1
|
Numberger D, Siebert U, Valentin Weigand P. Survival and adaptation of Streptococcus phocae in host environments. PLoS One 2024; 19:e0296368. [PMID: 38289941 PMCID: PMC10826952 DOI: 10.1371/journal.pone.0296368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/12/2023] [Indexed: 02/01/2024] Open
Abstract
Marine mammals are sentinel species representing the "health" of our oceans on which we are dependent. There are many threats to marine mammals including infectious diseases that increase with climate change and pollution of the marine environment. Streptococcus phocae has frequently been isolated from diseased or dead marine mammals. However, its pathogenicity and contribution to disease in marine mammals is still unknown. As bacteria including (potential) pathogens has to deal with different host environments during colonization or infection, we investigated the survival of S. phocae in fresh porcine and phocid blood, in seawater and in the presence of macrophages and (epithelial) cells from harbor seals and pigs. Furthermore, we tested adherence on and invasion of different (marine) mammalian cells by S. phocae. Our results showed that S. phocae can survive in seawater for at least 11 and 28 days at 16°C and 4°C, respectively. It is able to grow in blood of harbor and grey seals, but not in porcine blood. Furthermore, S. phocae is adherent and invasive to cells from seals and pigs, while the portion of invasive cells was higher in seal derived cells. Macrophages of harbor seals were more efficient in killing S. phocae than porcine macrophages. Our results indicate that S. phocae has strategies enabling it to adapt to the marine environment and seal hosts.
Collapse
Affiliation(s)
- Daniela Numberger
- Institute for Microbiology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Buesum, Germany
| | - Peter Valentin Weigand
- Institute for Microbiology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
2
|
Heggi MT, Nour El-Din HT, Morsy DI, Abdelaziz NI, Attia AS. Microbial evasion of the complement system: a continuous and evolving story. Front Immunol 2024; 14:1281096. [PMID: 38239357 PMCID: PMC10794618 DOI: 10.3389/fimmu.2023.1281096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/30/2023] [Indexed: 01/22/2024] Open
Abstract
The complement system is a fundamental part of the innate immune system that plays a key role in the battle of the human body against invading pathogens. Through its three pathways, represented by the classical, alternative, and lectin pathways, the complement system forms a tightly regulated network of soluble proteins, membrane-expressed receptors, and regulators with versatile protective and killing mechanisms. However, ingenious pathogens have developed strategies over the years to protect themselves from this complex part of the immune system. This review briefly discusses the sequence of the complement activation pathways. Then, we present a comprehensive updated overview of how the major four pathogenic groups, namely, bacteria, viruses, fungi, and parasites, control, modulate, and block the complement attacks at different steps of the complement cascade. We shed more light on the ability of those pathogens to deploy more than one mechanism to tackle the complement system in their path to establish infection within the human host.
Collapse
Affiliation(s)
- Mariam T. Heggi
- Clinical Pharmacy Undergraduate Program, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hanzada T. Nour El-Din
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | | | - Ahmed S. Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Itzek A, Weißbach V, Meintrup D, Rieß B, van der Linden M, Borgmann S. Epidemiological and Clinical Features of Streptococcus dysgalactiae ssp. equisimilis stG62647 and Other emm Types in Germany. Pathogens 2023; 12:pathogens12040589. [PMID: 37111475 PMCID: PMC10143538 DOI: 10.3390/pathogens12040589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
(1) Background: Streptococcus dysgalactiae subspecies equisimilis (SDSE) is an important β-hemolytic pathogen historically described as mainly affecting animals. Studies epidemiologically assessing the pathogenicity in the human population in Germany are rare. (2) Methods: the present study combines national surveillance data from 2010 to 2022 with a single-center clinical study conducted from 2016 to 2022, focusing on emm type, Lancefield antigen, antimicrobial resistance, patient characteristics, disease severity, and clinical infection markers. (3) Results: The nationwide reported invasive SDSE infections suggest an increasing infection burden for the German population. One particular emm type, stG62647, increased over the study period, being the dominant type in both study cohorts, suggesting a mutation-driven outbreak of a virulent clone. The patient data show that men were more affected than women, although in the single-center cohort, this trend was reversed for patients with stG62647 SDSE. Men affected by stG62647 developed predominantly fascial infections, whereas women suffering from superficial and fascial non-stG62647 SDSE infections were significantly younger than other patients. Increasing age was a general risk factor for invasive SDSE infections. (4) Conclusions: further studies are needed to further elucidate the raised questions regarding outbreak origin, underlying molecular mechanisms as well as sex-dependent pathogen adaptation.
Collapse
Affiliation(s)
- Andreas Itzek
- German National Reference Center for Streptococci, Institute of Medical Microbiology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Victoria Weißbach
- Department of Infectious Diseases and Infection Control, Ingolstadt Hospital, 85049 Ingolstadt, Germany
| | - David Meintrup
- Faculty of Engineering and Management, University of Applied Sciences Ingolstadt, 85049 Ingolstadt, Germany
| | - Beate Rieß
- Department of Infectious Diseases and Infection Control, Ingolstadt Hospital, 85049 Ingolstadt, Germany
| | - Mark van der Linden
- German National Reference Center for Streptococci, Institute of Medical Microbiology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Stefan Borgmann
- Department of Infectious Diseases and Infection Control, Ingolstadt Hospital, 85049 Ingolstadt, Germany
| |
Collapse
|
4
|
Srivastava A, Kumari U, Mittal S, Mittal AK. Immunoprotective role of aloin and disease resistance in Labeo rohita, infected with bacterial fish pathogen, Aeromonas hydrophila. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:30062-30072. [PMID: 36427124 DOI: 10.1007/s11356-022-24253-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
The effect of aloin on mucosal immune response and disease resistance was elucidated in Labeo rohita infected with the bacterial fish pathogen, Aeromonas hydrophila. Fishes were divided into four groups: (i) control, (ii) vehicle control, (iii) bacteria infected and (iv) bacteria infected and aloin treated. Fish were intraperitoneally injected with A. hydrophila suspension at the dose of 2 × 106 CFU/fish at 0 day (d). Following bacterial injection at 0 d, fish were treated with aloin at a dose of 1 mg/kg body weight intraperitoneally at an interval of 24 h for 4 consecutive days. Mucus collected from fish of each group was analyzed at 2 d, 4 d, 6 d, 8 d and 10 d. In bacteria-infected fish, a significant decrease (P < 0.05) in the activity of certain enzymatic and non-enzymatic immune parameters was observed. The activity of these immune parameters showed a gradual recovery on administration of aloin in bacteria-infected fish. Cumulative mortality was also found to be low in the aloin-treated group as compared to that in the infected group. Thus, aloin could act as an immunostimulant and play a protective role against disease caused by bacteria.
Collapse
Affiliation(s)
- Ayan Srivastava
- Department of Zoology, MSM Samta College (BR Ambedkar Bihar University), Jandaha Road, Vaishali, 844505, Bihar, India
| | - Usha Kumari
- Zoology Section, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Swati Mittal
- Skin Physiology Laboratory, Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Ajay Kumar Mittal
- Department of Zoology, Banaras Hindu University, 9, Mani Nagar, Kandawa, Near Chitaipur Crossing, Varanasi, 221106, Uttar Pradesh, India
| |
Collapse
|
5
|
Wei X, Wu Z, Zhang T, Lei Y, Chen M, Yang Y, Gao A, Guo Z, Ye J. Functional characterization of complement factor H in host defense against bacterial pathogen in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2022; 129:114-126. [PMID: 36007831 DOI: 10.1016/j.fsi.2022.08.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Complement factor H (CFH), a multifunctional soluble complement regulatory protein, can bind to a variety of pathogens and play a crucial role in host innate immune defense. To explore the functional characteristics of CFH (OnCFH) in Nile tilapia (Oreochromis niloticus), we cloned and characterized the open reading frame (ORF) of OnCFH in this study. The full-length of OnCFH ORF is 1359 bp, encoding 452 aa for a 48.85 kDa peptide, and its predicted structure containing six short complement-like repeats (SCRs). The analysis of tissue distribution showed that OnCFH was constitutively expressed in all tested tissues, with the highest in the liver. Upon Streptococcus agalactiae and Aeromonas hydrophila stimuli in vivo and in vitro, OnCFH mRNA transcript was significantly upregulated in head kidney tissue as well as head kidney monocytes/macrophages. Further, the recombinant OnCFH protein ((r)OnCFH) could bind to pathogenic bacteria in a dose-dependent. Moreover, it got involved in the regulation of inflammation as well as phagocytosis of monocytes/macrophages. The knockdown of OnCFH remarkably decreased the amount of bacteria in the head kidney. In summary, our data demonstrated that OnCFH could participate in the immune response of Nile tilapia against bacterial infection.
Collapse
Affiliation(s)
- Xiayi Wei
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Zhelin Wu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Tingyun Zhang
- College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangzhou, 510225, PR China
| | - Yang Lei
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Meng Chen
- College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangzhou, 510225, PR China.
| | - Yanjian Yang
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Along Gao
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Zheng Guo
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Jianmin Ye
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China.
| |
Collapse
|
6
|
Xu X, Marffy ALL, Keightley A, McCarthy AJ, Geisbrecht BV. Group B Streptococcus Surface Protein β: Structural Characterization of a Complement Factor H-Binding Motif and Its Contribution to Immune Evasion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1232-1247. [PMID: 35110419 PMCID: PMC8881398 DOI: 10.4049/jimmunol.2101078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/10/2021] [Indexed: 11/19/2022]
Abstract
The β protein from group B Streptococcus (GBS) is a ∼132-kDa, cell-surface exposed molecule that binds to multiple host-derived ligands, including complement factor H (FH). Many details regarding this interaction and its significance to immune evasion by GBS remain unclear. In this study, we identified a three-helix bundle domain within the C-terminal half of the B75KN region of β as the major FH-binding determinant and determined its crystal structure at 2.5 Å resolution. Analysis of this structure suggested a role in FH binding for a loop region connecting helices α1 and α2, which we confirmed by mutagenesis and direct binding studies. Using a combination of protein cross-linking and mass spectrometry, we observed that B75KN bound to complement control protein (CCP)3 and CCP4 domains of FH. Although this binding site lies within a complement regulatory region of FH, we determined that FH bound by β retained its decay acceleration and cofactor activities. Heterologous expression of β by Lactococcus lactis resulted in recruitment of FH to the bacterial surface and a significant reduction of C3b deposition following exposure to human serum. Surprisingly, we found that FH binding by β was not required for bacterial resistance to phagocytosis by neutrophils or killing of bacteria by whole human blood. However, loss of the B75KN region significantly diminished bacterial survival in both assays. Although our results show that FH recruited to the bacterial surface through a high-affinity interaction maintains key complement-regulatory functions, they raise questions about the importance of FH binding to immune evasion by GBS as a whole.
Collapse
Affiliation(s)
- Xin Xu
- Department of Biochemistry & Molecular Biophysics, Kansas State University; Manhattan, KS U.S.A
| | - Alexander L. Lewis Marffy
- Department of Infectious Diseases, Section of Molecular Microbiology, MRC Centre for Molecular Bacteriology & Infection, Imperial College London; London, U.K
| | - Andrew Keightley
- Department of Opthamology, School of Medicine, University of Missouri-Kansas City; Kansas City, MO U.S.A
| | - Alex J. McCarthy
- Department of Infectious Diseases, Section of Molecular Microbiology, MRC Centre for Molecular Bacteriology & Infection, Imperial College London; London, U.K
| | - Brian V. Geisbrecht
- Department of Biochemistry & Molecular Biophysics, Kansas State University; Manhattan, KS U.S.A.,To whom correspondence should be addressed: Brian V. Geisbrecht, Ph.D., Kansas State University, 141 Chalmers Hall, 1711 Claflin Road, Manhattan, KS 66506, PH: 785.532.3154,
| |
Collapse
|
7
|
Syed I, Wooten RM. Interactions Between Pathogenic Burkholderia and the Complement System: A Review of Potential Immune Evasion Mechanisms. Front Cell Infect Microbiol 2021; 11:701362. [PMID: 34660335 PMCID: PMC8515183 DOI: 10.3389/fcimb.2021.701362] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
The genus Burkholderia contains over 80 different Gram-negative species including both plant and human pathogens, the latter of which can be classified into one of two groups: the Burkholderia pseudomallei complex (Bpc) or the Burkholderia cepacia complex (Bcc). Bpc pathogens Burkholderia pseudomallei and Burkholderia mallei are highly virulent, and both have considerable potential for use as Tier 1 bioterrorism agents; thus there is great interest in the development of novel vaccines and therapeutics for the prevention and treatment of these infections. While Bcc pathogens Burkholderia cenocepacia, Burkholderia multivorans, and Burkholderia cepacia are not considered bioterror threats, the incredible impact these infections have on the cystic fibrosis community inspires a similar demand for vaccines and therapeutics for the prevention and treatment of these infections as well. Understanding how these pathogens interact with and evade the host immune system will help uncover novel therapeutic targets within these organisms. Given the important role of the complement system in the clearance of bacterial pathogens, this arm of the immune response must be efficiently evaded for successful infection to occur. In this review, we will introduce the Burkholderia species to be discussed, followed by a summary of the complement system and known mechanisms by which pathogens interact with this critical system to evade clearance within the host. We will conclude with a review of literature relating to the interactions between the herein discussed Burkholderia species and the host complement system, with the goal of highlighting areas in this field that warrant further investigation.
Collapse
Affiliation(s)
- Irum Syed
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | | |
Collapse
|
8
|
Deacy AM, Gan SKE, Derrick JP. Superantigen Recognition and Interactions: Functions, Mechanisms and Applications. Front Immunol 2021; 12:731845. [PMID: 34616400 PMCID: PMC8488440 DOI: 10.3389/fimmu.2021.731845] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/30/2021] [Indexed: 12/27/2022] Open
Abstract
Superantigens are unconventional antigens which recognise immune receptors outside their usual recognition sites e.g. complementary determining regions (CDRs), to elicit a response within the target cell. T-cell superantigens crosslink T-cell receptors and MHC Class II molecules on antigen-presenting cells, leading to lymphocyte recruitment, induction of cytokine storms and T-cell anergy or apoptosis among many other effects. B-cell superantigens, on the other hand, bind immunoglobulins on B-cells, affecting opsonisation, IgG-mediated phagocytosis, and driving apoptosis. Here, through a review of the structural basis for recognition of immune receptors by superantigens, we show that their binding interfaces share specific physicochemical characteristics when compared with other protein-protein interaction complexes. Given that antibody-binding superantigens have been exploited extensively in industrial antibody purification, these observations could facilitate further protein engineering to optimize the use of superantigens in this and other areas of biotechnology.
Collapse
Affiliation(s)
- Anthony M. Deacy
- School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
| | - Samuel Ken-En Gan
- Antibody & Product Development Lab, Experimental Drug Development Centre – Bioinformatics Institute (EDDC-BII), Agency for Science Technology and Research (ASTAR), Singapore, Singapore
- James Cook University, Singapore, Singapore
| | - Jeremy P. Derrick
- School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
9
|
Yu Y, Wang J, Han R, Wang L, Zhang L, Zhang AY, Xin J, Li S, Zeng Y, Shao G, Feng Z, Xiong Q. Mycoplasma hyopneumoniae evades complement activation by binding to factor H via elongation factor thermo unstable (EF-Tu). Virulence 2021; 11:1059-1074. [PMID: 32815770 PMCID: PMC7549910 DOI: 10.1080/21505594.2020.1806664] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Mycoplasmas persist in the host for a long time, suggesting that they possess mechanisms for immune evasion. Factor H is a negative regulator of the complement system, which binds to host cells to avoid unexpected complement activation. In this study, we revealed that many mycoplasmas, such as Mycoplasma hyopneumoniae, Mycoplasma hyorhinis, Mycoplasma hyosynoviae, Mycoplasma gallisepticum, Mycoplasma pneumoniae, Mycoplasma genitalium, Mycoplasma flocculare, and Mycoplasma bovis could hijack factor H such that they present themselves as a host tissue and thus escape from complement attack. Furthermore, the mechanism of recruiting factor H was identified in M. hyopneumoniae. M. hyopneumoniae binds factor H via factor H binding proteins, such as elongation factor thermo unstable (EF-Tu), P146, pyruvate dehydrogenase (acetyl-transferring) E1 component subunit alpha (PdhA), P46, Pyruvate dehydrogenase E1 component subunit beta (PdhB), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and three different hypothetical proteins. The binding of factor H by EF-Tu further contributes to decreased C3 deposition on the M. hyopneumoniae surface and ultimately blocks further complement activation. In fact, binding of factor H occurs in a multifactorial manner; factor H is not only exploited by M. hyopneumoniae via its regulator activity to help mycoplasmas escape from complement killing, but also increases M. hyopneumoniae adhesion to swine tracheal epithelial cells, partially through EF-Tu. Meanwhile, the high sequence identity among EF-Tu proteins in the above-mentioned mycoplasmas implied the universality of the mechanism. This is the first report that mycoplasmas can escape complement killing by binding to factor H.
Collapse
Affiliation(s)
- Yanfei Yu
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bioproducts, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences , Nanjing, China.,School of Food and Biological Engineering, Jiangsu University , Zhenjiang, China
| | - Jia Wang
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bioproducts, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences , Nanjing, China.,College of Agriculture, Engineering & Science, University of KwaZulu-Natal , Durban, South Africa
| | - Rui Han
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bioproducts, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences , Nanjing, China.,High Magnetic Field Laboratory, Chinese Academy of Sciences , Hefei, China
| | - Li Wang
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bioproducts, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences , Nanjing, China
| | - Lei Zhang
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bioproducts, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences , Nanjing, China
| | - Amy Yimin Zhang
- College of Veterinary Medicine, Cornell University , Cornell, NY, USA
| | - Jiuqing Xin
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Harbin, China
| | - Shaoli Li
- Department of Bacteriology, Capital Institute of Pediatrics , Beijing, China
| | - Yanhua Zeng
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China , Hengyang, China
| | - Guoqing Shao
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bioproducts, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences , Nanjing, China.,School of Food and Biological Engineering, Jiangsu University , Zhenjiang, China
| | - Zhixin Feng
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bioproducts, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences , Nanjing, China
| | - Qiyan Xiong
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bioproducts, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences , Nanjing, China.,Institute of Life Sciences, Jiangsu University , Zhenjiang, China
| |
Collapse
|
10
|
Zhao H, Zhang Y, Wang Z, Liu M, Wang P, Wu W, Peng C. MBOVPG45_0375 Encodes an IgG-Binding Protein and MBOVPG45_0376 Encodes an IgG-Cleaving Protein in Mycoplasma bovis. Front Vet Sci 2021; 8:644224. [PMID: 33937372 PMCID: PMC8081823 DOI: 10.3389/fvets.2021.644224] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/11/2021] [Indexed: 11/24/2022] Open
Abstract
Mycoplasma bovis is a significant bacterial pathogen which is able to persist in cattle and cause chronic diseases. This phenomenon may relate to M. bovis evading the immune system of the host. Immunoglobulin-binding proteins are widely distributed in a variety of pathogenic bacteria, including some Mycoplasma species. These proteins are considered to help the bacteria evade the immune response of the host. Here we found M. bovis strain PG45 can bind to IgG from several animals. MBOVPG45_0375 encodes a putative membrane protein, has strong amino acid sequence similarity with Immunoglobulin G-binding protein in Mycoplasma mycoides subsp. capri. Hence, we constructed recombinant MBOVPG45_0375 (r0375) in the Escherichia coli expression system and demonstrated that r0375 can bind to IgG non-immunologically rather than specific binding similar to interaction of antigen and antibody. Moreover, r0375 can bind to the Fab fragment of IgG. Also, the binding of r0375 and IgG inhibits the formation of antigen-antibody union. Furthermore, MBOVPG45_0376 encodes an IgG-cleaving protein of M. bovis strain PG45. Nevertheless, r0375 binding to IgG is required for the cleavage activity of recombinant 0376 (r0376). The activity of r0376 is also affected by incubation time and temperature. In addition, we found both MBOVPG45_0375 and MBOVPG45_0376 are membrane proteins of M. bovis strain PG45. These results about MBOVPG45_0375 as an IgG-binding protein and MBOVPG45_0376 as an IgG-cleaving protein offer a new insight into the interaction between M. bovis and its host.
Collapse
Affiliation(s)
- Haoran Zhao
- Key Laboratory of Animal Epidemiology and Zoonosis, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yunke Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhanhui Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Mengyao Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Pengpeng Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wenxue Wu
- Key Laboratory of Animal Epidemiology and Zoonosis, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chen Peng
- Key Laboratory of Animal Epidemiology and Zoonosis, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Moore SR, Menon SS, Cortes C, Ferreira VP. Hijacking Factor H for Complement Immune Evasion. Front Immunol 2021; 12:602277. [PMID: 33717083 PMCID: PMC7947212 DOI: 10.3389/fimmu.2021.602277] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
The complement system is an essential player in innate and adaptive immunity. It consists of three pathways (alternative, classical, and lectin) that initiate either spontaneously (alternative) or in response to danger (all pathways). Complement leads to numerous outcomes detrimental to invaders, including direct killing by formation of the pore-forming membrane attack complex, recruitment of immune cells to sites of invasion, facilitation of phagocytosis, and enhancement of cellular immune responses. Pathogens must overcome the complement system to survive in the host. A common strategy used by pathogens to evade complement is hijacking host complement regulators. Complement regulators prevent attack of host cells and include a collection of membrane-bound and fluid phase proteins. Factor H (FH), a fluid phase complement regulatory protein, controls the alternative pathway (AP) both in the fluid phase of the human body and on cell surfaces. In order to prevent complement activation and amplification on host cells and tissues, FH recognizes host cell-specific polyanionic markers in combination with complement C3 fragments. FH suppresses AP complement-mediated attack by accelerating decay of convertases and by helping to inactivate C3 fragments on host cells. Pathogens, most of which do not have polyanionic markers, are not recognized by FH. Numerous pathogens, including certain bacteria, viruses, protozoa, helminths, and fungi, can recruit FH to protect themselves against host-mediated complement attack, using either specific receptors and/or molecular mimicry to appear more like a host cell. This review will explore pathogen complement evasion mechanisms involving FH recruitment with an emphasis on: (a) characterizing the structural properties and expression patterns of pathogen FH binding proteins, as well as other strategies used by pathogens to capture FH; (b) classifying domains of FH important in pathogen interaction; and (c) discussing existing and potential treatment strategies that target FH interactions with pathogens. Overall, many pathogens use FH to avoid complement attack and appreciating the commonalities across these diverse microorganisms deepens the understanding of complement in microbiology.
Collapse
Affiliation(s)
- Sara R Moore
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Smrithi S Menon
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Claudio Cortes
- Department of Foundational Medical Sciences, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| |
Collapse
|
12
|
Streptococcal Infections in Marine Mammals. Microorganisms 2021; 9:microorganisms9020350. [PMID: 33578962 PMCID: PMC7916692 DOI: 10.3390/microorganisms9020350] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/29/2021] [Accepted: 02/07/2021] [Indexed: 01/28/2023] Open
Abstract
Marine mammals are sentinels for the marine ecosystem and threatened by numerous factors including infectious diseases. One of the most frequently isolated bacteria are beta-hemolytic streptococci. However, knowledge on ecology and epidemiology of streptococcal species in marine mammals is very limited. This review summarizes published reports on streptococcal species, which have been detected in marine mammals. Furthermore, we discuss streptococcal transmission between and adaptation to their marine mammalian hosts. We conclude that streptococci colonize and/or infect marine mammals very frequently, but in many cases, streptococci isolated from marine mammals have not been further identified. How these bacteria disseminate and adapt to their specific niches can only be speculated due to the lack of respective research. Considering the relevance of pathogenic streptococci for marine mammals as part of the marine ecosystem, it seems that they have been neglected and should receive scientific interest in the future.
Collapse
|
13
|
Syed I, Wooten RM. Interactions Between Pathogenic Burkholderia and the Complement System: A Review of Potential Immune Evasion Mechanisms. Front Cell Infect Microbiol 2021. [PMID: 34660335 DOI: 10.1086/69216810.3389/fcimb.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
The genus Burkholderia contains over 80 different Gram-negative species including both plant and human pathogens, the latter of which can be classified into one of two groups: the Burkholderia pseudomallei complex (Bpc) or the Burkholderia cepacia complex (Bcc). Bpc pathogens Burkholderia pseudomallei and Burkholderia mallei are highly virulent, and both have considerable potential for use as Tier 1 bioterrorism agents; thus there is great interest in the development of novel vaccines and therapeutics for the prevention and treatment of these infections. While Bcc pathogens Burkholderia cenocepacia, Burkholderia multivorans, and Burkholderia cepacia are not considered bioterror threats, the incredible impact these infections have on the cystic fibrosis community inspires a similar demand for vaccines and therapeutics for the prevention and treatment of these infections as well. Understanding how these pathogens interact with and evade the host immune system will help uncover novel therapeutic targets within these organisms. Given the important role of the complement system in the clearance of bacterial pathogens, this arm of the immune response must be efficiently evaded for successful infection to occur. In this review, we will introduce the Burkholderia species to be discussed, followed by a summary of the complement system and known mechanisms by which pathogens interact with this critical system to evade clearance within the host. We will conclude with a review of literature relating to the interactions between the herein discussed Burkholderia species and the host complement system, with the goal of highlighting areas in this field that warrant further investigation.
Collapse
Affiliation(s)
- Irum Syed
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - R Mark Wooten
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| |
Collapse
|
14
|
Pickering AC, Fitzgerald JR. The Role of Gram-Positive Surface Proteins in Bacterial Niche- and Host-Specialization. Front Microbiol 2020; 11:594737. [PMID: 33193271 PMCID: PMC7658395 DOI: 10.3389/fmicb.2020.594737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/05/2020] [Indexed: 11/25/2022] Open
Abstract
Gram-positive bacterial pathogens have an array of proteins on their cell surface that mediate interactions with the host environment. In particular, bacterial cell wall-associated (CWA) proteins play key roles in both colonization and pathogenesis. Furthermore, some CWA proteins promote specialization for host-species or mediate colonization of specific anatomical niches within a host. In this mini review, we provide examples of the many ways by which major pathogens, such as Staphylococci, Streptococci and Listeria monocytogenes, utilize CWA proteins for both host- and niche-specialization. We describe different biological mechanisms mediated by CWA proteins including: the acquisition of iron from hemoglobin in the bloodstream, adherence to and invasion of host cells, and innate immune evasion through binding to the plasma proteins fibrinogen, immunoglobulin G, and complement. We also discuss the limitations of using animal models for understanding the role of specific CWA proteins in host-specialization and how transformative technologies, such as CRISPR-Cas, offer tremendous potential for developing transgenic models that simulate the host environment of interest. Improved understanding of the role of CWA proteins in niche- or host-specificity will allow the design of new therapeutic approaches which target key host–pathogen interactions underpinning Gram-positive bacterial infections.
Collapse
Affiliation(s)
- Amy C Pickering
- The Roslin Institute and Edinburgh Infectious Diseases, University of Edinburgh, Easter Bush Campus, Edinburgh, United Kingdom
| | - J Ross Fitzgerald
- The Roslin Institute and Edinburgh Infectious Diseases, University of Edinburgh, Easter Bush Campus, Edinburgh, United Kingdom
| |
Collapse
|
15
|
Syed S, Viazmina L, Mager R, Meri S, Haapasalo K. Streptococci and the complement system: interplay during infection, inflammation and autoimmunity. FEBS Lett 2020; 594:2570-2585. [PMID: 32594520 DOI: 10.1002/1873-3468.13872] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 11/09/2022]
Abstract
Streptococci are a broad group of Gram-positive bacteria. This genus includes various human pathogens causing significant morbidity and mortality. Two of the most important human pathogens are Streptococcus pneumoniae (pneumococcus) and Streptococcus pyogenes (group A streptococcus or GAS). Streptococcal pathogens have evolved to express virulence factors that enable them to evade complement-mediated attack. These include factor H-binding M (S. pyogenes) and pneumococcal surface protein C (PspC) (S. pneumoniae) proteins. In addition, S. pyogenes and S. pneumoniae express cytolysins (streptolysin and pneumolysin), which are able to destroy host cells. Sometimes, the interplay between streptococci, the complement, and antistreptococcal immunity may lead to an excessive inflammatory response or autoimmune disease. Understanding the fundamental role of the complement system in microbial clearance and the bacterial escape mechanisms is of paramount importance for understanding microbial virulence, in general, and, the conversion of commensals to pathogens, more specifically. Such insights may help to identify novel antibiotic and vaccine targets in bacterial pathogens to counter their growing resistance to commonly used antibiotics.
Collapse
Affiliation(s)
- Shahan Syed
- Department of Bacteriology and Immunology, University of Helsinki, Finland
| | - Larisa Viazmina
- Department of Bacteriology and Immunology, University of Helsinki, Finland
| | | | - Seppo Meri
- Department of Bacteriology and Immunology, University of Helsinki, Finland.,Humanitas University, Milano, Italy
| | - Karita Haapasalo
- Department of Bacteriology and Immunology, University of Helsinki, Finland
| |
Collapse
|
16
|
Okabe T, Norose Y, Hida M, Takeda S, Takase M, Suzuki Y, Ohkuni H. Change during an 8-Year Period in Streptococcus Pyogenes emm Types in Pharyngeal Isolates from Children with Noninvasive Infections. J NIPPON MED SCH 2020; 87:211-214. [DOI: 10.1272/jnms.jnms.2020_87-502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Toshinari Okabe
- Department of Pediatrics, Nippon Medical School Tama Nagayama Hospital
| | - Yoshihiko Norose
- Department of Microbiology and Immunology, Nippon Medical School
| | - Masatoshi Hida
- Department of Pediatrics, Nippon Medical School Tama Nagayama Hospital
| | - Sachiyo Takeda
- Department of Pediatrics, Nippon Medical School Tama Nagayama Hospital
| | - Masato Takase
- Department of Pediatrics, Nippon Medical School Tama Nagayama Hospital
| | - Yoshiko Suzuki
- Clinical Laboratory, Nippon Medical School Tama Nagayama Hospital
| | | |
Collapse
|
17
|
Zhu L, Olsen RJ, Beres SB, Saavedra MO, Kubiak SL, Cantu CC, Jenkins L, Waller AS, Sun Z, Palzkill T, Porter AR, DeLeo FR, Musser JM. Streptococcus pyogenes genes that promote pharyngitis in primates. JCI Insight 2020; 5:137686. [PMID: 32493846 DOI: 10.1172/jci.insight.137686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/30/2020] [Indexed: 02/02/2023] Open
Abstract
Streptococcus pyogenes (group A streptococcus; GAS) causes 600 million cases of pharyngitis annually worldwide. There is no licensed human GAS vaccine despite a century of research. Although the human oropharynx is the primary site of GAS infection, the pathogenic genes and molecular processes used to colonize, cause disease, and persist in the upper respiratory tract are poorly understood. Using dense transposon mutant libraries made with serotype M1 and M28 GAS strains and transposon-directed insertion sequencing, we performed genome-wide screens in the nonhuman primate (NHP) oropharynx. We identified many potentially novel GAS fitness genes, including a common set of 115 genes that contribute to fitness in both genetically distinct GAS strains during experimental NHP pharyngitis. Targeted deletion of 4 identified fitness genes/operons confirmed that our newly identified targets are critical for GAS virulence during experimental pharyngitis. Our screens discovered many surface-exposed or secreted proteins - substrates for vaccine research - that potentially contribute to GAS pharyngitis, including lipoprotein HitA. Pooled human immune globulin reacted with purified HitA, suggesting that humans produce antibodies against this lipoprotein. Our findings provide new information about GAS fitness in the upper respiratory tract that may assist in translational research, including developing novel vaccines.
Collapse
Affiliation(s)
- Luchang Zhu
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA.,Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA
| | - Stephen B Beres
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Matthew Ojeda Saavedra
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Samantha L Kubiak
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Concepcion C Cantu
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Leslie Jenkins
- Department of Comparative Medicine, Houston Methodist Research Institute, Houston, Texas, USA
| | - Andrew S Waller
- Animal Health Trust, Lanwades Park, Newmarket, United Kingdom
| | - Zhizeng Sun
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Timothy Palzkill
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Adeline R Porter
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | - Frank R DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | - James M Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA.,Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA
| |
Collapse
|
18
|
Kumar D, Romero Y, Schuck KN, Smalley H, Subedi B, Fleming SD. Drivers and regulators of humoral innate immune responses to infection and cancer. Mol Immunol 2020; 121:99-110. [PMID: 32199212 PMCID: PMC7207242 DOI: 10.1016/j.molimm.2020.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/21/2022]
Abstract
The complement cascade consists of cell bound and serum proteins acting together to protect the host from pathogens, remove cancerous cells and effectively links innate and adaptive immune responses. Despite its usefulness in microbial neutralization and clearance of cancerous cells, excessive complement activation causes an immune imbalance and tissue damage in the host. Hence, a series of complement regulatory proteins present at a higher concentration in blood plasma and on cell surfaces tightly regulate the cascade. The complement cascade can be initiated by B-1 B cell production of natural antibodies. Natural antibodies arise spontaneously without any known exogenous antigenic or microbial stimulus and protect against invading pathogens, clear apoptotic cells, provide tissue homeostasis, and modulate adaptive immune functions. Natural IgM antibodies recognize microbial and cancer antigens and serve as an activator of complement mediated lysis. This review will discuss advances in complement activation and regulation in bacterial and viral infections, and cancer. We will also explore the crosstalk of natural antibodies with bacterial populations and cancer.
Collapse
MESH Headings
- Antigens, Bacterial/immunology
- Antigens, Bacterial/metabolism
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Apoptosis/immunology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Bacterial Infections/immunology
- Complement Activation
- Complement System Proteins/immunology
- Complement System Proteins/metabolism
- Humans
- Immunity, Humoral
- Immunity, Innate
- Immunoglobulin M/immunology
- Immunoglobulin M/metabolism
- Neoplasms/immunology
- Receptors, Complement/immunology
- Receptors, Complement/metabolism
- Tumor Escape
- Virus Diseases/immunology
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Yeni Romero
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA
| | - Kaitlynn N Schuck
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Haley Smalley
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Bibek Subedi
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Sherry D Fleming
- Division of Biology, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
19
|
Blötz C, Singh N, Dumke R, Stülke J. Characterization of an Immunoglobulin Binding Protein (IbpM) From Mycoplasma pneumoniae. Front Microbiol 2020; 11:685. [PMID: 32373096 PMCID: PMC7176901 DOI: 10.3389/fmicb.2020.00685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/24/2020] [Indexed: 01/30/2023] Open
Abstract
Bacteria evolved many ways to invade, colonize and survive in the host tissue. Such complex infection strategies of other bacteria are not present in the cell-wall less Mycoplasmas. Due to their strongly reduced genomes, these bacteria have only a minimal metabolism. Mycoplasma pneumoniae is a pathogenic bacterium using its virulence repertoire very efficiently, infecting the human lung. M. pneumoniae can cause a variety of conditions including fever, inflammation, atypical pneumoniae, and even death. Due to its strongly reduced metabolism, M. pneumoniae is dependent on nutrients from the host and aims to persist as long as possible, resulting in chronic diseases. Mycoplasmas evolved strategies to subvert the host immune system which involve proteins fending off immunoglobulins (Igs). In this study, we investigated the role of MPN400 as the putative factor responsible for Ig-binding and host immune evasion. MPN400 is a cell-surface localized protein which binds strongly to human IgG, IgA, and IgM. We therefore named the protein MPN400 immunoglobulin binding protein of Mycoplasma (IbpM). A strain devoid of IbpM is slightly compromised in cytotoxicity. Taken together, our study indicates that M. pneumoniae uses a refined mechanism for immune evasion.
Collapse
Affiliation(s)
- Cedric Blötz
- Department of General Microbiology, Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Neil Singh
- Department of General Microbiology, Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Roger Dumke
- Medical Faculty Carl Gustav Carus, Institute of Medical Microbiology and Hygiene, Technical University Dresden, Dresden, Germany
| | - Jörg Stülke
- Department of General Microbiology, Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| |
Collapse
|
20
|
Wollein Waldetoft K, Råberg L, Lood R. Proliferation and benevolence-A framework for dissecting the mechanisms of microbial virulence and health promotion. Evol Appl 2020; 13:879-888. [PMID: 32431740 PMCID: PMC7232753 DOI: 10.1111/eva.12952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 01/14/2020] [Accepted: 03/06/2020] [Indexed: 12/29/2022] Open
Abstract
Key topics in the study of host–microbe interactions—such as the prevention of drug resistance and the exploitation of beneficial effects of bacteria—would benefit from concerted efforts with both mechanistic and evolutionary approaches. But due to differences in intellectual traditions, insights gained in one field rarely benefit the other. Here, we develop a conceptual and analytical framework for the integrated study of host–microbe interactions. This framework partitions the health effects of microbes and the effector molecules they produce into components with different evolutionary implications. It thereby facilitates the prediction of evolutionary responses to inhibition and exploitation of specific molecular mechanisms.
Collapse
Affiliation(s)
| | - Lars Råberg
- Department of Biology Lund University Lund Sweden
| | - Rolf Lood
- Division of Infection Medicine Department of Clinical Sciences Lund University Lund Sweden
| |
Collapse
|
21
|
Genome-Wide Screens Identify Group A Streptococcus Surface Proteins Promoting Female Genital Tract Colonization and Virulence. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:862-873. [PMID: 32200972 DOI: 10.1016/j.ajpath.2019.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/04/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023]
Abstract
Group A streptococcus (GAS) is a major pathogen that impacts health and economic affairs worldwide. Although the oropharynx is the primary site of infection, GAS can colonize the female genital tract and cause severe diseases, such as puerperal sepsis, neonatal infections, and necrotizing myometritis. Our understanding of how GAS genes contribute to interaction with the primate female genital tract is limited by the lack of relevant animal models. Using two genome-wide transposon mutagenesis screens, we identified 69 GAS genes required for colonization of the primate vaginal mucosa in vivo and 96 genes required for infection of the uterine wall ex vivo. We discovered a common set of 39 genes important for GAS fitness in both environments. They include genes encoding transporters, surface proteins, transcriptional regulators, and metabolic pathways. Notably, the genes that encode the surface-exclusion protein (SpyAD) and the immunogenic secreted protein 2 (Isp2) were found to be crucial for GAS fitness in the female primate genital tract. Targeted gene deletion confirmed that isogenic mutant strains ΔspyAD and Δisp2 are significantly impaired in ability to colonize the primate genital tract and cause uterine wall pathologic findings. Our studies identified novel GAS genes that contribute to female reproductive tract interaction that warrant translational research investigation.
Collapse
|
22
|
Chen SF, Wang FM, Li ZY, Yu F, Chen M, Zhao MH. Myeloperoxidase influences the complement regulatory activity of complement factor H. Rheumatology (Oxford) 2019; 57:2213-2224. [PMID: 29471467 DOI: 10.1093/rheumatology/kex529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Indexed: 11/12/2022] Open
Abstract
Objective The interaction between neutrophils and activation of alternative complement pathway plays a critical role in the pathogenesis of ANCA-associated vasculitis (AAV). MPO, which can be released from ANCA-stimulated neutrophils, was recently demonstrated to be capable of activating the alternative complement pathway. Here we aimed to investigate the interaction between MPO and factor H (FH), a key regulator of the alternative pathway, and its effect on the functional activities of FH. Methods Detection of FH and MPO on neutrophil extracellular traps (NETs) induced by serum from AAV patients and in kidney biopsies of AAV patients was performed by immunostaining. In vitro binding between MPO and FH was examined by ELISA and surface plasmon resonance. The influence of MPO on the complement regulatory activity of FH was further assessed. Results FH deposited and co-localized with MPO in NETs. In kidney biopsies from AAV patients, MPO was closely adjacent to FH in glomerular capillaries. We demonstrated that MPO binds to FH with an apparent nanomolar affinity and identified short consensus repeats 1-4 of FH as the major binding sites. In terms of functional analysis, MPO inhibited the interaction between FH and C3b and the decay-accelerating activity of FH. The fluid phase and surface cofactor activities of FH upon C3b inactivation were inhibited by MPO. Conclusion Our findings indicate that MPO binds to FH and influences the complement regulatory activity of FH. MPO-FH interaction may participate in the pathogenesis of AAV by contributing to activation of the alternative complement pathway.
Collapse
Affiliation(s)
- Su-Fang Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Feng-Mei Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Zhi-Ying Li
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Feng Yu
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Min Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Ming-Hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
23
|
Fischetti VA. Surface Proteins on Gram-Positive Bacteria. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0012-2018. [PMID: 31373270 PMCID: PMC6684298 DOI: 10.1128/microbiolspec.gpp3-0012-2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Indexed: 12/14/2022] Open
Abstract
Surface proteins are critical for the survival of gram-positive bacteria both in the environment and to establish an infection. Depending on the organism, their surface proteins are evolutionarily tailored to interact with specific ligands on their target surface, be it inanimate or animate. Most surface molecules on these organisms are covalently anchored to the peptidoglycan through an LPxTG motif found at the C-terminus. These surface molecules are generally modular with multiple binding or enzymatic domains designed for a specific survival function. For example, some molecules will bind serum proteins like fibronectin or fibrinogen in one domain and have a separate function in another domain. In addition, enzymes such as those responsible for the production of ATP may be generally found on some bacterial surfaces, but when or how they are used in the life of these bacteria is currently unknown. While surface proteins are required for pathogenicity but not viability, targeting the expression of these molecules on the bacterial surface would prevent infection but not death of the organism. Given that the number of different surface proteins could be in the range of two to three dozen, each with two or three separate functional domains (with hundreds to thousands of each protein on a given organism), exemplifies the complexity that exists on the bacterial surface. Because of their number, we could not adequately describe the characteristics of all surface proteins in this chapter. However, since the streptococcal M protein was one of the first gram-positive surface protein to be completely sequenced, and perhaps one of the best studied, we will use M protein as a model for surface proteins in general, pointing out differences with other surface molecules when necessary.
Collapse
Affiliation(s)
- Vincent A Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, NY 10065
| |
Collapse
|
24
|
Ermert D, Laabei M, Weckel A, Mörgelin M, Lundqvist M, Björck L, Ram S, Linse S, Blom AM. The Molecular Basis of Human IgG-Mediated Enhancement of C4b-Binding Protein Recruitment to Group A Streptococcus. Front Immunol 2019; 10:1230. [PMID: 31214187 PMCID: PMC6557989 DOI: 10.3389/fimmu.2019.01230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/14/2019] [Indexed: 11/25/2022] Open
Abstract
Streptococcus pyogenes infects over 700 million people worldwide annually. Immune evasion strategies employed by the bacteria include binding of the complement inhibitors, C4b-binding protein (C4BP) and Factor H in a human-specific manner. We recently showed that human IgG increased C4BP binding to the bacterial surface, which promoted streptococcal immune evasion and increased mortality in mice. We sought to identify how IgG promotes C4BP binding to Protein H, a member of the M protein family. Dimerization of Protein H is pivotal for enhanced binding to human C4BP. First, we illustrated that Protein H, IgG, and C4BP formed a tripartite complex. Second, surface plasmon resonance revealed that Protein H binds IgG solely through Fc, but not Fab domains, and with high affinity (IgG-Protein H: KD = 0.4 nM; IgG-Fc-Protein H: KD ≤ 1.6 nM). Each IgG binds two Protein H molecules, while up to six molecules of Protein H bind one C4BP molecule. Third, interrupting Protein H dimerization either by raising temperature to 41°C or with a synthetic peptide prevented IgG-Protein H interactions. IgG-Fc fragments or monoclonal human IgG permitted maximal C4BP binding when used at concentrations from 0.1 to 10 mg/ml. In contrast, pooled human IgG enhanced C4BP binding at concentrations up to 1 mg/ml; decreased C4BP binding at 10 mg/ml occurred probably because of Fab-streptococcal interactions at these high IgG concentrations. Taken together, our data show how S. pyogenes exploits human IgG to evade complement and enhance its virulence. Elucidation of this mechanism could aid design of new therapeutics against S. pyogenes.
Collapse
Affiliation(s)
- David Ermert
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden.,Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Maisem Laabei
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Antonin Weckel
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | | | - Martin Lundqvist
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Lund, Sweden
| | - Lars Björck
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Sara Linse
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Lund, Sweden
| | - Anna M Blom
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
25
|
Takahashi G. A Patient of Using Presepsin to Diagnose Streptococcal Toxic Shock Syndrome during Anticancer Drug Treatment. Case Rep Crit Care 2019; 2019:3240501. [PMID: 31139474 PMCID: PMC6500667 DOI: 10.1155/2019/3240501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/18/2019] [Accepted: 04/02/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Streptococcal toxic shock syndrome (STSS) is a rapidly progressive infection, with potentially rapid patient deterioration in a very short period. We experienced a rare case of STSS during anticancer chemotherapy, and we continuously measured presepsin (P-SEP) and evaluated its usefulness. CASE PRESENTATION A 60-year-old woman with pulmonary metastasis from cervical cancer began anticancer chemotherapy. A fever of >40°C and right lower leg swelling developed on day 3. Symptoms worsened despite cefmetazole treatment (1.0 g/day). Blood culture was performed without suspecting STSS. On day 5, symptoms worsened and acute disseminated intravascular coagulation (DIC) and sequential organ failure assessment (SOFA) scores increased. C-reactive protein (CRP) increased from 28.8 mg/dl to 35.5 mg/dl and P-SEP also increased from 1,635 to 2,350 pg/mL. STSS was suspected due to the rapid progression of brown discoloration of the entire right lower leg. Ceftriaxone 2 g/day and clindamycin 1,200 mg/day were begun. On the evening of day 5, blood culture revealed rapidly progressive group A streptococci. After that, symptoms improved rapidly with treatment, and SOFA and DIC scores also decreased. While CRP remained at about 0.5 mg/dl, P-SEP remained slightly elevated at about 400 pg/mL. A residual infection focus was suspected. Contrast-enhanced computed tomography (CT) revealed a capsule-enclosed abscess in the right lower leg soleus muscle on day 32. Debridement was performed and antibiotics were continued until P-SEP was 88 pg/mL. CT confirmed the disappearance of the abscess. CONCLUSION Prompt diagnosis by blood culture and a sufficiently early, appropriate change in antibiotic therapy led to successful recovery from STSS during anticancer chemotherapy without lower limb amputation. P-SEP was useful in assessment of the residual infection focus and suspending treatments.
Collapse
Affiliation(s)
- Gaku Takahashi
- Department of Critical Care, Disaster and General Medicine, School of Medicine, Iwate Medical University, Japan
| |
Collapse
|
26
|
Zhu L, Olsen RJ, Beres SB, Eraso JM, Saavedra MO, Kubiak SL, Cantu CC, Jenkins L, Charbonneau ARL, Waller AS, Musser JM. Gene fitness landscape of group A streptococcus during necrotizing myositis. J Clin Invest 2019; 129:887-901. [PMID: 30667377 PMCID: PMC6355216 DOI: 10.1172/jci124994] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/27/2018] [Indexed: 12/15/2022] Open
Abstract
Necrotizing fasciitis and myositis are devastating infections characterized by high mortality. Group A streptococcus (GAS) is a common cause of these infections, but the molecular pathogenesis is poorly understood. We report a genome-wide analysis using serotype M1 and M28 strains that identified GAS genes contributing to necrotizing myositis in nonhuman primates (NHP), a clinically relevant model. Using transposon-directed insertion-site sequencing (TraDIS), we identified 126 and 116 GAS genes required for infection by serotype M1 and M28 organisms, respectively. For both M1 and M28 strains, more than 25% of the GAS genes required for necrotizing myositis encode known or putative transporters. Thirteen GAS transporters contributed to both M1 and M28 strain fitness in NHP myositis, including putative importers for amino acids, carbohydrates, and vitamins and exporters for toxins, quorum-sensing peptides, and uncharacterized molecules. Targeted deletion of genes encoding 5 transporters confirmed that each isogenic mutant strain was significantly (P < 0.05) impaired in causing necrotizing myositis in NHPs. Quantitative reverse-transcriptase PCR (qRT-PCR) analysis showed that these 5 genes are expressed in infected NHP and human skeletal muscle. Certain substrate-binding lipoproteins of these transporters, such as Spy0271 and Spy1728, were previously documented to be surface exposed, suggesting that our findings have translational research implications.
Collapse
Affiliation(s)
- Luchang Zhu
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Randall J. Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA
| | - Stephen B. Beres
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Jesus M. Eraso
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Matthew Ojeda Saavedra
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Samantha L. Kubiak
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Concepcion C. Cantu
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Leslie Jenkins
- Department of Comparative Medicine, Houston Methodist Research Institute, Houston, Texas, USA
| | - Amelia R. L. Charbonneau
- Animal Health Trust, Newmarket, Suffolk, United Kingdom
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - James M. Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA
| |
Collapse
|
27
|
Frost HR, Sanderson-Smith M, Walker M, Botteaux A, Smeesters PR. Group A streptococcal M-like proteins: From pathogenesis to vaccine potential. FEMS Microbiol Rev 2018; 42:193-204. [PMID: 29228173 DOI: 10.1093/femsre/fux057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/06/2017] [Indexed: 12/27/2022] Open
Abstract
M and M-like surface proteins from group A Streptococcus (GAS) act as virulence factors and have been used in multiple vaccine candidates. While the M protein has been extensively studied, the two genetically and functionally related M-like proteins, Mrp and Enn, although present in most streptococcal strains have been relatively less characterised. We compile the current state of knowledge for these two proteins, from discovery to recent studies on function and immunogenicity, using the M protein for comparison as a prototype of this family of proteins. We focus on the known interactions between M-like proteins and host ligand proteins, and analyse the genetic data supporting these interactions. We discuss known and possible functions of M-like proteins during GAS infections, and highlight knowledge gaps where further investigation is warranted.
Collapse
Affiliation(s)
- Hannah R Frost
- Molecular Bacteriology Laboratory, Université Libre de Bruxelles, Brussels 1070, Belgium.,Group A Streptococcus Research Group, Murdoch Children's Research Institute, Melbourne 3052, VIC, Australia
| | - Martina Sanderson-Smith
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, 2522, NSW, Australia
| | - Mark Walker
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, QLD, Australia
| | - Anne Botteaux
- Molecular Bacteriology Laboratory, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Pierre R Smeesters
- Molecular Bacteriology Laboratory, Université Libre de Bruxelles, Brussels 1070, Belgium.,Group A Streptococcus Research Group, Murdoch Children's Research Institute, Melbourne 3052, VIC, Australia.,Department of Pediatrics, Academic Children Hospital Queen Fabiola, Université Libre de Bruxelles, Brussels 1020, Belgium.,Centre for International Child Health, University of Melbourne, Melbourne 3052, VIC, Australia
| |
Collapse
|
28
|
Laabei M, Ermert D. Catch Me if You Can: Streptococcus pyogenes Complement Evasion Strategies. J Innate Immun 2018; 11:3-12. [PMID: 30269134 DOI: 10.1159/000492944] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/16/2018] [Indexed: 12/27/2022] Open
Abstract
The human host has evolved elaborate protection mechanisms to prevent infection from the billions of microorganisms to which it host is exposed and is home. One of these systems, complement, is an evolutionary ancient arm of innate immunity essential for combatting bacterial infection. Complement permits the efficient labelling of bacteria with opsonins, supports phagocytosis, and facilitates phagocyte recruitment to the site of infection through the production of chemoattractants. However, it is by no means perfect, and certain organisms engage in an evolutionary arms race with the host where complement has become a major target to promote immune evasion. Streptococcus pyogenes is a major human pathogen that causes significant morbidity and mortality globally. S. pyogenes is also a member of an elite group of bacterial pathogens possessing a sophisticated arsenal of virulence determinants capable of interfering with complement. In this review, we focus on these complement evasins, their mechanism of action, and their importance in disease progression. Finally, we highlight new therapeutic options for fighting S. pyogenes, by interfering with one of its main mechanisms of complement evasion.
Collapse
|
29
|
Ma C, Gao X, Wu S, Zhang L, Wang J, Zhang Z, Yao Z, Song X, Li W, Wang X, Feng H, Wei L. M Protein of Group a Streptococcus Plays an Essential Role in Inducing High Expression of A20 in Macrophages Resulting in the Downregulation of Inflammatory Response in Lung Tissue. Front Cell Infect Microbiol 2018; 8:131. [PMID: 29868491 PMCID: PMC5968387 DOI: 10.3389/fcimb.2018.00131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/13/2018] [Indexed: 11/24/2022] Open
Abstract
Group A streptococcus (GAS), a common pathogen, is able to escape host immune attack and thus survive for longer periods of time. One of the mechanisms used by GAS is the upregulated expression of immunosuppressive molecules, which leads to a reduction in the production of inflammatory cytokines in immune cells. In the present study, we found that macrophages produced lower levels of proinflammatory cytokines (IL-1β, TNF-α, IL-6) when challenged with GAS than they did when challenged with Escherichia coli (E. coli). Simultaneously, in a mouse model of lung infection, GAS appeared to induce a weaker inflammatory response compared to E. coli. Our data also indicated that the expression of the A20 transcriptional regulator was higher in GAS-infected macrophages than that in macrophages infected with E. coli, and that high expression of A20 correlated with a reduction in the production of TRAF6. SiRNA targeting of A20 led to the increased production of TRAF6, IL-1β, TNF-α, and IL-6, suggesting that A20 inhibits synthesis of these key proinflammatory cytokines. We also investigated the pathway underlying A20 production and found that the synthesis of A20 depends on My88, and to a lower extent on TNFR1. Finally, we showed a significant reduction in the expression of A20 in macrophages stimulated by M protein-mutant GAS, however, a speB-GAS mutant, which is unable to degrade M protein, induced a greater level of A20 production than wild type GAS. Collectively, our data suggested that M protein of GAS was responsible for inducing A20 expression in macrophages, which in turn down-regulates the inflammatory cytokine response in order to facilitate GAS in evading immune surveillance and thus prolong survival in the host.
Collapse
Affiliation(s)
- Cuiqing Ma
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Basic Medical College, Hebei Medical University, Shijiazhuang, China
| | - Xue Gao
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Basic Medical College, Hebei Medical University, Shijiazhuang, China
| | - Shuhui Wu
- Department of Microbiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Ling Zhang
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Basic Medical College, Hebei Medical University, Shijiazhuang, China
| | - Jiachao Wang
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Basic Medical College, Hebei Medical University, Shijiazhuang, China
| | - Zhengzheng Zhang
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Basic Medical College, Hebei Medical University, Shijiazhuang, China
| | - Zhiyan Yao
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Basic Medical College, Hebei Medical University, Shijiazhuang, China
| | - Xiaotian Song
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Basic Medical College, Hebei Medical University, Shijiazhuang, China
| | - Wenjian Li
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Basic Medical College, Hebei Medical University, Shijiazhuang, China
| | - Xiurong Wang
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Basic Medical College, Hebei Medical University, Shijiazhuang, China
| | - Huidong Feng
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Basic Medical College, Hebei Medical University, Shijiazhuang, China
| | - Lin Wei
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Basic Medical College, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
30
|
Ermert D, Weckel A, Magda M, Mörgelin M, Shaughnessy J, Rice PA, Björck L, Ram S, Blom AM. Human IgG Increases Virulence of Streptococcus pyogenes through Complement Evasion. THE JOURNAL OF IMMUNOLOGY 2018; 200:3495-3505. [PMID: 29626087 DOI: 10.4049/jimmunol.1800090] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/12/2018] [Indexed: 12/21/2022]
Abstract
Streptococcus pyogenes is an exclusively human pathogen that can provoke mild skin and throat infections but can also cause fatal septicemia. This gram-positive bacterium has developed several strategies to evade the human immune system, enabling S. pyogenes to survive in the host. These strategies include recruiting several human plasma proteins, such as the complement inhibitor, C4b-binding protein (C4BP), and human (hu)-IgG through its Fc region to the bacterial surface to evade immune recognition. We identified a novel virulence mechanism whereby IgG-enhanced binding of C4BP to five of 12 tested S. pyogenes strains expressed diverse M proteins that are important surface-expressed virulence factors. Importantly, all strains that bound C4BP in the absence of IgG bound more C4BP when IgG was present. Further studies with an M1 strain that additionally expressed protein H, also a member of the M protein family, revealed that binding of hu-IgG Fc to protein H increased the affinity of protein H for C4BP. Increased C4BP binding accentuated complement downregulation, resulting in diminished bacterial killing. Accordingly, mortality from S. pyogenes infection in hu-C4BP transgenic mice was increased when hu-IgG or its Fc portion alone was administered concomitantly. Electron microscopy analysis of human tissue samples with necrotizing fasciitis confirmed increased C4BP binding to S. pyogenes when IgG was present. Our findings provide evidence of a paradoxical function of hu-IgG bound through Fc to diverse S. pyogenes isolates that increases their virulence and may counteract the beneficial effects of IgG opsonization.
Collapse
Affiliation(s)
- David Ermert
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, 214 28 Malmo, Sweden; .,Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605; and
| | - Antonin Weckel
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, 214 28 Malmo, Sweden
| | - Michal Magda
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, 214 28 Malmo, Sweden
| | - Matthias Mörgelin
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden
| | - Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605; and
| | - Peter A Rice
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605; and
| | - Lars Björck
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605; and
| | - Anna M Blom
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, 214 28 Malmo, Sweden
| |
Collapse
|
31
|
Streptococcal pharyngitis and rheumatic heart disease: the superantigen hypothesis revisited. INFECTION GENETICS AND EVOLUTION 2018. [PMID: 29530660 DOI: 10.1016/j.meegid.2018.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Streptococcus pyogenes is a human-specific and globally prominent bacterial pathogen that despite causing numerous human infections, this bacterium is normally found in an asymptomatic carrier state. This review provides an overview of both bacterial and human factors that likely play an important role in nasopharyngeal colonization and pharyngitis, as well as the development of acute rheumatic fever and rheumatic heart disease. Here we highlight a recently described role for bacterial superantigens in promoting acute nasopharyngeal infection, and discuss how these immune system activating toxins could be crucial to initiate the autoimmune process in rheumatic heart disease.
Collapse
|
32
|
Virulence Role of the GlcNAc Side Chain of the Lancefield Cell Wall Carbohydrate Antigen in Non-M1-Serotype Group A Streptococcus. mBio 2018; 9:mBio.02294-17. [PMID: 29382733 PMCID: PMC5790915 DOI: 10.1128/mbio.02294-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Classification of streptococci is based upon expression of unique cell wall carbohydrate antigens. All serotypes of group A Streptococcus (GAS; Streptococcus pyogenes), a leading cause of infection-related mortality worldwide, express the group A carbohydrate (GAC). GAC, the classical Lancefield antigen, is comprised of a polyrhamnose backbone with N-acetylglucosamine (GlcNAc) side chains. The immunodominant GlcNAc epitope of GAC is the basis of all rapid diagnostic testing for GAS infection. We previously identified the 12-gene GAC biosynthesis gene cluster and determined that the glycosyltransferase GacI was required for addition of the GlcNAc side chain to the polyrhamnose core. Loss of the GAC GlcNAc epitope in serotype M1 GAS resulted in attenuated virulence in two animal infection models and increased GAS sensitivity to killing by whole human blood, serum, neutrophils, and antimicrobial peptides. Here, we report that the GAC biosynthesis gene cluster is ubiquitous among 520 GAS isolates from global sources, representing 105 GAS emm serotypes. Isogenic ΔgacI mutants were constructed in M2, M3, M4, M28, and M89 backgrounds and displayed an array of phenotypes in susceptibility to killing by whole human blood, baby rabbit serum, human platelet releasate, human neutrophils, and antimicrobial peptide LL-37. The contribution of the GlcNAc side chain to GAS survival in vivo also varied by strain, demonstrating that it is not a prerequisite for virulence in the murine infection model. Thus, the relative contribution of GAC to virulence in non-M1 serotypes appears to depend on the quorum of other virulence factors that each strain possesses.IMPORTANCE The Lancefield group A carbohydrate (GAC) is the species-defining antigen for group A Streptococcus (GAS), comprising ~50% of the cell wall of this major human pathogen. We previously showed that the GlcNAc side chain of GAC contributes to the innate immune resistance and animal virulence phenotypes of the globally disseminated strain of serotype M1 GAS. Here, we use isogenic mutagenesis to examine the role of GAC GlcNAc in five additional medically relevant GAS serotypes. Overall, the GlcNAc side chain of GAC contributes to the innate immune resistance of GAS, but the relative contribution varies among individual strains. Moreover, the GAC GlcNAc side chain is not a universal prerequisite for GAS virulence in the animal model.
Collapse
|
33
|
Blom AM, Magda M, Kohl L, Shaughnessy J, Lambris JD, Ram S, Ermert D. Factor H-IgG Chimeric Proteins as a Therapeutic Approach against the Gram-Positive Bacterial Pathogen Streptococcus pyogenes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:3828-3839. [PMID: 29084837 PMCID: PMC5698128 DOI: 10.4049/jimmunol.1700426] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/30/2017] [Indexed: 11/19/2022]
Abstract
Bacteria can cause life-threatening infections, such as pneumonia, meningitis, or sepsis. Antibiotic therapy is a mainstay of treatment, although antimicrobial resistance has drastically increased over the years. Unfortunately, safe and effective vaccines against most pathogens have not yet been approved, and thus developing alternative treatments is important. We analyzed the efficiency of factor H (FH)6-7/Fc, a novel antibacterial immunotherapeutic protein against the Gram-positive bacterium Streptococcus pyogenes This protein is composed of two domains of complement inhibitor human FH (FH complement control protein modules 6 and 7) that bind to S. pyogenes, linked to the Fc region of IgG (FH6-7/Fc). FH6-7/Fc has previously been shown to enhance complement-dependent killing of, and facilitate bacterial clearance in, animal models of the Gram-negative pathogens Haemophilus influenzae and Neisseria meningitidis We hypothesized that activation of complement by FH6-7/Fc on the surface of Gram-positive bacteria such as S. pyogenes will enable professional phagocytes to eliminate the pathogen. We found that FH6-7/Fc alleviated S. pyogenes-induced sepsis in a transgenic mouse model expressing human FH (S. pyogenes binds FH in a human-specific manner). Furthermore, FH6-7/Fc, which binds to protein H and selected M proteins, displaced FH from the bacterial surface, enhanced alternative pathway activation, and reduced bacterial blood burden by opsonophagocytosis in a C3-dependent manner in an ex vivo human whole-blood model. In conclusion, FH-Fc chimeric proteins could serve as adjunctive treatments against multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Anna M Blom
- Department of Translational Medicine, Medical Protein Chemistry, Lund University, Skåne County Council, Malmö 20502, Sweden
| | - Michal Magda
- Department of Translational Medicine, Medical Protein Chemistry, Lund University, Skåne County Council, Malmö 20502, Sweden
| | - Lisa Kohl
- Department of Translational Medicine, Medical Protein Chemistry, Lund University, Skåne County Council, Malmö 20502, Sweden
| | - Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605; and
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605; and
| | - David Ermert
- Department of Translational Medicine, Medical Protein Chemistry, Lund University, Skåne County Council, Malmö 20502, Sweden;
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605; and
| |
Collapse
|
34
|
Herrera AL, Suso K, Allison S, Simon A, Schlenker E, Huber VC, Chaussee MS. Binding host proteins to the M protein contributes to the mortality associated with influenza- Streptococcus pyogenes superinfections. MICROBIOLOGY-SGM 2017; 163:1445-1456. [PMID: 28942759 DOI: 10.1099/mic.0.000532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The mortality associated with influenza A virus (IAV) is often due to the development of secondary bacterial infections known as superinfections. The group A streptococcus (GAS) is a relatively uncommon cause of IAV superinfections, but the mortality of these infections is high. We used a murine model to determine whether the surface-localized GAS M protein contributes to the outcome of IAV-GAS superinfections. A comparison between wild-type GAS and an M protein mutant strain (emm3) showed that the M3 protein was essential to virulence. To determine whether the binding, or recruitment, of host proteins to the bacterial surface contributed to virulence, GAS was suspended with BALF collected from mice that had recovered from a sub-lethal infection with IAV. Following intranasal inoculation of naïve mice, the mortality associated with the wild-type strain, but not the emm3 mutant strain, was greater compared to mice inoculated with GAS suspended with either BALF from uninfected mice or PBS. Further analyses showed that both albumin and fibrinogen (Fg) were more abundant in the respiratory tract 8 days after IAV infection, that M3 bound both proteins to the bacterial surface, and that suspension of GAS with either protein increased GAS virulence in the absence of antecedent IAV infection. Overall, the results showed that M3 is essential to the virulence of GAS in an IAV superinfection and suggested that increased abundance of albumin and Fg in the respiratory tract following IAV infection enhanced host susceptibility to secondary GAS infection.
Collapse
Affiliation(s)
- Andrea L Herrera
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota, USA
| | - Kuta Suso
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota, USA
| | - Stephanie Allison
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota, USA
| | - Abby Simon
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota, USA
| | - Evelyn Schlenker
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota, USA
| | - Victor C Huber
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota, USA
| | - Michael S Chaussee
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota, USA
| |
Collapse
|
35
|
Pappesch R, Warnke P, Mikkat S, Normann J, Wisniewska-Kucper A, Huschka F, Wittmann M, Khani A, Schwengers O, Oehmcke-Hecht S, Hain T, Kreikemeyer B, Patenge N. The Regulatory Small RNA MarS Supports Virulence of Streptococcus pyogenes. Sci Rep 2017; 7:12241. [PMID: 28947755 PMCID: PMC5613026 DOI: 10.1038/s41598-017-12507-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/12/2017] [Indexed: 11/16/2022] Open
Abstract
Small regulatory RNAs (sRNAs) play a role in the control of bacterial virulence gene expression. In this study, we investigated an sRNA that was identified in Streptococcus pyogenes (group A Streptococcus, GAS) but is conserved throughout various streptococci. In a deletion strain, expression of mga, the gene encoding the multiple virulence gene regulator, was reduced. Accordingly, transcript and proteome analyses revealed decreased expression of several Mga-activated genes. Therefore, and because the sRNA was shown to interact with the 5′ UTR of the mga transcript in a gel-shift assay, we designated it MarS for mga-activating regulatory sRNA. Down-regulation of important virulence factors, including the antiphagocytic M-protein, led to increased susceptibility of the deletion strain to phagocytosis and reduced adherence to human keratinocytes. In a mouse infection model, the marS deletion mutant showed reduced dissemination to the liver, kidney, and spleen. Additionally, deletion of marS led to increased tolerance towards oxidative stress. Our in vitro and in vivo results indicate a modulating effect of MarS on virulence gene expression and on the pathogenic potential of GAS.
Collapse
Affiliation(s)
- Roberto Pappesch
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Philipp Warnke
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Stefan Mikkat
- Core Facility Proteome Analysis, University Medicine Rostock, Rostock, Germany
| | - Jana Normann
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | | | - Franziska Huschka
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany.,Franziska Huschka, Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maja Wittmann
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Afsaneh Khani
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Oliver Schwengers
- Institute for Medical Microbiology, Justus-Liebig University of Giessen, Giessen, Germany.,Institute for Medical Microbiology, Justus-Liebig University of Giessen, Giessen, Germany
| | - Sonja Oehmcke-Hecht
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Torsten Hain
- Institute for Medical Microbiology, Justus-Liebig University of Giessen, Giessen, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Nadja Patenge
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany.
| |
Collapse
|
36
|
Abstract
The role of the complement factor H-related (FHR) proteins in homeostasis, pathogen defense, and autoimmune disease has recently attracted considerable interest. We highlight the exciting research that has contributed to our understanding of the FHR protein family. Unlike factor H, a potent negative regulator of complement C3 activation, the FHR proteins appear to promote C3 activation. These data have important implications for understanding complement-mediated diseases because, depending on the context, the balance between the actions of factor H and the FHR proteins determines the degree of complement activation.
Collapse
Affiliation(s)
| | - Matthew C Pickering
- Centre for Complement and Inflammation Research, Imperial College, London, UK
| |
Collapse
|
37
|
Blatt AZ, Pathan S, Ferreira VP. Properdin: a tightly regulated critical inflammatory modulator. Immunol Rev 2017; 274:172-190. [PMID: 27782331 PMCID: PMC5096056 DOI: 10.1111/imr.12466] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The complement alternative pathway is a powerful arm of the innate immune system that enhances diverse inflammatory responses in the human host. Key to the effects of the alternative pathway is properdin, a serum glycoprotein that can both initiate and positively regulate alternative pathway activity. Properdin is produced by many different leukocyte subsets and circulates as cyclic oligomers of monomeric subunits. While the formation of non‐physiological aggregates in purified properdin preparations and the presence of potential properdin inhibitors in serum have complicated studies of its function, properdin has, regardless, emerged as a key player in various inflammatory disease models. Here, we review basic properdin biology, emphasizing the major hurdles that have complicated the interpretation of results from properdin‐centered studies. In addition, we elaborate on an emerging role for properdin in thromboinflammation and discuss the potential utility of properdin inhibitors as long‐term therapeutic options to treat diseases marked by increased formation of platelet/granulocyte aggregates. Finally, we describe the interplay between properdin and the alternative pathway negative regulator, Factor H, and how aiming to understand these interactions can provide scientists with the most effective ways to manipulate alternative pathway activation in complex systems.
Collapse
Affiliation(s)
- Adam Z Blatt
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Sabina Pathan
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA.
| |
Collapse
|
38
|
Li XP, Sun L. A teleost complement factor Ba possesses antimicrobial activity and inhibits bacterial infection in fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 71:49-58. [PMID: 28130094 DOI: 10.1016/j.dci.2017.01.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 06/06/2023]
Abstract
Complement factor B (Bf) is a component of the complement system. Following activation of the alternative pathway of the complement system, factor B is cleaved into Ba and Bb fragments. In fish, the Bf of rainbow trout is known to act as a C3 convertase, but the function of the Ba fragment is essentially unknown. In this study, we examined the expression patterns of tongue sole Cynoglossus semilaevis Bf (named CsBf) and the biological activity of the Ba fragment of CsBf (named CsBa). CsBf possesses the conserved domains of Bf and shares 39.9%-56.4% sequence identities with other fish Bf. CsBf expression was high in liver, muscle, and heart, and low in intestine, blood, and kidney. Bacterial infection significantly induced CsBf expression in kidney, spleen, and liver in a time-dependent manner. Recombinant CsBa (rCsBa) exhibited apparent binding capacities to bacteria and tongue sole peripheral blood leukocytes, and binding of rCsBa to bacteria inhibited bacterial growth. When overexpressed in tongue sole, CsBa significantly reduced bacterial dissemination in fish tissues. Together these results indicate for the first time that a fish Ba possesses antibacterial effect as well as immune cell-binding capacity, and thus probably plays a role in host immune defense against bacterial infection.
Collapse
Affiliation(s)
- Xue-Peng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
39
|
Józsi M. Factor H Family Proteins in Complement Evasion of Microorganisms. Front Immunol 2017; 8:571. [PMID: 28572805 PMCID: PMC5435753 DOI: 10.3389/fimmu.2017.00571] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/28/2017] [Indexed: 01/08/2023] Open
Abstract
Human-pathogenic microbes possess various means to avoid destruction by our immune system. These include interactions with the host complement system that may facilitate pathogen entry into cells and tissues, expression of molecules that defuse the effector complement components and complexes, and acquisition of host complement inhibitors to downregulate complement activity on the surface of the pathogen. A growing number of pathogenic microorganisms have acquired the ability to bind the complement inhibitor factor H (FH) from body fluids and thus hijack its host protecting function. In addition to FH, binding of FH-related (FHR) proteins was also demonstrated for several microbes. Initial studies assumed that these proteins are complement inhibitors similar to FH. However, recent evidence suggests that FHR proteins may rather enhance complement activation both directly and also by competing with the inhibitor FH for binding to certain ligands and surfaces. This mini review focuses on the role of the main alternative pathway regulator FH in host–pathogen interactions, as well as on the emerging role of the FHR proteins as enhancers of complement activation.
Collapse
Affiliation(s)
- Mihály Józsi
- MTA-ELTE "Lendület" Complement Research Group, Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
40
|
Genotypic and phenotypic diversity of Lactobacillus rhamnosus clinical isolates, their comparison with strain GG and their recognition by complement system. PLoS One 2017; 12:e0176739. [PMID: 28493885 PMCID: PMC5426626 DOI: 10.1371/journal.pone.0176739] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/14/2017] [Indexed: 02/07/2023] Open
Abstract
Lactobacillus rhamnosus strains are ubiquitous in fermented foods, and in the human body where they are commensals naturally present in the normal microbiota composition of gut, vagina and skin. However, in some cases, Lactobacillus spp. have been implicated in bacteremia. The aim of the study was to examine the genomic and immunological properties of 16 clinical blood isolates of L. rhamnosus and to compare them to the well-studied L. rhamnosus probiotic strain GG. Blood cultures from bacteremic patients were collected at the Helsinki University Hospital laboratory in 2005–2011 and L. rhamnosus strains were isolated and characterized by genomic sequencing. The capacity of the L. rhamnosus strains to activate serum complement was studied using immunological assays for complement factor C3a and the terminal pathway complement complex (TCC). Binding of complement regulators factor H and C4bp was also determined using radioligand assays. Furthermore, the isolated strains were evaluated for their ability to aggregate platelets and to form biofilms in vitro. Genomic comparison between the clinical L. rhamnosus strains showed them to be clearly different from L. rhamnosus GG and to cluster in two distinct lineages. All L. rhamnosus strains activated complement in serum and none of them bound complement regulators. Four out of 16 clinical blood isolates induced platelet aggregation and/or formed more biofilms than L. rhamnosus GG, which did not display platelet aggregation activity nor showed strong biofilm formation. These findings suggest that clinical L. rhamnosus isolates show considerable heterogeneity but are clearly different from L. rhamnosus GG at the genomic level. All L. rhamnosus strains are still normally recognized by the human complement system.
Collapse
|
41
|
Kapatai G, Coelho J, Platt S, Chalker VJ. Whole genome sequencing of group A Streptococcus: development and evaluation of an automated pipeline for emmgene typing. PeerJ 2017; 5:e3226. [PMID: 28462035 PMCID: PMC5410157 DOI: 10.7717/peerj.3226] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/24/2017] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pyogenes group A Streptococcus (GAS) is the most common cause of bacterial throat infections, and can cause mild to severe skin and soft tissue infections, including impetigo, erysipelas, necrotizing fasciitis, as well as systemic and fatal infections including septicaemia and meningitis. Estimated annual incidence for invasive group A streptococcal infection (iGAS) in industrialised countries is approximately three per 100,000 per year. Typing is currently used in England and Wales to monitor bacterial strains of S. pyogenes causing invasive infections and those isolated from patients and healthcare/care workers in cluster and outbreak situations. Sequence analysis of the emm gene is the currently accepted gold standard methodology for GAS typing. A comprehensive database of emm types observed from superficial and invasive GAS strains from England and Wales informs outbreak control teams during investigations. Each year the Bacterial Reference Department, Public Health England (PHE) receives approximately 3,000 GAS isolates from England and Wales. In April 2014 the Bacterial Reference Department, PHE began genomic sequencing of referred S. pyogenes isolates and those pertaining to selected elderly/nursing care or maternity clusters from 2010 to inform future reference services and outbreak analysis (n = 3, 047). In line with the modernizing strategy of PHE, we developed a novel bioinformatics pipeline that can predict emmtypes using whole genome sequence (WGS) data. The efficiency of this method was measured by comparing the emmtype assigned by this method against the result from the current gold standard methodology; concordance to emmsubtype level was observed in 93.8% (2,852/3,040) of our cases, whereas in 2.4% (n = 72) of our cases concordance was observed to emm type level. The remaining 3.8% (n = 117) of our cases corresponded to novel types/subtypes, contamination, laboratory sample transcription errors or problems arising from high sequence similarity of the allele sequence or low mapping coverage. De novo assembly analysis was performed in the two latter groups (n = 72 + 117) and was able to diagnose the problem and where possible resolve the discordance (60/72 and 20/117, respectively). Overall, we have demonstrated that our WGS emm-typing pipeline is a reliable and robust system that can be implemented to determine emm type for the routine service.
Collapse
Affiliation(s)
- Georgia Kapatai
- Respiratory and Vaccine Preventable Bacterial Reference Unit, Public Health England, London, United Kingdom
| | - Juliana Coelho
- Respiratory and Vaccine Preventable Bacterial Reference Unit, Public Health England, London, United Kingdom
| | - Steven Platt
- Infectious Disease Informatics, Public Health England, London, United Kingdom
| | - Victoria J Chalker
- Respiratory and Vaccine Preventable Bacterial Reference Unit, Public Health England, London, United Kingdom
| |
Collapse
|
42
|
Sjöholm K, Kilsgård O, Teleman J, Happonen L, Malmström L, Malmström J. Targeted Proteomics and Absolute Protein Quantification for the Construction of a Stoichiometric Host-Pathogen Surface Density Model. Mol Cell Proteomics 2017; 16:S29-S41. [PMID: 28183813 PMCID: PMC5393399 DOI: 10.1074/mcp.m116.063966] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/23/2017] [Indexed: 11/06/2022] Open
Abstract
Sepsis is a systemic immune response responsible for considerable morbidity and mortality. Molecular modeling of host-pathogen interactions in the disease state represents a promising strategy to define molecular events of importance for the transition from superficial to invasive infectious diseases. Here we used the Gram-positive bacterium Streptococcus pyogenes as a model system to establish a mass spectrometry based workflow for the construction of a stoichiometric surface density model between the S. pyogenes surface, the surface virulence factor M-protein, and adhered human blood plasma proteins. The workflow relies on stable isotope labeled reference peptides and selected reaction monitoring mass spectrometry analysis of a wild-type strain and an M-protein deficient mutant strain, to generate absolutely quantified protein stoichiometry ratios between S. pyogenes and interacting plasma proteins. The stoichiometry ratios in combination with a novel targeted mass spectrometry method to measure cell numbers enabled the construction of a stoichiometric surface density model using protein structures available from the protein data bank. The model outlines the topology and density of the host-pathogen protein interaction network on the S. pyogenes bacterial surface, revealing a dense and highly organized protein interaction network. Removal of the M-protein from S. pyogenes introduces a drastic change in the network topology, validated by electron microscopy. We propose that the stoichiometric surface density model of S. pyogenes in human blood plasma represents a scalable framework that can continuously be refined with the emergence of new results. Future integration of new results will improve the understanding of protein-protein interactions and their importance for bacterial virulence. Furthermore, we anticipate that the general properties of the developed workflow will facilitate the production of stoichiometric surface density models for other types of host-pathogen interactions.
Collapse
Affiliation(s)
- Kristoffer Sjöholm
- From the ‡Department of Immunotechnology, Faculty of Engineering, Lund University, Sweden
- §Division of Infection Medicine, Department of Clinical Sciences, Lund University, Sweden
| | - Ola Kilsgård
- §Division of Infection Medicine, Department of Clinical Sciences, Lund University, Sweden
| | - Johan Teleman
- §Division of Infection Medicine, Department of Clinical Sciences, Lund University, Sweden
| | - Lotta Happonen
- §Division of Infection Medicine, Department of Clinical Sciences, Lund University, Sweden
| | | | - Johan Malmström
- §Division of Infection Medicine, Department of Clinical Sciences, Lund University, Sweden;
| |
Collapse
|
43
|
Bergmann S, Eichhorn I, Kohler TP, Hammerschmidt S, Goldmann O, Rohde M, Fulde M. SCM, the M Protein of Streptococcus canis Binds Immunoglobulin G. Front Cell Infect Microbiol 2017; 7:80. [PMID: 28401063 PMCID: PMC5368172 DOI: 10.3389/fcimb.2017.00080] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 02/28/2017] [Indexed: 11/13/2022] Open
Abstract
The M protein of Streptococcus canis (SCM) is a virulence factor and serves as a surface-associated receptor with a particular affinity for mini-plasminogen, a cleavage product of the broad-spectrum serine protease plasmin. Here, we report that SCM has an additional high-affinity immunoglobulin G (IgG) binding activity. The ability of a particular S. canis isolate to bind to IgG significantly correlates with a scm-positive phenotype, suggesting a dominant role of SCM as an IgG receptor. Subsequent heterologous expression of SCM in non-IgG binding S. gordonii and Western Blot analysis with purified recombinant SCM proteins confirmed its IgG receptor function. As expected for a zoonotic agent, the SCM-IgG interaction is species-unspecific, with a particular affinity of SCM for IgGs derived from human, cats, dogs, horses, mice, and rabbits, but not from cows and goats. Similar to other streptococcal IgG-binding proteins, the interaction between SCM and IgG occurs via the conserved Fc domain and is, therefore, non-opsonic. Interestingly, the interaction between SCM and IgG-Fc on the bacterial surface specifically prevents opsonization by C1q, which might constitute another anti-phagocytic mechanism of SCM. Extensive binding analyses with a variety of different truncated SCM fragments defined a region of 52 amino acids located in the central part of the mature SCM protein which is important for IgG binding. This binding region is highly conserved among SCM proteins derived from different S. canis isolates but differs significantly from IgG-Fc receptors of S. pyogenes and S. dysgalactiae sub. equisimilis, respectively. In summary, we present an additional role of SCM in the pathogen-host interaction of S. canis. The detailed analysis of the SCM-IgG interaction should contribute to a better understanding of the complex roles of M proteins in streptococcal pathogenesis.
Collapse
Affiliation(s)
- Simone Bergmann
- Department of Medical Microbiology, Helmholtz Center for Infection Research Braunschweig, Germany
| | - Inga Eichhorn
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin Berlin, Germany
| | - Thomas P Kohler
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt Universität Greifswald Greifswald, Germany
| | - Sven Hammerschmidt
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt Universität Greifswald Greifswald, Germany
| | - Oliver Goldmann
- Department of Infection Immunology, Helmholtz Center for Infection Research Braunschweig, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Center for Infection Research Braunschweig, Germany
| | - Marcus Fulde
- Department of Medical Microbiology, Helmholtz Center for Infection ResearchBraunschweig, Germany; Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität BerlinBerlin, Germany
| |
Collapse
|
44
|
Swe PM, Christian LD, Lu HC, Sriprakash KS, Fischer K. Complement inhibition by Sarcoptes scabiei protects Streptococcus pyogenes - An in vitro study to unravel the molecular mechanisms behind the poorly understood predilection of S. pyogenes to infect mite-induced skin lesions. PLoS Negl Trop Dis 2017; 11:e0005437. [PMID: 28278252 PMCID: PMC5360341 DOI: 10.1371/journal.pntd.0005437] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/21/2017] [Accepted: 02/25/2017] [Indexed: 02/01/2023] Open
Abstract
Background On a global scale scabies is one of the most common dermatological conditions, imposing a considerable economic burden on individuals, communities and health systems. There is substantial epidemiological evidence that in tropical regions scabies is often causing pyoderma and subsequently serious illness due to invasion by opportunistic bacteria. The health burden due to complicated scabies causing cellulitis, bacteraemia and sepsis, heart and kidney diseases in resource-poor communities is extreme. Co-infections of group A streptococcus (GAS) and scabies mites is a common phenomenon in the tropics. Both pathogens produce multiple complement inhibitors to overcome the host innate defence. We investigated the relative role of classical (CP), lectin (LP) and alternative pathways (AP) towards a pyodermic GAS isolate 88/30 in the presence of a scabies mite complement inhibitor, SMSB4. Methodology/Principal findings Opsonophagocytosis assays in fresh blood showed baseline immunity towards GAS. The role of innate immunity was investigated by deposition of the first complement components of each pathway, specifically C1q, FB and MBL from normal human serum on GAS. C1q deposition was the highest followed by FB deposition while MBL deposition was undetectable, suggesting that CP and AP may be mainly activated by GAS. We confirmed this result using sera depleted of either C1q or FB, and serum deficient in MBL. Recombinant SMSB4 was produced and purified from Pichia pastoris. SMSB4 reduced the baseline immunity against GAS by decreasing the formation of CP- and AP-C3 convertases, subsequently affecting opsonisation and the release of anaphylatoxin. Conclusions/Significance Our results indicate that the complement-inhibitory function of SMSB4 promotes the survival of GAS in vitro and inferably in the microenvironment of the mite-infested skin. Understanding the tripartite interactions between host, parasite and microbial pathogens at a molecular level may serve as a basis to develop improved intervention strategies targeting scabies and associated bacterial infections. The molecular mechanisms that underpin the link between scabies and bacterial pathogens were unknown. We proposed that scabies mites play a role in the establishment, proliferation and transmission of opportunistic pathogens. We investigated here the synergy between mites and one of the most recognised mite associated pathogens, Streptococcus pyogenes. As part of the innate immune response mammals have a pre-programmed ability to recognise and immediately act against substances derived from fungal and bacterial microorganisms. This is mediated through a sequential biochemical cascade involving over 30 different proteins (complement system) which as a result of signal amplification triggers a rapid killing response. The complement cascade produces peptides that attract immune cells, increases vascular permeability, coats (opsonises) the surfaces of a pathogen, marking it for destruction, and directly disrupts foreign plasma membranes. To prevent complement mediated damage of their gut cells, scabies mites secrete several classes of complement inhibiting proteins into the mite gut and excrete them into the epidermal mite burrows. Furthermore, these inhibitors also provide protection for S. pyogenes. We verified here specifically the impact of the mite complement inhibitor SMSB4, to identify the molecular mechanisms behind the long recognised tendency of S. pyogenes to infect mite-induced skin lesions.
Collapse
Affiliation(s)
- Pearl M. Swe
- QIMR Berghofer Medical Research Institute, Infectious Diseases Department, Herston, Brisbane, Australia
| | - Lindsay D. Christian
- QIMR Berghofer Medical Research Institute, Infectious Diseases Department, Herston, Brisbane, Australia
| | - Hieng C. Lu
- QIMR Berghofer Medical Research Institute, Infectious Diseases Department, Herston, Brisbane, Australia
| | - Kadaba S. Sriprakash
- QIMR Berghofer Medical Research Institute, Infectious Diseases Department, Herston, Brisbane, Australia
| | - Katja Fischer
- QIMR Berghofer Medical Research Institute, Infectious Diseases Department, Herston, Brisbane, Australia
- * E-mail:
| |
Collapse
|
45
|
Wang J, Wu J, Yi L, Hou Z, Li W. Pathological analysis, detection of antigens, FasL expression analysis and leucocytes survival analysis in tilapia (Oreochromis niloticus) after infection with green fluorescent protein labeled Streptococcus agalactiae. FISH & SHELLFISH IMMUNOLOGY 2017; 62:86-95. [PMID: 28063953 DOI: 10.1016/j.fsi.2017.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 01/02/2017] [Accepted: 01/03/2017] [Indexed: 06/06/2023]
Abstract
The pathogenesis of Streptococcus agalactiae infection in tilapia has not been fully described. To understand this, we investigated the clinic-pathological features of acute experimental septicemia in tilapia (Oreochromis niloticus) after receiving an intra-peritoneal injection with S. agalactiae THN-1901GFP. Immunohistochemistry and sections of pathological tissues were used to estimate the level of damage in the head-kidney, liver, spleen and trunk-kidney. The expression of FasL was analyzed by western blotting in these samples based on their damage levels. Leucocytes were isolated from the head-kidney and incubated with S. agalactiae THN-1901GFP. Then, phagocytosis, programmed cell death and the expression of FasL were analyzed. The infected tissues showed varying degrees of necrosis and histolysis. The serous membrane of the intestine was dissolved by S. agalactiae THN-1901GFP. Antigens of S. agalactiae THN-1901GFP accumulated in different parts of the infected organs. In the head-kidney and spleen, the expression of FasL was up-regulated in parallel with increased tissue damage. After being incubated with S. agalactiae THN-1901GFP, the phagocytic capacity and ability were both very high and the expression of FasL remained high in leucocytes. S. agalactiae THN-1901GFP was able to survive for a long period of time after being engulfed by phagocytic cells. These findings offer insight into the pathogenesis of S. agalactiae infection in tilapia.
Collapse
Affiliation(s)
- Jingyuan Wang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Jinying Wu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.
| | - Liyuan Yi
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Zengxin Hou
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Wensheng Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| |
Collapse
|
46
|
Vega LA, Valdes KM, Sundar GS, Belew AT, Islam E, Berge J, Curry P, Chen S, El-Sayed NM, Le Breton Y, McIver KS. The Transcriptional Regulator CpsY Is Important for Innate Immune Evasion in Streptococcus pyogenes. Infect Immun 2017; 85:e00925-16. [PMID: 27993974 PMCID: PMC5328483 DOI: 10.1128/iai.00925-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/13/2016] [Indexed: 01/01/2023] Open
Abstract
As an exclusively human pathogen, Streptococcus pyogenes (the group A streptococcus [GAS]) has specifically adapted to evade host innate immunity and survive in multiple tissue niches, including blood. GAS can overcome the metabolic constraints of the blood environment and expresses various immunomodulatory factors necessary for survival and immune cell resistance. Here we present our investigation of one such factor, the predicted LysR family transcriptional regulator CpsY. The encoding gene, cpsY, was initially identified as being required for GAS survival in a transposon-site hybridization (TraSH) screen in whole human blood. CpsY is homologous with transcriptional regulators of Streptococcus mutans (MetR), Streptococcus iniae (CpsY), and Streptococcus agalactiae (MtaR) that regulate methionine transport, amino acid metabolism, resistance to neutrophil-mediated killing, and survival in vivo Our investigation indicated that CpsY is involved in GAS resistance to innate immune cells of its human host. However, GAS CpsY does not manifest the in vitro phenotypes of its homologs in other streptococcal species. GAS CpsY appears to regulate a small set of genes that is markedly different from the regulons of its homologs. The differential expression of these genes depends on the growth medium, and CpsY modestly influences their expression. The GAS CpsY regulon includes known virulence factors (mntE, speB, spd, nga [spn], prtS [SpyCEP], and sse) and cell surface-associated factors of GAS (emm1, mur1.2, sibA [cdhA], and M5005_Spy0500). Intriguingly, the loss of CpsY in GAS does not result in virulence defects in murine models of infection, suggesting that CpsY function in immune evasion is specific to the human host.
Collapse
Affiliation(s)
- Luis A Vega
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Kayla M Valdes
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Ganesh S Sundar
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Ashton T Belew
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Emrul Islam
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Jacob Berge
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Patrick Curry
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Steven Chen
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Najib M El-Sayed
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA
| | - Yoann Le Breton
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Kevin S McIver
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
47
|
Honda-Ogawa M, Sumitomo T, Mori Y, Hamd DT, Ogawa T, Yamaguchi M, Nakata M, Kawabata S. Streptococcus pyogenes Endopeptidase O Contributes to Evasion from Complement-mediated Bacteriolysis via Binding to Human Complement Factor C1q. J Biol Chem 2017; 292:4244-4254. [PMID: 28154192 DOI: 10.1074/jbc.m116.749275] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 01/18/2017] [Indexed: 01/14/2023] Open
Abstract
Streptococcus pyogenes secretes various virulence factors for evasion from complement-mediated bacteriolysis. However, full understanding of the molecules possessed by this organism that interact with complement C1q, an initiator of the classical complement pathway, remains elusive. In this study, we identified an endopeptidase of S. pyogenes, PepO, as an interacting molecule, and investigated its effects on complement immunity and pathogenesis. Enzyme-linked immunosorbent assay and surface plasmon resonance analysis findings revealed that S. pyogenes recombinant PepO bound to human C1q in a concentration-dependent manner under physiological conditions. Sites of inflammation are known to have decreased pH levels, thus the effects of PepO on bacterial evasion from complement immunity was analyzed in a low pH condition. Notably, under low pH conditions, PepO exhibited a higher affinity for C1q as compared with IgG, and PepO inhibited the binding of IgG to C1q. In addition, pepO deletion rendered S. pyogenes more susceptible to the bacteriocidal activity of human serum. Also, observations of the morphological features of the pepO mutant strain (ΔpepO) showed damaged irregular surfaces as compared with the wild-type strain (WT). WT-infected tissues exhibited greater severity and lower complement activity as compared with those infected by ΔpepO in a mouse skin infection model. Furthermore, WT infection resulted in a larger accumulation of C1q than that with ΔpepO. Our results suggest that interaction of S. pyogenes PepO with C1q interferes with the complement pathway, which enables S. pyogenes to evade complement-mediated bacteriolysis under acidic conditions, such as seen in inflammatory sites.
Collapse
Affiliation(s)
- Mariko Honda-Ogawa
- From the Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry
| | - Tomoko Sumitomo
- From the Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry
| | - Yasushi Mori
- From the Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry.,Division of Special Care Dentistry, Osaka University Dental Hospital, and
| | - Dalia Talat Hamd
- From the Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry
| | - Taiji Ogawa
- Department of Prosthodontics, Gerodontology and Oral Rehabilitation, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masaya Yamaguchi
- From the Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry
| | - Masanobu Nakata
- From the Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry
| | - Shigetada Kawabata
- From the Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry,
| |
Collapse
|
48
|
Lukomski S, Bachert BA, Squeglia F, Berisio R. Collagen-like proteins of pathogenic streptococci. Mol Microbiol 2017; 103:919-930. [PMID: 27997716 DOI: 10.1111/mmi.13604] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2016] [Indexed: 12/19/2022]
Abstract
The collagen domain, which is defined by the presence of the Gly-X-Y triplet repeats, is amongst the most versatile and widespread known structures found in proteins from organisms representing all three domains of life. The streptococcal collagen-like (Scl) proteins are widely present in pathogenic streptococci, including Streptococcus pyogenes, S. agalactiae, S. pneumoniae, and S. equi. Experiments and bioinformatic analyses support the hypothesis that all Scl proteins are homotrimeric and cell wall-anchored. These proteins contain the rod-shaped collagenous domain proximal to cell surface, as well as a variety of outermost non-collagenous domains that generally lack predicted functions but can be grouped into one of six clusters based on sequence similarity. The well-characterized Scl1 proteins of S. pyogenes show a dichotomous switch in ligand binding between human tissue and blood environments. In tissue, Scl1 adhesin specifically recognizes the wound microenvironment, promotes adhesion and biofilm formation, decreases bacterial killing by neutrophil extracellular traps, and modulates S. pyogenes virulence. In blood, ligands include components of complement and coagulation-fibrinolytic systems, as well as plasma lipoproteins. In all, the Scl proteins signify a large family of structurally related surface proteins, which contribute to the ability of streptococci to colonize and cause diseases in humans and animals.
Collapse
Affiliation(s)
- Slawomir Lukomski
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Beth A Bachert
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Flavia Squeglia
- Institute of Biostructures and Bioimaging, National Research Council, Naples, I-80134, Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, National Research Council, Naples, I-80134, Italy
| |
Collapse
|
49
|
Hovingh ES, van den Broek B, Jongerius I. Hijacking Complement Regulatory Proteins for Bacterial Immune Evasion. Front Microbiol 2016; 7:2004. [PMID: 28066340 PMCID: PMC5167704 DOI: 10.3389/fmicb.2016.02004] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 11/30/2016] [Indexed: 12/11/2022] Open
Abstract
The human complement system plays an important role in the defense against invading pathogens, inflammation and homeostasis. Invading microbes, such as bacteria, directly activate the complement system resulting in the formation of chemoattractants and in effective labeling of the bacteria for phagocytosis. In addition, formation of the membrane attack complex is responsible for direct killing of Gram-negative bacteria. In turn, bacteria have evolved several ways to evade complement activation on their surface in order to be able to colonize and invade the human host. One important mechanism of bacterial escape is attraction of complement regulatory proteins to the microbial surface. These molecules are present in the human body for tight regulation of the complement system to prevent damage to host self-surfaces. Therefore, recruitment of complement regulatory proteins to the bacterial surface results in decreased complement activation on the microbial surface which favors bacterial survival. This review will discuss recent advances in understanding the binding of complement regulatory proteins to the bacterial surface at the molecular level. This includes, new insights that have become available concerning specific conserved motives on complement regulatory proteins that are favorable for microbial binding. Finally, complement evasion molecules are of high importance for vaccine development due to their dominant role in bacterial survival, high immunogenicity and homology as well as their presence on the bacterial surface. Here, the use of complement evasion molecules for vaccine development will be discussed.
Collapse
Affiliation(s)
- Elise S. Hovingh
- Department of Medical Microbiology, University Medical Center UtrechtUtrecht, Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the EnvironmentBilthoven, Netherlands
| | - Bryan van den Broek
- Department of Medical Microbiology, University Medical Center UtrechtUtrecht, Netherlands
| | - Ilse Jongerius
- Department of Medical Microbiology, University Medical Center UtrechtUtrecht, Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the EnvironmentBilthoven, Netherlands
| |
Collapse
|
50
|
Ibrahim J, Eisen JA, Jospin G, Coil DA, Khazen G, Tokajian S. Genome Analysis of Streptococcus pyogenes Associated with Pharyngitis and Skin Infections. PLoS One 2016; 11:e0168177. [PMID: 27977735 PMCID: PMC5158041 DOI: 10.1371/journal.pone.0168177] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/25/2016] [Indexed: 12/12/2022] Open
Abstract
Streptococcus pyogenes is a very important human pathogen, commonly associated with skin or throat infections but can also cause life-threatening situations including sepsis, streptococcal toxic shock syndrome, and necrotizing fasciitis. Various studies involving typing and molecular characterization of S. pyogenes have been published to date; however next-generation sequencing (NGS) studies provide a comprehensive collection of an organism’s genetic variation. In this study, the genomes of nine S. pyogenes isolates associated with pharyngitis and skin infection were sequenced and studied for the presence of virulence genes, resistance elements, prophages, genomic recombination, and other genomic features. Additionally, a comparative phylogenetic analysis of the isolates with global clones highlighted their possible evolutionary lineage and their site of infection. The genomes were found to also house a multitude of features including gene regulation systems, virulence factors and antimicrobial resistance mechanisms.
Collapse
Affiliation(s)
- Joe Ibrahim
- Department of Natural Sciences, Lebanese American University, School of Arts and Sciences, Byblos, Lebanon
| | - Jonathan A. Eisen
- University of California Davis Genome Center, Davis, California, United States of America
| | - Guillaume Jospin
- University of California Davis Genome Center, Davis, California, United States of America
| | - David A. Coil
- University of California Davis Genome Center, Davis, California, United States of America
| | - Georges Khazen
- Department of Computer Science and Mathematics, Lebanese American University, School of Arts and Sciences, Byblos, Lebanon
| | - Sima Tokajian
- Department of Natural Sciences, Lebanese American University, School of Arts and Sciences, Byblos, Lebanon
- * E-mail:
| |
Collapse
|