1
|
Bayman MG, Inal ZO, Hayiroglu F, Ozturk ENY, Gezginc K. Foetal umbilical cord brain-derived neurotrophic factor (BDNF) levels in pregnancy with gestational diabetes mellitus. J OBSTET GYNAECOL 2022; 42:1097-1102. [PMID: 34989285 DOI: 10.1080/01443615.2021.2006159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The aim of our study was to investigate whether gestational diabetes mellitus (GDM) affects brain-derived neurotrophic factor (BDNF) levels in foetal umbilical cord blood. A total of 96 participants were divided into a GDM group (n = 43) and a non-diabetic control group (n = 53). Cord blood samples of approximately 5 cc were taken immediately after the foetal umbilical cord was clamped during delivery in order to determine BDNF levels. While the mean age, body mass index, birth weight, rate of caesarean delivery, rate of infant macrosomia, and neonatal intensive care unit admission of women with GDM were significantly higher compared to the non-diabetic control group (p < .05), pregnancy complications were comparable between the groups (p > .05). Although no significant differences were noted between the groups with respect to cord blood BDNF levels (0.79 ± 0.37 ng/ml vs. 0.69 ± 017 ng/ml, p = .122), cord blood BDNF values were higher in female infants compared to male infants (0.85 ± 0.33 ng/ml vs. 0.66 ± 0.23 ng/ml, p = .001) and in patients using insulin compared to those not using insulin in the GDM group (0.78 ± 0.14 ng/ml vs. 0.62 ± 0.09 ng/ml, p < .001). This study found that GDM has no effect on cord blood BDNF levels. More in-depth studies with larger series are needed to validate the results of the present study.Impact statementWhat is already known on this subject? Gestational diabetes mellitus (GDM) negatively affects the foetal neurodevelopment due to inflammation and oxidative stress caused by hyperglycaemia. Brain-derived neurotrophic factor (BDNF) expression has been shown to modulate oxidative stress and inflammation, and there may be a relationship between varying BDNF concentrations and GDM.What do the results of this study add? Our study showed that no significant differences were noted between the groups with respect to cord blood BDNF levels, cord blood BDNF values were higher in female infants compared to male infants, and in patients using insulin compared to those not using insulin in the GDM group.What are the implications of these findings for clinical practice and/or further research? GDM negatively affects the foetal neurodevelopment due to inflammation and oxidative stress caused by hyperglycaemia. BDNF expression has also been shown to modulate oxidative stress and inflammation, and there may be a relationship between varying BDNF concentrations and GDM. The association between BDNF expression and GDM has not been clearly elucidated in the literature. More in-depth studies with larger series are needed to determine this relationship.
Collapse
Affiliation(s)
- Melike Geyik Bayman
- Departmant of Obstetrics and Gynecology, Necmettin Erbakan University Medical Faculty, Konya, Turkey
| | - Zeynep Ozturk Inal
- Departmant of Obstetrics and Gynecology, Konya Training and Research Hospital, Konya, Turkey
| | - Fatih Hayiroglu
- Departmant of Biochemistry, Necmettin Erbakan University Medical Faculty, Konya, Turkey
| | | | - Kazim Gezginc
- Departmant of Obstetrics and Gynecology, Necmettin Erbakan University Medical Faculty, Konya, Turkey
| |
Collapse
|
2
|
Miller KM, Mercado NM, Sortwell CE. Synucleinopathy-associated pathogenesis in Parkinson's disease and the potential for brain-derived neurotrophic factor. NPJ PARKINSONS DISEASE 2021; 7:35. [PMID: 33846345 PMCID: PMC8041900 DOI: 10.1038/s41531-021-00179-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 03/17/2021] [Indexed: 12/12/2022]
Abstract
The lack of disease-modifying treatments for Parkinson’s disease (PD) is in part due to an incomplete understanding of the disease’s etiology. Alpha-synuclein (α-syn) has become a point of focus in PD due to its connection to both familial and idiopathic cases—specifically its localization to Lewy bodies (LBs), a pathological hallmark of PD. Within this review, we will present a comprehensive overview of the data linking synuclein-associated Lewy pathology with intracellular dysfunction. We first present the alterations in neuronal proteins and transcriptome associated with LBs in postmortem human PD tissue. We next compare these findings to those associated with LB-like inclusions initiated by in vitro exposure to α-syn preformed fibrils (PFFs) and highlight the profound and relatively unique reduction of brain-derived neurotrophic factor (BDNF) in this model. Finally, we discuss the multitude of ways in which BDNF offers the potential to exert disease-modifying effects on the basal ganglia. What remains unknown is the potential for BDNF to mitigate inclusion-associated dysfunction within the context of synucleinopathy. Collectively, this review reiterates the merit of using the PFF model as a tool to understand the physiological changes associated with LBs, while highlighting the neuroprotective potential of harnessing endogenous BDNF.
Collapse
Affiliation(s)
- Kathryn M Miller
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA.,Neuroscience Graduate Program, College of Natural Science, Michigan State University, East Lansing, MI, USA
| | - Natosha M Mercado
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA.,Neuroscience Graduate Program, College of Natural Science, Michigan State University, East Lansing, MI, USA
| | - Caryl E Sortwell
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA. .,Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI, USA.
| |
Collapse
|
3
|
Pejhan S, Del Bigio MR, Rastegar M. The MeCP2E1/E2-BDNF- miR132 Homeostasis Regulatory Network Is Region-Dependent in the Human Brain and Is Impaired in Rett Syndrome Patients. Front Cell Dev Biol 2020; 8:763. [PMID: 32974336 PMCID: PMC7471663 DOI: 10.3389/fcell.2020.00763] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/21/2020] [Indexed: 11/13/2022] Open
Abstract
Rett Syndrome (RTT) is a rare and progressive neurodevelopmental disorder that is caused by de novo mutations in the X-linked Methyl CpG binding protein 2 (MECP2) gene and is subjected to X-chromosome inactivation. RTT is commonly associated with neurological regression, autistic features, motor control impairment, seizures, loss of speech and purposeful hand movements, mainly affecting females. Different animal and cellular model systems have tremendously contributed to our current knowledge about MeCP2 and RTT. However, the majority of these findings remain unexamined in the brain of RTT patients. Based on previous studies in rodent brains, the highly conserved neuronal microRNA “miR132” was suggested to be an inhibitor of MeCP2 expression. The neuronal miR132 itself is induced by Brain Derived Neurotrophic Factor (BDNF), a neurotransmitter modulator, which in turn is controlled by MeCP2. This makes the basis of the MECP2-BDNF-miR132 feedback regulatory loop in the brain. Here, we studied the components of this feedback regulatory network in humans, and its possible impairment in the brain of RTT patients. In this regard, we evaluated the transcript and protein levels of MECP2/MeCP2E1 and E2 isoforms, BDNF/BDNF, and miR132 (both 3p and 5p strands) by real time RT-PCR, Western blot, and ELISA in four different regions of the human RTT brains and their age-, post-mortem delay-, and sex-matched controls. The transcript level of the studied elements was significantly compromised in RTT patients, even though the change was not identical in different parts of the brain. Our data indicates that MeCP2E1/E2-BDNF protein levels did not follow their corresponding transcript trends. Correlational studies suggested that the MECP2E1/E2-BDNF-miR132 homeostasis regulation might not be similarly controlled in different parts of the human brain. Despite challenges in evaluating autopsy samples in rare diseases, our findings would help to shed some light on RTT pathobiology, and obscurities caused by limited studies on MeCP2 regulation in the human brain.
Collapse
Affiliation(s)
- Shervin Pejhan
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Marc R Del Bigio
- Department of Pathology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Mojgan Rastegar
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
4
|
Prominent Postsynaptic and Dendritic Exocytosis of Endogenous BDNF Vesicles in BDNF-GFP Knock-in Mice. Mol Neurobiol 2019; 56:6833-6855. [DOI: 10.1007/s12035-019-1551-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/13/2019] [Indexed: 12/23/2022]
|
5
|
Association between Brain-Derived Neurotrophic Factor (BDNF) Levels in 2 nd Trimester Amniotic Fluid and Fetal Development. Mediators Inflamm 2018; 2018:8476217. [PMID: 30622436 PMCID: PMC6304926 DOI: 10.1155/2018/8476217] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/10/2018] [Accepted: 10/30/2018] [Indexed: 12/20/2022] Open
Abstract
The development of the fetal nervous system mirrors general fetal development, comprising a combination of genetic resources and effects of the intrauterine environment. Our aim was to assess the 2nd trimester amniotic fluid levels of brain-derived neurotrophic factor (BDNF) and to investigate its association with fetal growth. In accordance with our study design, samples of amniotic fluid were collected from women who had undergone amniocentesis early in the 2nd trimester. All pregnancies were followed up until delivery and fetal growth patterns and birth weights were recorded, following which pregnancies were divided into three groups based on fetal weight: (1) AGA (appropriate for gestational age), (2) SGA (small for gestational age), and (3) LGA (large for gestational age). We focused on these three groups representing a reflection of the intrauterine growth spectrum. Our results revealed the presence of notably higher BDNF levels in the amniotic fluid of impaired growth fetuses by comparison with those of normal growth. Both SGA and macrosomic fetuses are characterized by notably higher amniotic fluid levels of BDNF (mean values of 36,300 pg/ml and 35,700 pg/ml, respectively) compared to normal-growth fetuses (mean value of 32,700 pg/ml). Though apparently small, this difference is, nevertheless, statistically significant (p value < 0.05) in SGA fetuses in the extremes of the distribution, i.e., below the 3rd centile. In conclusion, there is clear evidence that severe impairment of fetal growth induces the increased production of fetal brain growth factor as an adaptive mechanism in reaction to a hostile intrauterine environment, thereby accelerating fetal brain development and maturation.
Collapse
|
6
|
Morozova AY, Arutjunyan AV, Milyutina YP, Morozova PY, Kozina LS, Zhuravin IA. The Dynamics of the Contents of Neurotrophic Factors in Early Ontogeny in the Brain Structures of Rats Subjected to Prenatal Hypoxia. NEUROCHEM J+ 2018. [DOI: 10.1134/s181971241803008x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Sun Y, Sun X, Qu H, Zhao S, Xiao T, Zhao C. Neuroplasticity and behavioral effects of fluoxetine after experimental stroke. Restor Neurol Neurosci 2018; 35:457-468. [PMID: 28854520 DOI: 10.3233/rnn-170725] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The brain can undergo self-repair and has the ability to compensate for functions lost after a stroke. The plasticity of the ischemic brain is influenced by several factors including aging and pharmacotherapy. Fluoxetine is an antidepressant which enhances serotonergic neurotransmission through selective inhibition of neuronal reuptake of serotonin. In clinical practice, fluoxetine alleviates the symptoms of post-stroke depression (PSD), helps motor recovery in stroke patients. In animal experiments, chronic administration of fluoxetine induces increased excitability of mature granule cells (GCs), enhancing axonal and dendritic reorganization, as well as promoting neurogenesis or angiogenesis in the dentate gurus (DG), but the effect of fluoxetine in the subventricular zone (SVZ) remains controversial. Meanwhile, chronic treatment with fluoxetine did not reverse age-dependent suppression of proliferation cells in the DG. Interestingly, although fluoxetine has been found to enhance neurogenesis in the DG in stroke rats, this property is not consistent with the behavioral recovery. More studies into this issue will be required to reveal how to translate enhanced neuronal plasticity into behavioral benefits. This review provides an update of the current knowledge about the neurogenesis and the fate of the newly generated cells after the use of fluoxetine, as well as its ability to promote a behavioral recovery after stroke in clinical and experimental results and attempts to define the therapeutic properties of fluoxetine in regenerative neuroscience.
Collapse
Affiliation(s)
- Yefei Sun
- Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Xiaoyu Sun
- Department of Neurology, The People's Hospital of Liaoning Province, Shenyang, China
| | - Huiling Qu
- Department of Neurology, The People's Hospital of Liaoning Province, Shenyang, China
| | - Shanshan Zhao
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Ting Xiao
- Dermatology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Immunodermatology, Ministry of Health, Ministry of Education, Shenyang, China
| | - Chuansheng Zhao
- Neurology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
8
|
Bezchlibnyk YB, Stone SSD, Hamani C, Lozano AM. High frequency stimulation of the infralimbic cortex induces morphological changes in rat hippocampal neurons. Brain Stimul 2016; 10:315-323. [PMID: 27964870 DOI: 10.1016/j.brs.2016.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/03/2016] [Accepted: 11/21/2016] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Although a significant subset of patients with major depressive disorder (MDD) fail to respond to medical or behavioural therapy, deep brain stimulation (DBS) applied to the subgenual cingulate cortex (SCC; sg25) has been shown to reduce depressive symptoms in a subset of patients. This area receives projections from neurons in the CA1 region and subiculum of the hippocampus (HC), a brain region implicated in the pathobiology and treatment of MDD. OBJECTIVE To assess whether high frequency stimulation (HFS) of the infralimbic cortex is associated with changes in cellular morphology in the HC. METHODS Rats were subjected to either infralimbic HFS or sham-stimulation. Measures of cellular morphology, including dendritic length and complexity, were assessed in pyramidal neurons in the CA1 region of the HC by means of the Golgi-Cox histological stain. RESULTS Dendritic length (p = 0.013) and number of branch points (p = 0.004) were significantly increased across the entire dendritic tree in animals subjected to HFS. Subsequent Scholl analysis revealed that for dendritic length these effects were localized to the region between 80 and 160 μm from the soma (p < 0.001 for either 40 μm interval) in the basal dendritic tree, while branch point number was predominantly increased between 120 and 160 μm from the soma (p < 0.001) in the apical dendritic tree. CONCLUSIONS High-frequency stimulation of the infralimbic cortex increases the complexity of apical dendrites and the length of basal dendritic trees of pyramidal neurons located in the CA1 hippocampal subfield relative to sham-stimulated animals.
Collapse
Affiliation(s)
- Yarema B Bezchlibnyk
- Department of Neurosurgery, Emory University Hospital, Atlanta, GA, United States
| | - Scellig S D Stone
- Harvard Medical School, Boston, MA, United States; Department of Neurosurgery, Boston Children's Hospital, Boston, MA, United States
| | - Clement Hamani
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Toronto Western Research Institute, Krembil Discovery Tower, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
Mirisis AA, Alexandrescu A, Carew TJ, Kopec AM. The Contribution of Spatial and Temporal Molecular Networks in the Induction of Long-term Memory and Its Underlying Synaptic Plasticity. AIMS Neurosci 2016; 3:356-384. [PMID: 27819030 PMCID: PMC5096789 DOI: 10.3934/neuroscience.2016.3.356] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ability to form long-lasting memories is critical to survival and thus is highly conserved across the animal kingdom. By virtue of its complexity, this same ability is vulnerable to disruption by a wide variety of neuronal traumas and pathologies. To identify effective therapies with which to treat memory disorders, it is critical to have a clear understanding of the cellular and molecular mechanisms which subserve normal learning and memory. A significant challenge to achieving this level of understanding is posed by the wide range of distinct temporal and spatial profiles of molecular signaling induced by learning-related stimuli. In this review we propose that a useful framework within which to address this challenge is to view the molecular foundation of long-lasting plasticity as composed of unique spatial and temporal molecular networks that mediate signaling both within neurons (such as via kinase signaling) as well as between neurons (such as via growth factor signaling). We propose that evaluating how cells integrate and interpret these concurrent and interacting molecular networks has the potential to significantly advance our understanding of the mechanisms underlying learning and memory formation.
Collapse
Affiliation(s)
- Anastasios A. Mirisis
- Center for Neural Science, New York University, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | - Anamaria Alexandrescu
- Center for Neural Science, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Thomas J. Carew
- Center for Neural Science, New York University, New York, NY, USA
| | - Ashley M. Kopec
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Edelmann E, Cepeda-Prado E, Franck M, Lichtenecker P, Brigadski T, Leßmann V. Theta Burst Firing Recruits BDNF Release and Signaling in Postsynaptic CA1 Neurons in Spike-Timing-Dependent LTP. Neuron 2015; 86:1041-1054. [DOI: 10.1016/j.neuron.2015.04.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 01/25/2015] [Accepted: 03/31/2015] [Indexed: 01/28/2023]
|
11
|
Gao XP, Liu Q, Nair B, Wong-Riley MTT. Reduced levels of brain-derived neurotrophic factor contribute to synaptic imbalance during the critical period of respiratory development in rats. Eur J Neurosci 2014; 40:2183-95. [PMID: 24666389 DOI: 10.1111/ejn.12568] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/15/2014] [Accepted: 02/18/2014] [Indexed: 02/06/2023]
Abstract
Previously, our electrophysiological studies revealed a transient imbalance between suppressed excitation and enhanced inhibition in hypoglossal motoneurons of rats on postnatal days (P) 12-13, a critical period when abrupt neurochemical, metabolic, ventilatory and physiological changes occur in the respiratory system. The mechanism underlying the imbalance is poorly understood. We hypothesised that the imbalance was contributed by a reduced expression of brain-derived neurotrophic factor (BDNF), which normally enhances excitation and suppresses inhibition. We also hypothesised that exogenous BDNF would partially reverse this synaptic imbalance. Immunohistochemistry/single-neuron optical densitometry, real-time quantitative PCR (RT-qPCR) and whole-cell patch-clamp recordings were done on hypoglossal motoneurons in brainstem slices of rats during the first three postnatal weeks. Our results indicated that: (1) the levels of BDNF and its high-affinity tyrosine receptor kinase B (TrkB) receptor mRNAs and proteins were relatively high during the first 1-1.5 postnatal weeks, but dropped precipitously at P12-13 before rising again afterwards; (2) exogenous BDNF significantly increased the normally lowered frequency of spontaneous excitatory postsynaptic currents but decreased the normally heightened amplitude and frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) during the critical period; (3) exogenous BDNF also decreased the normally heightened frequency of miniature IPSCs at P12-13; and (4) the effect of exogenous BDNF was partially blocked by K252a, a TrkB receptor antagonist. Thus, our results are consistent with our hypothesis that BDNF and TrkB play an important role in the synaptic imbalance during the critical period. This may have significant implications for the mechanism underlying sudden infant death syndrome.
Collapse
Affiliation(s)
- Xiu-Ping Gao
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | | | | | | |
Collapse
|
12
|
Chaieb L, Antal A, Ambrus GG, Paulus W. Brain-derived neurotrophic factor: its impact upon neuroplasticity and neuroplasticity inducing transcranial brain stimulation protocols. Neurogenetics 2014; 15:1-11. [DOI: 10.1007/s10048-014-0393-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/07/2014] [Indexed: 01/05/2023]
|
13
|
Wetmore C, Olson L. Expression and regulation of neurotrophins and their receptors in hippocampal systems. Hippocampus 2013. [DOI: 10.1002/hipo.1993.4500030721] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Cynthia Wetmore
- Department of Cell Biology and Neuroanatomy, University of Minnesota, Minneapolis, Minnesota, U.S.A
| | - Lars Olson
- Department of Histology and Neurobiology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
14
|
Pre- and postsynaptic twists in BDNF secretion and action in synaptic plasticity. Neuropharmacology 2013; 76 Pt C:610-27. [PMID: 23791959 DOI: 10.1016/j.neuropharm.2013.05.043] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/12/2013] [Accepted: 05/14/2013] [Indexed: 12/30/2022]
Abstract
Overwhelming evidence collected since the early 1990's strongly supports the notion that BDNF is among the key regulators of synaptic plasticity in many areas of the mammalian central nervous system. Still, due to the extremely low expression levels of endogenous BDNF in most brain areas, surprisingly little data i) pinpointing pre- and postsynaptic release sites, ii) unraveling the time course of release, and iii) elucidating the physiological levels of synaptic activity driving this secretion are available. Likewise, our knowledge regarding pre- and postsynaptic effects of endogenous BDNF at the single cell level in mediating long-term potentiation still is sparse. Thus, our review will discuss the data currently available regarding synaptic BDNF secretion in response to physiologically relevant levels of activity, and will discuss how endogenously secreted BDNF affects synaptic plasticity, giving a special focus on spike timing-dependent types of LTP and on mossy fiber LTP. We will attempt to open up perspectives how the remaining challenging questions regarding synaptic BDNF release and action might be addressed by future experiments. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'.
Collapse
|
15
|
Liu Q, Wong-Riley MTT. Postnatal development of brain-derived neurotrophic factor (BDNF) and tyrosine protein kinase B (TrkB) receptor immunoreactivity in multiple brain stem respiratory-related nuclei of the rat. J Comp Neurol 2013; 521:109-29. [PMID: 22678720 DOI: 10.1002/cne.23164] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 04/23/2012] [Accepted: 06/01/2012] [Indexed: 11/11/2022]
Abstract
Previously, we found a transient imbalance between suppressed excitation and enhanced inhibition in the respiratory network of the rat around postnatal days (P) 12-13, a critical period when the hypoxic ventilatory response is at its weakest. The mechanism underlying the imbalance is poorly understood. Brain-derived neurotrophic factor (BDNF) and its tyrosine protein kinase B (TrkB) receptors are known to potentiate glutamatergic and attenuate gamma-aminobutyric acid (GABA)ergic neurotransmission, and BDNF is essential for respiratory development. We hypothesized that the excitation-inhibition imbalance during the critical period stemmed from a reduced expression of BDNF and TrkB at that time within respiratory-related nuclei of the brain stem. An in-depth, semiquantitative immunohistochemical study was undertaken in seven respiratory-related brain stem nuclei and one nonrespiratory nucleus in P0-21 rats. The results indicate that the expressions of BDNF and TrkB: 1) in the pre-Bötzinger complex, nucleus ambiguus, commissural and ventrolateral subnuclei of solitary tract nucleus, and retrotrapezoid nucleus/parafacial respiratory group were significantly reduced at P12, but returned to P11 levels by P14; 2) in the lateral paragigantocellular nucleus and parapyramidal region were increased from P0 to P7, but were strikingly reduced at P10 and plateaued thereafter; and 3) in the nonrespiratory cuneate nucleus showed a gentle plateau throughout the first 3 postnatal weeks, with only a slight decline of BDNF expression after P11. Thus, the significant downregulation of both BDNF and TrkB in respiratory-related nuclei during the critical period may form the basis of, or at least contribute to, the inhibitory-excitatory imbalance within the respiratory network during this time.
Collapse
Affiliation(s)
- Qiuli Liu
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|
16
|
Bulken-Hoover JD, Jackson WM, Ji Y, Volger JA, Tuan RS, Nesti LJ. Inducible expression of neurotrophic factors by mesenchymal progenitor cells derived from traumatically injured human muscle. Mol Biotechnol 2012; 51:128-36. [PMID: 21904958 DOI: 10.1007/s12033-011-9445-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Peripheral nerve damage frequently accompanies musculoskeletal trauma and repair of these nerves could be enhanced by the targeted application of neurotrophic factors (NTFs), which are typically expressed by endogenous cells that support nerve regeneration. Injured muscle tissues express NTFs to promote reinnervation as the tissue regenerates, but the source of these factors from within the muscles is not fully understood. We have previously identified a population of mesenchymal progenitor cells (MPCs) in traumatized muscle tissue with properties that support tissue regeneration, and our hypothesis was that MPCs also secrete the NTFs that are associated with muscle tissue reinnervation. We determined that MPCs express genes associated with neurogenic function and measured the protein-level expression of specific NTFs with known functions to support nerve regeneration. We also demonstrated the effectiveness of a neurotrophic induction protocol to enhance the expression of the NTFs, which suggests that the expression of these factors may be modulated by the cellular environment. Finally, neurotrophic induction affected the expression of cell surface markers and proliferation rate of the MPCs. Our findings indicate that traumatized muscle-derived MPCs may be useful as a therapeutic cell type to enhance peripheral nerve regeneration following musculoskeletal injury.
Collapse
Affiliation(s)
- Jamie D Bulken-Hoover
- Cartilage Biology and Orthopaedic Branch, Department of Health and Human Services, National Institute of Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, MD MSC 8022, USA
| | | | | | | | | | | |
Collapse
|
17
|
Dieni S, Matsumoto T, Dekkers M, Rauskolb S, Ionescu MS, Deogracias R, Gundelfinger ED, Kojima M, Nestel S, Frotscher M, Barde YA. BDNF and its pro-peptide are stored in presynaptic dense core vesicles in brain neurons. ACTA ACUST UNITED AC 2012; 196:775-88. [PMID: 22412021 PMCID: PMC3308691 DOI: 10.1083/jcb.201201038] [Citation(s) in RCA: 258] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Contrasting with the long-established retrograde model for neurotrophin function, specific immunohistochemical localization of brain-derived neurotrophic factor in the central nervous system supports the alternative model of presynaptic localization and anterograde function. Although brain-derived neurotrophic factor (BDNF) regulates numerous and complex biological processes including memory retention, its extremely low levels in the mature central nervous system have greatly complicated attempts to reliably localize it. Using rigorous specificity controls, we found that antibodies reacting either with BDNF or its pro-peptide both stained large dense core vesicles in excitatory presynaptic terminals of the adult mouse hippocampus. Both moieties were ∼10-fold more abundant than pro-BDNF. The lack of postsynaptic localization was confirmed in Bassoon mutants, a seizure-prone mouse line exhibiting markedly elevated levels of BDNF. These findings challenge previous conclusions based on work with cultured neurons, which suggested activity-dependent dendritic synthesis and release of BDNF. They instead provide an ultrastructural basis for an anterograde mode of action of BDNF, contrasting with the long-established retrograde model derived from experiments with nerve growth factor in the peripheral nervous system.
Collapse
Affiliation(s)
- Sandra Dieni
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
PKC ε activation prevents synaptic loss, Aβ elevation, and cognitive deficits in Alzheimer's disease transgenic mice. J Neurosci 2011; 31:630-43. [PMID: 21228172 DOI: 10.1523/jneurosci.5209-10.2011] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Among the pathologic hallmarks of Alzheimer's disease (AD) neurodegeneration, only synaptic loss in the brains of AD patients closely correlates with the degree of dementia in vivo. Here, we describe a molecular basis for this AD loss of synapses: pathological reduction of synaptogenic PKC isozymes and their downstream synaptogenic substrates, such as brain-derived neurotrophic factor. This reduction, particularly of PKC α and ε, occurs in association with elevation of soluble β amyloid protein (Aβ), but before the appearance of the amyloid plaques or neuronal loss in the Tg2576 AD transgenic mouse strain. Conversely, treatment of the Tg2576 mouse brain with the PKC activator, bryostatin-1, restores normal or supranormal levels of PKC α and ε, reduces the level of soluble Aβ, prevents and/or reverses the loss of hippocampal synapses, and prevents the memory impairment observed at 5 months postpartum. Similarly, the PKC ε-specific activator, DCP-LA, effectively prevents synaptic loss, amyloid plaques, and cognitive deficits (also prevented by bryostatin-1) in the much more rapidly progressing 5XFAD transgenic strain. These results suggest that synaptic loss and the resulting cognitive deficits depend on the balance between the lowering effects of Aβ on PKC α and ε versus the lowering effects of PKC on Aβ in AD transgenic mice.
Collapse
|
19
|
BDNF signaling in the formation, maturation and plasticity of glutamatergic and GABAergic synapses. Exp Brain Res 2009; 199:203-34. [PMID: 19777221 DOI: 10.1007/s00221-009-1994-z] [Citation(s) in RCA: 228] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 08/12/2009] [Indexed: 01/17/2023]
Abstract
In the past 15 years numerous reports provided strong evidence that brain-derived neurotrophic factor (BDNF) is one of the most important modulators of glutamatergic and GABAergic synapses. Remarkable progress regarding localization, kinetics, and molecular mechanisms of BDNF secretion has been achieved, and a large number of studies provided evidence that continuous extracellular supply of BDNF is important for the proper formation and functional maturation of glutamatergic and GABAergic synapses. BDNF can play a permissive role in shaping synaptic networks, making them more susceptible for the occurrence of plastic changes. In addition, BDNF appears to be also an instructive factor for activity-dependent long-term synaptic plasticity. BDNF release just in response to synaptic stimulation might be a molecular trigger to convert high-frequency synaptic activity into long-term synaptic memories. This review attempts to summarize the current knowledge in synaptic secretion and synaptic action of BDNF, including both permissive and instructive effects of BDNF in synaptic plasticity.
Collapse
|
20
|
Zhang B, Pan X. RDX induces aberrant expression of microRNAs in mouse brain and liver. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:231-40. [PMID: 19270793 PMCID: PMC2649225 DOI: 10.1289/ehp.11841] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2008] [Accepted: 09/19/2008] [Indexed: 05/10/2023]
Abstract
BACKGROUND Although microRNAs (miRNAs) have been found to play an important role in many biological and metabolic processes, their functions in animal response to environmental toxicant exposure are largely unknown. OBJECTIVES We used hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), a common environmental contaminant, as a toxicant stressor to investigate toxicant-induced changes in miRNA expression in B6C3F1 mice and the potential mechanism of RDX-induced toxic action. METHODS B6C3F1 mice were fed diets with or without 5 mg/kg RDX for 28 days. After the feeding trials, we isolated RNAs from both brain and liver tissues and analyzed the expression profiles of 567 known mouse miRNAs using microarray and quantitative real-time polymerase chain reaction technologies. RESULTS RDX exposure induced significant changes in miRNA expression profiles. A total of 113 miRNAs, belonging to 75 families, showed significantly altered expression patterns after RDX exposure. Of the 113 miRNAs, 10 were significantly up-regulated and 3 were significantly down-regulated (p < 0.01) in both mouse brain and liver. Many miRNAs had tissue-specific responses to RDX exposure. Specifically, expression of seven miRNAs was up-regulated in the brain but down-regulated in the liver or up-regulated in the liver but down-regulated in the brain (p < 0.01). Many aberrantly expressed miRNAs were related to various cancers, toxicant-metabolizing enzymes, and neurotoxicity. We found a significant up-regulation of oncogenic miRNAs and a significant down-regulation of tumor-suppressing miRNAs, which included let-7, miR-17-92, miR-10b, miR-15, miR-16, miR-26, and miR-181. CONCLUSIONS Environmental toxicant exposure alters the expression of a suite of miRNAs.
Collapse
Affiliation(s)
- Baohong Zhang
- Department of Biology, East Carolina University, Greenville, North Carolina 27858, USA.
| | | |
Collapse
|
21
|
Coupé B, Dutriez-Casteloot I, Breton C, Lefèvre F, Mairesse J, Dickes-Coopman A, Silhol M, Tapia-Arancibia L, Lesage J, Vieau D. Perinatal undernutrition modifies cell proliferation and brain-derived neurotrophic factor levels during critical time-windows for hypothalamic and hippocampal development in the male rat. J Neuroendocrinol 2009; 21:40-8. [PMID: 19094092 DOI: 10.1111/j.1365-2826.2008.01806.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Maternal perinatal undernutrition (MPU) modifies the activity of the hypothalamic-pituitary-adrenal axis and sensitises to the development of metabolic and cognitive adult diseases. Because the hypothalamus and hippocampus are involved in the regulation of neuroendocrine activity, energy metabolism and cognition, we hypothesised that a maternal 50% food restriction (FR50) from day 14 of pregnancy (E14) until postnatal day 21 (P21) would affect the development of these structures in male rat offspring. Protein and mRNA levels of brain-derived neurotrophic factor (BDNF) and cell proliferation [analysed by 5-bromodeoxyuridine (BrdU) incorporation] were compared in both control and FR50 rats from E21 to P22. Although the pattern of the evolution of BDNF concentration and cell proliferation throughout development was not strikingly different between groups, several disturbances at specific developmental stages were observed. FR50 rats exhibited a delayed increase of hippocampal BDNF content whereas, in the hypothalamus, BDNF level was augmented from E21 to P14 and associated, at this latter stage, with an increased mRNA expression of TRkB-T2. In both groups, a correlation between BDNF content and the number of BrdU positive cells was noted in the dentate gyrus, whereas opposite variations were observed in CA1, CA2 and CA3 layers, and in the arcuate and ventromedial nuclei. In the hippocampus, P15-FR50 rats showed an increased number of BrdU positive cells in all regions, whereas, at P22, a decrease was observed in the CA2. In the hypothalamus, between E21 and P8, MPU increases the number of BrdU positive cells in all regions analysed and, until P15, marked differences were noticed in the median eminence, the paraventricular nucleus and the arcuate nucleus. Taken together, the results obtained in the present study show that MPU changes the time course of production of BDNF and cell proliferation in specific hippocampal and hypothalamic areas during sensitive developmental windows, suggesting that these early perinatal modifications may have long-lasting consequences.
Collapse
Affiliation(s)
- B Coupé
- Unité de Neurosciences et Physiologie Adaptatives, Equipe dénutritions maternelles périnatales, EA 4052, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tapia-Arancibia L, Aliaga E, Silhol M, Arancibia S. New insights into brain BDNF function in normal aging and Alzheimer disease. ACTA ACUST UNITED AC 2008; 59:201-20. [PMID: 18708092 DOI: 10.1016/j.brainresrev.2008.07.007] [Citation(s) in RCA: 425] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 07/30/2008] [Accepted: 07/30/2008] [Indexed: 01/13/2023]
Abstract
The decline observed during aging involves multiple factors that influence several systems. It is the case for learning and memory processes which are severely reduced with aging. It is admitted that these cognitive effects result from impaired neuronal plasticity, which is altered in normal aging but mainly in Alzheimer disease. Neurotrophins and their receptors, notably BDNF, are expressed in brain areas exhibiting a high degree of plasticity (i.e. the hippocampus, cerebral cortex) and are considered as genuine molecular mediators of functional and morphological synaptic plasticity. Modification of BDNF and/or the expression of its receptors (TrkB.FL, TrkB.T1 and TrkB.T2) have been described during normal aging and Alzheimer disease. Interestingly, recent findings show that some physiologic or pathologic age-associated changes in the central nervous system could be offset by administration of exogenous BDNF and/or by stimulating its receptor expression. These molecules may thus represent a physiological reserve which could determine physiological or pathological aging. These data suggest that boosting the expression or activity of these endogenous protective systems may be a promising therapeutic alternative to enhance healthy aging.
Collapse
|
23
|
Prakash A, Zhang H, Pandey SC. Innate differences in the expression of brain-derived neurotrophic factor in the regions within the extended amygdala between alcohol preferring and nonpreferring rats. Alcohol Clin Exp Res 2008; 32:909-20. [PMID: 18445109 DOI: 10.1111/j.1530-0277.2008.00650.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Animal lines such as alcohol-preferring (P) and nonpreferring (NP) rats appear to be suitable animal models to investigate the biological basis of alcohol-drinking behaviors. The extended amygdala serves as a neuroanatomical substrate for alcohol-drinking behaviors. Brain-derived neurotrophic factor (BDNF) in the amygdala has been implicated in alcohol-drinking behaviors; however, its expression in the extended amygdala of P and NP rats is unknown. Therefore, we examined the basal expression of BDNF in the extended amygdala of alcohol naive P and NP rats. METHODS We determined the basal mRNA and protein levels of BDNF by in situ RT-PCR and immuno-histochemical procedure, respectively, in the amygdaloid [central nucleus of amygdala (CeA), medial nucleus of amygdala (MeA), and basolateral amygdala (BLA)], nucleus accumbal (NAc shell and core), and bed nucleus of stria terminalis (BNST) [lateral BNST (lBNST), medial BNST (mBNST), and ventral BNST (vBNST)] brain structures of P and NP rats. In addition, we examined the localization of BDNF in neurons using double-immunofluorescence labeling of BDNF with neuron-specific nuclear protein (NeuN) and also determined the number of NeuN-positive neurons in the amygdaloid structures of P and NP rats. RESULTS The mRNA and protein levels of BDNF were found to be significantly lower in both the CeA and MeA, but not in the BLA, of P compared with NP rats. We also found that BDNF was expressed in neurons in the amygdaloid structures of P and NP rats. In addition, we found that the number of NeuN-positive neurons was similar in the amygdaloid structures of P and NP rats. Interestingly, the mRNA and protein levels of BDNF were also significantly lower in the lBNST, mBNST, and vBNST of P compared with NP rats. On the other hand, mRNA and protein levels of BDNF were similar in the NAc shell and core structures of P and NP rats. CONCLUSIONS P and NP rats are selectively bred for higher and lower alcohol preference, respectively; therefore it is possible that lower BDNF levels in the amygdaloid and BNST structures may be associated with the excessive alcohol-drinking behaviors of P rats.
Collapse
Affiliation(s)
- Anand Prakash
- Department of Psychiatry, University of Illinois at Chicago, Jesse Brown VA Medical Center, Chicago, Illinois 60612, USA
| | | | | |
Collapse
|
24
|
Vissio PG, Cánepa MM, Maggese MC. Brain-derived neurotrophic factor (BDNF)-like immunoreactivity localization in the retina and brain of Cichlasoma dimerus (Teleostei, Perciformes). Tissue Cell 2008; 40:261-70. [PMID: 18343472 DOI: 10.1016/j.tice.2008.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 01/11/2008] [Accepted: 01/14/2008] [Indexed: 12/21/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin involved in the development and maintenance of vertebrate nervous systems. Although there were several studies in classical animal models, scarce information for fish was available. The main purpose of this study was to analyze the distribution of BDNF in the brain and retina of the cichlid fish Cichlasoma dimerus. By immunohistochemistry we detected BDNF-like immunoreactive cells in the cytoplasm and the nuclei of the ganglion cell layer and the inner nuclear layer of the retina. In the optic tectum, BDNF-like immunoreactivity was detected in the nucleus of neurons of the stratum periventriculare and the stratum marginale and in neurons of the intermediate layers. In the hypothalamus we found BDNF-like immunoreactivity mainly in the cytoplasm of the nucleus lateralis tuberis and the nucleus of the lateral recess. To confirm the nuclear and cytoplasm localization of BDNF we performed subcellular fractionation, followed by Western blot, detecting a 39 kDa immunoreactive-band corresponding to a possible precursor form of BDNF in both fractions. BDNF-like immunoreactivity was distributed in areas related with photoreception (retina), the integration center of retinal projections (optic tectum) and the control center of background and stress adaptation (hypothalamus). These results provide baseline anatomical information for future research about the role of neurotrophins in the adult fish central nervous system.
Collapse
Affiliation(s)
- P G Vissio
- CONICET, Laboratorio de Embriología Animal, DBBE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina.
| | | | | |
Collapse
|
25
|
Pillai A. Brain-derived neurotropic factor/TrkB signaling in the pathogenesis and novel pharmacotherapy of schizophrenia. Neurosignals 2008; 16:183-93. [PMID: 18253057 DOI: 10.1159/000111562] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The role of neurotropins, predominantly brain-derived neurotropic factor (BDNF), has been implicated in the pathophysiology as well as treatment outcome of schizophrenia. Both human and rodent studies indicate that the beneficial effects of antipsychotic drugs are mediated, at least in part, through BDNF and its receptor, TrkB. This review will discuss the available data on the levels of BDNF and TrkB in subjects with schizophrenia and in animals with and without conventional antipsychotics. The data concerning the impact of the antipsychotic drugs on BDNF/TrkB signaling will also be discussed. More importantly, this review will provide future perspective on BDNF/TrkB signaling as a novel molecular target to correct the pathogenesis and improve the long-term clinical outcome by treatments with conventional and adjunctive drugs.
Collapse
Affiliation(s)
- Anilkumar Pillai
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Medical Research Service Line, Veterans Affairs Medical Center, Augusta, GA 30904, USA.
| |
Collapse
|
26
|
Buckley PF, Mahadik S, Pillai A, Terry A. Neurotrophins and schizophrenia. Schizophr Res 2007; 94:1-11. [PMID: 17524622 DOI: 10.1016/j.schres.2007.01.025] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 01/12/2007] [Accepted: 01/19/2007] [Indexed: 12/30/2022]
Abstract
Neurotrophins have established roles in neuronal development, synaptogenesis, and response to stress/anxious stimuli. Moreover, these agents are neuromodulators of monoaminergic, GABAergic, and cholinergic systems. Amidst a growing appreciation of the developmental neurobiology of schizophrenia--as well as the propensity for progressive brain changes--there is emergent information on abnormalities in the expression of neurotrophins in schizophrenia. This article reviews the literature on neurotrophins and schizophrenia. A schema for understanding the neurobiology of relapse in schizophrenia is offered.
Collapse
Affiliation(s)
- Peter F Buckley
- Department of Psychiatry and Health Behavior, Medical College of Georgia, 1515 Pope Avenue, Augusta, Georgia 30912, United States.
| | | | | | | |
Collapse
|
27
|
Sohrabji F, Lewis DK. Estrogen-BDNF interactions: implications for neurodegenerative diseases. Front Neuroendocrinol 2006; 27:404-14. [PMID: 17069877 PMCID: PMC1828910 DOI: 10.1016/j.yfrne.2006.09.003] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2006] [Revised: 07/24/2006] [Accepted: 09/01/2006] [Indexed: 01/08/2023]
Abstract
Since its' discovery over 20 years ago, BDNF has been shown to play a key role in neuronal survival, in promoting neuronal regeneration following injury, regulating transmitter systems and attenuating neural-immune responses. Estrogen's actions in the young and mature brain, and its role in neurodegenerative diseases in many cases overlaps with those observed for BDNF. Reduced estrogen and BDNF are observed in patients with Parkinson's disease and Alzheimer's disease, while high estrogen levels are a risk factor for development of multiple sclerosis. Estrogen receptors, which transduce the actions of estrogen, colocalize to cells that express BDNF and its receptor trkB, and estrogen further regulates the expression of this neurotrophin system. This review describes the distribution of BDNF and trkB expressing cells in the forebrain, and the roles of estrogen and the BDNF-trkB neurotrophin system in Parkinson's disease, Alzheimer's disease and multiple sclerosis.
Collapse
Affiliation(s)
- Farida Sohrabji
- Department of Neuroscience and Experimental Therapeutics, TAMU Health Science Center, College Station, TX 77843-1114, USA.
| | | |
Collapse
|
28
|
Lee TH, Yang JT, Kato H, Wu JH. Hypertension downregulates the expression of brain-derived neurotrophic factor in the ischemia-vulnerable hippocampal CA1 and cortical areas after carotid artery occlusion. Brain Res 2006; 1116:31-8. [PMID: 16962081 DOI: 10.1016/j.brainres.2006.07.117] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 07/17/2006] [Accepted: 07/29/2006] [Indexed: 12/23/2022]
Abstract
We studied the effect of hypertension on brain damage and brain-derived neurotrophic factor (BDNF) expression in the hippocampal formation and cerebral cortex after permanent occlusion of bilateral common carotid arteries (CCA). Two groups of rats were used, including normotensive Wistar-Kyoto (WKY) rat and spontaneous hypertensive rat (SHR). Each group contained sham operation, 1 week and 4 weeks after bilateral CCA occlusion (n=5-10 in each time point). The blood pressure showed a significant elevation in WKY rats from 1 h after operation to 4 weeks before sacrifice (P<0.05), but was not changed in SHR (P>0.05). However, rectal temperature showed no significant change after operation in WKY rat and SHR (P>0.05) and showed no significant difference at any time point between WKY rat and SHR (P>0.05). Hematoxylin and eosin staining showed SHR had a significantly larger necrotic volume than WKY rats (n=10 in each group, 6044+/-6895 microm(3) vs. 144+/-174 microm(3), P<0.05) at 4 weeks after ischemia. In SHR, BDNF immunoreactivity and mRNA decreased significantly from 1 week to 4 weeks in both the hippocampal CA1 and cortical areas (P<0.01) but decreased transiently in dentate gyrus. However, in WKY rats, BDNF immunoreactivity and mRNA decreased transiently at 1 week (P<0.05) and recovered at 4 weeks after cerebral ischemia. Our study demonstrates that after bilateral CCA occlusion, preexisting hypertension may aggravate the brain injury and downregulate the expression of BDNF immunoreactivity and mRNA in the ischemia-vulnerable hippocampal CA1 and cortical areas but not in ischemia-resistant dentate gyrus.
Collapse
Affiliation(s)
- Tsong-Hai Lee
- Stroke Section, Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, College of Medicine, Chang Gung University, 5 Fu-Hsing St., Kuei-Shan, Tao-Yuan, 33333 Taiwan.
| | | | | | | |
Collapse
|
29
|
Shoval G, Weizman A. The possible role of neurotrophins in the pathogenesis and therapy of schizophrenia. Eur Neuropsychopharmacol 2005; 15:319-29. [PMID: 15820422 DOI: 10.1016/j.euroneuro.2004.12.005] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 12/29/2004] [Accepted: 12/30/2004] [Indexed: 12/25/2022]
Abstract
The pathogenesis of schizophrenia may be ascribed to early maldevelopment of brain tissue. Neurotrophins are a group of dimeric proteins that affect the development of the nervous system in all vertebrates' species. Since neurotrophins, as well as other growth factors, play a crucial role in neurodevelopment, they are plausible candidates of taking part in the pathophysiology of schizophrenia. In line with this hypothesis, accumulating preclinical and clinical data indicate that dysfunctions of nerve growth factor (NGF), brain derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) may contribute to impaired brain development, neuroplasticity and synaptic "dysconnectivity" leading to the schizophrenic syndrome, or at least some of its presentations. This article reviews the functions of neurotrophins in the complex process of normal brain development, and their possible relevance to the neuropathology and neuropharmacology of schizophrenia. Further research in this area may bring about novel pharmacological therapeutic strategies to this chronic debilitating disorder.
Collapse
Affiliation(s)
- Gal Shoval
- Adolescent Inpatient Department, Geha Psychiatric Hospital, Rabin Medical Center, P.O. Box 102, Petah Tiqva 49 100, Israel.
| | | |
Collapse
|
30
|
Hajszan T, MacLusky NJ, Leranth C. Short-term treatment with the antidepressant fluoxetine triggers pyramidal dendritic spine synapse formation in rat hippocampus. Eur J Neurosci 2005; 21:1299-303. [PMID: 15813939 DOI: 10.1111/j.1460-9568.2005.03968.x] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The pathomechanism of major depressive disorder and the neurobiological basis of antidepressant therapy are still largely unknown. It has been proposed that disturbed hippocampal activity could underlie some of the cognitive and vegetative symptoms of depression, at least in part because of loss of pyramidal cell synaptic contacts, a process that is likely to be reversed by antidepressant treatment. Here we provide evidence that daily administration of the antidepressant fluoxetine to ovariectomized female rats for 5 days induces a robust increase in pyramidal cell dendritic spine synapse density in the hippocampal CA1 field, with similar changes appearing in CA3 after 2 weeks of treatment. This rapid synaptic remodelling might represent an early step in the fluoxetine-induced cascade of responses that spread across the entire hippocampal circuitry, leading to the restoration of normal function in the hippocampus. Hippocampal synaptic remodelling might provide a potential mechanism to explain certain aspects of antidepressant therapy and mood disorders, especially those associated with changes in reproductive state in women, that cannot be reconciled adequately with current theories for depression.
Collapse
Affiliation(s)
- Tibor Hajszan
- Department of Obstetrics, Gynaecology and Reproductive Sciences, Yale University School of Medicine, 333 Cedar Street, FMB 312, New Haven, CT 06520-8063, USA
| | | | | |
Collapse
|
31
|
Peiris TS, Machaalani R, Waters KA. Brain-derived neurotrophic factor mRNA and protein in the piglet brainstem and effects of Intermittent Hypercapnic Hypoxia. Brain Res 2004; 1029:11-23. [PMID: 15533311 DOI: 10.1016/j.brainres.2004.09.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2004] [Indexed: 12/27/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin essential for the development of normal respiratory rhythm and ventilatory control. Chronic exposure to Intermittent Hypercapnic Hypoxia (IHH) has been shown to alter ventilatory responses of piglets. This study investigated changes in BDNF distribution and expression in seven nuclei of the caudal medulla, from piglets exposed to IHH for 1, 2, 3, or 4 days before death, using non-radioactive in situ hybridisation (for mRNA) and immunohistochemistry (for protein). Compared to controls, BDNF mRNA was markedly increased across the entire medulla of the brainstem, after all durations of IHH (1-4 days). In contrast, BDNF protein expression increased after 1 day of exposure to IHH (p=0.003), but, thereafter, was not different to controls. Amongst individual nuclei, neurons of the dorsal motor nucleus of the vagus (DMNV) showed increased BDNF mRNA (p<0.01), but decreased protein expression (p=0.05) after all durations of IHH. In the ION, both mRNA and protein for BDNF were significantly increased after 1 day IHH (p<0.01 and p=0.001, respectively), but these increases were not sustained. This study is the first to investigate changes in BDNF expression in response to environmental challenges during postnatal development in the brainstem. Implications of the wide distribution of BDNF in the piglet caudal medulla and increased expression after IHH exposure are discussed, with particular reference to roles for BDNF-dependent neurons at this stage of development.
Collapse
Affiliation(s)
- Tanya Shyami Peiris
- Department of Pathology, Room 206, Blackburn Building, DO6, University of Sydney, Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
32
|
Yanamoto H, Xue JH, Miyamoto S, Nagata I, Nakano Y, Murao K, Kikuchi H. Spreading depression induces long-lasting brain protection against infarcted lesion development via BDNF gene-dependent mechanism. Brain Res 2004; 1019:178-88. [PMID: 15306252 DOI: 10.1016/j.brainres.2004.05.105] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2004] [Indexed: 11/17/2022]
Abstract
Preconditioning the rat brain with spreading depression for 48 h induces potent ischemic tolerance (infarct tolerance) after an interval of 12-15 days, consequently reducing the infarcted lesion size in the acute phase following focal cerebral ischemia. However, persistence of the morphological and functional neuroprotection has not yet been proven. We tested whether tolerance-derived neuroprotection against focal cerebral ischemia persists or merely delays the progress of cerebral infarction. Prolonged spreading depression was induced in mice by placing a depolarized focus with intracerebral microinfusion of KCl for 24 h; after intervals of 3, 6, 9 or 12 days, temporary focal ischemia was imposed. In the analysis of the infarcted lesion volume 24 h after ischemia, groups with 6 or 9 day interval demonstrated significantly smaller lesion volume compared to time-matched vehicle control group (P=0.002). Significant reduction in cerebral infarction was also observed at the chronic phase, namely 14 days after ischemia (33% reduction) (P=0.021) accompanied with less severe neurological deficits (38% reduction) (P=0.020). Using this technique, we also investigated if the mice with targeted disruption of a single BDNF allele (heterozygous BDNF-deficient mice) can gain the same potency of tolerance as the wild mice. In the result on infarcted lesion volumes following temporary focal ischemia, potent tolerance developed in the wild type (35% reduction) (P=0.007) but not in the heterozygous BDNF-deficient mice (<19% reduction) (P=0.155), indicating that BDNF expression level following spreading depression is contributing to infarct tolerance development.
Collapse
Affiliation(s)
- Hiroji Yanamoto
- Laboratory for Cerebrovascular Disorders, Research Institute of the National Cardio-Vascular Center, 5-7-1 Fujishirodai, Suita 565-8565, Japan.
| | | | | | | | | | | | | |
Collapse
|
33
|
Gulino R, Lombardo SA, Casabona A, Leanza G, Perciavalle V. Levels of brain-derived neurotrophic factor and neurotrophin-4 in lumbar motoneurons after low-thoracic spinal cord hemisection. Brain Res 2004; 1013:174-81. [PMID: 15193526 DOI: 10.1016/j.brainres.2004.03.055] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2004] [Indexed: 01/19/2023]
Abstract
Neuroplasticity represents a common phenomenon after spinal cord (SC) injury or deafferentation that compensates for the loss of modulatory inputs to the cord. Neurotrophins play a crucial role in cell survival and anatomical reorganization of damaged spinal cord, and are known to exert an activity-dependent modulation of neuroplasticity. Little is known about their role in the earliest plastic events, probably involving synaptic plasticity, which are responsible for the rapid recovery of hindlimb motility after hemisection, in the rat. In order to gain further insight, we evaluated the changes in BDNF and NT-4 expression by lumbar motoneurons after low-thoracic spinal cord hemisection. Early after lesion (30 min), the immunostaining density within lumbar motoneurons decreased markedly on both ipsilateral and contralateral sides of the spinal cord. This reduction was statistically significant and was then followed by a significant recovery along the experimental period (14 days), during which a substantial recovery of hindlimb motility was observed. Our data indicate that BDNF and NT-4 expression could be modulated by activity of spinal circuitry and further support putative involvement of the endogenous neurotrophins in mechanisms of spinal neuroplasticity.
Collapse
Affiliation(s)
- Rosario Gulino
- Department of Physiological Sciences, University of Catania, Viale Andrea Doria, 6-95125, Catania, Italy
| | | | | | | | | |
Collapse
|
34
|
Molteni R, Wu A, Vaynman S, Ying Z, Barnard RJ, Gómez-Pinilla F. Exercise reverses the harmful effects of consumption of a high-fat diet on synaptic and behavioral plasticity associated to the action of brain-derived neurotrophic factor. Neuroscience 2004; 123:429-40. [PMID: 14698750 DOI: 10.1016/j.neuroscience.2003.09.020] [Citation(s) in RCA: 242] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A diet high in total fat (HF) reduces hippocampal levels of brain-derived neurotrophic factor (BDNF), a crucial modulator of synaptic plasticity, and a predictor of learning efficacy. We have evaluated the capacity of voluntary exercise to interact with the effects of diet at the molecular level. Animal groups were exposed to the HF diet for 2 months with and without access to voluntary wheel running. Exercise reversed the decrease in BDNF and its downstream effectors on plasticity such as synapsin I, a molecule with a key role in the modulation of neurotransmitter release by BDNF, and the transcription factor cyclic AMP response element binding protein (CREB), important for learning and memory. Furthermore, we found that exercise influenced the activational state of synapsin as well as of CREB, by increasing the phosphorylation of these molecules. In addition, exercise prevented the deficit in spatial learning induced by the diet, tested in the Morris water maze. Furthermore, levels of reactive oxygen species increased by the effects of the diet were decreased by exercise. Results indicate that exercise interacts with the same molecular systems disrupted by the HF diet, reversing their effects on neural function. Reactive oxygen species, and BDNF in conjunction with its downstream effectors on synaptic and neuronal plasticity, are common molecular targets for the action of the diet and exercise. Results unveil a possible molecular mechanism by which lifestyle factors can interact at a molecular level, and provide information for potential therapeutic applications to decrease the risk imposed by certain lifestyles.
Collapse
Affiliation(s)
- R Molteni
- Department of Physiological Science, Brain Injury Research Center, University of California at Los Angeles, 621 Charles E. Young Drive, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
35
|
Fusco FR, Zuccato C, Tartari M, Martorana A, De March Z, Giampà C, Cattaneo E, Bernardi G. Co-localization of brain-derived neurotrophic factor (BDNF) and wild-type huntingtin in normal and quinolinic acid-lesioned rat brain. Eur J Neurosci 2003; 18:1093-102. [PMID: 12956709 DOI: 10.1046/j.1460-9568.2003.02844.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Loss of huntingtin-mediated brain-derived neurotrophic factor (BDNF) gene transcription has been described in Huntington's disease (HD) [Zuccato et al. (2001) Science, 293, 493-498]. It has been shown that BDNF is synthesized in the pyramidal layer of cerebral cortex and released in the striatum [Altar et al. (1997) Nature, 389, 856-860; Conner et al. (1997) J. Neurosci., 17, 2295-2313]. Here we show the cellular localization of BDNF in huntingtin-containing neurons in normal rat brain; our double-label immunofluorescence study shows that huntingtin and BDNF are co-contained in approximately 99% of pyramidal neurons of motor cortex. In the striatum, huntingtin is expressed in 75% of neurons containing BDNF. In normal striatum we also show that BDNF is contained in cholinergic and in NOS-containing interneurons, which are relatively resistant to HD degeneration. Furthermore, we show a reduction in huntingtin and in BDNF immunoreactivity in cortical neurons after striatal excitotoxic lesion. Our data are confirmed by an ELISA study of BDNF and by a Western blot analysis of huntingtin in cortex of quinolic acid (QUIN)-lesioned hemispheres. In the lesioned striatum we describe that the striatal subpopulation of cholinergic neurons, surviving degeneration, contain BDNF. The finding that BDNF is contained in nearly all neurons that contain huntingtin in the normal cortex, along with the reduced expression of BDNF after QUIN injection of the striatum, shows that huntingtin may be required for BDNF production in cortex.
Collapse
Affiliation(s)
- Francesca R Fusco
- Basal Ganglia Unit, Laboratory of Experimental Neurorehabilitation, Santa Lucia Foundation IRCCS, Via Ardeatina 306, Rome 00179, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Morita DF, Tominaga-Yoshino K, Ogura A. Survival promotion of rat cerebellar granule neurons by co-culture with pontine explant. Brain Res 2003; 982:1-11. [PMID: 12915234 DOI: 10.1016/s0006-8993(03)02767-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cultured cerebellar granule neuron (CGN) of the rat is the most frequently used model system for analysis of activity-dependent neuronal survival. CGNs do not survive longer than 2 weeks in a standard culture medium unless KCl (or other excitants such as glutamate) is added. It is assumed that KCl represents synaptic activity, but no tests have been made on whether the survival of CGNs really depends on the synaptic input. Here we co-cultured CGNs with an explant of the pons including the basilar pontine nucleus (BPN), which is one of the input sources of CGNs in vivo, to confirm if synaptic input is really a determinant for the survival of these cells. In this co-culture system, the viability of CGNs was significantly increased without the addition of KCl. The survival promotion was confined to the population of CGNs having contact with neurites of BPN and was cancelled by an application of tetrodotoxin or antagonists of glutamate receptors, indicating that the survival depended on synaptic activity. Explants of other glutamatergic tissues including the hippocampus failed to promote the survival, although neurites grew out from these explants as vigorously as from the BPN explants. Calcium and FM1-43 imaging examinations revealed that the CGNs had formed functional synapses with the BPN explant but not with the hippocampal explant. These results, confirming the assumption that synaptic activity determines neuronal survival, provide evidence for presynaptic contribution to the survival.
Collapse
Affiliation(s)
- Daiju F Morita
- Department of Biology, Osaka University of Graduate School of Science, Toyonaka, Osaka 560-0043, Japan
| | | | | |
Collapse
|
37
|
Ichisaka S, Katoh-Semba R, Hata Y, Ohshima M, Kameyama K, Tsumoto T. Activity-dependent change in the protein level of brain-derived neurotrophic factor but no change in other neurotrophins in the visual cortex of young and adult ferrets. Neuroscience 2003; 117:361-71. [PMID: 12614676 DOI: 10.1016/s0306-4522(02)00771-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Neurotrophins are suggested to play a role in activity-dependent plasticity of visual cortex during the critical period of postnatal development. Thus, the concentration of neurotrophins in the cortex is expected to change with development and/or with alteration in neuronal activities. To test this, we measured protein levels of nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3 and neurotrophin-4/5 in visual cortex of young (postnatal day 38-46, at the peak of the critical period) and adult ferrets with two-site enzyme-immunoassay systems. Measurements were carried out also in somatosensory cortex, hippocampus and cerebellum as control. With development the level of brain-derived neurotrophic factor did not significantly change, while those of the other neurotrophins changed in the visual cortex. A blockade of visual inputs for 24 h by an injection of tetrodotoxin into both eyes significantly decreased brain-derived neurotrophic factor protein level in the visual cortex, but not in the other regions in both young and adult ferrets. On the other hand, no significant decrease was seen in the protein level of the other neurotrophins in the visual cortex of young and adult ferrets. A monocular injection of tetrodotoxin in young ferrets resulted in the reduction of brain-derived neurotrophic factor by approximately half that by binocular injection. The degree of the decrease in the contralateral cortex to the injected eye was significantly larger than that in the ipsilateral cortex, reflecting that the contralateral eye is dominantly represented in the cortex in ferrets. Blockade of cortical neuronal activities by a GABA(A) receptor agonist led to a remarkable reduction of brain-derived neurotrophic factor protein in the visual cortex. These results suggest that the level of brain-derived neurotrophic factor protein in visual cortex is regulated by activities of cortical neurons.
Collapse
Affiliation(s)
- S Ichisaka
- Division of Neurophysiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
The proteins of the mammalian neurotrophin family (nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and neurotrophin-4/5 (NT-4/5)) were originally identified as neuronal survival factors. During the last decade, evidence has accumulated implicating them (especially BDNF) in addition in the regulation of synaptic transmission and synaptogenesis in the CNS. However, a detailed understanding of the secretion of neurotrophins from neurons is required to delineate their role in regulating synaptic function. Some crucial questions that need to be addressed include the sites of neurotrophin secretion (i.e. axonal versus dendritic; synaptic versus extrasynaptic) and the neuronal and synaptic activity patterns that trigger the release of neurotrophins. In this article, we review the current knowledge in the field of neurotrophin secretion, focussing on activity-dependent synaptic release of BDNF. The modality and the site of neurotrophin secretion are dependent on the processing and subsequent targeting of the neurotrophin precursor molecules. Therefore, the available data regarding formation and trafficking of neurotrophins in the secreting neurons are critically reviewed. In addition, we discuss existing evidence that the characteristics of neurotrophin secretion are similar (but not identical) to those of other neuropeptides. Finally, since BDNF has been proposed to play a critical role as an intercellular synaptic messenger in long-term potentiation (LTP) in the hippocampus, we try to reconcile this possible role of BDNF in LTP with the recently described features of synaptic BDNF secretion.
Collapse
Affiliation(s)
- Volkmar Lessmann
- Department of Physiology and Pathophysiology, Johannes Gutenberg-University Mainz, Duesbergweg 6, Mainz 55128, Germany.
| | | | | |
Collapse
|
39
|
Olsnes S, Klingenberg O, Wiedłocha A. Transport of exogenous growth factors and cytokines to the cytosol and to the nucleus. Physiol Rev 2003; 83:163-82. [PMID: 12506129 DOI: 10.1152/physrev.00021.2002] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In recent years a number of growth factors, cytokines, protein hormones, and other proteins have been found in the nucleus after having been added externally to cells. This review evaluates the evidence that translocation takes place and discusses possible mechanisms. As a demonstration of the principle that extracellular proteins can penetrate cellular membranes and reach the cytosol, a brief overview of the penetration mechanism of protein toxins with intracellular sites of action is given. Then problems and pitfalls in attempts to demonstrate the presence of proteins in the cytosol and in the nucleus as opposed to intracellular vesicular compartments are discussed, and some new approaches to study this are described. A detailed overview of the evidence for translocation of fibroblast growth factor, HIV-Tat, interferon-gamma, and other proteins where there is evidence for intracellular action is given, and translocation mechanisms are discussed. It is concluded that although there are many pitfalls, the bulk of the experiments indicate that certain proteins are indeed able to enter the cytosol and nucleus. Possible roles of the internalized proteins are discussed.
Collapse
Affiliation(s)
- Sjur Olsnes
- Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, Oslo, Norway.
| | | | | |
Collapse
|
40
|
Lee TH, Kato H, Chen ST, Kogure K, Itoyama Y. Expression disparity of brain-derived neurotrophic factor immunoreactivity and mRNA in ischemic hippocampal neurons. Neuroreport 2002; 13:2271-5. [PMID: 12488809 DOI: 10.1097/00001756-200212030-00020] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We studied the spatial and temporal expression of BDNF immunoreactivity and mRNA in the hippocampal formation after transient forebrain ischemia in gerbils. Our study demonstrated that in the vulnerable CA1 neurons, there was a prolonged expression disparity between BDNF immunoreactivity and mRNA and the BDNF level was reduced, in contrast to the ischemia-resistant dentate gyrus neurons that showed transient expression disparity and maintained the BDNF level. This expression disparity of the neurotrophic factor may be related to delayed neuronal death. Double immunostaining showed that reactive astroglia and microglia could express BDNF, suggesting a possible involvement of these cells in the mechanism of neuronal survival after ischemia.
Collapse
Affiliation(s)
- T-H Lee
- Department of Neurology, Tohoku University School of Medicine, 1-1 Seiryo-Machi, Aoba-ku, Sendai 980, Japan.
| | | | | | | | | |
Collapse
|
41
|
Mufson EJ, Counts SE, Ginsberg SD. Gene expression profiles of cholinergic nucleus basalis neurons in Alzheimer's disease. Neurochem Res 2002; 27:1035-48. [PMID: 12462403 DOI: 10.1023/a:1020952704398] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cholinergic neurons of the nucleus basalis (NB) are selectively vulnerable in Alzheimer's disease (AD), yet the molecular mechanisms associated with their dysfunction remain unknown. We used single cell RNA amplification and custom array technology to examine the expression of functional classes of mRNAs found in anterior NB neurons from normal aged and AD subjects. mRNAs encoding neurotrophin receptors, synaptic proteins, protein phosphatases, and amyloid-related proteins were evaluated. We found that trkB and trkC mRNAs were selectively down-regulated in NB neurons, whereas p75NTR mRNA levels remained stable in end stage AD. TrkA mRNA was reduced by approximately 28%, but did not reach statistical significance. There was a down-regulation of synaptophysin, synaptotagmin, and protein phosphatases PP1alpha and PP1beta mRNAs in AD. In contrast, we found a selective up-regulation of cathepsin D mRNA in NB neurons in AD brain. Thus, anterior NB neurons undergo selective alterations in gene expression in AD. These results may provide clues to the molecular pathogenesis of NB neuronal degeneration during AD.
Collapse
Affiliation(s)
- Elliott J Mufson
- Department of Neurological Sciences, Rush Alzheimer's Disease Research Center, Rush-Presbyterian-St. Luke's Medical Center, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
42
|
Torres-Aleman I, Pons S, Santos-Benito FF. Survival of Purkinje Cells in Cerebellar Cultures is Increased by Insulin-like Growth Factor I. Eur J Neurosci 2002; 4:864-869. [PMID: 12106309 DOI: 10.1111/j.1460-9568.1992.tb00196.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Insulin-like growth factor I (IGF-I) is a trophic factor for both neurons and glia. Its presence in the developing and adult cerebellum suggests a role for this growth factor in this area of the brain. Recently, we have described the existence of an IGF-I-containing pathway in afferents of Purkinje neurons arising from the inferior olive. In addition, IGF-I receptors are present in the molecular layer of the cerebellar cortex. These observations prompted us to investigate whether the Purkinje cell is a target for IGF-I. Addition of IGF-I to rat cerebellar cultures produced a 7-fold increase in the number of Purkinje cells (calbindin-positive) together with an increase in the calbindin content of the cultures. IGF-I also doubled the number of surviving neurons and produced a moderate, non-significant increase in [3H]thymidine incorporation by the cultures. On the other hand, basic fibroblast growth factor (bFGF), which is also present in the cerebellum, produced a dramatic increase in both the proportion of astrocytes and in the mitotic activity of the cultures, without affecting neuron survival. We conclude that IGF-I is a specific promoter of Purkinje cell survival and that its effects differ from those produced by bFGF in fetal cerebellar cultures. These findings reinforce our hypothesis that the Purkinje cell is a target neuron for IGF-I action in the developing cerebellum.
Collapse
Affiliation(s)
- I. Torres-Aleman
- Laboratory of Cellular and Molecular Neuroendocrinology, Cajal Institute of Neurobiology, CSIC, Avda. Dr Arce 37, 28002 Madrid, Spain
| | | | | |
Collapse
|
43
|
Levine MH, Yates KE, Kaban LB. Nerve growth factor is expressed in rat femoral vein. J Oral Maxillofac Surg 2002; 60:729-33; discussion 734. [PMID: 12089682 DOI: 10.1053/joms.2002.33237] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PURPOSE Entubulization is a well known method of nerve repair for defects too large to be reconstructed by direct suturing without tension. Vein grafts and alloplastic tubes have been used for entubulization in peripheral and cranial nerves, but the mechanism by which they promote healing is poorly understood. The overall hypothesis of this laboratory is that nerve growth factor (NGF) plays an important role in nerve regeneration after entubulization with a vein graft. The purpose of this pilot study was to localize NGF protein expression in the rat femoral vein. MATERIALS AND METHODS Sciatic nerves and femoral veins were harvested from adult male Sprague-Dawley rats. Femoral arteries were also collected and used for comparison and validation of the analysis. All specimens were fixed in paraformaldehyde and embedded in paraffin. Specimens were either stained with hematoxylin and eosin or used for immunohistochemical reaction with anti-NGF antibody. RESULTS Sciatic nerve was used as a positive control to identify the monofascicular architecture with hematoxylin and eosin and to document the positive immunohistochemical reaction. NGF immunoreactivity was present in the tunica intima and tunica adventitia of femoral vein and artery but not in the tunica media. CONCLUSION The results of this pilot study indicate that NGF is detectable in both the intimal and adventitial layers of the rat femoral vein and artery but not in the smooth muscle wall. These findings suggest that vein grafts could potentially promote nerve regeneration by supplying NGF to the injured nerve.
Collapse
Affiliation(s)
- Marci H Levine
- Skeletal Biology Research Center and Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | | | | |
Collapse
|
44
|
Revuelta M, Castaño A, Venero JL, Machado A, Cano J. Long-lasting induction of brain-derived neurotrophic factor is restricted to resistant cell populations in an animal model of status epilepticus. Neuroscience 2001; 103:955-69. [PMID: 11301204 DOI: 10.1016/s0306-4522(01)00032-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We have recently characterized an animal model of status epilepticus induced by a single intraseptal injection of kainate. Under these conditions, there is a delayed expanding apoptotic hippocampal and amygdalar cell death. In order to further characterize this animal model, we have performed a detailed time-course analysis of the appearance of cell death, brain-derived neurotrophic factor messenger RNA expression and astroglial and microglial response in different brain areas related to the limbic system. We found a long-lasting delayed apoptotic cell death in the hippocampal formation, amygdala, medial thalamus, dorsal endopiriform nucleus and multiple cortical areas from two to 21 days post-injection. There was a spatiotemporal correlation between the appearance of cell death and induction of brain-derived neurotrophic factor messenger RNA expression in the areas studied, and interestingly this induction was found in non-degenerating cells. We conclude that our animal model of status epilepticus exhibits remarkable features of recurrent seizure activity and provides evidence for a neuroprotective role of brain-derived neurotrophic factor against seizure-induced apoptotic cell death.
Collapse
Affiliation(s)
- M Revuelta
- Departamento de Bioquímica, Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, Calle Prof. García González s/n, 41012, Sevilla, Spain
| | | | | | | | | |
Collapse
|
45
|
Liu Y, Fowler CD, Young LJ, Yan Q, Insel TR, Wang Z. Expression and estrogen regulation of brain-derived neurotrophic factor gene and protein in the forebrain of female prairie voles. J Comp Neurol 2001; 433:499-514. [PMID: 11304714 DOI: 10.1002/cne.1156] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) has been linked to the development, differentiation, and plasticity of the central nervous system. In the present study, we first used a highly specific affinity-purified antibody and a cRNA probe to generate a detailed mapping of BDNF immunoreactive (BDNF-ir) staining and mRNA labeling throughout the forebrain of female prairie voles. Our data revealed that (1) BDNF-ir cells were present essentially in the brain regions in which BDNF mRNA-labeled cells were found; (2) BDNF-ir fibers were distributed extensively throughout many forebrain regions; and (3) BDNF mRNA was also detected in some thalamic regions in which BDNF-ir fibers, but not immunostained cells, were present. With few exceptions, the distribution pattern of BDNF in the vole brain generally resembled the pattern found in rats. In a second experiment, we examined the effects of estrogen on BDNF expression. Ovariectomized prairie voles that were treated with estradiol benzoate had a higher level of BDNF mRNA labeling in the dentate gyrus and CA3 region of the hippocampus, as well as in the basolateral nucleus of the amygdala, than did ovariectomized voles that were treated with vehicle. In addition, estrogen treatment increased the density of BDNF-ir fibers in the lateral septum, dorsolateral area of the bed nucleus of the stria terminalis, and lateral habenular nucleus. These data suggest that estrogen may regulate BDNF at the level of gene and protein expression, and thus, BDNF may be in a position to mediate the effects of estrogen on the brain of the prairie vole.
Collapse
Affiliation(s)
- Y Liu
- Department of Psychology and Neuroscience Program, Florida State University, Tallahassee, Florida 32306,-1270, USA
| | | | | | | | | | | |
Collapse
|
46
|
Kohara K, Kitamura A, Morishima M, Tsumoto T. Activity-dependent transfer of brain-derived neurotrophic factor to postsynaptic neurons. Science 2001; 291:2419-23. [PMID: 11264540 DOI: 10.1126/science.1057415] [Citation(s) in RCA: 269] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Neurotrophins such as brain-derived neurotrophic factor (BDNF) are thought to be transferred from post- to presynaptic neurons and to be involved in the formation and plasticity of neural circuits. However, direct evidence for a transneuronal transfer of BDNF and its relation to neuronal activity remains elusive. We simultaneously injected complementary DNAs of green fluorescent protein (GFP)-tagged BDNF and red fluorescence protein into the nucleus of single neurons and visualized expression, localization, and transport of BDNF in living neurons. Fluorescent puncta representing BDNF moved in axons in the anterograde direction, though some moved retrogradely, and transferred to postsynaptic neurons in an activity-dependent manner.
Collapse
Affiliation(s)
- K Kohara
- Division of Neurophysiology, Biomedical Research Center, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 Japan
| | | | | | | |
Collapse
|
47
|
Murer MG, Yan Q, Raisman-Vozari R. Brain-derived neurotrophic factor in the control human brain, and in Alzheimer's disease and Parkinson's disease. Prog Neurobiol 2001; 63:71-124. [PMID: 11040419 DOI: 10.1016/s0301-0082(00)00014-9] [Citation(s) in RCA: 638] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a small dimeric protein, structurally related to nerve growth factor, which is abundantly and widely expressed in the adult mammalian brain. BDNF has been found to promote survival of all major neuronal types affected in Alzheimer's disease and Parkinson's disease, like hippocampal and neocortical neurons, cholinergic septal and basal forebrain neurons, and nigral dopaminergic neurons. In this article, we summarize recent work on the molecular and cellular biology of BDNF, including current ideas about its intracellular trafficking, regulated synthesis and release, and actions at the synaptic level, which have considerably expanded our conception of BDNF actions in the central nervous system. But our primary aim is to review the literature regarding BDNF distribution in the human brain, and the modifications of BDNF expression which occur in the brain of individuals with Alzheimer's disease and Parkinson's disease. Our knowledge concerning BDNF actions on the neuronal populations affected in these pathological states is also reviewed, with an aim at understanding its pathogenic and pathophysiological relevance.
Collapse
Affiliation(s)
- M G Murer
- Departamento de Fisiologia, Facultad de Medicina, Universidad de Buenos Aires, Paraguay.
| | | | | |
Collapse
|
48
|
Yanamoto H, Mizuta I, Nagata I, Xue J, Zhang Z, Kikuchi H. Infarct tolerance accompanied enhanced BDNF-like immunoreactivity in neuronal nuclei. Brain Res 2000; 877:331-44. [PMID: 10986348 DOI: 10.1016/s0006-8993(00)02718-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A prolonged period (48 h) of cortical spreading depression (CSD) induced resistance against severe focal cerebral ischemia (infarct tolerance), however, the mechanism behind this is unknown. The infarct tolerance was a transient phenomenon; the resistance increased linearly for the initial 12 days, peaking from 12 to 15 days after a preconditioning of CSD, and was decreased thereafter. This study examined the time course of brain-derived neurotrophic factor (BDNF), heat shock protein (hsp)27 and 70, and glial fibrillary acidic protein (GFAP) expressions after CSD in the brain. Immunohistochemical expression of BDNF, hsp27, hsp70, or GFAP following a prolonged period of CSD induced by KCl-infusion, or following NaCl-infusion was analyzed by regional densitometry for 24 days in the rat neocortex. In addition, BDNF protein was measured quantitatively by two-site ELISA assay in the neocortex (n=6 at each time point). The GFAP expression was elevated in astrocytes (compared to the normal level of immunodensity) during the period peaking on day 3-6 following the CSD. The hsp27 immunoreactivity was also elevated in astrocytes from day 1 to 12 peaking on day 1 and 6, but there was no expression of hsp70 during the period following CSD. The immunoreactivity for BDNF was elevated in neurons from day 0 to 18 peaking on day 1 and 6. The protein levels of BDNF in the neocortex were significantly elevated from day 0 to 12 peaking on days 0 and 6 (compared to the normal level) (P<0.05). Using a laser-scanning confocal imaging system, the BDNF-like immunoreactivity in neuronal nuclei was found to increase linearly peaking on day 12, which correlated well with the development of infarct tolerance. The intranuclear increase in BDNF-like protein might contribute to the induction of infarct tolerance in the brain.
Collapse
Affiliation(s)
- H Yanamoto
- National Cardio-Vascular Center and NCVC Research Institute, 5-7-1 Fujishiro-dai, Suita, Osaka 565-8565, Japan.
| | | | | | | | | | | |
Collapse
|
49
|
van Ooyen A, Willshaw DJ. Development of nerve connections under the control of neurotrophic factors: parallels with consumer-resource systems in population biology. J Theor Biol 2000; 206:195-210. [PMID: 10966757 DOI: 10.1006/jtbi.2000.2114] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The development of connections between neurons and their target cells involves competition between axons for target-derived neurotrophic factors. Although the notion of competition is commonly used in neurobiology, the process is not well understood, and only a few formal models exist. In population biology, in contrast, the concept of competition is well developed and has been studied by means of many formal models of consumer-resource systems. Here we show that a recently formulated model of axonal competition can be rewritten as a general consumer-resource system. This allows neurobiological phenomena to be interpreted in population biological terms and, conversely, results from population biology to be applied to neurobiology. Using findings from population biology, we have studied two extensions of our axonal competition model. In the first extension, the spatial dimension of the target is explicitly taken into account. We show that distance between axons on their target mitigates competition and permits the coexistence of axons. The model can account for the fact that in many types of neurons a positive correlation exists between the size of the dendritic tree and the number of innervating axons surviving into adulthood. In the second extension, axons are allowed to respond to more than one neurotrophic factor. We show that this permits competitive exclusion among axons of one type, while at the same time there is coexistence with axons of another type innervating the same target. The model offers an explanation for the innervation pattern found on cerebellar Purkinje cells, where climbing fibres compete with each other until only a single one remains, which coexists with parallel fibre input to the same Purkinje cell.
Collapse
Affiliation(s)
- A van Ooyen
- Netherlands Institute for Brain Research, Graduate School Neurosciences Amsterdam, Meibergdreef 33, Amsterdam, 1105 AZ, The Netherlands.
| | | |
Collapse
|
50
|
Yanamoto H, Nagata I, Sakata M, Zhang Z, Tohnai N, Sakai H, Kikuchi H. Infarct tolerance induced by intra-cerebral infusion of recombinant brain-derived neurotrophic factor. Brain Res 2000; 859:240-8. [PMID: 10719070 DOI: 10.1016/s0006-8993(00)01966-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neuronal expression of brain-derived neurotrophic factor (BDNF) has been implicated in the mechanism of infarct tolerance (resistance to stroke) (H. Yanamoto et al., Infarct tolerance accompanied enhanced BDNF-like immunoreactivity in neuronal nuclei, submitted to Brain Res.), a process that takes more than 7 days following a preconditioning of repetitive cortical spreading depression (CSD). To investigate whether an elevated level of BDNF protein in the brain solely protects neurons against temporary focal ischemia, recombinant (r)BDNF was infused into the rat neocortex. Recombinant BDNF (or vehicle: saline) was administered into the left neocortex via an implanted osmotic minipump for 2.5, 7, 10 or 14 days pre-ischemia, during ischemia and for 2 days post-ischemia (8 microgram in total) in male Sprague-Dawley rats (n=6 each). Temporary focal ischemia was induced in the left middle cerebral artery (MCA) territory by three-vessel occlusion of bilateral common carotid arteries (CCAs) and MCA for 2 h, and the cerebral infarct volume was analyzed 2 days after ischemia using TTC staining. Regional cerebral blood flow (rCBF) of the left neocortex was monitored after 14 days of intracerebral administration of BDNF or vehicle (n=10 each). The distribution of BDNF following different periods of rBDNF or vehicle-infusion was analyzed using immunohistochemical techniques (n=5 each). In the groups treated with 8 microgram of rhBDNF for 7, 10, or 14 days pre-ischemia, there were significant reductions of neocortical infarct volume compared to in the control or vehicle-treated groups (p<0.05). In the rCBF study, there was no significant change after the infusion of 8 microgram rhBDNF for 14 days. In the histological study, a wide distribution of BDNF-like immunoreactivity in the neuronal nuclei in the ipsilateral neocortex was demonstrated after the infusion of 8 microgram rhBDNF for 14 days. The BDNF-like immunoreactivity in the neuronal nuclei was enhanced at the time that the resistance to stroke was achieved by direct intra-cerebral infusion of exogenous rBDNF. Elucidating the function of the BDNF-like protein located in the neuronal nuclei should reveal a new strategy for neuroprotection against ischemic brain attack in humans.
Collapse
Affiliation(s)
- H Yanamoto
- Laboratory for Cerebrovascular Disorders, National Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, Japan.
| | | | | | | | | | | | | |
Collapse
|