1
|
LI RUIFANG, NAN XINRONG, LI MING, RAHHAL OMAR. Fibroblast activation protein (FAP) as a prognostic biomarker in multiple tumors and its therapeutic potential in head and neck squamous cell carcinoma. Oncol Res 2024; 32:1323-1334. [PMID: 39055892 PMCID: PMC11267059 DOI: 10.32604/or.2024.046965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/02/2024] [Indexed: 07/28/2024] Open
Abstract
Background Fibroblast activation protein (FAP), a cell surface serine protease, plays roles in tumor invasion and immune regulation. However, there is currently no pan-cancer analysis of FAP. Objective: We aimed to assess the pan-cancer expression profile of FAP, its molecular function, and its potential role in head and neck squamous cell carcinoma (HNSC). Methods We analyzed gene expression, survival status, immune infiltration, and molecular functional pathways of FAP in The Cancer Genome Atlas (TCGA) and Genotype Tissue Expression (GTEx) tumors. Furthermore, to elucidate the role of FAP in HNSC, we performed proliferation, migration, and invasion assays post-FAP overexpression or knock-down. Results FAP expression was elevated in nine tumor types and was associated with poor survival in eight of them. In the context of immune infiltration, FAP expression negatively correlated with CD8+ T-cell infiltration in five tumor types and positively with regulatory T-cell infiltration in four tumor types. Our enrichment analysis highlighted FAP's involvement in the PI3K-Akt signaling pathway. In HNSC cells, FAP overexpression activated the PI3K-Akt pathway, promoting tumor proliferation, migration, and invasion. Conversely, FAP knockdown showed inhibitory effects. Conclusion Our study unveils the association of FAP with poor tumor prognosis across multiple cancers and highlights its potential as a therapeutic target in HNSC.
Collapse
Affiliation(s)
- RUIFANG LI
- School of Stomatology, Shanxi Medical University, Taiyuan, 030001, China
| | - XINRONG NAN
- Department of Stomatology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - MING LI
- Department of Oral and Maxillofacial Surgery, Xiangya Stomatology Hospital, Central South University, Changsha, 410005, China
| | - OMAR RAHHAL
- Department of Oral and Maxillofacial Surgery, Xiangya Stomatology Hospital, Central South University, Changsha, 410005, China
| |
Collapse
|
2
|
Li M, Deng Z, Xie C, Chen J, Yuan Z, Rahhal O, Tang Z. Fibroblast activating protein promotes the proliferation, migration, and activation of fibroblasts in oral submucous fibrosis. Oral Dis 2024; 30:1252-1263. [PMID: 37357365 DOI: 10.1111/odi.14602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/31/2023] [Accepted: 04/13/2023] [Indexed: 06/27/2023]
Abstract
OBJECTIVES Fibroblast activating protein (FAP) is associated with various organ fibrosis. However, the expression and molecular function of FAP in oral submucous fibrosis (OSF) is still unclear. MATERIALS AND METHODS The high-performance liquid chromatography was used to detect the presence of alkaloids in areca nut extract (ANE). Real-time qPCR, Western blot, and Immunohistochemistry assay were used to analyze the expression of FAP mRNA or protein in OSF and normal oral tissue. A chi-squared test analyzed the relationship between FAP protein expression and clinicopathological data of OSF patients. CCK-8, Wound-healing, and Transwell migration assay were employed to assess the effect of the proliferation and migration ability of hOMF cells with FAP overexpression or knockdown. The expression level of a-SMA, FSP1, and P13K-Akt signaling pathways-related protein in hOMF cells transfected with FAP overexpression or knockdown plasmid was verified by western blot assay. RESULTS The four specific areca alkaloids (Arecoline, Guvacine, Arecaidine, and Guvacoline) were successfully detected in the ANE. The viability of hOMF cells was significantly improved in the 50 μg/mL ANE group and was inhibited in the 5 and 50 mg/mL ANE groups. The expression of FAP was upregulated in OSF tissues, and hOMF cells treated with 50 μg/mL ANE and was related to pathology grade, clinical stage, and history of chewing betel nut. Additionally, FAP may promote the proliferation, migration, and activation of hOMF cells through the P13K-Akt signaling pathway. CONCLUSIONS This study found that ANE had a bidirectional effect on the viability of hOMF cells, and the FAP gene was a potential therapeutic target in OSF.
Collapse
Affiliation(s)
- Ming Li
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, China
| | - Zhiyuan Deng
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, China
| | - Changqin Xie
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, China
| | - Juan Chen
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, China
| | | | - Omar Rahhal
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, China
| | - Zhangui Tang
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, China
| |
Collapse
|
3
|
Liang EY, Huang MH, Chen YT, Zhang PW, Shen Y, Tu XX, Chen WY, Wang Y, Yan J, Wang HY, Ke PF, Huang XZ. Tanshinone IIA modulates cancer cell morphology and movement via Rho GTPases-mediated actin cytoskeleton remodeling. Toxicol Appl Pharmacol 2024; 483:116839. [PMID: 38290667 DOI: 10.1016/j.taap.2024.116839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/04/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
Actin filaments form unique structures with robust actin bundles and cytoskeletal networks affixed to the extracellular matrix and interact with neighboring cells, which are crucial structures for cancer cells to acquire a motile phenotype. This study aims to investigate a novel antitumor mechanism by which Tanshinone IIA (Tan IIA) modulates the morphology and migration of liver cancer cells via actin cytoskeleton regulation. 97H and Huh7 exhibited numerous tentacle-like protrusions that interacted with neighboring cells. Following treatment with Tan IIA, 97H and Huh7 showed a complete absence of cytoplasmic protrusion and adherens junctions, thereby effectively impeding their migration capability. The fluorescence staining of F-actin and microtubules indicated that these tentacle-like protrusions and cell-cell networks were actin-based structures that led to morphological changes after Tan IIA treatment by retracting and reorganizing beneath the membrane. Tan IIA can reverse the actin depolymerization and cell morphology alterations induced by latrunculin A. Tan IIA down-regulated actin and Rho GTPases expression significantly, as opposed to inducing Rho signaling activation. Preventing the activity of proteasomes and lysosomes had no discernible impact on the modifications in cellular structure and protein expression induced by Tan IIA. However, as demonstrated by the puromycin labeling technique, the newly synthesized proteins were significantly inhibited by Tan IIA. In conclusion, Tan IIA can induce dramatic actin cytoskeleton remodeling by inhibiting the protein synthesis of actin and Rho GTPases, resulting in the suppression of tumor growth and migration. Targeting the actin cytoskeleton of Tan IIA is a promising strategy for HCC treatment.
Collapse
Affiliation(s)
- En-Yu Liang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meng-He Huang
- Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Nanhai, China
| | - Ying-Ting Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng-Wei Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan Shen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Xin Tu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei-Ye Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jun Yan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong-Yu Wang
- Department of Interventional Therapy, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Pei-Feng Ke
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xian-Zhang Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
4
|
Zhang XL, Xiao W, Qian JP, Yang WJ, Xu H, Xu XD, Zhang GW. The Role and Application of Fibroblast Activating Protein. Curr Mol Med 2024; 24:1097-1110. [PMID: 37259211 DOI: 10.2174/1566524023666230530095305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 06/02/2023]
Abstract
Fibroblast activation protein-α (FAP), a type-II transmembrane serine protease, is rarely expressed in normal tissues but highly abundant in pathological diseases, including fibrosis, arthritis, and cancer. Ever since its discovery, we have deciphered its structure and biological properties and continue to investigate its roles in various diseases while attempting to utilize it for targeted therapy. To date, no significant breakthroughs have been made in terms of efficacy. However, in recent years, several practical applications in the realm of imaging diagnosis have been discovered. Given its unique expression in a diverse array of pathological tissues, the fundamental biological characteristics of FAP render it a crucial target for disease diagnosis and immunotherapy. To obtain a more comprehensive understanding of the research progress of FAP, its biological characteristics, involvement in diseases, and recent targeted application research have been reviewed. Moreover, we explored its development trend in the direction of clinical diagnoses and treatment.
Collapse
Affiliation(s)
- Xiao-Lou Zhang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wang Xiao
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian-Ping Qian
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wan-Jun Yang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Xu
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xing-da Xu
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guo-Wei Zhang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Abstract
Advances in histopathologic and molecular genetic subtyping of sarcoma will potentially allow identification of novel diagnostic and therapeutic targets for specific subtypes, but a "pan-sarcoma" target is needed. This article provides an overview on expression of one potential candidate, fibroblast activation protein alpha in soft tissue and bone sarcoma, and the resulting application of 68Ga-FAPI as novel imaging probes in these rare tumor entities. Current preclinical and clinical data on 68Ga-FAPI-PET/CT in sarcomas are summarized. 68Ga-FAPI-PET-CT potentially offers important complementary information to be used in diagnostic work-up, assessment of therapy response, and prognostication of soft tissue and bone sarcomas.
Collapse
Affiliation(s)
- Lukas Kessler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, and German Cancer Research Center (DKFZ), Essen, Germany.
| |
Collapse
|
6
|
Mosessian S, Jensen JD, Enke AS. Current State of Clinical Trials and Regulatory Approvals with Fibroblast Activation Protein Targeting Interventions. PET Clin 2023:S1556-8598(23)00023-8. [PMID: 36990947 DOI: 10.1016/j.cpet.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
In this article, the authors review the current state of fibroblast activation protein (FAP)-targeted interventions utilizing available data from clinicaltrials.gov. Thirty-seven records were reviewed and demonstrated interventions with imaging studies comprising the largest portion of the active studies in progress, followed by therapeutic studies using non-radioligand and radioligand therapy. The efforts are in early stages of clinical development; however the field is gaining significant momentum. Completion of existing clincial studies and entrance of new products into the clincial trial phase will shed important light on the clinical utility of these interventions and shape future clinical development efforts.
Collapse
|
7
|
Mori N, Jin J, Krishnamachary B, Mironchik Y, Wildes F, Vesuna F, Barnett JD, Bhujwalla ZM. Functional roles of FAP-α in metabolism, migration and invasion of human cancer cells. Front Oncol 2023; 13:1068405. [PMID: 36937451 PMCID: PMC10015381 DOI: 10.3389/fonc.2023.1068405] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/31/2023] [Indexed: 03/06/2023] Open
Abstract
Fibroblast activation protein-α (FAP-α) is a transmembrane serine protease that is attracting significant interest as it is expressed by a subgroup of cancer-associated fibroblasts that play a role in immune suppression and cancer metastasis. FAP-α is also expressed by some cancer cells, such as melanoma, colorectal and breast cancer cells. Triple negative breast cancer (TNBC) is an aggressive cancer that urgently requires identification of novel targets for therapy. To expand our understanding of the functional roles of FAP-α in TNBC we engineered a human TNBC cell line, MDA-MB-231, to stably overexpress FAP-α and characterized changes in metabolism by 1H magnetic resonance spectroscopy, cell proliferation, migration characterized by wound healing, and invasion. FAP-α overexpression resulted in significant alterations in myoinositol, choline metabolites, creatine, and taurine, as well as a significant increase of migration and invasion, although proliferation remained unaltered. The increase of migration and invasion are consistent with the known activities of FAP-α as an exopeptidase and endopeptidase/gelatinase/collagenase in tissue remodeling and repair, and in cell migration. We additionally determined the effects of FAP-α overexpression on the human fibrosarcoma HT1080 cell line that showed increased migration, accompanied by limited changes in metabolism that identified the dependency of the metabolic changes on cell type. These metabolic data identify a previously unknown role of FAP-α in modifying cancer cell metabolism in the TNBC cell line studied here that may provide new insights into its functional roles in cancer progression.
Collapse
Affiliation(s)
- Noriko Mori
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Noriko Mori, ; Zaver M. Bhujwalla,
| | - Jiefu Jin
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Balaji Krishnamachary
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yelena Mironchik
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Flonné Wildes
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Farhad Vesuna
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - James D. Barnett
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Zaver M. Bhujwalla
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Noriko Mori, ; Zaver M. Bhujwalla,
| |
Collapse
|
8
|
Manuelli V, Cahill F, Wylie H, Gillett C, Correa I, Heck S, Rimmer A, Haire A, Van Hemelrijck M, Rudman S, Wells CM. Invadopodia play a role in prostate cancer progression. BMC Cancer 2022; 22:386. [PMID: 35397545 PMCID: PMC8994910 DOI: 10.1186/s12885-022-09424-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/16/2022] [Indexed: 01/06/2023] Open
Abstract
Background Invadopodia, actin-rich structures that release metallo-proteases at the interface with extra-cellular matrix, in a punctate manner are thought to be important drivers of tumour invasion. Invadopodia formation has been observed in-vitro and in-vivo in numerous metastatic cell lines derived from multiple tumour types. However, prostate cancer cell lines have not been routinely reported to generate invadopodia and the few instances have always required external stimulation. Methods In this study, the invasive potential of primary prostate adenocarcinoma cell lines, which have never been fully characterised before, was investigated both in-vitro invadopodia assays and in-vivo zebrafish dissemination assay. Subsequently, circulating tumour cells from prostate cancer patients were isolated and tested in the invadopodia assay. Results Retention of E-cadherin and N-cadherin expression indicated a transitional state of EMT progression, consistent with the idea of partial EMT that has been frequently observed in aggressive prostate cancer. All cell lines tested were capable of spontaneous invadopodia formation and possess a significant degradative ability in-vitro under basal conditions. These cell lines were invasive in-vivo and produced visible metastasis in the zebrafish dissemination assay. Importantly we have proceeded to demonstrate that circulating tumour cells isolated from prostate cancer patients exhibit invadopodia-like structures and degrade matrix with visible puncta. This work supports a role for invadopodia activity as one of the mechanisms of dissemination employed by prostate cancer cells. Conclusion The combination of studies presented here provide clear evidence that invadopodia activity can play a role in prostate cancer progression. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09424-4.
Collapse
|
9
|
Xin L, Gao J, Zheng Z, Chen Y, Lv S, Zhao Z, Yu C, Yang X, Zhang R. Fibroblast Activation Protein-α as a Target in the Bench-to-Bedside Diagnosis and Treatment of Tumors: A Narrative Review. Front Oncol 2021; 11:648187. [PMID: 34490078 PMCID: PMC8416977 DOI: 10.3389/fonc.2021.648187] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
Fibroblast activation protein-α (FAP) is a type II integral serine protease that is specifically expressed by activated fibroblasts. Cancer-associated fibroblasts (CAFs) in the tumor stroma have an abundant and stable expression of FAP, which plays an important role in promoting tumor growth, invasion, metastasis, and immunosuppression. For example, in females with a high incidence of breast cancer, CAFs account for 50–70% of the cells in the tumor’s microenvironment. CAF overexpression of FAP promotes tumor development and metastasis by influencing extracellular matrix remodeling, intracellular signaling, angiogenesis, epithelial-to-mesenchymal transition, and immunosuppression. This review discusses the basic biological characteristics of FAP and its applications in the diagnosis and treatment of various cancers. We review the emerging basic and clinical research data regarding the use of nanomaterials that target FAP.
Collapse
Affiliation(s)
- Lei Xin
- Department of Radiology, Affiliated Tumor Hospital of Shanxi Medical University, Taiyuan, China
| | - Jinfang Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Ziliang Zheng
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Yiyou Chen
- Department of Radiology, Affiliated Tumor Hospital of Shanxi Medical University, Taiyuan, China
| | - Shuxin Lv
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Zhikai Zhao
- Department of Radiology, Affiliated Tumor Hospital of Shanxi Medical University, Taiyuan, China
| | - Chunhai Yu
- Department of Radiology, Affiliated Tumor Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaotang Yang
- Department of Radiology, Affiliated Tumor Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruiping Zhang
- Department of Radiology, Affiliated Tumor Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
10
|
Abstract
Fibroblast activation protein-α (FAP) is a type-II transmembrane serine protease expressed almost exclusively to pathological conditions including fibrosis, arthritis, and cancer. Across most cancer types, elevated FAP is associated with worse clinical outcomes. Despite the clear association between FAP and disease severity, the biological reasons underlying these clinical observations remain unclear. Here we review basic FAP biology and FAP's role in non-oncologic and oncologic disease. We further explore how FAP may worsen clinical outcomes via its effects on extracellular matrix remodeling, intracellular signaling regulation, angiogenesis, epithelial-to-mesenchymal transition, and immunosuppression. Lastly, we discuss the potential to exploit FAP biology to improve clinical outcomes.
Collapse
Affiliation(s)
- Allison A Fitzgerald
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3870 Reservoir Road NW, Washington, DC, 20057, USA
| | - Louis M Weiner
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3870 Reservoir Road NW, Washington, DC, 20057, USA.
| |
Collapse
|
11
|
Lim S, Shparberg RA, Coorssen JR, O’Connor MD. Application of the RBBP9 Serine Hydrolase Inhibitor, ML114, Decouples Human Pluripotent Stem Cell Proliferation and Differentiation. Int J Mol Sci 2020; 21:ijms21238983. [PMID: 33256189 PMCID: PMC7730578 DOI: 10.3390/ijms21238983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022] Open
Abstract
Retinoblastoma binding protein 9 (RBBP9) is required for maintaining the expression of both pluripotency and cell cycle genes in human pluripotent stem cells (hPSCs). An siRNA-based study from our group showed it does so by influencing cell cycle progression through the RB/E2F pathway. In non-pluripotent cells, RBBP9 is also known to have serine hydrolase (SH) activity, acting on currently undefined target proteins. The role of RBBP9 SH activity in hPSCs, and during normal development, is currently unknown. To begin assessing whether RBBP9 SH activity might contribute to hPSC maintenance, hPSCs were treated with ML114—a selective chemical inhibitor of RBBP9 SH activity. Stem cells treated with ML114 showed significantly reduced population growth rate, colony size and progression through the cell cycle, with no observable change in cell morphology or decrease in pluripotency antigen expression—suggesting no initiation of hPSC differentiation. Consistent with this, hPSCs treated with ML114 retained the capacity for tri-lineage differentiation, as seen through teratoma formation. Subsequent microarray and Western blot analyses of ML114-treated hPSCs suggest the nuclear transcription factor Y subunit A (NFYA) may be a candidate effector of RBBP9 SH activity in hPSCs. These data support a role for RBBP9 in regulating hPSC proliferation independent of differentiation, whereby inhibition of RBBP9 SH activity de-couples decreased hPSC proliferation from initiation of differentiation.
Collapse
Affiliation(s)
- Seakcheng Lim
- School of Medicine, Western Sydney University, Campbelltown NSW 2560, Australia; (S.L.); (R.A.S.)
| | - Rachel A. Shparberg
- School of Medicine, Western Sydney University, Campbelltown NSW 2560, Australia; (S.L.); (R.A.S.)
| | - Jens R. Coorssen
- Departments of Health Sciences and Biological Sciences, Faculties of Applied Health Sciences and Mathematics & Science, Brock University, St. Catharines, ON L2S 3A1, Canada;
| | - Michael D. O’Connor
- School of Medicine, Western Sydney University, Campbelltown NSW 2560, Australia; (S.L.); (R.A.S.)
- Molecular Medicine Research Group, Western Sydney University, Campbelltown NSW 2560, Australia
- Correspondence:
| |
Collapse
|
12
|
Brennen WN, J Thorek DL, Jiang W, Krueger TE, Antony L, Denmeade SR, Isaacs JT. Overcoming stromal barriers to immuno-oncological responses via fibroblast activation protein-targeted therapy. Immunotherapy 2020; 13:155-175. [PMID: 33148078 DOI: 10.2217/imt-2020-0066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The tumor microenvironment contributes to disease progression through multiple mechanisms, including immune suppression mediated in part by fibroblast activation protein (FAP)-expressing cells. Herein, a review of FAP biology is presented, supplemented with primary data. This includes FAP expression in prostate cancer and activation of latent reservoirs of TGF-β and VEGF to produce a positive feedback loop. This collectively suggests a normal wound repair process subverted during cancer pathophysiology. There has been immense interest in targeting FAP for diagnostic, monitoring and therapeutic purposes. Until recently, this development has outpaced an understanding of the biology; impeding optimal translation into the clinic. A summary of these applications is provided with an emphasis on eliminating tumor-infiltrating FAP-positive cells to overcome stromal barriers to immuno-oncological responses.
Collapse
Affiliation(s)
- W Nathaniel Brennen
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, MD 21287, USA
| | - Daniel L J Thorek
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63310, USA.,Department of Biomedical Engineering, Washington University School of Medicine, Saint Louis, MO 63310, USA
| | - Wen Jiang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Timothy E Krueger
- Department of Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Lizamma Antony
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, MD 21287, USA
| | - Samuel R Denmeade
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, MD 21287, USA
| | - John T Isaacs
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
13
|
Fares J, Kanojia D, Rashidi A, Ulasov I, Lesniak MS. Genes that Mediate Metastasis across the Blood-Brain Barrier. Trends Cancer 2020; 6:660-676. [PMID: 32417182 DOI: 10.1016/j.trecan.2020.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 12/21/2022]
Abstract
Brain metastasis is an important cause of mortality in patients with cancer and represents the majority of all intracranial tumors. A key step during the metastatic journey of the cancer cell to the brain is the invasion through the blood-brain barrier (BBB). Nevertheless, the molecular mechanisms that govern this process remain unknown. The BBB has been blamed for limiting the access of therapeutic drugs to the brain, which provides a safe haven for cancer cells in the brain and confers poor prognosis for the patient. Here, we explore the genes that control the transmigration of metastatic cancer cells across the BBB, offering new targets for the development of gene and cell therapies against brain metastases.
Collapse
Affiliation(s)
- Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Deepak Kanojia
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Aida Rashidi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
14
|
Šimková A, Bušek P, Šedo A, Konvalinka J. Molecular recognition of fibroblast activation protein for diagnostic and therapeutic applications. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140409. [PMID: 32171757 DOI: 10.1016/j.bbapap.2020.140409] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/24/2020] [Accepted: 03/05/2020] [Indexed: 01/09/2023]
Abstract
Fibroblast activation protein (FAP) is a non-classical serine protease expressed predominantly in conditions accompanied by tissue remodeling, particularly cancer. Due to its plasma membrane localization, FAP represents a promising molecular target for tumor imaging and treatment. The unique enzymatic activity of FAP facilitates development of diagnostic and therapeutic tools based on molecular recognition of FAP by substrates and small-molecule inhibitors, in addition to conventional antibody-based strategies. In this review, we provide background on the pathophysiological role of FAP and discuss its potential for diagnostic and therapeutic applications. Furthermore, we present a detailed analysis of the structural patterns crucial for substrate and inhibitor recognition by the FAP active site and determinants of selectivity over the related proteases dipeptidyl peptidase IV and prolyl endopeptidase. We also review published data on targeting of the tumor microenvironment with FAP antibodies, FAP-targeted prodrugs, activity-based probes and small-molecule inhibitors. We describe use of a recently developed, selective FAP inhibitor with low-nanomolar potency in inhibitor-based targeting strategies including synthetic antibody mimetics based on hydrophilic polymers and inhibitor conjugates for PET imaging. In conclusion, recent advances in understanding of the molecular structure and function of FAP have significantly contributed to the development of several tools with potential for translation into clinical practice.
Collapse
Affiliation(s)
- Adéla Šimková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 166 10 Praha 6, Czech Republic; Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 12843 Praha 2, Czech Republic.
| | - Petr Bušek
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, U Nemocnice 5, 128 53 Praha 2, Czech Republic.
| | - Aleksi Šedo
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, U Nemocnice 5, 128 53 Praha 2, Czech Republic.
| | - Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 166 10 Praha 6, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, 12843 Praha 2, Czech Republic.
| |
Collapse
|
15
|
Karamanou K, Franchi M, Vynios D, Brézillon S. Epithelial-to-mesenchymal transition and invadopodia markers in breast cancer: Lumican a key regulator. Semin Cancer Biol 2019; 62:125-133. [PMID: 31401293 DOI: 10.1016/j.semcancer.2019.08.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/02/2019] [Accepted: 08/04/2019] [Indexed: 12/30/2022]
Abstract
A great hallmark of breast cancer is the absence or presence of estrogen receptors ERα and ERβ, with a dominant role in cell proliferation, differentiation and cancer progression. Both receptors are related with Epithelial-to-Mesenchymal Transition (EMT) since there is a relation between ERs and extracellular matrix (ECM) macromolecules expression, and therefore, cell-cell and cell-ECM interactions. The endocrine resistance of ERα endows epithelial cells with increased aggressiveness and induces cell proliferation, resulting into a mesenchymal phenotype and an EMT status. ERα signaling may affect the transcriptional factors which govern EMT. Knockdown or silencing of ERα and ERβ in MCF-7 and MDA-MB-231 breast cancer cells respectively, provoked pivotal changes in phenotype, cellular functions, mRNA and protein levels of EMT markers, and consequently the EMT status. Mesenchymal cells owe their migratory and invasive properties to invadopodia, while in epithelial cells, lamellipodia and filopodia are mostly observed. Invadopodia, are actin-rich protrusions of plasma membrane, promoting proteolytic degradation of ECM and tumor invasion. Cortactin and MMP-14 govern the formation and principal functions of invadopodia. In vitro experiments proved that lumican inhibits cortactin and MMP-14 expression, alters the formation of lamellipodia and transforms mesenchymal cells into epithelial-like. Conclusively, lumican may inhibit or even reverse the several metastatic features that EMT endows in breast cancer cells. Therefore, a lumican-based anti-cancer therapy which will pharmacologically target and inhibit EMT might be interesting to be developed.
Collapse
Affiliation(s)
- Konstantina Karamanou
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, Reims, France; Université de Reims Champagne Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France; Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Demitrios Vynios
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Stéphane Brézillon
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, Reims, France; Université de Reims Champagne Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.
| |
Collapse
|
16
|
Golyan FF, Moghaddassian M, Forghanifard MM, Talebi S, Farshchian M, Mahmoudian RA, Abbaszadegan MR. Whole Exome Sequencing Reveals a Novel Damaging Mutation in Human Fibroblast Activation Protein in a Family with Esophageal Squamous Cell Carcinoma. J Gastrointest Cancer 2019; 51:179-188. [DOI: 10.1007/s12029-019-00224-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Puré E, Blomberg R. Pro-tumorigenic roles of fibroblast activation protein in cancer: back to the basics. Oncogene 2018; 37:4343-4357. [PMID: 29720723 PMCID: PMC6092565 DOI: 10.1038/s41388-018-0275-3] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/23/2018] [Accepted: 01/29/2018] [Indexed: 02/06/2023]
Abstract
Fibroblast activation protein (FAP) is a cell-surface serine protease that acts on various hormones and extracellular matrix components. FAP is highly upregulated in a wide variety of cancers, and is often used as a marker for pro-tumorigenic stroma. It has also been proposed as a molecular target of cancer therapies, and, especially in recent years, a great deal of research has gone into design and testing of diverse FAP-targeted treatments. Yet despite this growing field of research, our knowledge of FAP's basic biology and functional roles in various cancers has lagged behind its use as a tumor-stromal marker. In this review, we summarize and analyze recent advances in understanding the functions of FAP in cancer, most notably its prognostic value in various tumor types, cellular effects on various cell types, and potential as a therapeutic target. We highlight outstanding questions in the field, the answers to which could shape preclinical and clinical studies of FAP.
Collapse
Affiliation(s)
- Ellen Puré
- University of Pennsylvania, Philadelphia, PA, USA.
| | | |
Collapse
|
18
|
Wilson KA, Tan-Wilson A. Proteases catalyzing vicilin cleavage in developing pea (Pisum sativum L.) seeds. JOURNAL OF PLANT PHYSIOLOGY 2018; 224-225:86-94. [PMID: 29609123 DOI: 10.1016/j.jplph.2018.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 03/07/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
Legume species differ in whether or not the 7S globulins stored in seeds undergo proteolytic processing during seed development, while preserving the bicupin structure and trimeric assembly necessary for accumulation and packing into protein storage vacuoles. Two such cleavage sites have been documented for the vicilins in pea cotyledons: one in the linker region between the two cupin domains, and another in an exposed loop in the C-terminal cupin. In this report, we explain the occurrence of vicilin cleavage in developing pea by showing that the storage vacuoles are already acidified before germination, in contrast to soybean and peanut where acidification occurs only after germination. We also show that the two cleavage reactions are catalyzed by two different proteases. The vicilin cleavage at the linker region was inhibited by AEBSF (4-(2-aminoethyl)benzenesulfonyl fluoride), indicative of a serine protease. The cleavage in the C-terminal cupin domain was sensitive to the sulfhydryl-reactive reagents p-chloromercuriphenylsulfonate and iodoacetate, but not to E-64 (N-[N-(L-3-transcarboxyirane-2-carbonyl)-l-leucyl]-agmatine), characteristic of the legumain class of cysteine proteases. During seed development, we found the predominant vicilin cleavage in this pea cultivar (Knight) to be at the site in the second cupin domain; but after germination, both sites were cleaved at about the same rate.
Collapse
Affiliation(s)
- Karl A Wilson
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902-6000, United States.
| | - Anna Tan-Wilson
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902-6000, United States.
| |
Collapse
|
19
|
Liao Y, Xing S, Xu B, Liu W, Zhang G. Evaluation of the circulating level of fibroblast activation protein α for diagnosis of esophageal squamous cell carcinoma. Oncotarget 2018; 8:30050-30062. [PMID: 28415791 PMCID: PMC5444725 DOI: 10.18632/oncotarget.16274] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 03/09/2017] [Indexed: 01/01/2023] Open
Abstract
To evaluate whether circulating fibroblast activation protein α (FAPα) could serve as a biomarker for the diagnosis of esophageal squamous cell carcinoma (ESCC), enzyme-linked immunosorbent assay (ELISA) was used to detect plasma FAPα in 556 participants including ESCC group, benign esophageal disease group, healthy controls and other cancer controls group. The levels of plasma FAPα were significantly decreased in ESCC patients (P < 0.001) and showed a positive correlation with HDL-C levels (R = 0.372, P < 0.001). The sensitivity and specificity of plasma FAPα were 56.1% and 85.6% based on the optimal cut-off (49.04 ng/ml, AUC = 0.714). The combination of FAPα and the traditional biomarkers (CEA, CYFR211 and SCCA) improved the sensitivity (41.5%) without compromising the specificity (95.0%). Contradictorily, the immunohistochemical staining revealed the overexpression of FAPα in stroma of ESCC tissues. So the source of soluble FAPα was further explored by qRT-PCR, Western blotting, ELISA and immunoprecipitation in fibroblast cell lines and mouse xenograft models. We found that the plasma FAPα was not correlated with the FAPα expressed in tumor, and the multi-organ might contribute to the circulating levels of FAPα including skeletal muscle, liver and bone marrow. These results indicated that the low plasma FAPα level might due to the systemic reaction to the presence of tumor and circulating FAPα level might be a potential indicator for diagnosing ESCC.
Collapse
Affiliation(s)
- Yuehua Liao
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou, China
| | - Shan Xing
- Department of Clinical Laboratory Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Banglao Xu
- Department of Clinical Laboratory Medicine, Guangzhou First Municipal People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wanli Liu
- Department of Clinical Laboratory Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ge Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou, China
| |
Collapse
|
20
|
Jiang GM, Xu W, Du J, Zhang KS, Zhang QG, Wang XW, Liu ZG, Liu SQ, Xie WY, Liu HF, Liu JS, Wu BP. The application of the fibroblast activation protein α-targeted immunotherapy strategy. Oncotarget 2017; 7:33472-82. [PMID: 26985769 PMCID: PMC5078111 DOI: 10.18632/oncotarget.8098] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/28/2016] [Indexed: 12/31/2022] Open
Abstract
Cancer immunotherapy has primarily been focused on attacking tumor cells. However, given the close interaction between tumor cells and cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TME), CAF-targeted strategies could also contribute to an integrated cancer immunotherapy. Fibroblast activation protein α (FAP α) is not detectible in normal tissues, but is overexpressed by CAFs and is the predominant component of the stroma in most types of cancer. FAP α has both dipeptidyl peptidase and endopeptidase activities, cleaving substrates at a post-proline bond. When all FAP α-expressing cells (stromal and cancerous) are destroyed, tumors rapidly die. Furthermore, a FAP α antibody, FAP α vaccine, and modified vaccine all inhibit tumor growth and prolong survival in mouse models, suggesting FAP α is an adaptive tumor-associated antigen. This review highlights the role of FAP α in tumor development, explores the relationship between FAP α and immune suppression in the TME, and discusses FAP α as a potential immunotherapeutic target.
Collapse
Affiliation(s)
- Guan-Min Jiang
- Department of Clinical Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Wei Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Jun Du
- Department of Microbial and Biochemical Pharmacy School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Kun-Shui Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiu-Gui Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Xiao-Wei Wang
- Department of Clinical Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zhi-Gang Liu
- Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shuang-Quan Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Wan-Ying Xie
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Hui-Fang Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Jing-Shi Liu
- Department of Anesthesia, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bai-Ping Wu
- Department of Clinical Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
21
|
Juillerat-Jeanneret L, Tafelmeyer P, Golshayan D. Fibroblast activation protein-α in fibrogenic disorders and cancer: more than a prolyl-specific peptidase? Expert Opin Ther Targets 2017; 21:977-991. [DOI: 10.1080/14728222.2017.1370455] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Lucienne Juillerat-Jeanneret
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- CHUV and UNIL, University Institute of Pathology, Lausanne, Switzerland
| | - Petra Tafelmeyer
- Hybrigenics Services, Laboratories and Headquarters, Paris, France
- Hybrigenics Corporation, Cambridge Innovation Center, Cambridge, MA, USA
| | - Dela Golshayan
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
22
|
Tan SY, Chowdhury S, Polak N, Gorrell MD, Weninger W. Fibroblast activation protein is dispensable in the anti-influenza immune response in mice. PLoS One 2017; 12:e0171194. [PMID: 28158223 PMCID: PMC5291439 DOI: 10.1371/journal.pone.0171194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 01/18/2017] [Indexed: 01/10/2023] Open
Abstract
Fibroblast activation protein alpha (FAP) is a unique dual peptidase of the S9B serine protease family, being capable of both dipeptidyl peptidase and endopeptidase activities. FAP is expressed at low level in healthy adult organs including the pancreas, cervix, uterus, submaxillary gland and the skin, and highly upregulated in embryogenesis, chronic inflammation and tissue remodelling. It is also expressed by cancer-associated stromal fibroblasts in more than 90% of epithelial tumours. FAP has enzymatic and non-enzymatic functions in the growth, immunosuppression, invasion and cell signalling of tumour cells. FAP deficient mice are fertile and viable with no gross abnormality, but little data exist on the role of FAP in the immune system. FAP is upregulated in association with microbial stimulation and chronic inflammation, but its function in infection remains unknown. We showed that major populations of immune cells including CD4+ and CD8+ T cells, B cells, dendritic cells and neutrophils are generated and maintained normally in FAP knockout mice. Upon intranasal challenge with influenza virus, FAP mRNA was increased in the lungs and lung-draining lymph nodes. Nonetheless, FAP deficient mice showed similar pathologic kinetics to wildtype controls, and were capable of supporting normal anti-influenza T and B cell responses. There was no evidence of compensatory upregulation of other DPP4 family members in influenza-infected FAP-deficient mice. FAP appears to be dispensable in anti-influenza adaptive immunity.
Collapse
Affiliation(s)
- Sioh-Yang Tan
- Immune Imaging Program, Centenary Institute for Cancer Medicine and Cell Biology, Newtown, New South Wales, Australia
- Sydney Medical School, The University of Sydney, New South Wales, Australia
| | - Sumaiya Chowdhury
- Sydney Medical School, The University of Sydney, New South Wales, Australia
- Molecular Hepatology Laboratory, Centenary Institute for Cancer Medicine and Cell Biology, Newtown, New South Wales, Australia
| | - Natasa Polak
- Sydney Medical School, The University of Sydney, New South Wales, Australia
- Molecular Hepatology Laboratory, Centenary Institute for Cancer Medicine and Cell Biology, Newtown, New South Wales, Australia
| | - Mark D. Gorrell
- Sydney Medical School, The University of Sydney, New South Wales, Australia
- Molecular Hepatology Laboratory, Centenary Institute for Cancer Medicine and Cell Biology, Newtown, New South Wales, Australia
| | - Wolfgang Weninger
- Immune Imaging Program, Centenary Institute for Cancer Medicine and Cell Biology, Newtown, New South Wales, Australia
- Sydney Medical School, The University of Sydney, New South Wales, Australia
- Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| |
Collapse
|
23
|
Park YJ, Kim EK, Bae JY, Moon S, Kim J. Human telomerase reverse transcriptase (hTERT) promotes cancer invasion by modulating cathepsin D via early growth response (EGR)-1. Cancer Lett 2015; 370:222-31. [PMID: 26519755 DOI: 10.1016/j.canlet.2015.10.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/21/2015] [Accepted: 10/21/2015] [Indexed: 10/25/2022]
Abstract
Human telomerase reverse transcriptase (hTERT) contributes to tumor progression as well as maintaining telomere length, however, the mechanism by which hTERT promotes invasiveness is not yet completely understood. This study aims to unravel the precise mechanism through which hTERT promotes cancer invasion. We established an hTERT-overexpressed immortalized cell line (IHOK/hTERT). In orthotopic xenograft models, IHOK/hTERT harbors higher tumorigenicity than IHOK/Control. IHOK/hTERT showed much higher migration and invasion activities compared to IHOK/Control. IHOK/hTERT co-cultured with fibroblasts displayed increased invasion compared to IHOK/hTERT without fibroblasts. We screened for genes that play an important role in intermodulation between cancer cells and fibroblasts using a microarray and identified fibroblast activation protein (FAP). hTERT knockdown showed decreased expression of FAP and early growth response (EGR)-1, one of the transcriptional regulators of FAP in IHOK/hTERT and oral cancer cell line YD10B. Furthermore, EGR-1 knockdown in IHOK/hTERT and YD10B showed reduced invasion and reduced cathepsin D expression compared to Control-siRNA cells. Taken together, this study provides evidence that hTERT overexpression is responsible for the upregulation of the cysteine protease cathepsin D by regulating EGR-1 to activate invasiveness in cancer progression.
Collapse
Affiliation(s)
- Young-Jin Park
- Oral Cancer Research Institute, Department of Oral Pathology, Yonsei University College of Dentistry, Seoul 120-752, South Korea
| | - Eun Kyoung Kim
- Oral Cancer Research Institute, Department of Oral Pathology, Yonsei University College of Dentistry, Seoul 120-752, South Korea; BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 120-752, South Korea
| | - Jung Yoon Bae
- Oral Cancer Research Institute, Department of Oral Pathology, Yonsei University College of Dentistry, Seoul 120-752, South Korea
| | - Sook Moon
- Oral Cancer Research Institute, Department of Oral Pathology, Yonsei University College of Dentistry, Seoul 120-752, South Korea
| | - Jin Kim
- Oral Cancer Research Institute, Department of Oral Pathology, Yonsei University College of Dentistry, Seoul 120-752, South Korea.
| |
Collapse
|
24
|
Koczorowska MM, Tholen S, Bucher F, Lutz L, Kizhakkedathu JN, De Wever O, Wellner UF, Biniossek ML, Stahl A, Lassmann S, Schilling O. Fibroblast activation protein-α, a stromal cell surface protease, shapes key features of cancer associated fibroblasts through proteome and degradome alterations. Mol Oncol 2015; 10:40-58. [PMID: 26304112 DOI: 10.1016/j.molonc.2015.08.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/24/2015] [Accepted: 08/03/2015] [Indexed: 12/23/2022] Open
Abstract
Cancer associated fibroblasts (CAFs) constitute an abundant stromal component of most solid tumors. Fibroblast activation protein (FAP) α is a cell surface protease that is expressed by CAFs. We corroborate this expression profile by immunohistochemical analysis of colorectal cancer specimens. To better understand the tumor-contextual role of FAPα, we investigate how FAPα shapes functional and proteomic features of CAFs using loss- and gain-of function cellular model systems. FAPα activity has a strong impact on the secreted CAF proteome ("secretome"), including reduced levels of anti-angiogenic factors, elevated levels of transforming growth factor (TGF) β, and an impact on matrix processing enzymes. Functionally, FAPα mildly induces sprout formation by human umbilical vein endothelial cells. Moreover, loss of FAPα leads to a more epithelial cellular phenotype and this effect was rescued by exogenous application of TGFβ. In collagen contraction assays, FAPα induced a more contractile cellular phenotype. To characterize the proteolytic profile of FAPα, we investigated its specificity with proteome-derived peptide libraries and corroborated its preference for cleavage carboxy-terminal to proline residues. By "terminal amine labeling of substrates" (TAILS) we explored FAPα-dependent cleavage events. Although FAPα acts predominantly as an amino-dipeptidase, putative FAPα cleavage sites in collagens are present throughout the entire protein length. In contrast, putative FAPα cleavage sites in non-collagenous proteins cluster at the amino-terminus. The degradomic study highlights cell-contextual proteolysis by FAPα with distinct positional profiles. Generally, our findings link FAPα to key aspects of CAF biology and attribute an important role in tumor-stroma interaction to FAPα.
Collapse
Affiliation(s)
- M M Koczorowska
- Institute of Molecular Medicine and Cell Research, University of Freiburg, D-79104 Freiburg, Germany
| | - S Tholen
- Institute of Molecular Medicine and Cell Research, University of Freiburg, D-79104 Freiburg, Germany
| | - F Bucher
- University Eye Hospital Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - L Lutz
- Institute of Surgical Pathology, Department of Pathology, University Medical Center, Freiburg, Germany
| | - J N Kizhakkedathu
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - O De Wever
- Laboratory of Experimental Cancer Research, Ghent University Hospital, 1P7, De Pintelaan 185, 9000 Gent, Belgium
| | - U F Wellner
- Clinic for Surgery, UKSH Campus Lübeck, Lübeck, Germany
| | - M L Biniossek
- Institute of Molecular Medicine and Cell Research, University of Freiburg, D-79104 Freiburg, Germany
| | - A Stahl
- University Eye Hospital Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - S Lassmann
- Institute of Surgical Pathology, Department of Pathology, University Medical Center, Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, University of Freiburg, D-79104 Freiburg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - O Schilling
- Institute of Molecular Medicine and Cell Research, University of Freiburg, D-79104 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, University of Freiburg, D-79104 Freiburg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
25
|
Zi F, He J, He D, Li Y, Yang L, Cai Z. Fibroblast activation protein α in tumor microenvironment: recent progression and implications (review). Mol Med Rep 2015; 11:3203-11. [PMID: 25593080 PMCID: PMC4368076 DOI: 10.3892/mmr.2015.3197] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 08/14/2014] [Indexed: 02/07/2023] Open
Abstract
Accumulated evidence has demonstrated that the microenvironment of a given tumor is important in determining its drug resistance, tumorigenesis, progression and metastasis. These microenvironments, like tumor cells, are vital targets for cancer therapy. The cross-talk between tumor cells and cancer-associated fibroblasts (CAFs, alternatively termed activated fibroblasts) is crucial in regulating the drug resistance, tumorigenesis, neoplastic progression, angiogenesis, invasion and metastasis of a tumor. Fibroblast activation protein α (FAPα) is a transmembrane serine protease and is highly expressed on CAFs present in >90% of human epithelial neoplasms. FAPα activity, alongside that of gelatinase and type I collagenase, has become increasingly important in cancer therapy due to its effectiveness in modulating tumor behavior. In this review, recent progression in the knowledge of the role of FAPα in tumor microenvironments is discussed.
Collapse
Affiliation(s)
- Fuming Zi
- Department of Hematology, Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jingsong He
- Department of Hematology, Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Donghua He
- Department of Hematology, Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yi Li
- Department of Hematology, Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Li Yang
- Department of Hematology, Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Zhen Cai
- Department of Hematology, Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
26
|
Fofaria NM, Srivastava SK. Critical role of STAT3 in melanoma metastasis through anoikis resistance. Oncotarget 2014; 5:7051-64. [PMID: 25216522 PMCID: PMC4196183 DOI: 10.18632/oncotarget.2251] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 07/24/2014] [Indexed: 11/28/2022] Open
Abstract
Anoikis is an anchorage-independent cell death. Resistance to anoikis is one of the key features of metastatic cells. Here, we analyzed the role of STAT3 in anoikis resistance in melanoma cells leading to metastasis. When grown under anchorage-independent conditions, significant proportion of cells resisted anoikis and these resistant cells had higher rate of migration and invasion as compared to the cells grown under anchorage-dependent conditions. The anoikis resistant cells also had significantly higher expression and phosphorylation of STAT3 at Y705 than the cells that were attached to the basement membrane. STAT3 inhibitors, AG 490 and piplartine (PL) induced anoikis in a concentration-dependent manner in anoikis resistant cells. Over-expression of STAT3 or treatment with IL-6 not only increased anoikis resistance, but also protected the cancer cells from PL-induced anoikis. On the other hand, silencing STAT3 decreased the potential of cancer cells to resist anoikis and to migrate. STAT3 knock-down cells and PL treated cells did not form tumors as well as failed to metastasize in SCID-NSG mice as compared to untreated anchorage-independent cells, which formed big tumors and extensively metastasized. In summary, our results for the first time establish STAT3 as a critical player that renders anoikis resistance to melanoma cells and enhance their metastatic potential.
Collapse
Affiliation(s)
- Neel M Fofaria
- Department of Biomedical Sciences & Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, USA
| | - Sanjay K Srivastava
- Department of Biomedical Sciences & Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, USA
| |
Collapse
|
27
|
Zi FM, He JS, Li Y, Wu C, Wu WJ, Yang Y, Wang LJ, He DH, Yang L, Zhao Y, Zheng GF, Han XY, Huang H, Yi Q, Cai Z. Fibroblast activation protein protects bortezomib-induced apoptosis in multiple myeloma cells through β-catenin signaling pathway. Cancer Biol Ther 2014; 15:1413-22. [PMID: 25046247 DOI: 10.4161/cbt.29924] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Multiple myeloma (MM) is a malignant plasma cells proliferative disease. The intricate cross-talk of myeloma cells with bone marrow microenvironment plays an important role in facilitating growth and survival of myeloma cells. Bone marrow mesenchymal stem cells (BMMSCs) are important cells in MM microenvironment. In solid tumors, BMMSCs can be educated by tumor cells to become cancer-associated fibroblasts (CAFs) with high expression of fibroblast activation protein (FAP). FAP was reported to be involved in drug resistance, tumorigenesis, neoplastic progression, angiogenesis, invasion, and metastasis of tumor cells. However, the expression and the role of FAP in MM bone marrow microenvironment are still less known. The present study is aimed to investigate the expression of FAP, the role of FAP, and its relevant signaling pathway in regulating apoptosis induced by bortezomib in MM cells. In this study, our data illustrated that the expression levels of FAP were not different between the cultured BMMSCs isolated from MM patients and normal donors. The expression levels of FAP can be increased by tumor cells conditioned medium (TCCM) stimulation or coculture with RPMI8226 cells. FAP has important role in BMMSCs mediated protecting MM cell lines from apoptosis induced by bortezomib. Further study showed that this process may likely through β-catenin signaling pathway in vitro. The activation of β-catenin in MM cell lines was dependent on direct contact with BMMSCs other than separated by transwell or additional condition medium from BMMSCs and cytokines.
Collapse
Affiliation(s)
- Fu-Ming Zi
- Bone Marrow Transplantation Center; The First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, PR China
| | - Jing-Song He
- Bone Marrow Transplantation Center; The First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, PR China
| | - Yi Li
- Bone Marrow Transplantation Center; The First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, PR China
| | - Cai Wu
- Bone Marrow Transplantation Center; The First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, PR China
| | - Wen-Jun Wu
- Bone Marrow Transplantation Center; The First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, PR China
| | - Yang Yang
- Bone Marrow Transplantation Center; The First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, PR China
| | - Li-Juan Wang
- Bone Marrow Transplantation Center; The First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, PR China
| | - Dong-Hua He
- Bone Marrow Transplantation Center; The First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, PR China
| | - Li Yang
- Bone Marrow Transplantation Center; The First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, PR China
| | - Yi Zhao
- Bone Marrow Transplantation Center; The First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, PR China
| | - Gao-Feng Zheng
- Bone Marrow Transplantation Center; The First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, PR China
| | - Xiao-Yan Han
- Bone Marrow Transplantation Center; The First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, PR China
| | - He Huang
- Bone Marrow Transplantation Center; The First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, PR China
| | - Qing Yi
- Department of Cancer Biology; Lerner Research Institute; Cleveland Clinic; Cleveland, OH USA
| | - Zhen Cai
- Bone Marrow Transplantation Center; The First Affiliated Hospital; Zhejiang University School of Medicine; Hangzhou, PR China
| |
Collapse
|
28
|
Tulley S, Chen WT. Transcriptional regulation of seprase in invasive melanoma cells by transforming growth factor-β signaling. J Biol Chem 2014; 289:15280-96. [PMID: 24727589 DOI: 10.1074/jbc.m114.568501] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tumor invasive phenotype driven by seprase expression/activity has been widely examined in an array of malignant tumor cell types; however, very little is known about the transcriptional regulation of this critical protease. Seprase (also named fibroblast activation protein-α, antiplasmin-cleaving enzyme, and dipeptidyl prolyl peptidase 5) is expressed at high levels by stromal fibroblast, endothelial, and tumor cells in a variety of invasive tumors but is undetectable in the majority of normal adult tissues. To examine the transcriptional regulation of the gene, we cloned the human seprase promoter and demonstrated that endogenous seprase expression and exogenous seprase promoter activity are high in invasive melanoma cells but not in non-invasive melanoma cells/primary melanocytes. In addition, we identified a crucial TGF-β-responsive cis-regulatory element in the proximal seprase promoter region that enabled robust transcriptional activation of the gene. Treatment of metastatic but not normal/non-invasive cells with TGF-β1 caused a rapid and profound up-regulation of endogenous seprase mRNA, which coincided with an abolishment of the negative regulator c-Ski, and an increase in binding of Smad3/4 to the seprase promoter in vivo. Blocking TGF-β signaling in invasive melanoma cells through overexpression of c-Ski, chemically using SB-431542, or with a neutralizing antibody against TGF-β significantly reduced seprase mRNA levels. Strikingly, RNAi of seprase in invasive cells greatly diminished their invasive potential in vitro as did blocking TGF-β signaling using SB-431542. Altogether, we found that seprase is transcriptionally up-regulated in invasive melanoma cells via the canonical TGF-β signaling pathway, supporting the roles of both TGF-β and seprase in tumor invasion and metastasis.
Collapse
Affiliation(s)
- Shaun Tulley
- From the Metastasis Research Laboratory, Division of Gynecologic Oncology, Stony Brook Medicine, Stony Brook, New York 11794
| | - Wen-Tien Chen
- From the Metastasis Research Laboratory, Division of Gynecologic Oncology, Stony Brook Medicine, Stony Brook, New York 11794
| |
Collapse
|
29
|
Barone F, Nayar S, Buckley CD. The role of non-hematopoietic stromal cells in the persistence of inflammation. Front Immunol 2013; 3:416. [PMID: 23335923 PMCID: PMC3543945 DOI: 10.3389/fimmu.2012.00416] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 12/20/2012] [Indexed: 11/13/2022] Open
Abstract
Inflammation results from the complex interaction between hematopoietic and stromal cells and growing evidence supports a key role for the stroma in driving the switch from acute resolving to persistence in chronic inflammatory diseases. Stromal cells have also been shown to play a critical role in cancer biology, being involved in cancer growth, dissemination, and inhibition of the autologous immune response, ultimately favoring persistence and metastatic spread. Similarly, blood and lymphatic endothelial cells contribute to tissue homeostasis during physiological inflammation but also lead to discorded leukocyte and tumor cell accumulation in pathological inflammation and cancer. This review aims to summarize the role that pathogenic stroma plays in the pathogenesis of diseases such as cancer and chronic inflammation.
Collapse
Affiliation(s)
- Francesca Barone
- Centre for Translational Inflammation Research, Arthritis Research UK, Rheumatology Research Group, School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital Birmingham, UK
| | | | | |
Collapse
|
30
|
Radioimmunotherapy of Fibroblast Activation Protein Positive Tumors by Rapidly Internalizing Antibodies. Clin Cancer Res 2012; 18:6208-18. [DOI: 10.1158/1078-0432.ccr-12-0644] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Liu R, Li H, Liu L, Yu J, Ren X. Fibroblast activation protein: A potential therapeutic target in cancer. Cancer Biol Ther 2012; 13:123-9. [PMID: 22236832 DOI: 10.4161/cbt.13.3.18696] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The concept of targeting antigens selectively expressed on the surface of tumor capillary endothelial cells or in tumor stroma has emerged as a promising strategy for cancer therapeutics. Identification of stromal targets for anticancer therapy and development of selective inhibitors of these targets are of great clinical interest. Fibroblast activation protein (FAP), a member of the serine protease family, selectively expressed in the stromal fibroblasts associated with epithelial cancers, whereas with low or undetectable expression in the resting fibroblasts of normal adult tissues. The proteolytic activity of FAP has been shown to support tumor growth and proliferation, making it a potential target for novel anticancer therapies, such as those by immune-based approaches.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | | | | | | | | |
Collapse
|
32
|
|
33
|
Bravo-Cordero JJ, Hodgson L, Condeelis J. Directed cell invasion and migration during metastasis. Curr Opin Cell Biol 2011; 24:277-83. [PMID: 22209238 DOI: 10.1016/j.ceb.2011.12.004] [Citation(s) in RCA: 356] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 11/26/2011] [Accepted: 12/06/2011] [Indexed: 12/18/2022]
Abstract
Metastasis requires tumor cell dissemination to different organs from the primary tumor. Dissemination is a complex cell motility phenomenon that requires the molecular coordination of the protrusion, chemotaxis, invasion and contractility activities of tumor cells to achieve directed cell migration. Recent studies of the spatial and temporal activities of the small GTPases have begun to elucidate how this coordination is achieved. The direct visualization of the pathways involved in actin polymerization, invasion and directed migration in dissemination competent tumor cells will help identify the molecular basis of dissemination and allow the design and testing of more specific and selective drugs to block metastasis.
Collapse
Affiliation(s)
- Jose Javier Bravo-Cordero
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, United States.
| | | | | |
Collapse
|
34
|
Mentlein R, Hattermann K, Hemion C, Jungbluth AA, Held-Feindt J. Expression and role of the cell surface protease seprase/fibroblast activation protein-α (FAP-α) in astroglial tumors. Biol Chem 2011; 392:199-207. [PMID: 20707604 DOI: 10.1515/bc.2010.119] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Seprase or fibroblast activation protein-α (FAP-α) is a cell-surface serine protease that was previously described nearly exclusively on reactive and tumor stromal fibroblasts and thought to be involved in tissue remodeling. We investigated the expression and significance of FAP-α in astrocytomas/glioblastomas. As shown by quantitative reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry, FAP-α was elevated in whole glioblastoma tissues and in particular in most glioma cells in situ and in vitro. In glioma stem-like cells (gliospheres), FAP-α was detected at low levels; however, FAP-α was considerably induced upon differentiation with 10% fetal calf serum. To explore its functional role, FAP-α was silenced by siRNA transfection. In Boyden chamber assays, FAP-α silenced cells migrated similar as control cells through non-coated or Matrigel (basal lamina)-coated porous membranes, but significantly slower through membranes coated with gelatin or brevican, a major component of brain extracellular matrix. Furthermore, FAP-α-silenced glioma cells migrated through murine brain slices much slower under the conditions tested than differentially fluorescent-labeled control cells. Thus, FAP-α is highly expressed on the surface of glioma cells and contributes to diffuse glioma invasion through extracellular matrix components.
Collapse
Affiliation(s)
- Rolf Mentlein
- Department of Anatomy, University of Kiel, D-24098 Kiel, Germany.
| | | | | | | | | |
Collapse
|
35
|
LeBeau AM, Brennen WN, Aggarwal S, Denmeade SR. Targeting the cancer stroma with a fibroblast activation protein-activated promelittin protoxin. Mol Cancer Ther 2009; 8:1378-86. [PMID: 19417147 DOI: 10.1158/1535-7163.mct-08-1170] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Fibroblast-Activation Protein-α (FAP) is a membrane-bound serine protease that is expressed on the surface of reactive stromal fibroblasts present within the majority of human epithelial tumors but is not expressed by normal tissues. FAP is a postprolyl peptidase that differs from other dipeptidyl prolyl peptidases such as diprolylpeptidase 4 in that it also has gelatinase and collagenase endopeptidase activity. Therefore, FAP represents a potential pan-tumor target whose enzymatic activity can be exploited for the intratumoral activation of prodrugs and protoxins. To evaluate FAP as a tumor-specific target, putative FAP-selective peptide protoxins were constructed through modification of the prodomain of melittin, a 26 amino acid amphipathic cytolytic peptide that is the main toxic component in the venom of the common European honeybee Apis milefera. Melittin is synthesized as promelittin, containing a 22 amino acid NH(2)-terminal prodomain rich in the amino acids proline and alanine. In this study, peptides containing truncated melittin prodomain sequences were tested on erythrocytes to determine the optimal prodomain length for inhibiting cytolytic activity. Once optimized, modified promelittin peptides were generated in which previously identified FAP substrate sequences were introduced into the prodomain. Peptide protoxins were identified that were efficiently activated by FAP and selectively toxic to FAP-expressing cell lines with an IC(50) value in the low micromolar range that is similar to melittin. Intratumoral injection of an FAP-activated protoxin produced significant lysis and growth inhibition of human breast and prostate cancer xenografts with minimal toxicity to the host animal.
Collapse
Affiliation(s)
- Aaron M LeBeau
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore Maryland 21231, USA
| | | | | | | |
Collapse
|
36
|
Kennedy A, Dong H, Chen D, Chen WT. Elevation of seprase expression and promotion of an invasive phenotype by collagenous matrices in ovarian tumor cells. Int J Cancer 2009; 124:27-35. [PMID: 18823010 DOI: 10.1002/ijc.23871] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tumor cells do not constitutively exhibit invasive activity, but rather, can be transiently induced to adhere and form lesions. We report here that the expression of seprase, a dominant EDTA-resistant gelatinase in malignant tumors, is dependent on tumor cell exposure to type I collagen gel (TICg). The induced seprase expression of ovarian tumor cells influences their collagen contraction and invasion capability. Importantly, tumor cells with reduced seprase expression, due to manipulation by RNA interference, showed a reduction of TICg contraction in the gel contractility assay, inhibition of tumor cell invasion through TICg as shown by a transwell migration assay and inhibition of peritoneal membrane tumor lesion in a mouse model. In addition, mAb C27, an antibody against beta1 integrin, which blocks cellular avidity to TICg, can induce seprase RNA expression and promote the invasive phenotype and metastatic potential of ovarian tumor cells. Thus, collagenous matrices in the tumor cell niche induce the expression of seprase and initiate tumor invasion and metastatic cascades.
Collapse
Affiliation(s)
- Alanna Kennedy
- Department of Medicine, State University of New York, Stony Brook, NY 11794-8154, USA
| | | | | | | |
Collapse
|
37
|
Packard BZ, Artym VV, Komoriya A, Yamada KM. Direct visualization of protease activity on cells migrating in three-dimensions. Matrix Biol 2008; 28:3-10. [PMID: 19010413 DOI: 10.1016/j.matbio.2008.10.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 10/07/2008] [Accepted: 10/08/2008] [Indexed: 01/12/2023]
Abstract
Determining the specific role(s) of proteases in cell migration and invasion will require high-resolution imaging of sites of protease activity during live-cell migration through extracellular matrices. We have designed a novel fluorescent biosensor to detect localized extracellular sites of protease activity and to test requirements for matrix metalloprotease (MMP) function as cells migrate and invade three-dimensional collagen matrices. This probe fluoresces after cleavage of a peptide site present in interstitial collagen by a variety of proteases including MMP-2, -9, and -14 (MT1-MMP) without requiring transfection or modification of the cells being characterized. Using matrices derivatized with this biosensor, we show that protease activity is localized at the polarized leading edge of migrating tumor cells rather than further back on the cell body. This protease activity is essential for cell migration in native cross-linked but not pepsin-treated collagen matrices. The new type of high-resolution probe described in this study provides site-specific reporting of protease activity and insights into mechanisms by which cells migrate through extracellular matrices; it also helps to clarify discrepancies between previous studies regarding the contributions of proteases to metastasis.
Collapse
Affiliation(s)
- Beverly Z Packard
- OncoImmunin, Inc., 207A Perry Parkway, Suite 6, Gaithersburg, MD 20877, United States.
| | | | | | | |
Collapse
|
38
|
Goscinski MA, Suo Z, Flørenes VA, Vlatkovic L, Nesland JM, Giercksky KE. FAP-alpha and uPA show different expression patterns in premalignant and malignant esophageal lesions. Ultrastruct Pathol 2008; 32:89-96. [PMID: 18570153 DOI: 10.1080/01913120802034934] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fibroblast activation protein-alpha (FAP-alpha) and urokinase-type plasminogen activator (uPA) are serine proteases involved in cancer invasion and metastasis. The authors examined FAP-alpha and uPA expression in premalignant and malignant stages of esophageal adenocarcinoma by immunohistochemistry. Additionally, Western blotting was performed on fresh-frozen tissue samples. FAP-alpha and uPA were detected in metaplastic, dysplastic, and carcinoma cells, as well as in adjacent stroma. Stromal FAP-alpha expression was associated with depth of tumor invasion, while stromal uPA expression correlated with lymph node metastases in adenocarcinomas. Stromal uPA expression in cells with premalignant changes correlated with histological grading. Immunoblotting showed higher protease expression in carcinoma tissues than in normal esophageal epithelium. These results suggest that FAP-alpha and uPA expression in metaplastic, dysplastic, and esophageal cancer tissue is associated with neoplastic progression of esophageal lesions.
Collapse
Affiliation(s)
- Mariusz Adam Goscinski
- Department of Surgery, Rikshospitalet-Radiumhospitalet Medical Centre and Medical Faculty, University of Oslo, Oslo, Montebello, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
39
|
Bhati R, Patterson C, Livasy CA, Fan C, Ketelsen D, Hu Z, Reynolds E, Tanner C, Moore DT, Gabrielli F, Perou CM, Klauber-DeMore N. Molecular characterization of human breast tumor vascular cells. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:1381-90. [PMID: 18403594 DOI: 10.2353/ajpath.2008.070988] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A detailed understanding of the assortment of genes that are expressed in breast tumor vessels is needed to facilitate the development of novel, molecularly targeted anti-angiogenic agents for breast cancer therapies. Rapid immunohistochemistry using factor VIII-related antibodies was performed on sections of frozen human luminal-A breast tumors (n = 5) and normal breast (n = 5), followed by laser capture microdissection of vascular cells. RNA was extracted and amplified, and fluorescently labeled cDNA was synthesized and hybridized to 44,000-element long-oligonucleotide DNA microarrays. Statistical analysis of microarray was used to compare differences in gene expression between tumor and normal vascular cells, and Expression Analysis Systematic Explorer was used to determine enrichment of gene ontology categories. Protein expression of select genes was confirmed using immunohistochemistry. Of the 1176 genes that were differentially expressed between tumor and normal vascular cells, 55 had a greater than fourfold increase in expression level. The extracellular matrix gene ontology category was increased while the ribosome gene ontology category was decreased. Fibroblast activation protein, secreted frizzled-related protein 2, Janus kinase 3, and neutral sphingomyelinase 2 proteins localized to breast tumor endothelium as assessed by immunohistochemistry, showing significantly greater staining compared with normal tissue. These tumor endothelial marker proteins also exhibited increased expression in breast tumor vessels compared with that in normal tissues. Therefore, these genetic markers may serve as potential targets for the development of angiogenesis inhibitors.
Collapse
Affiliation(s)
- Rajendra Bhati
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
O'Brien P, O'Connor BF. Seprase: an overview of an important matrix serine protease. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1130-45. [PMID: 18262497 DOI: 10.1016/j.bbapap.2008.01.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 01/09/2008] [Accepted: 01/10/2008] [Indexed: 01/03/2023]
Abstract
Seprase or Fibroblast Activation Protein (FAP) is an integral membrane serine peptidase, which has been shown to have gelatinase activity. Seprase has a dual function in tumour progression. The proteolytic activity of Seprase has been shown to promote cell invasiveness towards the ECM and also to support tumour growth and proliferation. Seprase appears to act as a proteolytically active 170-kDa dimer, consisting of two 97-kDa subunits. It is a member of the group type II integral serine proteases, which includes dipeptidyl peptidase IV (DPPIV/CD26) and related type II transmembrane prolyl serine peptidases, which exert their mechanisms of action on the cell surface. DPPIV and Seprase exhibit multiple functions due to their abilities to form complexes with each other and to interact with other membrane-associated molecules. Localisation of these protease complexes at cell surface protrusions, called invadopodia, may have a prominent role in processing soluble factors and in the degradation of extracellular matrix components that are essential to the cellular migration and matrix invasion that occur during tumour invasion, metastasis and angiogenesis.
Collapse
Affiliation(s)
- Pamela O'Brien
- School of Biotechnology, Dublin City University, Dublin 9, Ireland.
| | | |
Collapse
|
41
|
Aggarwal S, Brennen WN, Kole TP, Schneider E, Topaloglu O, Yates M, Cotter RJ, Denmeade SR. Fibroblast activation protein peptide substrates identified from human collagen I derived gelatin cleavage sites. Biochemistry 2007; 47:1076-86. [PMID: 18095711 DOI: 10.1021/bi701921b] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A highly consistent trait of tumor stromal fibroblasts is the induction of the membrane-bound serine protease fibroblast activation protein-alpha (FAP), which is overexpressed on the surface of reactive stromal fibroblasts present within the stroma of the majority of human epithelial tumors. In contrast, FAP is not expressed by tumor epithelial cells or by fibroblasts or other cell types in normal tissues. The proteolytic activity of FAP, therefore, represents a potential pan-tumor target that can be exploited for the release of potent cytotoxins from inactive prodrugs consisting of an FAP peptide substrate coupled to a cytotoxin. To identify FAP peptide substrates, we used liquid chromatography tandem mass spectroscopy based sequencing to generate a complete map of the FAP cleavage sites within human collagen I derived gelatin. Positional analysis of the frequency of each amino acid at each position within the cleavage sites revealed FAP consensus sequences PPGP and (D/E)-(R/K)-G-(E/D)-(T/S)-G-P. These studies further demonstrated that ranking cleavage sites based on the magnitude of the LC/MS/MS extracted ion current predicted FAP substrates that were cleaved with highest efficiency. Fluorescence-quenched peptides were synthesized on the basis of the cleavage sites with the highest ion current rankings, and kinetic parameters for FAP hydrolysis were determined. The substrate DRGETGP, which corresponded to the consensus sequence, had the lowest Km of 21 microM. Overall the Km values were relatively similar for both high and low ranked substrates, whereas the kcat values differed by up to 100-fold. On the basis of these results, the FAP consensus sequences are currently being evaluated as FAP-selective peptide carriers for incorporation into FAP-activated prodrugs.
Collapse
Affiliation(s)
- Saurabh Aggarwal
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Chen D, Kennedy A, Wang JY, Zeng W, Zhao Q, Pearl M, Zhang M, Suo Z, Nesland JM, Qiao Y, Ng AK, Hirashima N, Yamane T, Mori Y, Mitsumata M, Ghersi G, Chen WT. Activation of EDTA-resistant gelatinases in malignant human tumors. Cancer Res 2006; 66:9977-85. [PMID: 17047060 PMCID: PMC1626657 DOI: 10.1158/0008-5472.can-06-1499] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Among the many proteases associated with human cancer, seprase or fibroblast activation protein alpha, a type II transmembrane glycoprotein, has two types of EDTA-resistant protease activities: dipeptidyl peptidase and a 170-kDa gelatinase activity. To test if activation of gelatinases associated with seprase could be involved in malignant tumors, we used a mammalian expression system to generate a soluble recombinant seprase (r-seprase). In the presence of putative EDTA-sensitive activators, r-seprase was converted into 70- to 50-kDa shortened forms of seprase (s-seprase), which exhibited a 7-fold increase in gelatinase activity, whereas levels of dipeptidyl peptidase activity remained unchanged. In malignant human tumors, seprase is expressed predominantly in tumor cells as shown by in situ hybridization and immunohistochemistry. Proteins purified from experimental xenografts and malignant tumors using antibody- or lectin-affinity columns in the presence of 5 mmol/L EDTA were assayed for seprase activation in vivo. Seprase expression and activation occur most prevalently in ovarian carcinoma but were also detected in four other malignant tumor types, including adenocarcinoma of the colon and stomach, invasive ductal carcinoma of the breast, and malignant melanoma. Together, these data show that, in malignant tumors, seprase is proteolytically activated to confer its substrate specificity in collagen proteolysis and tumor invasion.
Collapse
Affiliation(s)
- Donghai Chen
- Department of Medicine, Stony Brook University, Stony Brook NY 11794
| | - Alanna Kennedy
- Department of Medicine, Stony Brook University, Stony Brook NY 11794
| | - Jaw-Yuan Wang
- Department of Medicine, Stony Brook University, Stony Brook NY 11794
- Department of Surgery, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wei Zeng
- Department of Medicine, Stony Brook University, Stony Brook NY 11794
| | - Qiang Zhao
- Department of Medicine, Stony Brook University, Stony Brook NY 11794
| | - Michael Pearl
- Department of Obstetrics, Gynecology and Reproductive Medicine, Stony Brook University, Stony Brook NY 11794
| | - Mengzhen Zhang
- Department of Pathology, The National Hospital-The Norwegian Radium Hospital, University of Oslo, Montebello N-0310, Oslo, Norway
- Department of Gynecology and Obstetrics, Zhengzhou University, Henan, China
| | - Zhenhe Suo
- Department of Pathology, The National Hospital-The Norwegian Radium Hospital, University of Oslo, Montebello N-0310, Oslo, Norway
| | - Jahn M. Nesland
- Department of Pathology, The National Hospital-The Norwegian Radium Hospital, University of Oslo, Montebello N-0310, Oslo, Norway
| | - Yuhuan Qiao
- Department of Gynecology and Obstetrics, Zhengzhou University, Henan, China
| | - Ah-Kau Ng
- Department of Applied Medical Science, University of Southern Maine, Portland, ME 04104
| | - Naoko Hirashima
- Department of Pathology, Faculty of Medicine, Yamanashi Medical University, 1110 Shimokato Tamaho Nakakoma, Yamanashi Japan 409-3898
| | - Tetsu Yamane
- Department of Pathology, Faculty of Medicine, Yamanashi Medical University, 1110 Shimokato Tamaho Nakakoma, Yamanashi Japan 409-3898
| | - Yoshiyuki Mori
- Department of Pathology, Faculty of Medicine, Yamanashi Medical University, 1110 Shimokato Tamaho Nakakoma, Yamanashi Japan 409-3898
| | - Masako Mitsumata
- Department of Pathology, Faculty of Medicine, Yamanashi Medical University, 1110 Shimokato Tamaho Nakakoma, Yamanashi Japan 409-3898
- Department of Pathology, School of Medicine, Nihon University, 30-1 Oyaguchi, Kami-cho, Itabashi-ku, Tokyo, Japan 173-8610
| | - Giulio Ghersi
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università di Palermo, Viale delle Scienze 90128 Palermo, ITALY
| | - Wen-Tien Chen
- Department of Medicine, Stony Brook University, Stony Brook NY 11794
| |
Collapse
|
43
|
Christiansen VJ, Jackson KW, Lee KN, McKee PA. Effect of fibroblast activation protein and alpha2-antiplasmin cleaving enzyme on collagen types I, III, and IV. Arch Biochem Biophys 2006; 457:177-86. [PMID: 17174263 PMCID: PMC1857293 DOI: 10.1016/j.abb.2006.11.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 11/06/2006] [Accepted: 11/07/2006] [Indexed: 10/25/2022]
Abstract
The circulating enzyme, alpha2-antiplasmin cleaving enzyme (APCE), has very similar sequence homology and proteolytic specificity as fibroblast activation protein (FAP), a membrane-bound proteinase. FAP is expressed on activated fibroblasts associated with rapid tissue growth as in embryogenesis, wound healing, and epithelial-derived malignancies, but not in normal tissues. Its presence on stroma suggests that FAP functions to remodel extracellular matrix (ECM) during neoplastic growth. Precise biologic substrates have not been defined for FAP, although like APCE, it cleaves alpha2-antiplasmin to a derivative more easily cross-linked to fibrin. While FAP has been shown to cleave gelatin, evidence for cleavage of native collagen, the major ECM component, remains indistinct. We examined the potential proteolytic effects of FAP or APCE alone and in concert with selected matrix metalloproteinases (MMPs) on collagens I, III, and IV. SDS-PAGE analyses demonstrated that neither FAP nor APCE cleaves collagen I. Following collagen I cleavage by MMP-1, however, FAP or APCE digested collagen I into smaller peptides. These peptides were analogous to, yet different from, those produced by MMP-9 following MMP-1 cleavage. Amino-terminal sequencing and mass spectrometry analyses of digestion mixtures identified several peptide fragments within the sequences of the two collagen chains. The proteolytic synergy of APCE in the cleavage of collagen I and III was not observed with collagen IV. We conclude that FAP works in synchrony with other proteinases to cleave partially degraded or denatured collagen I and III as ECM is excavated, and that derivative peptides might function to regulate malignant cell growth and motility.
Collapse
Affiliation(s)
- Victoria J Christiansen
- William K. Warren Medical Research Center and Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA.
| | | | | | | |
Collapse
|
44
|
Nemunaitis J, Vukelja SJ, Richards D, Cunningham C, Senzer N, Nugent J, Duncan H, Jones B, Haltom E, Uprichard MJ. Phase I trial of PT-100 (PT-100), a cytokine-inducing small molecule, following chemotherapy for solid tumor malignancy. Cancer Invest 2006; 24:553-61. [PMID: 16982458 DOI: 10.1080/07357900600894732] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PT-100 upregulates cytokine expression competitively inhibiting the dipeptidyl peptidase activity of fibroblast activation protein (FAP) and dipeptidyl peptidase IV (DPP-IV). This dose-escalation study was conducted to evaluate the safety of PT-100 in patients receiving myelosuppressive chemotherapy and to assess its effects on neutrophil recovery.PT-100 was administered orally for 7 days as a 200 microg, 400 microg, 800 microg, or 1,200 microg total daily dose (divided twice daily) to 6, 6, 17, and 5 patients, respectively. Patients received 2 cycles of chemotherapy: The first cycle served as each individual patient's control. Patients had to develop Grade 3+ neutropenia in Cycle 1 in order to receive PT-100 in Cycle 2. Most patients received PT-100 on Days 2-8 of chemotherapy in Cycle 2, except at 800 microg where an additional cohort (n = 8) was treated on a Days 5-11 schedule. Five of 7 patients receiving 800 microg on Days 2-8 experienced a >/=1-day improvement in Grade 3+ neutropenia in Cycle 2 versus Cycle 1. Overall, PT-100 was well tolerated. A reduction in chemotherapy-related nausea, vomiting, fatigue, alopecia, and diarrhea was noted in patients receiving PT-100. Edema/peripheral swelling, hypotension, hypovolemia, and dizziness were the most common nonhematologic adverse events considered related to PT-100. Two Grade 3 adverse events were considered related to PT-100: syncope (1,200 microg) and orthostatic hypotension (800 microg). A maximum tolerated dose was not reached. Given the accelerated neutrophil recovery, preclinical evidence of antitumor activity, and tolerable toxicities of PT-100, additional studies to optimize the PT-100 dosing schedule in patients receiving myelosuppressive chemotherapy are needed.
Collapse
Affiliation(s)
- John Nemunaitis
- Mary Crowley Medical Research Center, Sammons Cancer Center, Baylor University Hospital, Dallas, Texas, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Gilmore BF, Carson L, McShane LL, Quinn D, Coulter WA, Walker B. Synthesis, kinetic evaluation, and utilization of a biotinylated dipeptide proline diphenyl phosphonate for the disclosure of dipeptidyl peptidase IV-like serine proteases. Biochem Biophys Res Commun 2006; 347:373-9. [PMID: 16824486 DOI: 10.1016/j.bbrc.2006.06.113] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 06/21/2006] [Indexed: 11/25/2022]
Abstract
In this study, we report on the synthesis, kinetic characterisation, and application of a novel biotinylated and active site-directed inactivator of dipeptidyl peptidase IV (DPP-IV). Thus, the dipeptide-derived proline diphenyl phosphonate NH(2)-Glu(biotinyl-PEG)-Pro(P)(OPh)(2) has been prepared by a combination of classical solution- and solid-phase methodologies and has been shown to be an irreversible inhibitor of porcine DPP-IV, exhibiting an over all second-order rate constant (k(i)/K(i)) for inhibition of 1.57 x 10(3) M(-1) min(-1). This value compares favourably with previously reported rates of inactivation of DPP-IV by dipeptides containing a P(1) proline diphenyl phosphonate grouping [B. Boduszek, J. Oleksyszyn, C.M. Kam, J. Selzler, R.E. Smith, J.C. Powers, Dipeptide phophonates as inhibitors of dipeptidyl peptidase IV, J. Med. Chem. 37 (1994) 3969-3976; B.F. Gilmore, J.F. Lynas, C.J. Scott, C. McGoohan, L. Martin, B. Walker, Dipeptide proline diphenyl phosphonates are potent, irreversible inhibitors of seprase (FAPalpha), Biochem, Biophys. Res. Commun. 346 (2006) 436-446.], thus demonstrating that the incorporation of the side-chain modified (N-biotinyl-3-(2-(2-(3-aminopropyloxy)-ethoxy)-ethoxy)-propyl) glutamic acid residue at the P(2) position is compatible with inhibitor efficacy. The utilisation of this probe for the detection of both purified dipeptidyl peptidase IV and the disclosure of a dipeptidyl peptidase IV-like activity from a clinical isolate of Porphyromonas gingivalis, using established electrophoretic and Western blotting techniques previously developed by our group, is also demonstrated.
Collapse
Affiliation(s)
- Brendan F Gilmore
- School of Pharmacy, Queens University Belfast, Medical Biology Centre, UK.
| | | | | | | | | | | |
Collapse
|
46
|
Ghersi G, Zhao Q, Salamone M, Yeh Y, Zucker S, Chen WT. The protease complex consisting of dipeptidyl peptidase IV and seprase plays a role in the migration and invasion of human endothelial cells in collagenous matrices. Cancer Res 2006; 66:4652-61. [PMID: 16651416 PMCID: PMC1457118 DOI: 10.1158/0008-5472.can-05-1245] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dipeptidyl peptidase IV (DPP4/CD26) and seprase/fibroblast activation protein alpha are homologous type II transmembrane, homodimeric glycoproteins that exhibit unique prolyl peptidase activities. Human DPP4 is ubiquitously expressed in epithelial and endothelial cells and serves multiple functions in cleaving the penultimate positioned prolyl bonds at the NH(2) terminus of a variety of physiologically important peptides in the circulation. Recent studies showed a linkage between DPP4 and down-regulation of certain chemokines and mitogenic growth factors, and degradation of denatured collagens (gelatin), suggesting a role of DPP4 in the cell invasive phenotype. Here, we found the existence of a novel protease complex consisting of DPP4 and seprase in human endothelial cells that were activated to migrate and invade in the extracellular matrix in vitro. DPP4 and seprase were coexpressed with the three major protease systems (matrix metalloproteinase, plasminogen activator, and type II transmembrane serine protease) at the cell surface and organize as a complex at invadopodia-like protrusions. Both proteases were colocalized at the endothelial cells of capillaries, but not large blood vessels, in invasive breast ductal carcinoma in vivo. Importantly, monoclonal antibodies against the gelatin-binding domain of DPP4 blocked the local gelatin degradation by endothelial cells in the presence of the major metallo- and serine protease systems that modified pericellular collagenous matrices and subsequent cell migration and invasion. Thus, we have identified a novel mechanism involving the DPP4 gelatin-binding domain of the DPP4-seprase complex that facilitates the local degradation of the extracellular matrix and the invasion of the endothelial cells into collagenous matrices.
Collapse
Affiliation(s)
- Giulio Ghersi
- Department of Medicine, Stony Brook University, Stony Brook NY 11794-8151
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università di Palermo, Viale delle Scienze 90128 Palermo, ITALY
| | - Qiang Zhao
- Department of Medicine, Stony Brook University, Stony Brook NY 11794-8151
| | - Monica Salamone
- Department of Medicine, Stony Brook University, Stony Brook NY 11794-8151
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università di Palermo, Viale delle Scienze 90128 Palermo, ITALY
| | - Yunyun Yeh
- Department of Medicine, Stony Brook University, Stony Brook NY 11794-8151
| | - Stanley Zucker
- Department of Medicine, Stony Brook University, Stony Brook NY 11794-8151
- V. A. Medical Center, Northport, N.Y. 11768
| | - Wen-Tien Chen
- Department of Medicine, Stony Brook University, Stony Brook NY 11794-8151
- . Corresponding author: Wen-Tien Chen, Ph.D., Department of Medicine, HSC T15, Rm. 053, Stony Brook University, Stony Brook NY 11794-8151. T: (631) 444-6948; F: (631) 444-7530;
| |
Collapse
|
47
|
Gilmore BF, Lynas JF, Scott CJ, McGoohan C, Martin L, Walker B. Dipeptide proline diphenyl phosphonates are potent, irreversible inhibitors of seprase (FAPα). Biochem Biophys Res Commun 2006; 346:436-46. [PMID: 16769036 DOI: 10.1016/j.bbrc.2006.05.175] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 05/19/2006] [Indexed: 12/11/2022]
Abstract
Dipeptidyl peptidase IV (DPP-IV) and seprase belong to a small group of membrane-bound, proline-specific serine proteases, the serine integral membrane proteases (SIMPs). Whilst DPP-IV is the most exhaustively studied peptidase in this class, relatively less is known about the inhibitor/substrate specificity of its close homolog seprase. Additionally, whereas, DPP-IV expression is largely ubiquitous, seprase expression is restricted to tumour and tissue remodelling sites in vivo. Consequently, the highly restricted expression and distribution of seprase potentially make it an excellent therapeutic target for the modulation of neoplastic invasion and metastasis. Against this background, we now wish to report on the design, synthesis, and kinetic testing of a series of dipeptide proline diphenyl phosphonates, against DPP-IV and seprase. The most potent inhibitor of DPP-IV and seprase was found to be Gly-ProP(OPh)2, which exhibited overall second-order rate constants of inactivation of 5.24 x 105 M-1 min-1 and 1.06 x 104 M-1 min-1 against DPP-IV and seprase, respectively. Both proteases displayed differing profiles of susceptibility towards the other members of the series of inhibitors synthesised. In addition, Gly-ProP(OPh)2 and Tyr-ProP(OPh)2 were found to exert a considerable, dose-dependent anti-invasive effect on the LOX melanoma cell line, in vitro.
Collapse
Affiliation(s)
- Brendan F Gilmore
- School of Pharmacy, Queens University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | | | | | | | | | | |
Collapse
|
48
|
Milner JM, Kevorkian L, Young DA, Jones D, Wait R, Donell ST, Barksby E, Patterson AM, Middleton J, Cravatt BF, Clark IM, Rowan AD, Cawston TE. Fibroblast activation protein alpha is expressed by chondrocytes following a pro-inflammatory stimulus and is elevated in osteoarthritis. Arthritis Res Ther 2006; 8:R23. [PMID: 16507127 PMCID: PMC1526559 DOI: 10.1186/ar1877] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 10/21/2005] [Accepted: 12/06/2005] [Indexed: 11/10/2022] Open
Abstract
Arthritis is characterised by the proteolytic degradation of articular cartilage leading to a loss of joint function. Articular cartilage is composed of an extracellular matrix of proteoglycans and collagens. We have previously shown that serine proteinases are involved in the activation cascades leading to cartilage collagen degradation. The aim of this study was to use an active-site probe, biotinylated fluorophosphonate, to identify active serine proteinases present on the chondrocyte membrane after stimulation with the pro-inflammatory cytokines IL-1 and oncostatin M (OSM), agents that promote cartilage resorption. Fibroblast activation protein alpha (FAPα), a type II integral membrane serine proteinase, was identified on chondrocyte membranes stimulated with IL-1 and OSM. Real-time PCR analysis shows that FAPα gene expression is up-regulated by this cytokine combination in both isolated chondrocytes and cartilage explant cultures and is significantly higher in cartilage from OA patients compared to phenotypically normal articular cartilage. Immunohistochemistry analysis shows FAPα expression on chondrocytes in the superficial zone of OA cartilage tissues. This is the first report demonstrating the expression of active FAPα on the chondrocyte membrane and elevated levels in cartilage from OA patients. Its cell surface location and expression profile suggest that it may have an important pathological role in the cartilage turnover prevalent in arthritic diseases.
Collapse
Affiliation(s)
- Jennifer M Milner
- Musculoskeletal Research Group, Newcastle University, Newcastle upon Tyne, UK
| | - Lara Kevorkian
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - David A Young
- Musculoskeletal Research Group, Newcastle University, Newcastle upon Tyne, UK
| | - Debra Jones
- Musculoskeletal Research Group, Newcastle University, Newcastle upon Tyne, UK
| | - Robin Wait
- Kennedy Institute of Rheumatology, Imperial College London, London, UK
| | - Simon T Donell
- School of Medicine, Institute of Health, University of East Anglia, Norwich, UK
| | - Emma Barksby
- Musculoskeletal Research Group, Newcastle University, Newcastle upon Tyne, UK
| | - Angela M Patterson
- Musculoskeletal Research Group, Newcastle University, Newcastle upon Tyne, UK
| | - Jim Middleton
- Leopold Muller Arthritis Research Centre, School of Medicine, Keele University at Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, UK
| | | | - Ian M Clark
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Andrew D Rowan
- Musculoskeletal Research Group, Newcastle University, Newcastle upon Tyne, UK
| | - Timothy E Cawston
- Musculoskeletal Research Group, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
49
|
Iwasa S, Okada K, Chen WT, Jin X, Yamane T, Ooi A, Mitsumata M. 'Increased expression of seprase, a membrane-type serine protease, is associated with lymph node metastasis in human colorectal cancer'. Cancer Lett 2005; 227:229-36. [PMID: 16196122 DOI: 10.1016/j.canlet.2004.06.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Seprase is a membrane-bound serine proteinase with gelatinase activity, which may be involved in cancer invasion and metastasis. We examined seprase expression in colorectal cancer specimens obtained from 109 patients. Seprase immunoreactivity was found in cancer cells and adjacent stromal cells. Immunoblotting showed higher levels of seprase protein in colorectal cancer tissue than in normal colorectal tissue. A semiquantitative assessment of the immunohistochemistry results revealed a significant correlation between seprase expression and lymph node metastasis. These results suggested that an abundant expression of seprase in colorectal cancer tissue is associated with lymph node metastasis.
Collapse
Affiliation(s)
- Satoshi Iwasa
- Department of Pathology, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi, Tokyo 173-8610, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Mori Y, Kono K, Matsumoto Y, Fujii H, Yamane T, Mitsumata M, Chen WT. The expression of a type II transmembrane serine protease (Seprase) in human gastric carcinoma. Oncology 2005; 67:411-9. [PMID: 15713998 DOI: 10.1159/000082926] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Accepted: 04/23/2004] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The invasion and metastasis of carcinoma cells require the proteolytic degradation of the extracellular matrix by various cell surface proteases. Among these, seprase is a type II transmembrane serine protease absent in normal tissues and it has been implicated in the invasion of the extracellular matrix by both tumor and stromal cells in human breast carcinoma and melanoma. In the present study, the expression of seprase mRNA, protein and its gelatin-degrading activity in human gastric carcinoma were examined to substantiate the potential role of seprase in gastric carcinoma invasion. METHODS We have examined the seprase expression in human gastric carcinoma (n = 34) by RT-PCR, Western immunoblotting analysis, immunohistochemistry, and gelatin zymography. RESULTS Immunoblotting analysis using mAb D8 directed against seprase showed that the carcinoma tissues in 26 out of 34 cases of gastric cancer expressed a dimeric form of seprase but their normal counterparts did not. Gelatin zymography confirmed that the isolated seprase exhibited the gelatin-degrading activity and was active. Seprase-expressing carcinoma tissues were more often found in the scirrhous type than in other types of gastric carcinoma. RT-PCR analysis showed that seprase mRNA was present in carcinoma tissues but not in normal tissues. Immunohistochemically, seprase was mainly located in gastric carcinoma cells, weakly in stromal cells and microvessel endothelial cells in the tumor nest, and none in normal cells. CONCLUSIONS Our studies showed the unique expression and localization of seprase in the tumor and stromal cells within human gastric carcinoma but not in normal tissues, suggesting a role of seprase in the invasive and metastatic progression of gastric carcinoma.
Collapse
Affiliation(s)
- Yoshiyuki Mori
- Department of Pathology, School of Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan.
| | | | | | | | | | | | | |
Collapse
|