1
|
Li D, Rongchun W, Lu W, Ma Y. Exploring the potential of MFG-E8 in neurodegenerative diseases. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 39468823 DOI: 10.1080/10408398.2024.2417800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Milk fat globule-epidermal growth factor 8 (MFG-E8) is a multifunctional glycoprotein regulating intercellular interactions in various biological and pathological processes. This review summarizes the effects and mechanisms of MFG-E8 in neurodegenerative diseases (NDDs), emphasizing its roles in inflammation, apoptosis, and oxidative stress. In this review, will also explore the potential of MFG-E8 as a diagnostic biomarker and its therapeutic applications in neurodegenerative disorders. Recent studies have revealed intriguing characteristics of using MFG-E8 as a potential drug for treating various brain disorders. While the discovery, origin, expression, and physiological functions of MFG-E8 in various organs and tissues are well defined, its role in the brain remains less understood. This is particularly true for NDDs, indicating unmet medical needs. Elucidating its role in the brain could position MFG-E8 as a potential treatment for NDDs.
Collapse
Affiliation(s)
- Dan Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Wang Rongchun
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Weihong Lu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Ying Ma
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
2
|
Pinot M, Le Borgne R. Spatio-Temporal Regulation of Notch Activation in Asymmetrically Dividing Sensory Organ Precursor Cells in Drosophila melanogaster Epithelium. Cells 2024; 13:1133. [PMID: 38994985 PMCID: PMC11240559 DOI: 10.3390/cells13131133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024] Open
Abstract
The Notch communication pathway, discovered in Drosophila over 100 years ago, regulates a wide range of intra-lineage decisions in metazoans. The division of the Drosophila mechanosensory organ precursor is the archetype of asymmetric cell division in which differential Notch activation takes place at cytokinesis. Here, we review the molecular mechanisms by which epithelial cell polarity, cell cycle and intracellular trafficking participate in controlling the directionality, subcellular localization and temporality of mechanosensitive Notch receptor activation in cytokinesis.
Collapse
Affiliation(s)
| | - Roland Le Borgne
- Univ Rennes, Centre National de la Recherche Scientifique UMR 6290, IGDR (Institut de Génétique et Développement de Rennes), F-35000 Rennes, France
| |
Collapse
|
3
|
Lagassé HD, Ou J, Sauna ZE, Golding B. Factor VIII moiety of recombinant Factor VIII Fc fusion protein impacts Fc effector function and CD16 + NK cell activation. Front Immunol 2024; 15:1341013. [PMID: 38655263 PMCID: PMC11035769 DOI: 10.3389/fimmu.2024.1341013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/28/2024] [Indexed: 04/26/2024] Open
Abstract
Recombinant Factor VIII-Fc fusion protein (rFVIIIFc) is an enhanced half-life therapeutic protein product used for the management of hemophilia A. Recent studies have demonstrated that rFVIIIFc interacts with Fc gamma receptors (FcγR) resulting in the activation or inhibition of various FcγR-expressing immune cells. We previously demonstrated that rFVIIIFc, unlike recombinant Factor IX-Fc (rFIXFc), activates natural killer (NK) cells via Fc-mediated interactions with FcγRIIIA (CD16). Additionally, we showed that rFVIIIFc activated CD16+ NK cells to lyse a FVIII-specific B cell clone. Here, we used human NK cell lines and primary NK cells enriched from peripheral blood leukocytes to study the role of the FVIII moiety in rFVIIIFc-mediated NK cell activation. Following overnight incubation of NK cells with rFVIIIFc, cellular activation was assessed by measuring secretion of the inflammatory cytokine IFNγ by ELISA or by cellular degranulation. We show that anti-FVIII, anti-Fc, and anti-CD16 all inhibited indicating that these molecules were involved in rFVIIIFc-mediated NK cell activation. To define which domains of FVIII were involved, we used antibodies that are FVIII domain-specific and demonstrated that blocking FVIII C1 or C2 domain-mediated membrane binding potently inhibited rFVIIIFc-mediated CD16+ NK cell activation, while targeting the FVIII heavy chain domains did not. We also show that rFVIIIFc binds CD16 with about five-fold higher affinity than rFIXFc. Based on our results we propose that FVIII light chain-mediated membrane binding results in tethering of the fusion protein to the cell surface, and this, together with increased binding affinity for CD16, allows for Fc-CD16 interactions to proceed, resulting in NK cellular activation. Our working model may explain our previous results where we observed that rFVIIIFc activated NK cells via CD16, whereas rFIXFc did not despite having identical IgG1 Fc domains.
Collapse
Affiliation(s)
- H.A. Daniel Lagassé
- Division of Hemostasis, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Jiayi Ou
- Division of Hemostasis, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Zuben E. Sauna
- Division of Hemostasis, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Basil Golding
- Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
4
|
Wang YZ, Castillon CCM, Gebis KK, Bartom ET, d'Azzo A, Contractor A, Savas JN. Notch receptor-ligand binding facilitates extracellular vesicle-mediated neuron-to-neuron communication. Cell Rep 2024; 43:113680. [PMID: 38241148 PMCID: PMC10976296 DOI: 10.1016/j.celrep.2024.113680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/15/2023] [Accepted: 01/01/2024] [Indexed: 01/21/2024] Open
Abstract
Extracellular vesicles (EVs) facilitate intercellular communication by transferring cargo between cells in a variety of tissues. However, how EVs achieve cell-type-specific intercellular communication is still largely unknown. We found that Notch1 and Notch2 proteins are expressed on the surface of neuronal EVs that have been generated in response to neuronal excitatory synaptic activity. Notch ligands bind these EVs on the neuronal plasma membrane, trigger their internalization, activate the Notch signaling pathway, and drive the expression of Notch target genes. The generation of these neuronal EVs requires the endosomal sorting complex required for transport-associated protein Alix. Adult Alix conditional knockout mice have reduced hippocampal Notch signaling activation and glutamatergic synaptic protein expression. Thus, EVs facilitate neuron-to-neuron communication via the Notch receptor-ligand system in the brain.
Collapse
Affiliation(s)
- Yi-Zhi Wang
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Charlotte C M Castillon
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kamil K Gebis
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Alessandra d'Azzo
- Department of Genetics, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Anis Contractor
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jeffrey N Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
5
|
van der Veen I, Heredero Berzal A, Koster C, ten Asbroek ALMA, Bergen AA, Boon CJF. The Road towards Gene Therapy for X-Linked Juvenile Retinoschisis: A Systematic Review of Preclinical Gene Therapy in Cell-Based and Rodent Models of XLRS. Int J Mol Sci 2024; 25:1267. [PMID: 38279267 PMCID: PMC10816913 DOI: 10.3390/ijms25021267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
X-linked juvenile retinoschisis (XLRS) is an early-onset progressive inherited retinopathy affecting males. It is characterized by abnormalities in the macula, with formation of cystoid retinal cavities, frequently accompanied by splitting of the retinal layers, impaired synaptic transmission of visual signals, and associated loss of visual acuity. XLRS is caused by loss-of-function mutations in the retinoschisin gene located on the X chromosome (RS1, MIM 30083). While proof-of-concept studies for gene augmentation therapy have been promising in in vitro and rodent models, clinical trials in XLRS patients have not been successful thus far. We performed a systematic literature investigation using search strings related to XLRS and gene therapy in in vivo and in vitro models. Three rounds of screening (title/abstract, full text and qualitative) were performed by two independent reviewers until consensus was reached. Characteristics related to study design and intervention were extracted from all studies. Results were divided into studies using (1) viral and (2) non-viral therapies. All in vivo rodent studies that used viral vectors were assessed for quality and risk of bias using the SYRCLE's risk-of-bias tool. Studies using alternative and non-viral delivery techniques, either in vivo or in vitro, were extracted and reviewed qualitatively, given the diverse and dispersed nature of the information. For in-depth analysis of in vivo studies using viral vectors, outcome data for optical coherence tomography (OCT), immunohistopathology and electroretinography (ERG) were extracted. Meta-analyses were performed on the effect of recombinant adeno-associated viral vector (AAV)-mediated gene augmentation therapies on a- and b-wave amplitude as well as the ratio between b- and a-wave amplitudes (b/a-ratio) extracted from ERG data. Subgroup analyses and meta-regression were performed for model, dose, age at injection, follow-up time point and delivery method. Between-study heterogeneity was assessed with a Chi-square test of homogeneity (I2). We identified 25 studies that target RS1 and met our search string. A total of 19 of these studies reported rodent viral methods in vivo. Six of the 25 studies used non-viral or alternative delivery methods, either in vitro or in vivo. Of these, five studies described non-viral methods and one study described an alternative delivery method. The 19 aforementioned in vivo studies were assessed for risk of bias and quality assessments and showed inconsistency in reporting. This resulted in an unclear risk of bias in most included studies. All 19 studies used AAVs to deliver intact human or murine RS1 in rodent models for XLRS. Meta-analyses of a-wave amplitude, b-wave amplitude, and b/a-ratio showed that, overall, AAV-mediated gene augmentation therapy significantly ameliorated the disease phenotype on these parameters. Subgroup analyses and meta-regression showed significant correlations between b-wave amplitude effect size and dose, although between-study heterogeneity was high. This systematic review reiterates the high potential for gene therapy in XLRS, while highlighting the importance of careful preclinical study design and reporting. The establishment of a systematic approach in these studies is essential to effectively translate this knowledge into novel and improved treatment alternatives.
Collapse
Affiliation(s)
- Isa van der Veen
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (I.v.d.V.); (A.H.B.); (C.K.); (A.A.B.)
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Andrea Heredero Berzal
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (I.v.d.V.); (A.H.B.); (C.K.); (A.A.B.)
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Céline Koster
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (I.v.d.V.); (A.H.B.); (C.K.); (A.A.B.)
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Anneloor L. M. A. ten Asbroek
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Arthur A. Bergen
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (I.v.d.V.); (A.H.B.); (C.K.); (A.A.B.)
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Camiel J. F. Boon
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (I.v.d.V.); (A.H.B.); (C.K.); (A.A.B.)
- Department of Ophthalmology, Leiden University Medical Center, Leiden University, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
6
|
Dai ZT, Wu YL, Xu T, Li XR, Ji T. The role of lncRNA SNHG14 in gastric cancer: enhancing tumor cell proliferation and migration, and mechanisms of CDH2 expression. Cell Cycle 2023; 22:2522-2537. [PMID: 38193271 PMCID: PMC10936682 DOI: 10.1080/15384101.2023.2289745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 11/26/2023] [Indexed: 01/10/2024] Open
Abstract
LncRNAs are a class of non-coding RNAs that play an important role in regulating gene expression. However, their specific molecular mechanisms in gastric carcinogenesis and metastasis need further exploration. TCGA data showed that the expression of MFGE8, which was closely related to survival, was significantly positively correlated with lncRNA SNHG14. And moreover, the results of high-throughput sequencing and qRT-PCR showed that lncRNA SNHG14 was significantly elevated in gastric cancer. Further, in vitro functional realization showed that lncRNA SNHG14 overexpression significantly increased gastric cancer's proliferation, invasion and migration. Animal experiments also showed that lncRNA SNHG14 overexpression promoted tumorigenesis and metastasis in vivo. Mechanistically, MFGE8 activates the expression of lncRNA SNHG14, which activates the cellular EMT by stabilizing CDH2. Our study suggests that lncRNA SNHG14 could be a potential target for gastric cancer therapy.
Collapse
Affiliation(s)
- Zhou-Tong Dai
- Department of Gynaecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Centre for Obstetrics and Gynaecology, Cancer Biology Research Centre (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Life and Health Science, Wuhan University of Science and Technology, Wuhan, China
| | - Yong-Lin Wu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Xu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing-Rui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Teng Ji
- Department of Gynaecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Centre for Obstetrics and Gynaecology, Cancer Biology Research Centre (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Dirvelyte E, Bujanauskiene D, Jankaityte E, Daugelaviciene N, Kisieliute U, Nagula I, Budvytyte R, Neniskyte U. Genetically encoded phosphatidylserine biosensor for in vitro, ex vivo and in vivo labelling. Cell Mol Biol Lett 2023; 28:59. [PMID: 37501184 PMCID: PMC10373266 DOI: 10.1186/s11658-023-00472-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND The dynamics of phosphatidylserine in the plasma membrane is a tightly regulated feature of eukaryotic cells. Phosphatidylserine (PS) is found preferentially in the inner leaflet of the plasma membrane. Disruption of this asymmetry leads to the exposure of phosphatidylserine on the cell surface and is associated with cell death, synaptic pruning, blood clotting and other cellular processes. Due to the role of phosphatidylserine in widespread cellular functions, an efficient phosphatidylserine probe is needed to study them. Currently, a few different phosphatidylserine labelling tools are available; however, these labels have unfavourable signal-to-noise ratios and are difficult to use in tissues due to limited permeability. Their application in living tissue requires injection procedures that damage the tissue and release damage-associated molecular patterns, which in turn stimulates phosphatidylserine exposure. METHODS For this reason, we developed a novel genetically encoded phosphatidylserine probe based on the C2 domain of the lactadherin (MFG-E8) protein, suitable for labelling exposed phosphatidylserine in various research models. We tested the C2 probe specificity to phosphatidylserine on hybrid bilayer lipid membranes by observing surface plasmon resonance angle shift. Then, we analysed purified fused C2 proteins on different cell culture lines or engineered AAVs encoding C2 probes on tissue cultures after apoptosis induction. For in vivo experiments, neurotropic AAVs were intravenously injected into perinatal mice, and after 2 weeks, brain slices were collected to observe C2-SNAP expression. RESULTS The biophysical analysis revealed the high specificity of the C2 probe for phosphatidylserine. The fused recombinant C2 proteins were suitable for labelling phosphatidylserine on the surface of apoptotic cells in various cell lines. We engineered AAVs and validated them in organotypic brain tissue cultures for non-invasive delivery of the genetically encoded C2 probe and showed that these probes were expressed in the brain in vivo after intravenous AAV delivery to mice. CONCLUSIONS We have demonstrated that the developed genetically encoded PS biosensor can be utilised in a variety of assays as a two-component system of C2 and C2m2 fusion proteins. This system allows for precise quantification and PS visualisation at directly specified threshold levels, enabling the evaluation of PS exposure in both physiological and cell death processes.
Collapse
Affiliation(s)
- Eimina Dirvelyte
- VU LSC-EMBL Partnership Institute for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Daina Bujanauskiene
- VU LSC-EMBL Partnership Institute for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- Institute of Bioscience, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Evelina Jankaityte
- VU LSC-EMBL Partnership Institute for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Neringa Daugelaviciene
- VU LSC-EMBL Partnership Institute for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Ugne Kisieliute
- Institute of Bioscience, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Igor Nagula
- VU LSC-EMBL Partnership Institute for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rima Budvytyte
- VU LSC-EMBL Partnership Institute for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Urte Neniskyte
- VU LSC-EMBL Partnership Institute for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius, Lithuania.
- Institute of Bioscience, Life Sciences Center, Vilnius University, Vilnius, Lithuania.
| |
Collapse
|
8
|
Zhang Y, Wang T, Wu S, Tang L, Wang J, Yang J, Yao S, Zhang Y. Notch signaling pathway: a new target for neuropathic pain therapy. J Headache Pain 2023; 24:87. [PMID: 37454050 PMCID: PMC10349482 DOI: 10.1186/s10194-023-01616-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
The Notch gene, a highly evolutionarily conserved gene, was discovered approximately 110 years ago and has been found to play a crucial role in the development of multicellular organisms. Notch receptors and their ligands are single-pass transmembrane proteins that typically require cellular interactions and proteolytic processing to facilitate signal transduction. Recently, mounting evidence has shown that aberrant activation of the Notch is correlated with neuropathic pain. The activation of the Notch signaling pathway can cause the activation of neuroglia and the release of pro-inflammatory factors, a key mechanism in the development of neuropathic pain. Moreover, the Notch signaling pathway may contribute to the persistence of neuropathic pain by enhancing synaptic transmission and calcium inward flow. This paper reviews the structure and activation of the Notch signaling pathway, as well as its potential mechanisms of action, to provide novel insights for future treatments of neuropathic pain.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Tingting Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Sanlan Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li Tang
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Jia Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, Research Center for Brain-Inspired Intelligence, School of Life Science and Technology, Xi'an Jiaotong University, The Key Laboratory of Neuro-Informatics & Rehabilitation En-Gineering of Ministry of Civil Affairs, Xi'an, Shaanxi, P. R. China
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, Hubei, China
| | - Jinghan Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China.
| | - Yan Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China.
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
9
|
Xiu M, Wang Y, Yang D, Zhang X, Dai Y, Liu Y, Lin X, Li B, He J. Using Drosophila melanogaster as a suitable platform for drug discovery from natural products in inflammatory bowel disease. Front Pharmacol 2022; 13:1072715. [PMID: 36545307 PMCID: PMC9760693 DOI: 10.3389/fphar.2022.1072715] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/24/2022] [Indexed: 12/07/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and life-treating inflammatory disease that can occur in multiple parts of the human intestine and has become a worldwide problem with a continually increasing incidence. Because of its mild early symptoms, most of them will not attract people's attention and may cause more serious consequences. There is an urgent need for new therapeutics to prevent disease progression. Natural products have a variety of active ingredients, diverse biological activities, and low toxicity or side effects, which are the new options for preventing and treating the intestinal inflammatory diseases. Because of multiple genetic models, less ethical concerns, conserved signaling pathways with mammals, and low maintenance costs, the fruit fly Drosophila melanogaster has become a suitable model for studying mechanism and treatment strategy of IBD. Here, we review the advantages of fly model as screening platform in drug discovery, describe the conserved molecular pathways as therapetic targets for IBD between mammals and flies, dissect the feasibility of Drosophila model in IBD research, and summarize the natural products for IBD treatment using flies. This review comprehensively elaborates that the benefit of flies as a perfact model to evaluate the therapeutic potential of phytochemicals against IBD.
Collapse
Affiliation(s)
- Minghui Xiu
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China,Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China,Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, China
| | - Yixuan Wang
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Dan Yang
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xueyan Zhang
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yuting Dai
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yongqi Liu
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China,Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, China
| | - Xingyao Lin
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, China
| | - Botong Li
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jianzheng He
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China,Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, China,College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China,*Correspondence: Jianzheng He,
| |
Collapse
|
10
|
Membrane curvature and PS localize coagulation proteins to filopodia and retraction fibers of endothelial cells. Blood Adv 2022; 7:60-72. [PMID: 35849711 PMCID: PMC9827038 DOI: 10.1182/bloodadvances.2021006870] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 01/18/2023] Open
Abstract
Prior reports indicate that the convex membrane curvature of phosphatidylserine (PS)-containing vesicles enhances formation of binding sites for factor Va and lactadherin. Yet, the relationship of convex curvature to localization of these proteins on cells remains unknown. We developed a membrane topology model, using phospholipid bilayers supported by nano-etched silica substrates, to further explore the relationship between curvature and localization of coagulation proteins. Ridge convexity corresponded to maximal curvature of physiologic membranes (radii of 10 or 30 nm) and the troughs had a variable concave curvature. The benchmark PS probe lactadherin exhibited strong differential binding to the ridges, on membranes with 4% to 15% PS. Factor Va, with a PS-binding motif homologous to lactadherin, also bound selectively to the ridges. Bound factor Va supported coincident binding of factor Xa, localizing prothrombinase complexes to the ridges. Endothelial cells responded to prothrombotic stressors and stimuli (staurosporine, tumor necrosis factor-α [TNF- α]) by retracting cell margins and forming filaments and filopodia. These had a high positive curvature similar to supported membrane ridges and selectively bound lactadherin. Likewise, the retraction filaments and filopodia bound factor Va and supported assembly of prothrombinase, whereas the cell body did not. The perfusion of plasma over TNF-α-stimulated endothelia in culture dishes and engineered 3-dimensional microvessels led to fibrin deposition at cell margins, inhibited by lactadherin, without clotting of bulk plasma. Our results indicate that stressed or stimulated endothelial cells support prothrombinase activity localized to convex topological features at cell margins. These findings may relate to perivascular fibrin deposition in sepsis and inflammation.
Collapse
|
11
|
Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduct Target Ther 2022; 7:95. [PMID: 35332121 PMCID: PMC8948217 DOI: 10.1038/s41392-022-00934-y] [Citation(s) in RCA: 348] [Impact Index Per Article: 174.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
The NOTCH gene was identified approximately 110 years ago. Classical studies have revealed that NOTCH signaling is an evolutionarily conserved pathway. NOTCH receptors undergo three cleavages and translocate into the nucleus to regulate the transcription of target genes. NOTCH signaling deeply participates in the development and homeostasis of multiple tissues and organs, the aberration of which results in cancerous and noncancerous diseases. However, recent studies indicate that the outcomes of NOTCH signaling are changeable and highly dependent on context. In terms of cancers, NOTCH signaling can both promote and inhibit tumor development in various types of cancer. The overall performance of NOTCH-targeted therapies in clinical trials has failed to meet expectations. Additionally, NOTCH mutation has been proposed as a predictive biomarker for immune checkpoint blockade therapy in many cancers. Collectively, the NOTCH pathway needs to be integrally assessed with new perspectives to inspire discoveries and applications. In this review, we focus on both classical and the latest findings related to NOTCH signaling to illustrate the history, architecture, regulatory mechanisms, contributions to physiological development, related diseases, and therapeutic applications of the NOTCH pathway. The contributions of NOTCH signaling to the tumor immune microenvironment and cancer immunotherapy are also highlighted. We hope this review will help not only beginners but also experts to systematically and thoroughly understand the NOTCH signaling pathway.
Collapse
|
12
|
Protective Effect of MFG-E8 on Necroptosis-Induced Intestinal Inflammation and Enteroendocrine Cell Function in Diabetes. Nutrients 2022; 14:nu14030604. [PMID: 35276962 PMCID: PMC8839169 DOI: 10.3390/nu14030604] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/10/2022] Open
Abstract
Low-grade inflammation is one of the characteristics of metabolic disorders induced by diabetes mellitus. The present study explores the underlying mechanism of milk fat globule epidermal growth factor 8 (MFG-E8) on necroptosis-induced intestinal inflammation and intestinal epithelial endocrine cell dysfunction in diabetes. Compared with the normal control group, pathological changes such as blunt and shortened villus and denuded villus tips were observed in ileum tissue of streptozotocin (STZ) induced senescence-resistant 1 (SAMR1) and senescence-accelerated prone 8 (SAMP8) diabetic mice under light microscope. Western blotting and immunohistochemistry (IHC) displayed significantly decreased protein expression of MFG-E8 in SAMR1 and SAMP8 diabetic mice, accompanied by an increased expression of phosphorylated mixed lineage kinase domain-like (p-MLKL) and HMGB1. In addition, advanced glycation end products (AGEs) significantly increased the pro-inflammatory mediators (TNF-α, IL-1β, IL-6) and HMGB1 by activating the receptor-interacting protein kinase 3 (RIPK3)/MLKL signaling pathway in enteroendocrine STC-1 cells. D-pinitol pretreatment markedly attenuated the release of pro-inflammatory mediators and increased the expression of MFG-E8. MFG-E8 small interfering RNA (siRNA) promoted, while MFG-E8 overexpression inhibited, the activation of receptor-interacting proteins (RIPs) pathway and pro-inflammatory factors. Our study demonstrated that downregulation of MFG-E8 is an important phenomenon in the pathogenesis of diabetes-related intestinal inflammatory damage. MFG-E8 overexpression and D-pinitol intervention could protect against necroptosis-induced intestinal inflammation and maintain the function of enteroendocrine STC-1 cells in diabetes.
Collapse
|
13
|
DCI after Aneurysmal Subarachnoid Hemorrhage Is Related to the Expression of MFG-E8. BIOMED RESEARCH INTERNATIONAL 2022; 2021:6568477. [PMID: 35005020 PMCID: PMC8741362 DOI: 10.1155/2021/6568477] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 12/05/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022]
Abstract
Objective To explore the predictive value of milk fat globule epidermal growth factor 8 (MFG-E8) in the occurrence of delayed cerebral ischemia (DCI) after an aneurysmal subarachnoid hemorrhage (aSAH). Methods We recruited 32 patients with aSAH as the case group and 24 patients with unruptured aneurysms as the control group. Serum MFG-E8 levels were measured by western blot and enzyme-linked immunosorbent assay. We analyzed the relationship between MFG-E8 levels and the risk of DCI. Results The levels of serum MFG-E8 in the case group (mean = 11160.9 pg/mL) were significantly higher than those in the control group (mean = 3081.0 pg/mL, p < 0.001). MFG-E8 levels highly correlated with the World Federation of Neurosurgical Societies (WFNS) and modified Fisher scores (r = -0.691 and - 0.767, respectively, p < 0.001). In addition, MFG-E8 levels in patients with DCI (5882.7 ± 3162.4 pg/mL) were notably higher than those in patients without DCI (15818.2 ± 3771.6 pg/mL, p < 0.001). A receiver operating characteristic curve showed that the occurrence of DCI could effectively be predicted by MFG-E8 (area under the curve = 0.976, 95%CI = 0.850-1.000). Kaplan-Meier survival analysis showed a remarkable decrease in the incidence of DCI in case group individuals with high levels of MFG-E8 (≥11160.9 pg/mL, p < 0.001). Conclusion MFG-E8 may be a useful predictive marker for DCI after an aSAH and could be a promising surrogate end point.
Collapse
|
14
|
Wu L, Kim Y, Seon GM, Choi SH, Park HC, Son G, Kim SM, Lim BS, Yang HC. Effects of RGD-grafted phosphatidylserine-containing liposomes on the polarization of macrophages and bone tissue regeneration. Biomaterials 2021; 279:121239. [PMID: 34753037 DOI: 10.1016/j.biomaterials.2021.121239] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 12/24/2022]
Abstract
Phosphatidylserine-containing liposomes (PSLs) can mimic the anti-inflammatory effects of apoptotic cells by binding to the phosphatidylserine receptors of macrophages. MGF-E8, a bridge molecule between phosphatidylserine and macrophages, can promote M2 polarization by activating macrophage integrin with its arginine-glycine-aspartic acid (RGD) motif. In this study, to mimic MGF-E8, PSLs presenting RGD peptide (RGD-PSLs) were prepared, and their immunomodulatory effects on macrophages and the bone tissue regeneration of rat calvarial defects were investigated. RGD peptides enhanced the phagocytosis of PSLs by macrophages, especially when the PSLs contained 3% RGD. RGD-PSLs were also more effective than PSLs for the suppression of lipopolysaccharide-induced gene expression of proinflammatory cytokines (i.e., IL-1β, IL-6, and TNF-α) as well as CD86 (M1 marker) expression. Furthermore, RGD promoted PSL-induced M2 polarization: 3%-RGD-PSLs significantly enhanced the mRNA expression of Arg-1, FIZZ1, and YM-1, as well as CD206 (M2 marker) expression. In a calvarial defect model, a significant increase in M2 with a decrease in M1 macrophages was observed with 3%-RGD-PSL treatment compared with the effects of PSLs alone. Finally, new bone formation was also accelerated by 3%-RGD-PSLs. Thus, these results suggest that the intensive immunomodulatory effect of RGD-PSLs led to the enhancement of bone tissue regeneration.
Collapse
Affiliation(s)
- Lele Wu
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Yongjoon Kim
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Gyeung Mi Seon
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Sang Hoon Choi
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Hee Chul Park
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Gitae Son
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Soung Min Kim
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Bum-Soon Lim
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Hyeong-Cheol Yang
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul, 03080, South Korea.
| |
Collapse
|
15
|
Zifkos K, Dubois C, Schäfer K. Extracellular Vesicles and Thrombosis: Update on the Clinical and Experimental Evidence. Int J Mol Sci 2021; 22:ijms22179317. [PMID: 34502228 PMCID: PMC8431093 DOI: 10.3390/ijms22179317] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EVs) compose a heterogenous group of membrane-derived particles, including exosomes, microvesicles and apoptotic bodies, which are released into the extracellular environment in response to proinflammatory or proapoptotic stimuli. From earlier studies suggesting that EV shedding constitutes a cellular clearance mechanism, it has become evident that EV formation, secretion and uptake represent important mechanisms of intercellular communication and exchange of a wide variety of molecules, with relevance in both physiological and pathological situations. The putative role of EVs in hemostasis and thrombosis is supported by clinical and experimental studies unraveling how these cell-derived structures affect clot formation (and resolution). From those studies, it has become clear that the prothrombotic effects of EVs are not restricted to the exposure of tissue factor (TF) and phosphatidylserines (PS), but also involve multiplication of procoagulant surfaces, cross-linking of different cellular players at the site of injury and transfer of activation signals to other cell types. Here, we summarize the existing and novel clinical and experimental evidence on the role and function of EVs during arterial and venous thrombus formation and how they may be used as biomarkers as well as therapeutic vectors.
Collapse
Affiliation(s)
- Konstantinos Zifkos
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, D-55131 Mainz, Germany;
| | - Christophe Dubois
- Aix Marseille University, INSERM 1263, Institut National de la Recherche pour l’Agriculture, l’alimentation et l’Environnement (INRAE) 1260, Center for CardioVascular and Nutrition Research (C2VN), F-13380 Marseille, France;
| | - Katrin Schäfer
- Department of Cardiology, Cardiology I, University Medical Center Mainz, D-55131 Mainz, Germany
- Correspondence:
| |
Collapse
|
16
|
Mesenchymal Stem Cell-Derived Exosomes: Applications in Regenerative Medicine. Cells 2021; 10:cells10081959. [PMID: 34440728 PMCID: PMC8393426 DOI: 10.3390/cells10081959] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are a type of extracellular vesicles, produced within multivesicular bodies, that are then released into the extracellular space through a merging of the multivesicular body with the plasma membrane. These vesicles are secreted by almost all cell types to aid in a vast array of cellular functions, including intercellular communication, cell differentiation and proliferation, angiogenesis, stress response, and immune signaling. This ability to contribute to several distinct processes is due to the complexity of exosomes, as they carry a multitude of signaling moieties, including proteins, lipids, cell surface receptors, enzymes, cytokines, transcription factors, and nucleic acids. The favorable biological properties of exosomes including biocompatibility, stability, low toxicity, and proficient exchange of molecular cargos make exosomes prime candidates for tissue engineering and regenerative medicine. Exploring the functions and molecular payloads of exosomes can facilitate tissue regeneration therapies and provide mechanistic insight into paracrine modulation of cellular activities. In this review, we summarize the current knowledge of exosome biogenesis, composition, and isolation methods. We also discuss emerging healing properties of exosomes and exosomal cargos, such as microRNAs, in brain injuries, cardiovascular disease, and COVID-19 amongst others. Overall, this review highlights the burgeoning roles and potential applications of exosomes in regenerative medicine.
Collapse
|
17
|
Mfge8 attenuates human gastric antrum smooth muscle contractions. J Muscle Res Cell Motil 2021; 42:219-231. [PMID: 34085177 PMCID: PMC8332633 DOI: 10.1007/s10974-021-09604-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/21/2021] [Indexed: 12/02/2022]
Abstract
Coordinated gastric smooth muscle contraction is critical for proper digestion and is adversely affected by a number of gastric motility disorders. In this study we report that the secreted protein Mfge8 (milk fat globule-EGF factor 8) inhibits the contractile responses of human gastric antrum muscles to cholinergic stimuli by reducing the inhibitory phosphorylation of the MYPT1 (myosin phosphatase-targeting subunit (1) subunit of MLCP (myosin light chain phosphatase), resulting in reduced LC20 (smooth muscle myosin regulatory light chain (2) phosphorylation. Mfge8 reduced the agonist-induced increase in the F-actin/G-actin ratios of β-actin and γ-actin1. We show that endogenous Mfge8 is bound to its receptor, α8β1 integrin, in human gastric antrum muscles, suggesting that human gastric antrum muscle mechanical responses are regulated by Mfge8. The regulation of gastric antrum smooth muscles by Mfge8 and α8 integrin functions as a brake on gastric antrum mechanical activities. Further studies of the role of Mfge8 and α8 integrin in regulating gastric antrum function will likely reveal additional novel aspects of gastric smooth muscle motility mechanisms.
Collapse
|
18
|
Verma AK, Ali SA, Singh P, Kumar S, Mohanty AK. Transcriptional Repression of MFG-E8 Causes Disturbance in the Homeostasis of Cell Cycle Through DOCK/ZP4/STAT Signaling in Buffalo Mammary Epithelial Cells. Front Cell Dev Biol 2021; 9:568660. [PMID: 33869165 PMCID: PMC8047144 DOI: 10.3389/fcell.2021.568660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
The mammary gland is a unique apocrine gland made up of a branching network of ducts that end in alveoli. It is an ideal system to study the molecular mechanisms associated with cell proliferation, differentiation, and oncogenesis. MFG-E8, also known as Lactadherin, is a vital glycoprotein related to the milk fat globule membrane and initially identified to get secreted in bovine milk. Our previous report suggests that a high level of MFG-E8 is indicative of high milk yield in dairy animals. Here, we showed that MFG-E8 controls the cell growth and morphology of epithelial cells through a network of regulatory transcription factors. To understand the comprehensive action, we downregulated its expression in MECs by MFG-E8 specific shRNA. We generated a knockdown proteome profile of differentially expressed proteins through a quantitative iTRAQ experiment on a high-resolution mass spectrometer (Q-TOF). The downregulation of MFG-E8 resulted in reduced phagocytosis and cell migration ability, whereas it also leads to more lifespan to knockdown vis-a-vis healthy cells, which is confirmed through BrdU, MTT, and Caspase 3/7. The bioinformatics analysis revealed that MFG-E8 knockdown perturbs a large number of intracellular signaling, eventually leading to cessation in cell growth. Based on the directed network analysis, we found that MFG-E8 is activated by CX3CL1, TP63, and CSF2 and leads to the activation of SOCS3 and CCL2 for the regulation of cell proliferation. We further proved that the depletion of MFG-E8 resulted in activated cytoskeletal remodeling by MFG-E8 knockdown, which results in the activation of three independent pathways ZP4/JAK-STAT5, DOCK1/STAT3, and PIP3/AKT/mTOR. Overall, this study suggests that MFG-E8 expression in mammary epithelial cells is an indication of intracellular deterioration in cell health. To date, to the best of our knowledge, this is the first study that explores the downstream targets of MFG-E8 involved in the regulation of mammary epithelial cell health.
Collapse
|
19
|
MFG-E8-derived peptide attenuates inflammation and injury after renal ischemia-reperfusion in mice. Heliyon 2020; 6:e05794. [PMID: 33409388 PMCID: PMC7773867 DOI: 10.1016/j.heliyon.2020.e05794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/23/2020] [Accepted: 12/17/2020] [Indexed: 01/14/2023] Open
Abstract
Background Renal ischemia-reperfusion (renal I/R) injury may lead to acute kidney injury (AKI). After renal I/R, proinflammatory mediators cause immune cell infiltration and further injury. Milk fat globule-epidermal growth factor-factor 8 (MFG-E8) is a protein involved in cell-cell and cell-matrix interactions. MSP68 is an MFG-E8-derived peptide that inhibits neutrophil adhesion and migration. Here, we evaluated whether MSP68 attenuates renal I/R injury. Materials and methods Adult C57BL/6 mice were subjected to bilateral renal ischemia for 30 min followed by reperfusion and intraperitoneal administration of saline (vehicle) or MSP68 (5 mg/kg). Sham animals underwent laparotomy without renal I/R. The blood collected and studied for BUN, creatinine, and LDH by colorimetry. The kidneys were analyzed for IL-6 and TNFα by qPCR, ELISA, histological injury, and apoptosis by TUNEL. Results At 24 h after surgery, serum levels of BUN, creatinine, and LDH were markedly higher in vehicle-treated renal I/R mice than in sham mice, but significantly lower in MSP68-treated renal I/R mice. Similarly, compared to sham, renal levels of IL-6 mRNA and protein and TNFα protein were markedly higher in vehicle-treated renal I/R mice, but significantly lower in MSP68-treated renal I/R mice. Vehicle-treated renal I/R mice also had severe renal tubular histological injury, which was significantly lower in MSP68-treated renal I/R mice. Additionally, the kidneys of vehicle-treated renal I/R mice had a 93-fold increase in TUNEL-positive cells, which were reduced by 35% in mice treated with MSP68. Conclusion MSP68 has the potential to be developed as novel therapeutic agent for patients with AKI.
Collapse
|
20
|
Chatterjee M, Meeks S, Novakovic VA, Gilbert GE. Discordance between platelet-supported and vesicle-supported factor VIII activity in the presence of anti-C2 domain inhibitory antibodies. J Thromb Haemost 2020; 18:3184-3193. [PMID: 32558078 DOI: 10.1111/jth.14961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/14/2020] [Accepted: 06/05/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND We recently reported that factor VIII (FVIII) binds to a macromolecular complex including fibrin on thrombin-stimulated platelets and that two antibodies against FVIII diminish platelet-supported FVIII activity more than vesicle-supported activity. The C2 domain of FVIII is known to bind to phospholipid membrane and also binds fibrin. OBJECTIVES We asked whether the degree of inhibition by anti-C2 antibodies would show differences between platelet-supported and the standard activated partial thromboplastin time (aPTT) assay. METHODS We evaluated the inhibition by a well-defined panel of monoclonal anti-C2 domain antibodies encompassing the major epitopes of the C2 domain. Activity was measured in an activated platelet time (aPT) assay containing fresh, density gradient-purified human platelets. RESULTS The aPT exhibited a log-linear relationship between FVIII and time to fibrin formation over a 4-log range, encompassing 0.01% to 100% plasma FVIII. Nine of 10 mAbs inhibited 89% to 96% of FVIII activity, whereas mAb F85 did not. There was no correlation between the degree of inhibition in the aPTT-based assay and the platelet assay. In particular, four mAbs did not inhibit the aPTT assay, yet inhibited 90% of platelet-based activity. Residual FVIII activity in purified-protein assays, relying on platelets, correlated with the aPT assay. CONCLUSIONS The degree of FVIII impairment by some inhibitor antibodies is substantially different on platelet membranes vs synthetic vesicles. Thus, current inhibitor assays may underestimate the frequency of significant inhibitors, and a platelet-based assay may more accurately assess bleeding risk.
Collapse
Affiliation(s)
- Madhumouli Chatterjee
- Departments of Medicine & Research, VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Shannon Meeks
- Department of Pediatrics, Children's Healthcare Atlanta/Aflac Cancer and Blood Disorder Center, Emory University, Atlanta, Georgia, USA
| | - Valerie A Novakovic
- Departments of Medicine & Research, VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Gary E Gilbert
- Departments of Medicine & Research, VA Boston Healthcare System, Boston, Massachusetts, USA
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Ushikubo M, Saito S, Kikuchi J, Takeshita M, Yoshimoto K, Yasuoka H, Yamaoka K, Seki N, Suzuki K, Oshima H, Takeuchi T. Milk fat globule epidermal growth factor 8 (MFG-E8) on monocytes is a novel biomarker of disease activity in systemic lupus erythematosus. Lupus 2020; 30:61-69. [PMID: 33115371 DOI: 10.1177/0961203320967761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Milk fat globule epidermal growth factor (MFG-E8) is related secreted protein which links phosphatidylserine on apoptotic cells and integrin αvβ3/5 on phagocytes. To clarify the clinical significance of MFG-E8 in SLE, we analyzed the correlation between expression level of MFG-E8 in circulating phagocytic leukocytes and clinical parameters of patients. METHODS The study was conducted under a multi-center, prospective cohort design. Patients with one or both BILAG A or B, or SLEDAI- 2 K ≥ 4 with clinical symptoms were defined as the active SLE group. Expression of MFG-E8 on monocytes and concentration in serum were measured by FACS and ELISA, respectively. RESULTS 96 subjects were enrolled. The absolute number and proportion of MFG-E8-positive monocytes to total monocytes were significantly higher in the active SLE group (p < 0.01). Importantly, the proportion was also significantly correlated with SLEDAI-2K, clinical SLEDAI, as well as serum levels of anti-ds-DNA antibody and complement and C1q. In addition, the proportion of MFG-E8-positive monocytes to total monocytes was significantly decreased from baseline in active SLE patients after 6 months' treatment and increased concordantly with disease activity in 6 refractory cases. Further, in receiver operating characteristic curve analysis for discrimination between active and inactive SLE, the AUC of the proportion of MFG-E8 was 0.854, which was equivalent to classical activity markers such as anti-ds DNA antibody (0.776), complement (0.897) and C1q (0.815). CONCLUSIONS The proportion of MFG-E8-positive monocytes to total monocytes in peripheral blood was positively associated with disease activity in SLE and may be a novel biomarker of disease activity.
Collapse
Affiliation(s)
- Mari Ushikubo
- Department of Connective Tissue Disease, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.,Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shuntaro Saito
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Jun Kikuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Masaru Takeshita
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Keiko Yoshimoto
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hidekata Yasuoka
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kunihiro Yamaoka
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Noriyasu Seki
- Research Unit/Immunology and Inflammation, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | - Katsuya Suzuki
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hisaji Oshima
- Department of Connective Tissue Disease, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
22
|
Didiano D, Abner JJ, Hinger SA, Flickinger Z, Kent M, Clement MA, Balaiya S, Liu Q, Dai X, Levine EM, Patton JG. Induction of a proliferative response in the zebrafish retina by injection of extracellular vesicles. Exp Eye Res 2020; 200:108254. [PMID: 32961174 DOI: 10.1016/j.exer.2020.108254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/26/2020] [Accepted: 09/14/2020] [Indexed: 12/18/2022]
Abstract
Ongoing research using cell transplantation and viral-mediated gene therapy has been making progress to restore vision by retinal repair, but targeted delivery and complete cellular integration remain challenging. An alternative approach is to induce endogenous Müller glia (MG) to regenerate lost neurons and photoreceptors, as occurs spontaneously in teleost fish and amphibians. Extracellular vesicles (EVs) can transfer protein and RNA cargo between cells serving as a novel means of cell-cell communication. We conducted an in vivo screen in zebrafish to identify sources of EVs that could induce MG to dedifferentiate and generate proliferating progenitor cells after intravitreal injection into otherwise undamaged zebrafish eyes. Small EVs (sEVs) from C6 glioma cells were the most consistent at inducing MG-derived proliferating cells. Ascl1a expression increased after intravitreal injection of C6 sEVs and knockdown of ascl1a inhibited the induction of proliferation. Proteomic and RNAseq analyses of EV cargo content were performed to begin to identify key factors that might target EVs to MG and initiate retina regeneration.
Collapse
Affiliation(s)
- Dominic Didiano
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| | - Jessica J Abner
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| | - Scott A Hinger
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| | - Zachary Flickinger
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| | - Matthew Kent
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| | - Margaret A Clement
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| | - Sankarathi Balaiya
- Department of Ophthalmology, Vanderbilt University Medical Center, Nashville, TN, 37235, USA
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37235, USA
| | - Xiaozhuan Dai
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37235, USA
| | - Edward M Levine
- Department of Ophthalmology, Vanderbilt University Medical Center, Nashville, TN, 37235, USA
| | - James G Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA.
| |
Collapse
|
23
|
Wang B, Ge Z, Wu Y, Zha Y, Zhang X, Yan Y, Xie Y. MFGE8 is down-regulated in cardiac fibrosis and attenuates endothelial-mesenchymal transition through Smad2/3-Snail signalling pathway. J Cell Mol Med 2020; 24:12799-12812. [PMID: 32945126 PMCID: PMC7686985 DOI: 10.1111/jcmm.15871] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
Endothelial‐mesenchymal transition (EndMT) is a major source of transformed cardiac fibroblasts, which is reported to play a key role in cardiac fibrosis (CF), a pathogenesis of cardiovascular diseases such as heart failure, myocardial infarction and atrial fibrillation. Nonetheless, the specific mechanism underlying the progression of EndMT to CF is still largely unknown. In this study, we aimed to investigate the role of milk fat globule‐EGF factor 8 (MFGE8), a kind of soluble glycoprotein, in TGF‐β1‐induced EndMT. In animal experiments, the expression of MFGE8 was found down‐regulated in the left ventricle and aorta of rats after transverse aortic constriction (TAC) compared with the sham group, especially in endothelial cells (ECs). In in vitro cultured ECs, silencing MFGE8 with small interfering RNA (siRNA) was found to promote the process of TGF‐β1‐induced EndMT, whereas administration of recombinant human MFGE8 (rh‐MFGE8) attenuated the process. Moreover, activated Smad2/3 signalling pathway after TGF‐β1 treatment and EndMT‐related transcription factors, such as Snail, Twist and Slug, was potentiated by MFGE8 knock‐down but inhibited by rh‐MFGE8. In conclusion, our experiments indicate that MFGE8 might play a protective role in TGF‐β1‐induced EndMT and might be a potential therapeutic target for cardiac fibrosis.
Collapse
Affiliation(s)
- Bo Wang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuowang Ge
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Wu
- Department of Nutriology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yafang Zha
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuan Zhang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yexiang Yan
- Department of Cardiology, Shanghai Tenth People's Hospital Chongming Branch, Shanghai, China
| | - Yuquan Xie
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Cardiology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Salivary exosomes: properties, medical applications, and isolation methods. Mol Biol Rep 2020; 47:6295-6307. [PMID: 32676813 DOI: 10.1007/s11033-020-05659-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023]
Abstract
Salivary exosomes are extracellular vesicles (EVs) with abundant CD63 immunoreactivity on their surface. Based on their size and protein composition, these exosomes can be categorized into two classes of exosomes I (mean diameter of 83.5 nm) and II (mean diameter of 40.5 nm). We have attempted to review the features of these exosomes, including origin, composition, separation methods, and their application in medicine. Not only the composition of salivary exosomes is invaluable in term of diagnosis, but can also afford an understanding in roles of the contents and components of these exosomes in the fundamental pathophysiologic processes of different diseases. since these EVs can cross the epithelial barriers they may be essential for transporting of multifarious components from the blood into saliva. Thus, in comparison to other bodily fluids, salivary exosomes are probably a better and accessible tool to examine the function of exosomes in the diagnosis and treatment of disease.
Collapse
|
25
|
Choi JI, Kang HY, Han C, Woo DH, Kim JH, Park DH. Milk Fat Globule-Epidermal Growth Factor VIII Ameliorates Brain Injury in the Subacute Phase of Cerebral Ischemia in an Animal Model. J Korean Neurosurg Soc 2020; 63:163-170. [PMID: 32120456 PMCID: PMC7054108 DOI: 10.3340/jkns.2019.0188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/01/2019] [Indexed: 12/13/2022] Open
Abstract
Objective Milk fat globule-epidermal growth factor VIII (MFG-E8) may play a key role in inflammatory responses and has the potential to function as a neuroprotective agent for ameliorating brain injury in cerebral infarction. This study aimed to determine the role of MFG-E8 in brain injury in the subacute phase of cerebral ischemia in a rat model.
Methods Focal cerebral ischemia was induced in rats by occluding the middle cerebral artery with the modified intraluminal filament technique. Twenty-four hours after ischemia induction, rats were randomly assigned to two groups and treated with either recombinant human MFG-E8 or saline. Functional outcomes were assessed using the modified Neurological Severity Score (mNSS), and infarct volumes were evaluated using histology. Anti-inflammation, angiogenesis, and neurogenesis were assessed using immunohistochemistry with antibodies against ionized calcium-binding adapter molecule 1 (Iba-1), rat endothelial cell antigen-1 (RECA-1), and bromodeoxyuridine (BrdU)/doublecortin (DCX), respectively.
Results Our results showed that intravenous MFG-E8 treatment did not reduce the infarct volume; however, the mNSS test revealed that neurobehavioral deficits were significantly improved in the MFG-E8-treated group than in the vehicle group. Immunofluorescence staining revealed a significantly lower number of Iba-1-positive cells and higher number of RECA-1 in the peri-infarcted brain region, and significantly higher numbers of BrdU- and DCX-positive cells in the subventricular zone in the MFG-E8-treated group than in the vehicle group.
Conclusion Our findings suggest that MFG-E8 improves neurological function by suppressing inflammation and enhancing angiogenesis and neuronal proliferation in the subacute phase of cerebral infarction.
Collapse
Affiliation(s)
- Jong-Il Choi
- Department of Neurosurgery, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Ho-Young Kang
- Department of Neurosurgery, Anam Hospital, College of Medicine, Korea University, Seoul, Korea
| | | | | | - Jong-Hoon Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Dong-Hyuk Park
- Department of Neurosurgery, Anam Hospital, College of Medicine, Korea University, Seoul, Korea.,Center of Innovative Cell Therapy and Research, Anam Hospital, College of Medicine, Korea University, Seoul, Korea
| |
Collapse
|
26
|
Fujiwara C, Motegi SI, Ohira A, Yamaguchi S, Sekiguchi A, Yasuda M, Nakamura H, Makiguchi T, Yokoo S, Hoshina D, Abe R, Takahashi K, Ishikawa O. The significance of tumor cells-derived MFG-E8 in tumor growth of angiosarcoma. J Dermatol Sci 2019; 96:18-25. [PMID: 31447183 DOI: 10.1016/j.jdermsci.2019.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/19/2019] [Accepted: 08/14/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Previous studies have indicated that MFG-E8 enhances tumor cell survival, invasion and angiogenesis. However, the role of MFG-E8 in angiosarcoma (AS) has not been clarified. OBJECTIVE Objective was to elucidate the mechanism of the regulation by MFG-E8 in AS and the association between MFG-E8 and clinicopathological features of AS. METHODS The effects of the depletion of MFG-E8 by siRNA on tube formation, migration and proliferation in murine AS cells were examined. The effect of administration of anti-MFG-E8 antibody (Ab) on tumor growth of AS in mice was examined. The associations of MFG-E8 expression and clinicopathological features of human AS were assessed. RESULTS The expressions of MFG-E8 in murine and human AS cells were significantly higher than those in melanoma cells, macrophages and endothelial cells. Depletion of MFG-E8 in murine AS cells by siRNA significantly inhibited the formation of capillary-like structures and migration, but not proliferation. Administration of anti-MFG-E8 Ab significantly inhibited tumor growth and decreased the number of tumor-associated macrophages (TAMs) in AS tumors. Tumor size and the number of TAMs in human AS with high expression of MFG-E8 were significantly increased compared to those of AS with low expression of MFG-E8. Progression-free survival and overall survival time of the patients of AS with high expression of MFG-E8 were significantly shorter than those of AS with low expression of MFG-E8. CONCLUSIONS AS-derived MFG-E8 might enhance tumor growth via angiogenesis and the induction of TAMs in autocrine/paracrine manner, and administration of anti-MFG-E8 Ab could be a therapeutic potential for AS.
Collapse
Affiliation(s)
- Chisako Fujiwara
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sei-Ichiro Motegi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan.
| | - Aoi Ohira
- Department of Dermatology, University of the Ryukyus Graduate School of Medicine, Nishihara, Japan
| | - Sayaka Yamaguchi
- Department of Dermatology, University of the Ryukyus Graduate School of Medicine, Nishihara, Japan
| | - Akiko Sekiguchi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Masahito Yasuda
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hideharu Nakamura
- Department of Oral and Maxillofacial Surgery, and Plastic Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takaya Makiguchi
- Department of Oral and Maxillofacial Surgery, and Plastic Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Satoshi Yokoo
- Department of Oral and Maxillofacial Surgery, and Plastic Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Daichi Hoshina
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Riichiro Abe
- Niigata University Graduate School of Medicine and Dental Science, Division of Dermatology, Niigata, Japan
| | - Kenzo Takahashi
- Department of Dermatology, University of the Ryukyus Graduate School of Medicine, Nishihara, Japan
| | - Osamu Ishikawa
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
27
|
Stapane L, Le Roy N, Hincke MT, Gautron J. The glycoproteins EDIL3 and MFGE8 regulate vesicle-mediated eggshell calcification in a new model for avian biomineralization. J Biol Chem 2019; 294:14526-14545. [PMID: 31358619 DOI: 10.1074/jbc.ra119.009799] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/26/2019] [Indexed: 11/06/2022] Open
Abstract
The avian eggshell is a critical physical barrier, which permits extra-uterine development of the embryo. Its formation involves the fastest known biomineralization process in vertebrates. The eggshell consists of proteins and proteoglycans that interact with the mineral phase to impart its specific microstructure and mechanical properties. In this study, we investigated the role of epidermal growth factor (EGF)-like repeats and discoidin-like domains 3 (EDIL3) and milk fat globule-EGF factor 8 (MFGE8), two glycoproteins that are consistently detected in eggshell proteomes. We verified their common evolutionary history and identified the timing of the duplication event giving rise to these two distinct proteins. Edil3/mfge8 chromosomal locations revealed a nested syntenous relationship with other genes (hapln1/hapln3 and vcan/acan) that are also involved in vertebrate calcification. EDIL3 and MFGE8 proteins possess EGF-like and coagulation factor 5/8 (F5/8C) domains, and their 3D structures predicted that they bind calcium and extracellular vesicles. In chicken, we confirmed the presence of EDIL3 and MFGE8 proteins in eggshell, uterine fluid, and uterus. We observed that only edil3 is overexpressed in tissues in which eggshell mineralization takes place and that this overexpression occurs only at the onset of shell calcification. We therefore propose a model in which EDIL3 and, to a lesser extent, MFGE8 proteins guide vesicles containing amorphous calcium carbonate to the mineralization site. This model was supported by the observation that extracellular vesicles accumulate in uterine fluid during eggshell calcification and that they contain high levels of calcium, carbon, and oxygen that correspond to calcium carbonate.
Collapse
Affiliation(s)
| | | | - Maxwell T Hincke
- Department of Innovation in Medical Education, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Joël Gautron
- BOA, INRA, Université de Tours, 37380 Nouzilly, France
| |
Collapse
|
28
|
Guo X, Dou X, Dong B. Identification and functional characterization of lactadherin, an agglutinating glycoprotein from the chordate Styela clava. In Vitro Cell Dev Biol Anim 2019; 55:405-415. [PMID: 31140104 DOI: 10.1007/s11626-019-00362-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/26/2019] [Indexed: 11/30/2022]
Abstract
Lactadherin is an extracellular matrix glycoprotein with stimulating agglutination ability that plays crucial roles in animal immunology. In the present study, a novel lactadherin, Sc-lactadherin, was identified from the marine invertebrate chordate, Styela clava. Its full-length cDNA consisted of 579 bps, encoding 193 amino acids with a coagulation FA58C domain. Recombinant Sc-lactadherin via a prokaryotic expression system showed strong hemocyte fusion activity. Therefore, we further examined its effects on cell behaviors using human umbilical vein endothelial cells (HUVECs) and human cervical cancer (HeLa) cells. Recombinant Sc-lactadherin significantly increased the proliferation rate of HUVECs and HeLa cells and improved the cell migration rate of HUVECs. These results demonstrated that the lactadherin identified from the marine ascidian displayed the agglutinating activity. Functional characterization of the recombinant protein showed that it promoted cell proliferation and migration, indicating the potential roles of Sc-lactadherin in immunology and organogenesis in marine ascidians.
Collapse
Affiliation(s)
- Xin Guo
- Laboratory of Morphogenesis & Evolution, College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xiaoju Dou
- Laboratory of Morphogenesis & Evolution, College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China
- College of Agricultural Science and Technology, Tibet Vocational Technical College, Lhasa, 850030, China
| | - Bo Dong
- Laboratory of Morphogenesis & Evolution, College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
29
|
Exosomes as Emerging Pro-Tumorigenic Mediators of the Senescence-Associated Secretory Phenotype. Int J Mol Sci 2019; 20:ijms20102547. [PMID: 31137607 PMCID: PMC6566274 DOI: 10.3390/ijms20102547] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/02/2019] [Accepted: 05/07/2019] [Indexed: 12/24/2022] Open
Abstract
Communication between cells is quintessential for biological function and cellular homeostasis. Membrane-bound extracellular vesicles known as exosomes play pivotal roles in mediating intercellular communication in tumor microenvironments. These vesicles and exosomes carry and transfer biomolecules such as proteins, lipids and nucleic acids. Here we focus on exosomes secreted from senescent cells. Cellular senescence can alter the microenvironment and influence neighbouring cells via the senescence-associated secretory phenotype (SASP), which consists of factors such as cytokines, chemokines, matrix proteases and growth factors. This review focuses on exosomes as emerging SASP components that can confer pro-tumorigenic effects in pre-malignant recipient cells. This is in addition to their role in carrying SASP factors. Transfer of such exosomal components may potentially lead to cell proliferation, inflammation and chromosomal instability, and consequently cancer initiation. Senescent cells are known to gather in various tissues with age; eliminating senescent cells or blocking the detrimental effects of the SASP has been shown to alleviate multiple age-related phenotypes. Hence, we speculate that a better understanding of the role of exosomes released from senescent cells in the context of cancer biology may have implications for elucidating mechanisms by which aging promotes cancer and other age-related diseases, and how therapeutic resistance is exacerbated with age.
Collapse
|
30
|
Fujiwara C, Uehara A, Sekiguchi A, Uchiyama A, Yamazaki S, Ogino S, Yokoyama Y, Torii R, Hosoi M, Suto C, Tsunekawa K, Murakami M, Ishikawa O, Motegi S. Suppressive Regulation by MFG‐E8 of Latent Transforming Growth Factor β–Induced Fibrosis via Binding to αv Integrin: Significance in the Pathogenesis of Fibrosis in Systemic Sclerosis. Arthritis Rheumatol 2019; 71:302-314. [DOI: 10.1002/art.40701] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/28/2018] [Indexed: 02/06/2023]
Affiliation(s)
| | - Akihito Uehara
- Gunma University Graduate School of Medicine Maebashi Japan
| | | | | | | | - Sachiko Ogino
- Gunma University Graduate School of Medicine Maebashi Japan
| | - Yoko Yokoyama
- Gunma University Graduate School of Medicine Maebashi Japan
| | - Ryoko Torii
- Gunma University Graduate School of Medicine Maebashi Japan
| | - Mari Hosoi
- Gunma University Graduate School of Medicine Maebashi Japan
| | - Chiaki Suto
- Gunma University Graduate School of Medicine Maebashi Japan
| | | | | | - Osamu Ishikawa
- Gunma University Graduate School of Medicine Maebashi Japan
| | | |
Collapse
|
31
|
AnnexinA5-pHrodo: a new molecular probe for measuring efferocytosis. Sci Rep 2018; 8:17731. [PMID: 30532026 PMCID: PMC6286334 DOI: 10.1038/s41598-018-35995-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/09/2018] [Indexed: 01/08/2023] Open
Abstract
Efferocytosis, the clearing of dead or dying cells from living tissues, is a highly programmed, vital process to maintain the healthy functioning of every organism. Disorders of efferocytosis have been linked to several chronic diseases including atherosclerosis and auto-immune diseases. To date several different assays to determine phagocytosis, using microscopy or FACS analysis with labelled targets, have been developed. However, many of these are unable to differentiate between cells that have truly been phagocytosed and those still present on the surface of the macrophages hindering exact assessment of efferocytotic capacity. We herein describe AnxA5-pHrodo and its negative control M1234-pHrodo as new molecular probes to measure in vitro as well as ex-vivo efferocytotic capacity.
Collapse
|
32
|
Kanemura T, Miyata H, Makino T, Tanaka K, Sugimura K, Hamada-Uematsu M, Mizote Y, Uchida H, Miyazaki Y, Takahashi T, Kurokawa Y, Yamasaki M, Wada H, Nakajima K, Takiguchi S, Mori M, Doki Y, Tahara H. Immunoregulatory influence of abundant MFG-E8 expression by esophageal cancer treated with chemotherapy. Cancer Sci 2018; 109:3393-3402. [PMID: 30156356 PMCID: PMC6215892 DOI: 10.1111/cas.13785] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/26/2018] [Accepted: 08/14/2018] [Indexed: 12/16/2022] Open
Abstract
Milk fat globule‐epidermal growth factor factor 8 (MFG‐E8) is secreted from macrophages and is known to induce immunological tolerance mediated by regulatory T cells. However, the roles of the MFG‐E8 that is expressed by cancer cells have not yet been fully examined. Expression of MFG‐E8 was examined using immunohistochemistry in surgical samples from 134 patients with esophageal squamous cell carcinoma. The relationships between MFG‐E8 expression levels and clinicopathological factors, including tumor‐infiltrating lymphocytes, were evaluated. High MFG‐E8 expression was observed in 23.9% of the patients. The patients with tumors highly expressing MFG‐E8 had a significantly higher percentage of neoadjuvant chemotherapy (NAC) history (P < .0001) and shorter relapse‐free survival (P = 0.012) and overall survival (OS; P = .0047). On subgroup analysis, according to NAC history, patients with high MFG‐E8 expression had significantly shorter relapse‐free survival (P = .027) and OS (P = .0039) only when they had been treated with NAC. Furthermore, tumors with high MFG‐E8 expression had a significantly lower ratio of CD8+ T cells/regulatory T cells in tumor‐infiltrating lymphocytes (P = .042) only in the patients treated with NAC, and those with a lower ratio had a shorter OS (P = .026). High MFG‐E8 expression was also found to be an independent prognostic factor in multivariate analysis. The abundant MFG‐E8 expression in esophageal squamous cell carcinoma might have a negative influence on the long‐term survival of patients after chemotherapy by affecting T‐cell regulation in the tumor microenvironment.
Collapse
Affiliation(s)
- Takashi Kanemura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hiroshi Miyata
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Digestive Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Tomoki Makino
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Koji Tanaka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Keijiro Sugimura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Digestive Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Mika Hamada-Uematsu
- Department of Surgery and Bioengineering, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Project Division of Cancer Biomolecular Therapy, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yu Mizote
- Department of Surgery and Bioengineering, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Project Division of Cancer Biomolecular Therapy, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hiroaki Uchida
- Department of Surgery and Bioengineering, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Project Division of Cancer Biomolecular Therapy, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yasuhiro Miyazaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yukinori Kurokawa
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Makoto Yamasaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hisashi Wada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kiyokazu Nakajima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Shuji Takiguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Nagoya City University, Nagoya, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hideaki Tahara
- Department of Surgery and Bioengineering, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Project Division of Cancer Biomolecular Therapy, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Department of Cancer Drug Discovery and Development, Research Center, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
33
|
Comparative transcriptome analysis to investigate the potential role of miRNAs in milk protein/fat quality. Sci Rep 2018; 8:6250. [PMID: 29674689 PMCID: PMC5908868 DOI: 10.1038/s41598-018-24727-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/14/2018] [Indexed: 01/06/2023] Open
Abstract
miRNAs play an important role in the processes of cell differentiation, biological development, and physiology. Here we investigated the molecular mechanisms regulating milk secretion and quality in dairy cows via transcriptome analyses of mammary gland tissues from dairy cows during the high-protein/high-fat, low-protein/low-fat or dry periods. To characterize the important roles of miRNAs and mRNAs in milk quality and to elucidate their regulatory networks in relation to milk secretion and quality, an integrated analysis was performed. A total of 25 core miRNAs were found to be differentially expressed (DE) during lactation compared to non-lactation, and these miRNAs were involved in epithelial cell terminal differentiation and mammary gland development. In addition, comprehensive analysis of mRNA and miRNA expression between high-protein/high-fat group and low-protein/low-fat groups indicated that, 38 miRNAs and 944 mRNAs were differentially expressed between them. Furthermore, 38 DE miRNAs putatively negatively regulated 253 DE mRNAs. The putative genes (253 DE mRNAs) were enriched in lipid biosynthetic process and amino acid transmembrane transporter activity. Moreover, putative DE genes were significantly enriched in fatty acid (FA) metabolism, biosynthesis of amino acids, synthesis and degradation of ketone bodies and biosynthesis of unsaturated FAs. Our results suggest that DE miRNAs might play roles as regulators of milk quality and milk secretion during mammary gland differentiation.
Collapse
|
34
|
Abstract
The human body generates 10-100 billion cells every day, and the same number of cells die to maintain homeostasis in our body. Cells infected by bacteria or viruses also die. The cell death that occurs under physiological conditions mainly proceeds by apoptosis, which is a noninflammatory, or silent, process, while pathogen infection induces necroptosis or pyroptosis, which activates the immune system and causes inflammation. Dead cells generated by apoptosis are quickly engulfed by macrophages for degradation. Caspases are a large family of cysteine proteases that act in cascades. A cascade that leads to caspase 3 activation mediates apoptosis and is responsible for killing cells, recruiting macrophages, and presenting an "eat me" signal(s). When apoptotic cells are not efficiently engulfed by macrophages, they undergo secondary necrosis and release intracellular materials that represent a damage-associated molecular pattern, which may lead to a systemic lupus-like autoimmune disease.
Collapse
Affiliation(s)
- Shigekazu Nagata
- Laboratory of Biochemistry and Immunology, World Premier International Research Center Initiative Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan;
| |
Collapse
|
35
|
Kooijmans SAA, Gitz-Francois JJJM, Schiffelers RM, Vader P. Recombinant phosphatidylserine-binding nanobodies for targeting of extracellular vesicles to tumor cells: a plug-and-play approach. NANOSCALE 2018; 10:2413-2426. [PMID: 29334397 PMCID: PMC5795695 DOI: 10.1039/c7nr06966a] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/10/2017] [Indexed: 05/14/2023]
Abstract
Extracellular vesicles (EVs) are increasingly being recognized as candidate drug delivery systems due to their ability to functionally transfer biological cargo between cells. However, manipulation of targeting properties of EVs through engineering of the producer cells can be challenging and time-consuming. As a novel approach to confer tumor targeting properties to isolated EVs, we generated recombinant fusion proteins of nanobodies against the epidermal growth factor receptor (EGFR) fused to phosphatidylserine (PS)-binding domains of lactadherin (C1C2). C1C2-nanobody fusion proteins were expressed in HEK293 cells and isolated from culture medium with near-complete purity as determined by SDS-PAGE. Fusion proteins specifically bound PS and showed no affinity for other common EV membrane lipids. Furthermore, C1C2 fused to anti-EGFR nanobodies (EGa1-C1C2) bound EGFR with high affinity and competed with binding of its natural ligand EGF, as opposed to C1C2 fused to non-targeting control nanobodies (R2-C1C2). Both proteins readily self-associated onto membranes of EVs derived from erythrocytes and Neuro2A cells without affecting EV size and integrity. EV-bound R2-C1C2 did not influence EV-cell interactions, whereas EV-bound EGa1-C1C2 dose-dependently enhanced specific binding and uptake of EVs by EGFR-overexpressing tumor cells. In conclusion, we developed a novel strategy to efficiently and universally confer tumor targeting properties to PS-exposing EVs after their isolation, without affecting EV characteristics, circumventing the need to modify EV-secreting cells. This strategy may also be employed to decorate EVs with other moieties, including imaging probes or therapeutic proteins.
Collapse
Affiliation(s)
- Sander A. A. Kooijmans
- Department of Clinical Chemistry and Haematology , University Medical Center Utrecht , Utrecht , The Netherlands . ; Tel: (+31) (0)887555546
| | - Jerney J. J. M. Gitz-Francois
- Department of Clinical Chemistry and Haematology , University Medical Center Utrecht , Utrecht , The Netherlands . ; Tel: (+31) (0)887555546
| | - Raymond M. Schiffelers
- Department of Clinical Chemistry and Haematology , University Medical Center Utrecht , Utrecht , The Netherlands . ; Tel: (+31) (0)887555546
| | - Pieter Vader
- Department of Clinical Chemistry and Haematology , University Medical Center Utrecht , Utrecht , The Netherlands . ; Tel: (+31) (0)887555546
| |
Collapse
|
36
|
Schmitz CR, Oehninger S, Genro VK, Chandra N, Lattanzio F, Yu L, Cunha-Filho JS. Alterations in expression of endometrial milk fat globule-EGF factor 8 (MFG-E8) and leukemia inhibitory factor (LIF) in patients with infertility and endometriosis. JBRA Assist Reprod 2017; 21:313-320. [PMID: 28967712 PMCID: PMC5714598 DOI: 10.5935/1518-0557.20170056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE The aim of this study was to compare the endometrial expression of milk fat globule-EGF factor 8 (MFG-E8), its receptor integrin αvβ3, and leukemia inhibitory factor (LIF) in patients with endometriosis and infertility and in healthy fertile patients during the window of implantation. METHODS Five patients with peritoneal endometriosis and infertility (case group) and four healthy fertile patients (control group) were recruited. All patients were either diagnosed with or ruled out for endometriosis by laparoscopic surgery; the case group underwent surgery for infertility investigation and the control group for tubal ligation. Endometrial biopsies were performed in all patients during the window of implantation (LH+8 to LH+10), and then the samples were analyzed by immunochemistry for MFG-E8, integrin αvβ3, and LIF. RESULTS In patients with endometriosis and infertility, expression of MFG-E8 was significantly increased in the glandular epithelium when compared to healthy fertile patients (p<0.001). Moreover, LIF expression was lower in patients with endometriosis and infertility (p<0.05). Nevertheless, we found no difference in integrin αvβ3 expression between the groups (p=0.084). CONCLUSION This study showed for the first time that MFG-E8 expression is impaired in the endometrium of patients with endometriosis and infertility during the window of implantation. Moreover, LIF is also diminished in the endometrium of these patients as shown before.
Collapse
Affiliation(s)
- Carla Regina Schmitz
- Graduate Program in Internal Medicine of the Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Sergio Oehninger
- Department of Obstetrics and Gynecology, Eastern Virginia Medical School, The Jones Institute for Reproductive Medicine, Norfolk VA, USA
| | - Vanessa Krebs Genro
- Department of Obstetrics and Gynecology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Neelima Chandra
- Department of Obstetrics and Gynecology, Eastern Virginia Medical School, The Jones Institute for Reproductive Medicine, Norfolk VA, USA
| | - Frank Lattanzio
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk VA, USA
| | - Liang Yu
- Department of Obstetrics and Gynecology, Eastern Virginia Medical School, The Jones Institute for Reproductive Medicine, Norfolk VA, USA
| | - João Sabino Cunha-Filho
- Graduate Program in Internal Medicine of the Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Department of Obstetrics and Gynecology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
37
|
Ooishi T, Nadano D, Matsuda T, Oshima K. Extracellular vesicle-mediated MFG-E8 localization in the extracellular matrix is required for its integrin-dependent function in mouse mammary epithelial cells. Genes Cells 2017; 22:885-899. [DOI: 10.1111/gtc.12521] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 08/04/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Takuya Ooishi
- Graduate School of Bioagricultural Sciences; Nagoya University; Nagoya 464-8601 Japan
| | - Daita Nadano
- Graduate School of Bioagricultural Sciences; Nagoya University; Nagoya 464-8601 Japan
| | - Tsukasa Matsuda
- Graduate School of Bioagricultural Sciences; Nagoya University; Nagoya 464-8601 Japan
| | - Kenzi Oshima
- Graduate School of Bioagricultural Sciences; Nagoya University; Nagoya 464-8601 Japan
| |
Collapse
|
38
|
Kajikawa T, Meshikhes F, Maekawa T, Hajishengallis E, Hosur KB, Abe T, Moss K, Chavakis T, Hajishengallis G. Milk fat globule epidermal growth factor 8 inhibits periodontitis in non-human primates and its gingival crevicular fluid levels can differentiate periodontal health from disease in humans. J Clin Periodontol 2017; 44:472-483. [PMID: 28207941 DOI: 10.1111/jcpe.12707] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2017] [Indexed: 01/24/2023]
Abstract
AIM We have previously shown that the secreted glycoprotein milk fat globule epidermal growth factor 8 (MFG-E8) has anti-inflammatory and anti-osteoclastogenic properties. Our objective was to investigate the potential of MFG-E8 as a diagnostic or therapeutic agent in periodontitis. MATERIALS AND METHODS Periodontitis was induced in non-human primates (NHPs) by placing ligatures around posterior teeth on both halves of the mandible for a split-mouth design: one side was treated with MFG-E8-Fc and the other with Fc control. Disease was assessed by clinical periodontal examinations, radiographic analysis of bone loss, and analysis of cytokine mRNA expression in gingival biopsy samples. Gingival crevicular fluid (GCF) was collected from human healthy volunteers or subjects with gingivitis, chronic moderate periodontitis, or chronic severe periodontitis. Additionally, GCF was collected from a subset of severe periodontitis patients following scaling and root planing (SRP) and after pocket reduction surgery. GCF was analysed to quantify MFG-E8 and periodontitis-relevant cytokines using multiplex assays. RESULTS In NHPs, sites treated with MFG-E8-Fc exhibited significantly less ligature-induced periodontal inflammation and bone loss than Fc control-treated sites. In humans, the GCF levels of MFG-E8 were significantly higher in health than in periodontitis, whereas the reverse was true for the proinflammatory cytokines tested. Consistently, MFG-E8 was elevated in GCF after both non-surgical (SRP) and surgical periodontal treatment of periodontitis patients. CONCLUSION MFG-E8 is, in principle, a novel therapeutic agent and biomarker of periodontitis.
Collapse
Affiliation(s)
- Tetsuhiro Kajikawa
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fatimah Meshikhes
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tomoki Maekawa
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Evlambia Hajishengallis
- Department of Preventive and Restorative Sciences, Division of Pediatric Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kavita B Hosur
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Toshiharu Abe
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin Moss
- Department of Dental Ecology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - George Hajishengallis
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
39
|
Uchiyama A, Motegi SI, Sekiguchi A, Fujiwara C, Perera B, Ogino S, Yokoyama Y, Ishikawa O. Mesenchymal stem cells-derived MFG-E8 accelerates diabetic cutaneous wound healing. J Dermatol Sci 2017; 86:187-197. [PMID: 28302404 DOI: 10.1016/j.jdermsci.2017.02.285] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 02/28/2017] [Indexed: 01/13/2023]
Abstract
BACKGROUND Diabetic wounds are intractable due to complex factors, such as the inhibition of angiogenesis, dysfunction of phagocytosis by macrophages and abnormal inflammatory responses. It is recognized that mesenchymal stem cells (MSCs) promote wound healing in diabetic mice. We previously demonstrated that MSCs produce large amounts of MFG-E8. OBJECT The objective was to ascertain the role of MSCs-derived MFG-E8 in murine diabetic wounds. METHODS MFG-E8 WT/KO MSCs or rMFG-E8 were subcutaneously injected around the wound in diabetic db/db mice, and wound areas were analyzed. Quantification of angiogenesis, infiltrating inflammatory cells, apoptotic cells at the wound area was performed by immunofluorescence staining and real-time PCR. Phagocytosis assay was performed using peritoneal macrophages from WT or db/db mice. RESULTS MFG-E8 expression in granulation tissue in diabetic mice was significantly reduced compared with that in non-diabetic mice. We next examined the effect of subcutaneous injection of MFG-E8 WT/KO MSCs around the wound. Diabetic wound healing was significantly accelerated by the injection of MSCs. Diabetic wound healing in MFG-E8 KO MSCs-injected wounds was significantly delayed compared to that in WT MSCs-injected wounds. The numbers of CD31+ EC and NG2+ pericytes, as well as M2 macrophages in wounds in KO MSCs-injected mice were significantly decreased. MFG-E8 WT MSCs treatment suppressed the number of apoptotic cells and TNF-α+ cells in wounds. In an in vitro assay, MFG-E8 WT MSCs-conditioned medium enhanced phagocytosis of apoptotic cells by peritoneal macrophages from diabetic mice. CONCLUSION MSCs-derived MFG-E8 might accelerate diabetic wound healing by promoting angiogenesis, the clearance of apoptotic cells, and the infiltration of M2 macrophages, and by suppressing inflammatory cytokines in wound area.
Collapse
Affiliation(s)
- Akihiko Uchiyama
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sei-Ichiro Motegi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan.
| | - Akiko Sekiguchi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Chisako Fujiwara
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Buddhini Perera
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sachiko Ogino
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoko Yokoyama
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Osamu Ishikawa
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
40
|
Sinningen K, Thiele S, Hofbauer LC, Rauner M. Role of milk fat globule-epidermal growth factor 8 in osteoimmunology. BONEKEY REPORTS 2016; 5:820. [PMID: 27579162 DOI: 10.1038/bonekey.2016.52] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/06/2016] [Indexed: 11/09/2022]
Abstract
Milk fat globule-epidermal growth factor 8 (MFG-E8) is a glycoprotein that is abundantly expressed in various tissues and has a pivotal role in the phagocytic clearance of apoptotic cells. However, MFG-E8 has also gained significant attention because of its wide range of functions in autoimmunity, inflammation and tissue homeostasis. More recently, MFG-E8 has been identified as a critical regulator of bone homeostasis, being expressed in both, osteoblasts and osteoclasts. In addition, it was shown that MFG-E8 fulfils an active role in modulating inflammatory processes, suggesting an anti-inflammatory role of MFG-E8 and proposing it as a novel therapeutic target for inflammatory diseases. This concise review focusses on the expression and regulation of MFG-E8 in the context of inflammatory bone diseases, highlights its role in the pathophysiology of osteoimmune diseases and discusses the therapeutic potential of MFG-E8.
Collapse
Affiliation(s)
- Kathrin Sinningen
- Department of Obstetrics and Gynecology, Heinrich Heine University Düsseldorf , Düsseldorf, Germany
| | - Sylvia Thiele
- Department of Medicine III, Division of Endocrinology, Diabetes, and Bone Diseases, Technische Universität Dresden , Dresden, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III, Division of Endocrinology, Diabetes, and Bone Diseases, Technische Universität Dresden, Dresden, Germany; DFG Research Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III, Division of Endocrinology, Diabetes, and Bone Diseases, Technische Universität Dresden , Dresden, Germany
| |
Collapse
|
41
|
Functional Role of Milk Fat Globule-Epidermal Growth Factor VIII in Macrophage-Mediated Inflammatory Responses and Inflammatory/Autoimmune Diseases. Mediators Inflamm 2016; 2016:5628486. [PMID: 27429513 PMCID: PMC4939324 DOI: 10.1155/2016/5628486] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 05/25/2016] [Indexed: 01/14/2023] Open
Abstract
Inflammation involves a series of complex biological processes mediated by innate immunity for host defense against pathogen infection. Chronic inflammation is considered to be one of the major causes of serious diseases, including a number of autoimmune/inflammatory diseases, cancers, cardiovascular diseases, and neurological diseases. Milk fat globule-epidermal growth factor 8 (MFG-E8) is a secreted protein found in vertebrates and was initially discovered as a critical component of the milk fat globule. Previously, a number of studies have reported that MFG-E8 contributes to various biological functions including the phagocytic removal of damaged and apoptotic cells from tissues, the induction of VEGF-mediated neovascularization, the maintenance of intestinal epithelial homeostasis, and the promotion of mucosal healing. Recently, emerging studies have reported that MFG-E8 plays a role in inflammatory responses and inflammatory/autoimmune diseases. This review describes the characteristics of MFG-E8-mediated signaling pathways, summarizes recent findings supporting the roles of MFG-E8 in inflammatory responses and inflammatory/autoimmune diseases, and discusses MFG-E8 targeting as a potential therapeutic strategy for the development of anti-inflammatory/autoimmune disease drugs.
Collapse
|
42
|
Yu L, Hu R, Sullivan C, Swanson RJ, Oehninger S, Sun YP, Bocca S. MFGE8 regulates TGF-β-induced epithelial mesenchymal transition in endometrial epithelial cells in vitro. Reproduction 2016; 152:225-33. [PMID: 27340235 DOI: 10.1530/rep-15-0585] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 06/17/2016] [Indexed: 12/28/2022]
Abstract
This study investigated the role of milk fat globule-epidermal growth factor-factor 8 (MFGE8) in TGF-β-induced epithelial-mesenchymal transition (EMT) of endometrial epithelial cells. These were in vitro studies using human endometrial epithelial cells and mouse blastocysts. We investigated the ability of TGF-β to induce EMT in endometrial epithelial cells (HEC-1A) by assessment of cytological phenotype (by light and atomic force microscopy), changes in expression of the markers of cell adhesion/differentiation E- and N-cadherin, and of the transcription factor Snail (by immunofluorescence and immunoblotting), and competence to support embryo attachment in a mouse blastocyst outgrowth assay. We also studied the effects of E-cadherin expression in cells transfected by retroviral shRNA vectors specifically silencing MFGE8. Results demonstrated that TGF-β induced EMT as demonstrated by phenotypic cell changes, by a switch of cadherin expression as well as by upregulation of the expression of the mesenchymal markers Snail and Vimentin. Upon MFGE8 knockdown, these processes were interfered with, suggesting that MFGE8 and TGF-β together may participate in regulation of EMT. This study demonstrated for the first time that endometrial MFGE8 modulates TGF-β-induced EMT in human endometrium cells.
Collapse
Affiliation(s)
- Liang Yu
- The Jones Institute for Reproductive MedicineDepartment of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, Virginia, USA Reproductive Medical CenterThe First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rong Hu
- Reproductive Medicine CenterKey Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Claretta Sullivan
- Department of SurgeryEastern Virginia Medical School, Norfolk, Virginia, USA
| | - R James Swanson
- Department of Biological SciencesOld Dominion University, Norfolk, Virginia, USA
| | - Sergio Oehninger
- The Jones Institute for Reproductive MedicineDepartment of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Ying-Pu Sun
- Reproductive Medical CenterThe First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Silvina Bocca
- The Jones Institute for Reproductive MedicineDepartment of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, Virginia, USA
| |
Collapse
|
43
|
Yamada K, Uchiyama A, Uehara A, Perera B, Ogino S, Yokoyama Y, Takeuchi Y, Udey MC, Ishikawa O, Motegi SI. MFG-E8 Drives Melanoma Growth by Stimulating Mesenchymal Stromal Cell-Induced Angiogenesis and M2 Polarization of Tumor-Associated Macrophages. Cancer Res 2016; 76:4283-92. [PMID: 27197197 DOI: 10.1158/0008-5472.can-15-2812] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 05/05/2016] [Indexed: 02/07/2023]
Abstract
Secretion of the powerful angiogenic factor MFG-E8 by pericytes can bypass the therapeutic effects of anti-VEGF therapy, but the mechanisms by which MFG-E8 acts are not fully understood. In this study, we investigated how this factor acts to promote the growth of melanomas that express it. We found that mouse bone marrow-derived mesenchymal stromal cells (MSC) expressed a substantial amount of MFG-E8. To assess its expression from this cell type, we implanted melanoma cells and MSC derived from wild type (WT) or MFG-E8 deficient [knockout (KO)] into mice and monitored tumor growth. Tumor growth and M2 macrophages were each attenuated in subjects coimplanted with KO-MSC compared with WT-MSC. In both xenograft tumors and clinical specimens of melanoma, we found that MFG-E8 expression was heightened near blood vessels where MSC could be found. Through in vitro assays, we confirmed that WT-MSC-conditioned medium was more potent at inducing M2 macrophage polarization, compared with KO-MSC-conditioned medium. VEGF and ET-1 expression in KO-MSC was significantly lower than in WT-MSC, correlating in vivo with reduced tumor growth and numbers of pericytes and M2 macrophages within tumors. Overall, our results suggested that MFG-E8 acts at two levels, by increasing VEGF and ET-1 expression in MSC and by enhancing M2 polarization of macrophages, to increase tumor angiogenesis. Cancer Res; 76(14); 4283-92. ©2016 AACR.
Collapse
Affiliation(s)
- Kazuya Yamada
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akihiko Uchiyama
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akihito Uehara
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Buddhini Perera
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sachiko Ogino
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoko Yokoyama
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yuko Takeuchi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Mark C Udey
- Dermatology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Osamu Ishikawa
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sei-Ichiro Motegi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan.
| |
Collapse
|
44
|
Castellanos ER, Ciferri C, Phung W, Sandoval W, Matsumoto ML. Expression, purification, and characterization of recombinant human and murine milk fat globule-epidermal growth factor-factor 8. Protein Expr Purif 2016; 124:10-22. [PMID: 27102803 DOI: 10.1016/j.pep.2016.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/12/2016] [Accepted: 04/15/2016] [Indexed: 10/21/2022]
Abstract
Milk fat globule-epidermal growth factor-factor 8 (MFG-E8), as its name suggests, is a major glycoprotein component of milk fat globules secreted by the mammary epithelium. Although its role in milk fat production is unclear, MFG-E8 has been shown to act as a bridge linking apoptotic cells to phagocytes for removal of these dying cells. MFG-E8 is capable of bridging these two very different cell types via interactions through both its epidermal growth factor (EGF)-like domain(s) and its lectin-type C domains. The EGF-like domain interacts with αVβ3 and αVβ5 integrins on the surface of phagocytes, whereas the C domains bind phosphatidylserine found on the surface of apoptotic cells. In an attempt to purify full-length, recombinant MFG-E8 expressed in either insect cells or CHO cells, we find that it is highly aggregated. Systematic truncation of the domain architecture of MFG-E8 indicates that the C domains are mainly responsible for the aggregation propensity. Addition of Triton X-100 to the conditioned cell culture media allowed partial recovery of non-aggregated, full-length MFG-E8. A more comprehensive detergent screen identified CHAPS as a stabilizer of MFG-E8 and allowed purification of a significant portion of non-aggregated, full-length protein. The CHAPS-stabilized recombinant MFG-E8 retained its natural ability to bind both αVβ3 and αVβ5 integrins and phosphatidylserine suggesting that it is properly folded and active. Herein we describe an efficient purification method for production of non-aggregated, full-length MFG-E8.
Collapse
Affiliation(s)
- Erick R Castellanos
- Department of Protein Chemistry and Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Claudio Ciferri
- Department of Protein Chemistry and Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Wilson Phung
- Department of Protein Chemistry and Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Wendy Sandoval
- Department of Protein Chemistry and Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Marissa L Matsumoto
- Department of Protein Chemistry and Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
45
|
Tang W, Zhen Z, Wang M, Wang H, Chuang YJ, Zhang W, Wang GD, Todd T, Cowger T, Chen H, Liu L, Li Z, Xie J. Red Blood Cell-Facilitated Photodynamic Therapy for Cancer Treatment. ADVANCED FUNCTIONAL MATERIALS 2016; 26:1757-1768. [PMID: 31749670 PMCID: PMC6867707 DOI: 10.1002/adfm.201504803] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Photodynamic therapy (PDT) is a promising treatment modality for cancer management. So far, most PDT studies have focused on delivery of photosensitizers to tumors. O2, another essential component of PDT, is not artificially delivered but taken from the biological milieu. However, cancer cells demand a large amount of O2 to sustain their growth and that often leads to low O2 levels in tumors. The PDT process may further potentiate the oxygen deficiency, and in turn, adversely affect the PDT efficiency. In the present study, a new technology called red blood cell (RBC)-facilitated PDT, or RBC-PDT, is introduced that can potentially solve the issue. As the name tells, RBC-PDT harnesses erythrocytes, an O2 transporter, as a carrier for photosensitizers. Because photosensitizers are adjacent to a carry-on O2 source, RBC-PDT can efficiently produce 1O2 even under low oxygen conditions. The treatment also benefits from the long circulation of RBCs, which ensures a high intraluminal concentration of photosensitizers during PDT and hence maximizes damage to tumor blood vessels. When tested in U87MG subcutaneous tumor models, RBC-PDT shows impressive tumor suppression (76.7%) that is attributable to the codelivery of O2 and photosensitizers. Overall, RBC-PDT is expected to find wide applications in modern oncology.
Collapse
Affiliation(s)
- Wei Tang
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA,
| | - Zipeng Zhen
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA,
| | - Mengzhe Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,
| | - Hui Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,
| | - Yen-Jun Chuang
- College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Weizhong Zhang
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA,
| | - Geoffrey D Wang
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA,
| | - Trever Todd
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA,
| | - Taku Cowger
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA,
| | - Hongmin Chen
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA,
| | - Lin Liu
- Department of Radiology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, China
| | - Zibo Li
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,
| | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA,
| |
Collapse
|
46
|
Albus E, Sinningen K, Winzer M, Thiele S, Baschant U, Hannemann A, Fantana J, Tausche AK, Wallaschofski H, Nauck M, Völzke H, Grossklaus S, Chavakis T, Udey MC, Hofbauer LC, Rauner M. Milk Fat Globule-Epidermal Growth Factor 8 (MFG-E8) Is a Novel Anti-inflammatory Factor in Rheumatoid Arthritis in Mice and Humans. J Bone Miner Res 2016; 31:596-605. [PMID: 26391522 PMCID: PMC6999704 DOI: 10.1002/jbmr.2721] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/15/2015] [Accepted: 09/21/2015] [Indexed: 12/31/2022]
Abstract
Milk fat globule-epidermal growth factor 8 (MFG-E8) is an anti-inflammatory glycoprotein that mediates the clearance of apoptotic cells and is implicated in the pathogenesis of autoimmune and inflammatory diseases. Because MFG-E8 also controls bone metabolism, we investigated its role in rheumatoid arthritis (RA), focusing on inflammation and joint destruction. The regulation of MFG-E8 by inflammation was assessed in vitro using osteoblasts, in arthritic mice and in patients with RA. K/BxN serum transfer arthritis (STA) was applied to MFG-E8 knock-out mice to assess its role in the pathogenesis of arthritis. Stimulation of osteoblasts with lipopolysaccharide (LPS) and tumor necrosis factor (TNF)-α downregulated the expression of MFG-E8 by 30% to 35%. MFG-E8-deficient osteoblasts responded to LPS with a stronger production of pro-inflammatory cytokines. In vivo, MFG-E8 mRNA levels were 52% lower in the paws of collagen-induced arthritic (CIA) mice and 24% to 42% lower in the serum of arthritic mice using two different arthritis models (CIA and STA). Similarly, patients with RA (n = 93) had lower serum concentrations of MFG-E8 (-17%) compared with healthy controls (n = 140). In a subgroup of patients who had a moderate to high disease activity (n = 21), serum concentrations of MFG-E8 rose after complete or partial remission had been achieved (+67%). Finally, MFG-E8-deficient mice subjected to STA exhibited a stronger disease burden, an increased number of neutrophils in the joints, and a more extensive local and systemic bone loss. This was accompanied by an increased activation of osteoclasts and a suppression of osteoblast function in MFG-E8-deficient mice. Thus, MFG-E8 is a protective factor in the pathogenesis of RA and subsequent bone loss. Whether MFG-E8 qualifies as a novel biomarker or therapeutic target for the treatment of RA is worth addressing in further studies.
Collapse
Affiliation(s)
- Elise Albus
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Kathrin Sinningen
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,Department of Obstetrics and Gynecology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Maria Winzer
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Sylvia Thiele
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Ulrike Baschant
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Anke Hannemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Julia Fantana
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | | | - Henri Wallaschofski
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Nauck
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Sylvia Grossklaus
- Department of Clinical Pathobiochemistry and Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry and Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany.,DFG Research Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Mark C Udey
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Lorenz C Hofbauer
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,DFG Research Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
47
|
Kimura-Kojima H, Unuma K, Funakoshi T, Kato C, Komatsu A, Aki T, Uemura K. Increased MFG-E8 expression and its implications in the vascular pathophysiology of cocaine abuse. J Toxicol Pathol 2016; 29:131-8. [PMID: 27182119 PMCID: PMC4866001 DOI: 10.1293/tox.2015-0072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/04/2015] [Indexed: 11/19/2022] Open
Abstract
The aim of this study was to examine the possible involvement of smooth muscle cell remodeling and the induction of MFG-E8 (milk fat globule protein epidermal growth factor-VIII) in vascular pathophysiology during cocaine administration in cultured cells and rats. Cocaine exerts bifurcate effects on vascular cells; it stimulates vasoconstriction through enhancement of catecholamine release at low doses, while it suppresses cardiovascular functions through inhibition of ion channels at high doses. Short-term exposure to a high concentration of cocaine (3 mM, 24 hr) resulted in cell death of A7r5 rat aorta-derived smooth muscle cells. On the other hand, long-term exposure of the same cells to a low concentration (0.3 mM, ~7 days) resulted in a transient increase in MFG-E8 expression followed by an increased tendency toward cyclin D1, PCNA (proliferating cell nuclear antigen), and CDK4 (cyclin-dependent protein kinase-4) expression. Interestingly, autophagy was not induced, but rather was impaired, in cocaine-treated cells. Increased expressions of MFG-E8, PCNA, and CDK4 were also observed in the aortic vascular cells of rats administered cocaine (50 mg/kg, 2 days, i.v.), confirming that cocaine induced MFG-E8 expression in vivo. Taken together, the results show that MFG-E8 is induced in vascular cells exposed to cocaine, and that this induction is likely to be involved in the vascular toxicity elicited by cocaine abuse.
Collapse
Affiliation(s)
- Haruka Kimura-Kojima
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Kana Unuma
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Takeshi Funakoshi
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Chizuru Kato
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Ayumi Komatsu
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Toshihiko Aki
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Koichi Uemura
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| |
Collapse
|
48
|
Gao C, Xie R, Yu C, Ma R, Dong W, Meng H, Zhang Y, Si Y, Zhang Z, Novakovic V, Zhang Y, Kou J, Bi Y, Li B, Xie R, Gilbert GE, Zhou J, Shi J. Thrombotic Role of Blood and Endothelial Cells in Uremia through Phosphatidylserine Exposure and Microparticle Release. PLoS One 2015; 10:e0142835. [PMID: 26580207 PMCID: PMC4646287 DOI: 10.1371/journal.pone.0142835] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 10/27/2015] [Indexed: 11/18/2022] Open
Abstract
The mechanisms contributing to an increased risk of thrombosis in uremia are complex and require clarification. There is scant morphological evidence of membrane-dependent binding of factor Xa (FXa) and factor Va (FVa) on endothelial cells (EC) in vitro. Our objectives were to confirm that exposed phosphatidylserine (PS) on microparticle (MP), EC, and peripheral blood cell (PBC) has a prothrombotic role in uremic patients and to provide visible and morphological evidence of PS-dependent prothrombinase assembly in vitro. We found that uremic patients had more circulating MP (derived from PBC and EC) than controls. Additionally, patients had more exposed PS on their MPs and PBCs, especially in the hemodialysis group. In vitro, EC exposed more PS in uremic toxins or serum. Moreover, reconstitution experiments showed that at the early stages, PS exposure was partially reversible. Using confocal microscopy, we observed that PS-rich membranes of EC and MP provided binding sites for FVa and FXa. Further, exposure of PS in uremia resulted in increased generation of FXa, thrombin, and fibrin and significantly shortened coagulation time. Lactadherin, a protein that blocks PS, reduced 80% of procoagulant activity on PBC, EC, and MP. Our results suggest that PBC and EC in uremic milieu are easily injured or activated, which exposes PS and causes a release of MP, providing abundant procoagulant membrane surfaces and thus facilitating thrombus formation. Blocking PS binding sites could become a new therapeutic target for preventing thrombosis.
Collapse
Affiliation(s)
- Chunyan Gao
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
| | - Rui Xie
- Department of Gastrointestinal Oncology, The Third Hospital, Harbin Medical University, Harbin, China
| | - Chengyuan Yu
- Department of Nephrology, The First Hospital, Harbin Medical University, Harbin, China
| | - Ruishuang Ma
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
| | - Weijun Dong
- Department of general surgery, The fifth Hospital, Harbin Medical University, Harbin, China
| | - Huan Meng
- Department of Cardiology, The Second Hospital, Harbin Medical University, Harbin, China
| | - Yan Zhang
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
| | - Yu Si
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
| | - Zhuo Zhang
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
| | - Valerie Novakovic
- Medicine Departments, VA Boston Healthcare System, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Yong Zhang
- Department of Pharmacology, Harbin Medical University, Harbin, China
| | - Junjie Kou
- Department of Cardiology, The Second Hospital, Harbin Medical University, Harbin, China
| | - Yayan Bi
- Department of Cardiology, The Second Hospital, Harbin Medical University, Harbin, China
| | - Baoxin Li
- Department of Pharmacology, Harbin Medical University, Harbin, China
| | - Rujuan Xie
- Department of Gastrointestinal Oncology, The Third Hospital, Harbin Medical University, Harbin, China
- * E-mail: (JS); (JZ); (RJX)
| | - Gary E. Gilbert
- Medicine Departments, VA Boston Healthcare System, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Jin Zhou
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
- * E-mail: (JS); (JZ); (RJX)
| | - Jialan Shi
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
- Medicine Departments, VA Boston Healthcare System, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
- * E-mail: (JS); (JZ); (RJX)
| |
Collapse
|
49
|
Gao C, Ji S, Dong W, Qi Y, Song W, Cui D, Shi J. Indolic uremic solutes enhance procoagulant activity of red blood cells through phosphatidylserine exposure and microparticle release. Toxins (Basel) 2015; 7:4390-403. [PMID: 26516916 PMCID: PMC4663509 DOI: 10.3390/toxins7114390] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/01/2015] [Accepted: 10/22/2015] [Indexed: 01/22/2023] Open
Abstract
Increased accumulation of indolic uremic solutes in the blood of uremic patients contributes to the risk of thrombotic events. Red blood cells (RBCs), the most abundant blood cells in circulation, may be a privileged target of these solutes. However, the effect of uremic solutes indoxyl sulfate (IS) and indole-3-acetic acid (IAA) on procoagulant activity (PCA) of erythrocyte is unclear. Here, RBCs from healthy adults were treated with IS and IAA (mean and maximal concentrations reported in uremic patients). Phosphatidylserine (PS) exposure of RBCs and their microparticles (MPs) release were labeled with Alexa Fluor 488-lactadherin and detected by flow cytometer. Cytosolic Ca(2+) ([Ca(2+)]) with Fluo 3/AM was analyzed by flow cytometer. PCA was assessed by clotting time and purified coagulation complex assays. We found that PS exposure, MPs generation, and consequent PCA of RBCs at mean concentrations of IS and IAA enhanced and peaked in maximal uremic concentrations. Moreover, 128 nM lactadherin, a PS inhibitor, inhibited over 90% PCA of RBCs and RMPs. Eryptosis or damage, by indolic uremic solutes was due to, at least partially, the increase of cytosolic [Ca(2+)]. Our results suggest that RBC eryptosis in uremic solutes IS and IAA plays an important role in thrombus formation through releasing RMPs and exposing PS. Lactadherin acts as an efficient anticoagulant in this process.
Collapse
Affiliation(s)
- Chunyan Gao
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, 39 Xinyang Road, Gaoxin District, Daqing 163319, China.
| | - Shuting Ji
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, 39 Xinyang Road, Gaoxin District, Daqing 163319, China.
| | - Weijun Dong
- Department of General Surgery, The Fifth Hospital.
| | - Yushan Qi
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, 39 Xinyang Road, Gaoxin District, Daqing 163319, China.
| | - Wen Song
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, 39 Xinyang Road, Gaoxin District, Daqing 163319, China.
| | - Debin Cui
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, 39 Xinyang Road, Gaoxin District, Daqing 163319, China.
| | - Jialan Shi
- Department of Hematology, The First Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, China.
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02132, USA.
| |
Collapse
|
50
|
Platelet binding sites for factor VIII in relation to fibrin and phosphatidylserine. Blood 2015; 126:1237-44. [PMID: 26162408 DOI: 10.1182/blood-2015-01-620245] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 07/07/2015] [Indexed: 11/20/2022] Open
Abstract
Thrombin-stimulated platelets expose very little phosphatidylserine (PS) but express binding sites for factor VIII (fVIII), casting doubt on the role of exposed PS as the determinant of binding sites. We previously reported that fVIII binding sites are increased three- to sixfold when soluble fibrin (SF) binds the αIIbβ3 integrin. This study focuses on the hypothesis that platelet-bound SF is the major source of fVIII binding sites. Less than 10% of fVIII was displaced from thrombin-stimulated platelets by lactadherin, a PS-binding protein, and an fVIII mutant defective in PS-dependent binding retained platelet affinity. Therefore, PS is not the determinant of most binding sites. FVIII bound immobilized SF and paralleled platelet binding in affinity, dependence on separation from von Willebrand factor, and mediation by the C2 domain. SF also enhanced activity of fVIII in the factor Xase complex by two- to fourfold. Monoclonal antibody (mAb) ESH8, against the fVIII C2 domain, inhibited binding of fVIII to SF and platelets but not to PS-containing vesicles. Similarly, mAb ESH4 against the C2 domain, inhibited >90% of platelet-dependent fVIII activity vs 35% of vesicle-supported activity. These results imply that platelet-bound SF is a component of functional fVIII binding sites.
Collapse
|