1
|
Xiao Y, Tan M, Song J, Huang Y, Lv M, Liao M, Yu Z, Gao Z, Qu S, Liang W. Developmental validation of an mRNA kit: A 5-dye multiplex assay designed for body-fluid identification. Forensic Sci Int Genet 2024; 71:103045. [PMID: 38615496 DOI: 10.1016/j.fsigen.2024.103045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024]
Abstract
Identifying the sources of biosamples found at crime scenes is crucial for forensic investigations. Among the markers used for body fluid identification (BFI), mRNA has emerged as a well-studied marker because of its high specificity and remarkable stability. Despite this potential, commercially available mRNA kits specifically designed for BFI are lacking. Therefore, we developed an mRNA kit that includes 21 specific mRNA markers of body fluids, along with three housekeeping genes for BFI, to identify four forensic-relevant fluids (blood, semen, saliva, and vaginal fluids). In this study, we tested 451 single-body-fluid samples, validated the universality of the mRNA kit, and obtained a gene expression profile. We performed the validation studies in triplicates and determined the sensitivity, specificity, stability, precision, and repeatability of the mRNA kit. The sensitivity of the kit was found to be 0.1 ng. Our validation process involved the examination of 59 RNA mixtures, 60 body fluids mixtures, and 20 casework samples, which further established the reliability of the kit. Furthermore, we constructed five classifiers that can handle single-body fluids and mixtures using this kit. The classifiers output possibility values and identify the specific body fluids of interest. Our results showed the reliability and suitability of the BFI kit, and the Random Forest classifier performed the best, with 94% precision. In conclusion, we developed an mRNA kit for BFI which can be a promising tool for forensic practice.
Collapse
Affiliation(s)
- Yuanyuan Xiao
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Mengyu Tan
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jinlong Song
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yihang Huang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Meili Lv
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Miao Liao
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Zailiang Yu
- Suzhou Microread Genetics Co.,Ltd, Suzhou, Jiangsu, PR China
| | - Zhixiao Gao
- Suzhou Microread Genetics Co.,Ltd, Suzhou, Jiangsu, PR China
| | - Shengqiu Qu
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
2
|
Teh MR, Armitage AE, Drakesmith H. Why cells need iron: a compendium of iron utilisation. Trends Endocrinol Metab 2024:S1043-2760(24)00109-7. [PMID: 38760200 DOI: 10.1016/j.tem.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/19/2024]
Abstract
Iron deficiency is globally prevalent, causing an array of developmental, haematological, immunological, neurological, and cardiometabolic impairments, and is associated with symptoms ranging from chronic fatigue to hair loss. Within cells, iron is utilised in a variety of ways by hundreds of different proteins. Here, we review links between molecular activities regulated by iron and the pathophysiological effects of iron deficiency. We identify specific enzyme groups, biochemical pathways, cellular functions, and cell lineages that are particularly iron dependent. We provide examples of how iron deprivation influences multiple key systems and tissues, including immunity, hormone synthesis, and cholesterol metabolism. We propose that greater mechanistic understanding of how cellular iron influences physiological processes may lead to new therapeutic opportunities across a range of diseases.
Collapse
Affiliation(s)
- Megan R Teh
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew E Armitage
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Hal Drakesmith
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Dunaway LS, Loeb SA, Petrillo S, Tolosano E, Isakson BE. Heme metabolism in nonerythroid cells. J Biol Chem 2024; 300:107132. [PMID: 38432636 PMCID: PMC10988061 DOI: 10.1016/j.jbc.2024.107132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/31/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024] Open
Abstract
Heme is an iron-containing prosthetic group necessary for the function of several proteins termed "hemoproteins." Erythrocytes contain most of the body's heme in the form of hemoglobin and contain high concentrations of free heme. In nonerythroid cells, where cytosolic heme concentrations are 2 to 3 orders of magnitude lower, heme plays an essential and often overlooked role in a variety of cellular processes. Indeed, hemoproteins are found in almost every subcellular compartment and are integral in cellular operations such as oxidative phosphorylation, amino acid metabolism, xenobiotic metabolism, and transcriptional regulation. Growing evidence reveals the participation of heme in dynamic processes such as circadian rhythms, NO signaling, and the modulation of enzyme activity. This dynamic view of heme biology uncovers exciting possibilities as to how hemoproteins may participate in a range of physiologic systems. Here, we discuss how heme is regulated at the level of its synthesis, availability, redox state, transport, and degradation and highlight the implications for cellular function and whole organism physiology.
Collapse
Affiliation(s)
- Luke S Dunaway
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Skylar A Loeb
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA; Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Sara Petrillo
- Deptartment Molecular Biotechnology and Health Sciences and Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Emanuela Tolosano
- Deptartment Molecular Biotechnology and Health Sciences and Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA; Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia, USA.
| |
Collapse
|
4
|
Balogun O, Nejak-Bowen K. The Hepatic Porphyrias: Revealing the Complexities of a Rare Disease. Semin Liver Dis 2023; 43:446-459. [PMID: 37973028 PMCID: PMC11256094 DOI: 10.1055/s-0043-1776760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The porphyrias are a group of metabolic disorders that are caused by defects in heme biosynthesis pathway enzymes. The result is accumulation of heme precursors, which can cause neurovisceral and/or cutaneous photosensitivity. Liver is commonly either a source or target of excess porphyrins, and porphyria-associated hepatic dysfunction ranges from minor abnormalities to liver failure. In this review, the first of a three-part series, we describe the defects commonly found in each of the eight enzymes involved in heme biosynthesis. We also discuss the pathophysiology of the hepatic porphyrias in detail, covering epidemiology, histopathology, diagnosis, and complications. Cellular consequences of porphyrin accumulation are discussed, with an emphasis on oxidative stress, protein aggregation, hepatocellular cancer, and endothelial dysfunction. Finally, we review current therapies to treat and manage symptoms of hepatic porphyria.
Collapse
Affiliation(s)
- Oluwashanu Balogun
- Department of Experimental Pathology, University of Pittsburgh, Pittsburgh, PA
| | - Kari Nejak-Bowen
- Department of Experimental Pathology, University of Pittsburgh, Pittsburgh, PA
- Pittsburgh Liver Institute, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
5
|
Abe K, Ikeda M, Ide T, Tadokoro T, Miyamoto HD, Furusawa S, Tsutsui Y, Miyake R, Ishimaru K, Watanabe M, Matsushima S, Koumura T, Yamada KI, Imai H, Tsutsui H. Doxorubicin causes ferroptosis and cardiotoxicity by intercalating into mitochondrial DNA and disrupting Alas1-dependent heme synthesis. Sci Signal 2022; 15:eabn8017. [PMID: 36318618 DOI: 10.1126/scisignal.abn8017] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Clinical use of doxorubicin (DOX) is limited because of its cardiotoxicity, referred to as DOX-induced cardiomyopathy (DIC). Mitochondria-dependent ferroptosis, which is triggered by iron overload and excessive lipid peroxidation, plays a pivotal role in the progression of DIC. Here, we showed that DOX accumulated in mitochondria by intercalating into mitochondrial DNA (mtDNA), inducing ferroptosis in an mtDNA content-dependent manner. In addition, DOX disrupted heme synthesis by decreasing the abundance of 5'-aminolevulinate synthase 1 (Alas1), the rate-limiting enzyme in this process, thereby impairing iron utilization, resulting in iron overload and ferroptosis in mitochondria in cultured cardiomyocytes. Alas1 overexpression prevented this outcome. Administration of 5-aminolevulinic acid (5-ALA), the product of Alas1, to cultured cardiomyocytes and mice suppressed iron overload and lipid peroxidation, thereby preventing DOX-induced ferroptosis and DIC. Our findings reveal that the accumulation of DOX and iron in mitochondria cooperatively induces ferroptosis in cardiomyocytes and suggest that 5-ALA can be used as a potential therapeutic agent for DIC.
Collapse
Affiliation(s)
- Ko Abe
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Masataka Ikeda
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Immunoregulatory Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tomomi Ide
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tomonori Tadokoro
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroko Deguchi Miyamoto
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Shun Furusawa
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshitomo Tsutsui
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Ryo Miyake
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kosei Ishimaru
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Masatsugu Watanabe
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Shouji Matsushima
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tomoko Koumura
- Departments of Hygienic Chemistry and Medical Research Laboratories, School of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Ken-ichi Yamada
- Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hirotaka Imai
- Departments of Hygienic Chemistry and Medical Research Laboratories, School of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
6
|
Rodriguez-Sevilla JJ, Calvo X, Arenillas L. Causes and Pathophysiology of Acquired Sideroblastic Anemia. Genes (Basel) 2022; 13:1562. [PMID: 36140729 PMCID: PMC9498732 DOI: 10.3390/genes13091562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 01/19/2023] Open
Abstract
The sideroblastic anemias are a heterogeneous group of inherited and acquired disorders characterized by anemia and the presence of ring sideroblasts in the bone marrow. Ring sideroblasts are abnormal erythroblasts with iron-loaded mitochondria that are visualized by Prussian blue staining as a perinuclear ring of green-blue granules. The mechanisms that lead to the ring sideroblast formation are heterogeneous, but in all of them, there is an abnormal deposition of iron in the mitochondria of erythroblasts. Congenital sideroblastic anemias include nonsyndromic and syndromic disorders. Acquired sideroblastic anemias include conditions that range from clonal disorders (myeloid neoplasms as myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms with ring sideroblasts) to toxic or metabolic reversible sideroblastic anemia. In the last 30 years, due to the advances in genomic techniques, a deep knowledge of the pathophysiological mechanisms has been accomplished and the bases for possible targeted treatments have been established. The distinction between the different forms of sideroblastic anemia is based on the study of the characteristics of the anemia, age of diagnosis, clinical manifestations, and the performance of laboratory analysis involving genetic testing in many cases. This review focuses on the differential diagnosis of acquired disorders associated with ring sideroblasts.
Collapse
Affiliation(s)
| | - Xavier Calvo
- Laboratori de Citologia Hematològica, Department of Pathology, Hospital del Mar, 08003 Barcelona, Spain
- Group of Translational Research on Hematological Neoplasms (GRETNHE), IMIM-Hospital del Mar, 08003 Barcelona, Spain
| | - Leonor Arenillas
- Laboratori de Citologia Hematològica, Department of Pathology, Hospital del Mar, 08003 Barcelona, Spain
- Group of Translational Research on Hematological Neoplasms (GRETNHE), IMIM-Hospital del Mar, 08003 Barcelona, Spain
| |
Collapse
|
7
|
Hunter GA, Ferreira GC. An Extended C-Terminus, the Possible Culprit for Differential Regulation of 5-Aminolevulinate Synthase Isoforms. Front Mol Biosci 2022; 9:920668. [PMID: 35911972 PMCID: PMC9329541 DOI: 10.3389/fmolb.2022.920668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/30/2022] [Indexed: 12/05/2022] Open
Abstract
5-Aminolevulinate synthase (ALAS; E.C. 2.3.1.37) is a pyridoxal 5′-phosphate (PLP)-dependent enzyme that catalyzes the key regulatory step of porphyrin biosynthesis in metazoa, fungi, and α-proteobacteria. ALAS is evolutionarily related to transaminases and is therefore classified as a fold type I PLP-dependent enzyme. As an enzyme controlling the key committed and rate-determining step of a crucial biochemical pathway ALAS is ideally positioned to be subject to allosteric feedback inhibition. Extensive kinetic and mutational studies demonstrated that the overall enzyme reaction is limited by subtle conformational changes of a hairpin loop gating the active site. These findings, coupled with structural information, facilitated early prediction of allosteric regulation of activity via an extended C-terminal tail unique to eukaryotic forms of the enzyme. This prediction was subsequently supported by the discoveries that mutations in the extended C-terminus of the erythroid ALAS isoform (ALAS2) cause a metabolic disorder known as X-linked protoporphyria not by diminishing activity, but by enhancing it. Furthermore, kinetic, structural, and molecular modeling studies demonstrated that the extended C-terminal tail controls the catalytic rate by modulating conformational flexibility of the active site loop. However, the precise identity of any such molecule remains to be defined. Here we discuss the most plausible allosteric regulators of ALAS activity based on divergences in AlphaFold-predicted ALAS structures and suggest how the mystery of the mechanism whereby the extended C-terminus of mammalian ALASs allosterically controls the rate of porphyrin biosynthesis might be unraveled.
Collapse
Affiliation(s)
- Gregory A. Hunter
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- *Correspondence: Gregory A. Hunter, ; Gloria C. Ferreira,
| | - Gloria C. Ferreira
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Department of Chemistry, College of Arts and Sciences, University of South Florida, Tampa, FL, United States
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL, United States
- *Correspondence: Gregory A. Hunter, ; Gloria C. Ferreira,
| |
Collapse
|
8
|
Kabiri Y, Fuhrmann A, Becker A, Jedermann L, Eberhagen C, König AC, Silva TB, Borges F, Hauck SM, Michalke B, Knolle P, Zischka H. Mitochondrial Impairment by MitoBloCK-6 Inhibits Liver Cancer Cell Proliferation. Front Cell Dev Biol 2021; 9:725474. [PMID: 34616733 PMCID: PMC8488156 DOI: 10.3389/fcell.2021.725474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/30/2021] [Indexed: 01/20/2023] Open
Abstract
Augmenter of liver regeneration (ALR) is a critical multi-isoform protein with its longer isoform, located in the mitochondrial intermembrane space, being part of the mitochondrial disulfide relay system (DRS). Upregulation of ALR was observed in multiple forms of cancer, among them hepatocellular carcinoma (HCC). To shed light into ALR function in HCC, we used MitoBloCK-6 to pharmacologically inhibit ALR, resulting in profound mitochondrial impairment and cancer cell proliferation deficits. These effects were mostly reversed by supplementation with bioavailable hemin b, linking ALR function to mitochondrial iron homeostasis. Since many tumor cells are known for their increased iron demand and since increased iron levels in cancer are associated with poor clinical outcome, these results help to further advance the intricate relation between iron and mitochondrial homeostasis in liver cancer.
Collapse
Affiliation(s)
- Yaschar Kabiri
- Institute of Toxicology and Environmental Hygiene, School of Medicine, Technical University of Munich, Munich, Germany
| | - Anna Fuhrmann
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Anna Becker
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Luisa Jedermann
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Carola Eberhagen
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ann-Christine König
- Research Unit Protein Science and Metabolomics and Proteomics Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Tiago Barros Silva
- CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Fernanda Borges
- CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Stefanie M Hauck
- Research Unit Protein Science and Metabolomics and Proteomics Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Percy Knolle
- Institute of Molecular Immunology and Experimental Oncology, University Hospital Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Hans Zischka
- Institute of Toxicology and Environmental Hygiene, School of Medicine, Technical University of Munich, Munich, Germany.,Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
9
|
Salat APJ, Williams KL, Chiu S, Eickmeyer DC, Kimpe LE, Blais JM, Crump D. Extracts from Dated Lake Sediment Cores in the Athabasca Oil Sands Region Alter Ethoxyresorufin-O-deethylase Activity and Gene Expression in Avian Hepatocytes. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1883-1893. [PMID: 33751657 DOI: 10.1002/etc.5040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/12/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
Increases in oil sands mining operations in the Athabasca oil sands region have resulted in increased concentrations of polycyclic aromatic compounds (PACs) and heavy metals in aquatic systems located near surface mining operations. In the present study, sediment cores were collected from 3 lakes with varying proximity to surface mining operations to determine the differences in PAC concentrations. Sediment cores were separated into 2 sections-current mining (top; 2000-2017) and premining (bottom; pre-1945)-and extracts were prepared for in vitro screening using a well-established chicken embryonic hepatocyte (CEH) assay. Concentrations and composition of PACs varied between sites, with the highest ∑PACs in Saline Lake, 5 km from an active oil sands mine site. The proportion of alkylated PACs was greater than that of parent PACs in the top sediment sections compared with the bottom. Ethoxyresorufin-O-deethylase activity in CEH permitted the ranking of lake sites/core sections based on an aryl hydrocarbon receptor-mediated end point; mean median effect concentration values were lowest for the top cores from Saline Lake and another near-mining operations lake, referred to as WF1. A ToxChip polymerase chain reaction (PCR) array was used to evaluate gene expression changes across 43 target genes associated with numerous toxicological pathways following exposure to top and bottom sediment core extracts. The 2 study sites with the greatest ∑PAC concentrations (Saline Lake and WF1) had the highest gene expression alterations on the ToxChip PCR array (19 [top] and 17 [bottom]/43), compared with a reference site (13 [top] and 7 [bottom]/43). The avian in vitro bioassay was useful for identifying the toxicity of complex PAC extracts associated with variably contaminated sediment cores, supporting its potential use for hotspot identification and complex mixture screening. EnvironToxicol Chem 2021;40:1883-1893. © 2021 SETAC.
Collapse
Affiliation(s)
| | - Kim L Williams
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, Canada
| | - Suzanne Chiu
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, Canada
| | - David C Eickmeyer
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Linda E Kimpe
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jules M Blais
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Doug Crump
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
10
|
Lu MY, Xu L, Qi GH, Zhang HJ, Qiu K, Wang J, Wu SG. Mechanisms associated with the depigmentation of brown eggshells: a review. Poult Sci 2021; 100:101273. [PMID: 34214744 PMCID: PMC8258675 DOI: 10.1016/j.psj.2021.101273] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 12/23/2022] Open
Abstract
Eggshell color is an important shell quality trait that influences consumer preference. It is also of particular importance with respect to sexual signaling and the physiological and mechanical properties of shell pigment. Pigments include protoporphyrin IX, biliverdin, and traces of biliverdin zinc chelates, with brown eggs being notably rich in protoporphyrin IX, the synthesis of which has a marked effect on the intensity of brown eggshell color. This pigment is initially synthesized in the eggshell gland within the oviduct of laying hens and is subsequently deposited throughout the cuticular and calcareous layers of brown eggshell. In this review, we describe the factors affecting brown eggshell color and potential targets for the regulation of pigment synthesis. Protoporphyrin IX synthesis might be compromised by synthetase-mediated pigment synthesis, the redox status of the female birds, and regulation of the nuclear transcription factors associated with δ-aminolevulinic acid synthetase1. We believe that this review will provide a valuable reference for those engaged in studying eggshell depigmentation.
Collapse
Affiliation(s)
- Ming-Yuan Lu
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Li Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Guang-Hai Qi
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hai-Jun Zhang
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Qiu
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Shu-Geng Wu
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
11
|
Fantinatti BEA, Perez ES, Zanella BTT, Valente JS, de Paula TG, Mareco EA, Carvalho RF, Piazza S, Denti MA, Dal-Pai-Silva M. Integrative microRNAome analysis of skeletal muscle of Colossoma macropomum (tambaqui), Piaractus mesopotamicus (pacu), and the hybrid tambacu, based on next-generation sequencing data. BMC Genomics 2021; 22:237. [PMID: 33823787 PMCID: PMC8022549 DOI: 10.1186/s12864-021-07513-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 03/07/2021] [Indexed: 12/19/2022] Open
Abstract
Background Colossoma macropomum (tambaqui) and Piaractus mesopotamicus (pacu) are good fish species for aquaculture. The tambacu, individuals originating from the induced hybridization of the female tambaqui with the male pacu, present rapid growth and robustness, characteristics which have made the tambacu a good choice for Brazilian fish farms. Here, we used small RNA sequencing to examine global miRNA expression in the genotypes pacu (PC), tambaqui (TQ), and hybrid tambacu (TC), (Juveniles, n = 5 per genotype), to better understand the relationship between tambacu and its parental species, and also to clarify the mechanisms involved in tambacu muscle growth and maintenance based on miRNAs expression. Results Regarding differentially expressed (DE) miRNAs between the three genotypes, we observed 8 upregulated and 7 downregulated miRNAs considering TC vs. PC; 14 miRNAs were upregulated and 10 were downregulated considering TC vs. TQ, and 15 miRNAs upregulated and 9 were downregulated considering PC vs. TQ. The majority of the miRNAs showed specific regulation for each genotype pair, and no miRNA were shared between the 3 genotype pairs, in both up- and down-regulated miRNAs. Considering only the miRNAs with validated target genes, we observed the miRNAs miR-144-3p, miR-138-5p, miR-206-3p, and miR-499-5p. GO enrichment analysis showed that the main target genes for these miRNAs were grouped in pathways related to oxygen homeostasis, blood vessel modulation, and oxidative metabolism. Conclusions Our global miRNA analysis provided interesting DE miRNAs in the skeletal muscle of pacu, tambaqui, and the hybrid tambacu. In addition, in the hybrid tambacu, we identified some miRNAs controlling important molecular muscle markers that could be relevant for the farming maximization. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07513-5.
Collapse
Affiliation(s)
- Bruno E A Fantinatti
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, Sao Paulo, 18618-970, Brazil.,Ninth of July University - UNINOVE, Bauru, Sao Paulo, Brazil.,Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy
| | - Erika S Perez
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, Sao Paulo, 18618-970, Brazil
| | - Bruna T T Zanella
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, Sao Paulo, 18618-970, Brazil
| | - Jéssica S Valente
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, Sao Paulo, 18618-970, Brazil
| | - Tassiana G de Paula
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, Sao Paulo, 18618-970, Brazil
| | - Edson A Mareco
- University of Western Sao Paulo - UNOESTE, Presidente Prudente, Sao Paulo, Brazil
| | - Robson F Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, Sao Paulo, 18618-970, Brazil
| | - Silvano Piazza
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy
| | - Michela A Denti
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, Sao Paulo, 18618-970, Brazil.
| |
Collapse
|
12
|
Peng Y, Li J, Luo D, Zhang S, Li S, Wang D, Wang X, Zhang Z, Wang X, Sun C, Gao X, Hui Y, He R. Muscle atrophy induced by overexpression of ALAS2 is related to muscle mitochondrial dysfunction. Skelet Muscle 2021; 11:9. [PMID: 33785075 PMCID: PMC8008657 DOI: 10.1186/s13395-021-00263-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND ALAS2 (delta-aminolevulinate synthase 2) is one of the two isoenzymes catalyzing the synthesis of delta-aminolevulinic acid (ALA), which is the first precursor of heme synthesis. ALAS2-overexpressing transgenic mice (Tg mice) showed syndrome of porphyria, a series of diseases related to the heme anabolism deficiency. Tg mice showed an obvious decrease in muscle size. Muscle atrophy results from a decrease in protein synthesis and an increase in protein degradation, which ultimately leads to a decrease in myofiber size due to loss of contractile proteins, organelles, nuclei, and cytoplasm. METHODS The forelimb muscle grip strength of age-matched ALAS-2 transgenic mice (Tg mice) and wild-type mice (WT mice) were measured with an automated grip strength meter. The activities of serum LDH and CK-MB were measured by Modular DPP. The histology of skeletal muscle (quadriceps femoris and gastrocnemius) was observed by hematoxylin and eosin (HE) staining, immunohistochemistry, and transmission electron microscope. Real-time PCR was used to detect mtDNA content and UCP3 mRNA expression. Evans blue dye staining was used to detect the membrane damage of the muscle fiber. Single skeletal muscle fiber diameter was measured by single-fiber analyses. Muscle adenosine triphosphate (ATP) levels were detected by a luminometric assay with an ATP assay kit. RESULTS Compared with WT mice, the strength of forelimb muscle and mass of gastrocnemius were decreased in Tg mice. The activities of serum CK-MB and LDH, the number of central nuclei fibers, and Evans blue positive fibers were more than those in WT mice, while the diameter of single fibers was smaller, which were associated with suppressed expression levels of MHC, myoD1, dystrophin, atrogin1, and MuRF1. Re-expression of eMyHC was only showed in the quadriceps of Tg mice, but not in WT mice. Muscle mitochondria in Tg mice showed dysfunction with descented ATP production and mtDNA content, downregulated UCP3 mRNA expression, and swelling of mitochondria. CONCLUSION ALAS2 overexpressing-transgenic mice (Tg mice) showed muscle dystrophy, which was associated with decreased atrogin-1 and MuRF-1, and closely related to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yahui Peng
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150086, China.,Heilongjiang Academy of Medical Sciences, Harbin, 150086, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Beijing, 150086, China
| | - Jihong Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150086, China.,Heilongjiang Academy of Medical Sciences, Harbin, 150086, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Beijing, 150086, China
| | - Dixian Luo
- Institute of Translational Medicine, National and Local Joint Engineering Laboratory of High-through Molecular Diagnostic Technology, the First People's Hospital of Chenzhou, The First Affiliated Hospital of Xiangnan University, Chenzhou, 423000, China
| | - Shuai Zhang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150086, China.,Heilongjiang Academy of Medical Sciences, Harbin, 150086, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Beijing, 150086, China
| | - Sijia Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150086, China.,Heilongjiang Academy of Medical Sciences, Harbin, 150086, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Beijing, 150086, China
| | - Dayong Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150086, China.,Heilongjiang Academy of Medical Sciences, Harbin, 150086, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Beijing, 150086, China
| | - Xidi Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150086, China.,Heilongjiang Academy of Medical Sciences, Harbin, 150086, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Beijing, 150086, China
| | - Zhujun Zhang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150086, China.,Heilongjiang Academy of Medical Sciences, Harbin, 150086, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Beijing, 150086, China
| | - Xue Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150086, China.,Heilongjiang Academy of Medical Sciences, Harbin, 150086, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Beijing, 150086, China
| | - Changhui Sun
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150086, China.,Heilongjiang Academy of Medical Sciences, Harbin, 150086, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Beijing, 150086, China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150086, China.,Heilongjiang Academy of Medical Sciences, Harbin, 150086, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Beijing, 150086, China
| | - Yang Hui
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150086, China. .,Heilongjiang Academy of Medical Sciences, Harbin, 150086, China. .,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Beijing, 150086, China.
| | - Rongzhang He
- Institute of Translational Medicine, National and Local Joint Engineering Laboratory of High-through Molecular Diagnostic Technology, the First People's Hospital of Chenzhou, The First Affiliated Hospital of Xiangnan University, Chenzhou, 423000, China. .,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, China.
| |
Collapse
|
13
|
Mitochondrial transcription factor A induces the declined mitochondrial biogenesis correlative with depigmentation of brown eggshell in aged laying hens. Poult Sci 2020; 100:100811. [PMID: 33518349 PMCID: PMC7936150 DOI: 10.1016/j.psj.2020.10.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 11/21/2022] Open
Abstract
Eggshell color is an important characteristic for poultry eggs. Eggs from aged hens usually have poor shell color that is unacceptable for the table egg market. The objective of this study was to examine effects of pigment synthesis and mitochondrial biogenesis on brown eggshell color of aged laying hens. In this trial, 8 hens laying eggs with darker shell color and 8 hens laying eggs with lighter shell color were selected from 300 62-week-old Hy-Line brown-egg laying hens. Results showed that egg weight (P < 0.05), eggshell weight (P < 0.01), protoporphyrin IX (Pp IX) content of the eggshell and the shell gland (P < 0.001), and biliverdin content of the shell gland (P < 0.001) were significantly declined in the light-shell group compared with the dark-shell group. Relative mRNA expression of δ-aminolevulinic acid synthase1 (ALAS1) (P < 0.05), coproporphyrinogen oxidase (P < 0.01), ATP-binding cassette transporter ABCG2 (P < 0.01), and mitochondrial transcription factor A (P < 0.05) was reduced in hens laying lighter brown eggshell. Moreover relative mRNA expression of mitochondrial DNA copy number (P < 0.01), mitochondrial NADH dehydrogenase subunit 4 (P < 0.05), mitochondrial ATP synthase F0 subunit 8 (P < 0.05), and mitochondrial cytochrome c oxidase 1 (P < 0.01) was significantly decreased in the shell gland of the light-shell group. In addition, NAD+ contents of the shell gland were increased in the dark-shell group (P < 0.01). Brown eggshell depigmentation is a result of decreased Pp IX content in the eggshell and the shell gland. Decreased mitochondrial biogenesis may contribute to the depigmentation of brown eggshell by targeting ALAS1 and ALAS1-mediated Pp IX biosynthesis.
Collapse
|
14
|
Bailey HJ, Bezerra GA, Marcero JR, Padhi S, Foster WR, Rembeza E, Roy A, Bishop DF, Desnick RJ, Bulusu G, Dailey HA, Yue WW. Human aminolevulinate synthase structure reveals a eukaryotic-specific autoinhibitory loop regulating substrate binding and product release. Nat Commun 2020; 11:2813. [PMID: 32499479 PMCID: PMC7272653 DOI: 10.1038/s41467-020-16586-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
5'-aminolevulinate synthase (ALAS) catalyzes the first step in heme biosynthesis, generating 5'-aminolevulinate from glycine and succinyl-CoA. Inherited frameshift indel mutations of human erythroid-specific isozyme ALAS2, within a C-terminal (Ct) extension of its catalytic core that is only present in higher eukaryotes, lead to gain-of-function X-linked protoporphyria (XLP). Here, we report the human ALAS2 crystal structure, revealing that its Ct-extension folds onto the catalytic core, sits atop the active site, and precludes binding of substrate succinyl-CoA. The Ct-extension is therefore an autoinhibitory element that must re-orient during catalysis, as supported by molecular dynamics simulations. Our data explain how Ct deletions in XLP alleviate autoinhibition and increase enzyme activity. Crystallography-based fragment screening reveals a binding hotspot around the Ct-extension, where fragments interfere with the Ct conformational dynamics and inhibit ALAS2 activity. These fragments represent a starting point to develop ALAS2 inhibitors as substrate reduction therapy for porphyria disorders that accumulate toxic heme intermediates.
Collapse
Affiliation(s)
- Henry J Bailey
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Gustavo A Bezerra
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Jason R Marcero
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Siladitya Padhi
- TCS Innovation Labs-Hyderabad (Life Sciences Division), Tata Consultancy Services Ltd, Hyderabad, 500081, India
| | - William R Foster
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Elzbieta Rembeza
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Arijit Roy
- TCS Innovation Labs-Hyderabad (Life Sciences Division), Tata Consultancy Services Ltd, Hyderabad, 500081, India
| | - David F Bishop
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Robert J Desnick
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gopalakrishnan Bulusu
- TCS Innovation Labs-Hyderabad (Life Sciences Division), Tata Consultancy Services Ltd, Hyderabad, 500081, India
| | - Harry A Dailey
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Wyatt W Yue
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
15
|
Phillips JD. Heme biosynthesis and the porphyrias. Mol Genet Metab 2019; 128:164-177. [PMID: 31326287 PMCID: PMC7252266 DOI: 10.1016/j.ymgme.2019.04.008] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 04/10/2019] [Accepted: 04/18/2019] [Indexed: 01/08/2023]
Abstract
Porphyrias, is a general term for a group of metabolic diseases that are genetic in nature. In each specific porphyria the activity of specific enzymes in the heme biosynthetic pathway is defective and leads to accumulation of pathway intermediates. Phenotypically, each disease leads to either neurologic and/or photocutaneous symptoms based on the metabolic intermediate that accumulates. In each porphyria the distinct patterns of these substances in plasma, erythrocytes, urine and feces are the basis for diagnostically defining the metabolic defect underlying the clinical observations. Porphyrias may also be classified as either erythropoietic or hepatic, depending on the principal site of accumulation of pathway intermediates. The erythropoietic porphyrias are congenital erythropoietic porphyria (CEP), and erythropoietic protoporphyria (EPP). The acute hepatic porphyrias include ALA dehydratase deficiency porphyria, acute intermittent porphyria (AIP), hereditary coproporphyria (HCP) and variegate porphyria (VP). Porphyria cutanea tarda (PCT) is the only porphyria that has both genetic and/or environmental factors that lead to reduced activity of uroporphyrinogen decarboxylase in the liver. Each of the 8 enzymes in the heme biosynthetic pathway have been associated with a specific porphyria (Table 1). Mutations affecting the erythroid form of ALA synthase (ALAS2) are most commonly associated with X-linked sideroblastic anemia, however, gain-of-function mutations of ALAS2 have also been associated with a variant form of EPP. This overview does not describe the full clinical spectrum of the porphyrias, but is meant to be an overview of the biochemical steps that are required to make heme in both erythroid and non-erythroid cells.
Collapse
Affiliation(s)
- John D Phillips
- Division of Hematology, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States of America.
| |
Collapse
|
16
|
Stoian N, Kaganjo J, Zeilstra-Ryalls J. Resolving the roles of the Rhodobacter sphaeroides HemA and HemT 5-aminolevulinic acid synthases. Mol Microbiol 2018; 110:1011-1029. [PMID: 30232811 DOI: 10.1111/mmi.14133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 11/30/2022]
Abstract
Strains of the phototrophic alpha-proteobacterium Rhodobacter sphaeroides vary in the number of enzymes catalyzing the formation of 5-aminolevulinic acid (ALA synthases) that are encoded in their genomes. All have hemA, but not all have hemT. This study compared transcription of these genes, and also properties of their products among three wild-type strains; 2.4.3 has hemA alone, 2.4.1 and 2.4.9 have both hemA and hemT. Using lacZ reporter plasmids all hemA genes were found to be upregulated under anaerobic conditions, but induction amplitudes differ. hemT is transcriptionally silent in 2.4.1 but actively transcribed in 2.4.9, and strongly upregulated under anaerobic-dark growth conditions when cells are respiring dimethyl sulfoxide, vs. aerobic-dark or phototrophic (anaerobic-light) conditions. Two extracytoplasmic function (ECF)-type sigma factors present in 2.4.9, but absent from 2.4.1 are directly involved in hemT transcription. Kinetic properties of the ALA synthases of all three strains were similar, but HemT enzymes are far less sensitive to feedback inhibition by hemin than HemA enzymes, and HemT is less active under oxidizing conditions. A model is presented that compares and contrast events in strains 2.4.1 and 2.4.9.
Collapse
Affiliation(s)
- Natalie Stoian
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, USA
| | - James Kaganjo
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, USA
| | - Jill Zeilstra-Ryalls
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, USA
| |
Collapse
|
17
|
Ikushiro H, Nagami A, Takai T, Sawai T, Shimeno Y, Hori H, Miyahara I, Kamiya N, Yano T. Heme-dependent Inactivation of 5-Aminolevulinate Synthase from Caulobacter crescentus. Sci Rep 2018; 8:14228. [PMID: 30242198 PMCID: PMC6154995 DOI: 10.1038/s41598-018-32591-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/11/2018] [Indexed: 11/09/2022] Open
Abstract
The biosynthesis of heme is strictly regulated, probably because of the toxic effects of excess heme and its biosynthetic precursors. In many organisms, heme biosynthesis starts with the production of 5-aminolevulinic acid (ALA) from glycine and succinyl-coenzyme A, a process catalyzed by a homodimeric enzyme, pyridoxal 5′-phosphate (PLP)-dependent 5-aminolevulinate synthase (ALAS). ALAS activity is negatively regulated by heme in various ways, such as the repression of ALAS gene expression, degradation of ALAS mRNA, and inhibition of mitochondrial translocation of the mammalian precursor protein. There has been no clear evidence, however, that heme directly binds to ALAS to negatively regulate its activity. We found that recombinant ALAS from Caulobacter crescentus was inactivated via a heme-mediated feedback manner, in which the essential coenzyme PLP was rel eased to form the inactive heme-bound enzyme. The spectroscopic properties of the heme-bound ALAS showed that a histidine-thiolate hexa-coordinated ferric heme bound to each subunit with a one-to-one stoichiometry. His340 and Cys398 were identified as the axial ligands of heme, and mutant ALASs lacking either of these ligands became resistant to heme-mediated inhibition. ALAS expressed in C. crescentus was also found to bind heme, suggesting that heme-mediated feedback inhibition of ALAS is physiologically relevant in C. crescentus.
Collapse
Affiliation(s)
- Hiroko Ikushiro
- Department of Biochemistry, Faculty of Medicine, Osaka Medical College, Osaka, 569-8686, Japan.
| | - Atsushi Nagami
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
| | - Tomoko Takai
- Department of Biochemistry, Faculty of Medicine, Osaka Medical College, Osaka, 569-8686, Japan.,Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Taiki Sawai
- Department of Biochemistry, Faculty of Medicine, Osaka Medical College, Osaka, 569-8686, Japan
| | - Yuki Shimeno
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
| | - Hiroshi Hori
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Ikuko Miyahara
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
| | - Nobuo Kamiya
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan.,The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Osaka, 558-8585, Japan
| | - Takato Yano
- Department of Biochemistry, Faculty of Medicine, Osaka Medical College, Osaka, 569-8686, Japan.
| |
Collapse
|
18
|
Saitoh S, Okano S, Nohara H, Nakano H, Shirasawa N, Naito A, Yamamoto M, Kelly VP, Takahashi K, Tanaka T, Nakajima M, Nakajima O. 5-aminolevulinic acid (ALA) deficiency causes impaired glucose tolerance and insulin resistance coincident with an attenuation of mitochondrial function in aged mice. PLoS One 2018; 13:e0189593. [PMID: 29364890 PMCID: PMC5783358 DOI: 10.1371/journal.pone.0189593] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 11/28/2017] [Indexed: 12/25/2022] Open
Abstract
In vertebrates, the initial step in heme biosynthesis is the production of 5-aminolevulinic acid (ALA) by ALA synthase (ALAS). ALA formation is believed to be the rate-limiting step for cellular heme production. Recently, several cohort studies have demonstrated the potential of ALA as a treatment for individuals with prediabetes and type-2 diabetes mellitus. These studies imply that a mechanism exists by which ALA or heme can control glucose metabolism. The ALAS1 gene encodes a ubiquitously expressed isozyme. Mice heterozygous null for ALAS1 (A1+/-s) experience impaired glucose tolerance (IGT) and insulin resistance (IR) beyond 20-weeks of age (aged A1+/-s). IGT and IR were remedied in aged A1+/-s by the oral administration of ALA for 1 week. However, the positive effect of ALA proved to be reversible and was lost upon termination of ALA administration. In the skeletal muscle of aged A1+/-s an attenuation of mitochondrial function is observed, coinciding with IGT and IR. Oral administration of ALA for 1-week brought about only a partial improvement in mitochondrial activity however, a 6-week period of ALA treatment was sufficient to remedy mitochondrial function. Studies on differentiated C2C12 myocytes indicate that the impairment of glucose metabolism is a cell autonomous effect and that ALA deficiency ultimately leads to heme depletion. This sequela is evidenced by a reduction of glucose uptake in C2C12 cells following the knockdown of ALAS1 or the inhibition of heme biosynthesis by succinylacetone. Our data provide in vivo proof that ALA deficiency attenuates mitochondrial function, and causes IGT and IR in an age-dependent manner. The data reveals an unexpected metabolic link between heme and glucose that is relevant to the pathogenesis of IGT/IR.
Collapse
Affiliation(s)
- Shinichi Saitoh
- Research Center for Molecular Genetics, Institute for Promotion of Medical Science Research, Yamagata University Faculty of Medicine, Yamagata, Yamagata, Japan
| | - Satoshi Okano
- Research Center for Molecular Genetics, Institute for Promotion of Medical Science Research, Yamagata University Faculty of Medicine, Yamagata, Yamagata, Japan
| | - Hidekazu Nohara
- Research Center for Molecular Genetics, Institute for Promotion of Medical Science Research, Yamagata University Faculty of Medicine, Yamagata, Yamagata, Japan
| | - Hiroshi Nakano
- Research Center for Molecular Genetics, Institute for Promotion of Medical Science Research, Yamagata University Faculty of Medicine, Yamagata, Yamagata, Japan
| | - Nobuyuki Shirasawa
- Department of Anatomy and Structural Science, Yamagata University Faculty of Medicine, Yamagata, Yamagata, Japan
| | - Akira Naito
- Department of Anatomy and Structural Science, Yamagata University Faculty of Medicine, Yamagata, Yamagata, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University School of Medicine, Sendai, Japan
| | - Vincent P. Kelly
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | | | | | - Osamu Nakajima
- Research Center for Molecular Genetics, Institute for Promotion of Medical Science Research, Yamagata University Faculty of Medicine, Yamagata, Yamagata, Japan
| |
Collapse
|
19
|
Iron metabolism in erythroid cells and patients with congenital sideroblastic anemia. Int J Hematol 2017; 107:44-54. [PMID: 29139060 DOI: 10.1007/s12185-017-2368-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 11/08/2017] [Indexed: 01/31/2023]
Abstract
Sideroblastic anemias are anemic disorders characterized by the presence of ring sideroblasts in a patient's bone marrow. These disorders are typically divided into two types, congenital or acquired sideroblastic anemia. Recently, several genes were reported as responsible for congenital sideroblastic anemia; however, the relationship between the function of the gene products and ring sideroblasts is largely unclear. In this review article, we will focus on the iron metabolism in erythroid cells as well as in patients with congenital sideroblastic anemia.
Collapse
|
20
|
Downregulation of ALAS1 by nicarbazin treatment underlies the reduced synthesis of protoporphyrin IX in shell gland of laying hens. Sci Rep 2017; 7:6253. [PMID: 28740143 PMCID: PMC5524794 DOI: 10.1038/s41598-017-06527-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/08/2017] [Indexed: 12/31/2022] Open
Abstract
Shell colour is an important trait for eggs and an understanding of pigment deposition will assist potential management of egg shell colour loss. We demonstrated that nicarbazin feeding down-regulated ALAS1 and reduced protoporphyrin IX (PP IX) in both shell gland and eggshell, indicating the role of nicarbazin in inhibiting the synthesis of PP IX. Additionally, the expression levels of the genes did not show sequential upregulation in the same order of diurnal time-points (TP) during egg formation. The gene SLC25A38, responsible for transporting glycine from cytoplasm to mitochondria, and the gene ALAS1, encoding rate-limiting enzyme (delta-aminolevulinic acid synthase 1), had higher expression at 15 hr, as compared with 2, 5 and 23.5 hrs postoviposition. Interestingly, ABCB6, a gene encoding an enzyme responsible for transporting coproporphyrinogen III, showed higher expression level at 2 and 5 hrs. However, the expression of CPOX that converts coproporphyrinogen III to protoporphyrinogen III, and ABCG2 that transports PP IX out from mitochondria did not alter. Nevertheless, mitochondrial count per cell did not show consistent change in response to time-points postoviposition and nicarbazin feeding. The information obtained in the study sheds light on how nicarbazin disrupts the synthesis of PP IX.
Collapse
|
21
|
Ponka P, Sheftel AD, English AM, Scott Bohle D, Garcia-Santos D. Do Mammalian Cells Really Need to Export and Import Heme? Trends Biochem Sci 2017; 42:395-406. [PMID: 28254242 DOI: 10.1016/j.tibs.2017.01.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/13/2017] [Accepted: 01/26/2017] [Indexed: 01/07/2023]
Abstract
Heme is a cofactor that is essential to almost all forms of life. The production of heme is a balancing act between the generation of the requisite levels of the end-product and protection of the cell and/or organism against any toxic substrates, intermediates and, in this case, end-product. In this review, we provide an overview of our understanding of the formation and regulation of this metallocofactor and discuss new research on the cell biology of heme homeostasis, with a focus on putative transmembrane transporters now proposed to be important regulators of heme distribution. The main text is complemented by a discussion dedicated to the intricate chemistry and biochemistry of heme, which is often overlooked when new pathways of heme transport are conceived.
Collapse
Affiliation(s)
- Prem Ponka
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, H3T 1E2, Canada; Department of Physiology, McGill University, Montréal, QC, H3G 1Y6, Canada.
| | - Alex D Sheftel
- Spartan Bioscience Inc., Ottawa, ON, K2H 1B2, Canada; High Impact Editing, Ottawa, ON, K1B 3Y6, Canada
| | - Ann M English
- Department of Chemistry and Biochemistry, Centre for Research in Molecular Modeling and PROTEO, Concordia University, Montréal, QC, H4B 1R, Canada
| | - D Scott Bohle
- Department of Chemistry, McGill University, Montréal, QC, H3A 0B8, Canada
| | - Daniel Garcia-Santos
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, H3T 1E2, Canada; Department of Physiology, McGill University, Montréal, QC, H3G 1Y6, Canada
| |
Collapse
|
22
|
Abstract
INTRODUCTION Mitochondria are cellular organelles that perform numerous bioenergetic, biosynthetic, and regulatory functions and play a central role in iron metabolism. Extracellular iron is taken up by cells and transported to the mitochondria, where it is utilized for synthesis of cofactors essential to the function of enzymes involved in oxidation-reduction reactions, DNA synthesis and repair, and a variety of other cellular processes. Areas covered: This article reviews the trafficking of iron to the mitochondria and normal mitochondrial iron metabolism, including heme synthesis and iron-sulfur cluster biogenesis. Much of our understanding of mitochondrial iron metabolism has been revealed by pathologies that disrupt normal iron metabolism. These conditions affect not only iron metabolism but mitochondrial function and systemic health. Therefore, this article also discusses these pathologies, including conditions of systemic and mitochondrial iron dysregulation as well as cancer. Literature covering these areas was identified via PubMed searches using keywords: Iron, mitochondria, Heme Synthesis, Iron-sulfur Cluster, and Cancer. References cited by publications retrieved using this search strategy were also consulted. Expert commentary: While much has been learned about mitochondrial and its iron, key questions remain. Developing a better understanding of mitochondrial iron and its regulation will be paramount in developing therapies for syndromes that affect mitochondrial iron.
Collapse
Affiliation(s)
- Bibbin T. Paul
- Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, Connecticut
| | - David H. Manz
- Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, Connecticut
- School of Dental Medicine, University of Connecticut Health, Farmington, Connecticut
| | - Frank M. Torti
- Department of Medicine, University of Connecticut Health, Farmington, Connecticut
| | - Suzy V. Torti
- Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, Connecticut
| |
Collapse
|
23
|
Williams LM, Lago BA, McArthur AG, Raphenya AR, Pray N, Saleem N, Salas S, Paulson K, Mangar RS, Liu Y, Vo AH, Shavit JA. The transcription factor, Nuclear factor, erythroid 2 (Nfe2), is a regulator of the oxidative stress response during Danio rerio development. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 180:141-154. [PMID: 27716579 PMCID: PMC5274700 DOI: 10.1016/j.aquatox.2016.09.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/28/2016] [Accepted: 09/30/2016] [Indexed: 05/17/2023]
Abstract
Development is a complex and well-defined process characterized by rapid cell proliferation and apoptosis. At this stage in life, a developmentally young organism is more sensitive to toxicants as compared to an adult. In response to pro-oxidant exposure, members of the Cap'n'Collar (CNC) basic leucine zipper (b-ZIP) transcription factor family (including Nfe2 and Nfe2-related factors, Nrfs) activate the expression of genes whose protein products contribute to reduced toxicity. Here, we studied the role of the CNC protein, Nfe2, in the developmental response to pro-oxidant exposure in the zebrafish (Danio rerio). Following acute waterborne exposures to diquat or tert-buytlhydroperoxide (tBOOH) at one of three developmental stages, wildtype (WT) and nfe2 knockout (KO) embryos and larvae were morphologically scored and their transcriptomes sequenced. Early in development, KO animals suffered from hypochromia that was made more severe through exposure to pro-oxidants; this phenotype in the KO may be linked to decreased expression of alas2, a gene involved in heme synthesis. WT and KO eleutheroembryos and larvae were phenotypically equally affected by exposure to pro-oxidants, where tBOOH caused more pronounced phenotypes as compared to diquat. Comparing diquat and tBOOH exposed embryos relative to the WT untreated control, a greater number of genes were up-regulated in the tBOOH condition as compared to diquat (tBOOH: 304 vs diquat: 148), including those commonly found to be differentially regulated in the vertebrate oxidative stress response (OSR) (e.g. hsp70.2, txn1, and gsr). When comparing WT and KO across all treatments and times, there were 1170 genes that were differentially expressed, of which 33 are known targets of the Nrf proteins Nrf1 and Nrf2. More specifically, in animals exposed to pro-oxidants a total of 968 genes were differentially expressed between WT and KO across developmental time, representing pathways involved in coagulation, embryonic organ development, body fluid level regulation, erythrocyte differentiation, and oxidation-reduction, amongst others. The greatest number of genes that changed in expression between WT and KO occurred in animals exposed to diquat at 2h post fertilization (hpf). Across time and treatment, there were six genes (dhx40, cfap70, dnajb9b, slc35f4, spi-c, and gpr19) that were significantly up-regulated in KO compared to WT and four genes (fhad1, cyp4v7, nlrp12, and slc16a6a) that were significantly down-regulated. None of these genes have been previously identified as targets of Nfe2 or the Nrf family. These results demonstrate that the zebrafish Nfe2 may be a regulator of both primitive erythropoiesis and the OSR during development.
Collapse
Affiliation(s)
- Larissa M Williams
- Biology Department, Bates College, 44 Campus Avenue, Lewiston, ME 04240, USA; The MDI Biological Laboratory, 159 Old Bar Harbor Road, Bar Harbor, ME 04609 USA, USA.
| | - Briony A Lago
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Andrew G McArthur
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Amogelang R Raphenya
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Nicholas Pray
- Biology Department, Bates College, 44 Campus Avenue, Lewiston, ME 04240, USA.
| | - Nabil Saleem
- Biology Department, Bates College, 44 Campus Avenue, Lewiston, ME 04240, USA; The MDI Biological Laboratory, 159 Old Bar Harbor Road, Bar Harbor, ME 04609 USA, USA.
| | - Sophia Salas
- Biology Department, Bates College, 44 Campus Avenue, Lewiston, ME 04240, USA; The MDI Biological Laboratory, 159 Old Bar Harbor Road, Bar Harbor, ME 04609 USA, USA.
| | - Katherine Paulson
- Biology Department, Bates College, 44 Campus Avenue, Lewiston, ME 04240, USA; The MDI Biological Laboratory, 159 Old Bar Harbor Road, Bar Harbor, ME 04609 USA, USA.
| | - Roshni S Mangar
- The MDI Biological Laboratory, 159 Old Bar Harbor Road, Bar Harbor, ME 04609 USA, USA; College of the Atlantic, 105 Eden Street, Bar Harbor, ME 04609, USA.
| | - Yang Liu
- Department of Pediatrics and Communicable Diseases, University of Michigan, 8200 MSRB III 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA.
| | - Andy H Vo
- Department of Pediatrics and Communicable Diseases, University of Michigan, 8200 MSRB III 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA.
| | - Jordan A Shavit
- Department of Pediatrics and Communicable Diseases, University of Michigan, 8200 MSRB III 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA.
| |
Collapse
|
24
|
Kubota Y, Nomura K, Katoh Y, Yamashita R, Kaneko K, Furuyama K. Novel Mechanisms for Heme-dependent Degradation of ALAS1 Protein as a Component of Negative Feedback Regulation of Heme Biosynthesis. J Biol Chem 2016; 291:20516-29. [PMID: 27496948 DOI: 10.1074/jbc.m116.719161] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Indexed: 12/30/2022] Open
Abstract
In eukaryotic cells, heme production is tightly controlled by heme itself through negative feedback-mediated regulation of nonspecific 5-aminolevulinate synthase (ALAS1), which is a rate-limiting enzyme for heme biosynthesis. However, the mechanism driving the heme-dependent degradation of the ALAS1 protein in mitochondria is largely unknown. In the current study, we provide evidence that the mitochondrial ATP-dependent protease ClpXP, which is a heteromultimer of CLPX and CLPP, is involved in the heme-dependent degradation of ALAS1 in mitochondria. We found that ALAS1 forms a complex with ClpXP in a heme-dependent manner and that siRNA-mediated suppression of either CLPX or CLPP expression induced ALAS1 accumulation in the HepG2 human hepatic cell line. We also found that a specific heme-binding motif on ALAS1, located at the N-terminal end of the mature protein, is required for the heme-dependent formation of this protein complex. Moreover, hemin-mediated oxidative modification of ALAS1 resulted in the recruitment of LONP1, another ATP-dependent protease in the mitochondrial matrix, into the ALAS1 protein complex. Notably, the heme-binding site in the N-terminal region of the mature ALAS1 protein is also necessary for the heme-dependent oxidation of ALAS1. These results suggest that ALAS1 undergoes a conformational change following the association of heme to the heme-binding motif on this protein. This change in the structure of ALAS1 may enhance the formation of complexes between ALAS1 and ATP-dependent proteases in the mitochondria, thereby accelerating the degradation of ALAS1 protein to maintain appropriate intracellular heme levels.
Collapse
Affiliation(s)
- Yoshiko Kubota
- From the Department of Molecular Biochemistry, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694 and
| | - Kazumi Nomura
- From the Department of Molecular Biochemistry, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694 and
| | - Yasutake Katoh
- the Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Rina Yamashita
- From the Department of Molecular Biochemistry, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694 and
| | - Kiriko Kaneko
- From the Department of Molecular Biochemistry, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694 and
| | - Kazumichi Furuyama
- From the Department of Molecular Biochemistry, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694 and
| |
Collapse
|
25
|
Samiullah S, Roberts JR, Chousalkar K. Eggshell color in brown-egg laying hens - a review. Poult Sci 2015; 94:2566-75. [PMID: 26240390 PMCID: PMC7107097 DOI: 10.3382/ps/pev202] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/14/2015] [Indexed: 12/21/2022] Open
Abstract
The major pigment in eggshells of brown-egg laying hens is protoporphyrin IX, but traces of biliverdin and its zinc chelates are also present. The pigment appears to be synthesized in the shell gland. The protoporphyrin IX synthetic pathway is well defined, but precisely where and how it is synthesized in the shell gland of the brown-egg laying hen is still ambiguous. The pigment is deposited onto all shell layers including the shell membranes, but most of it is concentrated in the outermost layer of the calcareous shell and in the cuticle. Recently, the genes that are involved in pigment synthesis have been identified, but the genetic control of synthesis and deposition of brown pigment in the commercial laying hen is not fully understood. The brown coloration of the shell is an important shell quality parameter and has a positive influence on consumer preference. The extent of pigment deposition is influenced by the housing system, hen age, hen strain, diet, stressors, and certain diseases such as infectious bronchitis. In this article, the physiological and biochemical characteristics of the brown pigment in commercial brown-egg layers are reviewed in relation to its various functions in the poultry industry.
Collapse
Affiliation(s)
- S Samiullah
- Animal Science, School of Environmental and Rural Science, Woolshed Building (W49), University of New England, Armidale, New South Wales, 2351, Australia
| | - J R Roberts
- Animal Science, School of Environmental and Rural Science, Woolshed Building (W49), University of New England, Armidale, New South Wales, 2351, Australia
| | - K Chousalkar
- School of Animal & Veterinary Studies, University of Adelaide, Roseworthy, SA 5371, Australia
| |
Collapse
|
26
|
Fratz EJ, Clayton J, Hunter GA, Ducamp S, Breydo L, Uversky VN, Deybach JC, Gouya L, Puy H, Ferreira GC. Human Erythroid 5-Aminolevulinate Synthase Mutations Associated with X-Linked Protoporphyria Disrupt the Conformational Equilibrium and Enhance Product Release. Biochemistry 2015; 54:5617-31. [PMID: 26300302 PMCID: PMC4573335 DOI: 10.1021/acs.biochem.5b00407] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Regulation of 5-aminolevulinate synthase (ALAS) is at the origin of balanced heme production in mammals. Mutations in the C-terminal region of human erythroid-specific ALAS (hALAS2) are associated with X-linked protoporphyria (XLPP), a disease characterized by extreme photosensitivity, with elevated blood concentrations of free protoporphyrin IX and zinc protoporphyrin. To investigate the molecular basis for this disease, recombinant hALAS2 and variants of the enzyme harboring the gain-of-function XLPP mutations were constructed, purified, and analyzed kinetically, spectroscopically, and thermodynamically. Enhanced activities of the XLPP variants resulted from increases in the rate at which the product 5-aminolevulinate (ALA) was released from the enzyme. Circular dichroism spectroscopy revealed that the XLPP mutations altered the microenvironment of the pyridoxal 5'-phosphate cofactor, which underwent further and specific alterations upon succinyl-CoA binding. Transient kinetic analyses of the variant-catalyzed reactions and protein fluorescence quenching upon binding of ALA to the XLPP variants demonstrated that the protein conformational transition step associated with product release was predominantly affected. Of relevance is the fact that XLPP could also be modeled in cell culture. We propose that (1) the XLPP mutations destabilize the succinyl-CoA-induced hALAS2 closed conformation and thus accelerate ALA release, (2) the extended C-terminus of wild-type mammalian ALAS2 provides a regulatory role that allows for allosteric modulation of activity, thereby controlling the rate of erythroid heme biosynthesis, and (3) this control is disrupted in XLPP, resulting in porphyrin accumulation.
Collapse
Affiliation(s)
- Erica J. Fratz
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, USA
| | - Jerome Clayton
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, USA
| | - Gregory A. Hunter
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, USA
| | - Sarah Ducamp
- Assistance Publique-Hôpitaux de Paris, Centre Français des Porphyries, Hôpital Louis Mourier, 178 rue des Renouillers, 92701 Colombes CEDEX, France
- INSERM U1149, CNRS ERL 8252, Centre de Recherche sur l’inflammation, 16 rue Henri Huchard, 75018, Université Paris Diderot, Site Bichat, 75018 Paris, France; Laboratory of Excellence, GR-Ex, Paris, France
| | - Leonid Breydo
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, USA
| | - Jean-Charles Deybach
- Assistance Publique-Hôpitaux de Paris, Centre Français des Porphyries, Hôpital Louis Mourier, 178 rue des Renouillers, 92701 Colombes CEDEX, France
- INSERM U1149, CNRS ERL 8252, Centre de Recherche sur l’inflammation, 16 rue Henri Huchard, 75018, Université Paris Diderot, Site Bichat, 75018 Paris, France; Laboratory of Excellence, GR-Ex, Paris, France
| | - Laurent Gouya
- Assistance Publique-Hôpitaux de Paris, Centre Français des Porphyries, Hôpital Louis Mourier, 178 rue des Renouillers, 92701 Colombes CEDEX, France
- INSERM U1149, CNRS ERL 8252, Centre de Recherche sur l’inflammation, 16 rue Henri Huchard, 75018, Université Paris Diderot, Site Bichat, 75018 Paris, France; Laboratory of Excellence, GR-Ex, Paris, France
| | - Hervé Puy
- Assistance Publique-Hôpitaux de Paris, Centre Français des Porphyries, Hôpital Louis Mourier, 178 rue des Renouillers, 92701 Colombes CEDEX, France
- INSERM U1149, CNRS ERL 8252, Centre de Recherche sur l’inflammation, 16 rue Henri Huchard, 75018, Université Paris Diderot, Site Bichat, 75018 Paris, France; Laboratory of Excellence, GR-Ex, Paris, France
| | - Gloria C. Ferreira
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, USA
- Department of Chemistry, University of South Florida, Tampa, Florida, 33612, USA
| |
Collapse
|
27
|
Sun F, Cheng Y, Chen C. Regulation of heme biosynthesis and transport in metazoa. SCIENCE CHINA-LIFE SCIENCES 2015; 58:757-64. [PMID: 26100009 DOI: 10.1007/s11427-015-4885-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/22/2015] [Indexed: 02/08/2023]
Abstract
Heme is an iron-containing tetrapyrrole that plays a critical role in regulating a variety of biological processes including oxygen and electron transport, gas sensing, signal transduction, biological clock, and microRNA processing. Most metazoan cells synthesize heme via a conserved pathway comprised of eight enzyme-catalyzed reactions. Heme can also be acquired from food or extracellular environment. Cellular heme homeostasis is maintained through the coordinated regulation of synthesis, transport, and degradation. This review presents the current knowledge of the synthesis and transport of heme in metazoans and highlights recent advances in the regulation of these pathways.
Collapse
Affiliation(s)
- FengXiu Sun
- College of Life Sciences and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, China
| | | | | |
Collapse
|
28
|
Ogawa-Otomo A, Kurisaki A, Ito Y. Aminolevulinate synthase 2 mediates erythrocyte differentiation by regulating larval globin expression during Xenopus primary hematopoiesis. Biochem Biophys Res Commun 2014; 456:476-81. [PMID: 25482442 DOI: 10.1016/j.bbrc.2014.11.110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 11/27/2014] [Indexed: 10/24/2022]
Abstract
Hemoglobin synthesis by erythrocytes continues throughout a vertebrate's lifetime. The mechanism of mammalian heme synthesis has been studied for many years; aminolevulinate synthase 2 (ALAS2), a heme synthetase, is associated with X-linked dominant protoporphyria in humans. Amphibian and mammalian blood cells differ, but little is known about amphibian embryonic hemoglobin synthesis. We investigated the function of the Xenopus alas2 gene (Xalas2) in primitive amphibian erythrocytes and found that it is first expressed in primitive erythroid cells before hemoglobin alpha 3 subunit (hba3) during primary hematopoiesis and in the posterior ventral blood islands at the tailbud stage. Xalas2 is not expressed during secondary hematopoiesis in the dorsal lateral plate. Hemoglobin was barely detectable by o-dianisidine staining and hba3 transcript levels decreased in Xalas2-knockdown embryos. These results suggest that Xalas2 might be able to synthesize hemoglobin during hematopoiesis and mediate erythrocyte differentiation by regulating hba3 expression in Xenopus laevis.
Collapse
Affiliation(s)
- Asako Ogawa-Otomo
- Graduate School of Life and Environmental Sciences, The University of Tsukuba, Central 4, Higashi 1-1-1, Tsukuba, Ibaraki 305-8562, Japan; Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, Higashi 1-1-1, Tsukuba, Ibaraki 305-8562, Japan
| | - Akira Kurisaki
- Graduate School of Life and Environmental Sciences, The University of Tsukuba, Central 4, Higashi 1-1-1, Tsukuba, Ibaraki 305-8562, Japan; Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, Higashi 1-1-1, Tsukuba, Ibaraki 305-8562, Japan
| | - Yuzuru Ito
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, Higashi 1-1-1, Tsukuba, Ibaraki 305-8562, Japan.
| |
Collapse
|
29
|
Fratz EJ, Hunter GA, Ferreira GC. Expression of murine 5-aminolevulinate synthase variants causes protoporphyrin IX accumulation and light-induced mammalian cell death. PLoS One 2014; 9:e93078. [PMID: 24718052 PMCID: PMC3981678 DOI: 10.1371/journal.pone.0093078] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 03/02/2014] [Indexed: 01/11/2023] Open
Abstract
5-Aminolevulinate synthase (ALAS; EC 2.3.1.37) catalyzes the first committed step of heme biosynthesis in animals. The erythroid-specific ALAS isozyme (ALAS2) is negatively regulated by heme at the level of mitochondrial import and, in its mature form, certain mutations of the murine ALAS2 active site loop result in increased production of protoporphyrin IX (PPIX), the precursor for heme. Importantly, generation of PPIX is a crucial component in the widely used photodynamic therapies (PDT) of cancer and other dysplasias. ALAS2 variants that cause high levels of PPIX accumulation provide a new means of targeted, and potentially enhanced, photosensitization. In order to assess the prospective utility of ALAS2 variants in PPIX production for PDT, K562 human erythroleukemia cells and HeLa human cervical carcinoma cells were transfected with expression plasmids for ALAS2 variants with greater enzymatic activity than the wild-type enzyme. The levels of accumulated PPIX in ALAS2-expressing cells were analyzed using flow cytometry with fluorescence detection. Further, cells expressing ALAS2 variants were subjected to white light treatments (21–22 kLux) for 10 minutes after which cell viability was determined. Transfection of HeLa cells with expression plasmids for murine ALAS2 variants, specifically for those with mutated mitochondrial presequences and a mutation in the active site loop, caused significant cellular accumulation of PPIX, particularly in the membrane. Light treatments revealed that ALAS2 expression results in an increase in cell death in comparison to aminolevulinic acid (ALA) treatment producing a similar amount of PPIX. The delivery of stable and highly active ALAS2 variants has the potential to expand and improve upon current PDT regimes.
Collapse
Affiliation(s)
- Erica J. Fratz
- Department of Molecular Medicine, Morsani College of Medicine, Tampa, Florida, United States of America
| | - Gregory A. Hunter
- Department of Molecular Medicine, Morsani College of Medicine, Tampa, Florida, United States of America
| | - Gloria C. Ferreira
- Department of Molecular Medicine, Morsani College of Medicine, Tampa, Florida, United States of America
- Department of Chemistry, University of South Florida, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
30
|
Li G, Chen S, Duan Z, Qu L, Xu G, Yang N. Comparison of protoporphyrin IX content and related gene expression in the tissues of chickens laying brown-shelled eggs. Poult Sci 2014; 92:3120-4. [PMID: 24235220 DOI: 10.3382/ps.2013-03484] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protoporphyrin IX (PpIX), an immediate precursor of heme, is the main pigment resulting in the brown coloration of eggshell. The brownness and uniformity of the eggshell are important marketing considerations. In this study, 9 chickens laying darker brown shelled eggs and 9 chickens laying lighter brown shelled eggs were selected from 464 individually caged layers in a Rhode Island Red pureline. The PpIX contents were measured with a Microplate Reader at the wavelength of 412 nm and were compared in different tissues of the 2 groups. Although no significant difference in serum, bile, and excreta was found between the 2 groups, PpIX content in the shell gland and eggshell of the darker group was higher than in those of the lighter group, suggesting that PpIX was synthesized in the shell gland. We further determined the expression levels of 8 genes encoding enzymes involved in the heme synthesis and transport in the liver and shell gland at 6 h postoviposition by quantitative PCR. The results showed that expression of aminolevulinic acid synthase-1 (ALAS1) was higher in the liver of hens laying darker brown shelled eggs, whereas in the shell gland the expression levels of ALAS1, coproporphyrinogen oxidase (CPOX), ATP-binding cassette family members ABCB7 and ABCG2, and receptor for feline leukemia virus, subgroup C (FLVCR) were significantly higher in the hens laying darker brown shelled eggs. Our results demonstrated that hens laying darker brown shelled eggs could deposit more PpIX onto the eggshell and the brownness of the eggshell was dependent on the total quantity of PpIX in the eggshell. More heme was synthesized in the liver and shell gland of hens laying darker brown shelled eggs than those of hens laying lighter brown shelled eggs. High expression level of ABCG2 might facilitate the accumulation of PpIX in the shell gland.
Collapse
Affiliation(s)
- Guangqi Li
- National Engineering Laboratory for Animal Breeding and Ministry of Agriculture Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Heme is a prosthetic group best known for roles in oxygen transport, oxidative catalysis, and respiratory electron transport. Recent years have seen the roles of heme extended to sensors of gases such as O2 and NO and cell redox state, and as mediators of cellular responses to changes in intracellular levels of these gases. The importance of heme is further evident from identification of proteins that bind heme reversibly, using it as a signal, e.g. to regulate gene expression in circadian rhythm pathways and control heme synthesis itself. In this minireview, we explore the current knowledge of the diverse roles of heme sensor proteins.
Collapse
Affiliation(s)
- Hazel M. Girvan
- From the Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Andrew W. Munro
- From the Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester M1 7DN, United Kingdom
| |
Collapse
|
32
|
Clinical and genetic characteristics of congenital sideroblastic anemia: comparison with myelodysplastic syndrome with ring sideroblast (MDS-RS). Ann Hematol 2012; 92:1-9. [PMID: 22983749 PMCID: PMC3536986 DOI: 10.1007/s00277-012-1564-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/21/2012] [Indexed: 01/31/2023]
Abstract
Sideroblastic anemia is characterized by anemia with the emergence of ring sideroblasts in the bone marrow. There are two forms of sideroblastic anemia, i.e., congenital sideroblastic anemia (CSA) and acquired sideroblastic anemia. In order to clarify the pathophysiology of sideroblastic anemia, a nationwide survey consisting of clinical and molecular genetic analysis was performed in Japan. As of January 31, 2012, data of 137 cases of sideroblastic anemia, including 72 cases of myelodysplastic syndrome (MDS)–refractory cytopenia with multilineage dysplasia (RCMD), 47 cases of MDS–refractory anemia with ring sideroblasts (RARS), and 18 cases of CSA, have been collected. Hemoglobin and MCV level in CSA are significantly lower than those of MDS, whereas serum iron level in CSA is significantly higher than those of MDS. Of 14 CSA for which DNA was available for genetic analysis, 10 cases were diagnosed as X-linked sideroblastic anemia due to ALAS2 gene mutation. The mutation of SF3B1 gene, which was frequently mutated in MDS-RS, was not detected in CSA patients. Together with the difference of clinical data, it is suggested that genetic background, which is responsible for the development of CSA, is different from that of MDS-RS.
Collapse
|
33
|
Chavan H, Krishnamurthy P. Polycyclic aromatic hydrocarbons (PAHs) mediate transcriptional activation of the ATP binding cassette transporter ABCB6 gene via the aryl hydrocarbon receptor (AhR). J Biol Chem 2012; 287:32054-68. [PMID: 22761424 DOI: 10.1074/jbc.m112.371476] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Liver is endowed with a mechanism to induce hepatic cytochromes P450 (CYP450s) in response to therapeutic drugs and environmental contaminants, leading to increased detoxification and elimination of the xenobiotics. Each CYP450 is composed of an apoprotein moiety and a heme prosthetic group, which is required for CYP450 activity. Thus, under conditions of CYP450 induction, there is a coordinate increase in heme biosynthesis to compensate for the increased expression of CYP450s. ABCB6, a mitochondrial ATP binding cassette transporter, which regulates coproporphyrinogen transport from the cytoplasm into the mitochondria to complete heme biosynthesis, represents a previously unrecognized rate-limiting step in heme biosynthesis. However, it is not known if exposure to drugs and environmental contaminants induces ABCB6 expression, to assure an adequate and apparently coordinated supply of heme for the generation of functional cytochrome holoprotein. In the present study, we demonstrate that polycyclic aromatic hydrocarbons (PAHs), the widely distributed environmental toxicants shown to induce porphyrin accumulation causing hepatic porphyria, up-regulate ABCB6 expression in both mice and humans. Using siRNA technology and Abcb6 knock-out mice, we demonstrate that PAH-mediated increase in hepatic porphyrins is compromised in the absence of ABCB6. Moreover, in vivo studies in aryl hydrocarbon receptor (AhR) knock-out mice demonstrate that PAH induction of ABCB6 is mediated by AhR. Promoter activation studies combined with electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrate direct interactions between the AhR binding sites in the ABCB6 promoter and the AhR receptor, implicating drug activation mechanisms for ABCB6 similar to those found in inducible cytochrome P450s. These studies are the first to describe direct transcriptional activation of both mouse and human ABCB6 by xenobiotics.
Collapse
Affiliation(s)
- Hemantkumar Chavan
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | |
Collapse
|
34
|
Ishizuka M, Abe F, Sano Y, Takahashi K, Inoue K, Nakajima M, Kohda T, Komatsu N, Ogura SI, Tanaka T. Novel development of 5-aminolevurinic acid (ALA) in cancer diagnoses and therapy. Int Immunopharmacol 2011; 11:358-65. [PMID: 21144919 DOI: 10.1016/j.intimp.2010.11.029] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 11/21/2010] [Accepted: 11/22/2010] [Indexed: 12/13/2022]
Abstract
Early detection and intervention are needed for optimal outcomes in cancer therapy. Improvements in diagnostic technology, including endoscopy, photodynamic diagnosis (PDD), and photodynamic therapy (PDT), have allowed substantial progress in the treatment of cancer. 5-Aminolevulinic acid (ALA) is a natural, delta amino acid biosynthesized by animal and plant mitochondria. ALA is a precursor of porphyrin, heme, and bile pigments, and it is metabolized into protoporphyrin IX (PpIX) in the course of heme synthesis. PpIX preferentially accumulates in tumor cells resulting in a red fluorescence following irradiation with violet light and the formation of singlet oxygen. This reaction, utilized to diagnose and treat cancer, is termed ALA-induced PDD and PDT. In this review, the biological significance of heme metabolites, the mechanism of PpIX accumulation in tumor cells, and the therapeutic potential of ALA-induced PDT alone and combined with hyperthermia and immunotherapy are discussed.
Collapse
Affiliation(s)
- Masahiro Ishizuka
- SBI ALApromo Co, LTD Roppongi 1-6-1, Minato-ku, Tokyo 106-6019, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wachowska M, Muchowicz A, Firczuk M, Gabrysiak M, Winiarska M, Wańczyk M, Bojarczuk K, Golab J. Aminolevulinic Acid (ALA) as a Prodrug in Photodynamic Therapy of Cancer. Molecules 2011. [PMCID: PMC6263343 DOI: 10.3390/molecules16054140] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Aminolevulinic acid (ALA) is an endogenous metabolite normally formed in the mitochondria from succinyl-CoA and glycine. Conjugation of eight ALA molecules yields protoporphyrin IX (PpIX) and finally leads to formation of heme. Conversion of PpIX to its downstream substrates requires the activity of a rate-limiting enzyme ferrochelatase. When ALA is administered externally the abundantly produced PpIX cannot be quickly converted to its final product - heme by ferrochelatase and therefore accumulates within cells. Since PpIX is a potent photosensitizer this metabolic pathway can be exploited in photodynamic therapy (PDT). This is an already approved therapeutic strategy making ALA one of the most successful prodrugs used in cancer treatment.
Collapse
Affiliation(s)
- Małgorzata Wachowska
- Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Banacha 1A F Building, 02-097 Warsaw, Poland
| | - Angelika Muchowicz
- Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Banacha 1A F Building, 02-097 Warsaw, Poland
| | - Małgorzata Firczuk
- Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Banacha 1A F Building, 02-097 Warsaw, Poland
| | - Magdalena Gabrysiak
- Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Banacha 1A F Building, 02-097 Warsaw, Poland
| | - Magdalena Winiarska
- Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Banacha 1A F Building, 02-097 Warsaw, Poland
| | - Małgorzata Wańczyk
- Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Banacha 1A F Building, 02-097 Warsaw, Poland
| | - Kamil Bojarczuk
- Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Banacha 1A F Building, 02-097 Warsaw, Poland
| | - Jakub Golab
- Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Banacha 1A F Building, 02-097 Warsaw, Poland
- Department III, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Author to whom correspondence should be addressed; E-Mail: ; Tel. +48-22-5992199; Fax: +48-22-5992194
| |
Collapse
|
36
|
Tenhunen R. Heme in the treatment of heme deficiency states. Scandinavian Journal of Clinical and Laboratory Investigation 2011. [DOI: 10.1080/00365519009085802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Kopp R, Schwerte T, Egg M, Sandbichler AM, Egger B, Pelster B. Chronic reduction in cardiac output induces hypoxic signaling in larval zebrafish even at a time when convective oxygen transport is not required. Physiol Genomics 2010; 42A:8-23. [DOI: 10.1152/physiolgenomics.00052.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In the present study, the zebrafish breakdance mutant ( bre) was used to assess the role of blood flow in development because it has been previously shown that bre larvae have a chronically reduced cardiac output as a result of ventricular contraction following only every second atrial contraction in addition to an atrial bradycardia. We confirmed a 50% reduction compared with control fish and further showed that blood flow in the caudal part of the dorsal aorta decreased by 80%. Associated with these reductions in blood flow were indications of developmental retardation in bre mutants, specifically delayed hatching, reduced cell proliferation, and a transiently decreased growth rate. Surprisingly, an increased red blood cell concentration and an earlier appearance of trunk vessels in bre larvae indicated some compensation to convective oxygen transport, although in previous studies it has been shown that zebrafish larvae at this stage obtain oxygen by bulk diffusion. In bre animals immunohistochemical analyses showed a significant increase in hypoxia inducible factor 1 (HIF)-α protein expression, comparable with wild-type larvae that were raised under hypoxic conditions. Accordingly, the expression of some hif downstream genes was affected. Furthermore, Affymetrix microarray analyses revealed a large number of genes that were differently expressed comparing control and bre larvae, and the number even increased with proceeding development. The results showed that a chronic reduction in blood flow generated hypoxic molecular signals despite partial compensation by increased oxygen carrying capacity and transiently slowed the overall development of zebrafish bre larvae.
Collapse
Affiliation(s)
- Renate Kopp
- Institute of Zoology and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Thorsten Schwerte
- Institute of Zoology and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Margit Egg
- Institute of Zoology and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Adolf Michael Sandbichler
- Institute of Zoology and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Bernhard Egger
- Institute of Zoology and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Bernd Pelster
- Institute of Zoology and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
38
|
Okano S, Zhou L, Kusaka T, Shibata K, Shimizu K, Gao X, Kikuchi Y, Togashi Y, Hosoya T, Takahashi S, Nakajima O, Yamamoto M. Indispensable function for embryogenesis, expression and regulation of the nonspecific form of the 5-aminolevulinate synthase gene in mouse. Genes Cells 2009; 15:77-89. [PMID: 20015225 DOI: 10.1111/j.1365-2443.2009.01366.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The first step of heme biosynthesis in animals is catalyzed by 5-aminolevulinate synthase (ALAS), which controls heme supply in various tissues. To clarify the roles that the nonspecific isoform of ALAS (ALAS-N) plays in vivo, we prepared a green fluorescent protein (GFP) knock-in mouse line in which the Alas1 gene (encoding ALAS-N) is replaced with a gfp gene. We found that mice bearing a homozygous knock-in allele (Alas1(GFP/GFP)) were lethal by embryonic day 8.5, demonstrating that ALAS-N is essential for early embryogenesis. Fluorescence microscopic and flow cytometric analyses of heterozygous mouse (Alas1(+/GFP)) tissues showed that the Alas1 expression level differs substantially in tissues; Alas1 is highly expressed in testis Leydig cells, exocrine glands (including submandibular and parotid glands), endocrine glands (such as adrenal and thyroid glands) and hematopoietic lineage cells (including neutrophils and eosinophils). Quantitative analyses of GFP mRNA and ALAS-N mRNA in various tissues of Alas1(+/GFP) mice suggested that the destabilization of ALAS-N mRNA was not uniform in the various tissues. These results thus lay bare that elaborate control of the endogenous heme supply operates in various mouse tissues through regulation of the ALAS-N expression level and that this control is essential for heme homeostasis in animals.
Collapse
Affiliation(s)
- Satoshi Okano
- Research Laboratory for Molecular Genetics, Yamagata University, Yamagata 990-9585, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- Scott Severance
- Department of Animal & Avian Sciences and Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | - Iqbal Hamza
- Department of Animal & Avian Sciences and Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
40
|
Affiliation(s)
- Scott Severance
- Department of Animal & Avian Sciences, University of Maryland, College Park, Maryland 20742, USA
| | | |
Collapse
|
41
|
Zheng J, Shan Y, Lambrecht RW, Donohue SE, Bonkovsky HL. Differential regulation of human ALAS1 mRNA and protein levels by heme and cobalt protoporphyrin. Mol Cell Biochem 2008; 319:153-61. [PMID: 18719978 DOI: 10.1007/s11010-008-9888-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2008] [Accepted: 07/23/2008] [Indexed: 10/21/2022]
Abstract
5-Aminolevulinic acid synthase 1 (ALAS1) is the first and rate-controlling enzyme of heme biosynthesis. This study was to determine the effects of heme and selected nonheme metalloporphyrins on human ALAS1 gene expression in hepatocytes. We found that, upon heme and cobalt protoporphyrin (CoPP) treatments, ALAS1 mRNA levels were down-regulated significantly by ca. 50% or more. Measurement of mRNA in the presence of actinomycin D showed that these down-regulations were due to the decreases in mRNA half-lives. Furthermore, the levels of mitochondrial mature ALAS1 protein were down-regulated by 60-70%, but those of the cytosolic precursor protein were up-regulated by 2-5-fold. Measurement of protein in the presence of cycloheximide (CHX) suggests that elevation of the precursor form is due to the increase in protein half-lives. These results provide novel insights into the mechanisms of heme repressional effects on ALAS1 and provide a rationale for further investigation of CoPP as a therapeutic agent for acute porphyric syndromes.
Collapse
Affiliation(s)
- Jianyu Zheng
- Carolinas Medical Center, Charlotte, NC 28203, USA
| | | | | | | | | |
Collapse
|
42
|
Tissue-specific expression of ALA synthase-1 and heme oxygenase-1 and their expression in livers of rats chronically exposed to ethanol. FEBS Lett 2008; 582:1829-34. [PMID: 18472004 DOI: 10.1016/j.febslet.2008.04.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 04/23/2008] [Accepted: 04/24/2008] [Indexed: 01/23/2023]
Abstract
5-Aminolevulinic acid synthase-1 (ALAS1) and heme oxygenase-1 (HO-1) are the rate-controlling enzymes for heme biosynthesis and degradation, respectively. Expression of these two genes showed tissue-specific expression pattern at both mRNA and protein levels in selected non-treated rat tissues. In the livers of rats receiving oral ethanol for 10 weeks, ALAS1 mRNA levels were increased by 65%, and the precursor and mature ALAS1 protein levels were increased by 1.8- and 2.3-fold, respectively, while no changes were observed in HO-1 mRNA and protein levels, compared with pair-fed controls. These results provide novel insights into the effects of chronic ethanol consumption on hepatic heme biosynthesis and porphyrias.
Collapse
|
43
|
Furuyama K, Kaneko K, Vargas PD. Heme as a magnificent molecule with multiple missions: heme determines its own fate and governs cellular homeostasis. TOHOKU J EXP MED 2007; 213:1-16. [PMID: 17785948 DOI: 10.1620/tjem.213.1] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Heme is a prosthetic group of various types of proteins, such as hemoglobin, myoglobin, cytochrome c, cytochrome p450, catalase and peroxidase. In addition, heme is involved in a variety of biological events by modulating the function or the state of hemoproteins. For example, protein synthesis is inhibited in erythroid cells under heme deficiency, as the consequence of the activation of heme-regulated inhibitor (HRI). Iron concentration in the cell is sensed and regulated by the heme-mediated oxidization and subsequent degradation of iron regulatory protein 2 (IRP2). Heme also binds to certain types of potassium channels, thereby inhibiting transmembrane K(+) currents. Importantly, heme determines its own fate; namely, heme regulates its synthesis and degradation through the feedback mechanisms, by which intracellular heme level is precisely maintained. Heme reduces heme synthesis by suppressing the expression of non-specific 5-aminolevulinate synthase (ALAS1) and stimulates heme breakdown by inducing heme oxygenase (HO)-1 expression. ALAS1 and HO-1 are the rate limiting enzymes in heme biosynthesis and catabolism, respectively. Accordingly, under the heme-rich condition, heme binds to cysteine-proline (CP) motifs of ALAS1 and those of transcriptional repressor Bach1, thereby leading to repression of mitochondrial transport of ALAS1 and induction of HO-1 transcription, respectively. Moreover, chemosensing functions of HO-2 containing CP motifs, another isozyme of HO, have been unveiled recently. In this review article, we summarize and update the pleiotropic effects of heme on various biological events and the regulatory network of heme biosynthesis and catabolism.
Collapse
Affiliation(s)
- Kazumichi Furuyama
- Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | | | | |
Collapse
|
44
|
Nakajima O, Okano S, Harada H, Kusaka T, Gao X, Hosoya T, Suzuki N, Takahashi S, Yamamoto M. Transgenic rescue of erythroid 5-aminolevulinate synthase-deficient mice results in the formation of ring sideroblasts and siderocytes. Genes Cells 2006; 11:685-700. [PMID: 16716198 DOI: 10.1111/j.1365-2443.2006.00973.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Molecular defects in erythroid 5-aminolevulinate synthase (ALAS-E), the first enzyme in the heme biosynthetic pathway, cause X-linked sideroblastic anemia (XLSA). However, ring sideroblasts, the hallmark of XLSA, were not found in ALAS-E-deficient mouse embryos, indicating that simple ALAS-E-deficiency is not sufficient for ring sideroblast formation. To investigate the developmental stage-specific pathogenesis caused by heme-depletion, we attempted a complementation rescue of ALAS-E-deficiency. We exploited transgenic mouse lines expressing human ALAS-E at approximately half that of wild-type levels. In these hypomorphic embryos, most of the primitive erythroid cells were transformed into ring sideroblasts. The majority of the circulating definitive erythroid cells became siderocytes, enucleated erythrocytes containing iron deposits, and definitive ring sideroblasts were also observed. These iron-overloaded cells suffered from an alpha/beta globin chain imbalance. Despite the iron overload, transferrin receptors were highly expressed in the erythroid cells, suggesting they contribute to the formation of ring sideroblasts and siderocytes. These results indicate that a partially depleted heme supply provokes ring sideroblast formation. The experimental generation of ring sideroblasts in animals would contribute to our understanding of the iron metabolism and its disorder in erythroid cells.
Collapse
Affiliation(s)
- Osamu Nakajima
- Research Laboratory for Molecular Genetics, Yamagata University, Yamagata 990-9585, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Schranzhofer M, Schifrer M, Cabrera JA, Kopp S, Chiba P, Beug H, Müllner EW. Remodeling the regulation of iron metabolism during erythroid differentiation to ensure efficient heme biosynthesis. Blood 2006; 107:4159-67. [PMID: 16424395 DOI: 10.1182/blood-2005-05-1809] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Terminal erythropoiesis is accompanied by extreme demand for iron to ensure proper hemoglobinization. Thus, erythroblasts must modify the "standard" post-transcriptional feedback regulation, balancing expression of ferritin (Fer; iron storage) versus transferrin receptor (TfR1; iron uptake) via specific mRNA binding of iron regulatory proteins (IRPs). Although erythroid differentiation involves high levels of incoming iron, TfR1 mRNA stability must be sustained and Fer mRNA translation must not be activated because iron storage would counteract hemoglobinization. Furthermore, translation of the erythroid-specific form of aminolevulinic acid synthase (ALAS-E) mRNA, catalyzing the first step of heme biosynthesis and regulated similarly as Fer mRNA by IRPs, must be ensured. We addressed these questions using mass cultures of primary murine erythroid progenitors from fetal liver, either undergoing sustained proliferation or highly synchronous differentiation. We indeed observed strong inhibition of Fer mRNA translation and efficient ALAS-E mRNA translation in differentiating erythroblasts. Moreover, in contrast to self-renewing cells, TfR1 stability and IRP mRNA binding were no longer modulated by iron supply. These and additional data stemming from inhibition of heme synthesis with succinylacetone or from iron overload suggest that highly efficient utilization of iron in mitochondrial heme synthesis during normal erythropoiesis alters the regulation of iron metabolism via the IRE/IRP system.
Collapse
Affiliation(s)
- Matthias Schranzhofer
- Department of Medical Biochemistry, Division of Molecular Biology, Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, Medical University of Vienna, Dr Bohr-Gasse 9, A-1030 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
46
|
Fujiwara T, Harigae H, Takahashi S, Furuyama K, Nakajima O, Sun J, Igarashi K, Yamamoto M, Sassa S, Kaku M, Sasaki T. Differential gene expression profiling between wild-type and ALAS2-null erythroblasts: identification of novel heme-regulated genes. Biochem Biophys Res Commun 2005; 340:105-10. [PMID: 16356476 DOI: 10.1016/j.bbrc.2005.11.163] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Accepted: 11/22/2005] [Indexed: 11/27/2022]
Abstract
To identify erythroid-specific heme-regulated genes, we performed differential expression analysis between wild-type and heme-deficient erythroblasts, which had been prepared from wild-type and erythroid-specific delta-aminolevulinate synthase-null mouse ES cells, respectively. Among 8737 clones on cDNA array, 40 cDNA clones, including 34 unknown ESTs, were first selected by their high expression profiles in wild-type erythroblasts, and evaluated further for their erythroid-lineage specificity, expression in hematopoietic tissues in vivo, and heme-dependent expression, which yielded 11, 4, and 4 genes, respectively. Because of the selection strategy employed, the final 4 were considered as the newly identified erythroid-specific heme-regulated genes. These 4 genes were uncoupling protein 2, nucleolar spindle-associated protein, cellular nucleic acid-binding protein, and a novel acetyltransferase-like protein. These findings thus suggest that heme may regulate a wide variety of hitherto unrecognized genes, and further analysis of these genes may clarify their role in erythroid cell differentiation.
Collapse
Affiliation(s)
- Tohru Fujiwara
- Department of Rheumatology and Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kolluri S, Sadlon T, May B, Bonkovsky H. Haem repression of the housekeeping 5-aminolaevulinic acid synthase gene in the hepatoma cell line LMH. Biochem J 2005; 392:173-80. [PMID: 16033334 PMCID: PMC1317676 DOI: 10.1042/bj20050354] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 07/18/2005] [Accepted: 07/21/2005] [Indexed: 12/13/2022]
Abstract
Haem is essential for the health and function of nearly all cells. 5-Aminolaevulinic acid synthase-1 (ALAS-1) catalyses the first and rate-controlling step of haem biosynthesis. ALAS-1 is repressed by haem and is induced strongly by lipophilic drugs that also induce CYP (cytochrome P450) proteins. We investigated the effects on the avian ALAS-1 gene promoter of a phenobarbital-like chemical, Glut (glutethimide), and a haem synthesis inhibitor, DHA (4,6-dioxoheptanoic acid), using a reporter gene assay in transiently transfected LMH (Leghorn male hepatoma) hepatoma cells. A 9.1 kb cALAS-1 (chicken ALAS-1) promoter-luciferase-reporter construct, was poorly induced by Glut and not by DHA alone, but was synergistically induced by the combination. In contrast, a 3.5 kb promoter ALAS-1 construct was induced by Glut alone, without any further effect of DHA. In addition, exogenous haem (20 microM) repressed the basal and Glut- and DHA-induced activity of luciferase reporter constructs containing 9.1 and 6.3 kb of ALAS-1 5'-flanking region but not the construct containing the first 3.5 kb of promoter sequence. This effect of haem was subsequently shown to be dependent on the -6.3 to -3.5 kb region of the 5'-flanking region of cALAS-1 and requires the native orientation of the region. Two deletion constructs of this approx. 2.8 kb haem-repressive region (1.7 and 1.1 kb constructs) retained haem-dependent repression of basal and drug inductions, suggesting that more than one cis-acting elements are responsible for this haem-dependent repression of ALAS-1. These results demonstrate that there are regulatory regions in the 5'-flanking region of the cALAS-1 gene that respond to haem and provide a basis for further investigations of the molecular mechanisms by which haem down-regulates expression of the ALAS-1 gene.
Collapse
Key Words
- 5-aminolaevulinic acid synthase-1 (alas-1)
- 4,6-dioxoheptanoic acid (dha)
- drug induction
- glutethimide
- haem
- lmh cell line
- ala, aminolaevulinic acid
- alas, 5-aminolaevulinic acid synthase
- calas-1, chicken alas-1
- β-gal, β-galactosidase
- dha, 4,6-dioxoheptanoic acid
- dr, hexamer half-site direct repeat
- dres, drug-responsive enhancer sequence
- glut, glutethimide
- ho-1, haem oxygenase-1
- lmh, leghorn male hepatoma
- 5′-utr, 5′-untranslated region
Collapse
Affiliation(s)
- Sridevi Kolluri
- †Department of Molecular, Microbial, and Structural Biology, University of Connecticut Health Center, Farmington, CT 06030, U.S.A
- ‡The Liver-Biliary-Pancreatic Center, University of Connecticut Health Center, Farmington, CT 06030, U.S.A
| | - Timothy J. Sadlon
- §Children's Health Research Institute, Women's and Children's Hospital, North Adelaide, South Australia 5006, Australia
| | - Brian K. May
- ∥Department of Molecular Biosciences, University of Adelaide, South Australia 5005, Australia
| | - Herbert L. Bonkovsky
- *Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030, U.S.A
- †Department of Molecular, Microbial, and Structural Biology, University of Connecticut Health Center, Farmington, CT 06030, U.S.A
- ‡The Liver-Biliary-Pancreatic Center, University of Connecticut Health Center, Farmington, CT 06030, U.S.A
| |
Collapse
|
48
|
Astner I, Schulze JO, van den Heuvel J, Jahn D, Schubert WD, Heinz DW. Crystal structure of 5-aminolevulinate synthase, the first enzyme of heme biosynthesis, and its link to XLSA in humans. EMBO J 2005; 24:3166-77. [PMID: 16121195 PMCID: PMC1224682 DOI: 10.1038/sj.emboj.7600792] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Accepted: 07/29/2005] [Indexed: 11/09/2022] Open
Abstract
5-Aminolevulinate synthase (ALAS) is the first and rate-limiting enzyme of heme biosynthesis in humans, animals, other non-plant eukaryotes, and alpha-proteobacteria. It catalyzes the synthesis of 5-aminolevulinic acid, the first common precursor of all tetrapyrroles, from glycine and succinyl-coenzyme A (sCoA) in a pyridoxal 5'-phosphate (PLP)-dependent manner. X-linked sideroblastic anemias (XLSAs), a group of severe disorders in humans characterized by inadequate formation of heme in erythroblast mitochondria, are caused by mutations in the gene for erythroid eALAS, one of two human genes for ALAS. We present the first crystal structure of homodimeric ALAS from Rhodobacter capsulatus (ALAS(Rc)) binding its cofactor PLP. We, furthermore, present structures of ALAS(Rc) in complex with the substrates glycine or sCoA. The sequence identity of ALAS from R. capsulatus and human eALAS is 49%. XLSA-causing mutations may thus be mapped, revealing the molecular basis of XLSA in humans. Mutations are found to obstruct substrate binding, disrupt the dimer interface, or hamper the correct folding. The structure of ALAS completes the structural analysis of enzymes in heme biosynthesis.
Collapse
Affiliation(s)
- Isabel Astner
- Division of Structural Biology, German Research Centre for Biotechnology, Braunschweig, Germany
| | - Jörg O Schulze
- Division of Structural Biology, German Research Centre for Biotechnology, Braunschweig, Germany
| | - Joop van den Heuvel
- Division of Structural Biology, German Research Centre for Biotechnology, Braunschweig, Germany
| | - Dieter Jahn
- Institute of Microbiology, Technical University Braunschweig, Braunschweig, Germany
| | - Wolf-Dieter Schubert
- Division of Structural Biology, German Research Centre for Biotechnology, Braunschweig, Germany
- Division of Structural Biology, German Research Centre for Biotechnology, Mascheroder Weg 1, 38124 Braunschweig, Germany. Tel.: +49 531 6181 764; Fax: +49 531 6181 763; E-mail: or
| | - Dirk W Heinz
- Division of Structural Biology, German Research Centre for Biotechnology, Braunschweig, Germany
| |
Collapse
|
49
|
Podvinec M, Handschin C, Looser R, Meyer UA. Identification of the xenosensors regulating human 5-aminolevulinate synthase. Proc Natl Acad Sci U S A 2004; 101:9127-32. [PMID: 15178759 PMCID: PMC428484 DOI: 10.1073/pnas.0401845101] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heme is an essential component of numerous hemoproteins with functions including oxygen transport, energy metabolism, and drug biotransformation. In nonerythropoietic cells, 5-aminolevulinate synthase (ALAS1) is the rate-limiting enzyme in heme biosynthesis. Upon exposure to drugs that induce cytochromes P450 and other drug-metabolizing enzymes, ALAS1 is transcriptionally up-regulated, increasing the rate of heme biosynthesis to provide heme for cytochrome P450 hemoproteins. We used a combined in silico-in vitro approach to identify sequences in the ALAS1 gene that mediate direct transcriptional response to xenobiotic challenge. We have characterized two enhancer elements, located 20 and 16 kb upstream of the transcriptional start site. Both elements respond to prototypic inducer drugs and interact with the human pregnane X receptor NR1I2 and the human constitutive androstane receptor NR1I3. Our results suggest that the fundamental mechanism of drug induction is the same for cytochromes P450 and ALAS1. Transcriptional activation of the ALAS1 gene is the first step in the coordinated up-regulation of apoprotein and heme synthesis in response to exogenous and endogenous signals controlling heme levels. Understanding the direct effects of drugs on heme synthesis is of clinical interest, particularly in patients with hepatic porphyrias.
Collapse
Affiliation(s)
- Michael Podvinec
- Division of Pharmacology and Neurobiology, Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
50
|
Akagi R, Shimizu R, Koga T, Utsumi A, Watanabe S, Hanafusa R, Mori M. Characteristics of heme biosynthesis in the liver of the senescence-accelerated mouse. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s0531-5131(03)01605-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|