1
|
Kamimura K. Identification of molecular transition of hepatocellular carcinoma: a novel method to predict the initiation of metastasis. Stem Cell Investig 2019; 6:5. [PMID: 30976602 DOI: 10.21037/sci.2019.02.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 01/28/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Chuo-ku, Niigata City, Japan
| |
Collapse
|
2
|
Yang B, Li M, Tang W, Liu W, Zhang S, Chen L, Xia J. Dynamic network biomarker indicates pulmonary metastasis at the tipping point of hepatocellular carcinoma. Nat Commun 2018; 9:678. [PMID: 29445139 PMCID: PMC5813207 DOI: 10.1038/s41467-018-03024-2] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 01/15/2018] [Indexed: 12/13/2022] Open
Abstract
Developing predictive biomarkers that can detect the tipping point before metastasis of hepatocellular carcinoma (HCC), is critical to prevent further irreversible deterioration. To discover such early-warning signals or biomarkers of pulmonary metastasis in HCC, we analyse time-series gene expression data in spontaneous pulmonary metastasis mice HCCLM3-RFP model with our dynamic network biomarker (DNB) method, and identify CALML3 as a core DNB member. All experimental results of gain-of-function and loss-of-function studies show that CALML3 could indicate metastasis initiation and act as a suppressor of metastasis. We also reveal the biological role of CALML3 in metastasis initiation at a network level, including proximal regulation and cascading influences in dysfunctional pathways. Our further experiments and clinical samples show that DNB with CALML3 reduced pulmonary metastasis in liver cancer. Actually, loss of CALML3 predicts shorter overall and relapse-free survival in postoperative HCC patients, thus providing a prognostic biomarker and therapy target in HCC.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Calmodulin/genetics
- Calmodulin/metabolism
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/surgery
- Cell Line, Tumor
- Disease-Free Survival
- Gene Expression Profiling/methods
- Gene Expression Regulation, Neoplastic
- Gene Regulatory Networks
- Hep G2 Cells
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/surgery
- Lung Neoplasms/genetics
- Lung Neoplasms/secondary
- Male
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Recurrence, Local
- Prognosis
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Biwei Yang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Meiyi Li
- Minhang Branch, Zhongshan Hospital, Fudan University/Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, 201199, China
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, CAS Center for Excellence in Animal Evolution and Genetics, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Wenqing Tang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Weixin Liu
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, CAS Center for Excellence in Animal Evolution and Genetics, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China
| | - Si Zhang
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, 130 Dong'an Road, Shanghai, 200032, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, CAS Center for Excellence in Animal Evolution and Genetics, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China.
| | - Jinglin Xia
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- Minhang Branch, Zhongshan Hospital, Fudan University/Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, 201199, China.
| |
Collapse
|
3
|
Isolation and characterization of the primary epithelial breast cancer cells and the adjacent normal epithelial cells from Iranian women's breast cancer tumors. Cytotechnology 2018; 70:625-639. [PMID: 29380298 DOI: 10.1007/s10616-017-0159-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/17/2017] [Indexed: 01/12/2023] Open
Abstract
As an experimental model, most studies rely on established human cancer cell lines; however, some genetical or phenotypical differences exist between these cells and their original tumor. Therefore, primary cells isolated directly from tissue are believed to be more biologically relevant tools for studying human and animal biology. Here, we aimed to isolate primary epithelial cancer and normal cells from breast tumors of Iranian women, for the first time. Thus, we isolated the epithelial and fibroblast cells from biopsy samples of patients with breast cancer based on differential centrifugation followed by culture in selective media. Normal epithelial cells obtained from the tissue biopsy away from the core of the tumor, based on the pathological diagnosis. Flow cytometry analysis indicated the positive immunoreactivity of the isolated epithelial cells against CD24 and Epithelial Specific Antigen (ESA/EpCAM), while they displayed a concomitant low expression of CD44 and CD49f. In contrat to fibroblasts, the qPCR data indicated the expression of luminal intracellular cytokeratin (Ck18) in both normal and cancer epithelial cells, but there was no expression of myoepithelial/basal markers, CK5 and vimentin. The epithelial cancer cells were reactive to cytokeratin 19 (CK19) antibody, whereas the normal epithelial cells were not. The expression of calmodulin-like protein (CLP) was also lower in the cancer epithelial cells than in the normal ones. In conclusion, primary epithelial normal and cancer cells, in addition to the fibroblasts were isolated and characterized from breast tumor of Iranian patients; and CLP expression is suggested as a susceptibility marker for breast cancer screening.
Collapse
|
4
|
Qin S, Ingle JN, Liu M, Yu J, Wickerham DL, Kubo M, Weinshilboum RM, Wang L. Calmodulin-like protein 3 is an estrogen receptor alpha coregulator for gene expression and drug response in a SNP, estrogen, and SERM-dependent fashion. Breast Cancer Res 2017; 19:95. [PMID: 28821270 PMCID: PMC5562991 DOI: 10.1186/s13058-017-0890-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/04/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND We previously performed a case-control genome-wide association study in women treated with selective estrogen receptor modulators (SERMs) for breast cancer prevention and identified single nucleotide polymorphisms (SNPs) in ZNF423 as potential biomarkers for response to SERM therapy. The ZNF423rs9940645 SNP, which is approximately 200 bp away from the estrogen response elements, resulted in the SNP, estrogen, and SERM-dependent regulation of ZNF423 expression and, "downstream", that of BRCA1. METHODS Electrophoretic mobility shift assay-mass spectrometry was performed to identify proteins binding to the ZNF423 SNP and coordinating with estrogen receptor alpha (ERα). Clustered, regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing was applied to generate ZR75-1 breast cancer cells with different ZNF423 SNP genotypes. Both cultured cells and mouse xenograft models with different ZNF423 SNP genotypes were used to study the cellular responses to SERMs and poly(ADP-ribose) polymerase (PARP) inhibitors. RESULTS We identified calmodulin-like protein 3 (CALML3) as a key sensor of this SNP and a coregulator of ERα, which contributes to differential gene transcription regulation in an estrogen and SERM-dependent fashion. Furthermore, using CRISPR/Cas9-engineered ZR75-1 breast cancer cells with different ZNF423 SNP genotypes, striking differences in cellular responses to SERMs and PARP inhibitors, alone or in combination, were observed not only in cells but also in a mouse xenograft model. CONCLUSIONS Our results have demonstrated the mechanism by which the ZNF423 rs9940645 SNP might regulate gene expression and drug response as well as its potential role in achieving more highly individualized breast cancer therapy.
Collapse
Affiliation(s)
- Sisi Qin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - James N Ingle
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Mohan Liu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Jia Yu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - D Lawrence Wickerham
- Section of Cancer Genetics and Prevention, Allegheny Health Network Cancer Institute, Pittsburgh, PA, USA.,National Surgical Adjuvant Breast and Bowel Project (NRG Oncology), Pittsburgh, PA, USA
| | - Michiaki Kubo
- Laboratory for Genotyping Development, Center for Genomic Medicine, RIKEN, Yokohama, Japan
| | - Richard M Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
5
|
Lau YL, Lee WC, Gudimella R, Zhang G, Ching XT, Razali R, Aziz F, Anwar A, Fong MY. Deciphering the Draft Genome of Toxoplasma gondii RH Strain. PLoS One 2016; 11:e0157901. [PMID: 27355363 PMCID: PMC4927122 DOI: 10.1371/journal.pone.0157901] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 06/07/2016] [Indexed: 11/18/2022] Open
Abstract
Toxoplasmosis is a widespread parasitic infection by Toxoplasma gondii, a parasite with at least three distinct clonal lineages. This article reports the whole genome sequencing and de novo assembly of T. gondii RH (type I representative strain), as well as genome-wide comparison across major T. gondii lineages. Genomic DNA was extracted from tachyzoites of T. gondii RH strain and its identity was verified by PCR and LAMP. Subsequently, whole genome sequencing was performed, followed by sequence filtering, genome assembly, gene annotation assignments, clustering of gene orthologs and phylogenetic tree construction. Genome comparison was done with the already archived genomes of T. gondii. From this study, the genome size of T. gondii RH strain was found to be 69.35Mb, with a mean GC content of 52%. The genome shares high similarity to the archived genomes of T. gondii GT1, ME49 and VEG strains. Nevertheless, 111 genes were found to be unique to T. gondii RH strain. Importantly, unique genes annotated to functions that are potentially critical for T. gondii virulence were found, which may explain the unique phenotypes of this particular strain. This report complements the genomic archive of T. gondii. Data obtained from this study contribute to better understanding of T. gondii and serve as a reference for future studies on this parasite.
Collapse
Affiliation(s)
- Yee-Ling Lau
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| | - Wenn-Chyau Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | | | | | - Xiao-Teng Ching
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Rozaimi Razali
- Sengenics HIR, University of Malaya, Kuala Lumpur, Malaysia
| | - Farhanah Aziz
- Sengenics HIR, University of Malaya, Kuala Lumpur, Malaysia
| | - Arif Anwar
- Sengenics HIR, University of Malaya, Kuala Lumpur, Malaysia
| | - Mun-Yik Fong
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Human Calmodulin-Like Protein CALML3: A Novel Marker for Normal Oral Squamous Mucosa That Is Downregulated in Malignant Transformation. Int J Dent 2013; 2013:592843. [PMID: 23935623 PMCID: PMC3723245 DOI: 10.1155/2013/592843] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 06/17/2013] [Indexed: 01/29/2023] Open
Abstract
Oral cancer is often diagnosed only at advanced stages due to a lack of reliable disease markers. The purpose of this study was to determine if the epithelial-specific human calmodulin-like protein (CALML3) could be used as marker for the various phases of oral tumor progression. Immunohistochemical analysis using an affinity-purified CALML3 antibody was performed on biopsy-confirmed oral tissue samples representing these phases. A total of 90 tissue specimens were derived from 52 patients. Each specimen was analyzed in the superficial and basal mucosal cell layers for overall staining and staining of cellular subcompartments. CALML3 was strongly expressed in benign oral mucosal cells with downregulation of expression as squamous cells progress to invasive carcinoma. Based on the Cochran-Armitage test for trend, expression in the nucleus and at the cytoplasmic membrane significantly decreased with increasing disease severity. Chi-square test showed that benign tissue specimens had significantly more expression compared to dysplasia/CIS and invasive specimens. Dysplasia/CIS tissue had significantly more expression than invasive tissue. We conclude that CALML3 is expressed in benign oral mucosal cells with a statistically significant trend in downregulation as tumorigenesis occurs. CALML3 may thus be a sensitive new marker for oral cancer screening.
Collapse
|
7
|
Bennett RD, Pittelkow MR, Strehler EE. Immunolocalization of the tumor-sensitive calmodulin-like protein CALML3 in normal human skin and hyperproliferative skin disorders. PLoS One 2013; 8:e62347. [PMID: 23638045 PMCID: PMC3630146 DOI: 10.1371/journal.pone.0062347] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 03/20/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Calmodulin-like protein CALML3 is an epithelial-specific protein regulated during keratinocyte differentiation in vitro. CALML3 expression is downregulated in breast cancers and transformed cell lines making it an attractive marker for tumor formation. The objective of this study was to survey CALML3 localization in normal epidermis and in hyperproliferative skin diseases including actinic keratosis, squamous and basal cell carcinoma as well as verruca and psoriasis and to compare CALML3 immunoreactivity with the proliferation marker Ki-67. METHODS Paraffin-embedded tissue sections from normal human skin and hyperproliferative skin disorders were examined by immunohistochemistry and analyzed for localization and expression of CALML3 and Ki-67. RESULTS CALML3 was strongly expressed in differentiating layers of normal skin, staining the periphery in suprabasal cells and exhibiting nuclear localization in the stratum granulosum. CALML3 nuclear localization was inversely correlated to Ki-67 staining in each disease, indicating that CALML3 nuclear presence is related to terminal cell differentiation and postmitotic state. CONCLUSIONS Increased CALML3 expression in suprabasal layers is characteristic for differentiating keratinocytes in normal epidermis, and nuclear expression of CALML3 inversely correlates with expression of the proliferation marker Ki-67. This suggests that CALML3 is a useful marker for normal and benign hyperplastic epidermal development, whereas the loss of nuclear CALML3 indicates progression to a proliferative and potentially malignant phenotype.
Collapse
Affiliation(s)
- Richard D. Bennett
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- Department of Cell Biology and Genetics Program, Graduate School, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Mark R. Pittelkow
- Department of Dermatology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Emanuel E. Strehler
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
8
|
Identification of the critical structural determinants of the EF-hand domain arrangements in calcium binding proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:608-19. [PMID: 22285364 DOI: 10.1016/j.bbapap.2012.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 12/02/2011] [Accepted: 01/04/2012] [Indexed: 11/22/2022]
Abstract
EF-hand calcium binding proteins (CaBPs) share strong sequence homology, but exhibit great diversity in structure and function. Thus although calmodulin (CaM) and calcineurin B (CNB) both consist of four EF hands, their domain arrangements are quite distinct. CaM and the CaM-like proteins are characterized by an extended architecture, whereas CNB and the CNB-like proteins have a more compact form. In this study, we performed structural alignments and molecular dynamics (MD) simulations on 3 CaM-like proteins and 6 CNB-like proteins, and quantified their distinct structural and dynamical features in an effort to establish how their sequences specify their structures and dynamics. Alignments of the EF2-EF3 region of these proteins revealed that several residues (not restricted to the linker between the EF2 and EF3 motifs) differed between the two groups of proteins. A customized inverse folding approach followed by structural assessments and MD simulations established the critical role of these residues in determining the structure of the proteins. Identification of the critical determinants of the two different EF-hand domain arrangements and the distinct dynamical features relevant to their respective functions provides insight into the relationships between sequence, structure, dynamics and function among these EF-hand CaBPs.
Collapse
|
9
|
Strehler EE. Emanuel Strehler’s work on calcium pumps and calcium signaling. World J Biol Chem 2011; 2:67-72. [PMID: 21537475 PMCID: PMC3083948 DOI: 10.4331/wjbc.v2.i4.67] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 03/16/2011] [Accepted: 03/23/2011] [Indexed: 02/05/2023] Open
Abstract
Cells are equipped with mechanisms to control tightly the influx, efflux and resting level of free calcium (Ca2+). Inappropriate Ca2+ signaling and abnormal Ca2+ levels are involved in many clinical disorders including heart disease, Alzheimer’s disease and stroke. Ca2+ also plays a major role in cell growth, differentiation and motility; disturbances in these processes underlie cell transformation and the progression of cancer. Accordingly, research in the Strehler laboratory is focused on a better understanding of the molecular “toolkit” needed to ensure proper Ca2+ homeostasis in the cell, as well as on the mechanisms of localized Ca2+ signaling. A long-term focus has been on the plasma membrane calcium pumps (PMCAs), which are linked to multiple disorders including hearing loss, neurodegeneration, and heart disease. Our work over the past 20 years or more has revealed a surprising complexity of PMCA isoforms with different functional characteristics, regulation, and cellular localization. Emerging evidence shows how specific PMCAs contribute not only to setting basal intracellular Ca2+ levels, but also to local Ca2+ signaling and vectorial Ca2+ transport. A second major research area revolves around the calcium sensor protein calmodulin and an enigmatic calmodulin-like protein (CALML3) that is linked to epithelial differentiation. One of the cellular targets of CALML3 is the unconventional motor protein myosin-10, which raises new questions about the role of CALML3 and myosin-10 in cell adhesion and migration in normal cell differentiation and cancer.
Collapse
Affiliation(s)
- Emanuel E Strehler
- Emanuel E Strehler, Biochemistry and Molecular Biology, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, United States
| |
Collapse
|
10
|
Bennett RD, Caride AJ, Mauer AS, Strehler EE. Interaction with the IQ3 motif of myosin-10 is required for calmodulin-like protein-dependent filopodial extension. FEBS Lett 2008; 582:2377-81. [DOI: 10.1016/j.febslet.2008.05.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 04/25/2008] [Accepted: 05/20/2008] [Indexed: 10/21/2022]
|
11
|
Bennett RD, Mauer AS, Strehler EE. Calmodulin-like protein increases filopodia-dependent cell motility via up-regulation of myosin-10. J Biol Chem 2006; 282:3205-12. [PMID: 17130134 DOI: 10.1074/jbc.m607174200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human calmodulin-like protein (CLP) is an epithelial-specific protein that is expressed during cell differentiation but down-regulated in primary cancers and transformed cell lines. Using stably transfected and inducible HeLa cell lines, we found that CLP expression did not alter the proliferation rate and colony-forming potential of these cells. However, remarkable phenotypic changes were observed in CLP-expressing compared with control cells. Soft agar colonies of CLP-expressing cells had rough boundaries, with peripheral cells migrating away from the colony. Cells expressing CLP displayed a striking increase in the number and length of myosin-10-positive filopodia and showed increased mobility in a wound healing assay. This increase in wound healing capacity was prevented by small interference RNA-mediated down-regulation of myosin-10. Fluorescence microscopy and Western blotting revealed that CLP expression results in up-regulation of its target protein, myosin-10. This up-regulation occurs at the protein level by stabilization of myosin-10. Thus, CLP functions by increasing the stability of myosin-10, leading to enhanced myosin-10 function and a subsequent increase in filopodial dynamics and cell migration. In stratified epithelia, CLP may be required during terminal differentiation to increase myosin-10 function as cells migrate toward the upper layers and establish new adhesive contacts.
Collapse
Affiliation(s)
- Richard D Bennett
- Cell Biology and Genetics Program, Mayo Graduate School, Mayo Clinic College of Medicine, Minnesota 55905, USA
| | | | | |
Collapse
|
12
|
Kothari MS, Ali S, Buluwela L, Livni N, Shousha S, Sinnett HD, Vashisht R, Thorpe P, Van Noorden S, Coombes RC, Slade MJ. Purified malignant mammary epithelial cells maintain hormone responsiveness in culture. Br J Cancer 2003; 88:1071-6. [PMID: 12671707 PMCID: PMC2376379 DOI: 10.1038/sj.bjc.6600866] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Currently, the therapy for breast cancer is determined by immunohistochemical staining of the primary tumour for oestrogen receptor alpha (ERalpha). However, a proportion of ERalpha-positive patients fail to respond to tamoxifen and a proportion of ERalpha-negative patients show response. Here, we describe a novel procedure for the purification of malignant breast epithelial cells in an attempt to identify these patients at an early stage. Using this procedure, we are able to purify malignant cells to >90% purity as determined by immunohistochemical staining, cytology and fluorescent in situ hybridisation (FISH). While the malignant cells can be maintained in culture they do not proliferate in contrast to purified breast epithelial cells from reduction mammoplasties. Moreover, ERalpha and progesterone receptor (PR) expression is maintained in malignant cells, whereas normal epithelial cells rapidly lose ERalpha and PR. Functional studies were performed on the separated malignant cells in terms of their response to oestradiol and tamoxifen. Four out of the seven ERalpha-positive tumours showed a significant reduction in cell numbers after tamoxifen treatment compared to oestradiol, ERalpha negative tumours failed to show a response. We conclude that (a) it is possible to purify and maintain breast cancer cells for a sufficient period to permit functional studies and (b) ERalpha is retained in culture facilitating the use of these cells in studies of the mechanism of endocrine response and resistance in vitro.
Collapse
Affiliation(s)
- M S Kothari
- Department of Cancer Cell Biology, Imperial College, Du Cane Road, London W12 ONN, UK
| | - S Ali
- Department of Cancer Cell Biology, Imperial College, Du Cane Road, London W12 ONN, UK
| | - L Buluwela
- Department of Cancer Cell Biology, Imperial College, Du Cane Road, London W12 ONN, UK
| | - N Livni
- Department of Histopathology, Charing Cross Hospital, Fulham Palace Road, London W6 8RF, UK
| | - S Shousha
- Department of Histopathology, Charing Cross Hospital, Fulham Palace Road, London W6 8RF, UK
| | - H D Sinnett
- Department of Surgery, Charing Cross Hospital, Fulham Palace Road, London W6 8RF, UK
| | - R Vashisht
- Department of Surgery, West Middlesex University Hospital, London TW7 6AF, UK
| | - P Thorpe
- Department of Histopathology, West Middlesex University Hospital, London TW7 6AF, UK
| | - S Van Noorden
- Department of Histopathology, Imperial College, Du Cane Road, London W12 ONN, UK
| | - R C Coombes
- Department of Cancer Cell Biology, Imperial College, Du Cane Road, London W12 ONN, UK
| | - M J Slade
- Department of Cancer Cell Biology, Imperial College, Du Cane Road, London W12 ONN, UK
- Department of Cancer Cell Biology, 5th Floor, MRC Cyclotron Building, Imperial College Faculty of Medicine, Du Cane Road, London W12 ONN, UK. E-mail:
| |
Collapse
|
13
|
Han BG, Han M, Sui H, Yaswen P, Walian PJ, Jap BK. Crystal structure of human calmodulin-like protein: insights into its functional role. FEBS Lett 2002; 521:24-30. [PMID: 12067719 DOI: 10.1016/s0014-5793(02)02780-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A calmodulin (CaM)-like protein (hCLP) is expressed in human mammary epithelial cells but appears to be limited to certain epithelial cells such as those found in skin, prostate, breast and cervical tissues. A decrease in the expression of this protein is associated with the occurrence of tumors in breast epithelium. The structure of hCLP determined to 1.5 A resolution by X-ray crystallography shows a distinct 30 degrees displacement along the interconnecting central helix, when compared to the highly conserved structure of vertebrate CaM, resulting in a difference in the relative orientation of its two globular domains. Additionally, the electric surface potential landscape at the target protein binding regions on the two globular domains of hCLP is significantly different from those of CaM, indicating that the respective ranges of hCLP and hCaM target proteins do not fully overlap. Observations that hCLP can competitively inhibit CaM activation of target proteins also imply a role for hCLP in which it may also serve as a modulator of CaM activity in the epithelial cells where hCLP is expressed.
Collapse
Affiliation(s)
- Bong-Gyoon Han
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
14
|
Rogers MS, Kobayashi T, Pittelkow MR, Strehler EE. Human calmodulin-like protein is an epithelial-specific protein regulated during keratinocyte differentiation. Exp Cell Res 2001; 267:216-24. [PMID: 11426940 DOI: 10.1006/excr.2001.5254] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human calmodulin-like protein (CLP) is a calcium-binding protein down-regulated in a cell culture model of mammary tumorigenesis as well as in a majority of breast cancers in vivo. CLP down-regulation may be a result of the poorly differentiated state of these cell lines and tumors, or CLP expression may be incompatible with the uncontrolled cell growth associated with tumorigenesis. To learn more about CLP expression and regulation, we determined the distribution of CLP in various human tissues by immunohistochemistry. CLP was expressed exclusively in the epithelium of the tissues surveyed and was most abundant in thyroid, breast, prostate, kidney, and skin. CLP expression appears to increase in stratified epithelium during differentiation, as illustrated in the skin where CLP staining intensified from the basal through the spinous to the granular layers. Using a normal human keratinocyte culture model, we examined CLP expression in response to various agents known to affect keratinocyte differentiation. Agents that inhibit (epidermal growth factor, EGF) or permit (keratinocyte growth factor) terminal differentiation correspondingly regulate CLP expression. Factors modulating the EGF receptor signaling pathway were particularly potent in regulating CLP expression. CLP expression correlated with an agent's ability to promote terminal differentiation regardless of the agent's effect on keratinocyte proliferation. These studies show that CLP expression is coordinately regulated by, and may be involved in, the program of terminal differentiation in human keratinocytes and, likely, other differentiating epithelial cell types.
Collapse
Affiliation(s)
- M S Rogers
- Tumor Biology Program, Mayo Clinic Cancer Center, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
15
|
Rogers MS, Strehler EE. The tumor-sensitive calmodulin-like protein is a specific light chain of human unconventional myosin X. J Biol Chem 2001; 276:12182-9. [PMID: 11278607 DOI: 10.1074/jbc.m010056200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human calmodulin-like protein (CLP) is an epithelial-specific Ca(2+)-binding protein whose expression is strongly down-regulated in cancers. Like calmodulin, CLP is thought to regulate cellular processes via Ca(2+)-dependent interactions with specific target proteins. Using gel overlays, we identified a approximately 210-kDa protein binding specifically and in a Ca(2+)-dependent manner to CLP, but not to calmodulin. Yeast two-hybrid screening yielded a CLP-interacting clone encoding the three light chain binding IQ motifs of human "unconventional" myosin X. Pull-down experiments showed CLP binding to the IQ domain to be direct and Ca(2+)-dependent. CLP interacted strongly with IQ motif 3 (K(d) approximately 0.5 nm) as determined by surface plasmon resonance. Epitope-tagged myosin X was localized preferentially at the cell periphery in MCF-7 cells, and CLP colocalized with myosin X in these cells. Myosin X was able to coprecipitate CLP and, to a lesser extent, calmodulin from transfected COS-1 cells, indicating that CLP is a specific light chain of myosin X in vivo. Because unconventional myosins participate in cellular processes ranging from membrane trafficking to signaling and cell motility, myosin X is an attractive CLP target. Altered myosin X regulation in (tumor) cells lacking CLP may have as yet unknown consequences for cell growth and differentiation.
Collapse
Affiliation(s)
- M S Rogers
- Tumor Biology Program, Department of Biochemistry and Molecular Biology, Mayo Graduate School and Mayo Clinic Cancer Center, Mayo Clinic/Foundation, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
16
|
Frohme M, Scharm B, Delius H, Knecht R, Hoheisel JD. Use of representational difference analysis and cDNA arrays for transcriptional profiling of tumor tissue. Ann N Y Acad Sci 2000; 910:85-104; discussion 104-5. [PMID: 10911908 DOI: 10.1111/j.1749-6632.2000.tb06703.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Representational difference analysis of cDNA (cDNA-RDA) was used for a comparison of the global transcript level of tumor of the larynx and the corresponding normal epithelial tissue toward the end of detecting differentially expressed genes. Overall, some 130 gene fragments were identified. By sequence analysis and homology comparison, they could be put into several groups related to (potential) functions. Apart from genes whose overexpression was most likely a result of tumor growth or dedifferentiation of epithelial tissue, a lot of genes were isolated that play major roles in signal transduction pathways or apoptosis or act as oncogenes or tumor suppressor genes, in addition to new, entirely unknown genes. Moreover, some cDNAs of known genes were identified that derived from unconventional splicing activity or other transcript modifications. All identified fragments were arrayed on solid support and used for reverse Northern blot analyses. The use of preselected RDA fragments as targets in array-based profiling experiments circumvents many of the problems encountered when dealing with large clone libraries.
Collapse
Affiliation(s)
- M Frohme
- Deutsches Krebsforschungszentrum, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
17
|
Chen MC, Schuit F, Pipeleers DG, Eizirik DL. IL-1beta induces serine protease inhibitor 3 (SPI-3) gene expression in rat pancreatic beta-cells. Detection by differential display of messenger RNA. Cytokine 1999; 11:856-62. [PMID: 10547273 DOI: 10.1006/cyto.1999.0525] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Immune-mediated beta-cell damage induces diverse intracellular signals, leading to transcription of different genes which may either contribute to beta-cell repair and/or defence or lead to cell death. The cytokine interleukin-1beta (IL-1) is a potential mediator of beta-cell dysfunction and damage in type 1 diabetes mellitus. To understand the molecular actions of this cytokine upon beta-cells, this study aimed at the cloning of genes induced in FACS-purified rat pancreatic beta-cells by a 6- or 24-h exposure to IL-1 by using differential display of mRNA with reverse transcription-polymerase chain reaction (DDRT-PCR). Among these cytokine-induced genes, a gene encoding for rat serine protease inhibitor (SPI-3) was isolated. SPI-3 may be involved in cellular defence responses against inflammatory stress. RT-PCR analysis confirmed that SPI-3 mRNA expression in rat beta-cells is increased by IL-1 at an early stage (2 h), with maximal accumulation during 6-12 h and decline after 24 h. Similar observations were made in mouse pancreatic islets and in the rat insulinoma cell line RINm5F. IFN-gamma neither increased SPI-3 gene expression nor potentiated its induction by IL-1 in rat beta-cells. The stimulatory effects of IL-1 on SPI-3 mRNA expression were decreased by co-incubation with an inhibitor of gene transcription (actinomycin D), an inhibitor of protein synthesis (cycloheximide) or an inhibitor of NF-kappaB activation (PDTC). On the other hand, a blocker of inducible nitric oxide synthase (iNOS) activity (N(G)-methyl-L-arginine) did not prevent IL-1-induced SPI-3 expression. Thus, SPI-3 mRNA expression following IL-1 exposure depends on gene transcription, protein synthesis and activation of the nuclear transcription factor NF-kappaB, but it is independent of NO formation.
Collapse
Affiliation(s)
- M C Chen
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, B-1090, Belgium
| | | | | | | |
Collapse
|
18
|
Santos TM, Johnston DA, Azevedo V, Ridgers IL, Martinez MF, Marotta GB, Santos RL, Fonseca SJ, Ortega JM, Rabelo EM, Saber M, Ahmed HM, Romeih MH, Franco GR, Rollinson D, Pena SD. Analysis of the gene expression profile of Schistosoma mansoni cercariae using the expressed sequence tag approach. Mol Biochem Parasitol 1999; 103:79-97. [PMID: 10514083 DOI: 10.1016/s0166-6851(99)00100-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
ESTs constitute rapid and informative tools with which to study gene-expression profiles of the diverse stages of the schistosome life cycle. Following a comprehensive EST study of adult worms, analysis has now targeted the cercaria, the parasite larval form responsible for infection of the vertebrate host. Two Schistosoma mansoni cercarial cDNA libraries were examined and partial sequence obtained from 957 randomly selected clones. On the basis of database searches, 551 (57.6%) ESTs generated had no homologs in the public databases whilst 308 (32.2%) were putatively identified, totaling 859 informative ESTs. The remaining 98 (10.2%) were uninformative ESTs (ribosomal RNA and non-coding mitochondrial sequences). By clustering analysis we have identified 453 different genes. The most common sequences in both libraries represented Sm8 calcium binding protein (8% of ESTs), fructose-1,6-bisphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase, cytochrome oxidase subunit 1, ATP guanidine kinase and triose phosphate isomerase. One hundred and nineteen identified genes were sorted into 11 functional categories, with genes associated with energy metabolism being the most abundant (13%) and diverse. The diversity and abundance of genes associated with the transcription/translation machinery and with regulatory/signaling functions were also marked. A paramyosin transcript was identified, indicating that this gene is not exclusively expressed in adult worms and sporocysts (as had been suggested previously). The possible physiological relevance to cercariae of the presence of transcripts with homology to calcium binding proteins of the EF-hand superfamily, Gq-coupled rhodopsin photoreceptor, rod phosphodiesterase 8 subunit and peripheral-type benzodiazepine receptor is discussed.
Collapse
Affiliation(s)
- T M Santos
- Departamento de Bioquímica e Imunologia, ICB-UFMG, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Rogers MS, Foley MA, Crotty TB, Hartmann LC, Ingle JN, Roche PC, Strehler EE. Loss of immunoreactivity for human calmodulin-like protein is an early event in breast cancer development. Neoplasia 1999; 1:220-5. [PMID: 10935476 PMCID: PMC1508075 DOI: 10.1038/sj.neo.7900029] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cell proliferation requires calmodulin, a protein that regulates calcium-dependent enzymes involved in signal transduction pathways in eukaryotic cells. Calmodulin-like protein (CLP) is found in certain epithelial cell types, including normal breast epithelium, and, although it closely resembles calmodulin in amino acid sequence, CLP interacts with different proteins than does calmodulin. The observation that CLP mRNA expression is dramatically reduced in transformed breast epithelial cells led to two hypotheses: (1) CLP helps to maintain the differentiated state in epithelial cells; and (2) downregulation of CLP accompanies malignant transformation of breast epithelial cells. The objective of this study was to determine if the expression of CLP in human breast cancer specimens is reduced in comparison to its expression in normal breast tissue. Eighty human breast cancer biopsy specimens were analyzed immunohistochemically for CLP expression by using a polyclonal rabbit antihuman CLP antibody. CLP expression was reduced in 79% to 88% of the invasive ductal carcinoma and lobular carcinoma specimens and in a similar fraction of the ductal carcinoma in-situ specimens, compared with normal breast specimens. None of the breast cancer specimens showed an increase in CLP expression. These findings support the hypotheses that CLP behaves as a functional tumor suppressor protein and is downregulated early in breast cancer progression.
Collapse
Affiliation(s)
- M S Rogers
- Department of Biochemistry and Molecular Biology, Mayo Clinic Cancer Center, Mayo Clinic/Foundation, Rochester, MN, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Biswas DK, Reddy PV, Pickard M, Makkad B, Pettit N, Pardee AB. Calmodulin is essential for estrogen receptor interaction with its motif and activation of responsive promoter. J Biol Chem 1998; 273:33817-24. [PMID: 9837972 DOI: 10.1074/jbc.273.50.33817] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calmodulin (CaM) has been reported to have affinity for the estrogen receptor (ER). Observations reported here reveal a direct physical interaction between purified CaM and ER. This direct ER-CaM interaction may be an initial event preceding the assembly of ER plus auxiliary proteins into the active ER complex with its DNA motif, the estrogen response element. We demonstrate that CaM is an integral component of this complex by using a system reconstituted from purified ER and nuclear extract from ER-negative breast cancer cells and also with ER-depleted nuclear extract of an ER-positive breast cancer cell line. Although CaM is essential for formation of this complex, it is not sufficient, suggesting roles also of auxiliary proteins. CaM also is functionally required for activation of an ER-responsive promoter, in the 17beta-estradiol-ER pathway of hormone action and regulation of 17beta-estradiol-responsive gene expression that is associated with proliferation of mammary epithelial cells.
Collapse
Affiliation(s)
- D K Biswas
- Division of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Speirs V, Green AR, Walton DS, Kerin MJ, Fox JN, Carleton PJ, Desai SB, Atkin SL. Short-term primary culture of epithelial cells derived from human breast tumours. Br J Cancer 1998; 78:1421-9. [PMID: 9836473 PMCID: PMC2063218 DOI: 10.1038/bjc.1998.702] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
As experimental models for breast cancer, most studies rely on established human breast cancer cell lines. However, many of these lines were established over 20 years ago, many from pleural effusions rather than the primary tumour, so the validity of using them as representative models is questionable. This paper describes our experiences, over a 3-year period, in establishing short-term epithelial-cell-enriched preparations from primary breast tumours based on differential centrifugation followed by culture in selective media. Epithelial cells were successfully cultured from 55% of samples, but culture success did not appear to be correlated with tumour histology, stage, grade or node status. Epithelial cell-enriched cultures were immunopositive for broad-spectrum cytokeratin and epithelial membrane antigen (EMA). Positivity for keratin 19 confirmed that the cultures contained tumour-derived cells, which additionally showed significantly higher activity of the reductive pathway of the steroid-converting enzyme 17beta-hydroxysteroid dehydrogenase type I. That the cultures contained tumour and not normal epithelial cells was further substantiated by the complete absence of the calmodulin-like gene NB-1 in tumour-derived cultures; this is only associated with normal breast epithelia. Eighty-five per cent of cultures established from oestrogen receptor (ER)-positive tumours expressed ER in vitro; this was functional in 66% of cultures, although ER-positive phenotype was gradually lost over time. In conclusion, epithelial cells can be isolated and maintained as short-term cultures from primary breast tumours irrespective of histopathological or clinical details, providing a model system with a greater biological and clinical relevance than breast cancer cell lines.
Collapse
Affiliation(s)
- V Speirs
- Department of Medicine, University of Hull, UK
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Qian H, Rogers MS, Schleucher J, Edlund U, Strehler EE, Sethson I. Sequential assignment of 1H, 15N, 13C resonances and secondary structure of human calmodulin-like protein determined by NMR spectroscopy. Protein Sci 1998; 7:2421-30. [PMID: 9828009 PMCID: PMC2143872 DOI: 10.1002/pro.5560071120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Human calmodulin-like protein (CLP) is closely related to vertebrate calmodulin, yet its unique cell specific expression pattern, overlapping but divergent biochemical properties, and specific target proteins suggest that it is not an isoform of calmodulin. To gain insight into the structural differences that may underlie the difference target specificities and biochemical properties of CLP when compared to calmodulin, we determined the sequential backbone assignment and associated secondary structure of 144 out of the 148 residues of Ca2+-CLP by using multinuclear multidimensional NMR spectroscopy. Despite a very high overall degree of structural similarity between CLP and calmodulin, a number of significant differences were found mainly in the length of alpha-helices and in the central nonhelical flexible region. Interestingly, the regions of greatest primary sequence divergence between CLP and calmodulin in helices III and VIII displayed only minor secondary structure differences. The data suggest that the distinct differences in target specificity and biochemical properties of CLP and calmodulin result from the sum of several minor structural and side-chain changes spread over multiple domains in these proteins.
Collapse
Affiliation(s)
- H Qian
- Department of Organic Chemistry, Umeå University, Sweden
| | | | | | | | | | | |
Collapse
|
23
|
Garkavtsev I, Kazarov A, Gudkov A, Riabowol K. Suppression of the novel growth inhibitor p33ING1 promotes neoplastic transformation. Nat Genet 1996; 14:415-20. [PMID: 8944021 DOI: 10.1038/ng1296-415] [Citation(s) in RCA: 220] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Using a new strategy for tumour suppressor gene isolation based on subtractive hybridization and the subsequent selection of transforming 'genetic suppressor elements', we have cloned a novel gene called ING1 encoding a 33-kD protein (p33ING1) that displays characteristics of a tumour suppressor. Acute expression of transfected constructs encoding this gene inhibited cell growth while chronic expression of ING1 antisense constructs promoted cell transformation. Limited analyses of tumour cell lines show that mutation of the ING1 gene occurs in neuroblastoma cells and reduced expression was seen in some breast cancer cell lines. These results demonstrate that ING1 can act as a potent growth regulator in normal and in established cells and provide evidence for a role as a candidate tumour suppressor gene whose inactivation may contribute to the development of cancers.
Collapse
Affiliation(s)
- I Garkavtsev
- Department of Medical Biochemistry, University of Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
24
|
Harris E, Yaswen P, Thorner J. Gain-of-function mutations in a human calmodulin-like protein identify residues critical for calmodulin action in yeast. MOLECULAR & GENERAL GENETICS : MGG 1995; 247:137-47. [PMID: 7753022 DOI: 10.1007/bf00705643] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A human epithelial cell-specific transcript (NB-1) encodes a calmodulin-like protein (hCLP), which is identical in length and 85% identical in amino acid sequence to authentic human calmodulin (hCaM). Although hCaM shares only 60% amino acid sequence identity with yeast calmodulin (CMD1 gene product), hCaM was able to substitute functionally for Cmd1 in yeast cells. In contrast, hCLP was unable to support either spore germination or vegetative growth in Cmd1-deficient yeast cells, even when stably expressed at a level at least an order of magnitude above that of hCaM. Thus, hCLP provides an indicator protein for discerning those residues that are critical for calmodulin function in vivo. In addition to 20 conservative amino acid replacements, hCLP differs from hCaM (and other vertebrate calmodulins that are able to complement a cmd1 null mutation) by only three nonconservative substitutions. Site-directed mutagenesis was used to convert these three positions back to residues more typical of those found in authentic calmodulins and to prepare all possible combinations of these three mutations, specifically: three single mutants (R58V, R112N, and A128E), three double mutants (R58V A128E, R112N A128E, and R58V R112N), and the triple mutant (R58V R112N A128E). The triple mutant and one of the double mutants (R58V A128E) were able to restore an apparently normal growth rate to a cmd1 delta strain, indicating that the altered hCLPs have acquired the ability to behave as functional calmodulins in yeast. The other two double mutants were able to support growth of Cmd1-deficient cells only weakly, but cells expressing the R112N A128E mutant grew noticeably better than those expressing the R58V R112N mutant. Remarkably, one single mutant (A128E), but not the other two single mutants, was also reproducibly able to support weak growth of a cmd1 delta strain. The properties of these gain-of-function, or neomorphic, mutations implicate E128, and to a lesser extent V58, as residues critical for calmodulin action in vivo. Molecular modeling of these positions within the structure of a Ca(2+)-calmodulin.peptide complex indicates that E128 projects directly into the central cavity occupied by the bound peptide. Thus, E128 may contribute a contact that is vital for the interaction of Cmd1 with one or more of the targets that are essential for yeast cell growth.
Collapse
Affiliation(s)
- E Harris
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3202, USA
| | | | | |
Collapse
|
25
|
Fulton C, Lai EY, Remillard SP. A flagellar calmodulin gene of Naegleria, coexpressed during differentiation with flagellar tubulin genes, shares DNA, RNA, and encoded protein sequence elements. J Biol Chem 1995; 270:5839-48. [PMID: 7890713 DOI: 10.1074/jbc.270.11.5839] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Two calmodulins are synthesized during differentiation of Naegleria gruberi from amoebae to flagellates; one remains in the cell body and the other becomes localized in the flagella. The single, intronless, expressed gene for flagellar calmodulin has been cloned and sequenced. The encoded protein is a typical calmodulin with four putative calcium-binding domains, but it has an amino-terminal extension of 10 divergent amino acids preceding conserved calmodulin residue 4. The transcripts encoding flagellar calmodulin and flagellate cell body calmodulin are clearly divergent. Expression of the flagellar calmodulin gene is differentiation-specific; its mRNA appears and then disappears concurrently with those encoding flagellar alpha- and beta-tubulin. Three provocative sequence elements are shared among these unrelated coexpressed genes: (i) a palindromic DNA sequence element is found in duplicate or triplicate upstream to each transcribed region; (ii) a perfect 12-nucleotide match is found near the AUG start codon of flagellar calmodulin and alpha-tubulin; and (iii) the novel amino-terminal extension of flagellar calmodulin contains a 5-amino-acid element similar to the amino terminus of flagellar alpha-tubulin. These shared sequence elements are proposed to have roles in differentiation, possibly in regulation of transcription, mRNA stability, and localization of these proteins to flagella.
Collapse
Affiliation(s)
- C Fulton
- Department of Biology, Brandeis University, Waltham, Massachusetts 02254
| | | | | |
Collapse
|
26
|
Edman CF, George SE, Means AR, Schulman H, Yaswen P. Selective activation and inhibition of calmodulin-dependent enzymes by a calmodulin-like protein found in human epithelial cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 226:725-30. [PMID: 7528142 DOI: 10.1111/j.1432-1033.1994.tb20101.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A calmodulin-like protein, which is identical in size and 85% identical to vertebrate calmodulin, was recently identified by 'subtractive hybridization' comparison of transcripts expressed in normal versus transformed human mammary epithelial cells. Unlike the ubiquitous distribution of calmodulin, calmodulin-like protein expression is restricted to certain epithelial cells, and appears to be modulated during differentiation. In addition, calmodulin-like protein levels are often significantly reduced in malignant tumor cells as compared to corresponding normal epithelial cells. The current studies compare calmodulin-like protein functions with those of calmodulin. We find that calmodulin-like protein activation of multifunctional Ca2+/calmodulin-dependent protein kinase II (calmodulin kinase II) is equivalent to activation by calmodulin, but that four other calmodulin-dependent enzymes, cGMP phosphodiesterase, calcineurin, nitric-oxide synthase, and myosin-light-chain kinase, display much weaker activation by calmodulin-like protein than by calmodulin. In the case of myosin-light-chain kinase, calmodulin-like protein competitively inhibits calmodulin activation of the enzyme with a Ki value of 170 nM. Thus, calmodulin-like protein may have evolved to function as a specific agonist of certain calmodulin-dependent enzymes, and/or as a specific competitive antagonist of other calmodulin-dependent enzymes.
Collapse
Affiliation(s)
- C F Edman
- Life Sciences Division, Lawrence Berkeley Laboratory, CA 94720
| | | | | | | | | |
Collapse
|
27
|
A novel inhibitor of cyclin-Cdk activity detected in transforming growth factor beta-arrested epithelial cells. Mol Cell Biol 1994. [PMID: 8196612 DOI: 10.1128/mcb.14.6.3683] [Citation(s) in RCA: 215] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Transforming growth factor beta (TGF-beta) is a potent inhibitor of epithelial cell growth. Cyclins E and A in association with Cdk2 have been shown to play a role in the G1-to-S phase transition in mammalian cells. We have studied the effects of TGF-beta-mediated growth arrest on G1/S cyclins E and A. Inhibition of cyclin A-associated kinase by TGF-beta is primarily due to a decrease in cyclin A mRNA and protein. By contrast, while TGF-beta inhibits accumulation of cyclin E mRNA, the reduction in cyclin E protein is minimal. Instead, we find that the activation of cyclin E-associated kinase that normally accompanies the G1-to-S phase transition is inhibited. A novel inhibitor of cyclin-Cdk complexes was detected in TGF-beta-treated cell lysates. Inhibition is mediated by a heat-stable protein that targets both Cdk2 and Cdc2 kinases. In G0-arrested cells, a similar inhibitor of Cdk2 kinase was detected. These data suggest the existence of an inhibitor of cyclin-dependent kinases induced under different conditions to mediate antiproliferative responses.
Collapse
|
28
|
Slingerland JM, Hengst L, Pan CH, Alexander D, Stampfer MR, Reed SI. A novel inhibitor of cyclin-Cdk activity detected in transforming growth factor beta-arrested epithelial cells. Mol Cell Biol 1994; 14:3683-94. [PMID: 8196612 PMCID: PMC358736 DOI: 10.1128/mcb.14.6.3683-3694.1994] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Transforming growth factor beta (TGF-beta) is a potent inhibitor of epithelial cell growth. Cyclins E and A in association with Cdk2 have been shown to play a role in the G1-to-S phase transition in mammalian cells. We have studied the effects of TGF-beta-mediated growth arrest on G1/S cyclins E and A. Inhibition of cyclin A-associated kinase by TGF-beta is primarily due to a decrease in cyclin A mRNA and protein. By contrast, while TGF-beta inhibits accumulation of cyclin E mRNA, the reduction in cyclin E protein is minimal. Instead, we find that the activation of cyclin E-associated kinase that normally accompanies the G1-to-S phase transition is inhibited. A novel inhibitor of cyclin-Cdk complexes was detected in TGF-beta-treated cell lysates. Inhibition is mediated by a heat-stable protein that targets both Cdk2 and Cdc2 kinases. In G0-arrested cells, a similar inhibitor of Cdk2 kinase was detected. These data suggest the existence of an inhibitor of cyclin-dependent kinases induced under different conditions to mediate antiproliferative responses.
Collapse
Affiliation(s)
- J M Slingerland
- Department of Molecular Biology, Scripps Research Institute, La Jolla, California 92037
| | | | | | | | | | | |
Collapse
|
29
|
Stampfer MR, Yaswen P. Growth, differentiation, and transformation of human mammary epithelial cells in culture. Cancer Treat Res 1994; 71:29-48. [PMID: 7946953 DOI: 10.1007/978-1-4615-2592-9_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- M R Stampfer
- Lawrence Berkeley Laboratory, Berkeley, CA 94720
| | | |
Collapse
|
30
|
Guo Y, Pili R, Passaniti A. Regulation of prostate-specific antigen gene expression in LNCaP human prostatic carcinoma cells by growth, dihydrotestosterone, and extracellular matrix. Prostate 1994; 24:1-10. [PMID: 7507237 DOI: 10.1002/pros.2990240104] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have examined the role of extracellular matrix (ECM), cell growth, and dihydrotestosterone on the expression of prostate-specific antigen (PSA) by human prostatic carcinoma cells LNCaP. ECM induced a transient decrease in PSA mRNA even in the presence of growth factors. PSA mRNA, but not actin mRNA, was down-regulated on ECM in a biphasic manner and was not detected up to 48 hr after culture, but was re-expressed after 3 days. Cycloheximide and actinomycin D pretreatment did not prevent ECM-induced down-regulation of PSA mRNA, while actinomycin D-treated cells on plastic maintained stable PSA mRNA levels. DNA synthesis and PSA glycoprotein secretion were also transiently suppressed on ECM. LNCaP growth inhibition correlated with decreased glyceraldehyde phosphate dehydrogenase mRNA levels. However, the transient growth suppression induced by ECM was not observed with primary endothelial cells on Matrigel. Down-regulation of PSA mRNA by culture on Matrigel was reversible upon transfer to a different matrix substrate. Re-expression was highest on heparan sulfate proteoglycan (4-fold) and fibronectin or collagen I (2-fold) compared to plastic or laminin. Our results indicate that the morphology and proliferation of LNCaP cells may be regulated by the ability of ECM to control cellular differentiation and proliferation.
Collapse
Affiliation(s)
- Y Guo
- Cell Biology Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224
| | | | | |
Collapse
|
31
|
Liburdy RP, Callahan DE, Harland J, Dunham E, Sloma TR, Yaswen P. Experimental evidence for 60 Hz magnetic fields operating through the signal transduction cascade. Effects on calcium influx and c-MYC mRNA induction. FEBS Lett 1993; 334:301-8. [PMID: 8243637 DOI: 10.1016/0014-5793(93)80699-u] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We tested the hypothesis that early alterations in calcium influx induced by an imposed 60 Hz magnetic field are propagated down the signal transduction (ST) cascade to alter c-MYC mRNa induction. To test this we measured both ST parameters in the same cells following 60 Hz magnetic field exposures in a specialized annular ring device (220 G (22 mT), 1.7 mV/cm maximal E(induced), 37 degrees C, 60 min). Ca2+ influx is a very early ST marker that precedes the specific induction of mRNA transcripts for the proto-oncogene c-MYC, an immediate early response gene. In three experiments influx of 45Ca2+ in the absence of mitogen was similar to that in cells treated with suboptimal levels of Con-A (1 micrograms/ml). However, calcium influx was elevated 1.5-fold when lymphocytes were exposed to Con-A plus magnetic fields; this co-stimulatory effect is consistent with previous reports from our laboratory [FEBS Lett. 301 (1992) 53-59; FEBS Lett. 271 (1990) 157-160; Ann. N.Y. Acad. Sci. 649 (1992) 74-95]. The level of c-MYC mRNA transcript copies in non-activated cells and in suboptimally-activated cells was also similar, which is consistent with the above calcium influx findings. Significantly, lymphocytes exposed to the combination of magnetic fields plus suboptimal Con-A responded with an approximate 3.0-fold increase in band intensity of c-MYC mRNA transcripts. Importantly, transcripts for the housekeeping gene GAPDH were not influenced by mitogen or magnetic fields. We also observed that lymphocytes that failed to exhibit increased calcium influx in response to magnetic fields plus Con-A, also failed to exhibit an increase in total copies of c-MYC mRNA. Thus, calcium influx and c-MYC mRNA expression, which are sequentially linked via the signal transduction cascade in contrast to GAPDH, were both increased by magnetic fields. These findings support the above ST hypothesis and provide experimental evidence for a general biological framework for understanding magnetic field interactions with the cell through signal transduction. In addition, these findings indicate that magnetic fields can act as a co-stimulus at suboptimal levels of mitogen; pronounced physiological changes in lymphocytes such as calcium influx and c-MYC mRNA induction were not triggered by a weak mitogenic signal unless accompanied by a magnetic field. Magnetic fields, thus, have the ability to potentiate or amplify cell signaling.
Collapse
Affiliation(s)
- R P Liburdy
- Department of Cell and Molecular Biology, Lawrence Berkeley Laboratory, University of California 94720
| | | | | | | | | | | |
Collapse
|
32
|
Durussel I, Rhyner JA, Strehler EE, Cox JA. Cation binding and conformation of human calmodulin-like protein. Biochemistry 1993; 32:6089-94. [PMID: 8507643 DOI: 10.1021/bi00074a021] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Ca(2+)-binding parameters of recombinant human calmodulin-like protein (CLP), a protein specifically expressed in mammary epithelial cells, were studied by flow dialysis in the absence and presence of 2, 10, and 30 mM MgCl2. In general, the four intrinsic binding constants (K'Ca) are about 8-fold lower than in animal and plant calmodulins. In the absence of Mg2+ the K'Ca values of the four binding steps equal 4.0 x 10(3), 3.3 x 10(4), 1.0 x 10(4), and 6.0 x 10(3) M-1, respectively. They allow us to distinguish two pairs of sites: a higher affinity pair with strong positive cooperativity and a lower affinity pair composed of non-interacting sites with different affinities. Mg2+ antagonizes Ca2+ binding by decreasing only Ca(2+)-binding steps 2 and 3, so that at high Mg2+ concentrations the positive cooperativity in the high-affinity pair has been lost and that the four K'Ca values are very similar with a mean K'Ca of 4 x 10(3) M-1. Direct Mg2+ binding studies by equilibrium gel filtration indicate that 4-5 Mg2+ bind to CLP with a mean K'Mg of 250 M-1. Conformational changes in the unique Tyr138 microenvironment, monitored by fluorimetry and near-UV difference spectrophotometry, indicate that in metal-free CLP this Tyr is shielded from the polar solvent and strongly quenched by a specific chemical group; Ca2+ binding induces a shift of Tyr to a more polar environment and removal of the quenching group, but without full exposure to the solvent.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- I Durussel
- Department of Biochemistry, University of Geneva, Switzerland
| | | | | | | |
Collapse
|
33
|
Berchtold MW. Evolution of EF-hand calcium-modulated proteins. V. The genes encoding EF-hand proteins are not clustered in mammalian genomes. J Mol Evol 1993; 36:489-96. [PMID: 8510181 DOI: 10.1007/bf02406724] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The chromosomal assignments of genes belonging to the EF-hand family which have a common origin are compiled in this article. So far data are available from 27 human gene loci belonging to 6 subfamilies and 8 murine loci belonging to 4 subfamilies. Chromosomal localization has been obtained by somatic-cell hybrid analysis using the Southern blot technique or PCR amplification, metaphase spread in situ hybridization, or isolation of the particular genes from chromosome-specific libraries. Except for genes of the S-100 alpha proteins which are grouped on human chromosome 1q12-25 and mouse chromosome 3, no linkage has been found for genes encoding EF-hand proteins, indicating absence of selective pressure for maintaining chromosomal clustering. Six of these genes map to known syntenic groups conserved in the human and mouse genomes. This suggests that chromosomal translocations occurred before divergence of these species. The possible significance of chromosomal positioning with respect to nearby located known genes and genetic disease loci is discussed.
Collapse
Affiliation(s)
- M W Berchtold
- Institute for Veterinary Biochemistry, University of Zurich, Irchel, Switzerland
| |
Collapse
|
34
|
Stampfer MR, Yaswen P, Alhadeff M, Hosoda J. TGF beta induction of extracellular matrix associated proteins in normal and transformed human mammary epithelial cells in culture is independent of growth effects. J Cell Physiol 1993; 155:210-21. [PMID: 8385676 DOI: 10.1002/jcp.1041550127] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have previously characterized a human mammary epithelial cell (HMEC) culture system for the effects of TGF beta 1 on cell growth. In the current report, the effects of TGF beta 1 on synthesis and secretion of proteins associated with the extracellular matrix and proteolysis were examined. In particular, we compared the TGF beta responses of normal finite lifespan HMEC, which are growth inhibited by TGF beta, to two immortally transformed cell lines derived from the normal HMEC. One of these lines maintains active growth in the presence of TGF beta and the other shows partial growth inhibition. In contrast to the differing effects of TGF beta on cell growth, we found that all these cell types showed strong induction of most of the mRNA and protein species examined, including fibronectin, collagen IV, laminin, type IV collagenase, urokinase type plasminogen activator (uPA), and plasminogen activator inhibitor 1 (PAI-1). The profile of TGF beta 1 binding proteins was the same in HMEC that were, and were not growth suppressed by TFG beta. Therefore, the effects of TGF beta on cell growth could be dissociated from its effects on specialized responses, indicating that within this one cell type there must be at least two independent pathways for TGF beta activity, one which leads to cessation of proliferation and one which induces a specific set of cellular responses. This cell system may be useful for examining the pathway of TGF beta induced growth inhibition using closely matched cells which vary in their growth-induced response but retain similar specialized responses to TGF beta.
Collapse
Affiliation(s)
- M R Stampfer
- Cell and Molecular Biology Division, Lawrence Berkeley Laboratory, University of California, Berkeley 94720
| | | | | | | |
Collapse
|
35
|
Berchtold MW, Koller M, Egli R, Rhyner JA, Hameister H, Strehler EE. Localization of the intronless gene coding for calmodulin-like protein CLP to human chromosome 10p13-ter. Hum Genet 1993; 90:496-500. [PMID: 8428750 DOI: 10.1007/bf00217447] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The functional intronless gene coding for a calmodulin-like protein (CLP) has been localized to human chromosome 10p13-ter. Chromosomal assignment was performed by Southern blot analysis of DNA from human-rodent somatic cell hybrids and amplification of a CLP gene-specific 1090-bp DNA fragment by the polymerase chain reaction (PCR) on DNA from human-hamster cell hybrids. Chromosomal sublocalization was carried out by in situ hybridization of human chromosome metaphase spreads. The CLP gene is the first member of the human calmodulin/calmodulin-like gene family to be chromosomally sublocalized. Its presence near the telomeric end of the short arm of chromosome 10 may be of significance with respect to its highly (epithelial) cell-type restricted expression in vivo and strong downregulation upon malignant transformation. The generation of a human CLP gene-specific sequence tag site specified by the two primers used for PCR should prove useful for future linkage studies.
Collapse
Affiliation(s)
- M W Berchtold
- Institut für Pharmakologie und Biochemie, Universität Zürich-Irchel, Switzerland
| | | | | | | | | | | |
Collapse
|
36
|
Yaswen P, Stampfer MR, Ghosh K, Cohen JS. Effects of sequence of thioated oligonucleotides on cultured human mammary epithelial cells. ANTISENSE RESEARCH AND DEVELOPMENT 1993; 3:67-77. [PMID: 8495107 DOI: 10.1089/ard.1993.3.67] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have compared the effects of a number of different oligonucleotides on the growth and morphology of normal finite life span and immortally transformed human mammary epithelial cells. The oligonucleotide sequences chosen initially for study were based on that of the NB-1 gene, which encodes a calmodulin-like protein of unknown function. We found that certain thioated oligonucleotides 15-20 residues in length altered the morphology and decreased the growth rate of the normal cells in a concentration-dependent manner. These effects were rapid, occurring within 24-48 h of oligonucleotide addition. The effects, which occurred without an accompanying detectable decrease in the levels of NB-1 mRNA or protein, were most pronounced in the normal epithelial cells, less apparent in the immortalized epithelial cells, and unobserved in normal breast fibroblasts. Identical sequences having mixed phosphodiester and phosphorothioate backbones, or phosphodiester backbones alone, had little or no effect on normal epithelial cell morphology or growth. Two out of seven additional thioated oligonucleotides which were not complementary to NB-1 mRNA, also affected normal epithelial cell morphology and growth when used at similar concentrations (10 microM). Taken together, the observed effects on normal epithelial cells indicate that certain thioated oligonucleotides may have pharmacological consequences that do not depend on strict complementarity of their sequences to known mRNAs.
Collapse
Affiliation(s)
- P Yaswen
- Life Sciences Division, Lawrence Berkeley Laboratory, California
| | | | | | | |
Collapse
|
37
|
Rhyner JA, Koller M, Durussel-Gerber I, Cox JA, Strehler EE. Characterization of the human calmodulin-like protein expressed in Escherichia coli. Biochemistry 1992; 31:12826-32. [PMID: 1334432 DOI: 10.1021/bi00166a017] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The protein-coding region of an intronless human calmodulin-like gene [Koller, M., & Strehler, E. E. (1988) FEBS Lett. 239, 121-128] has been inserted into a pKK233-2 expression vector, and the 148-residue, M(r) = 16,800 human protein was purified to apparent homogeneity by phenyl-Sepharose affinity chromatography from cultures of Escherichia coli JM105 transformed with the recombinant vector. Several milligrams of the purified protein were obtained from 1 L of bacterial culture. A number of properties of human CLP were compared to those of bacterially expressed human calmodulin (CaM) and of bovine brain CaM. CLP showed a characteristic Ca(2+)-dependent electrophoretic mobility shift on SDS-polyacrylamide gels, although the magnitude of this shift was smaller than that observed with CaM. CLP was able to activate the 3',5'-cyclic nucleotide phosphodiesterase to the same Vmax as normal CaM, albeit with a 7-fold higher Kact. In contrast, the erythrocyte plasma membrane Ca(2+)-ATPase could only be stimulated to 62% of its maximal CaM-dependent activity by CLP. CLP was found to contain four Ca(2+)-binding sites with a mean affinity constant of 10(5) M-1, a value about 10-fold lower than that for CaM under comparable conditions. The highly tissue-specifically-expressed CLP represents a novel human Ca(2+)-binding protein showing characteristics of a CaM isoform.
Collapse
Affiliation(s)
- J A Rhyner
- Laboratory for Biochemistry, Swiss Federal Institute of Technology, Zurich
| | | | | | | | | |
Collapse
|
38
|
Petersen OW, Rønnov-Jessen L, Howlett AR, Bissell MJ. Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc Natl Acad Sci U S A 1992; 89:9064-8. [PMID: 1384042 PMCID: PMC50065 DOI: 10.1073/pnas.89.19.9064] [Citation(s) in RCA: 802] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Normal human breast epithelial cells show a high degree of phenotypic plasticity in monolayer culture and express many traits that otherwise characterize tumor cells in vivo. Paradoxically, primary human breast carcinoma cells are difficult to establish in culture: most outgrowths arise from the normal tissue surrounding the tumor. These characteristics have posed major obstacles to the establishment of simple reliable criteria for mammary epithelial transformation in culture. In the present study, we show that a reconstituted basement membrane (BM) can be used to culture all normal human breast epithelial cells and a subset of human breast carcinoma cells. The two cell types can be readily distinguished by virtue of the ability of normal cells to reexpress a structurally and functionally differentiated phenotype within BM. Twelve specimens of normal breast tissue and 2 normal breast epithelial cell lines (total 14 samples) embedded in BM as single cells were able to form multicellular spherical colonies with a final size close to that of true acini in situ. Sections of mature spheres revealed a central lumen surrounded by polarized luminal epithelial cells expressing keratins 18 and 19 and sialomucin at the apical membrane. Significantly, two-thirds of normal spheres deposited a visible endogenous type IV collagen-containing BM even though they were in contact with exogenously provided BM. Growth was arrested completely within the same time period. In contrast, none of 6 carcinoma cell lines or 2 cultures of carcinoma from fresh samples (total 8 samples) responded to BM by growth regulation, lumen formation, correct polarity, or deposition of endogenous BM. These findings may provide the basis of a rapid assay for discriminating normal human breast epithelial cells from their malignant counterparts. Furthermore, we propose that the ability to sense BM appropriately and to form three-dimensional organotypic structures may be the function of a class of "suppressor" genes that are lost as cells become malignant.
Collapse
Affiliation(s)
- O W Petersen
- Department of Anatomy, Panum Institute, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
39
|
New nucleotide sequence data on the EMBL File Server. Nucleic Acids Res 1991; 19:2521-34. [PMID: 2041795 PMCID: PMC329494 DOI: 10.1093/nar/19.9.2521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
40
|
Lee SW, Tomasetto C, Sager R. Positive selection of candidate tumor-suppressor genes by subtractive hybridization. Proc Natl Acad Sci U S A 1991; 88:2825-9. [PMID: 1849277 PMCID: PMC51332 DOI: 10.1073/pnas.88.7.2825] [Citation(s) in RCA: 221] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A positive selection system designed to identify and recover candidate tumor-suppressor genes is described. The system compares mRNA expression of genes from normal and tumor-derived human mammary epithelial cells grown in a special medium that supports similar growth rates of the two cell types. mRNAs uniquely expressed in normal cells are recovered as cDNAs after subtraction with mRNA from tumor cells. Seven different clones, from 0.6 to 4.8 kilobases in transcript size and including both rare and abundunt transcripts, were recovered in the first 23 clones analyzed. Among the isolated clones were genes encoding the gap-junction protein connexin 26, two different keratins, and glutathione-S-transferase pi, as well as an unknown gene in the S100 family of small calcium-binding proteins. In principle, tumor-suppressor genes include two classes: class I, in which loss of function results from mutation or deletion of DNA and class II, in which loss of function is from a regulatory block to expression. A class II suppressor gene is assumed to be regulated by a different suppressor gene that lost its function by mutation or deletion. Both classes of tumor-suppressor genes may provide valuable proteins with clinical applications in cancer diagnosis or therapy. Class II suppressors may be especially useful because the normal genes are present and their reexpression may be inducible by drugs or other treatments.
Collapse
Affiliation(s)
- S W Lee
- Division of Cancer Genetics, Dana-Farber Cancer Institute, Boston, MA 02115
| | | | | |
Collapse
|