seng Hospital, Singapore, Singapore 229899; Singapore Institute for Clinical Sciences (M.K.-S.L.), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore 117609; Department of Physiology (R.L.), Universitas Padjadjaran, Bandung, West Java 45363, Indonesia; Departments of Medicine (X.-H.L., S.R.) and Pediatrics and Committee on Genetics (S.R.), The University of Chicago, Chicago, Illinois 60637; and Department of Pharmacology (J.C.G.S.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore 119228
| | - Sujoy Ghosh
- Cardiovascular and Metabolic Disorders Program (K.O., B.K.S., R.A.S., R.L., S.G., P.M.Y.), Duke-NUS Medical School, Singapore, Singapore 169857; Department of Endocrinology (M.K.-S.L.), Tan Tock Seng Hospital, Singapore, Singapore 229899; Singapore Institute for Clinical Sciences (M.K.-S.L.), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore 117609; Department of Physiology (R.L.), Universitas Padjadjaran, Bandung, West Java 45363, Indonesia; Departments of Medicine (X.-H.L., S.R.) and Pediatrics and Committee on Genetics (S.R.), The University of Chicago, Chicago, Illinois 60637; and Department of Pharmacology (J.C.G.S.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore 119228
| | - Samuel Refetoff
- Cardiovascular and Metabolic Disorders Program (K.O., B.K.S., R.A.S., R.L., S.G., P.M.Y.), Duke-NUS Medical School, Singapore, Singapore 169857; Department of Endocrinology (M.K.-S.L.), Tan Tock Seng Hospital, Singapore, Singapore 229899; Singapore Institute for Clinical Sciences (M.K.-S.L.), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore 117609; Department of Physiology (R.L.), Universitas Padjadjaran, Bandung, West Java 45363, Indonesia; Departments of Medicine (X.-H.L., S.R.) and Pediatrics and Committee on Genetics (S.R.), The University of Chicago, Chicago, Illinois 60637; and Department of Pharmacology (J.C.G.S.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore 119228
| | - Judy Chia Ghee Sng
- Cardiovascular and Metabolic Disorders Program (K.O., B.K.S., R.A.S., R.L., S.G., P.M.Y.), Duke-NUS Medical School, Singapore, Singapore 169857; Department of Endocrinology (M.K.-S.L.), Tan Tock Seng Hospital, Singapore, Singapore 229899; Singapore Institute for Clinical Sciences (M.K.-S.L.), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore 117609; Department of Physiology (R.L.), Universitas Padjadjaran, Bandung, West Java 45363, Indonesia; Departments of Medicine (X.-H.L., S.R.) and Pediatrics and Committee on Genetics (S.R.), The University of Chicago, Chicago, Illinois 60637; and Department of Pharmacology (J.C.G.S.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore 119228
| | - Paul Michael Yen
- Cardiovascular and Metabolic Disorders Program (K.O., B.K.S., R.A.S., R.L., S.G., P.M.Y.), Duke-NUS Medical School, Singapore, Singapore 169857; Department of Endocrinology (M.K.-S.L.), Tan Tock Seng Hospital, Singapore, Singapore 229899; Singapore Institute for Clinical Sciences (M.K.-S.L.), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore 117609; Department of Physiology (R.L.), Universitas Padjadjaran, Bandung, West Java 45363, Indonesia; Departments of Medicine (X.-H.L., S.R.) and Pediatrics and Committee on Genetics (S.R.), The University of Chicago, Chicago, Illinois 60637; and Department of Pharmacology (J.C.G.S.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore 119228
| |
Collapse
|
11
|
Gråberg T, Strömmer L, Hedman E, Uzunel M, Ehrenborg E, Wikström AC. An ex vivo RT-qPCR-based assay for human peripheral leukocyte responsiveness to glucocorticoids in surgically induced inflammation. J Inflamm Res 2015; 8:149-60. [PMID: 26316794 PMCID: PMC4547639 DOI: 10.2147/jir.s84165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Introduction An assay to determine glucocorticoid (GC) responsiveness in humans could be used to monitor GC non-responsiveness in states of GC insufficiency and could provide a tool to adapt GC treatment to individual patients. We propose an ex vivo assay to test GC responsiveness in peripheral leukocytes. The assay was evaluated in a human experimental model of surgery-induced inflammation. Patients and methods Changes in expression of the GC-regulated genes GILZ, IL1R2, FKBP5, and HLA-DR and glucocorticoid receptor alpha (GRα) were determined by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) in peripheral leukocytes from surgical patients and healthy blood donors (total n=60) in response to low (1 nM) and high (1 µM) dexamethasone (DEX). The final selection of a suitable endogenous control gene was based on the studies of stability during DEX treatment and inflammation. Correlations between pre- and postoperative GC-induced gene expression, the postoperative systemic inflammatory and metabolic response (CRP, IL-6, white blood cell count, cytokines, resistin, free fatty acids, glucose, insulin, and adiponectin), and the clinical outcome were analyzed. The length of stay in the intensive care unit (ICU-LOS), the length of stay in the hospital, and postoperative complications were used to measure clinical outcome. Results When the blood donors were compared to the patients, there were no significant differences in the regulation of the genes in response to DEX, except for GRα. Preoperative, but not postoperative, gene regulation of GILZ and GRα was negatively correlated to ICU-LOS (P<0.05 and P<0.01, respectively). Preoperative GILZ and FKBP5 gene regulation was negatively correlated to postoperative systemic TNFα and MIP-1α levels. Conclusion We suggest that this assay could be used to determine GC responsiveness. An alteration in preoperative GC responsiveness may be related to a patient’s ability to recover from surgically induced inflammatory stress.
Collapse
Affiliation(s)
- Truls Gråberg
- Division of Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Solna, Sweden
| | - Lovisa Strömmer
- Division of Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Solna, Sweden
| | - Erik Hedman
- Department of Clinical Pharmacology, Karolinska University Hospital, Solna, Sweden
| | - Mehmet Uzunel
- Division of Therapeutic Immunology, Department of Laboratory Medicine, Solna, Sweden
| | - Ewa Ehrenborg
- Atherosclerosis Research Unit, Department of Medicine, Solna, Sweden
| | - Ann-Charlotte Wikström
- Unit of Translational Immunology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Zia MTK, Vinukonda G, Vose LR, Bhimavarapu BBR, Iacobas S, Pandey NK, Beall AM, Dohare P, LaGamma EF, Iacobas DA, Ballabh P. Postnatal glucocorticoid-induced hypomyelination, gliosis, and neurologic deficits are dose-dependent, preparation-specific, and reversible. Exp Neurol 2014; 263:200-13. [PMID: 25263581 DOI: 10.1016/j.expneurol.2014.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/27/2014] [Accepted: 09/16/2014] [Indexed: 01/12/2023]
Abstract
Postnatal glucocorticoids (GCs) are widely used in the prevention of chronic lung disease in premature infants. Their pharmacologic use is associated with neurodevelopmental delay and cerebral palsy. However, the effect of GC dose and preparation (dexamethasone versus betamethasone) on short and long-term neurological outcomes remains undetermined, and the mechanisms of GC-induced brain injury are unclear. We hypothesized that postnatal GC would induce hypomyelination and motor impairment in a preparation- and dose-specific manner, and that GC receptor (GR) inhibition might restore myelination and neurological function in GC-treated animals. Additionally, GC-induced hypomyelination and neurological deficit might be transient. To test our hypotheses, we treated prematurely delivered rabbit pups with high (0.5mg/kg/day) or low (0.2mg/kg/day) doses of dexamethasone or betamethasone. Myelin basic protein (MBP), oligodendrocyte proliferation and maturation, astrocytes, transcriptomic profile, and neurobehavioral functions were evaluated. We found that high-dose GC treatment, but not low-dose, reduced MBP expression and impaired motor function at postnatal day 14. High-dose dexamethasone induced astrogliosis, betamethasone did not. Mifepristone, a GR antagonist, reversed dexamethasone-induced myelination, but not astrogliosis. Both GCs inhibited oligodendrocyte proliferation and maturation. Moreover, high-dose dexamethasone altered genes associated with myelination, cell-cycle, GR, and mitogen-activated protein kinase. Importantly, GC-induced hypomyelination, gliosis, and motor-deficit, observed at day 14, completely recovered by day 21. Hence, high-dose, but not low-dose, postnatal GC causes reversible reductions in myelination and motor functions. GC treatment induces hypomyelination by GR-dependent genomic mechanisms, but astrogliosis by non-genomic mechanisms. GC-induced motor impairment and neurodevelopmental delay might be transient and recover spontaneously in premature infants.
Collapse
Affiliation(s)
- Muhammad T K Zia
- Department of Pediatrics, Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, NY, USA; Department of Pediatrics, Hudson Valley Hospital, Cortlandt Manor, NY, USA
| | - Govindaiah Vinukonda
- Department of Pediatrics, Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, NY, USA; Department of Cell Biology and Anatomy, Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, NY, USA
| | - Linnea R Vose
- Department of Pediatrics, Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, NY, USA
| | - Bala B R Bhimavarapu
- Department of Pediatrics, Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, NY, USA
| | - Sanda Iacobas
- Department of Pathology, Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, NY, USA
| | - Nishi K Pandey
- Department of Cell Biology and Anatomy, Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, NY, USA
| | - Ann Marie Beall
- Department of Pharmacy, Hudson Valley Hospital, Cortlandt Manor, NY, USA
| | - Preeti Dohare
- Department of Pediatrics, Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, NY, USA; Department of Cell Biology and Anatomy, Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, NY, USA
| | - Edmund F LaGamma
- Department of Pediatrics, Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, NY, USA; Department of Molecular Biology and Biochemistry, Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, NY, USA
| | - Dumitru A Iacobas
- Department of Pathology, Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, NY, USA
| | - Praveen Ballabh
- Department of Pediatrics, Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, NY, USA; Department of Cell Biology and Anatomy, Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
13
|
Korzan WJ, Grone BP, Fernald RD. Social regulation of cortisol receptor gene expression. ACTA ACUST UNITED AC 2014; 217:3221-8. [PMID: 25013108 DOI: 10.1242/jeb.104430] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In many social species, individuals influence the reproductive capacity of conspecifics. In a well-studied African cichlid fish species, Astatotilapia burtoni, males are either dominant (D) and reproductively competent or non-dominant (ND) and reproductively suppressed as evidenced by reduced gonadotropin releasing hormone (GnRH1) release, regressed gonads, lower levels of androgens and elevated levels of cortisol. Here, we asked whether androgen and cortisol levels might regulate this reproductive suppression. Astatotilapia burtoni has four glucocorticoid receptors (GR1a, GR1b, GR2 and MR), encoded by three genes, and two androgen receptors (ARα and ARβ), encoded by two genes. We previously showed that ARα and ARβ are expressed in GnRH1 neurons in the preoptic area (POA), which regulates reproduction, and that the mRNA levels of these receptors are regulated by social status. Here, we show that GR1, GR2 and MR mRNAs are also expressed in GnRH1 neurons in the POA, revealing potential mechanisms for both androgens and cortisol to influence reproductive capacity. We measured AR, MR and GR mRNA expression levels in a microdissected region of the POA containing GnRH1 neurons, comparing D and ND males. Using quantitative PCR (qPCR), we found D males had higher mRNA levels of ARα, MR, total GR1a and GR2 in the POA compared with ND males. In contrast, ND males had significantly higher levels of GR1b mRNA, a receptor subtype with a reduced transcriptional response to cortisol. Through this novel regulation of receptor type, neurons in the POA of an ND male will be less affected by the higher levels of cortisol typical of low status, suggesting GR receptor type change as a potential adaptive mechanism to mediate high cortisol levels during social suppression.
Collapse
Affiliation(s)
- Wayne J Korzan
- Department of Biology, Neuroscience Program, Stanford University, Stanford, CA 94305, USA
| | - Brian P Grone
- Department of Biology, Neuroscience Program, Stanford University, Stanford, CA 94305, USA
| | - Russell D Fernald
- Department of Biology, Neuroscience Program, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
14
|
Paradis AN, Gay MS, Zhang L. Binucleation of cardiomyocytes: the transition from a proliferative to a terminally differentiated state. Drug Discov Today 2013; 19:602-9. [PMID: 24184431 DOI: 10.1016/j.drudis.2013.10.019] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/26/2013] [Accepted: 10/25/2013] [Indexed: 11/17/2022]
Abstract
Cardiomyocytes possess a unique ability to transition from mononucleate to the mature binucleate phenotype in late fetal development and around birth. Mononucleate cells are proliferative, whereas binucleate cells exit the cell cycle and no longer proliferate. This crucial period of terminal differentiation dictates cardiomyocyte endowment for life. Adverse early life events can influence development of the heart, affecting cardiomyocyte number and contributing to heart disease late in life. Although much is still unknown about the mechanisms underlying the binucleation process, many studies are focused on molecules involved in cell cycle regulation and cytokinesis as well as epigenetic modifications that can occur during this transition. Better understanding of these mechanisms could provide a basis for recovering the proliferative capacity of cardiomyocytes.
Collapse
Affiliation(s)
- Alexandra N Paradis
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Maresha S Gay
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Lubo Zhang
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| |
Collapse
|
15
|
Liu T, Fei Z, Gangavarapu KJ, Agbenowu S, Bhushan A, Lai JCK, Daniels CK, Cao S. Interleukin-6 and JAK2/STAT3 signaling mediate the reversion of dexamethasone resistance after dexamethasone withdrawal in 7TD1 multiple myeloma cells. Leuk Res 2013; 37:1322-8. [PMID: 23871159 DOI: 10.1016/j.leukres.2013.06.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/18/2013] [Accepted: 06/21/2013] [Indexed: 12/22/2022]
Abstract
We previously reported the establishment and characteristics of a DXM-resistant cell line (7TD1-DXM) generated from the IL6-dependent mouse B cell hybridoma, 7TD1 cell line. After withdrawing DXM from 7TD1-DXM cells over 90 days, DXM significantly inhibited the cell growth and induced apoptosis in the cells (7TD1-WD) compared with 7TD1-DXM cells. Additionally, IL-6 reversed while IL-6 antibody and AG490 enhanced the effects of growth inhibition and apoptosis induced by DXM in 7TD1-WD cells. Our study demonstrates that 7TD1-DXM cells become resensitized to DXM after DXM withdrawal, and IL-6 and JAK2/STAT3 pathways may regulate the phenomenon.
Collapse
Affiliation(s)
- Tuoen Liu
- Department of Internal Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Kuse M, Lee HY, Acosta TJ, Hojo T, Okuda K. Expression of glucocorticoid receptor α and its regulation in the bovine endometrium: possible role in cyclic prostaglandin F2α production. J Reprod Dev 2013; 59:346-52. [PMID: 23563496 PMCID: PMC3944365 DOI: 10.1262/jrd.2012-185] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cortisol (Cr), the most important glucocorticoid (GC), is well known to suppress uterine prostaglandin F2α (PGF) production. However, the details of the regulatory mechanisms controlling the cyclic changes in endometrial PGF production remain unclear. Here we investigated the expression of the GC receptor (GC-Rα), the actions of cortisol throughout the estrous cycle and the regulatory mechanism of GC-Rα in the bovine endometrium. The levels of GC-Rα protein were greater at the mid-luteal stage (Days 8-12) than at the other stages. Cr more strongly suppressed PGF production at the mid-luteal stage than at the follicular stage. GC-Rα expression was increased by progesterone (P4) but decreased by estradiol-17β (E2) in cultured endometrial stromal cells. The overall results suggest that ovarian steroid hormones control the cyclic changes in endometrial PGF production by regulating GC-Rα expression in bovine endometrial stromal cells.
Collapse
Affiliation(s)
- Mariko Kuse
- Laboratory of Reproductive Endocrinology, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | | | | | | | | |
Collapse
|
17
|
Wang DS, Liu QS, Lai HC. Effects of Budesonide on the Expression of the Glucocorticoid Receptor-α in Nasal Polyp Epithelial Cells. Am J Rhinol Allergy 2013; 27:123-7. [PMID: 23562201 DOI: 10.2500/ajra.2013.27.3862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background This study explores effects of budesonide on the proliferation of nasal polyp epithelial cells and expression of the glucocorticoid receptor (GR) alpha in nasal polyp epithelial cells. Methods Primary cultured, purified, and identified the epithelial cells collected from nasal polyps. The proliferation of nasal polyp epithelial cells was examined by a cell counting kit, and expression of GR-alpha mRNA in nasal polyp epithelial cells was examined by reverse transcription polymerase chain reaction, after training nasal polyp epithelial cells in budesonide solution. Results The average survival rate of nasal polyp epithelial cells was the lowest in 1 × 10−6 M budesonide solution (29.284 ± 0.311%), compared with other concentrations. Budesonide at 1 × 10−8 M caused down-regulation of GR-alpha mRNA expression levels at 6 and 12 ours, compared with the 0-hour group (p < 0.001); compared with the 0-hour group, there were significantly lower expression levels of GR-alpha mRNA at both 24 and 48 hours (p < 0.001); Expression of GR-alpha mRNA at either 48 or 12 hours was not significantly different from that at 24 hours. Conclusion Budesonide can significantly inhibit the proliferation of nasal polyp epithelial cells, down-regulate the expression of GR-alpha mRNA in nasal polyp epithelial cells with time dependence.
Collapse
Affiliation(s)
- De-Sheng Wang
- Department of Otolaryngology, Affiliated Union Hospital of Fujian Medical University, Fujian, Fuzhou, China
| | - Qin-Song Liu
- Department of Otolaryngology, Affiliated Union Hospital of Fujian Medical University, Fujian, Fuzhou, China
| | - Hai-Chun Lai
- Department of Otolaryngology, Affiliated Union Hospital of Fujian Medical University, Fujian, Fuzhou, China
| |
Collapse
|
18
|
Ligand-induced repression of the glucocorticoid receptor gene is mediated by an NCoR1 repression complex formed by long-range chromatin interactions with intragenic glucocorticoid response elements. Mol Cell Biol 2013; 33:1711-22. [PMID: 23428870 DOI: 10.1128/mcb.01151-12] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Glucocorticoids are among the most potent and effective agents for treating inflammatory diseases and hematological cancers. However, subpopulations of patients are often resistant to steroid therapy, and determining the molecular mechanisms that contribute to glucocorticoid resistance is thus critical to addressing this clinical problem affecting patients with chronic inflammatory disorders. Since the cellular level of the glucocorticoid receptor (GR) is a critical determinant of glucocorticoid sensitivity and resistance, we investigated the molecular mechanisms mediating repression of glucocorticoid receptor gene expression. We show here that glucocorticoid-induced repression of GR gene expression is mediated by inhibition of transcription initiation. This process is orchestrated by the recruitment of agonist-bound GR to exon 6, followed by the assembly of a GR-NCoR1-histone deacetylase 3-containing repression complex at the transcriptional start site of the GR gene. A functional negative glucocorticoid response element (nGRE) in exon 6 of the GR gene and a long-range interaction occurring between this intragenic response element and the transcription start site appear to be instrumental in this repression. This autoregulatory mechanism of repression implies that the GR concentration can coordinate repression with excess ligand, regardless of the combinatorial associations of tissue-specific transcription factors. Consequently, the chronic nature of inflammatory conditions involving long-term glucocorticoid administration may lead to constitutive repression of GR gene transcription and thus to glucocorticoid resistance.
Collapse
|
19
|
Robertson S, Hapgood JP, Louw A. Glucocorticoid receptor concentration and the ability to dimerize influence nuclear translocation and distribution. Steroids 2013. [PMID: 23178279 DOI: 10.1016/j.steroids.2012.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glucocorticoid receptor (GR) concentrations and the ability of the GR to dimerize are factors which influence sensitivity to glucocorticoids. Upon glucocorticoid binding, the GR is actively transported into the nucleus, a crucial step in determining GR function. We examined the effects of GR concentration and the ability to dimerize on GR nuclear import, export and nuclear distribution using both live cell microscopy of GFP-tagged GR and immunofluorescence of untagged GR, with both wild type GR (GRwt) and dimerization deficient GR (GRdim). We found that the observed rate of GR nuclear import increases significantly at higher GR concentrations, at saturating concentrations of dexamethasone (10(-6) M) using GFP-tagged GR, while with untagged GR it is only discernable at sub-saturating ligand concentrations (10(-10)-10(-9) M). Loss of dimerization results in a slower observed rate of nuclear import (2.5- to 3.3-fold decrease for GFP-GRdim) as well as a decreased extent of GR nuclear localization (18-27% decrease for untagged GRdim). These results were linked to an increased rate of GR export at low GR concentrations (1.4- to 1.6-fold increase for untagged GR) and where GR dimerization is abrogated (1.5- to 1.7-fold increase for GFP-GRdim). Furthermore, GR dimerization was shown to be required for the appearance of discrete GC-dependent GR nuclear foci, the loss of which may explain the increased rate of GR export for the GRdim. The reduction in the observed rate of nuclear import and increased rate of nuclear export displayed at low GR concentrations and by the GRdim could explain the lowered glucocorticoid response under these conditions.
Collapse
Affiliation(s)
- Steven Robertson
- Department of Biochemistry, University of Stellenbosch, Stellenbosch 7602, South Africa
| | | | | |
Collapse
|
20
|
Abstract
Adverse environments during the fetal and neonatal development period may permanently program physiology and metabolism, and lead to increased risk of diseases in later life. Programming of the hypothalamic-pituitary-adrenal (HPA) axis is one of the key mechanisms that contribute to altered metabolism and response to stress. Programming of the HPA axis often involves epigenetic modification of the glucocorticoid receptor (GR) gene promoter, which influences tissue-specific GR expression patterns and response to stimuli. This review summarizes the current state of research on the HPA axis and programming of health and disease in the adult, focusing on the epigenetic regulation of GR gene expression patterns in response to fetal and neonatal stress. Aberrant GR gene expression patterns in the developing brain may have a significant negative impact on protection of the immature brain against hypoxic-ischemic encephalopathy in the critical period of development during and immediately after birth.
Collapse
|
21
|
The structural basis of direct glucocorticoid-mediated transrepression. Nat Struct Mol Biol 2012; 20:53-8. [PMID: 23222642 PMCID: PMC3539207 DOI: 10.1038/nsmb.2456] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 10/30/2012] [Indexed: 12/21/2022]
Abstract
A newly discovered negative glucocorticoid response element (nGRE) mediates DNA-dependent transrepression by the glucocorticoid receptor (GR) across the genome and plays a major role in immunosuppressive therapy. The nGRE differs dramatically from activating response elements and the mechanism driving GR binding and transrepression is unknown. To unravel the mechanism of nGRE-mediated transrepression by the glucocorticoid receptor, we characterize the interaction between GR and a nGRE in the thymic stromal lymphopoetin (TSLP) promoter. We show using structural and mechanistic approaches that nGRE binding represents a new mode of sequence recognition by human GR and that nGREs prevent receptor dimerization through a unique GR-binding orientation and strong negative cooperativity, ensuring the presence of monomeric GR at repressive elements.
Collapse
|
22
|
Pietranera L, Brocca ME, Cymeryng C, Gomez-Sanchez E, Gomez-Sanchez CE, Roig P, Lima A, De Nicola AF. Increased expression of the mineralocorticoid receptor in the brain of spontaneously hypertensive rats. J Neuroendocrinol 2012; 24:1249-58. [PMID: 22564091 DOI: 10.1111/j.1365-2826.2012.02332.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mineralocorticoid receptor (MR) has been considered as both neuroprotective and damaging to the function of the central nervous system. MR may be also involved in central regulation of blood pressure. In the present study, we compared the expression of MR and the glucocorticoid receptor (GR) in the hippocampus and hypothalamus of 16-week-old spontaneously hypertensive rats (SHR) and normotensive control Wistar Kyoto (WKY) rats. In the hippocampus, MR expression was studied by in situ hybridization (ISH), quantitative polymerase chain reaction (PCR) and immunohistochemistry, whereas GR expression was analysed using the latter two procedures. Hypertensive animals showed an increased expression of MR mRNA in the whole hippocampus according to qPCR data and also in CA3 by ISH. Immunocytochemical staining for MR of the dorsal hippocampus, however, did not reveal differences between SHR and WKY rats. SHR showed elevated hypothalamic MR mRNA by qPCR, as well as an increased number of MR immunopositive cells in the magnocellular paraventricular region, compared to WKY rats. By contrast, expression levels of GR mRNA or protein in the hippocampus and hypothalamus of SHR were similar to those of WKY rats. Furthermore, we investigated the role of MR in the hypertensive rats by i.c.v. injection of the MR antagonist RU-2831. This compound produced a significant drop in blood pressure for SHR. In conclusion, MR expression is increased in the hippocampus and hypothalamus of SHR. We suggest that pathological MR overdrive may take responsibility for up-regulation of blood pressure and the encephalopathy of hypertension.
Collapse
Affiliation(s)
- L Pietranera
- Institute of Biology and Experimental Medicine, CONICET, Obligado, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Djikić D, Budeč M, Vranješ-Djurić S, Todorović V, Drndarević N, Vignjević S, Mitrović O. Ethanol and nitric oxide modulate expression of glucocorticoid receptor in the rat adrenal cortex. Pharmacol Rep 2012; 64:896-901. [DOI: 10.1016/s1734-1140(12)70884-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 04/23/2012] [Indexed: 01/18/2023]
|
24
|
Prendergast MA, Mulholland PJ. Glucocorticoid and polyamine interactions in the plasticity of glutamatergic synapses that contribute to ethanol-associated dependence and neuronal injury. Addict Biol 2012; 17:209-23. [PMID: 21967628 PMCID: PMC3254017 DOI: 10.1111/j.1369-1600.2011.00375.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stress contributes to the development of ethanol dependence and is also a consequence of dependence. However, the complexity of physiological interactions between activation of the hypothalamic-pituitary-adrenal (HPA) axis and ethanol itself is not well delineated. Emerging evidence derived from examination of corticotropin-releasing factor systems and glucocorticoid receptor systems in ethanol dependence suggests a role for pharmacological manipulation of the HPA axis in attenuating ethanol intake, though it is not clear how activation of the HPA axis may promote ethanol dependence or contribute to the neuroadaptative changes that accompany the development of dependence and the severity of ethanol withdrawal. This review examines the role that glucocorticoids, in particular, have in promoting ethanol-associated plasticity of glutamatergic synapses by influencing expression of endogenous linear polyamines and polyamine-sensitive polypeptide subunits of N-methyl-D-aspartate (NMDA)-type glutamate receptors. We provide evidence that interactions among glucocorticoid systems, polyamines and NMDA receptors are highly relevant to both the development of ethanol dependence and to behavioral and neuropathological sequelae associated with ethanol withdrawal. Examination of these issues is likely to be of critical importance not only in further elucidating the neurobiology of HPA axis dysregulation in ethanol dependence, but also with regard to identification of novel therapeutic targets that may be exploited in the treatment of ethanol dependence.
Collapse
Affiliation(s)
- Mark A. Prendergast
- University of Kentucky, Department of Psychology, 741 South Limestone Street, Lexington, KY 40536, U.S.A
- Spinal Cord and Brain Injury Research Center, B449 Biomedical and Biological Sciences Research Building, 741 South Limestone Street, Lexington, KY 40536, U.S.A
| | - Patrick J. Mulholland
- Departments of Neurosciences and Psychiatry & Behavioral Sciences, Medical University of South Carolina, 67 President Street, IOP 462 North Charleston, South Carolina 29425, U.S.A
| |
Collapse
|
25
|
Zhou H, Sivasankar M, Kraus DH, Sandulache VC, Amin M, Branski RC. Glucocorticoids regulate extracellular matrix metabolism in human vocal fold fibroblasts. Laryngoscope 2011; 121:1915-9. [PMID: 22024844 DOI: 10.1002/lary.21920] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 04/08/2011] [Accepted: 04/12/2011] [Indexed: 11/09/2022]
Abstract
OBJECTIVES/HYPOTHESIS Given the recent emergence of encouraging efficacy data regarding the utility of intralesional glucocorticoid (GC) injection for a variety of vocal fold pathologies, we sought to describe the location and expression pattern of the GC receptors within the vocal folds and quantify the effects of GCs on vocal fold fibroblasts. STUDY DESIGN In vitro, in vivo. METHODS Immunolocalization of the GC receptor was performed on normal rat vocal fold tissue. Receptor expression was also assayed in our human vocal fold fibroblast cell line. These cells were then treated with exogenous dexamethasone (DM) to quantify the effects of GCs on receptor expression, proliferation, transforming growth factor (TGF)-β-induced collagen secretion, and matrix protease synthesis. RESULTS Positive immunostaining for the GC receptor was found throughout the vocal fold with particularly strong staining in the epithelium and capillaries. Human vocal fold fibroblasts constitutively express the GC receptor, but this expression decreased in response to exogenous DM. DM also decreased fibroblast proliferation and TGF-β-induced collagen synthesis. DM also abrogated TGF-β-mediated effects on enzymes related extracellular matrix turnover. CONCLUSIONS Our data are the first to provide mechanistic insight regarding the recently published favorable data regarding the utility of GCs in patients with vocal fold scar. Although further investigation is warranted, both the accessibility of this class of agents and the amenability to office-based procedures are likely to direct patient care models.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Otolaryngology, New York University School of Medicine, 550 First Avenue, 3C, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
26
|
Bagamasbad P, Denver RJ. Mechanisms and significance of nuclear receptor auto- and cross-regulation. Gen Comp Endocrinol 2011; 170:3-17. [PMID: 20338175 PMCID: PMC2911511 DOI: 10.1016/j.ygcen.2010.03.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 03/02/2010] [Accepted: 03/19/2010] [Indexed: 12/14/2022]
Abstract
The number of functional hormone receptors expressed by a cell in large part determines its responsiveness to the hormonal signal. The regulation of hormone receptor gene expression is therefore a central component of hormone action. Vertebrate steroid and thyroid hormones act by binding to nuclear receptors (NR) that function as ligand-activated transcription factors. Nuclear receptor genes are regulated by diverse and interacting intracellular signaling pathways. Nuclear receptor ligands can regulate the expression of the gene for the NR that mediates the hormone's action (autoregulation), thus influencing how a cell responds to the hormone. Autoregulation can be either positive or negative, the hormone increasing or decreasing, respectively, the expression of its own NR. Positive autoregulation (autoinduction) is often observed during postembryonic development, and during the ovarian cycle, where it enhances cellular sensitivity to the hormonal signal to drive the developmental process. By contrast, negative autoregulation (autorepression) may become important in the juvenile and adult for homeostatic negative feedback responses. In addition to autoregulation, a NR can influence the expression other types of NRs (cross-regulation), thus modifying how a cell responds to a different hormone. Cross-regulation by NRs is an important means to temporally coordinate cell responses to a subsequent (different) hormonal signal, or to allow for crosstalk between hormone signaling pathways.
Collapse
Affiliation(s)
- Pia Bagamasbad
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, U.S.A
| | - Robert J. Denver
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, U.S.A
- Department of Ecology and Evolutionary Biology, The University of Michigan, Ann Arbor, MI 48109, U.S.A
| |
Collapse
|
27
|
Kim SY, Lee KY, Jeong DC, Kim HK. Effect of p16 on glucocorticoid response in a B-cell lymphoblast cell line. KOREAN JOURNAL OF PEDIATRICS 2010; 53:753-8. [PMID: 21189951 PMCID: PMC3004487 DOI: 10.3345/kjp.2010.53.7.753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 04/19/2010] [Accepted: 05/18/2010] [Indexed: 11/27/2022]
Abstract
Purpose It has been suggested that p16 has a role in glucocorticoid (GC)-related apoptosis in leukemic cells, but the exact mechanisms have yet to be clarified. We evaluated the relationship between the GC response and p16 expression in a lymphoma cell line. Methods We used p16 siRNA transfection to construct p16-inactivated cells by using the B-cell lymphoblast cell line NC-37. We compared glucocorticoid receptor (GR) expression, apoptosis, and cell viability between control (p16+ NC-37) and p16 siRNA-transfected (p16- NC-37) cells after a single dose of dexamethasone (DX). Results In both groups, there was a significant increase in cytoplasmic GR expression, which tended to be higher for p16+ NC-37 cells than for p16- NC37 cells at all times, and the difference at 18 h was significant (P<0.05). Similar patterns of early apoptosis were observed in both groups, and late apoptosis occurred at higher levels at 18 h when the GR had already been downregulated (P<0.05). Cell viability decreased in both groups but the degree of reduction was more severe in p16+ NC-37 cells after 18 h (P<0.05). Conclusion These results suggest a relationship between GR expression and cell cycle inhibition, in which the absence of p16 leads to reduced cell sensitivity to DX.
Collapse
Affiliation(s)
- Sun-Young Kim
- Department of Pediatrics, College of Medicine, Hanyang University, Seoul, Korea
| | | | | | | |
Collapse
|
28
|
Bertucci PY, Quaglino A, Pozzi AG, Kordon EC, Pecci A. Glucocorticoid-induced impairment of mammary gland involution is associated with STAT5 and STAT3 signaling modulation. Endocrinology 2010; 151:5730-40. [PMID: 20881248 DOI: 10.1210/en.2010-0517] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mammary epithelium undergoes cyclical periods of cellular proliferation, differentiation, and regression. During lactation, the signal transducer and activator of transcription factor (STAT)-5A and the glucocorticoid receptor (GR) synergize to induce milk protein expression and also act as survival factors. During involution, STAT3 activation mediates epithelial cell apoptosis and mammary gland remodeling. It has been shown that the administration of glucocorticoids at weaning prevents epithelial cell death, probably by extracellular matrix breakdown prevention. Our results show that the synthetic glucocorticoid dexamethasone (DEX) modulates STAT5A and STAT3 signaling and inhibits apoptosis induction in postlactating mouse mammary glands, only when administered within the first 48 h upon cessation of suckling. DEX administration right after weaning delayed STAT5A inactivation and degradation, preserving gene expression of target genes as β-casein (bcas) and prolactin induced protein (pip). Weaning-triggered GR down-regulation is also delayed by the hormone treatment. Moreover, DEX administration delayed STAT3 activation and translocation into epithelial cells nuclei. In particular, DEX treatment impaired the increment in gene expression of signal transducer subunit gp130, normally up-regulated from lactation to involution and responsible for STAT3 activation. Therefore, the data shown herein indicate that glucocorticoids are able to modulate early involution by controlling the strong cross talk that GR, STAT5, and STAT3 pathways maintains in the mammary epithelium.
Collapse
Affiliation(s)
- Paola Y Bertucci
- Instituto de Fisiología Biología y Neurociencias-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
29
|
Wallace AD, Cao Y, Chandramouleeswaran S, Cidlowski JA. Lysine 419 targets human glucocorticoid receptor for proteasomal degradation. Steroids 2010; 75:1016-23. [PMID: 20619282 PMCID: PMC2926287 DOI: 10.1016/j.steroids.2010.06.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 06/27/2010] [Accepted: 06/29/2010] [Indexed: 10/19/2022]
Abstract
Glucocorticoid receptors (GRs) are members of a highly conserved family of ligand dependent transcription factors which following hormone binding undergo homologous down-regulation reducing the levels of receptor protein. This decline in human GR (hGR) is due in part to a decrease in protein receptor stability that may limit cellular responsiveness to ligand. To examine the role of the proteasome protein degradation pathway in steroid-dependent hGR responsiveness, we utilized the proteasomal inhibitors MG-132, beta-lactone, and epoxomicin. HeLa cells and COS cells were treated with proteasome inhibitors in the presence of the GR agonist dexamethasone (Dex), or were pretreated with proteasomal inhibitor and then Dex. Dexamethasone induced glucocorticoid responsive reporter activity significantly over untreated controls, whereas cells treated with proteasomal inhibitors and Dex together showed 2-3-fold increase in activity. Protein sequence analysis of the hGR protein identified several candidate protein degradation motifs including a PEST element. Mutagenesis of this element at lysine 419 was done and mutant K419A hGR failed to undergo ligand dependent down-regulation. Mutant K419A hGR displayed 2-3-fold greater glucocorticoid responsive reporter activity in the presence of Dex than wild type hGR. These differences in transcriptional activity were not due to altered subcellular localization, since when the mutant K419A hGR was fused with the green fluorescent protein (GFP) it was found to move in and out of the nucleus similarly to wild type hGR. Together these results suggest that the proteasome and the identified PEST degradation motif limit steroid-dependent human glucocorticoid receptor signaling.
Collapse
Affiliation(s)
- Andrew D Wallace
- Department of Environmental & Molecular Toxicology, Campus Box 7633, North Carolina State University, Raleigh, NC 27695-7633, USA.
| | | | | | | |
Collapse
|
30
|
Geng CD, Vedeckis WV. A new, lineage specific, autoup-regulation mechanism for human glucocorticoid receptor gene expression in 697 pre-B-acute lymphoblastic leukemia cells. Mol Endocrinol 2010; 25:44-57. [PMID: 21084380 DOI: 10.1210/me.2010-0249] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Glucocorticoid (GC) steroid hormones induce apoptosis in acute lymphoblastic leukemia (ALL). Autoup-regulation of human GC receptor (hGR) levels is associated with sensitivity to GC-mediated apoptosis. Among the major hGR promoters expressed in 697 pre-B-ALL cells (1A, 1B, 1C, and 1D), only promoters 1C and 1D are selectively activated by the hormone. Promoter 1B is unresponsive, and promoter 1A is down-regulated by dexamethasone (Dex) in 697 cells, whereas they are both up-regulated in CEM-C7 T-ALL cells. Autoup-regulation of promoter 1C and 1D in 697 cells requires sequences containing GC response units (GRUs) (1C GRU, -2915/-2956; 1D GRU, -4525/-4559) that were identified previously in CEM-C7 cells. These GRUs potentially bind GR, c-myeloblastosis (c-Myb), and E-twenty six (Ets) proteins; 697 cells express high levels of c-Myb protein, as well as the E-twenty six family protein members, PU.1 and Spi-B. Dex treatment in 697 cells elevates the expression of c-Myb and decreases levels of both Spi-B and PU.1. Chromatin immunoprecipitation assays revealed the specific recruitment of GR, c-Myb, and cAMP response element-binding protein binding protein to the 1C and 1D GRUs upon Dex treatment, correlating to observed autoup-regulated activity in these two promoters. These data suggest a hormone activated, lineage-specific mechanism to control the autoup-regulation of hGR gene expression in 697 pre-B-ALL cells via steroid-mediated changes in GR coregulator expression. These findings may be helpful in understanding the mechanism that determines the sensitivity of B-ALL leukemia cells to hormone-induced apoptosis.
Collapse
Affiliation(s)
- Chuan-dong Geng
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA
| | | |
Collapse
|
31
|
Silva EJR, Queiróz DBC, Honda L, Avellar MCW. Glucocorticoid receptor in the rat epididymis: expression, cellular distribution and regulation by steroid hormones. Mol Cell Endocrinol 2010; 325:64-77. [PMID: 20573576 DOI: 10.1016/j.mce.2010.05.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 05/20/2010] [Accepted: 05/25/2010] [Indexed: 01/12/2023]
Abstract
Glucocorticoids regulate several physiological functions, including reproduction, in mammals. Curiously, little is known about glucocorticoid-induced effects on the epididymis, an androgen-dependent tissue with vital role on sperm maturation. Here, RT-PCR, Western blot and immunohistochemical studies were performed to evaluate expression, cellular distribution and hormonal regulation of glucocorticoid receptor (GR) along rat epididymis. The rat orthologue of human GRalpha (mRNA and protein) was detected in caput, corpus and cauda epididymis and immunolocalized in the nucleus and cytoplasm of different epididymal cells (epithelial, smooth muscle and interstitial cells) and nerve fibers. Changes in plasma glucocorticoid and androgen levels differentially regulated GR expression in caput and cauda epididymis by homologous and heterologous mechanisms. In vivo treatment with dexamethasone significantly changed the expression of glucocorticoid-responsive genes and induced ligand-dependent GR nuclear translocation in epithelial cells from epididymis, indicating that GR is fully active in this tissue. Heterologous regulation of androgen receptor expression by glucocorticoids was also demonstrated in cauda epididymis. Our results demonstrate that the epididymis is under glucocorticoid regulation, opening new insights into the roles of this hormone in male fertility.
Collapse
Affiliation(s)
- Erick J R Silva
- Section of Experimental Endocrinology, Department of Pharmacology, Universidade Federal de São Paulo, Escola Paulista de Medicina, Rua 03 de maio 100, INFAR, Vila Clementino, São Paulo, SP 04044-020, Brazil
| | | | | | | |
Collapse
|
32
|
Beck IME, Vanden Berghe W, Vermeulen L, Yamamoto KR, Haegeman G, De Bosscher K. Crosstalk in inflammation: the interplay of glucocorticoid receptor-based mechanisms and kinases and phosphatases. Endocr Rev 2009; 30:830-82. [PMID: 19890091 PMCID: PMC2818158 DOI: 10.1210/er.2009-0013] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 08/18/2009] [Indexed: 12/20/2022]
Abstract
Glucocorticoids (GCs) are steroidal ligands for the GC receptor (GR), which can function as a ligand-activated transcription factor. These steroidal ligands and derivatives thereof are the first line of treatment in a vast array of inflammatory diseases. However, due to the general surge of side effects associated with long-term use of GCs and the potential problem of GC resistance in some patients, the scientific world continues to search for a better understanding of the GC-mediated antiinflammatory mechanisms. The reversible phosphomodification of various mediators in the inflammatory process plays a key role in modulating and fine-tuning the sensitivity, longevity, and intensity of the inflammatory response. As such, the antiinflammatory GCs can modulate the activity and/or expression of various kinases and phosphatases, thus affecting the signaling efficacy toward the propagation of proinflammatory gene expression and proinflammatory gene mRNA stability. Conversely, phosphorylation of GR can affect GR ligand- and DNA-binding affinity, mobility, and cofactor recruitment, culminating in altered transactivation and transrepression capabilities of GR, and consequently leading to a modified antiinflammatory potential. Recently, new roles for kinases and phosphatases have been described in GR-based antiinflammatory mechanisms. Moreover, kinase inhibitors have become increasingly important as antiinflammatory tools, not only for research but also for therapeutic purposes. In light of these developments, we aim to illuminate the integrated interplay between GR signaling and its correlating kinases and phosphatases in the context of the clinically important combat of inflammation, giving attention to implications on GC-mediated side effects and therapy resistance.
Collapse
Affiliation(s)
- Ilse M E Beck
- Laboratory of Eukaryotic Gene Expression and Signal Transduction, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | | | | | | | |
Collapse
|
33
|
Newton R, Leigh R, Giembycz MA. Pharmacological strategies for improving the efficacy and therapeutic ratio of glucocorticoids in inflammatory lung diseases. Pharmacol Ther 2009; 125:286-327. [PMID: 19932713 DOI: 10.1016/j.pharmthera.2009.11.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 11/02/2009] [Indexed: 10/20/2022]
Abstract
Glucocorticoids are widely used to treat various inflammatory lung diseases. Acting via the glucocorticoid receptor (GR), they exert clinical effects predominantly by modulating gene transcription. This may be to either induce (transactivate) or repress (transrepress) gene transcription. However, certain individuals, including those who smoke, have certain asthma phenotypes, chronic obstructive pulmonary disease (COPD) or some interstitial diseases may respond poorly to the beneficial effects of glucocorticoids. In these cases, high dose, often oral or parental, glucocorticoids are typically prescribed. This generally leads to adverse effects that compromise clinical utility. There is, therefore, a need to enhance the clinical efficacy of glucocorticoids while minimizing adverse effects. In this context, a long-acting beta(2)-adrenoceptor agonist (LABA) can enhance the clinical efficacy of an inhaled corticosteroid (ICS) in asthma and COPD. Furthermore, LABAs can augment glucocorticoid-dependent gene expression and this action may account for some of the benefits of LABA/ICS combination therapies when compared to ICS given as a monotherapy. In addition to metabolic genes and other adverse effects that are induced by glucocorticoids, there are many other glucocorticoid-inducible genes that have significant anti-inflammatory potential. We therefore advocate a move away from the search for ligands of GR that dissociate transactivation from transrepression. Instead, we submit that ligands should be functionally screened by virtue of their ability to induce or repress biologically-relevant genes in target tissues. In this review, we discuss pharmacological methods by which selective GR modulators and "add-on" therapies may be exploited to improve the clinical efficacy of glucocorticoids while reducing potential adverse effects.
Collapse
Affiliation(s)
- Robert Newton
- Department of Cell Biology and Anatomy, Airway Inflammation Group, Institute of Infection, Immunity and Inflammation, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | | | | |
Collapse
|
34
|
Drozdowski L, Thomson ABR. Intestinal hormones and growth factors: effects on the small intestine. World J Gastroenterol 2009; 15:385-406. [PMID: 19152442 PMCID: PMC2653359 DOI: 10.3748/wjg.15.385] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
There are various hormones and growth factors which may modify the intestinal absorption of nutrients, and which might thereby be useful in a therapeutic setting, such as in persons with short bowel syndrome. In part I, we focus first on insulin-like growth factors, epidermal and transferring growth factors, thyroid hormones and glucocorticosteroids. Part II will detail the effects of glucagon-like peptide (GLP)-2 on intestinal absorption and adaptation, and the potential for an additive effect of GLP2 plus steroids.
Collapse
|
35
|
Vanhooren V, Liu XE, Desmyter L, Fan YD, Vanwalleghem L, Van Molle W, Dewaele S, Praet M, Contreras R, Libert C, Chen C. Over-expression of heat shock protein 70 in mice is associated with growth retardation, tumor formation, and early death. Rejuvenation Res 2009; 11:1013-20. [PMID: 19072255 DOI: 10.1089/rej.2008.0783] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Experiments in lower organisms, such as worms and flies, indicate that the molecular chaperone protein heat shock protein 70 (HSP70) is a longevity factor. In contrast, we demonstrate here that mice overexpressing HSP70 display growth retardation and early death. HSP70 transgenic mice displayed increased levels of serum corticosterone and weaker expression and activity of the glucocorticoid receptor in the liver. Serum insulin-like growth factor-1 (IGF-1) concentrations in the transgenic mice were 50% lower than in the control mice, leading to growth retardation. HSP70 transgenic mice showed decreased expression of Casp9, which encodes caspase-9, and increased expression of the anti-apoptotic Bcl-2 gene, indicating that apoptosis is suppressed. Consequently, most of the transgenic animals died before the age of 18 months from tumors in their lungs and lymph nodes. We suggest that the proinflammatory and antiapoptotic effects of HSP70 might be responsible for the growth retardation, tumor formation, and early death observed in the HSP70 transgenic mice.
Collapse
|
36
|
No association of glucocorticoid receptor polymorphisms with asthma and response to glucocorticoids. Adv Med Sci 2009; 53:245-50. [PMID: 18952539 DOI: 10.2478/v10039-008-0042-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE Glucocorticoids are the most effective anti-inflammatory drugs in asthma therapy. They act via receptors localized in target cells that after activation by glucocorticoids may affect expression of inflammatory genes thus reducing inflammation in asthma. However, 10-20% of patients, particularly with severe, difficult-to-treat asthma may not respond well to glucocorticoids and remain symptomatic even after being treated with high doses of inhaled or systemic glucocorticoids. Therefore, we investigated if polymorphisms known to affect expression or function of the glucocorticoid receptor may be responsible for lower efficacy of steroid therapy and the need to use high doses of inhaled drug. MATERIAL AND METHODS We analyzed 113 pediatric patients in age from 6 to 18 with diagnosed asthma, including 54 children with severe, difficult-to-treat asthma. The diagnosis was based on clinical manifestation, a lung function test, increased IgE level and positive skin prick tests. We also analyzed 123 healthy control subjects. The polymorphisms were genotyped with the use of PCR-RFLP method. Linkage disequilibrium analysis was performed using Haploview. RESULTS We did not observe any significant differences between asthmatic and healthy children for any of the polymorphisms analyzed. Weak linkage between two of the four polymorphisms studied: rs41423247 and rs6195 (D'=1.0; LOD=2.91, r2=0.044) was found in linkage disequilibrium analysis. We did not find any association of GR polymorphisms with the dose of inhaled glucocorticoids needed to achieve asthma control in the group of patients. CONCLUSION The results may suggest that studied polymorphisms of the GR gene are not associated with asthma susceptibility and do not influence response to inhaled glucocorticoids in our sample.
Collapse
|
37
|
Gross KL, Lu NZ, Cidlowski JA. Molecular mechanisms regulating glucocorticoid sensitivity and resistance. Mol Cell Endocrinol 2009; 300:7-16. [PMID: 19000736 PMCID: PMC2674248 DOI: 10.1016/j.mce.2008.10.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 10/08/2008] [Accepted: 10/08/2008] [Indexed: 02/07/2023]
Abstract
Glucocorticoid receptor agonists are mainstays in the treatment of various malignancies of hematological origin. Glucocorticoids are included in therapeutic regimens for their ability to stimulate intracellular signal transduction cascades that culminate in alterations in the rate of transcription of genes involved in cell cycle progression and programmed cell death. Unfortunately, subpopulations of patients undergoing systemic glucocorticoid therapy for these diseases are or become insensitive to glucocorticoid-induced cell death, a phenomenon recognized as glucocorticoid resistance. Multiple factors contributing to glucocorticoid resistance have been identified. Here we summarize several of these mechanisms and describe the processes involved in generating a host of glucocorticoid receptor isoforms from one gene. The potential role of glucocorticoid receptor isoforms in determining cellular responsiveness to glucocorticoids is emphasized.
Collapse
Affiliation(s)
| | | | - John A. Cidlowski
- Corresponding Author. Mailing address: National Institute of Environmental Health Sciences, P.O. Box 12233, MD F3-07, Research Triangle Park, NC 27709, Phone: 919-541-1564. Fax: 919-541-1367. E-mail:
| |
Collapse
|
38
|
Mechanisms regulating the susceptibility of hematopoietic malignancies to glucocorticoid-induced apoptosis. Adv Cancer Res 2009; 101:127-248. [PMID: 19055945 DOI: 10.1016/s0065-230x(08)00406-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glucocorticoids (GCs) are commonly used in the treatment of hematopoietic malignancies owing to their ability to induce apoptosis of these cancerous cells. Whereas some types of lymphoma and leukemia respond well to this drug, others are resistant. Also, GC-resistance gradually develops upon repeated treatments ultimately leading to refractory relapsed disease. Understanding the mechanisms regulating GC-induced apoptosis is therefore uttermost important for designing novel treatment strategies that overcome GC-resistance. This review discusses updated data describing the complex regulation of the cell's susceptibility to apoptosis triggered by GCs. We address both the genomic and nongenomic effects involved in promoting the apoptotic signals as well as the resistance mechanisms opposing these signals. Eventually we address potential strategies of clinical relevance that sensitize GC-resistant lymphoma and leukemia cells to this drug. The major target is the nongenomic signal transduction machinery where the interplay between protein kinases determines the cell fate. Shifting the balance of the kinome towards a state where Glycogen synthase kinase 3alpha (GSK3alpha) is kept active, favors an apoptotic response. Accumulating data show that it is possible to therapeutically modulate GC-resistance in patients, thereby improving the response to GC therapy.
Collapse
|
39
|
Zhang M, Lv XY, Li J, Xu ZG, Chen L. Alteration of 11β-hydroxysteroid dehydrogenase type 1 in skeletal muscle in a rat model of type 2 diabetes. Mol Cell Biochem 2009; 324:147-55. [DOI: 10.1007/s11010-008-9993-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 12/11/2008] [Indexed: 11/24/2022]
|
40
|
Geng CD, Schwartz JR, Vedeckis WV. A conserved molecular mechanism is responsible for the auto-up-regulation of glucocorticoid receptor gene promoters. Mol Endocrinol 2008; 22:2624-42. [PMID: 18945813 DOI: 10.1210/me.2008-0157] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Glucocorticoid (GC) hormones are widely used in the treatment of acute lymphoblastic leukemia (ALL). Whereas a high level of GC receptor (GR) protein is associated with the sensitivity of ALL cells to steroid-mediated apoptosis, the auto-up-regulation of human (h)GR mRNA and protein is also found in hormone-sensitive ALL cell lines. We have characterized the hGR gene-proximal promoters for DNA sequences and transcription factors required for hormone responsiveness in T lymphoblasts. Sequences at -4559/-4525 and -2956/-2916, relative to the translation start site, function as strong composite GC response units (GRUs). Both GRUs include adjacent protein recognition sequences for the c-Myb transcription factor and the GR as a DNA cassette. An Ets-binding sequence overlaps the GR-binding site in the -4559/-4525 GRU, whereas an Ets-binding site present in the -2956/-2916 GRU does not overlap the GR/c-Myb-binding cassette. The Ets protein family member, PU.1, blocks hormonal activation of the -4559/-4525 GR/c-Myb-binding cassette but does not interfere with the responsiveness of the -2956/-2916 GRU. Thus, the hGR 1A GRU (described previously), the -4559/-4525 GRU, and the -2956/-2916 GRU have a similar structure and can mediate cell type-specific hormonal auto-up-regulation of hGR promoter activity in steroid-sensitive ALL cells. However, subtle differences in the GRU architecture result in differential sensitivity of the promoters to Ets family members such as PU.1. The architecture of the GRU and the spectrum of specific transcription factors present in different types of ALL might allow the development of a tailored therapy to enhance steroid sensitivity in ALL patients.
Collapse
Affiliation(s)
- Chuan-dong Geng
- Department of Biochemistry and Molecular Biology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
41
|
Kamiyama K, Matsuda N, Yamamoto S, Takano KI, Takano Y, Yamazaki H, Kageyama SI, Yokoo H, Nagata T, Hatakeyama N, Tsukada K, Hattori Y. Modulation of glucocorticoid receptor expression, inflammation, and cell apoptosis in septic guinea pig lungs using methylprednisolone. Am J Physiol Lung Cell Mol Physiol 2008; 295:L998-L1006. [PMID: 18836031 DOI: 10.1152/ajplung.00459.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The use of glucocorticoids for treatment of sepsis has waxed and waned during the past several decades, and recent randomized controlled trials have evoked a reassessment of this therapy. Most glucocorticoid actions are mediated by its specific intracellular receptors (GRs). Thus we initially evaluated whether sepsis and high-dose corticosteroid therapy can regulate guinea pig pulmonary expression of GRs: active receptor, GRalpha, and dominant negative receptor, GRbeta. Sepsis induction by LPS injection (300 mug/kg ip) decreased mRNA and protein levels of GRalpha and increased protein expression of GRbeta in lungs. High-dose methylprednisolone (40 mg/kg ip), administered simultaneously with LPS, markedly potentiated the decrease in GRalpha expression but slightly affected the increase in GRbeta expression. Consequently, this led to a significant reduction in GRalpha nuclear translocation. Nevertheless, methylprednisolone treatment strongly eliminated LPS induction of NF-kappaB activity, as determined by NF-kappaB nuclear translocation and by gel mobility shift assays. Furthermore, the LPS-induced increase in inflammatory cells in bronchoalveolar lavage fluid was blunted by administration of the corticosteroid. On the other hand, immunofluorescent staining for cleaved caspase-3 showed a marked increase in this proapoptotic marker in lung sections, and terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling (TUNEL) represented an enhanced appearance of cell apoptosis in lungs and spleen when methylprednisolone was given together with LPS. Cell apoptosis is now considered to play a role in the pathogenesis of septic syndrome. We thus suggest that the action of glucocorticoids at high doses to accelerate sepsis-induced cell apoptosis may overwhelm their therapeutic advantages in septic shock.
Collapse
Affiliation(s)
- Koki Kamiyama
- Dept. of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, Univ. of Toyama, Toyama 930-0194, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Pedrana G, Sloboda DM, Pérez W, Newnham JP, Bielli A, Martin GB. Effects of Pre-natal Glucocorticoids on Testicular Development in Sheep. Anat Histol Embryol 2008; 37:352-8. [DOI: 10.1111/j.1439-0264.2008.00853.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Kim YS, Kim J, Kim Y, Lee YH, Kim JH, Lee SJ, Shin SY, Ko J. The role of calpains in ligand-induced degradation of the glucocorticoid receptor. Biochem Biophys Res Commun 2008; 374:373-7. [DOI: 10.1016/j.bbrc.2008.07.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 07/09/2008] [Indexed: 12/01/2022]
|
44
|
Yao M, Hu F, Denver RJ. Distribution and corticosteroid regulation of glucocorticoid receptor in the brain of Xenopus laevis. J Comp Neurol 2008; 508:967-82. [PMID: 18399546 DOI: 10.1002/cne.21716] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Glucocorticoids (GCs) play essential roles in physiology, development, and behavior that are mediated largely by the glucocorticoid receptor (GR). Although the GR has been intensively studied in mammals, very little is known about the GR in nonmammalian tetrapods. We analyzed the distribution and GC regulation of GR in the brain of the frog Xenopus laevis by immunohistochemistry. GR-immunoreactive (GR-ir) cells were widely distributed, with the highest densities in the medial pallium (mp; homolog of the mammalian hippocampus), accumbens, anterior preoptic area (POA; homolog of the mammalian paraventricular nucleus), Purkinje cell layer of the cerebellum, and rostral anterior pituitary gland (location of corticotropes). Lower but distinct GR-ir was observed in the internal granule cell layer of the olfactory bulbs, dorsal and lateral pallium, striatum, various subfields of the amygdala, bed nucleus of the stria terminalis (BNST), optic tectum, various tegmental nuclei, locus coeruleus, raphe nuclei, reticular nuclei, and the nuclei of the trigeminal motor nerves. Treatment with corticosterone (CORT) for 4 days significantly decreased GR-ir in the POA, mp, medial amygdala (MeA), BNST, and rostral pars distalis. Treatment with the corticosteroid synthesis inhibitor metyrapone (MTP) also significantly reduced GR-ir in the POA, mp, MeA and BNST, but not in the rostral pars distalis. Replacement with a low dose of CORT in MTP-treated animals reversed these effects in brain. Thus, chronic increase or decrease in circulating corticosteroids reduces GR-ir in regions of the frog brain. Our results show that the central distribution of GR-ir and regulation by corticosteroids are highly conserved among vertebrates.
Collapse
Affiliation(s)
- Meng Yao
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, Michigan 48109-1048, USA
| | | | | |
Collapse
|
45
|
Time-course changes in nuclear translocation of hepatic glucocorticoid receptor in rats after burn trauma and its pathophysiological significance. Shock 2008; 30:747-52. [PMID: 18496234 DOI: 10.1097/shk.0b013e3181777c72] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Nuclear translocation is a determining step for the glucocorticoid receptor (GR) to exert its functions in response to traumatic conditions. This study was designed to observe the nuclear translocation changes of hepatic GR in severely burned rats during early postburn stage, and to explore the effects of high-dose dexamethasone on GR nuclear translocation. Rats with 35% total body surface area full-thickness burn injury, parallelized with a sham-burn group, were killed at consecutive time points to examine the changes in plasma corticosterone and expression of hepatic GR at both whole-cell and nuclear levels. The effects of high-dose dexamethasone on GR nuclear translocation and suppression of proinflammatory cytokine overproduction were subsequently analyzed. In burned rats, plasma corticosterone increased remarkably soon after burn injury. On the contrary, the hepatic GR levels showed an initial phase of decrease as measured in both whole-cell and nucleus by Western blot, followed by a rapid elevation in the nucleus but a slow recovery at whole-cell level. By comparing the changes of GR in both whole-cell and nuclear levels, we found that GR nuclear translocation was relatively enhanced in the early postburn period. High-dose dexamethasone administered at 1 or 48 h postburn did not further elevate GR nuclear translocation, neither did it restrain the increased release of proinflammatory cytokines such as TNF-alpha and IL-1 beta. These studies suggest that although the whole-cell level of hepatic GR is decreased, GR nuclear translocation is relatively enhanced at early postburn stage. High-dose exogenous glucocorticoids may not promote more nuclear translocation of GR to reinforce its functions.
Collapse
|
46
|
Park J, Kim M, Na G, Jeon I, Kwon YK, Kim JH, Youn H, Koo Y. Glucocorticoids modulate NF-kappaB-dependent gene expression by up-regulating FKBP51 expression in Newcastle disease virus-infected chickens. Mol Cell Endocrinol 2007; 278:7-17. [PMID: 17870233 DOI: 10.1016/j.mce.2007.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 07/21/2007] [Accepted: 08/06/2007] [Indexed: 01/06/2023]
Abstract
FK506-binding protein 51(FKBP51, coded by FKBP5) is a co-chaperone molecule that interacts with the chaperone HSP90 and the glucocorticoid receptor (GR) in an inactive GR complex. It is a negative regulator of glucocorticoid action and is replaced by the positive regulator, FK506-binding protein 52 (FKBP52, coded by FKBP4) when hormone binds to GR, which renders the GR complex active. In this study, we found that the expression of FKBP51 mRNA in 12 organs of Newcastle disease virus (NDV)-infected chickens was robustly induced. The level of corticosterone in NDV-infected chickens was also elevated, approximately 2- to 6.5-fold in the organs compared to non-infected control chickens. The induction of FKBP51 mRNA expression was reproduced by dexamethasone treatment, indicating a role for glucocorticoids in the systemic induction of FKBP51 mRNA expression. In chicken UMNSAH/DF-1 cells, nuclear factor kappaB (NF-kappaB) was activated in an FKBP51-dependent manner. Regulation of the three NF-kappaB-dependent, anti-apoptotic genes, bcl-2, bcl-x and bfl-1/A1 was investigated in UMNSAH/DF-1 cells. Dexamethasone treatment of UMNSAH/DF-1 cells resulted in up-regulation of bcl-2, and down-regulation of bcl-x and bfl-1/A1. Expression of FKBP51 also resulted in down-regulation of bfl-1/A1, but had no effect on bcl-2 and bcl-x, suggesting the involvement of glucocorticoid-FKBP51-NF-kappaB signaling in the regulation of expression of bfl-1/A1 in UMNSAH/DF-1 cells. We observed organ-specific up- or down-regulation of expression of, bcl-2, bcl-x and bfl-1/A1 in NDV-infected and dexamethasone-treated chickens. Differential regulation of bfl-1/A1, bcl-2 and bcl-x upon NDV-infection and dexamethasone treatment suggests that additional factors are involved in the regulation of these genes. These results suggest that systemic elevation of FKBP51 in NDV-infected chickens activates NF-kappaB, which cooperates with other factors to regulate the expression of NF-kappaB-dependent genes.
Collapse
Affiliation(s)
- Jiyoung Park
- School of Biotechnology and Biomedical Science, Inje University, Gimhae 621-749, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Boldizsár F, Pálinkás L, Czömpöly T, Bartis D, Németh P, Berki T. Low glucocorticoid receptor (GR), high Dig2 and low Bcl-2 expression in double positive thymocytes of BALB/c mice indicates their endogenous glucocorticoid hormone exposure. Immunobiology 2006; 211:785-96. [PMID: 17113916 DOI: 10.1016/j.imbio.2006.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 06/15/2006] [Accepted: 06/16/2006] [Indexed: 10/24/2022]
Abstract
Several studies have shown that of the four major thymocyte subsets, the CD4/CD8 double positive (DP) thymocytes are the most sensitive to in vivo glucocorticoid hormone (GC)-induced apoptosis. Our aim was to analyse fine molecular differences among thymocyte subgroups that could underlie this phenomenon. Therefore, we characterised the glucocorticoid hormone receptor (GR) expression of thymocyte subgroups both at the mRNA and protein levels by real-time PCR and flow cytometry, and correlated these features to their apoptotic sensitivity. We also investigated the time-dependent effects of the GC agonist dexamethasone (DX) with or without GC antagonist (RU486) treatments on GR mRNA/protein expression. We also analysed the expression of two apoptosis-related gene products: dexamethasone-induced gene 2 (Dig2) mRNA and Bcl-2 protein. We found that DN thymocytes had the highest GR expression, followed by CD8 single positive (SP), CD4 SP and DP thymocytes in 4-week-old BALB/c mice, both at the mRNA and protein levels, respectively. In DP cells, the Dig2 expression was significantly higher, while the Bcl-2 expression was significantly lower than in DN, CD4 SP and CD8 SP thymocytes. Single high dose DX treatment caused time-dependent depletion of DP thymocytes due to their higher apoptosis rate, which could not be abolished with RU486 pretreatment. After a single high dose DX treatment, there was a transient, significant increase of the GR mRNA and protein level of unsorted thymocytes after 8 and 16 h, followed by a significant decrease at 24 h, respectively. The time-dependent GR expression changes after DX administration could not be inhibited by the GC antagonist RU486. Twenty-four hours after exposure to high dose DX the DN, CD4 SP and CD8 SP cells showed a significant decrease of GR mRNA and protein expression, whereas the DP thymocytes, showed no significant alteration of GR mRNA or protein expression. The kinetical analysis of GR expression and apoptotic marker changes upon single high dose GC analogue administration revealed a two-phase process in thymocytes: early events, within 4-8 h, include GR upregulation and early apoptosis induction, while the late events appear most prominently at 16-20 h, when the GR is already downregulated and apoptotic cell ratio reaches its peak, with marked DP cell depletion. The low GR, high Dig2 and low Bcl-2 expression, coupled with the absence of homologous downregulation of GR after exogenous GC analogue treatment, could contribute to the high GC sensitivity of DP thymocytes. The downregulated GR and Bcl-2 together with the upregulated Dig2 level in DP cells indicates the significance of intrathymic GC effects at this differentiation stage. Since GR expression changes and apoptotic events could not be completely inhibited by GC antagonist, we propose the involvement of non-genomic GR mechanisms in these processes.
Collapse
Affiliation(s)
- Ferenc Boldizsár
- Department of Immunology and Biotechnology, University of Pecs, Szigeti ut 12., H-7643 Pecs, Hungary.
| | | | | | | | | | | |
Collapse
|
48
|
Malouitre SDM, Barker S, Puddefoot JR, Jalili J, Glover HR, Vinson GP. Regulation of hepatic steroid receptors and enzymes by the 3beta-hydroxysteroid dehydrogenase inhibitor trilostane. J Steroid Biochem Mol Biol 2006; 101:97-105. [PMID: 16893643 DOI: 10.1016/j.jsbmb.2006.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Therapies designed to treat hypercortisolism have usually sought to reduce circulating glucocorticoid concentrations, however the local tissue endocrine environment could be an alternative target. The 3beta-hydroxysteroid dehydrogenase Delta5-4 isomerase (3beta-HSD) inhibitor trilostane is of interest, since, although it is only moderately and transiently effective in reducing circulating steroid, it is remarkably effective in alleviating Cushing's symptoms in veterinary applications. To seek alternative modes of action, male Wistar rats were treated with trilostane. Although final circulating corticosteroid concentrations were unaffected, liver 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2) transcription and translation was significantly increased, whereas 3beta-HSD was not affected either in liver or adrenal. Glucocorticoid receptor (GR) mRNA was down-regulated, and mineralocorticoid receptor (MR) up-regulated by trilostane treatment: no changes in 11beta-HSD1 mRNA were observed. Trilostane also had no direct effect on GR response element-mediated gene transcription. The results show that the tissue endocrine environment is affected by trilostane treatment in the absence of sustained changes in circulating corticosteroid. The combination of increased 11beta-HSD2 and reduced GR expression in target organs could be expected to ameliorate the effects of excess glucocorticoid, suggesting new therapeutic approaches.
Collapse
Affiliation(s)
- S D M Malouitre
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
In order to improve current clinical treatment of human hypocortisolism, it is necessary to understand molecular aspects of this pathophysiology. In this study liver tissues from male Wistar rats were used as an experimental model to study structural and functional properties of glucocorticoid receptor (GR) in the absence of glucocorticoid hormones (GC). Results show that acute adrenalectomy (ADX) significantly increases the number of GR binding sites and GR protein content. In addition, acute ADX stimulates increase in stability of the GR, decrease in stability of the glucocorticoid- receptor complex (G-R), and changes in accumulation of the G-R complex in nuclei and its cellular distribution. .
Collapse
|
50
|
Ribarac-Stepić N, Vulović M, Korićanac G, Isenović E. Basal and glucocorticoid induced changes of hepatic glucocorticoid receptor during aging: relation to activities of tyrosine aminotransferase and tryptophan oxygenase. Biogerontology 2005; 6:113-31. [PMID: 16034679 DOI: 10.1007/s10522-005-3498-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2005] [Indexed: 11/27/2022]
Abstract
The characteristics of glucocorticoid receptors, their sensitivity to glucocorticoid as well as the basal and glucocorticoid induced thyrosine aminotranferase (TAT) and tryptophan oxygenase (TO) activities were studied in rat liver during aging. The concentration (N) and dissociation constant (K(d)) of glucocorticoid receptor (GR) significantly change during the aging both in untreated and dexamethasone treated animals. The level of receptors was lower in dexamethasone treated rats of all analyzed aged groups compared to untreated animals. In comparison to untreated groups, there was no correlation between the changes of N and K(d) during the lifespan. According to immunochemical analysis, the decline of receptor protein content occurs during lifespan. Dexamethasone treatment reduced the level of receptor protein compare to respective age group of untreated rats. The glucocorticoid-receptor (G-R) complexes from both untreated and treated animals underwent thermal activation, although the extent of activation was more pronounced in the case of untreated groups compared to treated animals. The magnitude of heat activation of receptor complexes was more pronounced in the liver of the youngest untreated rats compared to elderly ones, while the receptor activation between treated groups of studied ages has shown less significant differences. Besides, basal as well as induced TAT and TO activities after dexamethasone injection also showed age-related alterations. The observed alterations in GR might play a role in the changes of the cell responses to glucocorticoid during the age. This presumption is supported by detected changes in basal and dexamethasone induced TAT and TO activities during aging.
Collapse
Affiliation(s)
- Nevena Ribarac-Stepić
- Department for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, Serbia and Montenegro.
| | | | | | | |
Collapse
|