1
|
Winner G J, Jain S, Gupta D. Unveiling novel molecules and therapeutic targets in hypertension - A narrative review. Eur J Pharmacol 2024; 984:177053. [PMID: 39393666 DOI: 10.1016/j.ejphar.2024.177053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
Hypertension is a prevalent non-communicable disease with serious cardiovascular complications, including heart failure, myocardial infarction, and stroke, often resulting from uncontrolled hypertension. While current treatments primarily target the renin-angiotensin-aldosterone pathway, the therapeutic response remains modest in many patients, with some developing resistant hypertension. Newer therapeutic approaches aim to address hypertension from various aspects beyond conventional drugs, including targeting central nervous system pathways, inflammatory pathways, vascular smooth muscle function, and baroreceptors. Despite these advancements, each therapy faces unique clinical and mechanistic challenges that influence its clinical translatability and long-term viability. This review explores the mechanisms of novel molecules in preclinical and clinical development, highlights potential therapeutic targets, and discusses the challenges and ethical considerations related to hypertension therapeutics and their development.
Collapse
Affiliation(s)
| | - Surbhi Jain
- Aligarh Muslim University, Uttar Pradesh, India
| | | |
Collapse
|
2
|
Yonekura H, Kato I, Yamamoto Y, Ikeda T, Higashida H, Okamoto H. Biosynthesis and Function of VIP and Oxytocin: Mechanisms of C-terminal Amidation, Oxytocin Secretion and Transport. Endocrinology 2023; 164:bqad121. [PMID: 37548257 DOI: 10.1210/endocr/bqad121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/12/2023] [Accepted: 08/05/2023] [Indexed: 08/08/2023]
Abstract
In this review, we provide the status of research on vasoactive intestinal peptide (VIP) and oxytocin, typical C-terminal α-amidated peptide hormones, including their precursor protein structures, processing and C-terminal α-amidation, and the recently identified mechanisms of regulation of oxytocin secretion and its transportation through the blood brain barrier. More than half of neural and endocrine peptides, such as VIP and oxytocin, have the α-amide structure at their C-terminus, which is essential for biological activities. We have studied the synthesis and function of C-terminal α-amidated peptides, including VIP and oxytocin, since the 1980s. Human VIP mRNA encoded not only VIP but also another related C-terminal α-amidated peptide, PHM-27 (peptide having amino-terminal histidine, carboxy-terminal methionine amide, and 27 amino acid residues). The human VIP/PHM-27 gene is composed of 7 exons and regulated synergistically by cyclic AMP and protein kinase C pathways. VIP has an essential role in glycemic control using transgenic mouse technology. The peptide C-terminal α-amidation proceeded through a 2-step mechanism catalyzed by 2 different enzymes encoded in a single mRNA. In the oxytocin secretion from the hypothalamus/the posterior pituitary, the CD38-cyclic ADP-ribose signal system, which was first established in the insulin secretion from pancreatic β cells of the islets of Langerhans, was found to be essential. A possible mechanism involving RAGE (receptor for advanced glycation end-products) of the oxytocin transportation from the blood stream into the brain through the blood-brain barrier has also been suggested.
Collapse
Affiliation(s)
- Hideto Yonekura
- Department of Biochemistry, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, Kahoku-gun, Ishikawa 920-0293, Japan
- Department of Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Ichiro Kato
- Department of Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Takayuki Ikeda
- Department of Biochemistry, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, Kahoku-gun, Ishikawa 920-0293, Japan
- Department of Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Haruhiro Higashida
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Hiroshi Okamoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| |
Collapse
|
3
|
Una Cidon E. Vasoactive intestinal peptide secreting tumour: An overview. World J Gastrointest Oncol 2022; 14:808-819. [PMID: 35582098 PMCID: PMC9048535 DOI: 10.4251/wjgo.v14.i4.808] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/15/2021] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
Vasoactive intestinal peptide (VIP) secreting tumour (VIPoma) is a rare functional neuroendocrine tumour that typically arises from pancreatic islet cells. These present as sporadic, solitary pancreatic neoplasias with an estimated incidence of one in ten million individuals per year. Only around 5% of VIPomas are associated with multiple endocrine neoplasia type I syndrome. Excessive VIP secretion produces a clinical syndrome characterized by refractory watery diarrhoea, hypokalemia and metabolic acidosis. These coupled with elevated plasma levels of VIP are diagnostic. The majority of VIPomas are malignant and have already metastasized at the time of diagnosis (60%). Metastases occur most frequently in the liver, or regional lymph nodes, lungs, kidneys and bones. Some reports of skin metastases have been documented. Complete surgical resection continues to be the only potentially curative treatment. However, when the neoplasia cannot be excised completely, surgical debulking may provide palliative benefit. Other palliative options have included recently the peptide receptor radionuclide therapy which has shown to be effective and well-tolerated. This article will review all aspects of pancreatic VIPomas highlighting aspects such as clinical presentation, diagnosis and management.
Collapse
Affiliation(s)
- Esther Una Cidon
- Department of Medical Oncology, University Hospitals Dorset, Bournemouth BH7 7DW, Dorset, United Kingdom
| |
Collapse
|
4
|
Hwang DDJ, Lee SJ, Kim JH, Lee SM. The Role of Neuropeptides in Pathogenesis of Dry Dye. J Clin Med 2021; 10:4248. [PMID: 34575359 PMCID: PMC8471988 DOI: 10.3390/jcm10184248] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 12/29/2022] Open
Abstract
Neuropeptides are known as important mediators between the nervous and immune systems. Recently, the role of the corneal nerve in the pathogenesis of various ocular surface diseases, including dry eye disease, has been highlighted. Neuropeptides are thought to be important factors in the pathogenesis of dry eye disease, as suggested by the well-known role between the nervous and immune systems, and several recently published studies have elucidated the previously unknown pathogenic mechanisms involved in the role of the neuropeptides secreted from the corneal nerves in dry eye disease. Here, we reviewed the emerging concept of neurogenic inflammation as one of the pathogenic mechanisms of dry eye disease, the recent results of related studies, and the direction of future research.
Collapse
Affiliation(s)
- Daniel Duck-Jin Hwang
- Department of Ophthalmology, HanGil Eye Hospital, Incheon 21388, Korea;
- Department of Ophthalmology, College of Medicine, Catholic Kwandong University, Incheon 21388, Korea
| | - Seok-Jae Lee
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; (S.-J.L.); (J.-H.K.)
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Jeong-Hun Kim
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; (S.-J.L.); (J.-H.K.)
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea
- Department of Ophthalmology, College of Medicine, Seoul National University, Seoul 03080, Korea
- Advanced Biomedical Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Korea
| | - Sang-Mok Lee
- Department of Ophthalmology, HanGil Eye Hospital, Incheon 21388, Korea;
- Department of Ophthalmology, College of Medicine, Catholic Kwandong University, Incheon 21388, Korea
| |
Collapse
|
5
|
Abstract
Vasoactive intestinal peptide-secreting tumors (VIPomas) are a group of rare neuroendocrine tumors, which cause a typical syndrome of watery diarrhea. Most of these tumors are found in the pancreas and are usually detected at a later stage. Although curative resection is not possible in most of these tumors, both symptom and tumor control can be achieved by a multidimensional approach, to enable a long survival of most patients. There are no clear-cut guidelines for the management of VIPomas because of the rarity of this neoplasm and lack of prospective data. In this review, we discuss the available evidence on the clinical features and management of these rare tumors.
Collapse
|
6
|
Alpár A, Harkany T. Novel insights into the spatial and temporal complexity of hypothalamic organization through precision methods allowing nanoscale resolution. J Intern Med 2018; 284:568-580. [PMID: 30027599 DOI: 10.1111/joim.12815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The mammalian hypothalamus contains an astounding heterogeneity of neurons to achieve its role in coordinating central responses to virtually any environmental stressor over the life-span of an individual. Therefore, while core features of intrahypothalamic neuronal modalities and wiring patterns are stable during vertebrate evolution, integration of the hypothalamus into hierarchical brain-wide networks evolved to coordinate its output with emotionality, cognition and conscious decision-making. The advent of single-cell technologies represents a recent milestone in the study of hypothalamic organization by allowing the dissection of cellular heterogeneity and establishing causality between opto- and chemogenetic activity modulation of molecularly-resolved neuronal contingents and specific behaviours. Thus, organizational rules to accumulate an unprecedented variety of hierarchical neuroendocrine command networks into a minimal brain volume are being unravelled. Here, we review recent understanding at nanoscale resolution on how neuronal heterogeneity in the mammalian hypothalamus underpins the diversification of hormonal and synaptic output and keeps those sufficiently labile for continuous adaptation to meet environmental demands. Particular emphasis is directed towards the dissection of neuronal circuitry for aggression and food intake. Mechanistic data encompass cell identities, synaptic connectivity within and outside the hypothalamus to link vegetative and conscious levels of innate behaviours, and context- and circadian rhythm-dependent rules of synaptic neurophysiology to distinguish hypothalamic foci that either tune the body's metabolic set-point or specify behaviours. Consequently, novel insights emerge to explain the evolutionary advantages of non-laminar organization for neuroendocrine circuits coincidently using fast neurotransmitters and neuropeptides. These are then accrued into novel therapeutic principles that meet therapeutic criteria for human metabolic diseases.
Collapse
Affiliation(s)
- A Alpár
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary.,Department of Anatomy, Histology, and Embryology, Semmelweis University, Budapest, Hungary
| | - T Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria.,Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
7
|
Zhang SZ, Meng T, Zhu X, Wang H, Zhou YK, Wu XB. Molecular characterization and tissue expression profiles of prepro-vasoactive intestinal peptide in the Chinese alligator (Alligator sinensis) during the active and hibernating periods. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 327:79-88. [PMID: 29356375 DOI: 10.1002/jez.2072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/19/2017] [Accepted: 03/22/2017] [Indexed: 11/09/2022]
Abstract
The Chinese alligator (Alligator sinensis), a freshwater crocodilian endemic to China, is one of the most endangered crocodilian species; up to this date, very little is known about the endocrine regulation of its metabolic activities during different physiological states. In this study, we characterized the structure of the prepro-vasoactive intestinal peptide in Chinese alligator (prepro-caVIP) for the first time and examined its expression profiles in various tissues during the active and hibernating periods. The prepro-caVIP cDNA consists of a 221-bp 5'-untranslated region (UTR), a 606-bp complete coding region (CDS), and a 312-bp 3'-UTR, which encodes the 201-amino acid prepro-caVIP containing a 28-amino acid vasoactive intestinal peptide (VIP) and a 27-amino acid PHI (peptide histidine isoleucine). Multiple alignment analysis showed that VIP shares 100% identity with the given birds, reptiles, and African clawed frog, and 89% identity with mammals, 96% with fishes. Real-time quantitative PCR showed that the prepro-caVIP is widely expressed in all the examined tissues, and the expression level is significantly higher in small intestine, stomach, pancreas, lung, and skeletal muscle, whereas lower in heart, liver, spleen, kidney, ovary, and oviduct. During hibernation, the expression level of caVIP was significantly decreased in small intestine (P < 0.01), pancreas, and skeletal muscle (P < 0.05), whereas significantly increased in liver, spleen, and lung (P < 0.01). The wide distribution of caVIP and its differential expression changes in various tissues during hibernation implicated that it might play multiple effects in Chinese alligator and participate in the physiological adaptation of various organs in a paracrine and/or neurocrine manner.
Collapse
Affiliation(s)
- Sheng-Zhou Zhang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Anhui, People's Republic of China
| | - Ting Meng
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Anhui, People's Republic of China
| | - Xue Zhu
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Anhui, People's Republic of China
| | - Huan Wang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Anhui, People's Republic of China
| | - Yong-Kang Zhou
- Alligator Research Center of Anhui Province, Xuancheng, People's Republic of China
| | - Xiao-Bing Wu
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Anhui, People's Republic of China
| |
Collapse
|
8
|
Pérez de Sevilla Müller L, Solomon A, Sheets K, Hapukino H, Rodriguez AR, Brecha NC. Multiple cell types form the VIP amacrine cell population. J Comp Neurol 2017; 527:133-158. [PMID: 28472856 DOI: 10.1002/cne.24234] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 04/21/2017] [Accepted: 04/27/2017] [Indexed: 12/21/2022]
Abstract
Amacrine cells are a heterogeneous group of interneurons that form microcircuits with bipolar, amacrine and ganglion cells to process visual information in the inner retina. This study has characterized the morphology, neurochemistry and major cell types of a VIP-ires-Cre amacrine cell population. VIP-tdTomato and -Confetti (Brainbow2.1) mouse lines were generated by crossing a VIP-ires-Cre line with either a Cre-dependent tdTomato or Brainbow2.1 reporter line. Retinal sections and whole-mounts were evaluated by quantitative, immunohistochemical, and intracellular labeling approaches. The majority of tdTomato and Confetti fluorescent cell bodies were in the inner nuclear layer (INL) and a few cell bodies were in the ganglion cell layer (GCL). Fluorescent processes ramified in strata 1, 3, 4, and 5 of the inner plexiform layer (IPL). All tdTomato fluorescent cells expressed syntaxin 1A and GABA-immunoreactivity indicating they were amacrine cells. The average VIP-tdTomato fluorescent cell density in the INL and GCL was 535 and 24 cells/mm2 , respectively. TdTomato fluorescent cells in the INL and GCL contained VIP-immunoreactivity. The VIP-ires-Cre amacrine cell types were identified in VIP-Brainbow2.1 retinas or by intracellular labeling in VIP-tdTomato retinas. VIP-1 amacrine cells are bistratified, wide-field cells that ramify in strata 1, 4, and 5, VIP-2A and 2B amacrine cells are medium-field cells that mainly ramify in strata 3 and 4, and VIP-3 displaced amacrine cells are medium-field cells that ramify in strata 4 and 5 of the IPL. VIP-ires-Cre amacrine cells form a neuropeptide-expressing cell population with multiple cell types, which are likely to have distinct roles in visual processing.
Collapse
Affiliation(s)
- Luis Pérez de Sevilla Müller
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763
| | - Alexander Solomon
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763
| | - Kristopher Sheets
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763
| | - Hinekura Hapukino
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763
| | - Allen R Rodriguez
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763
| | - Nicholas C Brecha
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763.,Department of Medicine, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763.,Department of Ophthalmology and the Stein Eye Institute, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763.,CURE Digestive Diseases Research Center, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763.,Veterans Administration Greater Los Angeles Health System, Los Angeles, California, 90073
| |
Collapse
|
9
|
Roloff EVL, Tomiak‐Baquero AM, Kasparov S, Paton JFR. Parasympathetic innervation of vertebrobasilar arteries: is this a potential clinical target? J Physiol 2016; 594:6463-6485. [PMID: 27357059 PMCID: PMC5108906 DOI: 10.1113/jp272450] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/18/2016] [Indexed: 12/25/2022] Open
Abstract
This review aims to summarise the contemporary evidence for the presence and function of the parasympathetic innervation of the cerebral circulation with emphasis on the vertebral and basilar arteries (the posterior cerebral circulation). We consider whether the parasympathetic innervation of blood vessels could be used as a means to increase cerebral blood flow. This may have clinical implications for pathologies associated with cerebral hypoperfusion such as stroke, dementia and hypertension. Relative to the anterior cerebral circulation little is known of the origins and neurochemical phenotypes of the parasympathetic innervation of the vertebrobasilar arteries. These vessels normally provide blood flow to the brainstem and cerebellum but can, via the Circle of Willis upon stenosis of the internal carotid arteries, supply blood to the anterior cerebral circulation too. We review the multiple types of parasympathetic fibres and their distinct transmitter mechanisms and how these vary with age, disease and species. We highlight the importance of parasympathetic fibres for mediating the vasodilatory response to sympathetic activation. Current trials are investigating the possibility of electrically stimulating the postganglionic parasympathetic ganglia to improve cerebal blood flow to reduce the penumbra following stroke. We conclude that although there are substantial gaps in our understanding of the origins of parasympathetic innervation of the vertebrobasilar arteries, activation of this system under some conditions might bring therapeutic benefits.
Collapse
Affiliation(s)
- Eva v. L. Roloff
- School of Physiology, Pharmacology and Neuroscience, Biomedical SciencesUniversity of BristolBristolBS8 1TDUK
| | - Ana M. Tomiak‐Baquero
- School of Physiology, Pharmacology and Neuroscience, Biomedical SciencesUniversity of BristolBristolBS8 1TDUK
| | - Sergey Kasparov
- School of Physiology, Pharmacology and Neuroscience, Biomedical SciencesUniversity of BristolBristolBS8 1TDUK
| | - Julian F. R. Paton
- School of Physiology, Pharmacology and Neuroscience, Biomedical SciencesUniversity of BristolBristolBS8 1TDUK
| |
Collapse
|
10
|
Maduna T, Lelievre V. Neuropeptides shaping the central nervous system development: Spatiotemporal actions of VIP and PACAP through complementary signaling pathways. J Neurosci Res 2016; 94:1472-1487. [PMID: 27717098 DOI: 10.1002/jnr.23915] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/04/2016] [Accepted: 08/15/2016] [Indexed: 01/18/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are neuropeptides with wide, complementary, and overlapping distributions in the central and peripheral nervous systems, where they exert important regulatory roles in many physiological processes. VIP and PACAP display a large range of biological cellular targets and functions in the adult nervous system including regulation of neurotransmission and neuroendocrine secretion and neuroprotective and neuroimmune responses. As the main focus of the present review, VIP and PACAP also have been long implicated in nervous system development and maturation through their interaction with the seven transmembrane domain G protein-coupled receptors, PAC1, VPAC1, and VPAC2, initiating multiple signaling pathways. Compared with PAC1, which solely binds PACAP with very high affinity, VPACs exhibit high affinities for both VIP and PACAP but differ from each other because of their pharmacological profile for both natural accessory peptides and synthetic or chimeric molecules, with agonistic and antagonistic properties. Complementary to initial pharmacological studies, transgenic animals lacking these neuropeptides or their receptors have been used to further characterize the neuroanatomical, electrophysiological, and behavioral roles of PACAP and VIP in the developing central nervous system. In this review, we recapitulate the critical steps and processes guiding/driving neurodevelopment in vertebrates and superimposing the potential contribution of PACAP and VIP receptors on the given timeline. We also describe how alterations in VIP/PACAP signaling may contribute to both (neuro)developmental and adult pathologies and suggest that tuning of VIP/PACAP signaling in a spatiotemporal manner may represent a novel avenue for preventive therapies of neurological and psychiatric disorders. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tando Maduna
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique UPR3212, Université de Strasbourg, Strasbourg, France
| | - Vincent Lelievre
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique UPR3212, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
11
|
Leibowitz-Amit R, Lebowitz-Amit R, Mete O, Asa SL, Ezzat S, Joshua AM. Malignant pheochromocytoma secreting vasoactive intestinal peptide and response to sunitinib: a case report and literature review. Endocr Pract 2016; 20:e145-50. [PMID: 24936559 DOI: 10.4158/ep14093.cr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Malignant pheochromocytoma is rare and may be sporadic or have a genetic basis. Vasoactive intestinal peptide (VIP)-secreting pheochromocytoma has rarely been described in the literature, and treatment remains challenging in the absence of well-controlled randomized trials. The hypoxia-inducible factor-vascular endothelial growth factor axis has been implicated in pheochromocytoma when associated with germline Von-Hippel-Lindau (VHL) or succinate dehydrogenase (SDH) mutations, suggesting potential clinical activity of sunitinib in this setting. METHODS We present a case report of a patient with a VIP-secreting malignant pheochromocytoma manifested as severe watery diarrhea, with an exquisite clinical response to sunitinib. We review this rare clinical entity and the potential role of sunitinib in this context. RESULTS A 51-year-old male initially presented with a pheochromocytoma causing symptoms related to norepinephrine excess. He underwent adrenalectomy, which resulted in complete resolution of his symptoms. Three years later, he developed multifocal metastatic disease from his primary tumor, showing immunohistochemical evidence of VIP production accompanied by severe watery diarrhea and hypokalemia. The patient had a rapid, complete, and durable clinical response to sunitinib, but with only a minor radiological response and without significant toxicity. Genetic testing was negative for germline mutations in VHL, SDHB, SDHC, SDHD, transmembrane protein 127 (TMEM127) and for neurofibromatosis type 1 (NF-1). CONCLUSION To the best of our knowledge, this is the first report of a case of malignant VIP-producing pheochromocytoma that was responsive to sunitinib.
Collapse
Affiliation(s)
| | - Raya Lebowitz-Amit
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ozgur Mete
- Department of Pathology, University Health Network, Toronto, Ontario, Canada Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | - Sylvia L Asa
- Department of Pathology, University Health Network, Toronto, Ontario, Canada Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | - Shereen Ezzat
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Anthony M Joshua
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Liu Y, Wang C, Wang HY, Wu HL, Chen WH, He DQ. Molecular cloning, characterisation and tissues expression analysis of the goose (Anser cygnoides) vasoactive intestinal peptide (VIP) gene. Br Poult Sci 2014; 55:720-7. [PMID: 25347433 DOI: 10.1080/00071668.2014.974505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
1. Vasoactive intestinal peptide (VIP) is involved in the control of prolactin (PRL) release and plays a pivotal role as a regulator of reproductive behaviour and neuroendocrine secretion in birds. 2. In this study, a 941-bp cDNA fragment covering the complete coding region (CDS) of goose VIP gene was identified. The cDNA contains a 32-bp 5'-untranslated region (UTR), a 603-bp CDS and a 306-bp 3'-UTR containing two ATTTA sequence elements, two polyadenylation signals (AATAAA) and a 25-bp poly (A) tail. 3. Seven exons and 6 introns were identified, and both the cDNA and genomic DNA sequences showed high identity with those of other species. 4. The sequence analysis indicated that there were two alternatively spliced transcripts the long transcript (VIP-1) encoded both VIP and peptide histidine isoleucine exons and the short one (VIP-2) only encoded VIP. 5. RT-PCR analysis indicates that the expression level of the VIP-1 is much lower than that of VIP-2, and that VIP-1 is negligible or absent in muscle, abdominal fat, ovary and spleen, whereas VIP-2 is widely distributed in all the examined tissues. 6. A total of 12 single nucleotide polymorphisms (SNPs), including 2 SNPs located in the coding region and 10 variations in intron regions, were identified in goose VIP gene.
Collapse
Affiliation(s)
- Y Liu
- a Institute of Animal Husbandry and Veterinary Science Research , Shanghai Academy of Agricultural Sciences , Shanghai 201106 , China
| | | | | | | | | | | |
Collapse
|
13
|
Reichstetter S, Castillo GM, Rubinstein I, Nishimoto-Ashfield A, Lai M, Jones CC, Banerjee AA, Banjeree A, Lyubimov A, Bloedow DC, Bogdanov A, Bolotin EM. Protected graft copolymer excipient leads to a higher acute maximum tolerated dose and extends residence time of vasoactive intestinal Peptide significantly better than sterically stabilized micelles. Pharm Res 2013; 30:670-82. [PMID: 23224976 PMCID: PMC3734960 DOI: 10.1007/s11095-012-0904-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 10/08/2012] [Indexed: 10/27/2022]
Abstract
PURPOSE To determine and compare pharmacokinetics and toxicity of two nanoformulations of Vasoactive Intestinal Peptide (VIP). METHODS VIP was formulated using a micellar (Sterically Stabilized Micelles, SSM) and a polymer-based (Protected Graft Copolymer, PGC) nanocarrier at various loading percentages. VIP binding to the nanocarriers, pharmacokinetics, blood pressure, blood chemistry, and acute maximum tolerated dose (MTD) of the formulations after injection into BALB/c mice were determined. RESULTS Both formulations significantly extend in vivo residence time compared to unformulated VIP. Formulation toxicity is dependent on loading percentage, showing major differences between the two carrier types. Both formulations increase in vivo potency of unformulated VIP and show acute MTDs at least 140 times lower than unformulated VIP, but still at least 100 times higher than the anticipated highest human dose, 1-5 μg/kg. These nanocarriers prevented a significant drop in arterial blood pressure compared to unformulated VIP. CONCLUSIONS While both carriers enhance in vivo residence time compared to unformulated VIP and reduce the drop in blood pressure immediately after injection, PGC is the excipient of choice to extend residence time and improve the safety of potent therapeutic peptides such as VIP.
Collapse
|
14
|
Abstract
Vasoactive intestinal polypeptide (VIP) is derived from a 170 amino acid precursor which in addition is processed to preproVIP 22-79, PHI, preproVIP 111-122 and preproVIP 156-170. All preproVIP-derived peptides have been shown in normal tissue and VIP-producing cell lines and elevated quantities occur in plasma and tumour tissues from patients with VIP-producing tumours. In some tissues the dibasic cleavage site after PHI is uncleaved resulting in a C-terminally extended form, PHV. PHI and VIP are present in a 1:1 molar ratio in large dense core vesicles and released in roughly equimolar amounts. Carboxyamidation of VIP and PHI is not critical and glycine-extended forms of both peptides have been demonstrated. Pituitary adenylate cyclase activating polypeptide (PACAP) is derived from a 170 amino acid long precursor, which gives rise to PACAP 38, PACAP 27 and PACAP related peptide (PRP). All peptides are present in tissue, the dominating form being PACAP 38. Prohormone convertase (PC) 1 and 2 seem to be involved in the processing of PACAP, except in the testes and ovary, where the PACAP precursor is substrate for PC4.
Collapse
|
15
|
Cardoso JCR, Vieira FA, Gomes AS, Power DM. The serendipitous origin of chordate secretin peptide family members. BMC Evol Biol 2010; 10:135. [PMID: 20459630 PMCID: PMC2880984 DOI: 10.1186/1471-2148-10-135] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 05/06/2010] [Indexed: 01/15/2023] Open
Abstract
Background The secretin family is a pleotropic group of brain-gut peptides with affinity for class 2 G-protein coupled receptors (secretin family GPCRs) proposed to have emerged early in the metazoan radiation via gene or genome duplications. In human, 10 members exist and sequence and functional homologues and ligand-receptor pairs have been characterised in representatives of most vertebrate classes. Secretin-like family GPCR homologues have also been isolated in non-vertebrate genomes however their corresponding ligands have not been convincingly identified and their evolution remains enigmatic. Results In silico sequence comparisons failed to retrieve a non-vertebrate (porifera, cnidaria, protostome and early deuterostome) secretin family homologue. In contrast, secretin family members were identified in lamprey, several teleosts and tetrapods and comparative studies revealed that sequence and structure is in general maintained. Sequence comparisons and phylogenetic analysis revealed that PACAP, VIP and GCG are the most highly conserved members and two major peptide subfamilies exist; i) PACAP-like which includes PACAP, PRP, VIP, PH, GHRH, SCT and ii) GCG-like which includes GCG, GLP1, GLP2 and GIP. Conserved regions flanking secretin family members were established by comparative analysis of the Takifugu, Xenopus, chicken and human genomes and gene homologues were identified in nematode, Drosophila and Ciona genomes but no gene linkage occurred. However, in Drosophila and nematode genes which flank vertebrate secretin family members were identified in the same chromosome. Conclusions Receptors of the secretin-like family GPCRs are present in protostomes but no sequence homologues of the vertebrate cognate ligands have been identified. It has not been possible to determine when the ligands evolved but it seems likely that it was after the protostome-deuterostome divergence from an exon that was part of an existing gene or gene fragment by rounds of gene/genome duplication. The duplicate exon under different evolutionary pressures originated the chordate PACAP-like and GCG-like subfamily groups. This event occurred after the emergence of the metazoan secretin GPCRs and led to the establishment of novel peptide-receptor interactions that contributed to the generation of novel physiological functions in the chordate lineage.
Collapse
Affiliation(s)
- João C R Cardoso
- Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal.
| | | | | | | |
Collapse
|
16
|
Hiyama G, Sato T, Zadworny D, Kansaku N. Cloning of PRL and VIP cDNAs of the Java sparrow (Padda oryzivora). Anim Sci J 2010; 80:176-86. [PMID: 20163588 DOI: 10.1111/j.1740-0929.2008.00610.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Complementary DNA (cDNA) of prolactin (PRL) and vasoactive intestinal polypeptide (VIP) of the Java sparrow were cloned and sequenced. The proximal region of the PRL promoter was also identified. Java sparrow PRL was found to have 88.3, 88.3, and 89.1% sequence identity at the cDNA level to PRL of chicken, turkey, and duck, respectively. The predicted amino acid sequence had an overall similarity with a comparable region of chicken (91.4%), turkey (88.9%) and duck (92.0%) PRL. Based on the cDNA sequence and genomic structure of the chicken PRL gene, the proximal promoter was characterized. Sequence analysis of the proximal region of Java sparrow PRL promoter revealed a high degree of similarity to that of chicken, turkey and duck PRL promoters. Moreover, cDNA of prepro-VIP was also cloned and sequenced. Java sparrow prepro-VIP shows high similarity to chicken and turkey prepro-VIP. However, the region upstream of the 5' untranslated region of Java sparrow prepro-VIP did not show similarity to that of chicken. These results suggest that the mechanisms, which regulate expression of the VIP gene, may be different between precocial and altricial birds, but expression of the PRL gene may be widely conserved in avian species.
Collapse
Affiliation(s)
- Gen Hiyama
- Laboratory of Animal Genetics and Breeding, Azabu University, Sagamihara, Japan
| | | | | | | |
Collapse
|
17
|
Vosko AM, Schroeder A, Loh DH, Colwell CS. Vasoactive intestinal peptide and the mammalian circadian system. Gen Comp Endocrinol 2007; 152:165-75. [PMID: 17572414 PMCID: PMC1994114 DOI: 10.1016/j.ygcen.2007.04.018] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 04/17/2007] [Accepted: 04/19/2007] [Indexed: 11/25/2022]
Abstract
In mammals, the circadian oscillators that drive daily behavioral and endocrine rhythms are located in the hypothalamic suprachiasmatic nucleus (SCN). While the SCN is anatomically well-situated to receive and transmit temporal cues to the rest of the brain and periphery, there are many holes in our understanding of how this temporal regulation occurs. Unanswered questions include how cell autonomous circadian oscillations within the SCN remain synchronized to each other as well as communicate temporal information to downstream targets. In recent years, it has become clear that neuropeptides are critically involved in circadian timekeeping. One such neuropeptide, vasoactive intestinal peptide (VIP), defines a cell population within the SCN and is likely used as a signaling molecule by these neurons. Converging lines of evidence suggest that the loss of VIP or its receptor has a major influence on the ability of the SCN neurons to generate circadian oscillations as well as synchronize these cellular oscillations. VIP, acting through the VPAC(2) receptor, exerts these effects in the SCN by activating intracellular signaling pathways and, consequently, modulating synaptic transmission and intrinsic membrane currents. Anatomical evidence suggests that these VIP expressing neurons connect both directly and indirectly to endocrine and other output targets. Striking similarities exist between the role of VIP in mammals and the role of Pigment Dispersing Factor (PDF), a functionally related neuropeptide, in the Drosophila circadian system. Work in both mammals and insects suggests that further research into neuropeptide function is necessary to understand how circadian oscillators work as a coordinated system to impose a temporal structure on physiological processes within the organism.
Collapse
Affiliation(s)
- Andrew M Vosko
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience, University of California--Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024-1759, USA
| | | | | | | |
Collapse
|
18
|
Haydar S, Sarti JF, Grisoni ER. Intravenous vasoactive intestinal polypeptide lowers pulmonary-to-systemic vascular resistance ratio in a neonatal piglet model of pulmonary arterial hypertension. J Pediatr Surg 2007; 42:758-64. [PMID: 17502178 DOI: 10.1016/j.jpedsurg.2006.12.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Several studies of vasoactive intestinal polypeptide (VIP) demonstrated its potent vasodilative effects on pulmonary and systemic circulation. However, no hemodynamic studies were performed to depict the effects of VIP in an in vivo model of pulmonary arterial hypertension (PAH), thereby limiting a complete understanding of the overall hemodynamic effects of VIP in PAH. METHODS AND RESULTS The pulmonary and systemic hemodynamic effects of intravenous infusion of 100 ng/kg per minute of VIP in control and pulmonary hypertensive piglets at 6 to 8 weeks of age were assessed. Pulmonary arterial hypertension was induced after the instillation of meconium solution in the subjects' trachea and was characterized by the establishment of a persistently elevated pulmonary arterial pressure, diminished cardiac output, and elevated pulmonary-to-systemic vascular resistance (PVR/SVR) ratio. CONCLUSIONS Continuous intravenous infusion of VIP markedly decreased PVR/SVR ratio in pulmonary hypertensive subjects; however, it lowered blood pressure without causing any significant changes in PVR/SVR ratio in control subjects. Collectively, these results suggest an overall pulmonary vasodilative effect of VIP in PAH.
Collapse
Affiliation(s)
- Sam Haydar
- Department of Surgery, Banner Desert Medical Center, Banner Children's Hospital, Mesa, AZ 85202, USA.
| | | | | |
Collapse
|
19
|
Groneberg DA, Rabe KF, Fischer A. Novel concepts of neuropeptide-based drug therapy: vasoactive intestinal polypeptide and its receptors. Eur J Pharmacol 2006; 533:182-94. [PMID: 16473346 DOI: 10.1016/j.ejphar.2005.12.055] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2005] [Indexed: 11/26/2022]
Abstract
Chronic inflammatory airway diseases such as bronchial asthma or chronic obstructive pulmonary disease (COPD) are major contributors to the global burden of disease. Although inflammatory cells play the central role in the pathogenesis of the diseases, recent observations indicate that also resident respiratory cells represent important targets for pulmonary drug development. Especially targeting airway neuromediators offers a possible mechanism by which respiratory diseases may be treated in the future. Among numerous peptide mediators such as tachykinins, calcitonin gene-related peptide, neurotrophins or opioids, vasoactive intestinal polypeptide (VIP) is one of the most abundant molecules found in the respiratory tract. In human airways, it influences many respiratory functions via the receptors VPAC1, VPAC2 and PAC1. VIP-expressing nerve fibers are present in the tracheobronchial smooth muscle layer, submucosal glands and in the walls of pulmonary and bronchial arteries and veins. Next to its strong bronchodilator effects, VIP potently relaxes pulmonary vessels, and plays a pivotal role in the mediation of immune mechanisms. A therapy utilizing the respiratory effects of VIP would offer potential benefits in the treatment of obstructive and inflammatory diseases and long acting VIP-based synthetic non-peptide compounds may represent a novel target for drug development.
Collapse
Affiliation(s)
- David A Groneberg
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany.
| | | | | |
Collapse
|
20
|
Delgado M, Pozo D, Ganea D. The significance of vasoactive intestinal peptide in immunomodulation. Pharmacol Rev 2004; 56:249-90. [PMID: 15169929 DOI: 10.1124/pr.56.2.7] [Citation(s) in RCA: 299] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
First identified by Said and Mutt some 30 years ago, the vasoactive intestinal peptide (VIP) was originally isolated as a vasodilator peptide. Subsequently, its biochemistry was elucidated, and within the 1st decade, their signature features as a neuropeptide became consolidated. It did not take long for these insights to permeate the field of immunology, out of which surprising new attributes for VIP were found in the last years. VIP is rapidly transforming into something more than a mere hormone. In evolving scientifically from a hormone to a novel agent for modifying immune function and possibly a cytokine-like molecule, VIP research has engaged many physiologists, molecular biologists, biochemists, endocrinologists, and pharmacologists and it is a paradigm to explore mutual interactions between neural and neuroendocrine links in health and disease. The aim of this review is firstly to update our knowledge of the cellular and molecular events relevant to VIP function on the immune system and secondly to gather together recent data that support its role as a type 2 cytokine. Recognition of the central functions VIP plays in cellular processes is focusing our attention on this "very important peptide" as exciting new candidates for therapeutic intervention and drug development.
Collapse
Affiliation(s)
- Mario Delgado
- Instituto de Parasitologia y Biomedicina "Lopez Neyra," Calle Ventanilla 11, Granada 18001, Spain.
| | | | | |
Collapse
|
21
|
Hamelink C, Hahm SH, Huang H, Eiden LE. A restrictive element 1 (RE-1) in the VIP gene modulates transcription in neuronal and non-neuronal cells in collaboration with an upstream tissue specifier element. J Neurochem 2004; 88:1091-101. [PMID: 15009665 DOI: 10.1046/j.1471-4159.2003.02241.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The vasoactive intestinal peptide (VIP) gene has been studied extensively as a prototype neuronal gene containing multiple cis-active elements that confer responsiveness to cell lineage, neurotrophic, and activity-dependent intrinsic and extrinsic cues. However, reporter genes containing the presumptive complete regulatory region 5' to the start of transcription do not confer tissue-specific gene expression in vivo. We therefore sought cis-regulatory elements downstream of the transcriptional start that might confer additional tissue-specific and tissue-restrictive properties to the VIP transcriptional unit. We report here a repressor element, similar to the canonical restrictive element-1 (RE-1), located within the first non-coding exon of the human VIP gene. The ability of this element to regulate VIP reporter gene expression in neuroblastoma and fibroblastic cells was examined. Endogenous VIP expression is high in SH-EP neuroblastoma cells, low but inducible in SH-SY5Y cells, and absent in HeLa cells. Endogenous RE-1 silencer factor (REST) expression was highest in SH-EP and HeLa cells, and significantly lower in SH-SY5Y cells. Transient transfection of a VIP reporter gene containing a mutated RE-1 sequence revealed an RE-1-dependent regulation of VIP gene expression in all three cell types, with regulation greatest in cells (SH-EP, HeLa) with highest levels of REST expression. Serial truncation of the VIP reporter gene further revealed a specific interaction between the RE-1 and a tissue-specifier element located 5 kb upstream in the VIP gene. Thus, REST can regulate VIP gene expression in both neuroblastic and non-neuronal cells, but requires coupling to the upstream tissue specifier element.
Collapse
Affiliation(s)
- Carol Hamelink
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, NIMH, NIH, Bethesda, MD, USA
| | | | | | | |
Collapse
|
22
|
|
23
|
Adams BA, Lescheid DW, Vickers ED, Crim LW, Sherwood NM. Pituitary adenylate cyclase-activating polypeptide and growth hormone-releasing hormone-like peptide in sturgeon, whitefish, grayling, flounder and halibut: cDNA sequence, exon skipping and evolution. REGULATORY PEPTIDES 2002; 109:27-37. [PMID: 12409211 DOI: 10.1016/s0167-0115(02)00167-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To better understand the evolution of pituitary adenylate cyclase-activating polypeptide (PACAP) and growth hormone-releasing hormone (GHRH), we isolated the cDNAs encoding these peptides from the brains of five species of fish: sturgeon, whitefish, grayling, flounder and halibut. Both hormones are encoded in tandem in full-length cDNAs. We compared the phylogenetic relationship among these and other known sequences encoding PACAP. In closely related species, transcripts encoding PACAP and GHRH are strongly conserved in the hormone coding regions, moderately conserved in the signal peptide, cryptic peptide and 3'-untranslated regions, but are most varied in the 5'-untranslated regions.Next, we compared the deduced amino acid sequences for the peptides to known sequences. Sturgeon and whitefish have a PACAP(38) peptide sequence that is 92% conserved compared to human PACAP(38), the highest for a fish reported to date. GHRH is the lesser conserved of the two peptides with only 39% to 45% conservation between fish and human.Each of the five fish species had a second cDNA encoding a short precursor lacking GHRH(1-32), the bioactive portion of GHRH. This suggests that exon skipping in GHRH-PACAP transcripts may be an important mechanism for regulating the ratio of PACAP to GHRH peptides.
Collapse
Affiliation(s)
- Bruce A Adams
- Department of Biology, University of Victoria, BC, Canada
| | | | | | | | | |
Collapse
|
24
|
Abstract
Vasoactive intestinal polypeptide (VIP) is one of the most abundant, biologically active peptides found in the human lung. VIP is a likely neurotransmitter or neuromodulator of the inhibitory non-adrenergic non-cholinergic airway nervous system and influences many aspects of pulmonary biology. In human airways VIP-immunoreactive nerve fibres are present in the tracheobronchial airway smooth muscle layer, the walls of pulmonary and bronchial vessels and around submucosal glands. Next to its prominent bronchodilatory effects, VIP potently relaxes pulmonary vessels. The precise role of VIP in the pathogenesis of asthma is still uncertain. Although a therapy using the strong bronchodilatory effects of VIP would offer potential benefits, the rapid inactivation of the peptide by airway peptidases has prevented effective VIP-based drugs so far and non-peptide VIP-agonists did not reach clinical use.
Collapse
Affiliation(s)
- D A Groneberg
- Division of Allergy Research, Department of Pediatric Pneumology and Immunology, Humboldt-University, Berlin, Germany.
| | | | | |
Collapse
|
25
|
Abstract
The coding region of 153 amino-acid sorbin, isolated from porcine intestine has been cloned and sequenced in pig, human and rat. The coding region includes 459 bases comprising the 5' region of 24 bases, the middle region named "sorbin-like sequence" (25-432) and the 3' region (433-459). The peptidic C-terminal segment presents the biological activity: absorption of water and electrolytes from the intestine and gall-bladder. The cDNA homology between the three species was 95%. Three forms of mRNA were found, two major forms (6.5 and 8 Kb) and one minor (4.5 Kb).
Collapse
Affiliation(s)
- K Wahbi
- Laboratoire de Cytogénétique moléculaire, Hôpital E. Herriot, F69437 03, Lyon cedex, France
| | | | | | | |
Collapse
|
26
|
Abstract
This review describes some of the most typical features in the evolution of neuropeptides. Neuropeptides are synthesized like other polypeptides and proteins, with an amino acid sequence determined by the DNA sequence of the corresponding gene. Mutations of bases in the coding regions of the DNA lead to changes in amino acid sequence, and explain the differences in amino acid sequence of a certain neuropeptide in different animal species. The more distantly related two species are, the more substitutions can be found in one and the same neuropeptide. The biologically active part of the neuropeptide is usually the most conserved part. Neuropeptides also form families of closely related peptides, where several members may occur in one animal species. This is due to gene or exon duplications followed by mutations. Gene splicing and posttranslational processing decides the gene product in a single cell. Difference in sequence may cause difference in function, but more often than not, members of a family appear to produce the same effect. Three neuropeptide families, the tachykinins, the neuropeptide Y family, and the vasoactive intestinal polypeptide/pituitary adenylate cyclase-activating peptide family will be described in more detail.
Collapse
Affiliation(s)
- S Holmgren
- Department of Zoophysiology, Göteborg University, Göteborg, Sweden.
| | | |
Collapse
|
27
|
Sherwood NM, Krueckl SL, McRory JE. The origin and function of the pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon superfamily. Endocr Rev 2000; 21:619-70. [PMID: 11133067 DOI: 10.1210/edrv.21.6.0414] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The pituitary adenylate cyclase-activating polypeptide (PACAP)/ glucagon superfamily includes nine hormones in humans that are related by structure, distribution (especially the brain and gut), function (often by activation of cAMP), and receptors (a subset of seven-transmembrane receptors). The nine hormones include glucagon, glucagon-like peptide-1 (GLP-1), GLP-2, glucose-dependent insulinotropic polypeptide (GIP), GH-releasing hormone (GRF), peptide histidine-methionine (PHM), PACAP, secretin, and vasoactive intestinal polypeptide (VIP). The origin of the ancestral superfamily members is at least as old as the invertebrates; the most ancient and tightly conserved members are PACAP and glucagon. Evidence to date suggests the superfamily began with a gene or exon duplication and then continued to diverge with some gene duplications in vertebrates. The function of PACAP is considered in detail because it is newly (1989) discovered; it is tightly conserved (96% over 700 million years); and it is probably the ancestral molecule. The diverse functions of PACAP include regulation of proliferation, differentiation, and apoptosis in some cell populations. In addition, PACAP regulates metabolism and the cardiovascular, endocrine, and immune systems, although the physiological event(s) that coordinates PACAP responses remains to be identified.
Collapse
Affiliation(s)
- N M Sherwood
- Department of Biology, University of Victoria, British Columbia, Canada.
| | | | | |
Collapse
|
28
|
Abstract
The classic concept of gastrointestinal endocrinology is that of a few peptides released to the circulation from endocrine cells, which are interspersed among other mucosal cells in the upper gastrointestinal tract. Today more than 30 peptide hormone genes are known to be expressed throughout the digestive tract, which makes the gut the largest endocrine organ in the body. Moreover, development in cell and molecular biology now makes it feasible to describe a new biology for gastrointestinal hormones based on five characteristics. 1) The structural homology groups the hormones into families, each of which is assumed to originate from a common ancestral gene. 2) The individual hormone gene is often expressed in multiple bioactive peptides due to tandem genes encoding different hormonal peptides, alternative splicing of the primary transcript, or differentiated processing of the primary translation product. By these mechanisms, more than 100 different hormonally active peptides are produced in the gastrointestinal tract. 3) In addition, gut hormone genes are widely expressed, also outside the gut. Some are expressed only in neuroendocrine cells, whereas others are expressed in a multitude of different cells, including cancer cells. 4) The different cell types often express different products of the same gene, "cell-specific expression." 5) Finally, gastrointestinal hormone-producing cells release the peptides in different ways, so the same peptide may act as an acute blood-borne hormone, as a local growth factor, as a neurotransmitter, and as a fertility factor. The new biology suggests that gastrointestinal hormones should be conceived as intercellular messengers of general physiological impact rather than as local regulators of the upper digestive tract.
Collapse
Affiliation(s)
- J F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Denmark
| |
Collapse
|
29
|
El-Gehani F, Tena-Sempere M, Huhtaniemi I. Vasoactive intestinal peptide is an important endocrine regulatory factor of fetal rat testicular steroidogenesis. Endocrinology 1998; 139:1474-80. [PMID: 9528923 DOI: 10.1210/endo.139.4.5861] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study elaborates our recent preliminary finding that vasoactive intestinal peptide (VIP) has a specific stimulatory effect on fetal rat Leydig cells. We examined the dose-response relationship for the effect of VIP on cAMP and testosterone production by dispersed fetal Leydig cells isolated from rat testes on embryonic day (E) 18.5. Further, we used RT-PCR to examine the expression of the VIP gene in fetal brain and testes and that of the VIP receptor genes in fetal testes and used RIA to measure VIP in testes and plasma during the fetal period. VIP stimulated fetal testicular cAMP production at a dose of 10(-9) mol/liter, whereas a dose as low as 10(-12) mol/liter stimulated testosterone production. This suggests that VIP at low doses may stimulate testosterone production using second messenger pathways other than cAMP. RT-PCR analysis could not reveal either VIP messenger RNA (mRNA) in fetal tissues or VIP1 receptor mRNA in the fetal or newborn testes, whereas VIP2 receptor mRNA was detected in fetal testes as early as E15.5. Northern hybridization analysis showed that the level of expression of VIP2 receptor mRNA is very low in fetal and neonatal testes and increases with age. The testicular VIP content was unmeasurable by our RIA method (i.e. <1 fmol/testis), whereas the circulating level of VIP was 82.9 +/- 1.1 pmol/liter on E17.5 and decreased with advancing fetal age. In conclusion, our results suggest that VIP from an extratesticular source, possibly from the maternal compartment, may regulate fetal testicular steroidogenesis through type 2 receptors as early as E15.5. These findings may be of physiological significance, because the onset of fetal testicular steroidogenesis occurs at an age (E15.5-19.5) before the onset of pituitary LH secretion.
Collapse
Affiliation(s)
- F El-Gehani
- Department of Physiology, University of Turku, Finland
| | | | | |
Collapse
|
30
|
Nussdorfer GG, Malendowicz LK. Role of VIP, PACAP, and related peptides in the regulation of the hypothalamo-pituitary-adrenal axis. Peptides 1998; 19:1443-67. [PMID: 9809661 DOI: 10.1016/s0196-9781(98)00102-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are members of a family of regulatory peptides that are widely distributed in the body and share numerous biologic actions. The two peptides display a remarkable amino acid-sequence homology, and bind to a class of G protein-coupled receptors, named PACAP/VIP receptors (PVRs), whose signaling mechanism mainly involves the activation of adenylate-cyclase and phospholipase-C cascades. A large body of evidence suggests that VIP and PACAP play a role in the control of the hypothalamo--pituitary-adrenal (HPA) axis, almost exclusively acting in a paracrine manner, since their blood concentration is very low. VIP and PACAP are contained in both nerve fibers and neurons of the hypothalamus, and VIP, but not PACAP, is also synthesized in the pituitary gland. Both peptides are expressed in the adrenal gland, and especially in medullary chromaffin cells. All the components of the HPA axis are provided with PVRs. VIP and PACAP enhance pituitary ACTH secretion, VIP by eliciting the hypothalamic release of CRH and potentiating its secretagogue action, and PACAP by directly stimulating pituitary corticotropes. Through this central mechanism, VIP and PACAP may increase mineralo- and glucocorticoid secretion of the adrenal cortex. VIP but not PACAP also exerts a weak direct secretagogue action on adrenocortical cells by activating both PVRs and probably a subtype of ACTH receptors. VIP and PACAP raise aldosterone production via a paracrine indirect mechanism involving the stimulation of medullary chromaffin cells to release catecholamines, which in turn enhance the secretion of zona glomerulosa cells via a beta-adrenoceptor-mediated mechanism. PACAP appears to be able to evoke a glucocorticoid response through the activation, at least in the rat, of the intramedullary CRH/ACTH system. The relevance of these effects of VIP and PACAP under basal conditions is questionable, although there are indications that endogenous VIP is involved in the maintenance of the normal growth and steroidogenic capacity of rat adrenal cortex. However, indirect evidence suggests that these peptides might play a relevant role under paraphysiological conditions (e.g., in the mediation of HPA axis responses to cold and inflammatory stresses) or may be somehow involved in the pathogenesis of Cushing disease or some case of hyperaldosteronism associated with secreting pheochromocytomas.
Collapse
|
31
|
Kuenzel WJ, Mccune SK, Talbot RT, Sharp PJ, Hill JM. Sites of gene expression for vasoactive intestinal polypeptide throughout the brain of the chick (Gallus domesticus). J Comp Neurol 1997; 381:101-18. [PMID: 9087422 DOI: 10.1002/(sici)1096-9861(19970428)381:1<101::aid-cne8>3.0.co;2-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The peptide neurotransmitter vasoactive intestinal polypeptide (VIP) has several important functions in vertebrates, particularly, influencing the neuroendocrine and autonomic nervous systems both in developing and in adult animals. To document potential brain areas that might play significant functional roles, the distribution of VIP mRNA was examined throughout the entire chick brain by using in situ hybridization histochemistry (ISHH). In addition, a VIP binding-site study was completed that focused on the lateral septal organ (LSO), a circumventricular organ of potential significance in avian species. The areas where VIP message was found included the olfactory bulbs, posterior hippocampus, parahippocampal area, hyperstriatum, archistriatum/nucleus (n.) taenia (amygdala), medial part of the LSO, organum vasculosum of the lamina terminalis, medial preoptic region, bed n. of the pallial commissure, anterior hypothalamic (hypo.) n., lateral hypo. area (most extensive and dense message), periventricular hypo. n., lateral to the paraventricular n., ventromedial hypo. n., stratum cellulare externum, inferior hypo. n., infundibular hypo. n., median eminence, three layers within the stratum griseum et fibrosum superficiale, area ventralis of Tsai, n. tegmenti pedunculopontinus pars compacta (substantia nigra), intercollicular n., central gray, locus ceruleus, parabrachial n., ventrolateral medulla, reticular pontine area, in and about the n. vestibularis descendens. When compared with immunocytochemistry that detected the presence of the peptide product VIP, more areas of the brain were found to contain perikarya expressing VIP by using ISHH, particularly in the telencephalon and the mesencephalon. VIP binding sites were found in the lateral portion of the LSO where the blood-brain barrier is not fully developed. Hence, the LSO was found to contain neural elements that synthesize as well as bind VIP. VIP appears to be a useful peptide for defining major components of the visceral forebrain system in birds.
Collapse
Affiliation(s)
- W J Kuenzel
- Department of Poultry Science, University of Maryland, College Park 20742, USA.
| | | | | | | | | |
Collapse
|
32
|
|
33
|
Schulte-Bockholt A, Fink JG, Meier DA, Otterson MF, Telford GL, Hopp K, Koch TR. Expression of mRNA for vasoactive intestinal peptide in normal human colon and during inflammation. Mol Cell Biochem 1995; 142:1-7. [PMID: 7753037 DOI: 10.1007/bf00928907] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The availability of colon provides a ready source of human neurons. Among the products of nerve cell bodies, vasoactive intestinal peptide is a neuropeptide that serves as a marker of non-adrenergic, non-cholinergic inhibitory nerves in colon. These nerves have been proposed to be involved in regulation of immune function, secretion, and smooth muscle function. In previous work, we identified decreased tissue levels of vasoactive intestinal peptide in a disorder of chronic colonic mucosal inflammation, ulcerative colitis. We hypothesized that diminished gene expression of vasoactive intestinal peptide could result in decreased tissue levels of this neuropeptide. Sigmoid colon was obtained at surgery from controls (n = 6) and patients with ulcerative colitis (n = 6). Vasoactive intestinal peptide mRNA was quantified by Northern blot hybridization and tissue levels of vasoactive intestinal peptide were determined by radioimmunoassay. Tissue vasoactive intestinal peptide was decreased only in the mucosal-submucosal layer of ulcerative colitis (p = .02). There was a single 1.7 kbase vasoactive intestinal peptide transcript identified in both control colon and ulcerative colitis. Normalized vasoactive intestinal peptide mRNA levels were increased by 260% in ulcerative colitis compared to controls (p < .01). These observations suggest that decreased vasoactive intestinal peptide gene expression or abnormal post-transcriptional processing are not primary defects in this disorder of chronic inflammation. The findings support the alternative hypothesis that axonal degeneration in ulcerative colitis could result in increased expression of neuronal vasoactive intestinal peptide mRNA.
Collapse
Affiliation(s)
- A Schulte-Bockholt
- Department of Medicine, Zablocki VA Medical Center, Milwaukee, WI 53295, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Bredkjaer HE, Wulff BS, Emson PC, Fahrenkrug J. Location of PHM/VIP mRNA in human gastrointestinal tract detected by in situ hybridization. Cell Tissue Res 1994; 276:229-38. [PMID: 8020060 DOI: 10.1007/bf00306108] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The expression of the gene for vasoactive intestinal polypeptide (VIP) and peptide histidine methionine (PHM) in the human gastrointestinal tract was studied by in situ hybridization and Northern blotting for PHM/VIP mRNA and immunocytochemistry using specific antisera against the bioactive peptides PHM and VIP. In the colon sigmoideum, antisera against all five putative processing products of the VIP precursor (prepro-VIP) were used, namely prepro-VIP 22-79, PHM, prepro-VIP 111-122, VIP and prepro-VIP 156-170. Furthermore, RNA extracted from various regions of the gastrointestinal tract was examined by Northern blots and hybridization to a VIP-cDNA probe. Throughout the gastrointestinal tract, PHM/VIP mRNA was found in neurons only. Using single- or double-staining methods, we demonstrated both PHM/VIP mRNA and the corresponding peptides PHM and VIP in the neurons. In the sigmoideum, the single-staining methods were extended to investigate whether the neurons simultaneously contained PHM/VIP mRNA and each of the five prepro-VIP-derived peptides. Only one major band of PHM/VIP mRNA (1.9 kb) was found by Northern blotting in the tissue of the gastrointestinal tract.
Collapse
Affiliation(s)
- H E Bredkjaer
- Department of Clinical Chemistry, Bispebjerg Hospital, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
35
|
Denis P, Dussaillant M, Nordmann JP, Bérod A, Saraux H, Rostène W. Vasoactive intestinal peptide/peptide histidine isoleucine mRNA in the eye and suprachiasmatic nucleus of normal and monocularly enucleated rats. Graefes Arch Clin Exp Ophthalmol 1993; 231:541-5. [PMID: 8224959 DOI: 10.1007/bf00921120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The localization of the messenger RNA (mRNA) encoding vasoactive intestinal peptide/peptide histidine isoleucine (VIP/PHI) in the rat eye was studied by in situ hybridization histochemistry using a synthetic 35S-labeled oligodeoxyribonucleotide. Among the layers of the retina, specific labeling was found in the soma of some cells in the innermost lamina of the inner nuclear layer. Occasionally, labeled cells were also present in the ganglion cell layer. No specific labeling was detected in any ocular structures other than the retina, including the cornea, iris, ciliary body, choroid, choriocapillaris, optic nerve and sclera. We also examined VIP/PHI mRNA expression in the suprachiasmatic nucleus (SCN) of the hypothalamus, which is the pacemaker of circadian rhythms and synchronizes them with the environmental light-dark cycle. High labeling was found in the ventrolateral part of the nucleus, which is the site of most projections from the retina. Monocular enucleation of rats at birth resulted in an increase of VIP/PHI mRNA expression in SCN ipsilateral to the removed eye after postnatal day 60. The discrete pattern of hybridization for VIP/PHI mRNA indicates that these two peptides are synthetized in rat retina and SCN and suggests that they may play a key role in the photic entrainment to the SCN regulating various circadian rhythms.
Collapse
|
36
|
|
37
|
Kopin AS, Wheeler MB, Nishitani J, McBride EW, Chang TM, Chey WY, Leiter AB. The secretin gene: evolutionary history, alternative splicing, and developmental regulation. Proc Natl Acad Sci U S A 1991; 88:5335-9. [PMID: 1711228 PMCID: PMC51867 DOI: 10.1073/pnas.88.12.5335] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The gene encoding the hormone secretin has been isolated and structurally characterized. The transcriptional unit is divided into four exons spanning 813 nucleotides. Comparison of the rat secretin gene to the other members of the glucagon-secretin gene family reveals that similarities are restricted to the exons encoding the biologically active peptides. Analysis of RNA from porcine intestine indicates that at least two transcripts are generated from the porcine secretin gene as a result of differential splicing. The longer and more abundant transcript appears to be identical to a previously isolated cDNA, which encodes a precursor that includes a 72-amino acid C-terminal extension peptide. The shorter transcript does not contain the third exon and, as a result, encodes only 44 residues beyond the C terminus of secretin. The amino acid sequence deduced from the shorter transcript is identical to a precursor form of secretin recently isolated from porcine duodenum [Gafvelin, G., Jornvall, H. & Mutt, V. (1990) Proc. Natl. Acad. Sci. USA 87, 6781-6785]. Developmental studies reveal that both secretin mRNA and peptide levels in the intestine are highest just before birth, prior to the onset of gastric acid secretion and feeding. This observation implies that secretin biosynthesis in developing animals is controlled independently of the principal factors known to regulate secretin release in adult animals.
Collapse
Affiliation(s)
- A S Kopin
- Division of Gastroenterology, New England Medical Center, Tufts University School of Medicine, Boston, MA 02111
| | | | | | | | | | | | | |
Collapse
|
38
|
Processing of prosecretin: isolation of a secretin precursor from porcine intestine. Proc Natl Acad Sci U S A 1990; 87:6781-5. [PMID: 2395872 PMCID: PMC54621 DOI: 10.1073/pnas.87.17.6781] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A precursor to the gastrointestinal hormone secretin has been isolated. The starting material for the purification of the precursor was a peptide fraction purified from pig intestinal extracts, containing peptides with a molecular weight higher than that of secretin. The purification could be followed by measurement of secretin bioactivity (alkali secreted in the pancreatic juice of anesthetized cat). Sequence analysis of the isolated secretin precursor revealed a 71-amino acid residue polypeptide that contained the sequence of secretin N terminally, followed by a Gly-Lys-Arg sequence and a C-terminal extension of 41-amino acid residues. With the exception of an arginine residue, which occurs directly after the Gly-Lys-Arg sequence, the remainder of the C-terminal residues in this precursor are identical to the 40 C-terminal residues predicted by the recently described cDNA sequence for porcine preprosecretin. Compared to the deduced preprosecretin sequence, a stretch of 32 amino acid residues directly following the Gly-Lys-Arg sequence is missing in the now purified secretin precursor. This implies that differential splicing may occur when the secretin gene transcript is processed to mRNA.
Collapse
|
39
|
Abstract
Several lines of evidence suggest a possible role for mast cell proteases in modulating the biologic effects of neuropeptides. To explore the potential of such interactions in human airway, we examined the activity of human tryptase, the major secretory protease of human lung mast cells, against several neuropeptides with proposed regulatory functions in human airway. Using highly purified tryptase obtained from extracts of human lung, we determined the sites and rats of hydrolysis of vasoactive intestinal peptide (VIP), peptide histidine-methionine (PHM), calcitonin gene-related peptide (CGRP), and the tachykinins substance P (SP), neurokinin A (NKA), and neurokinin B (NKB). Tryptase hydrolyzes VIP rapidly at several sites (Arg12, Arg14, Lys20, and Lys21) with an overall kcat/Km of 1.5 x 10(5) M-1 s-1 and hydrolyzes PHM primarily at a single site (Lys20) with a kcat/Km of 1.9 x 10(4) M-1 s-1. Tryptase also rapidly hydrolyzes CGRP at two sites (Arg18 and Lys24) with a kcat/Km of 2.7 x 10(5) M-1 s-1. The tachykinins are not hydrolyzed by tryptase. These observations raise the possibility that tryptase-mediated degradation of the bronchodilators VIP and PHM combined with exaggerated mast cell release of tryptase may contribute to the increase in bronchial responsiveness and the decrease in immunoreactive VIP in airway nerves associated with asthma. The favorable rates of hydrolysis of CGRP suggest that tryptase may also terminate the effects of CGRP on bronchial and vascular smooth muscle tone and permeability.
Collapse
Affiliation(s)
- E K Tam
- Cardiovascular Research Institute, University of California, San Francisco 94143-0130
| | | |
Collapse
|
40
|
Goetzl EJ, Grotmol T, Van Dyke RW, Turck CW, Wershil B, Galli SJ, Sreedharan SP. Generation and recognition of vasoactive intestinal peptide by cells of the immune system. Ann N Y Acad Sci 1990; 594:34-44. [PMID: 2165761 DOI: 10.1111/j.1749-6632.1990.tb40465.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- E J Goetzl
- Department of Medicine, University of California, San Francisco 94143
| | | | | | | | | | | | | |
Collapse
|
41
|
Sanides-Kohlrausch C, Wahle P. VIP- and PHI-immunoreactivity in olfactory centers of the adult cat. J Comp Neurol 1990; 294:325-39. [PMID: 2341612 DOI: 10.1002/cne.902940302] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The purpose of the study was to determine the morphology and distribution of vasoactive intestinal polypeptide- and peptide histidine isoleucine-immunoreactive (VIP- and PHI-ir) neurons and innervation patterns in the main and accessory olfactory bulb, anterior olfactory nucleus, and piriform cortex of the adult cat. In these centers, VIP- and PHI-immunoreactive material are present in the same neuronal types, respectively, therefore summarized as VIP/PHI-ir neurons. In the main olfactory bulb, the majority of VIP/PHI-ir neurons are localized in the external plexiform layer. These neurons give rise to two or more locally branching axons. They form boutons on mitral and external tufted cell bodies. According to the morphology and location, we have classified these neurons as Van Gehuchten cells. Some VIP/PHI-ir neurons are present in the glomerular layer. They have small somata and give rise to dendrites branching exclusively into glomeruli. We have classified these neurons as periglomerular cells. In the granule cell layer, neurons with long apical dendrites and one locally projecting axon are present. In the accessory olfactory bulb, VIP/PHI-ir neurons are localized in the mixed external/mitral/internal plexiform layer. They represent Van Gehuchten cells. In the anterior olfactory nucleus and piriform cortex, VIP/PHI-ir bipolar basket neurons are present. They are localized mainly in layers II/III. These neurons are characterized by a bipolar dendritic pattern and by locally projecting axons forming basket terminals on large immunonegative cell somata. Because of their common morphological features, we summarize them as the retrobulbar VIP/PHI-ir interneuron population. The PHI-ir neurons display the same morphology as the VIP-ir cells. However, they are significantly lower in number with a ratio of VIP-ir to PHI-ir cells about 2:1 in the main and accessory olfactory bulb and in the anterior olfactory nucleus. By contrast, in the piriform cortex the ratio is about 1:1.
Collapse
|
42
|
Abstract
In the mammalian brain, a major regulatory peptide is vasoactive intestinal peptide (VIP). This 28 amino acid peptide, originally isolated from the porcine duodenum, was later found in the central and peripheral nervous systems and in endocrine cells, where it exhibits neurotransmitter and hormonal roles. Increasing evidence points to VIP's importance as a mediator or a modulator of several basic functions. Thus, VIP is a major factor in brain activity, neuroendocrine functions, cardiac activity, respiration, digestion, and sexual potency. In view of this peptide's importance, the mechanisms controlling its production and the pathways regulating its functions have been reviewed. VIP is a member of a peptide family, including peptides such as glucagon, secretin, and growth hormone releasing hormone. These peptides may have evolved by exon duplication coupled with gene duplication. The human VIP gene contains seven exons, each encoding a distinct functional domain on the protein precursor or the mRNA. VIP gene transcripts are mainly found in neurons or neuron-related cells. VIP gene expression is regulated by neuronal and endocrine signals that contribute to its developmental control. VIP exerts its function via receptor-mediated systems, activating signal transduction pathways, including cAMP. It can act as a neurotransmitter, neuromodulator, and a secretagog. As a growth and developmental regulator, VIP may have a crucial effect as a neuronal survival factor. We shall proceed from the gene to its multiple functions.
Collapse
Affiliation(s)
- I Gozes
- Laboratory of Molecular Genetics and Developmental Neurobiology, National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | | |
Collapse
|
43
|
|
44
|
Wahle P, Meyer G. Early postnatal development of vasoactive intestinal polypeptide- and peptide histidine isoleucine-immunoreactive structures in the cat visual cortex. J Comp Neurol 1989; 282:215-48. [PMID: 2708596 DOI: 10.1002/cne.902820206] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The early postnatal development of neurons containing vasoactive intestinal polypeptide (VIP) and peptide histidine isoleucine (PHI) has been analyzed in visual areas 17 and 18 of cats aged from postnatal day (P) 0 to adulthood. Neuronal types are established mainly by axonal criteria. Both peptides occur in the same neuronal types and display the same postnatal chronology of appearance. Several cell types are transient, which means that they are present in the cortex only for a limited period of development. According to their chronology of appearance the VIP/PHI-immunoreactive (ir) cell types are grouped into three neuronal populations. The first population comprises six cell types which appear early in postnatal life. The pseudohorsetail cells of layer I possess a vertically descending axon which initially gives rise to recurrent collaterals, then forms a bundle passing layers III to V, and finally, horizontal terminal fibers in layer VI. The neurons differentiate at P 4 and disappear by degeneration around P 30. The neurons with columnar dendritic fields of layers IV/V are characterized by a vertical arrangement of long dendrites ascending or descending parallel to each other, thus forming an up to 600 microns long dendritic column. Their axons always descend and terminate in broad fields in layer VI. The neurons appear at P 7 and are present until P 20. The multipolar neurons of layer VI occur in isolated positions and have broad axonal territories. The neurons differentiate at P 7 and persist into adulthood. Bitufted to multipolar neurons of layers II/III have axons descending as a single fiber to layer VI, where they terminate. The neurons appear at P 12 and persist into adulthood. The four cell types described above issue a vertically oriented fiber architecture in layers II-V and a horizontal terminal plexus in layer VI which is dense during the second, third and fourth week. Concurrent with the disappearance of the two transient types the number of descending axonal bundles and the density of the layer VI plexus is reduced, but the latter is maintained during adulthood by the two persisting cell types. Two further cell types belong to the first population: The transient bipolar cells of layers IV, V, and VI have long dendrites which extend through the entire cortical width. Their axons always descend, leave the gray matter, and apparently terminate in the upper white matter. The neurons differentiate concurrently with the pseudohorsetail cells at P 4, are very frequent during the following weeks, and eventually disappear at P 30.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- P Wahle
- Abt. Neurobiologie, Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Federal Republic of Germany
| | | |
Collapse
|
45
|
Gozes I, Werner H, Fawzi M, Abdelatty A, Shani Y, Fridkin M, Koch Y. Estrogen regulation of vasoactive intestinal peptide mRNA in rat hypothalamus. J Mol Neurosci 1989; 1:55-61. [PMID: 2642065 DOI: 10.1007/bf02896857] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The participation of gonadal steroid hormones in regulation of the vasoactive intestinal peptide (VIP) gene expression in the hypothalamus was studied using a quantitative densitometric hybridization assay. In the female rat the levels of VIP mRNA were found to be significantly decreased following ovariectomy (4.41 +/- 0.7 arbitrary units of absorbance vs. 8.52 +/- 0.18). This decrease was largely reversed after three days of treatment with estradiol dibenzoate. In contrast to the female rats, no significant change in VIP mRNA levels was observed in the male rats, following orchidectomy. These results suggest a sexual dimorphism with regard to the steroid regulation of hypothalamic VIP gene expression in the rat.
Collapse
Affiliation(s)
- I Gozes
- Department of Hormone Research, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | |
Collapse
|
46
|
Muller JM, Lolait SJ, Yu VC, Sadée W, Waschek JA. Functional Vasoactive Intestinal Polypeptide (VIP) Receptors in Human Neuroblastoma Subclones That Contain VIP Precursor mRNA and Release VIP-like Substances. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)84897-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
47
|
Simoncsits A, Tjörnhammar ML, Kalman M, Cserpan I, Gafvelin G, Bartfai T. Synthesis, cloning and expression in Escherichia coli of artificial genes coding for biologically active elongated precursors of the vasoactive intestinal polypeptide. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 178:343-50. [PMID: 3145201 DOI: 10.1111/j.1432-1033.1988.tb14456.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Synthetic genes coding for elongated precursors of the vasoactive intestinal polypeptide (VIP) were synthesized and cloned in a highly efficient Escherichia coli expression vector. The synthetic genes code for VIP with its methionine (at position 17) replaced by leucine and elongated at the C-terminus by Gly (vasoactive intestinal polypeptide-Gly, i.e. VIPa) or by Gly-Lys-Arg (vasoactive intestinal polypeptide-Gly-Lys-Arg, i.e. VIPb). The synthetic genes fused to the N-terminal part of the E. coli beta-galactosidase gene were expressed to yield high amounts of fusion proteins reaching upon induction at least 60% of the total cellular protein. The fusion proteins of 314 and 316 amino acids carrying in their C-terminal portion either the 29 or 31 amino acids long VIP precursor polypeptide were shown to be immunoreactive with VIP antisera and were further purified and cleaved by CNBr. The resulting purified peptide precursors (VIPa and VIPb) were recognized by VIP receptors in rat liver plasma membranes and by antibodies to porcine VIP in a radioimmunoassay. Both precursors activated adenylate cyclase in rat liver membranes and stimulated pancreatic secretion in the cat. The affinity and potency of the cloned precursors is close to that of VIP purified from porcine intestine, suggesting that the elongated VIP precursors may act even without being converted into the C-terminal amide form of the peptide. The elongated VIP precursors expressed in E. coli may provide a cheap, large-scale source of experimental material for studies on VIP actions.
Collapse
Affiliation(s)
- A Simoncsits
- Institute of Genetics, Hungarian Academy of Sciences
| | | | | | | | | | | |
Collapse
|
48
|
Waschek JA, Hsu CM, Eiden LE. Lineage-specific regulation of the vasoactive intestinal peptide gene in neuroblastoma cells is conferred by 5.2 kilobases of 5'-flanking sequence. Proc Natl Acad Sci U S A 1988; 85:9547-51. [PMID: 3200839 PMCID: PMC282791 DOI: 10.1073/pnas.85.24.9547] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The expression of a transfected plasmid containing 5.2 kilobases (kb) of 5' regulatory DNA sequence of the human vasoactive intestinal peptide (VIP) gene attached to coding sequences of the reporter gene chloramphenicol acetyltransferase (CAT) was compared with endogenous VIP expression in subclones of the human neuroblastoma cell line SK-N-SH. These subclones vary widely in basal and inducible quantities of VIP and its precursor mRNA and can be interconverted under specified culture conditions. Endogenous VIP immunoreactivity, detectable in all subclones, was lowest in the neuronal subclone SH-SY-5Y, whereas 15- to 25-fold higher levels were observed in the epithelial-appearing SH-EP and intermediate SH-IN subclones. Treatment with 10 nM phorbol 12-myristate 13-acetate (PMA) stimulated VIP peptide levels approximately 5-fold in SH-SY-5Y cells but did not increase appreciably VIP levels in the other subclones. Treatment with 2.5 microM forskolin resulted in less than 50% stimulation of VIP expression in all subclones. Levels of mRNA encoding the VIP precursor generally paralleled these differences in VIP immunoreactivity. In cells transfected with the VIP/CAT fusion gene, CAT activity reflected closely these differences in basal VIP expression and the changes in response to PMA and forskolin. Deletion of 2.7 kb of the most upstream sequences resulted in an 80-90% reduction in basal CAT activity in SH-IN, but not SH-SY-5Y cells, and resulted in an 80% reduction in PMA stimulation in SH-SY-5Y cells. Deletion to within 74 nucleotides of the transcription start site resulted in CAT expression in SH-IN cells that was only 3% of that seen with the full 5.2-kb flanking sequences and further diminished the remaining PMA responsiveness in SH-SY-5Y cells. The data indicate that important cell-type-specific transcription regulatory sequences reside greater than 2.5 kb upstream from the VIP transcription start site.
Collapse
Affiliation(s)
- J A Waschek
- Unit on Molecular and Cellular Neurobiology, National Institutes of Health, Bethesda, MD 20892
| | | | | |
Collapse
|
49
|
Affiliation(s)
- V Mutt
- Department of Biochemistry II, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
50
|
Yamagami T, Ohsawa K, Nishizawa M, Inoue C, Gotoh E, Yanaihara N, Yamamoto H, Okamoto H. Complete nucleotide sequence of human vasoactive intestinal peptide/PHM-27 gene and its inducible promoter. Ann N Y Acad Sci 1988; 527:87-102. [PMID: 2839091 DOI: 10.1111/j.1749-6632.1988.tb26975.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have previously shown that the VIP precursor contains a novel PHI-27-like peptide, PHM-27, and that the synthesis of the prepro-VIP/PHM-27 mRNA is induced with cAMP and TPA in human neuroblastoma cells. In this study, we have determined the complete nucleotide sequence of the human VIP/PHM-27 gene. The gene spans 8,837 bp and consists of seven exons and six introns. Exon I of 165 bp consists of the 5' untranslated region of the gene, exon II of 117 bp encodes the signal peptide of prepro-VIP/PHM-27, exon III of 123 bp encodes the amino-terminal region, exon IV of 105 bp encodes PHM-27, exon V of 132 bp encodes VIP, exon VI of 89 bp contains the termination codon of the prepro-VIP/PHM-27 mRNA, and exon VII of 724 bp consists of the 3' untranslated region of the gene. VIP and its structurally related peptide, PHM-27, were encoded in different exons V and IV, and the sequences around the splice junctions between these exons and their adjacent introns were highly conserved, suggesting that the VIP-encoding and PHM-27-encoding exons have been duplicated from an ancestral exon over a broad area containing its adjacent introns. We also determined the 1,929-bp sequence of the 5' flanking region of the human VIP/PHM-27 gene and found that four TATA-box sequences were present at 28 bp, 145 bp, 772 bp, and 900 bp upstream of the cap site. Primer extension, exon mapping, and mung bean nuclease mapping analyses revealed that only the TATA-box sequence 28 bp upstream of the cap site was the promoter that is inducible by cAMP and TPA in the human neuroblastoma cells. An 18-bp sequence 52 bp upstream from the TATA-box sequence was suggested to be a cAMP/phorbol esters-responsive element of the human VIP/PHM-27 gene.
Collapse
Affiliation(s)
- T Yamagami
- Department of Biochemistry, Tohoku University School of Medicine, Miyagi, Japan
| | | | | | | | | | | | | | | |
Collapse
|