1
|
Aebisher D, Woźnicki P, Czarnecka-Czapczyńska M, Dynarowicz K, Szliszka E, Kawczyk-Krupka A, Bartusik-Aebisher D. Molecular Determinants for Photodynamic Therapy Resistance and Improved Photosensitizer Delivery in Glioma. Int J Mol Sci 2024; 25:8708. [PMID: 39201395 PMCID: PMC11354549 DOI: 10.3390/ijms25168708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Gliomas account for 24% of all the primary brain and Central Nervous System (CNS) tumors. These tumors are diverse in cellular origin, genetic profile, and morphology but collectively have one of the most dismal prognoses of all cancers. Work is constantly underway to discover a new effective form of glioma therapy. Photodynamic therapy (PDT) may be one of them. It involves the local or systemic application of a photosensitive compound-a photosensitizer (PS)-which accumulates in the affected tissues. Photosensitizer molecules absorb light of the appropriate wavelength, initiating the activation processes leading to the formation of reactive oxygen species and the selective destruction of inappropriate cells. Research focusing on the effective use of PDT in glioma therapy is already underway with promising results. In our work, we provide detailed insights into the molecular changes in glioma after photodynamic therapy. We describe a number of molecules that may contribute to the resistance of glioma cells to PDT, such as the adenosine triphosphate (ATP)-binding cassette efflux transporter G2, glutathione, ferrochelatase, heme oxygenase, and hypoxia-inducible factor 1. We identify molecular targets that can be used to improve the photosensitizer delivery to glioma cells, such as the epithelial growth factor receptor, neuropilin-1, low-density lipoprotein receptor, and neuropeptide Y receptors. We note that PDT can increase the expression of some molecules that reduce the effectiveness of therapy, such as Vascular endothelial growth factor (VEGF), glutamate, and nitric oxide. However, the scientific literature lacks clear data on the effects of PDT on many of the molecules described, and the available reports are often contradictory. In our work, we highlight the gaps in this knowledge and point to directions for further research that may enhance the efficacy of PDT in the treatment of glioma.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland
| | - Paweł Woźnicki
- English Division Science Club, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland;
| | - Magdalena Czarnecka-Czapczyńska
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego 15 Street, 41-902 Bytom, Poland;
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of The University of Rzeszów, 35-310 Rzeszów, Poland;
| | - Ewelina Szliszka
- Department of Microbiology and Immunology, Medical University of Silesia, Poniatowskiego 15, 40-055 Katowice, Poland;
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego 15 Street, 41-902 Bytom, Poland;
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland;
| |
Collapse
|
2
|
Chen H, Jiang Z, Cheng X, Zheng W, Sun Y, Yu Z, Yang T, Zhang L, Yan J, Liu Y, Ji X, Wu Z. [ 18F]BIBD-239: 18F-Labeled ER176, a Positron Emission Tomography Tracer Specific for the Translocator Protein. Mol Pharm 2022; 19:2351-2366. [PMID: 35671264 DOI: 10.1021/acs.molpharmaceut.2c00157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
[11C]ER176 has adequate sensitivity to image the human brain translocator protein (TSPO) in all three genotypes by positron emission tomography (PET). However, its clinical application is limited by the short half-life of 11C (20.38 min). To overcome the deficiency of [11C]ER176 and keep the pharmacophore features of ER176 to the maximum extent, we designed four fluorine-labeled ER176 derivatives using the deuterium method. In vitro competition binding confirmed that the designed compounds had high affinity for TSPO. Biodistribution experiments showed that tissues with high expression of TSPO had high uptake of these compounds, as well as that the compound showed high brain penetration and mild defluorination in vivo. Therefore, [18F]BIBD-239 with simple synthesis conditions was selected for further biological evaluation. Theoretical simulations showed that BIBD-239 and ER176 have similar binding modes and sites to Ala147-TSPO and Thr147-TSPO, which indicated that the tracers may have consistent sensitivity to the three affinity genotypes. In vitro autoradiography and in vivo PET studies of the ischemic rat brain showed dramatically higher uptake of [18F]BIBD-239 on the lesion site compared to the contralateral side with good brain kinetics. Additionally, [18F]BIBD-239 provided clear tumor PET images in a GL261 glioma model. Importantly, PET imaging and liquid chromatography-high-resolution mass spectrometry (LC-HRMS) results showed that in vivo defluorination and other metabolites of [18F]BIBD-239 did not interfere with brain imaging. Conclusively, [18F]BIBD-239, similar to ER176 with low polymorphism sensitivity, has simple labeling conditions, high labeling yield, high affinity, and high specificity for TSPO, and it is planned for further evaluation in higher species.
Collapse
Affiliation(s)
- Hualong Chen
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Zeng Jiang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Xuebo Cheng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Wei Zheng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Yuli Sun
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Ziyue Yu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Tingyu Yang
- School of Pharmaceutical Science, Capital Medical University, Beijing 100069, China
| | - Lu Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Jun Yan
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Yajing Liu
- School of Pharmaceutical Science, Capital Medical University, Beijing 100069, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China.,Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Zehui Wu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| |
Collapse
|
3
|
Zinnhardt B, Roncaroli F, Foray C, Agushi E, Osrah B, Hugon G, Jacobs AH, Winkeler A. Imaging of the glioma microenvironment by TSPO PET. Eur J Nucl Med Mol Imaging 2021; 49:174-185. [PMID: 33721063 DOI: 10.1007/s00259-021-05276-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
Gliomas are highly dynamic and heterogeneous tumours of the central nervous system (CNS). They constitute the most common neoplasm of the CNS and the second most common cause of death from intracranial disease after stroke. The advances in detailing the genetic profile of paediatric and adult gliomas along with the progress in MRI and PET multimodal molecular imaging technologies have greatly improved prognostic stratification of patients with glioma and informed on treatment decisions. Amino acid PET has already gained broad clinical application in the study of gliomas. PET imaging targeting the translocator protein (TSPO) has recently been applied to decipher the heterogeneity and dynamics of the tumour microenvironment (TME) and its various cellular components especially in view of targeted immune therapies with the goal to delineate pro- and anti-glioma immune cell modulation. The current review provides a comprehensive overview on the historical developments of TSPO PET for gliomas and summarizes the most relevant experimental and clinical data with regard to the assessment and quantification of various cellular components with the TME of gliomas by in vivo TSPO PET imaging.
Collapse
Affiliation(s)
- Bastian Zinnhardt
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-University Münster (WWU), Münster, Germany
- Biomarkers and Translational Technologies, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Federico Roncaroli
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Manchester, UK
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Brain and Mental Health, University of Manchester, Manchester, UK
| | - Claudia Foray
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-University Münster (WWU), Münster, Germany
| | - Erjon Agushi
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Manchester, UK
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Brain and Mental Health, University of Manchester, Manchester, UK
| | - Bahiya Osrah
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Manchester, UK
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Brain and Mental Health, University of Manchester, Manchester, UK
| | - Gaëlle Hugon
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS, Inserm, Université Paris-Saclay, Orsay, France
| | - Andreas H Jacobs
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-University Münster (WWU), Münster, Germany
- Department of Geriatrics and Neurology, Johanniter Hospital, Bonn, Germany
| | - Alexandra Winkeler
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS, Inserm, Université Paris-Saclay, Orsay, France.
- CEA, DRF, JOLIOT, SHFJ, Orsay, France.
| |
Collapse
|
4
|
Adhikari A, Singh P, Mahar KS, Adhikari M, Adhikari B, Zhang MR, Tiwari AK. Mapping of Translocator Protein (18 kDa) in Peripheral Sterile Inflammatory Disease and Cancer through PET Imaging. Mol Pharm 2021; 18:1507-1529. [PMID: 33645995 DOI: 10.1021/acs.molpharmaceut.1c00002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Positron emission tomography (PET) imaging of the translocator 18 kDa protein (TSPO) with radioligands has become an effective means of research in peripheral inflammatory conditions that occur in many diseases and cancers. The peripheral sterile inflammatory diseases (PSIDs) are associated with a diverse group of disorders that comprises numerous enduring insults including the cardiovascular, respiratory, gastrointestinal, or musculoskeletal system. TSPO has recently been introduced as a potential biomarker for peripheral sterile inflammatory diseases (PSIDs). The major critical issue related to PSIDs is its timely characterization and localization of inflammatory foci for proper therapy of patients. As an alternative to metabolic imaging, protein imaging expressed on immune cells after activation is of great importance. The five transmembrane domain translocator protein-18 kDa (TSPO) is upregulated on the mitochondrial cell surface of macrophages during inflammation, serving as a potential ligand for PET tracers. Additionally, the overexpressed TSPO protein has been positively correlated with various tumor malignancies. In view of the association of escalated TSPO expression in both disease conditions, it is an immensely important biomarker for PET imaging in oncology and PSIDs. In this review, we summarize the most outstanding advances on TSPO-targeted PSIDs and cancer in the development of TSPO ligands as a potential diagnostic tool, specifically discussing the last five years.
Collapse
Affiliation(s)
- Anupriya Adhikari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, (A Central University), Lucknow, Uttar Pradesh 226025, India
| | - Priya Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, A Central University, Lucknow, Uttar Pradesh 226025, India
| | - Kamalesh S Mahar
- Birbal Sahni Institute of Palaeosciences, Lucknow, Uttar Pradesh 226007, India
| | - Manish Adhikari
- The George Washington University, Washington, D.C. 20052, United States
| | - Bhawana Adhikari
- Plasma Bio-science Research Center, Kwangwoon University, Seoul 01897, South Korea
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Anjani Kumar Tiwari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, (A Central University), Lucknow, Uttar Pradesh 226025, India
| |
Collapse
|
5
|
Banati RB, Wilcox P, Xu R, Yin G, Si E, Son ET, Shimizu M, Holsinger RMD, Parmar A, Zahra D, Arthur A, Middleton RJ, Liu GJ, Charil A, Graeber MB. Selective, high-contrast detection of syngeneic glioblastoma in vivo. Sci Rep 2020; 10:9968. [PMID: 32561881 PMCID: PMC7305160 DOI: 10.1038/s41598-020-67036-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 05/19/2020] [Indexed: 01/14/2023] Open
Abstract
Glioblastoma is a highly malignant, largely therapy-resistant brain tumour. Deep infiltration of brain tissue by neoplastic cells represents the key problem of diffuse glioma. Much current research focuses on the molecular makeup of the visible tumour mass rather than the cellular interactions in the surrounding brain tissue infiltrated by the invasive glioma cells that cause the tumour’s ultimately lethal outcome. Diagnostic neuroimaging that enables the direct in vivo observation of the tumour infiltration zone and the local host tissue responses at a preclinical stage are important for the development of more effective glioma treatments. Here, we report an animal model that allows high-contrast imaging of wild-type glioma cells by positron emission tomography (PET) using [18 F]PBR111, a selective radioligand for the mitochondrial 18 kDa Translocator Protein (TSPO), in the Tspo−/− mouse strain (C57BL/6-Tspotm1GuMu(GuwiyangWurra)). The high selectivity of [18 F]PBR111 for the TSPO combined with the exclusive expression of TSPO in glioma cells infiltrating into null-background host tissue free of any TSPO expression, makes it possible, for the first time, to unequivocally and with uniquely high biological contrast identify peri-tumoral glioma cell invasion at preclinical stages in vivo. Comparison of the in vivo imaging signal from wild-type glioma cells in a null background with the signal in a wild-type host tissue, where the tumour induces the expected TSPO expression in the host’s glial cells, illustrates the substantial extent of the peritumoral host response to the growing tumour. The syngeneic tumour (TSPO+/+) in null background (TSPO−/−) model is thus well suited to study the interaction of the tumour front with the peri-tumoral tissue, and the experimental evaluation of new therapeutic approaches targeting the invasive behaviour of glioblastoma.
Collapse
Affiliation(s)
- Richard B Banati
- Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia. .,Medical Imaging, Faculty of Medicine and Health, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia.
| | - Paul Wilcox
- Brain Tumour Research, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia
| | - Ran Xu
- Brain Tumour Research, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia
| | - Grace Yin
- Brain Tumour Research, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia
| | - Emily Si
- Brain Tumour Research, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia
| | - Eric Taeyoung Son
- Brain Tumour Research, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia
| | - Mauricio Shimizu
- Brain Tumour Research, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia
| | - R M Damian Holsinger
- Molecular Neuroscience, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia
| | - Arvind Parmar
- Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia
| | - David Zahra
- Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia
| | - Andrew Arthur
- Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia
| | - Ryan J Middleton
- Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia
| | - Guo-Jun Liu
- Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia.,Medical Imaging, Faculty of Medicine and Health, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia
| | - Arnaud Charil
- Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia
| | - Manuel B Graeber
- Brain Tumour Research, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
6
|
Tang D, Li J, Nickels ML, Huang G, Cohen AS, Manning HC. Preclinical Evaluation of a Novel TSPO PET Ligand 2-(7-Butyl-2-(4-(2-[ 18F]Fluoroethoxy)phenyl)-5-Methylpyrazolo[1,5-a]Pyrimidin-3-yl)-N,N-Diethylacetamide ( 18F-VUIIS1018A) to Image Glioma. Mol Imaging Biol 2019; 21:113-121. [PMID: 29869061 DOI: 10.1007/s11307-018-1198-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE There is an urgent need for the development of novel positron emission tomography (PET) tracers for glioma imaging. In this study, we developed a novel PET probe ([18F]VUIIS1018A) by targeting translocator protein (TSPO), an imaging biomarker for glioma. The purpose of this preclinical study was to evaluate this novel TSPO probe for glioma imaging. PROCEDURES In this study, we synthesized [19F]VUIIS1018A and the precursor for radiosynthesis of [18F]VUIIS1018A. TSPO binding affinity was confirmed using a radioligand competitive binding assay in C6 glioma cell lysate. Further, dynamic imaging studies were performed in rats using a microPET system. These studies include displacement and blocking studies for ligand reversibility and specificity evaluation, and compartment modeling of PET data for pharmacokinetic parameter measurement using metabolite-corrected arterial input functions and PMOD. RESULTS Compared to previously reported TSPO tracers including [18F]VUIIS1008 and [18F]DPA-714, the novel tracer [18F]VUIIS1018A demonstrated higher binding affinity and BPND. Pretreatment with the cold analog [19F]VUIIS1018A could partially block tumor accumulation of this novel tracer. Further, compartment modeling of this novel tracer also exhibited a greater tumor-to-background ratio, a higher tumor binding potential and a lower brain binding potential when compared with other TSPO probes, such as [18F]DPA-714 and [18F]VUIIS1008. CONCLUSIONS These studies illustrate that [18F]VUIIS1018A can serve as a promising TSPO PET tracer for glioma imaging and potentially imaging of other solid tumors.
Collapse
Affiliation(s)
- Dewei Tang
- Center for Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, China.,Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Pudong New District, Shanghai, 200127, China
| | - Jun Li
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Molecular Probes (CMP), Vanderbilt University Medical School, 1161 21st Ave. S., AA 1105 MCN, Nashville, TN, 37232-2310, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael L Nickels
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Molecular Probes (CMP), Vanderbilt University Medical School, 1161 21st Ave. S., AA 1105 MCN, Nashville, TN, 37232-2310, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gang Huang
- Center for Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, China.,Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Pudong New District, Shanghai, 200127, China
| | - Allison S Cohen
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Molecular Probes (CMP), Vanderbilt University Medical School, 1161 21st Ave. S., AA 1105 MCN, Nashville, TN, 37232-2310, USA
| | - H Charles Manning
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA. .,Vanderbilt Center for Molecular Probes (CMP), Vanderbilt University Medical School, 1161 21st Ave. S., AA 1105 MCN, Nashville, TN, 37232-2310, USA. .,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA. .,Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN, USA. .,Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA. .,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA. .,Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
7
|
Xia Y, Ledwitch K, Kuenze G, Duran A, Li J, Sanders CR, Manning C, Meiler J. A unified structural model of the mammalian translocator protein (TSPO). JOURNAL OF BIOMOLECULAR NMR 2019; 73:347-364. [PMID: 31243635 PMCID: PMC8006375 DOI: 10.1007/s10858-019-00257-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 06/10/2019] [Indexed: 05/10/2023]
Abstract
The translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), is a membrane protein located on the outer mitochondrial membrane. Experimentally-derived structures of mouse TSPO (mTSPO) and its homologs from bacterial species have been determined by NMR spectroscopy and X-ray crystallography, respectively. These structures and ligand interactions within the TSPO binding pocket display distinct differences. Here, we leverage experimental and computational studies to derive a unified structural model of mTSPO in the presence and absence of the TSPO ligand, PK11195, and study the effects of DPC detergent micelles on the TSPO structure and ligand binding. From this work, we conclude that that the lipid-mimetic system used to solubilize mTSPO for NMR studies thermodynamically destabilizes the protein, introduces structural perturbations, and alters the characteristics of ligand binding. Furthermore, we used Rosetta to construct a unified mTSPO model that reconciles deviating features of the mammalian and bacterial TSPO. These deviating features are likely a consequence of the detergent system used for structure determination of mTSPO by NMR. The unified mTSPO model agrees with available experimental NMR data, appears to be physically realistic (i.e. thermodynamically not frustrated as judged by the Rosetta energy function), and simultaneously shares the structural features observed in sequence-conserved regions of the bacterial proteins. Finally, we identified the binding site for an imaging ligand VUIIS8310 that is currently positioned for clinical translation using NMR spectroscopy and propose a computational model of the VUIIS8310-mTSPO complex.
Collapse
Affiliation(s)
- Yan Xia
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | - Kaitlyn Ledwitch
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | - Georg Kuenze
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | - Amanda Duran
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | - Jun Li
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Charles R Sanders
- Department of Biochemistry, Vanderbilt University, Nashville, TN, 37240, USA
| | - Charles Manning
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37240, USA.
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA.
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, MRBIII 5144B, Nashville, TN, 37232, USA.
| |
Collapse
|
8
|
Fujinaga M, Kumata K, Zhang Y, Hatori A, Yamasaki T, Mori W, Ohkubo T, Xie L, Nengaki N, Zhang MR. Synthesis of two novel [ 18F]fluorobenzene-containing radiotracers via spirocyclic iodonium ylides and positron emission tomography imaging of translocator protein (18 kDa) in ischemic brain. Org Biomol Chem 2019; 16:8325-8335. [PMID: 30206613 DOI: 10.1039/c8ob01700j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Two novel radiotracers, namely, N-(4-[18F]fluorobenzyl)-N-methyl-2-(7-methyl-8-oxo-2-phenyl-7,8-dihydro-9H-purin-9-yl)acetamide ([18F]5) and 2-(5-(4-[18F]fluorophenyl)-2-oxobenzo[d]oxazol-3(2H)-yl)-N-methyl-N-phenylacetamide ([18F]6), were developed for positron emission tomography (PET) imaging of translocator protein (18 kDa) (TSPO) in ischemic brain in this study. The two radiotracers with a [18F]fluorobenzene ring were derived from the corresponding [18F]fluoroethyl tracers [18F]7 and [18F]8 which underwent [18F]defluoroethylation in vivo easily. [18F]5 or [18F]6 was synthesized by the radiofluorination of the spirocyclic iodonium ylide precursor 10 or 17 with [18F]F- in 23 ± 10% (n = 7) or 56 ± 9% (n = 7) radiochemical yields (decay-corrected, based on [18F]F-). [18F]5 and [18F]6 showed high in vitro binding affinities (Ki = 0.70 nM and 5.9 nM) for TSPO and moderate lipophilicities (log D = 2.9 and 3.4). Low uptake of radioactivity for both radiotracers was observed in mouse bones. Metabolite analysis showed that the in vivo stability of [18F]5 and [18F]6 was improved in comparison to the parent radiotracers [18F]7 and [18F]8. In particular, no radiolabelled metabolite of [18F]5 was found in the mouse brains at 60 min after the radiotracer injection. PET studies with [18F]5 on ischemic rat brains revealed a higher binding potential (BPND = 3.42) and maximum uptake ratio (4.49) between the ipsilateral and contralateral sides. Thus, [18F]5 was shown to be a useful PET radiotracer for visualizing TSPO in neuroinflammation models.
Collapse
Affiliation(s)
- Masayuki Fujinaga
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
TSPO in diverse CNS pathologies and psychiatric disease: A critical review and a way forward. Pharmacol Ther 2018; 194:44-58. [PMID: 30189290 DOI: 10.1016/j.pharmthera.2018.09.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The use of Translocator Protein 18 kDa (TSPO) as a clinical neuroimaging biomarker of brain injury and neuroinflammation has increased exponentially in the last decade. There has been a furious pace in the development of new radiotracers for TSPO positron emission tomography (PET) imaging and its use has now been extensively described in many neurological and mental disorders. This fast pace of research and the ever-increasing number of new laboratories entering the field often times lack an appreciation of the historical perspective of the field and introduce dogmatic, but unproven facts, related to the underlying neurobiology of the TSPO response to brain injury and neuroinflammation. Paradoxically, while in neurodegenerative disorders and in all types of CNS pathologies brain TSPO levels increase, a new observation in psychiatric disorders such as schizophrenia is decreased brain levels of TSPO measured by PET. The neurobiological bases for this new finding is currently not known, but rigorous experimental design using multiple experimental approaches and careful interpretation of results is critically important to provide the methodological and/or biological underpinnings to this new observation. This review provides a perspective of the early history of validating TSPO as a biomarker of brain injury and neuroinflammation and a critical analysis of controversial topics in the literature related to the cellular sources of the TSPO response. The latter is important in order to provide the correct interpretation of PET studies in neurodegenerative and psychiatric disorders. Furthermore, this review proposes some yet to be explored explanations to new findings in psychiatric disorders and new approaches to quantitatively assess the glial sources of the TSPO response in order to move the field forward.
Collapse
|
10
|
Tang D, Li J, Buck JR, Tantawy MN, Xia Y, Harp JM, Nickels ML, Meiler J, Manning HC. Evaluation of TSPO PET Ligands [ 18F]VUIIS1009A and [ 18F]VUIIS1009B: Tracers for Cancer Imaging. Mol Imaging Biol 2018; 19:578-588. [PMID: 27853987 DOI: 10.1007/s11307-016-1027-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Positron emission tomography (PET) ligands targeting translocator protein (TSPO) are potential imaging diagnostics of cancer. In this study, we report two novel, high-affinity TSPO PET ligands that are 5,7 regioisomers, [18F]VUIIS1009A ([18F]3A) and [18F]VUIIS1009B ([18F]3B), and their initial in vitro and in vivo evaluation in healthy mice and glioma-bearing rats. PROCEDURES VUIIS1009A/B was synthesized and confirmed by X-ray crystallography. Interactions between TSPO binding pocket and novel ligands were evaluated and compared with contemporary TSPO ligands using 2D 1H-15N heteronuclear single quantum coherence (HSQC) spectroscopy. In vivo biodistribution of [18F]VUIIS1009A and [18F]VUIIS1009B was carried out in healthy mice with and without radioligand displacement. Dynamic PET imaging data were acquired simultaneously with [18F]VUIIS1009A/B injections in glioma-bearing rats, with binding reversibility and specificity evaluated by radioligand displacement. In vivo radiometabolite analysis was performed using radio-TLC, and quantitative analysis of PET data was performed using metabolite-corrected arterial input functions. Imaging was validated with histology and immunohistochemistry. RESULTS Both VUIIS1009A (3A) and VUIIS1009B (3B) were found to exhibit exceptional binding affinity to TSPO, with observed IC50 values against PK11195 approximately 500-fold lower than DPA-714. However, HSQC NMR suggested that VUIIS1009A and VUIIS1009B share a common binding pocket within mammalian TSPO (mTSPO) as DPA-714 and to a lesser extent, PK11195. [18F]VUIIS1009A ([18F]3A) and [18F]VUIIS1009B ([18F]3B) exhibited similar biodistribution in healthy mice. In rats bearing C6 gliomas, both [18F]VUIIS1009A and [18F]VUIIS1009B exhibited greater binding potential (k 3/k 4)in tumor tissue compared to [18F]DPA-714. Interestingly, [18F]VUIIS1009B exhibited significantly greater tumor uptake (V T) than [18F]VUIIS1009A, which was attributed primarily to greater plasma-to-tumor extraction efficiency. CONCLUSIONS The novel PET ligand [18F]VUIIS1009B exhibits promising characteristics for imaging glioma; its superiority over [18F]VUIIS1009A, a regioisomer, appears to be primarily due to improved plasma extraction efficiency. Continued evaluation of [18F]VUIIS1009B as a high-affinity TSPO PET ligand for precision medicine appears warranted.
Collapse
Affiliation(s)
- Dewei Tang
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Jun Li
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Interdisciplinary Materials Science Program, Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37240, USA
| | - Jason R Buck
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Mohamed Noor Tantawy
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Yan Xia
- Center for Structural Biology (CSB), Vanderbilt University, Nashville, TN, 37205, USA.,Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | - Joel M Harp
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| | - Michael L Nickels
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Jens Meiler
- Center for Structural Biology (CSB), Vanderbilt University, Nashville, TN, 37205, USA.,Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA.,Vanderbilt Institute of Chemical Biology (VICB), Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - H Charles Manning
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, 37232, USA. .,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA. .,Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA. .,Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA. .,Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Medical Center, Nashville, TN, 37232, USA. .,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA. .,Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
11
|
Fujinaga M, Luo R, Kumata K, Zhang Y, Hatori A, Yamasaki T, Xie L, Mori W, Kurihara Y, Ogawa M, Nengaki N, Wang F, Zhang MR. Development of a 18F-Labeled Radiotracer with Improved Brain Kinetics for Positron Emission Tomography Imaging of Translocator Protein (18 kDa) in Ischemic Brain and Glioma. J Med Chem 2017; 60:4047-4061. [PMID: 28422499 DOI: 10.1021/acs.jmedchem.7b00374] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We designed four novel acetamidobenzoxazolone compounds 7a-d as candidates for positron emission tomography (PET) radiotracers for imaging the translocator protein (18 kDa, TSPO) in ischemic brain and glioma. Among these compounds, 2-(5-(6-fluoropyridin-3-yl)-2-oxobenzo[d]oxazol-3(2H)-yl)-N-methyl-N-phenylacetamide (7d) exhibited high binding affinity (Ki = 13.4 nM) with the TSPO and moderate lipophilicity (log D = 1.92). [18F]7d was radiosynthesized by [18F]fluorination of the bromopyridine precursor 7h with [18F]F- in 12 ± 5% radiochemical yield (n = 6, decay-corrected). In vitro autoradiography and PET studies of ischemic rat brain revealed higher binding of [18F]7d with TSPO on the ipsilateral side, as compared to the contralateral side, and improved brain kinetics compared with our previously developed radiotracers. Metabolite study of [18F]7d showed 93% of unchanged form in the ischemic brain at 30 min after injection. Moreover, PET study with [18F]7d provided a clear tumor image in a glioma-bearing rat model. We demonstrated that [18F]7d is a useful PET radiotracer for visualizing not only neuroinflammation but also glioma and will translate this radiotracer to a "first-in-human" study in our facility.
Collapse
Affiliation(s)
- Masayuki Fujinaga
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Rui Luo
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University , 68 Chanle Road, Nanjing 210006, China
| | - Katsushi Kumata
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yiding Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Akiko Hatori
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tomoteru Yamasaki
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Lin Xie
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Wakana Mori
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yusuke Kurihara
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.,SHI Accelerator Service Co. , 1-17-6 Osaki, Shinagawa-ku, Tokyo 141-0032, Japan
| | - Masanao Ogawa
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.,SHI Accelerator Service Co. , 1-17-6 Osaki, Shinagawa-ku, Tokyo 141-0032, Japan
| | - Nobuki Nengaki
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.,SHI Accelerator Service Co. , 1-17-6 Osaki, Shinagawa-ku, Tokyo 141-0032, Japan
| | - Feng Wang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University , 68 Chanle Road, Nanjing 210006, China
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
12
|
Classical and Novel TSPO Ligands for the Mitochondrial TSPO Can Modulate Nuclear Gene Expression: Implications for Mitochondrial Retrograde Signaling. Int J Mol Sci 2017; 18:ijms18040786. [PMID: 28387723 PMCID: PMC5412370 DOI: 10.3390/ijms18040786] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 03/24/2017] [Accepted: 03/27/2017] [Indexed: 12/22/2022] Open
Abstract
It is known that knockdown of the mitochondrial 18 kDa translocator protein (TSPO) as well as TSPO ligands modulate various functions, including functions related to cancer. To study the ability of TSPO to regulate gene expression regarding such functions, we applied microarray analysis of gene expression to U118MG glioblastoma cells. Within 15 min, the classical TSPO ligand PK 11195 induced changes in expression of immediate early genes and transcription factors. These changes also included gene products that are part of the canonical pathway serving to modulate general gene expression. These changes are in accord with real-time, reverse transcriptase (RT) PCR. At the time points of 15, 30, 45, and 60 min, as well as 3 and 24 h of PK 11195 exposure, the functions associated with the changes in gene expression in these glioblastoma cells covered well known TSPO functions. These functions included cell viability, proliferation, differentiation, adhesion, migration, tumorigenesis, and angiogenesis. This was corroborated microscopically for cell migration, cell accumulation, adhesion, and neuronal differentiation. Changes in gene expression at 24 h of PK 11195 exposure were related to downregulation of tumorigenesis and upregulation of programmed cell death. In the vehicle treated as well as PK 11195 exposed cell cultures, our triple labeling showed intense TSPO labeling in the mitochondria but no TSPO signal in the cell nuclei. Thus, mitochondrial TSPO appears to be part of the mitochondria-to-nucleus signaling pathway for modulation of nuclear gene expression. The novel TSPO ligand 2-Cl-MGV-1 appeared to be very specific regarding modulation of gene expression of immediate early genes and transcription factors.
Collapse
|
13
|
Li J, Smith JA, Dawson ES, Fu A, Nickels ML, Schulte ML, Manning HC. Optimized Translocator Protein Ligand for Optical Molecular Imaging and Screening. Bioconjug Chem 2017; 28:1016-1023. [PMID: 28156095 DOI: 10.1021/acs.bioconjchem.6b00711] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Translocator protein (TSPO) is a validated target for molecular imaging of a variety of human diseases and disorders. Given its involvement in cholesterol metabolism, TSPO expression is commonly elevated in solid tumors, including glioma, colorectal cancer, and breast cancer. TSPO ligands capable of detection by optical imaging are useful molecular tracers for a variety of purposes that range from quantitative biology to drug discovery. Leveraging our prior optimization of the pyrazolopyrimidine TSPO ligand scaffold for cancer imaging, we report herein a new generation of TSPO tracers with superior binding affinity and suitability for optical imaging and screening. In total, seven candidate TSPO tracers were synthesized and vetted in this study; the most promising tracer identified (29, Kd = 0.19 nM) was the result of conjugating a high-affinity TSPO ligand to a fluorophore used routinely in biological sciences (FITC) via a functional carbon linker of optimal length. Computational modeling suggested that an n-alkyl linker of eight carbons in length allows for positioning of the bulky fluorophore distal to the ligand binding domain and toward the solvent interface, minimizing potential ligand-protein interference. Probe 29 was found to be highly suitable for in vitro imaging of live TSPO-expressing cells and could be deployed as a ligand screening and discovery tool. Competitive inhibition of probe 29 quantified by fluorescence and 3H-PK11195 quantified by traditional radiometric detection resulted in equivalent affinity data for two previously reported TSPO ligands. This study introduces the utility of TSPO ligand 29 for in vitro imaging and screening and provides a structural basis for the development of future TSPO imaging ligands bearing bulky signaling moieties.
Collapse
Affiliation(s)
- Jun Li
- Interdisciplinary Materials Science Program, ∥Vanderbilt University Center for Structural Biology, and ■Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee 37232, United States.,Vanderbilt University Institute of Imaging Science (VUIIS), §Center for Molecular Probes, ⊥Department of Radiology and Radiological Sciences, #Department of Biochemistry, ¶Vanderbilt-Ingram Cancer Center (VICC), and ▽Department of Neurosurgery, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Jarrod A Smith
- Interdisciplinary Materials Science Program, ∥Vanderbilt University Center for Structural Biology, and ■Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee 37232, United States.,Vanderbilt University Institute of Imaging Science (VUIIS), §Center for Molecular Probes, ⊥Department of Radiology and Radiological Sciences, #Department of Biochemistry, ¶Vanderbilt-Ingram Cancer Center (VICC), and ▽Department of Neurosurgery, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Eric S Dawson
- Interdisciplinary Materials Science Program, ∥Vanderbilt University Center for Structural Biology, and ■Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee 37232, United States.,Vanderbilt University Institute of Imaging Science (VUIIS), §Center for Molecular Probes, ⊥Department of Radiology and Radiological Sciences, #Department of Biochemistry, ¶Vanderbilt-Ingram Cancer Center (VICC), and ▽Department of Neurosurgery, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Allie Fu
- Interdisciplinary Materials Science Program, ∥Vanderbilt University Center for Structural Biology, and ■Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee 37232, United States.,Vanderbilt University Institute of Imaging Science (VUIIS), §Center for Molecular Probes, ⊥Department of Radiology and Radiological Sciences, #Department of Biochemistry, ¶Vanderbilt-Ingram Cancer Center (VICC), and ▽Department of Neurosurgery, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Michael L Nickels
- Interdisciplinary Materials Science Program, ∥Vanderbilt University Center for Structural Biology, and ■Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee 37232, United States.,Vanderbilt University Institute of Imaging Science (VUIIS), §Center for Molecular Probes, ⊥Department of Radiology and Radiological Sciences, #Department of Biochemistry, ¶Vanderbilt-Ingram Cancer Center (VICC), and ▽Department of Neurosurgery, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Michael L Schulte
- Interdisciplinary Materials Science Program, ∥Vanderbilt University Center for Structural Biology, and ■Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee 37232, United States.,Vanderbilt University Institute of Imaging Science (VUIIS), §Center for Molecular Probes, ⊥Department of Radiology and Radiological Sciences, #Department of Biochemistry, ¶Vanderbilt-Ingram Cancer Center (VICC), and ▽Department of Neurosurgery, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - H Charles Manning
- Interdisciplinary Materials Science Program, ∥Vanderbilt University Center for Structural Biology, and ■Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee 37232, United States.,Vanderbilt University Institute of Imaging Science (VUIIS), §Center for Molecular Probes, ⊥Department of Radiology and Radiological Sciences, #Department of Biochemistry, ¶Vanderbilt-Ingram Cancer Center (VICC), and ▽Department of Neurosurgery, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| |
Collapse
|
14
|
Roncaroli F, Su Z, Herholz K, Gerhard A, Turkheimer FE. TSPO expression in brain tumours: is TSPO a target for brain tumour imaging? Clin Transl Imaging 2016; 4:145-156. [PMID: 27077069 PMCID: PMC4820497 DOI: 10.1007/s40336-016-0168-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/07/2016] [Indexed: 02/06/2023]
Abstract
Positron emission tomography (PET) alone or in combination with MRI is increasingly assuming a central role in the development of diagnostic and therapeutic strategies for brain tumours with the aim of addressing tumour heterogeneity, assisting in patient stratification, and contributing to predicting treatment response. The 18 kDa translocator protein (TSPO) is expressed in high-grade gliomas, while its expression is comparatively low in normal brain. In addition, the evidence of elevated TSPO in neoplastic cells has led to studies investigating TSPO as a transporter of anticancer drugs for brain delivery and a selective target for tumour tissue. The TSPO therefore represents an ideal candidate for molecular imaging studies. Knowledge of the biology of TSPO in normal brain cells, in-depth understanding of TSPO functions and biodistribution in neoplastic cells, accurate methods for quantification of uptake of TSPO tracers and pharmacokinetic data regarding TSPO-targeted drugs are required before introducing TSPO PET and TSPO-targeted treatment in clinical practice. In this review, we will discuss the impact of preclinical PET studies and the application of TSPO imaging in human brain tumours, the advantages and disadvantages of TSPO imaging compared to other imaging modalities and other PET tracers, and pathology studies on the extent and distribution of TSPO in gliomas. The suitability of TSPO as molecular target for treatment of brain tumours will also be the appraised.
Collapse
Affiliation(s)
- Federico Roncaroli
- Wolfson Molecular Imaging Centre, The University of Manchester, 7 Palatine Road, Withington, Manchester, M20 3LJ UK
| | - Zhangjie Su
- Wolfson Molecular Imaging Centre, The University of Manchester, 7 Palatine Road, Withington, Manchester, M20 3LJ UK
| | - Karl Herholz
- Wolfson Molecular Imaging Centre, The University of Manchester, 7 Palatine Road, Withington, Manchester, M20 3LJ UK
| | - Alexander Gerhard
- Wolfson Molecular Imaging Centre, The University of Manchester, 7 Palatine Road, Withington, Manchester, M20 3LJ UK
| | | |
Collapse
|
15
|
Buck JR, McKinley ET, Fu A, Abel TW, Thompson RC, Chambless L, Watchmaker JM, Harty JP, Cooper MK, Manning HC. Preclinical TSPO Ligand PET to Visualize Human Glioma Xenotransplants: A Preliminary Study. PLoS One 2015; 10:e0141659. [PMID: 26517124 PMCID: PMC4627825 DOI: 10.1371/journal.pone.0141659] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 10/12/2015] [Indexed: 11/18/2022] Open
Abstract
Current positron emission tomography (PET) imaging biomarkers for detection of infiltrating gliomas are limited. Translocator protein (TSPO) is a novel and promising biomarker for glioma PET imaging. To validate TSPO as a potential target for molecular imaging of glioma, TSPO expression was assayed in a tumor microarray containing 37 high-grade (III, IV) gliomas. TSPO staining was detected in all tumor specimens. Subsequently, PET imaging was performed with an aryloxyanilide-based TSPO ligand, [18F]PBR06, in primary orthotopic xenograft models of WHO grade III and IV gliomas. Selective uptake of [18F]PBR06 in engrafted tumor was measured. Furthermore, PET imaging with [18F]PBR06 demonstrated infiltrative glioma growth that was undetectable by traditional magnetic resonance imaging (MRI). Preliminary PET with [18F]PBR06 demonstrated a preferential tumor-to-normal background ratio in comparison to 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG). These results suggest that TSPO PET imaging with such high-affinity radiotracers may represent a novel strategy to characterize distinct molecular features of glioma growth, as well as better define the extent of glioma infiltration for therapeutic purposes.
Collapse
Affiliation(s)
- Jason R. Buck
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Eliot T. McKinley
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Allie Fu
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Ty W. Abel
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Reid C. Thompson
- Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Lola Chambless
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Jennifer M. Watchmaker
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, United States of America
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - James P. Harty
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Michael K. Cooper
- Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Medical Center, Nashville, TN, United States of America
- Neurology Service, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, United States of America
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - H. Charles Manning
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States of America
- * E-mail:
| |
Collapse
|
16
|
Tang D, Nickels ML, Tantawy MN, Buck JR, Manning HC. Preclinical imaging evaluation of novel TSPO-PET ligand 2-(5,7-Diethyl-2-(4-(2-[(18)F]fluoroethoxy)phenyl)pyrazolo[1,5-a]pyrimidin-3-yl)-N,N-diethylacetamide ([ (18)F]VUIIS1008) in glioma. Mol Imaging Biol 2014; 16:813-20. [PMID: 24845529 PMCID: PMC4372299 DOI: 10.1007/s11307-014-0743-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE Translocator protein (TSPO) concentrations are elevated in glioma, suggesting a role for TSPO positron emission tomography (PET) imaging in this setting. In preclinical PET studies, we evaluated a novel, high-affinity TSPO PET ligand, [(18)F]VUIIS1008, in healthy mice and glioma-bearing rats. PROCEDURES Dynamic PET data were acquired simultaneously with [(18)F]VUIIS1008 injection, with binding reversibility and specificity evaluated in vivo by non-radioactive ligand displacement or blocking. Compartmental analysis of PET data was performed using metabolite-corrected arterial input functions. Imaging was validated with histology and immunohistochemistry. RESULTS [(18)F]VUIIS1008 exhibited rapid uptake in TSPO-rich organs. PET ligand uptake was displaceable with non-radioactive VUIIS1008 or PBR06 in mice. Tumor accumulation of [(18)F]VUIIS1008 was blocked by pretreatment with VUIIS1008 in rats. [(18)F]VUIIS1008 exhibited improved tumor-to-background ratio and higher binding potential in tumors compared to a structurally similar pyrazolopyrimidine TSPO ligand, [(18)F]DPA-714. CONCLUSIONS The PET ligand [(18)F]VUIIS1008 exhibits promising characteristics as a tracer for imaging glioma. Further translational studies appear warranted.
Collapse
Affiliation(s)
- Dewei Tang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Michael L. Nickels
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - M. Noor Tantawy
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Jason R. Buck
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - H. Charles Manning
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| |
Collapse
|
17
|
Liu G, Middleton RJ, Hatty CR, Kam WW, Chan R, Pham T, Harrison‐Brown M, Dodson E, Veale K, Banati RB. The 18 kDa translocator protein, microglia and neuroinflammation. Brain Pathol 2014; 24:631-53. [PMID: 25345894 PMCID: PMC8029074 DOI: 10.1111/bpa.12196] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 08/19/2014] [Indexed: 12/17/2022] Open
Abstract
The 18 kDa translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor, is expressed in the injured brain. It has become known as an imaging marker of "neuroinflammation" indicating active disease, and is best interpreted as a nondiagnostic biomarker and disease staging tool that refers to histopathology rather than disease etiology. The therapeutic potential of TSPO as a drug target is mostly based on the understanding that it is an outer mitochondrial membrane protein required for the translocation of cholesterol, which thus regulates the rate of steroid synthesis. This pivotal role together with the evolutionary conservation of TSPO has underpinned the belief that any loss or mutation of TSPO should be associated with significant physiological deficits or be outright incompatible with life. However, against prediction, full Tspo knockout mice are viable and across their lifespan do not show the phenotype expected if cholesterol transport and steroid synthesis were significantly impaired. Thus, the "translocation" function of TSPO remains to be better substantiated. Here, we discuss the literature before and after the introduction of the new nomenclature for TSPO and review some of the newer findings. In light of the controversy surrounding the function of TSPO, we emphasize the continued importance of identifying compounds with confirmed selectivity and suggest that TSPO expression is analyzed within specific disease contexts rather than merely equated with the reified concept of "neuroinflammation."
Collapse
Affiliation(s)
- Guo‐Jun Liu
- Life SciencesAustralian Nuclear Science and Technology OrganisationNSWAustralia
- Brain & Mind Research InstituteThe University of SydneyNSWAustralia
- Discipline of Medical Imaging & Radiation SciencesFaculty of Health SciencesThe University of SydneyNSWAustralia
| | - Ryan J. Middleton
- Life SciencesAustralian Nuclear Science and Technology OrganisationNSWAustralia
| | - Claire R. Hatty
- Brain & Mind Research InstituteThe University of SydneyNSWAustralia
- Discipline of Medical Imaging & Radiation SciencesFaculty of Health SciencesThe University of SydneyNSWAustralia
| | - Winnie Wai‐Ying Kam
- Life SciencesAustralian Nuclear Science and Technology OrganisationNSWAustralia
- Brain & Mind Research InstituteThe University of SydneyNSWAustralia
- Discipline of Medical Imaging & Radiation SciencesFaculty of Health SciencesThe University of SydneyNSWAustralia
| | - Ronald Chan
- Brain & Mind Research InstituteThe University of SydneyNSWAustralia
- Discipline of Medical Imaging & Radiation SciencesFaculty of Health SciencesThe University of SydneyNSWAustralia
| | - Tien Pham
- Life SciencesAustralian Nuclear Science and Technology OrganisationNSWAustralia
| | - Meredith Harrison‐Brown
- Life SciencesAustralian Nuclear Science and Technology OrganisationNSWAustralia
- Discipline of Medical Imaging & Radiation SciencesFaculty of Health SciencesThe University of SydneyNSWAustralia
| | - Eoin Dodson
- Life SciencesAustralian Nuclear Science and Technology OrganisationNSWAustralia
| | - Kelly Veale
- Discipline of Medical Imaging & Radiation SciencesFaculty of Health SciencesThe University of SydneyNSWAustralia
| | - Richard B. Banati
- Life SciencesAustralian Nuclear Science and Technology OrganisationNSWAustralia
- Brain & Mind Research InstituteThe University of SydneyNSWAustralia
- Discipline of Medical Imaging & Radiation SciencesFaculty of Health SciencesThe University of SydneyNSWAustralia
- National Imaging Facility and Ramaciotti Brain Imaging CentreSydneyNSWAustralia
| |
Collapse
|
18
|
Cheung YY, Nickels ML, Tang D, Buck JR, Manning HC. Facile synthesis of SSR180575 and discovery of 7-chloro-N,N,5-trimethyl-4-oxo-3(6-[(18)F]fluoropyridin-2-yl)-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide, a potent pyridazinoindole ligand for PET imaging of TSPO in cancer. Bioorg Med Chem Lett 2014; 24:4466-4471. [PMID: 25172419 PMCID: PMC4163096 DOI: 10.1016/j.bmcl.2014.07.091] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/29/2014] [Accepted: 07/31/2014] [Indexed: 10/24/2022]
Abstract
A novel synthesis of the translocator protein (TSPO) ligand 7-chloro-N,N,5-trimethyl-4-oxo-3-phenyl-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide (SSR180575, 3) was achieved in four steps from commercially available starting materials. Focused structure-activity relationship development about the pyridazinoindole ring at the N3 position led to the discovery of 7-chloro-N,N,5-trimethyl-4-oxo-3(6-fluoropyridin-2-yl)-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide (14), a novel ligand of comparable affinity. Radiolabeling with fluorine-18 ((18)F) yielded 7-chloro-N,N,5-trimethyl-4-oxo-3(6-[(18)F]fluoropyridin-2-yl)-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide ([(18)F]-14) in high radiochemical yield and specific activity. In vivo studies of [(18)F]-14 revealed this agent as a promising probe for molecular imaging of glioma.
Collapse
Affiliation(s)
- Yiu-Yin Cheung
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Michael L Nickels
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Dewei Tang
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Jason R Buck
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - H Charles Manning
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States; Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| |
Collapse
|
19
|
Wilson WW, Onyenwe W, Bradner JM, Nennig SE, Caudle WM. Developmental exposure to the organochlorine insecticide endosulfan alters expression of proteins associated with neurotransmission in the frontal cortex. Synapse 2014; 68:485-97. [PMID: 25042905 DOI: 10.1002/syn.21764] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/11/2014] [Indexed: 11/11/2022]
Abstract
Exposure to environmental contaminants, such as organochlorine insecticides during critical periods of neurodevelopment has been shown to be a major contributor to several neuropsychological deficits seen in children, adolescence, and adults. Although the neurobehavioral outcomes resulting from exposure to these compounds are known the neurotransmitter circuitry and molecular targets that mediate these endpoints have not been identified. Given the importance of the frontal cortex in facilitating numerous neuropsychological processes, our current study sought to investigate the effects of developmental exposure to the organochlorine insecticide, endosulfan, on the expression of specific proteins associated with neurotransmission in the frontal cortex. Utilizing in vitro models we were able to show endosulfan reduces cell viability in IMR-32 neuroblastoma cells in addition to reducing synaptic puncta and neurite outgrowth in primary cultured neurons isolated from the frontal cortex of mice. Elaborating these findings to an in vivo model we found that developmental exposure of female mice to endosulfan during gestation and lactation elicited significant alterations to the GABAergic (GAT1, vGAT, GABAA receptor), glutamatergic (vGlut and GluN2B receptor), and dopaminergic (DAT, TH, VMAT2, and D2 receptor) neurotransmitter systems in the frontal cortex of male offspring. These findings identify damage to critical neurotransmitter circuits and proteins in the frontal cortex, which may underlie the neurobehavioral deficits observed following developmental exposure to endosulfan and other organochlorine insecticides.
Collapse
Affiliation(s)
- W Wyatt Wilson
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, 30322-3090
| | | | | | | | | |
Collapse
|
20
|
Morohaku K, Phuong NS, Selvaraj V. Developmental expression of translocator protein/peripheral benzodiazepine receptor in reproductive tissues. PLoS One 2013; 8:e74509. [PMID: 24040265 PMCID: PMC3764105 DOI: 10.1371/journal.pone.0074509] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 08/02/2013] [Indexed: 12/20/2022] Open
Abstract
Translocator protein (TSPO) present in the outer mitochondrial membrane has been suggested to be critical for cholesterol import, a rate-limiting step for steroid hormone biosynthesis. Despite the importance of steroidogenesis in regulating reproductive functions, the developmental profile of TSPO expression in the gonads and accessory sex organs has not been completely characterized. As a first step towards understanding the function of TSPO, we studied its expression in male and female murine reproductive organs. We examined testes and ovaries at embryonic days 14.5 and 18.5, and postnatal days 0, 7, 14, 21 and 56 of development. In the adult testis, TSPO was expressed in both Leydig cells and Sertoli cells. In the developing testes TSPO expression was seen in immature Sertoli cells, fetal Leydig cells and gonocytes. In the ovary, TSPO was expressed in the ovarian surface epithelium, interstitial cells granulosa cells and luteal cells. Corpora lutea of ovaries from pregnant mice showed strong expression of TSPO. In the developing ovary, TSPO expression was seen in the squamous pregranulosa cells associated with germ line cysts, together with progressively increasing expression in interstitial cells and the ovarian surface epithelium. In adult mice, the epithelia of other reproductive tissues like the epididymis, prostate, seminal vesicle, oviduct and uterus also showed distinct patterns of TSPO expression. In summary, TSPO expression in both male and female reproductive tissues was not only restricted to steroidogenic cells. Expression in Sertoli cells, ovarian surface epithelium, efferent ductal epithelium, prostatic epithelium, seminal vesiclular epithelium, uterine epithelium and oviductal epithelium suggest either previously unknown sites for de novo steroidogenesis or functions for TSPO distinct from its well-studied role in steroid hormone production.
Collapse
Affiliation(s)
- Kanako Morohaku
- Department of Animal Science, Cornell University, Ithaca, New York, United States of America
| | - Newton S. Phuong
- Department of Animal Science, Cornell University, Ithaca, New York, United States of America
| | - Vimal Selvaraj
- Department of Animal Science, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
21
|
Austin CJD, Kahlert J, Kassiou M, Rendina LM. The translocator protein (TSPO): a novel target for cancer chemotherapy. Int J Biochem Cell Biol 2013; 45:1212-6. [PMID: 23518318 DOI: 10.1016/j.biocel.2013.03.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 02/21/2013] [Accepted: 03/05/2013] [Indexed: 01/02/2023]
Abstract
The translocator protein (TSPO) is an 18 kDa transmembrane protein primarily found in the outer mitochondrial membrane where it forms a key part of the mitochondrial permeability transition pore (MPTP). Omnipresent in almost all tissues, TSPO up-regulation has been connected to neuronal damage and inflammation, making the protein an important bio-imaging marker for disease progression. More recently, TSPO has attracted attention as a possible molecular target for tumour imaging and chemotherapy. In this review we summarize TSPO's molecular characteristics and highlight research progress in recent years in the field of TSPO-targeted cancer diagnostics and treatments.
Collapse
|
22
|
Winkeler A, Boisgard R, Awde AR, Dubois A, Thézé B, Zheng J, Ciobanu L, Dollé F, Viel T, Jacobs AH, Tavitian B. The translocator protein ligand [¹⁸F]DPA-714 images glioma and activated microglia in vivo. Eur J Nucl Med Mol Imaging 2012; 39:811-23. [PMID: 22270507 PMCID: PMC3326235 DOI: 10.1007/s00259-011-2041-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 12/13/2011] [Indexed: 11/29/2022]
Abstract
PURPOSE In recent years there has been an increase in the development of radioligands targeting the 18-kDa translocator protein (TSPO). TSPO expression is well documented in activated microglia and serves as a biomarker for imaging neuroinflammation. In addition, TSPO has also been reported to be overexpressed in a number of cancer cell lines and human tumours including glioma. Here we investigated the use of [(18)F]DPA-714, a new TSPO positron emission tomography (PET) radioligand to image glioma in vivo. METHODS We studied the uptake of [(18)F]DPA-714 in three different rat strains implanted with 9L rat glioma cells: Fischer (F), Wistar (W) and Sprague Dawley (SD) rats. Dynamic [(18)F]DPA-714 PET imaging, kinetic modelling of PET data and in vivo displacement studies using unlabelled DPA-714 and PK11195 were performed. Validation of TSPO expression in 9L glioma cell lines and intracranial 9L gliomas were investigated using Western blotting and immunohistochemistry of brain tissue sections. RESULTS All rats showed significant [(18)F]DPA-714 PET accumulation at the site of 9L tumour implantation compared to the contralateral brain hemisphere with a difference in uptake among the three strains (F > W > SD). The radiotracer showed high specificity for TSPO as demonstrated by the significant reduction of [(18)F]DPA-714 binding in the tumour after administration of unlabelled DPA-714 or PK11195. TSPO expression was confirmed by Western blotting in 9L cells in vitro and by immunohistochemistry ex vivo. CONCLUSION The TSPO radioligand [(18)F]DPA-714 can be used for PET imaging of intracranial 9L glioma in different rat strains. This preclinical study demonstrates the feasibility of employing [(18)F]DPA-714 as an alternative radiotracer to image human glioma.
Collapse
Affiliation(s)
- Alexandra Winkeler
- Inserm, U1023, Laboratoire d'Imagerie Moléculaire Expérimentale, Université Paris Sud, Orsay, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tang D, Hight MR, McKinley ET, Fu A, Buck JR, Smith RA, Tantawy MN, Peterson TE, Colvin DC, Ansari MS, Nickels M, Manning HC. Quantitative preclinical imaging of TSPO expression in glioma using N,N-diethyl-2-(2-(4-(2-18F-fluoroethoxy)phenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide. J Nucl Med 2012; 53:287-94. [PMID: 22251555 DOI: 10.2967/jnumed.111.095653] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
UNLABELLED There is a critical need to develop and rigorously validate molecular imaging biomarkers to aid diagnosis and characterization of primary brain tumors. Elevated expression of translocator protein (TSPO) has been shown to predict disease progression and aggressive, invasive behavior in a variety of solid tumors. Thus, noninvasive molecular imaging of TSPO expression could form the basis of a novel, predictive cancer imaging biomarker. In quantitative preclinical PET studies, we evaluated a high-affinity pyrazolopyrimidinyl-based TSPO imaging ligand, N,N-diethyl-2-(2-(4-(2-(18)F-fluoroethoxy)phenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide ((18)F-DPA-714), as a translational probe for quantification of TSPO levels in glioma. METHODS Glioma-bearing rats were imaged with (18)F-DPA-714 in a small-animal PET system. Dynamic images were acquired simultaneously on injection of (18)F-DPA-714 (130-200 MBq/0.2 mL). Blood was collected to derive the arterial input function (AIF), with high-performance liquid chromatography radiometabolite analysis performed on selected samples for AIF correction. Compartmental modeling was performed using the corrected AIF. Specific tumor cell binding of DPA-714 was evaluated by radioligand displacement of (3)H-PK 11195 with DPA-714 in vitro and displacement of (18)F-DPA-714 with an excess of DPA-714 in vivo. Immediately after imaging, tumor and healthy brain tissues were harvested for validation by Western blotting and immunohistochemistry. RESULTS (18)F-DPA-714 was found to preferentially accumulate in tumors, with modest uptake in the contralateral brain. Infusion with DPA-714 (10 mg/kg) displaced (18)F-DPA-714 binding by greater than 60% on average. Tumor uptake of (18)F-DPA-714 was similar to another high-affinity TSPO imaging ligand, (18)F-N-fluoroacetyl-N-(2,5-dimethoxybenzyl)-2-phenoxyaniline, and agreed with ex vivo assay of TSPO levels in tumor and healthy brain. CONCLUSION These studies illustrate the feasibility of using (18)F-DPA-714 for visualization of TSPO-expressing brain tumors. Importantly, (18)F-DPA-714 appears suitable for quantitative assay of tumor TSPO levels in vivo. Given the relationship between elevated TSPO levels and poor outcome in oncology, these studies suggest the potential of (18)F-DPA-714 PET to serve as a novel predictive cancer imaging modality.
Collapse
Affiliation(s)
- Dewei Tang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Tanabe K, Kozawa O, Iida H. Midazolam suppresses interleukin-1β-induced interleukin-6 release from rat glial cells. J Neuroinflammation 2011; 8:68. [PMID: 21682888 PMCID: PMC3131232 DOI: 10.1186/1742-2094-8-68] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 06/17/2011] [Indexed: 11/24/2022] Open
Abstract
Background Peripheral-type benzodiazepine receptor (PBR) expression levels are low in normal human brain, but their levels increase in inflammation, brain injury, neurodegenerative states and gliomas. It has been reported that PBR functions as an immunomodulator. The mechanisms of action of midazolam, a benzodiazepine, in the immune system in the CNS remain to be fully elucidated. We previously reported that interleukin (IL)-1β stimulates IL-6 synthesis from rat C6 glioma cells and that IL-1β induces phosphorylation of inhibitory kappa B (IκB), p38 mitogen-activated protein (MAP) kinase, stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase 1/2, and signal transducer and activator of transcription (STAT)3. It has been shown that p38 MAP kinase is involved in IL-1β-induced IL-6 release from these cells. In the present study, we investigated the effect of midazolam on IL-1β-induced IL-6 release from C6 cells, and the mechanisms of this effect. Methods Cultured C6 cells were stimulated by IL-1β. IL-6 release from C6 cells was measured using an enzyme-linked immunosorbent assay, and phosphorylation of IκB, the MAP kinase superfamily, and STAT3 was analyzed by Western blotting. Results Midazolam, but not propofol, inhibited IL-1β-stimulated IL-6 release from C6 cells. The IL-1β-stimulated levels of IL-6 were suppressed by wedelolactone (an inhibitor of IκB kinase), SP600125 (an inhibitor of SAPK/JNK), and JAK inhibitor I (an inhibitor of JAK 1, 2 and 3). However, IL-6 levels were not affected by PD98059 (an inhibitor of MEK1/2). Midazolam markedly suppressed IL-1β-stimulated STAT3 phosphorylation without affecting the phosphorylation of p38 MAP kinase, SAPK/JNK or IκB. Conclusion These results strongly suggest that midazolam inhibits IL-1β-induced IL-6 release in rat C6 glioma cells via suppression of STAT3 activation. Midazolam may affect immune system function in the CNS.
Collapse
Affiliation(s)
- Kumiko Tanabe
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan.
| | | | | |
Collapse
|
25
|
Buck JR, McKinley ET, Hight MR, Fu A, Tang D, Smith RA, Tantawy MN, Peterson TE, Colvin D, Ansari MS, Baldwin RM, Zhao P, Guleryuz S, Manning HC. Quantitative, preclinical PET of translocator protein expression in glioma using 18F-N-fluoroacetyl-N-(2,5-dimethoxybenzyl)-2-phenoxyaniline. J Nucl Med 2010; 52:107-14. [PMID: 21149488 DOI: 10.2967/jnumed.110.081703] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Translocator protein (TSPO), also referred to as peripheral benzodiazepine receptor (PBR), is a crucial 18-kDa outer mitochondrial membrane protein involved in numerous cellular functions, including the regulation of cholesterol metabolism, steroidogenesis, and apoptosis. Elevated expression of TSPO in oncology correlates with disease progression and poor survival, suggesting that molecular probes capable of assaying TSPO levels may have potential as cancer imaging biomarkers. In preclinical PET studies, we characterized a high-affinity aryloxyanilide-based TSPO imaging ligand, 18F-N-fluoroacetyl-N-(2,5-dimethoxybenzyl)-2-phenoxyaniline (18F-PBR06), as a candidate probe for the quantitative assessment of TSPO expression in glioma. METHODS Glioma-bearing rats were imaged with 18F-PBR06 in a small-animal PET system. Dynamic images were acquired simultaneously on injection of 18F-PBR06 (70-100 MBq/0.2 mL). Over the course of scanning, arterial blood was collected to derive the input function, with high-performance liquid chromatography radiometabolite analysis performed on selected samples for arterial input function correction. Compartmental modeling of the PET data was performed using the corrected arterial input function. Specific tumor cell binding of PBR06 was evaluated by radioligand displacement of 3H-PK 11195 with PBR06 in vitro and by displacement of 18F-PBR06 with excess PBR06 in vivo. Immediately after imaging, tumor tissue and adjacent healthy brain were harvested for assay of TSPO protein levels by Western blotting and immunohistochemistry. RESULTS 18F-PBR06 was found to preferentially accumulate in tumors, with modest uptake in the contralateral brain, facilitating excellent contrast between tumor and adjacent tissue. Infusion with PBR06 (10 mg/kg) displaced 18F-PBR06 binding by approximately 75%. The accumulation of 18F-PBR06 in tumor tissues and adjacent brain agreed with the ex vivo assay of TSPO protein levels by Western blotting and quantitative immunohistochemistry. CONCLUSION These preclinical studies illustrate that 18F-PBR06 is a promising tracer for visualization of TSPO-expressing tumors. Importantly, the close correlation between 18F-PBR06 uptake and TSPO expression in tumors and normal tissues, coupled with the high degree of displaceable binding from both tumors and the normal brain, represents a significant improvement over other TSPO imaging ligands previously evaluated in glioma. These data suggest the potential of 18F-PBR06 to elucidate the role of TSPO in oncology, as well as its potential development as a cancer imaging biomarker.
Collapse
Affiliation(s)
- Jason R Buck
- Vanderbilt University Institute of Imaging Science, Department of Radiologyh and Radiological Science, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2310, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Cappelli A, Valenti S, Mancini A, Giuliani G, Anzini M, Altieri S, Bortolussi S, Ferrari C, Clerici AM, Zonta C, Carraro F, Filippi I, Giorgi G, Donati A, Ristori S, Vomero S, Concas A, Biggio G. Carborane-Conjugated 2-Quinolinecarboxamide Ligands of the Translocator Protein for Boron Neutron Capture Therapy. Bioconjug Chem 2010; 21:2213-21. [DOI: 10.1021/bc100195s] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrea Cappelli
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, Via Ugo Bassi 6, 27100 Pavia, Italy, Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, Via Ugo Bassi 6, 27100 Pavia, Italy, Dipartimento di Scienze Chirurgiche, Laboratorio di Chirurgia Sperimentale, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy,
| | - Salvatore Valenti
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, Via Ugo Bassi 6, 27100 Pavia, Italy, Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, Via Ugo Bassi 6, 27100 Pavia, Italy, Dipartimento di Scienze Chirurgiche, Laboratorio di Chirurgia Sperimentale, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy,
| | - Alessandra Mancini
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, Via Ugo Bassi 6, 27100 Pavia, Italy, Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, Via Ugo Bassi 6, 27100 Pavia, Italy, Dipartimento di Scienze Chirurgiche, Laboratorio di Chirurgia Sperimentale, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy,
| | - Germano Giuliani
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, Via Ugo Bassi 6, 27100 Pavia, Italy, Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, Via Ugo Bassi 6, 27100 Pavia, Italy, Dipartimento di Scienze Chirurgiche, Laboratorio di Chirurgia Sperimentale, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy,
| | - Maurizio Anzini
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, Via Ugo Bassi 6, 27100 Pavia, Italy, Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, Via Ugo Bassi 6, 27100 Pavia, Italy, Dipartimento di Scienze Chirurgiche, Laboratorio di Chirurgia Sperimentale, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy,
| | - Saverio Altieri
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, Via Ugo Bassi 6, 27100 Pavia, Italy, Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, Via Ugo Bassi 6, 27100 Pavia, Italy, Dipartimento di Scienze Chirurgiche, Laboratorio di Chirurgia Sperimentale, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy,
| | - Silva Bortolussi
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, Via Ugo Bassi 6, 27100 Pavia, Italy, Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, Via Ugo Bassi 6, 27100 Pavia, Italy, Dipartimento di Scienze Chirurgiche, Laboratorio di Chirurgia Sperimentale, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy,
| | - Cinzia Ferrari
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, Via Ugo Bassi 6, 27100 Pavia, Italy, Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, Via Ugo Bassi 6, 27100 Pavia, Italy, Dipartimento di Scienze Chirurgiche, Laboratorio di Chirurgia Sperimentale, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy,
| | - Anna Maria Clerici
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, Via Ugo Bassi 6, 27100 Pavia, Italy, Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, Via Ugo Bassi 6, 27100 Pavia, Italy, Dipartimento di Scienze Chirurgiche, Laboratorio di Chirurgia Sperimentale, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy,
| | - Cecilia Zonta
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, Via Ugo Bassi 6, 27100 Pavia, Italy, Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, Via Ugo Bassi 6, 27100 Pavia, Italy, Dipartimento di Scienze Chirurgiche, Laboratorio di Chirurgia Sperimentale, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy,
| | - Fabio Carraro
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, Via Ugo Bassi 6, 27100 Pavia, Italy, Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, Via Ugo Bassi 6, 27100 Pavia, Italy, Dipartimento di Scienze Chirurgiche, Laboratorio di Chirurgia Sperimentale, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy,
| | - Irene Filippi
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, Via Ugo Bassi 6, 27100 Pavia, Italy, Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, Via Ugo Bassi 6, 27100 Pavia, Italy, Dipartimento di Scienze Chirurgiche, Laboratorio di Chirurgia Sperimentale, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy,
| | - Gianluca Giorgi
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, Via Ugo Bassi 6, 27100 Pavia, Italy, Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, Via Ugo Bassi 6, 27100 Pavia, Italy, Dipartimento di Scienze Chirurgiche, Laboratorio di Chirurgia Sperimentale, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy,
| | - Alessandro Donati
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, Via Ugo Bassi 6, 27100 Pavia, Italy, Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, Via Ugo Bassi 6, 27100 Pavia, Italy, Dipartimento di Scienze Chirurgiche, Laboratorio di Chirurgia Sperimentale, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy,
| | - Sandra Ristori
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, Via Ugo Bassi 6, 27100 Pavia, Italy, Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, Via Ugo Bassi 6, 27100 Pavia, Italy, Dipartimento di Scienze Chirurgiche, Laboratorio di Chirurgia Sperimentale, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy,
| | - Salvatore Vomero
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, Via Ugo Bassi 6, 27100 Pavia, Italy, Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, Via Ugo Bassi 6, 27100 Pavia, Italy, Dipartimento di Scienze Chirurgiche, Laboratorio di Chirurgia Sperimentale, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy,
| | - Alessandra Concas
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, Via Ugo Bassi 6, 27100 Pavia, Italy, Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, Via Ugo Bassi 6, 27100 Pavia, Italy, Dipartimento di Scienze Chirurgiche, Laboratorio di Chirurgia Sperimentale, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy,
| | - Giovanni Biggio
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, Via Ugo Bassi 6, 27100 Pavia, Italy, Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, Via Ugo Bassi 6, 27100 Pavia, Italy, Dipartimento di Scienze Chirurgiche, Laboratorio di Chirurgia Sperimentale, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy,
| |
Collapse
|
27
|
Bertomeu T, Zvereff V, Ibrahim A, Zehntner SP, Aliaga A, Rosa-Neto P, Bedell BJ, Falardeau P, Gourdeau H. TLN-4601 peripheral benzodiazepine receptor (PBR/TSPO) binding properties do not mediate apoptosis but confer tumor-specific accumulation. Biochem Pharmacol 2010; 80:1572-9. [PMID: 20655882 DOI: 10.1016/j.bcp.2010.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 07/05/2010] [Accepted: 07/12/2010] [Indexed: 12/22/2022]
Abstract
TLN-4601 is a farnesylated dibenzodiazepinone isolated from Micromonospora sp. with an antiproliferative effect on several human cancer cell lines. Although the mechanism of action of TLN-4601 is unknown, our earlier work indicated that TLN-4601 binds the PBR (peripheral benzodiazepine receptor; more recently known as the translocator protein or TSPO), an 18 kDa protein associated with the mitochondrial permeability transition (mPT) pore. While the exact function of the PBR remains a matter of debate, it has been implicated in heme and steroid synthesis, cellular growth and differentiation, oxygen consumption and apoptosis. Using the Jurkat immortalized T-lymphocyte cell line, documented to have negligible PBR expression, and Jurkat cells stably transfected with a human PBR cDNA, the present study demonstrates that TLN-4601 induces apoptosis independently of PBR expression. As PBRs are overexpressed in brain tumors compared to normal brain, we examined if TLN-4601 would preferentially accumulate in tumors using an intra-cerebral tumor model. Our results demonstrate the ability of TLN-4601 to effectively bind the PBR in vivo as determined by competitive binding assay and receptor occupancy. Analysis of TLN-4601 tissue and plasma indicated that TLN-4601 preferentially accumulates in the tumor. Indeed, drug levels were 200-fold higher in the tumor compared to the normal brain. TLN-4601 accumulation in the tumor (176 μg/g) was also significant compared to liver (24.8 μg/g; 7-fold) and plasma (16.2 μg/mL; 11-fold). Taken together our data indicate that while PBR binding does not mediate cell growth inhibition and apoptosis, PBR binding may allow for the specific accumulation of TLN-4601 in PBR positive tumors.
Collapse
Affiliation(s)
- T Bertomeu
- Thallion Pharmaceuticals Inc., 7150 Alexander-Fleming, Montréal, QC, H4S 2C8, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Foltopoulou PF, Tsiftsoglou AS, Bonovolias ID, Ingendoh AT, Papadopoulou LC. Intracellular delivery of full length recombinant human mitochondrial L-Sco2 protein into the mitochondria of permanent cell lines and SCO2 deficient patient's primary cells. Biochim Biophys Acta Mol Basis Dis 2010; 1802:497-508. [PMID: 20193760 DOI: 10.1016/j.bbadis.2010.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 01/18/2010] [Accepted: 02/22/2010] [Indexed: 10/19/2022]
Abstract
Mutations in human SCO2 gene, encoding the mitochondrial inner membrane Sco2 protein, have been found to be responsible for fatal infantile cardioencephalomyopathy and cytochrome c oxidase (COX) deficiency. One potentially fruitful therapeutic approach for this mitochondrial disorder should be considered the production of human recombinant full length L-Sco2 protein and its deliberate transduction into the mitochondria. Recombinant L-Sco2 protein, fused with TAT, a Protein Transduction Domain (PTD), was produced in bacteria and purified from inclusion bodies (IBs). Following solubilisation with l-arginine, this fusion L-Sco2 protein was transduced in cultured mammalian cells of different origin (U-87 MG, T24, K-562, and patient's primary fibroblasts) and assessed for stability, transduction into mitochondria, processing and impact on recovery of COX activity. Our results indicate that: a) l-Arg solution was effective in solubilising recombinant fusion L-Sco2 protein, derived from IBs; b) fusion L-Sco2 protein was delivered successfully via a time- and concentration-dependent process into the mitochondria of human U-87 MG and T24 cells; c) fusion L-Sco2 protein was also transduced in human K-562 cells, transiently depleted of SCO2 transcripts and thus COX deficient; transduction of this fusion protein led to partial recovery of COX activity in such cells; d) [(35)S]Methionine-labelled fusion L-Sco2 protein, produced in a cell free transcription/translation system and incubated with intact isolated mitochondria derived from K-562 cells, was efficiently processed to yield the corresponding mature Sco2 protein, thus justifying the potential of the transduced fusion L-Sco2 protein to successfully activate COX holoenzyme; and finally, e) recombinant fusion L-Sco2 protein was successfully transduced into the mitochondria of primary fibroblasts derived from SCO2/COX deficient patient and facilitated recovery of COX activity. These findings provide the rationale of delivering recombinant proteins via PTD technology as a model for therapeutic approach of mitochondrial disorders.
Collapse
Affiliation(s)
- Parthena F Foltopoulou
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Macedonia, Greece
| | | | | | | | | |
Collapse
|
29
|
Molecular imaging of the translocator protein (TSPO) in a pre-clinical model of breast cancer. Mol Imaging Biol 2009; 12:349-58. [PMID: 19949989 DOI: 10.1007/s11307-009-0270-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 05/20/2009] [Accepted: 05/29/2009] [Indexed: 10/20/2022]
Abstract
PURPOSE To quantitatively evaluate the utility of a translocator protein (TSPO)-targeted near-infrared (NIR) probe (NIR-conPK11195) for in vivo molecular imaging of TSPO in breast cancer. PROCEDURES NIR-conPK11195 uptake and TSPO-specificity were validated in TSPO-expressing human breast adenocarcinoma cells (MDA-MB-231). In vivo NIR-conPK11195 biodistribution and accumulation were quantitatively evaluated in athymic nude mice bearing MDA-MB-231 xenografts. RESULTS Fluorescence micrographs illustrated intracellular labeling of MDA-MB-231 cells by NIR-conPK11195. Quantitative uptake and competition assays demonstrated dose-dependent (p < 0.001) and TSPO-specific (p < 0.001) NIR-conPK11195 uptake. In vivo, NIR-conPK11195 preferentially labeled MDA-MB-231 tumors with an 11-fold (p < 0.001) and 7-fold (p < 0.001) contrast enhancement over normal tissue and unconjugated NIR dye, respectively. CONCLUSIONS NIR-conPK11195 appears to be a promising TSPO-targeted molecular imaging agent for visualization and quantification of breast cancer cells in vivo. This research represents the first study to demonstrate the feasibility of TSPO imaging as an alternative breast cancer imaging approach.
Collapse
|
30
|
Samuelson LE, Dukes MJ, Hunt CR, Casey JD, Bornhop DJ. TSPO targeted dendrimer imaging agent: synthesis, characterization, and cellular internalization. Bioconjug Chem 2009; 20:2082-9. [PMID: 19863077 PMCID: PMC3038571 DOI: 10.1021/bc9002053] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While it has become common practice for dendrimers to deliver imaging and therapeutic agents, there are few reported examples of cellular internalization of dendrimers. Moreover, targeting of dendrimers to the mitochondria in cells has not yet been reported. Previously, we have delivered small molecule imaging agents into glioma and breast cancer cells by targeting the translocator protein (TSPO; formerly known as the peripheral benzodiazepine receptor or PBR) with a family of high-affinity conjugable ligands. The 18 kDa multimeric TSPO is expressed in steroid-producing cells, primarily on the outer mitochondrial membrane. This protein is a prime candidate for molecular targeting because tumors and other disease-related cells contain high densities of TSPO. Here, we present the synthesis, characterization, and cellular internalization into C6 rat glioma cells of a TSPO targeted dendrimer imaging agent.
Collapse
Affiliation(s)
- Lynn E. Samuelson
- Department of Chemistry, The Vanderbilt Institute for Chemical Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University, VU Station B 351822 Nashville, Tennessee 37235-1822
| | - Madeline J. Dukes
- Department of Chemistry, The Vanderbilt Institute for Chemical Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University, VU Station B 351822 Nashville, Tennessee 37235-1822
| | - Colette R. Hunt
- Department of Chemistry, The Vanderbilt Institute for Chemical Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University, VU Station B 351822 Nashville, Tennessee 37235-1822
| | - Jonathan D. Casey
- Department of Chemistry, The Vanderbilt Institute for Chemical Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University, VU Station B 351822 Nashville, Tennessee 37235-1822
| | - Darryl J. Bornhop
- Department of Chemistry, The Vanderbilt Institute for Chemical Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University, VU Station B 351822 Nashville, Tennessee 37235-1822
| |
Collapse
|
31
|
Laquintana V, Denora N, Musacchio T, Lasorsa M, Latrofa A, Trapani G. Peripheral benzodiazepine receptor ligand-PLGA polymer conjugates potentially useful as delivery systems of apoptotic agents. J Control Release 2009; 137:185-95. [PMID: 19374931 DOI: 10.1016/j.jconrel.2009.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 04/07/2009] [Accepted: 04/07/2009] [Indexed: 10/20/2022]
Abstract
Poly(d,l-lactic-co-glycolic acid) (PLGA) polymers having different average molecular weights were chemically conjugated to two imidazopyridinacetamides (1 and 2), chosen as model Peripheral Benzodiazepine Receptor (PBR) ligands, via an ester or amide linkage. It is in order to evaluate these conjugates as delivery systems of PBR ligands endowed with apoptosis inducing activity. Various coupling reaction conditions were tested to optimize the conjugation process. After purification by extensive dialysis procedures, the macromolecular conjugates were characterized by FT-IR, UV, (1)H NMR spectroscopy, DSC and the average molecular weights of synthesized conjugates were determined by GPC. PBR ligand released from these conjugates occurred in human serum and in 0.1 N HCl solution at a faster rate than that observed in phosphate buffer, pH 7.4. Moreover, the macromolecular conjugates displayed high affinity and selectivity for PBR. Cytotoxicity studies demonstrated that PBR ligand-PLGA polymer conjugates induce survival inhibition in rat C6 glioma cell line. Fluorescence microscopy studies evidenced the cellular uptake of FITC-conjugated probes 10 and 11 and moreover, the mitochondrial morphology modification induced by compounds 1 and 4a. Therefore, this study demonstrates that this PBR ligand-PLGA combination may provide a new mitochondrial targeted approach useful for improved cancer chemotherapy.
Collapse
Affiliation(s)
- Valentino Laquintana
- Pharmaco-Chemistry Department, Faculty of Pharmacy, University of Bari, 70125 Bari, Italy
| | | | | | | | | | | |
Collapse
|
32
|
Cappelli A, Mancini A, Sudati F, Valenti S, Anzini M, Belloli S, Moresco RM, Matarrese M, Vaghi M, Fabro A, Fazio F, Vomero S. Synthesis and biological characterization of novel 2-quinolinecarboxamide ligands of the peripheral benzodiazepine receptors bearing technetium-99m or rhenium. Bioconjug Chem 2008; 19:1143-53. [PMID: 18510350 DOI: 10.1021/bc700437g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Potential receptor imaging agents based on Tc-99m for the in vivo visualization of the peripheral benzodiazepine receptor (PBR) have been designed on the basis of the information provided by the previously published structure-affinity relationship studies, which suggested the existence of tolerance to voluminous substituents in the receptor area interacting with 3-position of the quinoline nucleus of 2-quinolinecarboxamides 5. In the first step of the investigation, the stereoelectronic features of the above-indicated receptor area were also probed by means of 4-phenyl-3-[(1-piperazinyl)methyl]-2-quinolinecarboxamide derivatives bearing different substituents on the terminal piperazine nitrogen atom (compounds 6a-f). The structure-affinity relationship data confirmed the existence of a tolerance to bulky lipophilic substituents and stimulated the design of bifunctional ligands based on the 4-phenyl-3-[(1-piperazinyl)methyl]-2-quinolinecarboxamide moiety (compounds 6h,j,k,m). The submicromolar PBR affinity of rhenium complexes 6j,m suggests that the presence of their metal-ligand moieties with encaged rhenium is fairly compatible with the interaction with the PBR binding site. Thus, in order to obtain information on the in vivo behavior of these bifunctional ligands, (99m)Tc-labeled compounds 6h,k were synthesized and evaluated in preliminary biodistribution and single photon emission tomography (SPET) studies. The results suggest that both tracers do not present a clear preferential distribution in tissues rich in PBR, probably because of their molecular dimensions, which may hamper both the intracellular diffusion toward PBR and the interaction with the binding site.
Collapse
Affiliation(s)
- Andrea Cappelli
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Soustiel JF, Palzur E, Vlodavsky E, Veenman L, Gavish M. The effect of oxygenation level on cerebral post-traumatic apoptotsis is modulated by the 18-kDa translocator protein (also known as peripheral-type benzodiazepine receptor) in a rat model of cortical contusion. Neuropathol Appl Neurobiol 2007; 34:412-23. [PMID: 17973904 DOI: 10.1111/j.1365-2990.2007.00906.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
AIMS Hyperbaric hyperoxia has been shown to reduce apoptosis in brain injury. As the 18-kDa translocator protein (TSPO), also known as peripheral-type benzodiazepine receptor, is closely associated with the mitochondrial transition pore and because of its role in mitochondrial respiration and apoptosis, we hypothesized that reduction of apoptosis by hyperoxia may involve the TSPO. METHODS TSPO and transferase-mediated dUTP nick end labelling (TUNEL) immunopositivity was first assessed in cortical contusion, created by dynamic cortical deformation, by immunohistochemistry in rats exposed to normoxia [(dynamic cortical deformation (DCD)], normobaric hyperoxia or hyperbaric hyperoxia [hyperbaric oxygen therapy (HBO)]. In a second step, transmembrane mitochondrial potential (Deltapsi(M)) and caspase 9 activity were assessed in the injured area in comparison with the noninjured hemisphere. Measurements were performed in DCD and HBO groups. A third group receiving both HBO and the TSPO ligand PK11195 was investigated as well. RESULTS TSPO correlated quantitatively and regionally with TUNEL immunopositivity in the perilesional area. Hyperoxia reduced both the number of TSPO expressing and TUNEL positive cells in the perilesional area, and this effect proved to be pressure dependent. After contusion, we demonstrated a dissipation of Deltapsi(M) in isolated mitochondria and an elevation of caspase 9 activity in tissue homogenates from the contused area, both of which could be substantially reversed by hyperbaric hyperoxia. This protective effect of hyperoxia was reversed by PK11195. CONCLUSIONS The present findings suggest that the protective effect of hyperoxia may be due to a negative regulation of the proapoptotic function of mitochondrial TSPO, including conservation of the mitochondrial membrane potential.
Collapse
Affiliation(s)
- J F Soustiel
- Acute Brain Injury Research Laboratory, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | | | | | | | | |
Collapse
|
34
|
Venneti S, Lopresti BJ, Wiley CA. The peripheral benzodiazepine receptor (Translocator protein 18kDa) in microglia: from pathology to imaging. Prog Neurobiol 2006; 80:308-22. [PMID: 17156911 PMCID: PMC1849976 DOI: 10.1016/j.pneurobio.2006.10.002] [Citation(s) in RCA: 300] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 10/05/2006] [Accepted: 10/26/2006] [Indexed: 11/19/2022]
Abstract
Microglia constitute the primary resident immune surveillance cell in the brain and are thought to play a significant role in the pathogenesis of several neurodegenerative disorders, such as Alzheimer's disease, multiple sclerosis, Parkinson's disease and HIV-associated dementia. Measuring microglial activation in vivo in patients suffering from these diseases may help chart progression of neuroinflammation as well as assess efficacy of therapies designed to modulate neuroinflammation. Recent studies suggest that activated microglia in the CNS may be detected in vivo using positron emission tomography (PET) utilizing pharmacological ligands of the mitochondrial peripheral benzodiazepine receptor (PBR (recently renamed as Translocator protein (18kDa)). Beginning with the molecular characterization of PBR and regulation in activated microglia, we examine the rationale behind using PBR ligands to image microglia with PET. Current evidence suggests these findings might be applied to the development of clinical assessments of microglial activation in neurological disorders.
Collapse
Affiliation(s)
- Sriram Venneti
- From the Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Brian J. Lopresti
- From the Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Clayton A. Wiley
- From the Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
35
|
Momosaki S, Hosoi R, Takai N, Gee A, Inoue O. The apparent positive cooperativity of in vivo [3H]PK-11195 binding in mouse fibrosarcoma. Nucl Med Biol 2006; 33:797-800. [PMID: 16934698 DOI: 10.1016/j.nucmedbio.2006.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 03/16/2006] [Accepted: 04/08/2006] [Indexed: 11/21/2022]
Abstract
To evaluate the binding properties of peripheral benzodiazepine receptor (PBR) in mouse fibrosarcoma, [(3)H]PK-11195 binding, in vitro and in vivo, was investigated using either tissue dissection or autoradiographic method. The binding characteristics in fibrosarcoma were compared with those in the kidney. The results of an in vitro saturation study revealed that the maximal numbers of PBR binding sites (B(max)) in fibrosarcoma and in the kidney were almost the same (kidney: 5.2 pmol/mg protein; fibrosarcoma: 5.0 pmol/mg protein). On the other hand, the binding affinity (K(d)) in fibrosarcoma was lower than that in the kidney (kidney: 0.45 nM; fibrosarcoma: 1.34 nM). It is noteworthy that the in vivo binding of [(3)H]PK-11195 in fibrosarcoma increased with increasing doses of [(3)H]PK-11195 (in the dose range of 0.03-1 mg/kg), whereas that in the kidney decreased with competitive inhibition. The apparent positive cooperativity of [(3)H]PK-11195 binding in fibrosarcoma was only observed under in vivo conditions and might be possibly related to the incoordination of PBR subunits.
Collapse
Affiliation(s)
- Sotaro Momosaki
- Course of Allied Health Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.
| | | | | | | | | |
Collapse
|
36
|
Cappelli A, Matarrese M, Moresco RM, Valenti S, Anzini M, Vomero S, Turolla EA, Belloli S, Simonelli P, Filannino MA, Lecchi M, Fazio F. Synthesis, labeling, and biological evaluation of halogenated 2-quinolinecarboxamides as potential radioligands for the visualization of peripheral benzodiazepine receptors. Bioorg Med Chem 2006; 14:4055-66. [PMID: 16495062 DOI: 10.1016/j.bmc.2006.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 02/01/2006] [Accepted: 02/03/2006] [Indexed: 11/30/2022]
Abstract
The previous exploration of the structure-affinity relationships concerning 4-phenyl-2-quinolinecarboxamide peripheral benzodiazepine receptor (PBR) ligands 6 showed as an interesting result the importance of the presence of a chlorine atom in the methylene carbon at position 3 of the quinoline nucleus. The subnanomolar PBR affinity shown by N-benzyl-3-chloromethyl-N-methyl-4-phenyl-2-quinolinecarboxamide (6b) suggested its chlorine atom to be replaced with other halogens in order to optimize the interaction of the quinolinecarboxamide derivatives with PBR and to develop suitable candidates for positron emission tomography (PET) or single photon emission computed tomography (SPECT) studies. The binding studies led to the discovery of fluoromethyl derivative 6a, which showed an IC50 value of 0.11 nM and is, therefore, one of the most potent PBR ligands so far described. Fluoromethyl derivative 6a has been labeled with 11C (t1/2=20.4 min, beta+=99.8%) starting from the corresponding des-methyl precursor (14) using [11C]CH3I in the presence of tetrabutylammonium hydroxide in DMF with a 35-40% radiochemical yield (corrected for decay) and 1.5 Ci/micromol of specific radioactivity. Ex vivo rat biodistribution and inhibition (following intravenous pre-administration of PK11195) studies showed that [11C]6a rapidly and specifically accumulated in PBR-rich tissues such as heart, lung, kidney, spleen, and adrenal, and at a lower level in other peripheral organs and in the brain. The images obtained in mouse with small animal YAP-(S)PET essentially confirmed the result of the ex vivo biodistribution experiments. The biological data suggest that [11C]6a is a promising radioligand for peripheral benzodiazepine receptor PET imaging in vivo.
Collapse
Affiliation(s)
- Andrea Cappelli
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Giusti L, Costa B, Viacava P, Castagna M, Iacconi P, Ricci RE, Zaccagnini M, Miccoli P, Lucacchini A. Peripheral type benzodiazepine receptor in human parathyroid glands: up-regulation in adenoma. J Endocrinol Invest 2004; 27:826-31. [PMID: 15648546 DOI: 10.1007/bf03346276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In this study we report the presence of peripheral benzodiazepine receptors (PBRs) in human parathyroid glands and describe the effect of their benzodiazepine type ligands on parathyroid cell function. PBR binding features in normal parathyroid tissue were characterized and compared to parathyroid adenoma, using a specific and selective ligand for PBR, [3H] 1-(2-chlorophenyl)-N-methyl-N-(1-methyl-propyl)-3-isoquinoline-carboxamide ([3H]PK11195). Affinity and density of [3H]PK11195 binding sites in homogenate membrane preparations from adenomatous and normal tissues were determined. Parathyroid adenoma showed a statistically significant 2.2 fold increase of [3H]PK11195 binding sites, while the affinity remained unchanged. Our results represent the first evidence of PBRs in parathyroid glands and suggest for them a role in influencing PTH release. A clear trend of PBR up-regulation in parathyroid adenoma was also found.
Collapse
Affiliation(s)
- L Giusti
- Department of Psychiatry, Neurobiology, Pharmacology and Biotechnology, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Veenman L, Levin E, Weisinger G, Leschiner S, Spanier I, Snyder SH, Weizman A, Gavish M. Peripheral-type benzodiazepine receptor density and in vitro tumorigenicity of glioma cell lines. Biochem Pharmacol 2004; 68:689-98. [PMID: 15276076 DOI: 10.1016/j.bcp.2004.05.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2004] [Accepted: 05/04/2004] [Indexed: 11/20/2022]
Abstract
The peripheral-type benzodiazepine receptor is found primarily on the outer mitochondrial membrane and consists of three subunits: the 18kDa isoquinoline binding protein, the 32kDa voltage-dependent anion channel, and the 30kDa adenine nucleotide transporter. The current study evaluates the potential importance of peripheral-type benzodiazepine receptor expression in glioma cell tumorigenicity. While previous studies have suggested that peripheral-type benzodiazepine receptor-binding may be relatively increased in tumor tissue and cells, so far, little is known about the relationships between peripheral-type benzodiazepine receptor density and factors underlying tumorigenicity. In the present study, we found in glioma cell lines (C6, U87MG, and T98G), that peripheral-type benzodiazepine receptor ligand-binding density is relatively high for C6 and low for T98G, while U87MG displays intermediate levels. Cell growth of these cell lines in soft agar indicated that high levels of peripheral-type benzodiazepine receptor-binding were associated with increased colony size, indicative of their ability to establish anchorage independent cell proliferation. Potential causes for differences in tumorigenicity between these cell lines were suggested by various cell death and proliferation assays. Cell death, including apoptosis, appeared to be low in C6, and high in T98G, while U87MG displayed intermediate levels in this respect. Cell proliferation appeared to be high in C6, low in T98G, and intermediate in U87MG. In conclusion, our study suggests that relatively high peripheral-type benzodiazepine receptor-binding density is associated with enhanced tumorigenicity and cell proliferation rate. In particular, apoptosis appears to be an important tumorigenic determinant in these glioma cell lines. Moreover, application of PBR-specific ligands indicated that PBR indeed are functionally involved in apoptosis in glioma cells.
Collapse
Affiliation(s)
- Leo Veenman
- Department of Pharmacology, Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, P.O.B. 9649, Bat-Galim, Haifa 31096, Israel
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Cappelli A, Pericot Mohr GL, Gallelli A, Giuliani G, Anzini M, Vomero S, Fresta M, Porcu P, Maciocco E, Concas A, Biggio G, Donati A. Structure-activity relationships in carboxamide derivatives based on the targeted delivery of radionuclides and boron atoms by means of peripheral benzodiazepine receptor ligands. J Med Chem 2003; 46:3568-71. [PMID: 12904061 DOI: 10.1021/jm034068b] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structure-activity relationship studies on 2-quinolinecarboxamide peripheral benzodiazepine receptor (PBR) ligands have been refined with the aim of using these ligands as carriers of radionuclides and boron atoms. Some new ligands show enhanced affinity and steroidogenic activity with respect to reference compound 1 and are interesting candidates for radiolabeling and PET studies. Moreover, carborane derivative 3q, representing the first example of PBR ligand bearing a carborane cage, can be useful to explore an alternative mechanism in BNCT.
Collapse
Affiliation(s)
- Andrea Cappelli
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
DeFeudis FV, Papadopoulos V, Drieu K. Ginkgo biloba extracts and cancer: a research area in its infancy. Fundam Clin Pharmacol 2003; 17:405-17. [PMID: 12914542 DOI: 10.1046/j.1472-8206.2003.00156.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent studies conducted with various molecular, cellular and whole animal models have revealed that leaf extracts of Ginkgo biloba may have anticancer (chemopreventive) properties that are related to their antioxidant, anti-angiogenic and gene-regulatory actions. The antioxidant and associated anti-lipoperoxidative effects of Ginkgo extracts appear to involve both their flavonoid and terpenoid constituents. The anti-angiogenic activity of the extracts may involve their antioxidant activity and their ability to inhibit both inducible and endothelial forms of nitric oxide synthase. With regard to gene expression, a Ginkgo extract and one of its terpenoid constituents, ginkgolide B, inhibited the proliferation of a highly aggressive human breast cancer cell line and xenografts of this cell line in nude mice. cDNA microarray analyses have shown that exposure of human breast cancer cells to a Ginkgo extract altered the expression of genes that are involved in the regulation of cell proliferation, cell differentiation or apoptosis, and that exposure of human bladder cancer cells to a Ginkgo extract produced an adaptive transcriptional response that augments antioxidant status and inhibits DNA damage. In humans, Ginkgo extracts inhibit the formation of radiation-induced (chromosome-damaging) clastogenic factors and ultraviolet light-induced oxidative stress - effects that may also be associated with anticancer activity. Flavonoid and terpenoid constituents of Ginkgo extracts may act in a complementary manner to inhibit several carcinogenesis-related processes, and therefore the total extracts may be required for producing optimal effects.
Collapse
|
41
|
Whittle IR, Kelly PA. Mechanisms of peritumoural brain dysfunction: metabolic and neuroreceptor findings in striatal C6 glioma. J Clin Neurosci 2001; 8:430-4. [PMID: 11535011 DOI: 10.1054/jocn.2000.0936] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The aetiology of the peritumoural brain dysfunction that is rectified by steroids is unknown. To determine potential aspects of its pathophysiological basis we performed metabolic, histochemical and neuroreceptor studies in rodents with striatal C6 glioma. This model is known to cause focal neurobehavioural and electrophysiological dysfunction. The fully quantitative [(14)C]-2-deoxyglucose autoradiographic technique of measuring local cerebral metabolism of glucose (LCMRglu) showed raised LCMRglu (22-29%) in the pallidum, substantia nigra and endopeduncular nucleus. Acetylcholinesterase (AChE) histochemistry and a range of ligand binding studies for dopamine type 1 and 2, and serotonergic 5-HT(2)receptors were negative in the tumour and normal in peritumoural brain. 5-HT uptake sites and strong peripheral benzodiazepine receptor expression were present in the tumour. There was extensive up-regulation of peripheral benzodiazepine receptor expression in the peritumoural brain. These studies show there is metabolic dysregulation in brain regions functionally connected to, but anatomically distant from the striatum. There is also a peritumoural region of up-regulated receptors that have many, predominantly inhibitory, functions. The relationship of these findings to peritumoural brain dysfunction is discussed.
Collapse
Affiliation(s)
- I R Whittle
- Department of Clinical Neurosciences, University of Edinburgh, Western General Hospital, Edinburgh, UK.
| | | |
Collapse
|
42
|
Lavicka J, Sarisský M, Mirossay A, Sulla I, Mojzis J, Mirossay L. Diazepam enhances etoposide-induced cytotoxicity in U-87 MG human glioma cell line. Fundam Clin Pharmacol 2001; 15:201-7. [PMID: 11468031 DOI: 10.1046/j.1472-8206.2001.00030.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Various approaches might be employed in an effort to increase efficacy of the chemotherapeutic treatment of cancer. Recently, various modulators of anticancer therapy effectiveness have been studied. Antiproliferative effects of peripheral benzodiazepine receptor (PBR) ligands might be exploited to enhance cytotoxic effect of a chemotherapeutic drug towards cancer cells. In this work, we sought to enhance cytotoxic effect of etoposide (VP-16) by a PBR ligand, diazepam (DZ) in U-87 MG human glioma cells. Cytotoxicity of VP-16, DZ and their combinations was assessed by using the microculture MTT assay. Cell survival, effective concentrations (EC) and the onset of cytotoxic effect were determined. After 72 h of cultivation, survival of U-87 MG cells was reduced to 57 +/- 7% in the presence of VP-16 at 12.5 microg/mL alone, whereas DZ at 10-4 mol/L alone caused 28 +/- 6% reduction in cell survival. Coincubation of VP-16 at 12.5 microg/mL with DZ at 10-4 mol/L led to a further decrease in cell survival to 45 +/- 6%. Furthermore, DZ at 10-4 mol/L significantly decreased effective concentrations, EC10, EC30 and EC50, of VP-16 and the dose-response curves were shifted to the left. Addition of DZ at 10-4 mol/L to VP-16 also facilitated the onset of its cytotoxic effect. The same decrease in survival was thus achieved approximately 30 h earlier in comparison with VP-16 alone. However, DZ at 10-9 mol/L failed both to exert any effect on glioma cells survival and enhance cytotoxic effect of VP-16. DZ at 10-4 mol/L was capable of both reducing U-87 MG glioma cells survival when applied alone and also enhancing the cytotoxic effect of VP-16. No such observation was made for the lower concentrations of DZ. Potential implementation of diazepam in the antiglioma/anticancer armamentarium awaits further experimentation but phase I and phase II clinical trials could be suggested.
Collapse
Affiliation(s)
- J Lavicka
- Department of Pharmacology, Faculty of Medicine, Safárik University, Kosice, Slovakia
| | | | | | | | | | | |
Collapse
|
43
|
Xia W, Spector S, Hardy L, Zhao S, Saluk A, Alemane L, Spector NL. Tumor selective G2/M cell cycle arrest and apoptosis of epithelial and hematological malignancies by BBL22, a benzazepine. Proc Natl Acad Sci U S A 2000; 97:7494-9. [PMID: 10861014 PMCID: PMC16573 DOI: 10.1073/pnas.97.13.7494] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Two distinct benzodiazepine binding sites have been identified, (i) a central site restricted to brain and (ii) a ubiquitously expressed mitochondrial binding site, the so-called peripheral-type benzodiazepine receptor (PBR). In this paper, we show that a benzazepine referred to as BBL22 (2-amino 9-chloro-7-(2-fluorophenyl)-5H-pyrimidol[5,4-d][2]benzazepine), which is classified as a PBR ligand based on structure, induces arrest in G(2)/M phase of the cell cycle in human tumor cell lines of both epithelial and hematopoietic cellular origin. After G(2)/M arrest, several tumor types, notably prostate and certain breast cancer lines exhibited significant apoptosis. Ideally, cancer therapies should selectively target tumor cells while sparing normal cell counterparts. BBL22 exhibited such selectivity, as it did not affect the growth and survival of nonmalignant breast and prostate epithelial lines. Moreover, BBL22 demonstrated structural requirements for this selective antitumor activity as 11 structurally related PBR ligands, including high-affinity ligands Ro5-4864 and PK11195, failed to induce tumor cell growth arrest or apoptosis. The in vivo antitumor activity of BBL22 was examined in a human xenograft model of androgen-independent prostate cancer where BBL22 significantly reduced the growth of PC3 prostate tumors without eliciting overt toxicity. Identification of BBL22 represents a tumor selective therapeutic strategy for a variety of human tumors.
Collapse
Affiliation(s)
- W Xia
- Division of Hematology/Oncology, Department of Medicine, University of Miami School of Medicine, Miami, FL 33136, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Waterfield JD, McGeer EG, McGeer PL. The peripheral benzodiazepine receptor ligand PK 11195 inhibits arthritis in the MRL-lpr mouse model. Rheumatology (Oxford) 1999; 38:1068-73. [PMID: 10556257 DOI: 10.1093/rheumatology/38.11.1068] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE Mice of the MRL-lpr strain develop a severe autoimmune arthritic condition when primed with complete Freund's adjuvant. The pathology is similar to that seen in human rheumatoid arthritis. We investigated whether PK 11195, a powerful ligand for peripheral benzodiazepine receptors, would have preventative or therapeutic effects in this model. METHODS MRL-lpr mice were primed with complete Freund's adjuvant at 13-14 weeks of age. Daily PK 11195 injections were started on the same day as priming to test for preventative effects. Daily PK 11195 injections were started 10 days after priming to test therapeutic effects. RESULTS PK 11195 showed both preventative and therapeutic effects. At 1 mg/kg/day, it inhibited disease onset. At 3 mg/kg/day, it inhibited established disease progression. CONCLUSION The evidence suggests that PK 11195 may be the prototype of a new class of anti-inflammatory agents.
Collapse
Affiliation(s)
- J D Waterfield
- Department of Oral Biological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | | | | |
Collapse
|
46
|
Guo Zw ZW, Gallo JM. Selective Protection of 2',2'-Difluorodeoxycytidine (Gemcitabine). J Org Chem 1999; 64:8319-8322. [PMID: 11674754 DOI: 10.1021/jo9911140] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gemcitabine (1) is a promising new anticancer agent used in pancreatic cancer. Improvement in the selective targeting of compound 1 and other cytotoxic agents to solid tumors may be enhanced by conjugation to ligands that target peripheral benzodiazepine receptors (PBRs) located on mitochondria and known to be overexpressed in human brain tumors. Development of such chemical conjugates requires selective protection on 4-NH(2), 3'-OH, and 5'-OH of compound 1. All three monoprotected and three diprotected gemcitabine derivatives (2 to 7) were synthesized in good yield by employing a single commonly used protecting reagent, di-tert-butyl dicarbonate, under different conditions. Consequently, the three mono-ligand-gemcitabine conjugates coupled at 4-NH(2), 3'-OH, and 5'-OH respectively (14 to 16) were synthesized in high yield using the PBR ligand PK11195. This selective protection/deprotection strategy offers a relatively straightforward means to modify other nucleosides.
Collapse
Affiliation(s)
- Zhi-wei Guo Zw
- Department of Pharmacology Fox Chase Cancer Center 7701 Burholme Avenue, Philadelphia, Pennsylvania 19111
| | | |
Collapse
|
47
|
Carmel I, Fares FA, Leschiner S, Scherübl H, Weisinger G, Gavish M. Peripheral-type benzodiazepine receptors in the regulation of proliferation of MCF-7 human breast carcinoma cell line. Biochem Pharmacol 1999; 58:273-8. [PMID: 10423168 DOI: 10.1016/s0006-2952(99)00093-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Peripheral-type benzodiazepine receptors (PBR) have been implicated in cell proliferation. The aim of the present study was to test the effect of the PBR ligands PK 11195 and Ro 5-4864 and the central-type benzodiazepine receptor ligand clonazepam on breast carcinoma cell proliferation, using [3H] thymidine incorporation. We then carried out a study to identify where the PBR-specific ligands Ro 5-4864 and PK 11195 act in the cell cycle, using flow cytometric analysis. We found PBR expression in the malignant breast cancer tumors, representing various levels of estrogen and/or progesterone receptors, as well as in the MCF-7 breast carcinoma cell line. PK 11195 and Ro 5-4864 inhibited cell proliferation at concentrations of 10(-5) to 10(-4) M, while clonazepam (the central-type benzodiazepine receptor-specific ligand) had no effect. In this same concentration range, PK 11195 and Ro 5-4864, in contrast to clonazepam, induced an accumulation of MCF-7 cells in both the G0-G1 and G2-M phases of the cell cycle. The present study demonstrates that PBR ligands play a role in regulating cell proliferation in the human breast carcinoma cell line MCF-7.
Collapse
Affiliation(s)
- I Carmel
- Department of Pharmacology, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa
| | | | | | | | | | | |
Collapse
|
48
|
Hofmann B, Bogdanov A, Marecos E, Ebert W, Semmler W, Weissleder R. Mechanism of gadophrin-2 accumulation in tumor necrosis. J Magn Reson Imaging 1999; 9:336-41. [PMID: 10077034 DOI: 10.1002/(sici)1522-2586(199902)9:2<336::aid-jmri28>3.0.co;2-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The molecular mechanism by which gadophrin-2 targets necrotic tumor tissue was investigated. Biodistribution studies and magnetic resonance imaging (MRI) and histologic/autoradiographic correlation were performed in xenograft mouse models bearing human tumors (HT 29, WiDr, LX 1). Binding of gadophrin-2 to DNA, lipids, or proteins was determined by fluorescence spectrophotometry. Protein binding was determined by dialysis and gel electrophoresis. Accumulation of gadophrin-2 was low (<0.7% injected dose/g tissue at 24 hours after injection) in viable tumor but higher in necrotic tumor regions and was readily detectable by MRI. Within a given tumor, the agent preferentially localized in the periphery of necrotic areas. Within these regions gadophrin-2 was bound to interstitial albumin and not other proteins, lipids, or DNA. Tumoral accumulation of gadophrin-2 most likely occurs through its binding to plasma albumin and subsequent slow extravasation into the tumor interstitium.
Collapse
Affiliation(s)
- B Hofmann
- Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown 02129, USA
| | | | | | | | | | | |
Collapse
|
49
|
Miyazawa N, Hamel E, Diksic M. Assessment of the peripheral benzodiazepine receptors in human gliomas by two methods. J Neurooncol 1998; 38:19-26. [PMID: 9540054 DOI: 10.1023/a:1005933226966] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study was designed to evaluate the density of peripheral benzodiazepine receptor (PBR) sites as a function of tumor malignancy in human gliomas, and to compare the results obtained with autoradiographic and liquid scintillation measurements performed on the same tissue specimens. In vitro binding of [3H]PK-11195[1-(2-chlorophenyl)-N-methyl-(1-methylpropyl)-3-isoguinol ine carboxamide] to human gliomas in radioligand binding studies revealed a significantly higher level (about 3 fold) of PBR binding sites in both low grade and high grade gliomas as compared to normal cortex. The Bmax (mean +/- SD) of high and low grade gliomas, when entire tissue sections were measured by autoradiography, was 5.5 +/- 0.3 pmol/mg-tissue (n = 5) and 1.8 +/- 0.9 pmol/mg-tissue (n = 6), respectively, although it was evident that there was area of hot spots in the high grade tumors. This difference was significant (p < 0.05; two-tailed t-test). Similarly, the KD values (dissociation constant; nM) between the high (KD = 20.4 +/- 1.3 nM) and low (KD = 14.3 +/- 2.1 nM) grade gliomas were significantly different. A significant difference in binding site density (Bmax) between the two types of gliomas was also obtained in liquid scintillation measurements. The hot spot areas which showed the most intense binding of [3H]PK-11195 had KD of 24.5 +/- 1.0 nM and Bmax of 6.2 +/- 0.42 pmol/mg-tissue, values significantly higher (p < 0.05, two-tailed t-test) than those obtained when the entire tissue section was measured. The data on the Bmax/KD ratios presented here suggest that it might be possible to differentiate high from low grade gliomas in human by in vivo imaging with 11C-labelled PK-11195.
Collapse
Affiliation(s)
- N Miyazawa
- Cone Laboratory for Neurosurgical Research, Montreal, Canada
| | | | | |
Collapse
|
50
|
Verma A, Facchina SL, Hirsch DJ, Song SY, Dillahey LF, Williams JR, Snyder SH. Photodynamic tumor therapy: mitochondrial benzodiazepine receptors as a therapeutic target. Mol Med 1998; 4:40-5. [PMID: 9513188 PMCID: PMC2230262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Photodynamic therapy employs photosensitive agents such as porphyrins to treat a variety of tumors accessible to light-emitting probes. This approach capitalizes on the selective retention of porphyrins by cancer cells. Cancer cells also have elevated levels of mitochondrial benzodiazepine receptors which bind porphyrins with high affinity. METHODS Cultured cancer cell lines were exposed to porphyrin and porphyrin-like compounds and then irradiated with light. Cytotoxicity of this treatment was measured via clonogenic assays. Mitochondrial benzodiazepine receptor pharmacology was studied using [3H] PK11195 binding to cancer cell homogenates and isolated kidney mitochondrial membranes. RESULTS We show that therapeutic potencies of porphyrins correlate closely with affinities for mitochondrial benzodiazepine receptors. Sensitivities of tumor cell lines to photodynamic therapy parallel their densities of these receptors. CONCLUSION We propose that porphyrin photodynamic therapy is mediated by mitochondrial benzodiazepine receptors.
Collapse
Affiliation(s)
- A Verma
- Department of Neurology, Uniformed Service University of the Health Sciences, Bethesda, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|