1
|
Teixeira MR, Silva T, Felício RDFM, Bozza PT, Zembrzuski VM, de Mello Neto CB, da Fonseca ACP, Kohlrausch FB, Salum KCR. Exploring the genetic contribution in obesity: An overview of dopaminergic system genes. Behav Brain Res 2025; 480:115401. [PMID: 39689745 DOI: 10.1016/j.bbr.2024.115401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 12/19/2024]
Abstract
Obesity is a widespread global health concern that affects a significant portion of the population and is associated with reduced quality of life, morbidity, and mortality. It is considered a pandemic, with its prevalence constantly rising in Western countries. As a result, numerous studies have focused on understanding the elements that contribute to obesity. Researchers have focused on neurotransmitters in the brain to develop weight management drugs that regulate food intake. This review explores the literature on genetic influences on dopaminergic processes to determine whether genetic variation has an association with obesity in reward-responsive regions, including mesolimbic efferent and mesocortical areas. Various neurotransmitters play an essential role in regulating food intake, such as dopamine which controls through mesolimbic circuits in the brain that modulate food reward. Appetite stimulation, including primary reinforcers such as food, leads to an increase in dopamine release in the reward centers of the brain. This release is related to motivation and reinforcement, which determines the motivational weighting of the reinforcer. Changes in dopamine expression can lead to hedonic eating behaviors and contribute to the development of obesity. Genetic polymorphisms have been investigated due to their potential role in modulating the risk of obesity and eating behaviors. Therefore, it is crucial to assess the impact of genetic alterations that disrupt this pathway on the obesity phenotype.
Collapse
Affiliation(s)
- Myrela Ribeiro Teixeira
- Human Genetics Laboratory, Department of General Biology, Institute of Biology, Federal Fluminense University, Professor Marcos Waldemar de Freitas Reis Street, Niterói, RJ 24210-201, Brazil; Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), 4365 Brazil Avenue, Leônidas Deane Pavilion, Rio de Janeiro, RJ 21040-360, Brazil; Postgraduate Program in Science and Biotechnology, Department of General Biology, Institute of Biology, Federal Fluminense University, Professor Marcos Waldemar de Freitas Reis Street, Niterói, RJ 24210-201, Brazil
| | - Tamara Silva
- Genetics Laboratory, Grande Rio University/AFYA, Professor José de Souza Herdy Street, 1160 - Jardim Vinte e Cinco de Agosto, Duque de Caxias, RJ 25071-202, Brazil
| | - Rafaela de Freitas Martins Felício
- Congenital Malformation Epidemiology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), 4365 Brazil Avenue, Leônidas Deane Pavilion, Rio de Janeiro, RJ 21040-360, Brazil
| | - Patrícia Torres Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), 4365 Brazil Avenue, Rio de Janeiro, RJ 21040‑360, Brazil
| | - Verônica Marques Zembrzuski
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), 4365 Brazil Avenue, Leônidas Deane Pavilion, Rio de Janeiro, RJ 21040-360, Brazil
| | - Cicero Brasileiro de Mello Neto
- Human Genetics Laboratory, Department of General Biology, Institute of Biology, Federal Fluminense University, Professor Marcos Waldemar de Freitas Reis Street, Niterói, RJ 24210-201, Brazil; Postgraduate Program in Science and Biotechnology, Department of General Biology, Institute of Biology, Federal Fluminense University, Professor Marcos Waldemar de Freitas Reis Street, Niterói, RJ 24210-201, Brazil
| | - Ana Carolina Proença da Fonseca
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), 4365 Brazil Avenue, Leônidas Deane Pavilion, Rio de Janeiro, RJ 21040-360, Brazil; Genetics Laboratory, Grande Rio University/AFYA, Professor José de Souza Herdy Street, 1160 - Jardim Vinte e Cinco de Agosto, Duque de Caxias, RJ 25071-202, Brazil; Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), 4365 Brazil Avenue, Rio de Janeiro, RJ 21040‑360, Brazil; Postgraduate Program in Translational Biomedicine, Grande Rio University/AFYA, Professor José de Souza Herdy Street, 1160 - Jardim Vinte e Cinco de Agosto, Duque de Caxias, RJ 25071-202, Brazil
| | - Fabiana Barzotto Kohlrausch
- Human Genetics Laboratory, Department of General Biology, Institute of Biology, Federal Fluminense University, Professor Marcos Waldemar de Freitas Reis Street, Niterói, RJ 24210-201, Brazil
| | - Kaio Cezar Rodrigues Salum
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), 4365 Brazil Avenue, Leônidas Deane Pavilion, Rio de Janeiro, RJ 21040-360, Brazil; Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Professor Rodolpho Paulo Rocco Street, 255, University City, Rio de Janeiro, RJ 21941-617, Brazil.
| |
Collapse
|
2
|
Rezaei Z, Alaei H, Reisi P. Involvement of Basolateral Amygdala Dopamine D1 Receptors in the Acquisition and Expression of Morphine-Induced Place Preference in Rats. Adv Biomed Res 2022; 11:8. [PMID: 35284350 PMCID: PMC8906092 DOI: 10.4103/abr.abr_284_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND In the present study, the effects of intra-basolateral amygdala (BLA) blockade of dopamine D1 receptor on morphine-induced conditioned place preference (CPP) were investigated in male Wistar rats. MATERIALS AND METHODS A 5-day CPP paradigm was used. Morphine was injected subsequently at effective (5 mg/kg) and ineffective (0.5 mg/kg) doses. SCH 23390 (0.5- μg/rat), as a selective D1 receptor antagonist, was microinjected bilaterally into the BLA. RESULTS Effective dose of morphine induced a significant CPP, and increased the locomotor activity during the testing phase. The results showed that morphine-induced CPP was significantly suppressed by D1 receptors antagonist in BLA in the acquisition phase and caused an aversion even at high doses. The antagonist also significantly prevented CPP expression. Morphine increased the motor activity, but the D1 receptors blockade, significantly reduced it. CONCLUSIONS The findings of this study suggest a possible role for BLA dopamine D1 receptors in reward responses in morphine dependency.
Collapse
Affiliation(s)
- Zahra Rezaei
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hojjatallah Alaei
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parham Reisi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran,Address for correspondence: Prof. Parham Reisi, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran. E-mail:
| |
Collapse
|
3
|
Castello J, Cortés M, Malave L, Kottmann A, Sibley DR, Friedman E, Rebholz H. The Dopamine D5 receptor contributes to activation of cholinergic interneurons during L-DOPA induced dyskinesia. Sci Rep 2020; 10:2542. [PMID: 32054879 PMCID: PMC7018760 DOI: 10.1038/s41598-020-59011-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 12/30/2019] [Indexed: 01/28/2023] Open
Abstract
The dopamine D5 receptor (D5R) is a Gαs-coupled dopamine receptor belonging to the dopamine D1-like receptor family. Together with the dopamine D2 receptor it is highly expressed in striatal cholinergic interneurons and therefore is poised to be a positive regulator of cholinergic activity in response to L-DOPA in the dopamine-depleted parkinsonian brain. Tonically active cholinergic interneurons become dysregulated during chronic L-DOPA administration and participate in the expression of L-DOPA induced dyskinesia. The molecular mechanisms involved in this process have not been elucidated, however a correlation between dyskinesia severity and pERK expression in cholinergic cells has been described. To better understand the function of the D5 receptor and how it affects cholinergic interneurons in L-DOPA induced dyskinesia, we used D5R knockout mice that were rendered parkinsonian by unilateral 6-OHDA injection. In the KO mice, expression of pERK was strongly reduced indicating that activation of these cells is at least in part driven by the D5 receptor. Similarly, pS6, another marker for the activity status of cholinergic interneurons was also reduced. However, mice lacking D5R exhibited slightly worsened locomotor performance in response to L-DOPA and enhanced LID scores. Our findings suggest that D5R can modulate L-DOPA induced dyskinesia and is a critical activator of CINs via pERK and pS6.
Collapse
Affiliation(s)
- Julia Castello
- Department of Molecular, Cellular & Biomedical Sciences, CUNY School of Medicine, New York, NY, USA
- Ph.D. Programs in Biochemistry and Biology, The Graduate Center, CUNY, New York, USA
| | - Marisol Cortés
- Department of Molecular, Cellular & Biomedical Sciences, CUNY School of Medicine, New York, NY, USA
| | - Lauren Malave
- Department of Molecular, Cellular & Biomedical Sciences, CUNY School of Medicine, New York, NY, USA
- Ph.D. Programs in Biochemistry and Biology, The Graduate Center, CUNY, New York, USA
| | - Andreas Kottmann
- Department of Molecular, Cellular & Biomedical Sciences, CUNY School of Medicine, New York, NY, USA
- Ph.D. Programs in Biochemistry and Biology, The Graduate Center, CUNY, New York, USA
| | - David R Sibley
- Molecular Neuropharmacology Section, National Institute of Neurologic Disorders and Stroke, Intramural Research Program, National Institutes of Health, Bethesda, Maryland, USA
| | - Eitan Friedman
- Department of Molecular, Cellular & Biomedical Sciences, CUNY School of Medicine, New York, NY, USA
- Ph.D. Programs in Biochemistry and Biology, The Graduate Center, CUNY, New York, USA
| | - Heike Rebholz
- Department of Molecular, Cellular & Biomedical Sciences, CUNY School of Medicine, New York, NY, USA.
- Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR_S1266, INSERM, Université de Paris, 102-108 rue de la Santé, F-75014, Paris, France.
- GHU PARIS psychiatrie et neurosciences, Paris, France.
- Danube Private University (DPU), Krems, Austria.
| |
Collapse
|
4
|
Yang P, Perlmutter JS, Benzinger TLS, Morris JC, Xu J. Dopamine D3 receptor: A neglected participant in Parkinson Disease pathogenesis and treatment? Ageing Res Rev 2020; 57:100994. [PMID: 31765822 PMCID: PMC6939386 DOI: 10.1016/j.arr.2019.100994] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/13/2019] [Accepted: 11/20/2019] [Indexed: 12/20/2022]
Abstract
Parkinson disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms which relentlessly and progressively lead to substantial disability and economic burden. Pathologically, these symptoms follow the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) associated with abnormal α-synuclein (α-Syn) deposition as cytoplasmic inclusions called Lewy bodies in pigmented brainstem nuclei, and in dystrophic neurons in striatal and cortical regions (Lewy neurites). Pharmacotherapy for PD focuses on improving quality of life and primarily targets dopaminergic pathways. Dopamine acts through two families of receptors, dopamine D1-like and dopamine D2-like; dopamine D3 receptors (D3R) belong to dopamine D2 receptor (D2R) family. Although D3R's precise role in the pathophysiology and treatment of PD has not been determined, we present evidence suggesting an important role for D3R in the early development and occurrence of PD. Agonist activation of D3R increases dopamine concentration, decreases α-Syn accumulation, enhances secretion of brain derived neurotrophic factors (BDNF), ameliorates neuroinflammation, alleviates oxidative stress, promotes neurogenesis in the nigrostriatal pathway, interacts with D1R to reduce PD associated motor symptoms and ameliorates side effects of levodopa (L-DOPA) treatment. Furthermore, D3R mutations can predict PD age of onset and prognosis of PD treatment. The role of D3R in PD merits further research. This review elucidates the potential role of D3R in PD pathogenesis and therapy.
Collapse
Affiliation(s)
- Pengfei Yang
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - Joel S Perlmutter
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Physical Therapy, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Occupational Therapy, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - Jinbin Xu
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA.
| |
Collapse
|
5
|
Immunomodulatory Effects Mediated by Dopamine. J Immunol Res 2016; 2016:3160486. [PMID: 27795960 PMCID: PMC5067323 DOI: 10.1155/2016/3160486] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/29/2016] [Accepted: 08/08/2016] [Indexed: 01/11/2023] Open
Abstract
Dopamine (DA), a neurotransmitter in the central nervous system (CNS), has modulatory functions at the systemic level. The peripheral and central nervous systems have independent dopaminergic system (DAS) that share mechanisms and molecular machinery. In the past century, experimental evidence has accumulated on the proteins knowledge that is involved in the synthesis, reuptake, and transportation of DA in leukocytes and the differential expression of the D1-like (D1R and D5R) and D2-like receptors (D2R, D3R, and D4R). The expression of these components depends on the state of cellular activation and the concentration and time of exposure to DA. Receptors that are expressed in leukocytes are linked to signaling pathways that are mediated by changes in cAMP concentration, which in turn triggers changes in phenotype and cellular function. According to the leukocyte lineage, the effects of DA are associated with such processes as respiratory burst, cytokine and antibody secretion, chemotaxis, apoptosis, and cytotoxicity. In clinical conditions such as schizophrenia, Parkinson disease, Tourette syndrome, and multiple sclerosis (MS), there are evident alterations during immune responses in leukocytes, in which changes in DA receptor density have been observed. Several groups have proposed that these findings are useful in establishing clinical status and clinical markers.
Collapse
|
6
|
Maitra S, Sarkar K, Sinha S, Mukhopadhyay K. The Dopamine Receptor D5 May Influence Age of Onset: An Exploratory Study on Indo-Caucasoid ADHD Subjects. J Child Neurol 2016; 31:1250-6. [PMID: 27250208 DOI: 10.1177/0883073816652233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 04/25/2016] [Indexed: 12/15/2022]
Abstract
The objective was to investigate contribution of the dopamine receptor 5 (DRD5) gene variants in the symptoms of attention-deficit/hyperactivity disorder (ADHD) probands since brain regions identified to be affected in these group of patients have higher expression of the DRD5 receptor. Out of 22 exonic variants, 19 were monomorphic in the Indo-Caucasoid individuals. rs6283 "C" and rs113828117 "A" exhibited significant higher occurrence in families with ADHD probands. Several haplotypes showed biased occurrence in the probands. Early and late onset groups exhibited significantly different genotypic frequencies. A new G>A substitution was observed in the control samples only. The late onset group exhibited higher scores for hyperactivity as compared to the early onset group. The authors infer that the age of onset of ADHD may at least partially be affected by DRD5 variants warranting further investigation on the role of DRD5 in the disease etiology.
Collapse
Affiliation(s)
- Subhamita Maitra
- Manovikas Biomedical Research and Diagnostic Centre, Kolkata, India
| | - Kanyakumarika Sarkar
- Manovikas Biomedical Research and Diagnostic Centre, Kolkata, India Department of Biotechnology, DOABA College, Jalandhar, Panjab, India
| | - Swagata Sinha
- Manovikas Biomedical Research and Diagnostic Centre, Kolkata, India
| | | |
Collapse
|
7
|
Lebel M, Robinson P, Cyr M. Canadian Association of Neurosciences Review: The Role of Dopamine Receptor Function in Neurodegenerative Diseases. Can J Neurol Sci 2014; 34:18-29. [PMID: 17352343 DOI: 10.1017/s0317167100005746] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Dopamine (DA) receptors, which are heavily expressed in the caudate/putamen of the brain, represent the molecular target of several drugs used in the treatment of various neurological disorders, such as Parkinson's disease. Although most of the drugs are very effective in alleviating the symptoms associated with these conditions, their long-term utilization could lead to the development of severe side-effects. In addition to uncovering novel mediators of physiological DA receptor functions, recent research advances are suggesting a role of these receptors in toxic effects on neurons. For instance, accumulating evidence indicates that DA receptors, particularly D1 receptors, are central in the neuronal toxicity induced by elevated synaptic levels of DA. In this review, we will discuss recent findings on DA receptors as regulators of long term neuronal dysfunction and neurodegenerative processes.
Collapse
Affiliation(s)
- Manon Lebel
- Neuroscience Research Group, Université du Québec à Trois-Rivières, Canada
| | | | | |
Collapse
|
8
|
Moraga-Amaro R, Gonzalez H, Pacheco R, Stehberg J. Dopamine receptor D3 deficiency results in chronic depression and anxiety. Behav Brain Res 2014; 274:186-93. [PMID: 25110304 DOI: 10.1016/j.bbr.2014.07.055] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 07/26/2014] [Accepted: 07/31/2014] [Indexed: 01/17/2023]
Abstract
Over the last decade accumulating evidence suggests that brain dopamine (DA) has a role in depression, particularly given the high comorbidity of depression with Parkinson's Disease (PD) and the antidepressant effects of the DA receptor subtype 3 (D3R) agonist pramipexole. The present study assesses the role of D3R in depression. Here we hypothesized that D3R mediates the antidepressant effects of DA. Thus, genetic deficiency of D3R in D3R knockout (D3RKO) mice would yield animals with chronic depressive symptoms. Whereas D3R deficient mice did not show significant alterations in locomotion when tested in the openfield, these animals showed anxiety-like symptoms measured as a significant increase in thigmotaxis at the openfield and a significantly lower time spent in the lit compartment at the light/dark exploration test. D3RKO animals also showed depressive-like symptoms as measured by increased immobility time in the Porsolt forced swim test and the tail suspension test, as well as anhedonia measured in the non-motor dependent sucrose test. In conclusion, D3R deficiency results in anxiety-like and depressive-like symptoms that cannot be attributed to motor dysfunction.
Collapse
Affiliation(s)
- Rodrigo Moraga-Amaro
- Laboratorio de Neurobiología, Centro de Investigaciones Biomédicas, Universidad Andres Bello, Santiago, Chile
| | - Hugo Gonzalez
- Laboratorio of Neuroinmunología, Fundación Ciencia & Vida, Av. Zañartu 1482, Ñuñoa (7780272), Santiago, Chile
| | - Rodrigo Pacheco
- Laboratorio of Neuroinmunología, Fundación Ciencia & Vida, Av. Zañartu 1482, Ñuñoa (7780272), Santiago, Chile; Programa de Biomedicina, Universidad San Sebastián, Av. Zañartu 1482, Ñuñoa (7780272), Santiago, Chile
| | - Jimmy Stehberg
- Laboratorio de Neurobiología, Centro de Investigaciones Biomédicas, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
9
|
Abstract
Dopamine (DA) regulates emotional and motivational behavior through the mesolimbic dopaminergic pathway. Changes in DA signaling in mesolimbic neurotransmission are widely believed to modify reward-related behaviors and are therefore closely associated with drug addiction. Recent evidence now suggests that as with drug addiction, obesity with compulsive eating behaviors involves reward circuitry of the brain, particularly the circuitry involving dopaminergic neural substrates. Increasing amounts of data from human imaging studies, together with genetic analysis, have demonstrated that obese people and drug addicts tend to show altered expression of DA D2 receptors in specific brain areas, and that similar brain areas are activated by food-related and drug-related cues. This review focuses on the functions of the DA system, with specific focus on the physiological interpretation and the role of DA D2 receptor signaling in food addiction. [BMB Reports 2013; 46(11): 519-526]
Collapse
Affiliation(s)
- Ja-Hyun Baik
- Molecular Neurobiology Laboratory, Department of Life Sciences, Korea University, Seoul 136-701, Korea
| |
Collapse
|
10
|
Di Ciano P, Grandy DK, Le Foll B. Dopamine D4 receptors in psychostimulant addiction. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 69:301-21. [PMID: 24484981 DOI: 10.1016/b978-0-12-420118-7.00008-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Since the cloning of the D4 receptor in the 1990s, interest has been building in the role of this receptor in drug addiction, given the importance of dopamine in addiction. Like the D3 receptor, the D4 receptor has limited distribution within the brain, suggesting it may have a unique role in drug abuse. However, compared to the D3 receptor, few studies have evaluated the importance of the D4 receptor. This may be due, in part, to the relative lack of compounds selective for the D4 receptor; the early studies were mainly conducted in mice lacking the D4 receptor. In this review, we summarize the literature on the structure and localization of the D4 receptor before reviewing the data from D4 knockout mice that used behavioral models relevant to the understanding of stimulant use. We also present evidence from more recent pharmacological studies using selective D4 agonists and antagonists and animal models of drug-seeking and drug-taking. The data summarized here suggest a role for D4 receptors in relapse to stimulant use. Therefore, treatments based on antagonism of the D4 receptor may be useful treatments for relapse to nicotine, cocaine, and amphetamine use.
Collapse
Affiliation(s)
- Patricia Di Ciano
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | - David K Grandy
- Department of Physiology & Pharmacology, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada; Alcohol Research and Treatment Clinic, Addiction Medicine Services, Ambulatory Care and Structured Treatments, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Family and Community Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, Division of Brain and Therapeutics, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
11
|
Xu W, Wang Y, Ma Z, Chiu YT, Huang P, Rasakham K, Unterwald E, Lee DYW, Liu-Chen LY. L-isocorypalmine reduces behavioral sensitization and rewarding effects of cocaine in mice by acting on dopamine receptors. Drug Alcohol Depend 2013; 133:693-703. [PMID: 24080315 PMCID: PMC3954112 DOI: 10.1016/j.drugalcdep.2013.08.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/22/2013] [Accepted: 08/23/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND We previously reported isolation of l-isocorypalmine (l-ICP), a mono-demethylated analog of l-tetrahydropalmatine (l-THP), from the plant Corydalis yanhusuo. Here we characterized its in vitro pharmacological properties and examined its effects on cocaine-induced behaviors in mice. METHODS Receptor binding, cAMP and [(35)S]GTPγS assays were used to examine pharmacological actions of l-ICP in vitro. Effects of l-ICP on cocaine-induced locomotor hyperactivity and sensitization and conditioned place preference (CPP) in mice were investigated. HPLC was employed to analyze metabolites of l-ICP in mouse serum. RESULTS Among more than 40 targets screened, l-ICP and l-THP bound only to dopamine (DA) receptors. l-ICP was a high-affinity partial agonist of D1 and D5 receptors and a moderate-affinity antagonist of D2, D3 and D4 receptors, whereas l-THP bound to only D1 and D5 receptors, with lower affinities than l-ICP. At 10mg/kg (i.p.), l-ICP inhibited spontaneous locomotor activity for a shorter time than l-THP. Pretreatment with l-ICP reduced cocaine-induced locomotor hyperactivities. Administration of l-ICP before cocaine once a day for 5 days reduced cocaine-induced locomotor sensitization on days 5 and 13 after 7 days of withdrawal. Pretreatment with l-ICP before cocaine daily for 6 days blocked cocaine-induced CPP, while l-ICP itself did not cause preference or aversion. HPLC analysis showed that l-ICP was the main compound in mouse serum following i.p. injection of l-ICP. CONCLUSIONS l-ICP likely acts as a D1 partial agonist and a D2 antagonist to produce its in vivo effects and may be a promising agent for treatment of cocaine addiction.
Collapse
Affiliation(s)
- Wei Xu
- Center for Substance Abuse Research and Department of Pharmacology,
Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA
19140, USA
| | - Yujun Wang
- Center for Substance Abuse Research and Department of Pharmacology,
Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA
19140, USA
| | - Zhongze Ma
- Bio-Organic and Natural Products Laboratory, McLean Hospital,
Harvard Medical School, 115 Mill Street, Belmont, MA 02478, USA
| | - Yi-Ting Chiu
- Center for Substance Abuse Research and Department of Pharmacology,
Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA
19140, USA
| | - Peng Huang
- Center for Substance Abuse Research and Department of Pharmacology,
Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA
19140, USA
| | - Khampaseuth Rasakham
- Center for Substance Abuse Research and Department of Pharmacology,
Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA
19140, USA
| | - Ellen Unterwald
- Center for Substance Abuse Research and Department of Pharmacology,
Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA
19140, USA
| | - David Y.-W. Lee
- Bio-Organic and Natural Products Laboratory, McLean Hospital,
Harvard Medical School, 115 Mill Street, Belmont, MA 02478, USA
| | - Lee-Yuan Liu-Chen
- Center for Substance Abuse Research and Department of Pharmacology,
Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA
19140, USA,Correspondence should be sent to Dr. Lee-Yuan Liu-Chen,
Center for Substance Abuse Research and Department of Pharmacology, Temple
University School of Medicine, Philadelphia, PA 19140, USA. Tel: +1 215
707 4188; Fax: +1 215 707 7068.
| |
Collapse
|
12
|
Baik JH. Dopamine signaling in reward-related behaviors. Front Neural Circuits 2013; 7:152. [PMID: 24130517 PMCID: PMC3795306 DOI: 10.3389/fncir.2013.00152] [Citation(s) in RCA: 319] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/11/2013] [Indexed: 12/20/2022] Open
Abstract
Dopamine (DA) regulates emotional and motivational behavior through the mesolimbic dopaminergic pathway. Changes in DA mesolimbic neurotransmission have been found to modify behavioral responses to various environmental stimuli associated with reward behaviors. Psychostimulants, drugs of abuse, and natural reward such as food can cause substantial synaptic modifications to the mesolimbic DA system. Recent studies using optogenetics and DREADDs, together with neuron-specific or circuit-specific genetic manipulations have improved our understanding of DA signaling in the reward circuit, and provided a means to identify the neural substrates of complex behaviors such as drug addiction and eating disorders. This review focuses on the role of the DA system in drug addiction and food motivation, with an overview of the role of D1 and D2 receptors in the control of reward-associated behaviors.
Collapse
Affiliation(s)
- Ja-Hyun Baik
- Molecular Neurobiology Laboratory, Department of Life Sciences, Korea University Seoul, South Korea
| |
Collapse
|
13
|
Van Den Bossche MJ, Strazisar M, Cammaerts S, Liekens AM, Vandeweyer G, Depreeuw V, Mattheijssens M, Lenaerts AS, De Zutter S, De Rijk P, Sabbe B, Del-Favero J. Identification of rare copy number variants in high burden schizophrenia families. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:273-82. [PMID: 23505263 DOI: 10.1002/ajmg.b.32146] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 02/13/2013] [Indexed: 11/05/2022]
Abstract
Over the last years, genome-wide studies consistently showed an increased burden of rare copy number variants (CNVs) in schizophrenia patients, supporting the "common disease, rare variant" hypothesis in at least a subset of patients. We hypothesize that in families with a high burden of disease, and thus probably a high genetic load influencing disease susceptibility, rare CNVs might be involved in the etiology of schizophrenia. We performed a genome-wide CNV analysis in the index patients of eight families with multiple schizophrenia affected members, and consecutively performed a detailed family analysis for the most relevant CNVs. One index patient showed a DRD5 containing duplication. A second index patient presented with an NRXN1 containing deletion and two adjacent duplications containing MYT1L and SNTG2. Detailed analysis in the subsequent families showed segregation of the identified CNVs. With this study we show the importance of screening high burden families for rare CNVs, which will not only broaden our knowledge concerning the molecular genetic mechanisms involved in schizophrenia but also allow the use of the obtained genetic data to provide better clinical care to these families in general and to non-symptomatic causal CNV carriers in particular.
Collapse
Affiliation(s)
- Maarten J Van Den Bossche
- Applied Molecular Genomics Group, VIB Department of Molecular Genetics, VIB, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 2011; 63:182-217. [PMID: 21303898 DOI: 10.1124/pr.110.002642] [Citation(s) in RCA: 1872] [Impact Index Per Article: 133.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
G protein-coupled dopamine receptors (D1, D2, D3, D4, and D5) mediate all of the physiological functions of the catecholaminergic neurotransmitter dopamine, ranging from voluntary movement and reward to hormonal regulation and hypertension. Pharmacological agents targeting dopaminergic neurotransmission have been clinically used in the management of several neurological and psychiatric disorders, including Parkinson's disease, schizophrenia, bipolar disorder, Huntington's disease, attention deficit hyperactivity disorder (ADHD(1)), and Tourette's syndrome. Numerous advances have occurred in understanding the general structural, biochemical, and functional properties of dopamine receptors that have led to the development of multiple pharmacologically active compounds that directly target dopamine receptors, such as antiparkinson drugs and antipsychotics. Recent progress in understanding the complex biology of dopamine receptor-related signal transduction mechanisms has revealed that, in addition to their primary action on cAMP-mediated signaling, dopamine receptors can act through diverse signaling mechanisms that involve alternative G protein coupling or through G protein-independent mechanisms via interactions with ion channels or proteins that are characteristically implicated in receptor desensitization, such as β-arrestins. One of the future directions in managing dopamine-related pathologic conditions may involve a transition from the approaches that directly affect receptor function to a precise targeting of postreceptor intracellular signaling modalities either directly or through ligand-biased signaling pharmacology. In this comprehensive review, we discuss dopamine receptor classification, their basic structural and genetic organization, their distribution and functions in the brain and the periphery, and their regulation and signal transduction mechanisms. In addition, we discuss the abnormalities of dopamine receptor expression, function, and signaling that are documented in human disorders and the current pharmacology and emerging trends in the development of novel therapeutic agents that act at dopamine receptors and/or on related signaling events.
Collapse
Affiliation(s)
- Jean-Martin Beaulieu
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval–Centre de Recherche de l'Université Laval Robert-Giffard, Québec-City, Québec, Canada
| | | |
Collapse
|
15
|
Undieh AS. Pharmacology of signaling induced by dopamine D(1)-like receptor activation. Pharmacol Ther 2010; 128:37-60. [PMID: 20547182 DOI: 10.1016/j.pharmthera.2010.05.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 05/19/2010] [Indexed: 12/30/2022]
Abstract
Dopamine D(1)-like receptors consisting of D(1) and D(5) subtypes are intimately implicated in dopaminergic regulation of fundamental neurophysiologic processes such as mood, motivation, cognitive function, and motor activity. Upon stimulation, D(1)-like receptors initiate signal transduction cascades that are mediated through adenylyl cyclase or phosphoinositide metabolism, with subsequent enhancement of multiple downstream kinase cascades. The latter actions propagate and further amplify the receptor signals, thus predisposing D(1)-like receptors to multifaceted interactions with various other mediators and receptor systems. The adenylyl cyclase response to dopamine or selective D(1)-like receptor agonists is reliably associated with the D(1) subtype, while emerging evidence indicates that the phosphoinositide responses in native brain tissues may be preferentially mediated through stimulation of the D(5) receptor. Besides classic coupling of each receptor subtype to specific G proteins, additional biophysical models are advanced in attempts to account for differential subcellular distribution, heteromolecular oligomerization, and activity-dependent selectivity of the receptors. It is expected that significant advances in understanding of dopamine neurobiology will emerge from current and anticipated studies directed at uncovering the molecular mechanisms of D(5) coupling to phosphoinositide signaling, the structural features that might enhance pharmacological selectivity for D(5) versus D(1) subtypes, the mechanism by which dopamine may modulate phosphoinositide synthesis, the contributions of the various responsive signal mediators to D(1) or D(5) interactions with D(2)-like receptors, and the spectrum of dopaminergic functions that may be attributed to each receptor subtype and signaling pathway.
Collapse
Affiliation(s)
- Ashiwel S Undieh
- Laboratory of Integrative Neuropharmacology, Department of Pharmaceutical Sciences, Thomas Jefferson University School of Pharmacy, 130 South 9th Street, Suite 1510, Philadelphia, PA 19107, USA.
| |
Collapse
|
16
|
Abstract
Dopamine is a key neuromodulatory transmitter in the brain. It acts through
dopamine receptors to affect changes in neural activity, gene expression, and
behavior. In songbirds, dopamine is released into the striatal song nucleus Area
X, and the levels depend on social contexts of undirected and directed singing.
This differential release is associated with differential expression of
activity-dependent genes, such as egr1 (avian zenk), which in mammalian brain
are modulated by dopamine receptors. Here we cloned from zebra finch brain cDNAs
of all avian dopamine receptors: the D1 (D1A, D1B, D1D) and D2 (D2, D3, D4)
families. Comparative sequence analyses of predicted proteins revealed expected
phylogenetic relationships, in which the D1 family exists as single exon and the
D2 family exists as spliced exon genes. In both zebra finch and chicken, the
D1A, D1B, and D2 receptors were highly expressed in the striatum, the D1D and D3
throughout the pallium and within the mesopallium, respectively, and the D4
mainly in the cerebellum. Furthermore, within the zebra finch, all receptors,
except for D4, showed differential expression in song nuclei relative to the
surrounding regions and developmentally regulated expression that decreased for
most receptors during the sensory acquisition and sensorimotor phases of song
learning. Within Area X, half of the cells expressed both D1A and D2 receptors,
and a higher proportion of the D1A-only-containing neurons expressed egr1 during
undirected but not during directed singing. Our findings are consistent with
hypotheses that dopamine receptors may be involved in song development and
social context-dependent behaviors. J. Comp. Neurol. 518:741–769, 2010.
© 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Lubica Kubikova
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | |
Collapse
|
17
|
Kubikova L, Kostál L. Dopaminergic system in birdsong learning and maintenance. J Chem Neuroanat 2009; 39:112-23. [PMID: 19900537 DOI: 10.1016/j.jchemneu.2009.10.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 10/26/2009] [Accepted: 10/29/2009] [Indexed: 01/25/2023]
Abstract
Dopamine function in birdsong has been studied extensively in recent years. Several song and auditory nuclei are innervated by midbrain dopaminergic fibers and contain neurons with various dopamine receptors. During sexually motivated singing, activity of midbrain dopaminergic neurons in the ventral tegmental area and dopamine release in the striatal Area X, involved in song learning and maintenance, are higher. In this review we provide an overview of the dopaminergic system and neurotransmission in songbirds and the outline of possible involvement of dopamine in control of song learning, production, and maintenance. Based on both behavioral and computational biology data, we describe several models of song learning and the proposed role of dopamine in them. Special attention is given to possible role of dopamine in incentive salience (wanting) and reward prediction error signaling during song learning and maintenance, as well as the role of dopamine-mediated synaptic plasticity in reward processing. Finally, the role of dopamine in determination of personality traits in relation to birdsong is discussed.
Collapse
Affiliation(s)
- Lubica Kubikova
- Laboratory of Neurobiology and Physiology of Behavior, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Moyzesova 61, 90028 Ivanka pri Dunaji, Slovakia.
| | | |
Collapse
|
18
|
Kubíková Ľ, Výboh P, Košťál Ľ. Kinetics and pharmacology of the D1- and D2-like dopamine receptors in Japanese quail brain. Cell Mol Neurobiol 2009; 29:961-70. [PMID: 19330447 PMCID: PMC11506156 DOI: 10.1007/s10571-009-9382-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2008] [Accepted: 02/26/2009] [Indexed: 10/21/2022]
Abstract
Although the avian brain dopamine system and its functions have been studied much less than the mammalian one, there is an increasing interest in the role of dopamine and its receptors in a wide variety of motor, cognitive and emotional functions in birds with implications for basic research, medicine or agriculture. Pharmacological characterisation of the avian dopamine receptors has had little attention. In this paper we characterise the two classes of dopamine receptors in Japanese quail brain by radioligand binding techniques using [(3)H]SCH 23390 (D(1)) and [(3)H]spiperone (D(2)). Association, dissociation and saturation analyses showed that the binding of both radioligands is time- and concentration-dependent, saturable and reversible. Apparent dissociation constants determined for [(3)H]SCH 23390 and [(3)H]spiperone from concentration isotherms were 1.07 and 0.302 nM and the maximum binding capacities were 89.3 and 389.3 fmol per mg of protein, respectively. Using competitive binding studies with a spectrum of dopamine and other neurotransmitter receptor agonists/antagonists, the [(3)H]SCH 23390 and [(3)H]spiperone binding sites were characterised pharmacologically. Pharmacological profiles of quail dopamine receptors showed a high degree of pharmacological homology with other vertebrate dopamine receptors. The data presented extend the knowledge of kinetics and pharmacology of D(1)- and D(2)-like dopamine receptors in birds, provide data for avian psychopharmacological and comparative studies and represent an important complement to studies using cell expression systems.
Collapse
Affiliation(s)
- Ľubica Kubíková
- Laboratory of Behavioural Neuroscience, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, 900 28 Ivanka pri Dunaji, Slovakia
| | - Pavel Výboh
- Laboratory of Behavioural Neuroscience, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, 900 28 Ivanka pri Dunaji, Slovakia
| | - Ľubor Košťál
- Laboratory of Behavioural Neuroscience, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, 900 28 Ivanka pri Dunaji, Slovakia
| |
Collapse
|
19
|
Comparative Ultrastructural Analysis of D1 and D5 Dopamine Receptor Distribution in the Substantia Nigra and Globus Pallidus of Monkeys. ADVANCES IN BEHAVIORAL BIOLOGY 2009; 58:239-253. [PMID: 19750130 PMCID: PMC2742379 DOI: 10.1007/978-1-4419-0340-2_19] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Dopamine acts through the D1-like (D1, D5) and D2-like (D2, D3, D4) receptor families. Various studies have shown a preponderance of presynaptic dopamine D1 receptors on axons and terminals in the internal globus pallidus (GPi) and substantia nigra reticulata (SNr), but little is known about D5 receptors distribution in these brain regions. In order to further characterize the potential targets whereby dopamine could mediate its effects in basal ganglia output nuclei, we undertook a comparative electron microscopic analysis of D1 and D5 receptors immunoreactivity in the GPi and SNr of rhesus monkeys. At the light microscopic level, D1 receptor labeling was confined to small punctate elements, while D5 receptor immunoreactivity was predominantly expressed in cellular and dendritic processes throughout the SNr and GPi. At the electron microscopic level, 90% of D1 receptor labeling was found in unmyelinated axons or putative GABAergic terminals in both basal ganglia output nuclei. In contrast, D5 receptor labeling showed a different pattern of distribution. Although the majority (65-75%) of D5 receptor immunoreactivity was also found in unmyelinated axons and terminals in GPi and SNr, significant D5 receptor immunolabeling was also located in dendritic and glial processes. Immunogold studies showed that about 50% of D1 receptor immunoreactivity in axons was bound to the plasma membrane providing functional sites for D1 receptor-mediated effects on transmitter release in GPi and SNr. These findings provide evidence for the existence of extrastriatal pre- and post-synaptic targets through which dopamine and drugs acting at D1-like receptors may regulate basal ganglia outflow and possibly exert some of their anti-parkinsonian effects.
Collapse
|
20
|
Housley DJE, Nikolas M, Venta PJ, Jernigan KA, Waldman ID, Nigg JT, Friderici KH. SNP discovery and haplotype analysis in the segmentally duplicated DRD5 coding region. Ann Hum Genet 2009; 73:274-82. [PMID: 19397556 DOI: 10.1111/j.1469-1809.2009.00513.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The dopamine receptor 5 gene (DRD5) holds much promise as a candidate locus for contributing to neuropsychiatric disorders and other diseases influenced by the dopaminergic system, as well as having potential to affect normal behavioral variation. However, detailed analyses of this gene have been complicated by its location within a segmentally duplicated chromosomal region. Microsatellites and SNPs upstream from the coding region have been used for association studies, but we find, using bioinformatics resources, that these markers all lie within a previously unrecognized second segmental duplication (SD). In order to accurately analyze the DRD5 locus for polymorphisms in the absence of contaminating pseudogene sequences, we developed a fast and reliable method for sequence analysis and genotyping within the DRD5 coding region. We employed restriction enzyme digestion of genomic DNA to eliminate the pseudogenes prior to PCR amplification of the functional gene. This approach allowed us to determine the DRD5 haplotype structure using 31 trios and to reveal additional rare variants in 171 unrelated individuals. We clarify the inconsistencies and errors of the recorded SNPs in dbSNP and HapMap and illustrate the importance of using caution when choosing SNPs in regions of suspected duplications. The simple and relatively inexpensive method presented herein allows for convenient analysis of sequence variation in DRD5 and can be easily adapted to other duplicated genomic regions in order to obtain good quality sequence data.
Collapse
Affiliation(s)
- Donna J E Housley
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Glausier JR, Khan ZU, Muly EC. Dopamine D1 and D5 receptors are localized to discrete populations of interneurons in primate prefrontal cortex. Cereb Cortex 2008; 19:1820-34. [PMID: 19020206 DOI: 10.1093/cercor/bhn212] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Working memory (WM) is a core cognitive process that depends upon activation of D1 family receptors (D1R) and inhibitory interneurons in the prefrontal cortex (PFC). D1R are comprised of the D(1) and D(5) subtypes, and D(5) has a 10-fold higher affinity for dopamine. Parvalbumin (PV) and calretinin (CR) are 2 interneuron populations that are differentially affected by D1R stimulation and have discrete postsynaptic targets, such that PV interneurons provide strong inhibition to pyramidal cells, whereas CR interneurons inhibit other interneurons. The distinct properties of both the D1R and interneuron subtypes may contribute to the "inverted-U" relationship of D1R stimulation and WM ability. To determine the prevalence of D(1) and D(5) in PV and CR interneurons, we performed quantitative double-label immunoelectron microscopy in layer III of macaque area 9. We found that D(1) was the predominant D1R subtype in PV interneurons and was found mainly in dendrites. In contrast, D(5) was the predominant D1R subtype in CR interneurons and was found mainly in dendrites. Integrating these findings with previously published electrophysiological data, we propose a circuitry model as a framework for understanding the inverted-U relationship between dopamine stimulation of D1R and WM performance.
Collapse
Affiliation(s)
- Jill R Glausier
- Division of Neuroscience, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | | | | |
Collapse
|
22
|
Karlsson RM, Hefner KR, Sibley DR, Holmes A. Comparison of dopamine D1 and D5 receptor knockout mice for cocaine locomotor sensitization. Psychopharmacology (Berl) 2008; 200:117-27. [PMID: 18600316 PMCID: PMC2586326 DOI: 10.1007/s00213-008-1165-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 04/06/2008] [Indexed: 02/03/2023]
Abstract
RATIONALE There is compelling support for the contribution of dopamine and the D1R-like (D1R, D5R) receptor subfamily to the behavioral and neural effects of psychostimulant drugs of abuse. The relative roles of D1R and D5R subtypes in mediating these effects are not clear. OBJECTIVES The objectives of this study are to directly compare (C57BL/6J congenic) D1R knockout (KO) and D5R KO mice for baseline locomotor exploration, acute locomotor responses to cocaine, and locomotor sensitization to repeated cocaine administration, and to examine cocaine conditioned place preference (CPP) in D5R KO. MATERIALS AND METHODS D1R KO, D5R KO, and wild-type (WT) were assessed for baseline open field exploration, locomotor-stimulating effects of 15 mg/kg acute cocaine and sensitized locomotor responses to cocaine after repeated home cage treatment with 20 or 30 mg/kg cocaine. D5R KO and WT were tested for CPP to 15 mg/kg cocaine. RESULTS D1R KO showed modest basal hyperactivity and increased center exploration relative to WT. Acute locomotor responses to cocaine were consistently absent in D1R KO, but intact in D5R KO. D5R KO showed normal locomotor sensitization to cocaine and normal cocaine CPP. D1R KO failed to show a sensitized locomotor response to 30 mg/kg cocaine. Failure to sensitize in D1R KO was not because of excessive stereotypies. Surprisingly, D1R KO showed a strong trend for sensitization to 20 mg/kg cocaine. CONCLUSIONS D5R KO does not alter acute or sensitized locomotor responses to cocaine or cocaine CPP. D1R KO abolishes acute locomotor response to cocaine, but does not fully prevent locomotor sensitization to cocaine at all doses.
Collapse
Affiliation(s)
- Rose-Marie Karlsson
- Section on Behavioral Science and Genetics, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health
| | - Kathryn R. Hefner
- Section on Behavioral Science and Genetics, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health
| | - David R. Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disease and Stroke, National Institute of Mental Health
| | - Andrew Holmes
- Section on Behavioral Science and Genetics, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health
- Corresponding author: Andrew Holmes, PhD Section on Behavioral Science and Genetics Laboratory for Integrative Neuroscience National Institute on Alcohol Abuse and Alcoholism 5625 Fishers Lane Rm 2N09 Rockville, MD 20852−9411 USA Telephone: 301−402−3519 Fax: 301−480−1952
| |
Collapse
|
23
|
Bordelon-Glausier JR, Khan ZU, Muly EC. Quantification of D1 and D5 dopamine receptor localization in layers I, III, and V of Macaca mulatta prefrontal cortical area 9: coexpression in dendritic spines and axon terminals. J Comp Neurol 2008; 508:893-905. [PMID: 18399540 DOI: 10.1002/cne.21710] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
D1 family receptors (D1R) in prefrontal cortex (PFC) are critical for normal cognition and are implicated in pathological states such as schizophrenia. The two D1R subtypes, D1 and D5, cannot be pharmacologically distinguished but have important functional differences. To understand their contributions to cortical function, we quantified their localization in the neuropil of primate PFC. We identified different patterns of distribution for the two receptors that showed variation across cortical laminae. Although D1 was enriched in spines and D5 in dendrites, there was considerable overlap in their distribution within neuronal compartments. To determine whether the D1 and D5 receptors are localized to separate populations of synapses, we employed double-labeling methods. We found the two receptors colocalized and quantified the overlap of their distribution in spines and axon terminals of prefrontal cortical area 9 in the Macaca mulatta monkey. The two receptors are found in partially overlapping populations, such that the D5 receptor is found in a subpopulation of those spines and terminals that contain D1. These results indicate that dopamine activation of the two D1R subtypes does not modulate disparate populations of synapses onto dendritic spines in prefrontal cortical area 9; rather, dopamine can activate D1 and D5 receptors on the same spines, plus an additional group of spines that contains only D1. The implications of these results for the dose-dependent relationship between D1R activation and PFC function are discussed.
Collapse
|
24
|
Caylak E. A review of association and linkage studies for genetical analyses of learning disorders. Am J Med Genet B Neuropsychiatr Genet 2007; 144B:923-43. [PMID: 17510947 DOI: 10.1002/ajmg.b.30537] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Learning disorders (LD) commonly comprise of a heterogeneous group of disorders manifested by unexpected problems in some children's experiences in the academic performance arena. These problems especially comprise of a variety of disorders which may be subclassified to attention-deficit hyperactivity disorder (ADHD), reading disability (RD), specific language impairment (SLI), speech-sound disorder (SSD), and dyspraxia. The aim of this review is to summarize the current molecular studies and some of the most exciting recent developments in molecular genetic research on LD. The findings for the association and linkage of LD with candidate genes will help to set the research agendas for future studies to follow.
Collapse
Affiliation(s)
- Emrah Caylak
- Department of Biochemistry and Clinical Biochemistry, Firat University, School of Medicine, Elazig, Turkey.
| |
Collapse
|
25
|
Silveira Macêdo D, Mendes Vasconcelos SM, Andrade-Neto M, França Fonteles MM, Vasconcelos Aguiar LM, Barros Viana GS, Florençode Sousa FC. Differential effects of cocaine-induced seizures and lethality on M(1)-like muscarinic and dopaminergic D (1)- and D (2)-like binding receptors in mice brain. Cell Mol Neurobiol 2006; 26:1-15. [PMID: 16633898 PMCID: PMC11521379 DOI: 10.1007/s10571-006-8565-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Accepted: 09/19/2005] [Indexed: 12/01/2022]
Abstract
This work was designed to study the changes produced by cocaine-induced seizures and lethality on dopaminergic D(1)- and D(2)-like receptors, muscarinic M(1)-like binding sites, as well as acetylcholinesterase activity in mice prefrontal cortex (PFC) and striatum (ST). Binding assays were performed in brain homogenates from the PFC and ST and ligands used were [(3)H]-N-methylscopolamine, [(3)H]-NMS (in the presence of carbachol), [(3)H]-SCH 23390 and [(3)H]-spiroperidol (in presence of mianserin), for muscarinic (M(1)-like), D(1)- and D(2)-like receptors, respectively. Brain acetylcholinesterase (AChE) activity was also determined in these brain areas. Cocaine-induced SE decreased [(3)H]-SCH 23390 binding in both ST and PFC areas. A decrease in [(3)H]-NMS binding and an increase in [(3)H]-spiroperidol binding in PFC was also observed. Cocaine-induced lethality increased [(3)H]-spiroperidol binding in both areas and decreased [(3)H]-NMS binding only in PFC, while no difference was seen in [(3)H]-SCH 23390 binding. Neither SE, nor lethality altered [(3)H]-NMS binding in ST. AChE activity increased after SE in ST while after death the increase occurred in both PFC and ST. In conclusion, cocaine-induced SE and lethality produces differential changes in brain cholinergic and dopaminergic receptors, depending on the brain area studied suggesting an extensive and complex involvement of these with cocaine toxicity in central nervous system.
Collapse
Affiliation(s)
- Danielle Silveira Macêdo
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| | | | | | | | | | | | | |
Collapse
|
26
|
Berlanga ML, Simpson TK, Alcantara AA. Dopamine D5 receptor localization on cholinergic neurons of the rat forebrain and diencephalon: a potential neuroanatomical substrate involved in mediating dopaminergic influences on acetylcholine release. J Comp Neurol 2006; 492:34-49. [PMID: 16175554 DOI: 10.1002/cne.20684] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The study of dopaminergic influences on acetylcholine release is especially useful for the understanding of a wide range of brain functions and neurological disorders, including schizophrenia, Parkinson's disease, Alzheimer's disease, and drug addiction. These disorders are characterized by a neurochemical imbalance of a variety of neurotransmitter systems, including the dopamine and acetylcholine systems. Dopamine modulates acetylcholine levels in the brain by binding to dopamine receptors located directly on cholinergic cells. The dopamine D5 receptor, a D1-class receptor subtype, potentiates acetylcholine release and has been investigated as a possible substrate underlying a variety of brain functions and clinical disorders. This receptor subtype, therefore, may prove to be a putative target for pharmacotherapeutic strategies and cognitive-behavioral treatments aimed at treating a variety of neurological disorders. The present study investigated whether cholinergic cells in the dopamine targeted areas of the cerebral cortex, striatum, basal forebrain, and diencephalon express the dopamine D5 receptor. These receptors were localized on cholinergic neurons with dual labeling immunoperoxidase or immunofluorescence procedures using antibodies directed against choline acetyltransferase (ChAT) and the dopamine D5 receptor. Results from this study support previous findings indicating that striatal cholinergic interneurons express the dopamine D5 receptor. In addition, cholinergic neurons in other critical brain areas also show dopamine D5 receptor expression. Dopamine D5 receptors were localized on the somata, dendrites, and axons of cholinergic cells in each of the brain areas examined. These findings support the functional importance of the dopamine D5 receptor in the modulation of acetylcholine release throughout the brain.
Collapse
Affiliation(s)
- Monica Lisa Berlanga
- Institute for Neuroscience, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | |
Collapse
|
27
|
Jiang N, Ou-Yang KQ, Cai SX, Hu YH, Xu ZL. Identification of human dopamine D1-like receptor agonist using a cell-based functional assay. Acta Pharmacol Sin 2005; 26:1181-6. [PMID: 16174433 DOI: 10.1111/j.1745-7254.2005.00199.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM To establish a cell-based assay to screen human dopamine D1 and D5 receptor agonists against compounds from a natural product compound library. METHODS Synthetic responsive elements 6 cAMP response elements (CRE) and a mini promoter containing a TATA box were inserted into the pGL3 basic vector to generate the reporter gene construct pCRE/TA/Luci. CHO cells were co-transfected with the reporter gene construct and human D1 or D5 receptor cDNA in mammalian expression vectors. Stable cell lines were established for agonist screening. A natural product compound library from over 300 herbs has been established. The extracts from these herbs were used for human D1 and D5 receptor agonist screenings. RESULTS A number of extracts were identified that activated both D1 and D5 receptors. One of the herb extracts, SBG492, demonstrated distinct pharmacological characteristics with human D1 and D5 receptors. The EC(50) values of SBG492 were 342.7 microg/mL for the D1 receptor and 31.7 microg/mL for the D5 receptor. CONCLUSION We have established a cell-based assay for high-throughput drug screening to identify D1-like receptor agonists from natural products. Several extracts that can active D1-like receptors were discovered. These compounds could be useful tools for studies on the functions of these receptors in the brain and could potentially be developed into therapeutic drugs for the treatment of central nervous system diseases.
Collapse
MESH Headings
- Animals
- CHO Cells
- Cricetinae
- Cricetulus
- Cyclic AMP Response Element-Binding Protein/genetics
- DNA, Complementary/genetics
- Drug Evaluation, Preclinical
- Drugs, Chinese Herbal/isolation & purification
- Drugs, Chinese Herbal/pharmacology
- Genes, Reporter
- Luciferases/metabolism
- Phenanthridines/pharmacology
- Plants, Medicinal/chemistry
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D5/agonists
- Receptors, Dopamine D5/genetics
- Receptors, Dopamine D5/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- TATA-Box Binding Protein/genetics
- Transfection
Collapse
Affiliation(s)
- Nan Jiang
- Shanghai Institute of Brain Functional Genomics and Key Lab of Brain Functional Genomics, Ministry of Education, Science and Technology Commission of Shanghai Municipality, East China Normal University, Shanghai 200062, China
| | | | | | | | | |
Collapse
|
28
|
Seamans JK, Yang CR. The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol 2005; 74:1-58. [PMID: 15381316 DOI: 10.1016/j.pneurobio.2004.05.006] [Citation(s) in RCA: 1132] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Accepted: 05/04/2004] [Indexed: 12/17/2022]
Abstract
Mesocortical [corrected] dopamine (DA) inputs to the prefrontal cortex (PFC) play a critical role in normal cognitive process and neuropsychiatic pathologies. This DA input regulates aspects of working memory function, planning and attention, and its dysfunctions may underlie positive and negative symptoms and cognitive deficits associated with schizophrenia. Despite intense research, there is still a lack of clear understanding of the basic principles of actions of DA in the PFC. In recent years, there has been considerable efforts by many groups to understand the cellular mechanisms of DA modulation of PFC neurons. However, the results of these efforts often lead to contradictions and controversies. One principal feature of DA that is agreed by most researchers is that DA is a neuromodulator and is clearly not an excitatory or inhibitory neurotransmitter. The present article aims to identify certain principles of DA mechanisms by drawing on published, as well as unpublished data from PFC and other CNS sites to shed light on aspects of DA neuromodulation and address some of the existing controversies. Eighteen key features about DA modulation have been identified. These points directly impact on the end result of DA neuromodulation, and in some cases explain why DA does not yield identical effects under all experimental conditions. It will become apparent that DA's actions in PFC are subtle and depend on a variety of factors that can no longer be ignored. Some of these key factors include distinct bell-shaped dose-response profiles of postsynaptic DA effects, different postsynaptic responses that are contingent on the duration of DA receptor stimulation, prolonged duration effects, bidirectional effects following activation of D1 and D2 classes of receptors and membrane potential state and history dependence of subsequent DA actions. It is hoped that these factors will be borne in mind in future research and as a result a more consistent picture of DA neuromodulation in the PFC will emerge. Based on these factors, a theory is proposed for DA's action in PFC. This theory suggests that DA acts to expand or contract the breadth of information held in working memory buffers in PFC networks.
Collapse
Affiliation(s)
- Jeremy K Seamans
- Department of Physiology, MUSC, 173 Ashley Avenue, Suite 403, Charleston, SC 29425, USA.
| | | |
Collapse
|
29
|
Dumont NL, Andersen SL, Thompson AP, Teicher MH. Transient dopamine synthesis modulation in prefrontal cortex: in vitro studies. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 150:163-6. [PMID: 15158079 DOI: 10.1016/j.devbrainres.2004.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/29/2004] [Indexed: 10/26/2022]
Abstract
The present study provides further evidence for transient D1 autoreceptor-like synthesis modulation in prefrontal cortex, but not striatum, of developing rats. DOPA accumulation was attenuated in a concentration-dependent manner in slices from the prefrontal cortex and striatum at 15 days of age by the partial D1 agonist SKF 38393 (0.01-10 microM) and the full D1 agonist SKF-81297 (0.01-10 microM) following NSD-1015; the response was no longer apparent by 40 days. Both agonists had greater potency in prefrontal cortex than striatum, and SKF-81297 exerted greater maximal inhibitory effects than SKF-38393. The inhibitory effects of both agonists were antagonized by pre-incubation with the D1 antagonist SCH-23390 in cortex, but not in striatum.
Collapse
Affiliation(s)
- Nathalie L Dumont
- Department of Psychiatry, Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
| | | | | | | |
Collapse
|
30
|
Scanlan TS, Suchland KL, Hart ME, Chiellini G, Huang Y, Kruzich PJ, Frascarelli S, Crossley DA, Bunzow JR, Ronca-Testoni S, Lin ET, Hatton D, Zucchi R, Grandy DK. 3-Iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone. Nat Med 2004; 10:638-42. [PMID: 15146179 DOI: 10.1038/nm1051] [Citation(s) in RCA: 323] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Accepted: 04/23/2004] [Indexed: 12/24/2022]
Abstract
Thyroxine (T(4)) is the predominant form of thyroid hormone (TH). Hyperthyroidism, a condition associated with excess TH, is characterized by increases in metabolic rate, core body temperature and cardiac performance. In target tissues, T(4) is enzymatically deiodinated to 3,5,3'-triiodothyronine (T(3)), a high-affinity ligand for the nuclear TH receptors TR alpha and TR beta, whose activation controls normal vertebrate development and physiology. T(3)-modulated transcription of target genes via activation of TR alpha and TR beta is a slow process, the effects of which manifest over hours and days. Although rapidly occurring effects of TH have been documented, the molecules that mediate these non-genomic effects remain obscure. Here we report the discovery of 3-iodothyronamine (T(1)AM), a naturally occurring derivative of TH that in vitro is a potent agonist of the G protein-coupled trace amine receptor TAR1. Administering T(1)AM in vivo induces profound hypothermia and bradycardia within minutes. T(1)AM treatment also rapidly reduces cardiac output in an ex vivo working heart preparation. These results suggest the existence of a new signaling pathway, stimulation of which leads to rapid physiological and behavioral consequences that are opposite those associated with excess TH.
Collapse
Affiliation(s)
- Thomas S Scanlan
- Department of Pharmaceutical Chemistry and Cellular & Molecular Pharmacology, University of California-San Francisco, San Francisco, California 94143-2280, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Audouze K, Nielsen EØ, Peters D. New Series of Morpholine and 1,4-Oxazepane Derivatives as Dopamine D4 Receptor Ligands: Synthesis and 3D-QSAR Model. J Med Chem 2004; 47:3089-104. [PMID: 15163190 DOI: 10.1021/jm031111m] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Since the identification of the dopamine D(4) receptor subtype and speculations about its possible involvement in schizophrenia, much work has been put into development of selective D(4) ligands. These selective ligands may be effective antipsychotics without extrapyramidal side effects. This work describes the synthesis of a new series of 2,4-disubstituted morpholines and 2,4-disubstituted 1,4-oxazepanes with selectivity for the dopamine D(4) receptor. A 3D-QSAR analysis using the GRID/GOLPE methodology was performed with the purpose to get a better understanding of the relationship between chemical structure and biological activity. Inspection of the coefficient plots allowed us to identify that regions which are important for affinity are situated around the two benzene ring systems, a p-chlorobenzyl group, and the aliphatic amine belonging to the morpholine or 1,4-oxazepane system. In addition, the size of the morpholine or 1,4-oxazepane ring seems to be important for affinity.
Collapse
Affiliation(s)
- Karine Audouze
- NeuroSearch A/S, 93 Pederstrupvej, DK-2750 Ballerup, Denmark
| | | | | |
Collapse
|
32
|
Brito V, Beyer C, Küppers E. BDNF-dependent stimulation of dopamine D5receptor expression in developing striatal astrocytes involves PI3-kinase signaling. Glia 2004; 46:284-95. [PMID: 15048851 DOI: 10.1002/glia.10356] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is well known that brain-derived neurotrophic factor (BDNF) and the early nigrostriatal dopaminergic input are implicated in the regulation of developmental processes in the neostriatum. There is growing evidence that interactions between these developmental signals rather than singular actions are critical for cellular differentiation and compartmentation of the striatum. In the present report, our goal is to identify striatal target cells for BDNF and dopamine. Using primary neuronal and astroglial cell cultures, we have demonstrated that BDNF selectively regulates D(5) but not D(1) receptor expression in astrocytes. This effect was not observed in neurons. Pharmacological approaches indicated that BDNF effects on dopamine D(5) receptor expression were mediated at the intracellular level by an activation of the PI3- but not MAP-kinase cascade. FACS analysis and confocal laser microscopy revealed that the newly synthesized D(5) receptors were integrated into the plasma membrane of astrocytes. Our findings clearly show that developing striatal astrocytes are targets for BDNF. Furthermore, BDNF appears to regulate the dopamine responsiveness of astrocytes. This implicates that functional interactions between BDNF, dopamine, and astrocytes are necessary to warrant proper differentiation of the striatal anlage.
Collapse
Affiliation(s)
- Veronica Brito
- Department of Anatomy and Cell Biology, University of Ulm, Ulm, Germany
| | | | | |
Collapse
|
33
|
Mill J, Curran S, Richards S, Taylor E, Asherson P. Polymorphisms in the dopamine D5 receptor (DRD5) gene and ADHD. Am J Med Genet B Neuropsychiatr Genet 2004; 125B:38-42. [PMID: 14755441 DOI: 10.1002/ajmg.b.20127] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There is considerable evidence to support a role of dopamine-related genes in the molecular aetiology of attention-deficit hyperactivity disorder (ADHD). A microsatellite located near the dopamine D5 receptor (DRD5) gene has been associated with ADHD in a number of studies, but other polymorphisms within the vicinity of this gene have not been examined. In this study we genotyped three microsatellites spanning the DRD5 region in a large clinical sample. Overall, we found little evidence to support a role for DRD5 in ADHD. We found no evidence of association with either the previously associated DRD5 marker, or a repeat in the promoter region of the gene. We did, however, find significant association for an allele of D4S615, a dinucleotide repeat located 131 kb 3' of DRD5 that has been previously associated with schizophrenia. A global test incorporating all alleles of this marker, however, was not significant and thus this finding needs replication before any conclusions can be made.
Collapse
Affiliation(s)
- Jonathan Mill
- Social, Genetic, and Developmental Psychiatry Research Centre, Institute of Psychiatry, De Crespigny Park, Denmark Hill, London, United Kingdom.
| | | | | | | | | |
Collapse
|
34
|
Distinct roles of D1 and D5 dopamine receptors in motor activity and striatal synaptic plasticity. J Neurosci 2003. [PMID: 13679419 DOI: 10.1523/jneurosci.23-24-08506.2003] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Stimulation of dopamine (DA) receptors in the striatum is essential for voluntary motor activity and for the generation of plasticity at corticostriatal synapses. In the present study, mice lacking DA D1 receptors have been used to investigate the involvement of the D1-like class (D1 and D5) of DA receptors in locomotion and corticostriatal long-term depression (LTD) and long-term potentiation (LTP). Our results suggest that D1 and D5 receptors exert distinct actions on both activity-dependent synaptic plasticity and spontaneous motor activity. Accordingly, the ablation of D1 receptors disrupted corticostriatal LTP, whereas pharmacological blockade of D5 receptors prevented LTD. On the other side, genetic ablation of D1 receptors increased locomotor activity, whereas the D1/D5 receptor antagonist SCH 23390 decreased motor activity in both control mice and mice lacking D1 receptors. Endogenous DA stimulated D1 and D5 receptors in distinct subtypes of striatal neurons to induce, respectively, LTP and LTD. In control mice, in fact, LTP was blocked by inhibiting the D1-protein kinase A pathway in the recorded spiny neuron, whereas the striatal nitric oxide-producing interneuron was presumably the neuronal subtype stimulated by D5 receptors during the induction phase of LTD. Understanding the role of DA receptors in striatal function is essential to gain insights into the neural bases of critical brain functions and of dramatic pathological conditions such as Parkinson's disease, schizophrenia, and drug addiction.
Collapse
|
35
|
Alcantara AA, Chen V, Herring BE, Mendenhall JM, Berlanga ML. Localization of dopamine D2 receptors on cholinergic interneurons of the dorsal striatum and nucleus accumbens of the rat. Brain Res 2003; 986:22-9. [PMID: 12965226 DOI: 10.1016/s0006-8993(03)03165-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Striatal cholinergic interneurons located in the dorsal striatum and nucleus accumbens are amenable to influences of the dopaminergic mesolimbic pathway, which is a pathway involved in reward and reinforcement and targeted by several drugs of abuse. Dopamine and acetylcholine neurotransmission and their interactions are essential to striatal function, and disruptions to these systems lead to a variety of clinical disorders. Dopamine regulates acetylcholine release through dopamine receptors that are localized directly on striatal cholinergic interneurons. The dopamine D2 receptor, which attenuates acetylcholine release, has been implicated in drug relapse and is targeted by therapeutic drugs that are used to treat a variety of neurological disorders including Tourette Syndrome, Parkinson's disease and schizophrenia. The present study provides the first direct evidence for the localization of dopamine D2 receptors on striatal cholinergic interneurons of the rat brain using dual labeling immunocytochemistry procedures. Using light microscopy, dopamine D2 receptors were localized on the cell somata and dendritic and axonal processes of striatal cholinergic interneurons in the dorsal striatum and nucleus accumbens of the rat brain. These findings provide a foundation for understanding the specific roles that cholinergic neuronal network systems and interacting dopaminergic signaling pathways play in striatal function and in a variety of clinical disorders including drug abuse and addiction.
Collapse
Affiliation(s)
- Adriana A Alcantara
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA.
| | | | | | | | | |
Collapse
|
36
|
Centonze D, Grande C, Saulle E, Martin AB, Gubellini P, Pavón N, Pisani A, Bernardi G, Moratalla R, Calabresi P. Distinct roles of D1 and D5 dopamine receptors in motor activity and striatal synaptic plasticity. J Neurosci 2003; 23:8506-12. [PMID: 13679419 PMCID: PMC6740372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Stimulation of dopamine (DA) receptors in the striatum is essential for voluntary motor activity and for the generation of plasticity at corticostriatal synapses. In the present study, mice lacking DA D1 receptors have been used to investigate the involvement of the D1-like class (D1 and D5) of DA receptors in locomotion and corticostriatal long-term depression (LTD) and long-term potentiation (LTP). Our results suggest that D1 and D5 receptors exert distinct actions on both activity-dependent synaptic plasticity and spontaneous motor activity. Accordingly, the ablation of D1 receptors disrupted corticostriatal LTP, whereas pharmacological blockade of D5 receptors prevented LTD. On the other side, genetic ablation of D1 receptors increased locomotor activity, whereas the D1/D5 receptor antagonist SCH 23390 decreased motor activity in both control mice and mice lacking D1 receptors. Endogenous DA stimulated D1 and D5 receptors in distinct subtypes of striatal neurons to induce, respectively, LTP and LTD. In control mice, in fact, LTP was blocked by inhibiting the D1-protein kinase A pathway in the recorded spiny neuron, whereas the striatal nitric oxide-producing interneuron was presumably the neuronal subtype stimulated by D5 receptors during the induction phase of LTD. Understanding the role of DA receptors in striatal function is essential to gain insights into the neural bases of critical brain functions and of dramatic pathological conditions such as Parkinson's disease, schizophrenia, and drug addiction.
Collapse
Affiliation(s)
- Diego Centonze
- Clinica Neurologica, Dipartimento di Neuroscienze, Università di Tor Vergata, 00133 Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Calcyon was recently identified as a D1 dopamine receptor (DR1) interacting protein. Previous studies show that calcyon can potentiate DR1 mediated intracellular Ca(2+) release in transfected HEK293 cells, and may play an important role in DR1 Ca(2+) signaling in brain. We report that similar to the genomic structure of the human gene, the mouse calcyon gene contains six relatively short exons, with a large intron (about 8.4 kb) between exons one and two. The mouse and human calcyon genes exhibit a high level of sequence homology (77.5% at the nucleotide level) within coding regions. Northern blot and RT-PCR analyses reveal that mouse calcyon transcripts are most abundant in brain, but also present in testis and ovary, as well as in kidney and heart at much lower levels. The most distal of the transcript initiation sites identified by 5' RACE is located 159 nucleotides upstream of the putative start of translation. BLAST search of the NCBI mouse EST database and RT-PCR analysis uncovered two differentially spliced transcripts, "mcal-A" and "mcal-B." The two transcripts are identical, except that mcal-B contains a longer 3' untranslated region due to retention of a short intron (I5) between exons five and six. However, mcal-A represents the predominant calcyon transcript in mouse tissue. Further, the presence of I5 produced no detectable differences in the biosynthesis of calcyon polypeptide when expressed in HEK293, MDCK and Neuro2a cells.
Collapse
Affiliation(s)
- Rujuan Dai
- Medical College of Georgia, Department of Pharmacology and Toxicology, 1459 Laney Walker Boulevard, Augusta, GA 30912-2300, USA
| | | |
Collapse
|
38
|
Gareri P, De Fazio P, Stilo M, Ferreri G, De Sarro G. Conventional and Atypical Antipsychotics in the Elderly. Clin Drug Investig 2003; 23:287-322. [PMID: 17535043 DOI: 10.2165/00044011-200323050-00001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Psychoses are major mental disorders marked by derangement of personality and loss of contact with reality, and are common in the elderly. Various hypotheses suggest the pivotal role of abnormal neurotransmitter and neuropeptide systems in psychotic patients, the most studied of which are the dopaminergic, serotonergic and glutamatergic systems. In particular, long-term treatment with antagonists at dopamine (D) and serotonin (5-hydroxytryptamine; 5-HT) receptors and agonists at glutamate receptors may improve symptoms. Treatment with antipsychotics is very common in the elderly and often indispensable. However, for successful treatment it is essential to have an adequate multidimensional assessment of the geriatric patient and of his or her polypathology and polypharmacy, together with knowledge of age-dependent pharmacokinetics and pharmacodynamic changes and drug-drug interactions.Conventional antipsychotics such as haloperidol, chlorpromazine, promazine, tiapride and zuclopenthixol are D(2)-receptor antagonists and inhibit dopaminergic neurotransmission in a dose-related manner. They decrease the intensity of all psychotic symptoms, although not necessarily to the same extent and with the same time course. Negative symptoms may persist to a much more striking extent than delusions, hallucinations and thought disorders, and there is a dose-related incidence of extrapyramidal side effects (EPS). Newer antipsychotics, such as clozapine, olanzapine, risperidone, quetiapine and ziprasidone, have a different receptor-binding profile, interacting with both D and 5-HT receptors; they less frequently cause EPS and are better tolerated in the elderly. Their use is advantageous because they are effective both on positive and negative symptoms of schizophrenia and may also be used in the treatment of behavioural disturbances in elderly and/or demented individuals. The use of clozapine is limited by the onset of agranulocytosis, whereas olanzapine, risperidone, quetiapine and, more recently, ziprasidone are widely used, with good results in the above-mentioned diseases.
Collapse
Affiliation(s)
- Pietro Gareri
- Unit of Clinical Pharmacology and Regional Pharmacovigilance Center, Department of Clinical and Experimental Medicine ‘Gaetano Salvatore’,, Faculty of Medicine, University ‘Magna Graecia’ Catanzaro, ‘MaterDomini’ University Hospital, Catanzaro, Italy
| | | | | | | | | |
Collapse
|
39
|
Rivera A, Alberti I, Martín AB, Narváez JA, de la Calle A, Moratalla R. Molecular phenotype of rat striatal neurons expressing the dopamine D5 receptor subtype. Eur J Neurosci 2002; 16:2049-58. [PMID: 12473072 DOI: 10.1046/j.1460-9568.2002.02280.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dopamine is one of the principal neurotransmitters in the basal ganglia, where it plays a critical role in motor control and cognitive function through its interactions with the specific dopamine receptors D1 to D5. Although the activities mediated by most dopamine receptor subtypes have already been determined, the role of the D5 receptor subtype in the basal ganglia has still not been established. Furthermore, it is often difficult to distinguish between dopamine D5 and D1 receptors as they are stimulated by the same ligands, and they have a similar molecular structure and pharmacology. In an effort to understand the differences between these two receptor subtypes, we have studied the distribution of neurons containing D5 receptors in the striatum, and their molecular phenotype. As a result, we show that the D5 receptor subtype is present in two different populations of striatal neurons, projection neurons and interneurons. Overall, the abundance of this receptor subtype in the striatum is low, particularly in striatal projection neurons of both the direct and indirect projection pathways. In contrast, the expression of D5 receptors in striatal interneurons (cholinergic, somatostatin- or parvalbumin-positive neurons) is high, while low to moderate expression was observed in calretinin-positive neurons. Our results demonstrate the presence of D5 receptors in all the striatal cell populations so far described, although at different intensities in each. The fact that a large number of striatal neurons express the D5 receptor subtype suggests that this receptor fulfils an important function in the process of integrating information in the striatum.
Collapse
Affiliation(s)
- Alicia Rivera
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avda Dr Arce 37, 28002 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
40
|
Onaivi ES, Ali SF, Chirwa SS, Zwiller J, Thiriet N, Akinshola BE, Ishiguro H. Ibogaine signals addiction genes and methamphetamine alteration of long-term potentiation. Ann N Y Acad Sci 2002; 965:28-46. [PMID: 12105083 DOI: 10.1111/j.1749-6632.2002.tb04149.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mapping of the human genetic code will enable us to identify potential gene products involved in human addictions and diseases that have hereditary components. Thus, large-scale, parallel gene-expression studies, made possible by advances in microarray technologies, have shown insights into the connection between specific genes, or sets of genes, and human diseases. The compulsive use of addictive substances despite adverse consequences continues to affect society, and the science underlying these addictions in general is intensively studied. Pharmacological treatment of drug and alcohol addiction has largely been disappointing, and new therapeutic targets and hypotheses are needed. As the usefulness of the pharmacotherapy of addiction has been limited, an emerging potential, yet controversial, therapeutic agent is the natural alkaloid ibogaine. We have continued to investigate programs of gene expression and the putative signaling molecules used by psychostimulants such as amphetamine in in vivo and in vitro models. Our work and that of others reveal that complex but defined signal transduction pathways are associated with psychostimulant administration and that there is broad-spectrum regulation of these signals by ibogaine. We report that the actions of methamphetamine were similar to those of cocaine, including the propensity to alter long-term potentiation (LTP) in the hippocampus of the rat brain. This action suggests that there may be a "threshold" beyond which the excessive brain stimulation that probably occurs with compulsive psychostimulant use results in the occlusion of LTP. The influence of ibogaine on immediate early genes (IEGs) and other candidate genes possibly regulated by psychostimulants and other abused substances requires further evaluation in compulsive use, reward, relapse, tolerance, craving and withdrawal reactions. It is therefore tempting to suggest that ibogaine signals addiction gene products.
Collapse
Affiliation(s)
- Emmanuel S Onaivi
- Department of Biology, William Paterson University, Wayne, New Jersey 07470, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Lezcano N, Bergson C. D1/D5 dopamine receptors stimulate intracellular calcium release in primary cultures of neocortical and hippocampal neurons. J Neurophysiol 2002; 87:2167-75. [PMID: 11929934 DOI: 10.1152/jn.00541.2001] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
D1/D5 dopamine receptors in basal ganglia, hippocampus, and cerebral cortex modulate motor, reward, and cognitive behavior. Previous work with recombinant proteins revealed that in cells primed with heterologous G(q/11)-coupled G-protein-coupled receptor (GPCR) agonists, the typically G(s)-linked D1/D5 receptors can stimulate robust release of calcium from internal stores when coexpressed with calcyon. To learn more about the intracellular signaling mechanisms underlying these D1/D5 receptor regulated behaviors, we explored the possibility that endogenous receptors stimulate internal release of calcium in neurons. We have identified a population of neurons in primary cultures of hippocampus and neocortex that respond to D1/D5 dopamine receptor agonists with a marked increase in intracellular calcium (Ca) levels. The D1/D5 receptor stimulated responses occurred in the absence of extracellular Ca(2+) indicating the rises in Ca involve release from internal stores. In addition, the responses were blocked by D1/D5 receptor antagonists. Further, the D1/D5 agonist-evoked responses were state dependent, requiring priming with agonists of G(q/11)-coupled glutamate, serotonin, muscarinic, and adrenergic receptors or with high external K(+) solution. In contrast, D1/D5 receptor agonist-evoked Ca(2+) responses were not detected in neurons derived from striatum. However, D1/D5 agonists elevated cAMP levels in striatal cultures as effectively as in neocortical and hippocampal cultures. Further, neither forskolin nor 8-Br-cAMP stimulation following priming was able to mimic the D1/D5 agonist-evoked Ca(2+) response in neocortical neurons indicating that increased cAMP levels are not sufficient to stimulate Ca release. Our data suggest that D1-like dopamine receptors likely modulate neocortical and hippocampal neuronal excitability and synaptic function via Ca(2+) as well as cAMP-dependent signaling.
Collapse
Affiliation(s)
- Nelson Lezcano
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, Georgia 30912-2300, USA
| | | |
Collapse
|
42
|
Cools AR, Lubbers L, van Oosten RV, Andringa G. SKF 83959 is an antagonist of dopamine D1-like receptors in the prefrontal cortex and nucleus accumbens: a key to its antiparkinsonian effect in animals? Neuropharmacology 2002; 42:237-45. [PMID: 11804620 DOI: 10.1016/s0028-3908(01)00169-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
SKF 83959 that has a unique antiparkinson profile in animal models of Parkinson's disease is an in vitro dopamine D1 antagonist of receptors coupled to adenylyl cyclase. We hypothesized that SKF 83959, among others, interacts with dopamine D1 receptors coupled to adenylyl cyclase in the nucleus accumbens and the prefrontal cortex. Effects of intra-accumbal injections of SKF 83959 on locomotor activity were compared to effects of the dopamine D1 agonist SKF 81297 and the dopamine D1 antagonist SCH 39166. Similarly to SCH 39166, SKF 83959 did not affect locomotor activity, but counteracted SKF 81297-induced locomotor activity. Effects of unilateral intra-prefrontal injections of SKF 83959 on rotational behaviour were compared to the effects of the dopamine D1 agonist SKF 81297 and the dopamine D1 antagonists SCH 23390 and SCH 39166 in rats selected on basis of their high locomotor response to novelty and pretreated with a subcutaneous injection of 0.75 mg/kg dexamphetamine. Like SCH 39166 and SCH 23390, SKF 83959 induced a bias for contralateral rotating and blocked the SKF 81297-induced bias for ipsilateral rotating. In conclusion, SKF 83959 is an in vivo antagonist of dopamine D1 receptors that are coupled to adenylyl cyclase in the nucleus accumbens and the prefrontal cortex. The role of these receptors in the antiparkinson profile of SKF 83959 is discussed.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/analogs & derivatives
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Adenylyl Cyclases/metabolism
- Animals
- Antiparkinson Agents/pharmacology
- Benzazepines/pharmacology
- Dopamine Agonists/pharmacology
- Dopamine Antagonists/pharmacology
- Male
- Motor Activity/drug effects
- Nucleus Accumbens/anatomy & histology
- Nucleus Accumbens/drug effects
- Nucleus Accumbens/metabolism
- Prefrontal Cortex/drug effects
- Prefrontal Cortex/metabolism
- Rats
- Rats, Wistar
- Receptors, Dopamine D1/antagonists & inhibitors
- Social Environment
- Stereotyped Behavior/drug effects
Collapse
Affiliation(s)
- A R Cools
- Department of Psychoneuropharmacology, Nijmegen Institute of Neurosciences, University of Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
43
|
Abstract
Flibanserin has preferential affinity for serotonin 5-HT(1A), dopamine D(4k), and serotonin 5-HT(2A) receptors. In vitro and in microiontophoresis, flibanserin behaves as a 5-HT(1A) agonist, a very weak partial agonist on dopamine D(4) receptors, and a 5-HT(2A) antagonist. In vivo flibanserin binds equally to 5-HT(1A) and 5-HT(2A) receptors. However, under higher levels of brain 5-HT (i.e., under stress), flibanserin may occupy 5-HT(2A) receptors in higher proportion than 5-HT(1A) receptors. The effects of flibanserin on adenylyl cyclase are different from those of buspirone and 8-OH-DPAT, two other purported 5-HT(1A) receptor agonists. Flibanserin reduces neuronal firing rate in cells of the dorsal raphe, hippocampus, and cortex with the CA1 region being the most sensitive in the brain. Flibanserin-induced reduction in firing rate in the cortex seems to be mediated through stimulation of postsynaptic 5-HT(1A) receptors, whereas the reduction of the number of active cells seems to be mediated through dopamine D(4) receptor stimulation. Flibanserin quickly desensitizes somatic 5-HT autoreceptors in the dorsal raphe and enhances tonic activation of postsynaptic 5-HT(1A) receptors in the CA3 region. Flibanserin preferentially reduces synthesis and extracellular levels of 5-HT in the cortex, where it enhances extracellular levels of NE and DA. Flibanserin displays antidepressant-like activity in most animal models sensitive to antidepressants. Such activity, however, seems qualitatively different from that exerted by other antidepressants. Flibanserin seems to act via direct or indirect stimulation of 5-HT(1A), DA, and opioid receptors in those animal models. Flibanserin does not display consistent effects in animal models of anxiety and seems to exert potential antipsychotic effects. Flibanserin may induce some sedation but does not induce observable toxic effects at pharmacologically relevant doses.
Collapse
Affiliation(s)
- Franco Borsini
- Boehringer Ingelheim Pharma KG, Biberach an der Riss, Germany.
| | | | | | | | | | | |
Collapse
|
44
|
Wang Q, Jolly JP, Surmeier JD, Mullah BM, Lidow MS, Bergson CM, Robishaw JD. Differential dependence of the D1 and D5 dopamine receptors on the G protein gamma 7 subunit for activation of adenylylcyclase. J Biol Chem 2001; 276:39386-93. [PMID: 11500503 DOI: 10.1074/jbc.m104981200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The D(1) dopamine receptor, G protein gamma(7) subunit, and adenylylcyclase are selectively expressed in the striatum, suggesting their potential interaction in a common signaling pathway. To evaluate this possibility, a ribozyme strategy was used to suppress the expression of the G protein gamma(7) subunit in HEK 293 cells stably expressing the human D(1) dopamine receptor. Prior in vitro analysis revealed that the gamma(7) ribozyme possessed cleavage activity directed exclusively toward the gamma(7) RNA transcript (Wang, Q., Mullah, B., Hansen, C., Asundi, J., and Robishaw, J. D. (1997) J. Biol. Chem. 272, 26040-26048). In vivo analysis of cells transfected with the gamma(7) ribozyme showed a specific reduction in the expression of the gamma(7) protein. Coincident with the loss of the gamma(7) protein, there was a noticeable reduction in the expression of the beta(1) protein, confirming their interaction in these cells. Finally, functional analysis of ribozyme-mediated suppression of the beta(1) and gamma(7) proteins revealed a significant attenuation of SKF81297-stimulated adenylylcyclase activity in D(1) dopamine receptor-expressing cells. By contrast, ribozyme-mediated suppression of the beta(1) and gamma(7) proteins showed no reduction of SKF81297-stimulated adenylylcyclase activity in D(5) dopamine receptor-expressing cells. Taken together, these data indicate that the structurally related D(1) and D(5) dopamine receptor subtypes utilize G proteins composed of distinct betagamma subunits to stimulate adenylylcyclase in HEK 293 cells. Underscoring the physiological relevance of these findings, single cell reverse transcriptase-polymerase chain reaction analysis revealed that the D(1) dopamine receptor and the G protein gamma(7) subunit are coordinately expressed in substance P containing neurons in rat striatum, suggesting that the G protein gamma(7) subunit may be a new target for drugs to selectively alter dopaminergic signaling within the brain.
Collapse
Affiliation(s)
- Q Wang
- Henry Hood Research Program, Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania 17822, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Peacock L, Gerlach J. Aberrant behavioral effects of a dopamine D1 receptor antagonist and agonist in monkeys: evidence of uncharted dopamine D1 receptor actions. Biol Psychiatry 2001; 50:501-9. [PMID: 11600103 DOI: 10.1016/s0006-3223(01)01189-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Basic research indicates a role for dopamine (DA) D1 antagonism in the treatment of schizophrenia. Clinical trials have not confirmed any role. Besides the defining second messenger (adenylyl cyclase [AC]), DA D1 receptors are linked to other effectors (e.g., phospholipase C [PLC]). Differing actions of DA D1 antagonists upon differing effectors could explain conflicting results between the lab/clinic. METHODS In a monkey model in which behavioral effects of DA D1 antagonists/agonists have been well characterized we examined: 1) SKF 83959, biochemically, a DA D1 antagonist, behaviorally a DA D1 agonist, and 2) SKF 83822, biochemically, a DA D1 agonist, which, unlike all previously tested DA D1 agonists, does not also stimulate PLC. SKF 83959 and SKF 83822 were given alone and combined with DA D1 and D2 agonists, antagonists, and dextroamphetamine (AMP). RESULTS SKF 83959 acted as a DA D1 agonist (induced oral dyskinesia given alone, counteracted DA D1 antagonist [NNC 756], induced dystonia, and did not inhibit AMP induced behaviors). SKF 83822, unlike previously studied DA D1 agonists, did not induce dyskinesia, but resulted in a state of extreme arousal and locomotor activation without stereotypy, effectively counteracted by NNC 756, but not by SKF 83959 nor raclopride (DA D2 antagonist). CONCLUSIONS It is hypothesized that: 1) dyskinesia is linked to PLC stimulation; 2) DA D1 agonism can play a role in the induction of psychosis, via a mechanism linked neither to AC nor PLC, and 3) DA D1 antagonists differ in antipsychotic potential, possibly via this unidentified mechanism.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/analogs & derivatives
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Arousal/drug effects
- Behavior, Animal/drug effects
- Cebus
- Cross-Over Studies
- Dopamine/metabolism
- Dopamine Agonists/adverse effects
- Dopamine Agonists/pharmacology
- Dopamine Antagonists/adverse effects
- Dopamine Antagonists/pharmacology
- Dyskinesia, Drug-Induced/physiopathology
- Dystonia/chemically induced
- Dystonia/physiopathology
- Locomotion/drug effects
- Receptors, Dopamine D1/drug effects
- Stereotyped Behavior/drug effects
Collapse
Affiliation(s)
- L Peacock
- Institute of Biological Psychiatry, St. Hans Hospital, Roskilde, Denmark
| | | |
Collapse
|
46
|
Tarazi FI. Neuropharmacology of dopamine receptors:: Implications in neuropsychiatric diseases. JOURNAL FOR SCIENTIFIC RESEARCH. MEDICAL SCIENCES 2001; 3:93-104. [PMID: 24019715 PMCID: PMC3174705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
There has been an extraordinary recent accumulation of information concerning the neurobiology and neuropharmacology of dopamine (DA) receptors in the mammalian central nervous system. Many new DA molecular entities have been cloned, their gene, peptide sequences and structures have been identified, their anatomical distributions in the mammalian brain described, and their pharmacology characterized. Progress has been made toward developing selective ligands and drug-candidates for different DA receptors. The new discoveries have greatly stimulated preclinical and clinical studies to explore the neuropharmacology of DA receptors and their implications in the neuropathophysiology of different neuropsychiatric diseases including schizophrenia, Parkinson's disease and attention-deficit hyperactivity disorder. Accordingly, it seems timely to review the salient aspects of this specialized area of preclinical neuropharmacology and its relevance to clinical neuropsychiatry.
Collapse
Affiliation(s)
- F I Tarazi
- Consolidated Department of Psychiatry and Neuroscience Program, Harvard Medical School; Boston, MA; Mailman Research Center, McLean Division of Massachusetts General Hospital, Belmont, MA 02478, USA. E-mail:
| |
Collapse
|
47
|
Jin LQ, Wang HY, Friedman E. Stimulated D(1) dopamine receptors couple to multiple Galpha proteins in different brain regions. J Neurochem 2001; 78:981-90. [PMID: 11553672 DOI: 10.1046/j.1471-4159.2001.00470.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous studies have revealed that activation of rat striatal D(1) dopamine receptors stimulates both adenylyl cyclase and phospholipase C via G(s) and G(q), respectively. The differential distribution of these systems in brain supports the existence of distinct receptor systems. The present communication extends the study by examining other brain regions: hippocampus, amygdala, and frontal cortex. In membrane preparations of these brain regions, selective stimulation of D(1) dopamine receptors increases the hydrolysis of phosphatidylinositol/phosphatidylinositol 4,5-biphosphate. In these brain regions, D(1) dopamine receptors couple differentially to multiple Galpha protein subunits. Antisera against Galpha(q) blocks dopamine-stimulated PIP(2) hydrolysis in hippocampal and in striatal membranes. The binding of [(35)S]GTPgammaS or [alpha-(32)P]GTP to Galpha(i) was enhanced in all brain regions. Dopamine also increased the binding of [(35)S]GTPgammaS or [alpha-(32)P]GTP to Galpha(q) in these brain regions: hippocampus = amygdala > frontal cortex. However, dopamine-stimulated binding of [(35)S]GTPgammaS to Galphas only in the frontal cortex and striatum. This differential coupling profile in the brain regions was not related to a differential regional distribution of the Galpha proteins. Dopamine induced increases in GTPgammaS binding to Galpha(s) and Galpha(q) was blocked by the D(1) antagonist SCH23390 but not by D(2) receptor antagonist l-sulpiride, suggesting that D(1) dopamine receptors couple to both Galpha(s) and Galpha(q) proteins. Co-immunoprecipitation of Galpha proteins with receptor-binding sites indicate that in the frontal cortex, D(1) dopamine-binding sites are associated with both Galpha(s) and Galpha(q) and, in hippocampus or amygdala, D(1) dopamine receptors couple solely to Galpha(q). The results indicate that in addition to the D(1)/G(s)/adenylyl cyclase system, brain D(1)-like dopamine receptor sites activate phospholipase C through Galpha(q) protein.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Amygdala/metabolism
- Animals
- Benzazepines/pharmacology
- Brain/metabolism
- Cell Membrane/metabolism
- Dopamine/pharmacology
- Dopamine Agonists/pharmacology
- Dopamine Antagonists/pharmacology
- Frontal Lobe/metabolism
- GTP-Binding Protein alpha Subunits, Gq-G11
- GTP-Binding Protein alpha Subunits, Gs/analysis
- GTP-Binding Protein alpha Subunits, Gs/metabolism
- Guanosine 5'-O-(3-Thiotriphosphate)/pharmacology
- Heterotrimeric GTP-Binding Proteins/analysis
- Heterotrimeric GTP-Binding Proteins/metabolism
- Hippocampus/metabolism
- Male
- Phosphatidylinositols/metabolism
- Phosphorus Radioisotopes
- Precipitin Tests
- Rats
- Rats, Sprague-Dawley
- Receptors, Dopamine D1/analysis
- Receptors, Dopamine D1/metabolism
- Sulfur Radioisotopes
- Tritium
Collapse
Affiliation(s)
- L Q Jin
- Laboratory of Molecular Pharmacology, Department of Pharmacology and Physiology, MCP Hahnemann School of Medicine, Philadelphia 19102, USA
| | | | | |
Collapse
|
48
|
Khan ZU, Gutiérrez A, Martín R, Peñafiel A, Rivera A, de la Calle A. Dopamine D5 receptors of rat and human brain. Neuroscience 2001; 100:689-99. [PMID: 11036203 DOI: 10.1016/s0306-4522(00)00274-8] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In contrast to dopamine D1 receptors, the anatomical distribution of D5 receptors in the CNS is poorly described. Therefore, we have studied the localization of dopamine D5 receptors in the brain of rat and human using our newly prepared subtype-specific antibody. Western blot analysis of brain tissues and membranes of cDNA transfected cells, and immunoprecipitation of brain dopamine receptors suggest that this antibody is highly selective for native dopamine D5 receptors. The D5 antibody labeled dopaminergic neurons of mesencephalon, and cortical and subcortical structures. In neostriatum, the D5 receptors were localized in the medium spiny neurons and large cholinergic interneurons. The D5 labeling in caudate nucleus was predominantly in spines of the projection neurons that were frequently making asymmetric synapses. Occasionally, the D5 receptors were also found at the symmetric synapses. Within the cerebral cortex and hippocampus, D5 antibody labeling was prominent in the pyramidal cells and their dendrites. Dopamine D5 receptors were also prominent in the cerebellum, where dopamine innervation is known to be very modest. Differences in the localization of D5 receptors between both species were generally indistinguishable except in hippocampus. In rat, the hippocampal D5 receptor was concentrated in the cell body, whereas in human it was also associated with dendrites. These results show that D5 receptors are localized in the substantia nigra-pars compacta, hypothalamus, striatum, cerebral cortex, nucleus accumbens and olfactory tubercle. Furthermore, the presence of D5 receptors in the areas of dopamine pathways suggests that this receptor may participate actively in dopaminergic neurotransmission.
Collapse
Affiliation(s)
- Z U Khan
- Department of Cell Biology, Faculty of Sciences, University of Málaga, Teatinos 29071, Málaga, Spain.
| | | | | | | | | | | |
Collapse
|
49
|
Holmes A, Hollon TR, Gleason TC, Liu Z, Dreiling J, Sibley DR, Crawley JN. Behavioral characterization of dopamine D₅ receptor null mutant mice. Behav Neurosci 2001. [DOI: 10.1037/0735-7044.115.5.1129] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Abstract
Many genetic studies have focussed on dopamine receptors and their relationship to neuropsychiatric disease. Schizophrenia, bipolar disorder, and substance abuse have been the most studied, but no conclusive linkage or association has been found. The possible influence of dopamine receptor variants on drug response has not received as much attention. While there is some evidence that polymorphisms and mutations in dopamine receptors can alter functional activity and pharmacological profiles, no conclusive data link these gene variants to drug response or disease. The lack of unequivocal findings may be related, in part, to the subtle changes in receptor pharmacology that these polymorphisms and mutations mediate. These subtle effects may be obscured by the influence of genes controlling drug metabolism and kinetics. Further insight into the pharmacogenetics of dopamine receptors may require not just more studies, but novel approaches to the study of complex genetic traits and diseases.
Collapse
MESH Headings
- Animals
- Dopamine Agents/pharmacology
- Humans
- Polymorphism, Genetic/genetics
- Receptors, Dopamine/drug effects
- Receptors, Dopamine/genetics
- Receptors, Dopamine D1/drug effects
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D2/drug effects
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D3
- Receptors, Dopamine D4
- Receptors, Dopamine D5
Collapse
Affiliation(s)
- A H Wong
- Centre for Addiction and Mental Health, 250 College Street, M5T 1R8, Toronto, ON, Canada.
| | | | | |
Collapse
|