1
|
Gao L, Zhang Y, Sterling K, Song W. Brain-derived neurotrophic factor in Alzheimer's disease and its pharmaceutical potential. Transl Neurodegener 2022; 11:4. [PMID: 35090576 PMCID: PMC8796548 DOI: 10.1186/s40035-022-00279-0] [Citation(s) in RCA: 164] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/01/2022] [Indexed: 12/14/2022] Open
Abstract
Synaptic abnormalities are a cardinal feature of Alzheimer's disease (AD) that are known to arise as the disease progresses. A growing body of evidence suggests that pathological alterations to neuronal circuits and synapses may provide a mechanistic link between amyloid β (Aβ) and tau pathology and thus may serve as an obligatory relay of the cognitive impairment in AD. Brain-derived neurotrophic factors (BDNFs) play an important role in maintaining synaptic plasticity in learning and memory. Considering AD as a synaptic disorder, BDNF has attracted increasing attention as a potential diagnostic biomarker and a therapeutical molecule for AD. Although depletion of BDNF has been linked with Aβ accumulation, tau phosphorylation, neuroinflammation and neuronal apoptosis, the exact mechanisms underlying the effect of impaired BDNF signaling on AD are still unknown. Here, we present an overview of how BDNF genomic structure is connected to factors that regulate BDNF signaling. We then discuss the role of BDNF in AD and the potential of BDNF-targeting therapeutics for AD.
Collapse
Affiliation(s)
- Lina Gao
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, College of Pharmacy, Jining Medical University, Jining, 272067, Shandong, China
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Yun Zhang
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Keenan Sterling
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Weihong Song
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, College of Pharmacy, Jining Medical University, Jining, 272067, Shandong, China.
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325001, Zhejiang, China.
| |
Collapse
|
2
|
Padmakumar S, Jones G, Khorkova O, Hsiao J, Kim J, Bleier BS, Amiji MM. Osmotic core-shell polymeric implant for sustained BDNF AntagoNAT delivery in CNS using minimally invasive nasal depot (MIND) approach. Biomaterials 2021; 276:120989. [PMID: 34252799 PMCID: PMC8607190 DOI: 10.1016/j.biomaterials.2021.120989] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 01/07/2023]
Abstract
The development of drug delivery strategies for efficacious therapeutic administration directly into the central nervous system (CNS) in a minimally invasive manner remains a major obstacle hindering the clinical translation of biological disease-modifying therapeutics. A novel direct trans-nasal delivery method, termed 'Minimally-Invasive Nasal Depot' (MIND), has proved to be successful in providing high CNS uptake and brain distribution of blood-brain barrier (BBB) impermeant therapeutics via direct administration to the olfactory submucosal space in a rodent model. The present study describes the engineering of custom-made implants with a unique architecture of an "osmotically-active core" entrapping the therapeutic and a "biodegradable polymeric shell" to enable long-acting delivery using the MIND procedure. The MIND-administered implant provided sustained CNS delivery of brain derived neurotrophic factor (BDNF) AntagoNATs for up to 4 weeks in Sprague Dawley rats resulting in significant endogenous BDNF protein upregulation in several brain tissues. The biocompatibility of such core-shell implants coupled with their substantial pharmacokinetic advantages and safety of the MIND procedure highlights the practical utility and translational potential of this synergistic approach for treatment of chronic age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Smrithi Padmakumar
- (')Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA
| | - Gregory Jones
- (')Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA
| | | | | | - Jonghan Kim
- Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts at Lowell, Lowell, MA, USA
| | - Benjamin S Bleier
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Mansoor M Amiji
- (')Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA.
| |
Collapse
|
3
|
Abstract
Neurotrophin-3 (NT-3) belongs to a family of growth factors called neurotrophins whose actions are centered in the nervous system. NT-3 is structurally related to other neurotrophins like brain-derived neurotrophic factor. The expression of NT-3 starts with the onset of neurogenesis and continues throughout life. A wealth of information links NT-3 to the growth, differentiation, and survival of hippocampal cells as well as sympathetic and sensory neurons. These studies have described the distribution of NT-3 and its receptors throughout development and in the mature nervous system. Prior works has begun to cell-type specific impact of NT-3 as well as identify the signaling pathways involved. However, much less is known about how NT-3 regulates synaptic transmission. This chapter focuses role of NT-3 in the modulation of synaptic transmission.
Collapse
|
4
|
Das UN. Is There a Role for Bioactive Lipids in the Pathobiology of Diabetes Mellitus? Front Endocrinol (Lausanne) 2017; 8:182. [PMID: 28824543 PMCID: PMC5539435 DOI: 10.3389/fendo.2017.00182] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/10/2017] [Indexed: 12/12/2022] Open
Abstract
Inflammation, decreased levels of circulating endothelial nitric oxide (eNO) and brain-derived neurotrophic factor (BDNF), altered activity of hypothalamic neurotransmitters (including serotonin and vagal tone) and gut hormones, increased concentrations of free radicals, and imbalance in the levels of bioactive lipids and their pro- and anti-inflammatory metabolites have been suggested to play a role in diabetes mellitus (DM). Type 1 diabetes mellitus (type 1 DM) is due to autoimmune destruction of pancreatic β cells because of enhanced production of IL-6 and tumor necrosis factor-α (TNF-α) and other pro-inflammatory cytokines released by immunocytes infiltrating the pancreas in response to unknown exogenous and endogenous toxin(s). On the other hand, type 2 DM is due to increased peripheral insulin resistance secondary to enhanced production of IL-6 and TNF-α in response to high-fat and/or calorie-rich diet (rich in saturated and trans fats). Type 2 DM is also associated with significant alterations in the production and action of hypothalamic neurotransmitters, eNO, BDNF, free radicals, gut hormones, and vagus nerve activity. Thus, type 1 DM is because of excess production of pro-inflammatory cytokines close to β cells, whereas type 2 DM is due to excess of pro-inflammatory cytokines in the systemic circulation. Hence, methods designed to suppress excess production of pro-inflammatory cytokines may form a new approach to prevent both type 1 and type 2 DM. Roux-en-Y gastric bypass and similar surgeries ameliorate type 2 DM, partly by restoring to normal: gut hormones, hypothalamic neurotransmitters, eNO, vagal activity, gut microbiota, bioactive lipids, BDNF production in the gut and hypothalamus, concentrations of cytokines and free radicals that results in resetting glucose-stimulated insulin production by pancreatic β cells. Our recent studies suggested that bioactive lipids, such as arachidonic acid, eicosapentaneoic acid, and docosahexaenoic acid (which are unsaturated fatty acids) and their anti-inflammatory metabolites: lipoxin A4, resolvins, protectins, and maresins, may have antidiabetic actions. These bioactive lipids have anti-inflammatory actions, enhance eNO, BDNF production, restore hypothalamic dysfunction, enhance vagal tone, modulate production and action of ghrelin, leptin and adiponectin, and influence gut microbiota that may explain their antidiabetic action. These pieces of evidence suggest that methods designed to selectively deliver bioactive lipids to pancreatic β cells, gut, liver, and muscle may prevent type 1 and type 2 DM.
Collapse
Affiliation(s)
- Undurti N. Das
- BioScience Research Centre, Department of Medicine, Gayatri Vidya Parishad Hospital, GVP College of Engineering Campus, Visakhapatnam, India
- UND Life Sciences, Battle Ground, WA, United States
| |
Collapse
|
5
|
Yin JB, Wu HH, Dong YL, Zhang T, Wang J, Zhang Y, Wei YY, Lu YC, Wu SX, Wang W, Li YQ. Neurochemical properties of BDNF-containing neurons projecting to rostral ventromedial medulla in the ventrolateral periaqueductal gray. Front Neural Circuits 2014; 8:137. [PMID: 25477786 PMCID: PMC4238372 DOI: 10.3389/fncir.2014.00137] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 10/31/2014] [Indexed: 12/18/2022] Open
Abstract
The periaqueductal gray (PAG) modulates nociception via a descending pathway that relays in the rostral ventromedial medulla (RVM) and terminates in the spinal cord. Previous behavioral pharmacology and electrophysiological evidence suggests that brain-derived neurotrophic factor (BDNF) plays an important role in descending pain modulation, likely through the PAG-RVM pathway. However, detailed information is still lacking on the distribution of BDNF, activation of BDNF-containing neurons projecting to RVM in the condition of pain, and neurochemical properties of these neurons within the PAG. Through fluorescent in situ hybridization (FISH) and immunofluorescent staining, the homogenous distributions of BDNF mRNA and protein were observed in the four subregions of PAG. Both neurons and astrocytes expressed BDNF, but not microglia. By combining retrograde tracing methods and formalin pain model, there were more BDNF-containing neurons projecting to RVM being activated in the ventrolateral subregion of PAG (vlPAG) than other subregions of PAG. The neurochemical properties of BDNF-containing projection neurons in the vlPAG were investigated. BDNF-containing projection neurons expressed the autoreceptor TrkB in addition to serotonin (5-HT), neurotensin (NT), substance P (SP), calcitonin gene related peptide (CGRP), nitric oxide synthase (NOS), and parvalbumin (PV) but not tyrosine decarboxylase (TH). It is speculated that BDNF released from projection neurons in the vlPAG might participate in the descending pain modulation through enhancing the presynaptic release of other neuroactive substances (NSs) in the RVM.
Collapse
Affiliation(s)
- Jun-Bin Yin
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University Xi'an, China
| | - Huang-Hui Wu
- Department of Anesthesiology, Fuzhou General Hospital Affiliated to Fujian Medical University Fuzhou, China
| | - Yu-Lin Dong
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University Xi'an, China
| | - Ting Zhang
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University Xi'an, China
| | - Jian Wang
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University Xi'an, China
| | - Yong Zhang
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University Xi'an, China
| | - Yan-Yan Wei
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University Xi'an, China
| | - Ya-Cheng Lu
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University Xi'an, China
| | - Sheng-Xi Wu
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University Xi'an, China
| | - Wen Wang
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University Xi'an, China
| | - Yun-Qing Li
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University Xi'an, China
| |
Collapse
|
6
|
Taylor BK, Fu W, Kuphal KE, Stiller CO, Winter MK, Chen W, Corder GF, Urban JH, McCarson KE, Marvizon JC. Inflammation enhances Y1 receptor signaling, neuropeptide Y-mediated inhibition of hyperalgesia, and substance P release from primary afferent neurons. Neuroscience 2013; 256:178-94. [PMID: 24184981 DOI: 10.1016/j.neuroscience.2013.10.054] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 10/21/2013] [Accepted: 10/23/2013] [Indexed: 12/20/2022]
Abstract
Neuropeptide Y (NPY) is present in the superficial laminae of the dorsal horn and inhibits spinal nociceptive processing, but the mechanisms underlying its anti-hyperalgesic actions are unclear. We hypothesized that NPY acts at neuropeptide Y1 receptors in the dorsal horn to decrease nociception by inhibiting substance P (SP) release, and that these effects are enhanced by inflammation. To evaluate SP release, we used microdialysis and neurokinin 1 receptor (NK1R) internalization in rat. NPY decreased capsaicin-evoked SP-like immunoreactivity in the microdialysate of the dorsal horn. NPY also decreased non-noxious stimulus (paw brush)-evoked NK1R internalization (as well as mechanical hyperalgesia and mechanical and cold allodynia) after intraplantar injection of carrageenan. Similarly, in rat spinal cord slices with dorsal root attached, [Leu(31), Pro(34)]-NPY inhibited dorsal root stimulus-evoked NK1R internalization. In rat dorsal root ganglion neurons, Y1 receptors colocalized extensively with calcitonin gene-related peptide (CGRP). In dorsal horn neurons, Y1 receptors were extensively expressed and this may have masked the detection of terminal co-localization with CGRP or SP. To determine whether the pain inhibitory actions of Y1 receptors are enhanced by inflammation, we administered [Leu(31), Pro(34)]-NPY after intraplantar injection of complete Freund's adjuvant (CFA) in rat. We found that [Leu(31), Pro(34)]-NPY reduced paw clamp-induced NK1R internalization in CFA rats but not uninjured controls. To determine the contribution of increased Y1 receptor-G protein coupling, we measured [(35)S]GTPγS binding simulated by [Leu(31), Pro(34)]-NPY in mouse dorsal horn. CFA inflammation increased the affinity of Y1 receptor G-protein coupling. We conclude that Y1 receptors contribute to the anti-hyperalgesic effects of NPY by mediating the inhibition of SP release, and that Y1 receptor signaling in the dorsal horn is enhanced during inflammatory nociception.
Collapse
Affiliation(s)
- B K Taylor
- Department of Physiology, School of Medicine, University of Kentucky Medical Center, Lexington, KY 40536, USA.
| | - W Fu
- Department of Physiology, School of Medicine, University of Kentucky Medical Center, Lexington, KY 40536, USA
| | - K E Kuphal
- Division of Pharmacology, University of Missouri-Kansas City, Kansas City, MO, USA
| | - C-O Stiller
- Department of Medicine, Division of Clinical Pharmacology, Karolinska Hospital, Karolinska Institutet, Stockholm, Sweden
| | - M K Winter
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - W Chen
- Veteran Affairs Greater Los Angeles Healthcare System and Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA
| | - G F Corder
- Department of Physiology, School of Medicine, University of Kentucky Medical Center, Lexington, KY 40536, USA
| | - J H Urban
- Department of Physiology and Biophysics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - K E McCarson
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - J C Marvizon
- Veteran Affairs Greater Los Angeles Healthcare System and Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
7
|
Wetmore C, Olson L. Expression and regulation of neurotrophins and their receptors in hippocampal systems. Hippocampus 2013. [DOI: 10.1002/hipo.1993.4500030721] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Cynthia Wetmore
- Department of Cell Biology and Neuroanatomy, University of Minnesota, Minneapolis, Minnesota, U.S.A
| | - Lars Olson
- Department of Histology and Neurobiology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
8
|
Abstract
In addition to its neurotrophic role, brain-derived neurotrophic factor (BDNF) is involved in a wide array of functions, including anxiety and pain. The central amygdaloid nucleus (CeA) contains a high concentration of BDNF in terminals, originating from the pontine parabrachial nucleus. Since the spino-parabrachio-amygdaloid neural pathway is known to convey nociceptive information, we hypothesized a possible involvement of BDNF in supraspinal pain-related processes. To test this hypothesis, we generated localized deletion of BDNF in the parabrachial nucleus using local bilateral injections of adeno-associated viruses in adult floxed-BDNF mice. Basal thresholds of thermal and mechanical nociceptive responses were not altered by BDNF loss and no behavioural deficit was noticed in anxiety and motor tests. However, BDNF-deleted animals displayed a major decrease in the analgesic effect of morphine. In addition, intra-CeA injections of the BDNF scavenger TrkB-Fc in control mice also decreased morphine-induced analgesia. Finally, the number of c-Fos immunoreactive nuclei after acute morphine injection was decreased by 45% in the extended amygdala of BDNF-deleted animals. The absence of BDNF in the parabrachial nucleus thus altered the parabrachio-amygdaloid pathway. Overall, our study provides evidence that BDNF produced in the parabrachial nucleus modulates the functions of the parabrachio-amygdaloid pathway in opiate analgesia.
Collapse
|
9
|
Wang L, Lin F, Wang J, Wu J, Han R, Zhu L, Zhang G, DiFiglia M, Qin Z. Truncated N-terminal huntingtin fragment with expanded-polyglutamine (htt552-100Q) suppresses brain-derived neurotrophic factor transcription in astrocytes. Acta Biochim Biophys Sin (Shanghai) 2012; 44:249-58. [PMID: 22234237 DOI: 10.1093/abbs/gmr125] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although huntingtin (htt) can be cleaved at many sites by caspases, calpains, and aspartyl proteases, amino acid (aa) 552 was defined as a preferred site for cleavage in human Huntington disease (HD) brains in vivo. To date, the normal function of wild-type N-terminal htt fragment 1-552 aa (htt552) and its pathological roles of mutant htt552 are still unknown. Although mutant htt (mhtt) is also expressed in astrocytes, whether and how mhtt contributes to the neurodegeneration through astrocytes in HD remains largely unknown. In this study, a glia HD model, using an adenoviral vector to express wild-type htt552 (htt552-18Q) and its mutation (htt552-100Q) in rat primary cortical astrocytes, was generated to investigate the influence of htt552 on the transcription of brain-derived neurotrophic factor (BDNF). Results from enzyme linked immunosorbent assay showed that the level of BDNF in astrocyte-conditioned medium was decreased in the astrocytes expressing htt552-100Q. Quantitative real-time polymerase chain reaction demonstrated that htt552-100Q reduced the transcripts of the BDNF III and IV, hence, repressed the transcription of BDNF. Furthermore, immunofluorescence showed that aggregates formed by htt552-100Q entrapped transcription factors cAMP-response element-binding protein and stimulatory protein 1, which might account for the reduction of BDNF transcription. These findings suggest that mhtt552 reduces BDNF transcription in astrocytes, which might contribute to the neuronal dysfunction in HD.
Collapse
Affiliation(s)
- Linhui Wang
- Department of Physiology, Soochow University School of Biology and Basic Medical Sciences, Suzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wang L, Lin F, Wang J, Wu J, Han R, Zhu L, Difiglia M, Qin Z. Expression of mutant N-terminal huntingtin fragment (htt552-100Q) in astrocytes suppresses the secretion of BDNF. Brain Res 2012; 1449:69-82. [PMID: 22410294 DOI: 10.1016/j.brainres.2012.01.077] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 12/14/2011] [Accepted: 01/27/2012] [Indexed: 12/11/2022]
Abstract
Huntington's disease (HD) is an inheritable neurological disorder caused by an abnormal expansion of the polyglutamine tract in the N-terminus of the protein huntingtin (htt). Mutant htt (mhtt) leads to selective neurodegeneration that preferentially affects striatal medium spiny neurons. Although mhtt is also expressed in astrocytes, whether and how astrocyte derived mhtt contributes to the neurodegeneration in HD remains largely unknown. In this study, a glia HD model, using an adenoviral vector to express wild-type and mutant N-terminal huntingtin fragment 1-552 aa (htt552) in rat primary cortical astrocytes, was generated. The influence of htt552 on the protein level of brain-derived neurotrophic factor (BDNF) in astrocytes was evaluated. Immunofluorescence showed that htt552-100Q formed aggregates in some astrocytes. These mhtt aggregates sequestered clathrin immunoreactivities and dispersed the Golgi complex. ELISA and immunofluorescence demonstrated an increase in BDNF levels in the astrocytes expressing htt552-100Q. Western blot analysis showed that there was an increase in pro-BDNF, but a decrease in mature BDNF in the astrocytes expressing htt552-100Q. Furthermore, medium collected from astrocytes expressing htt552-100Q showed a lower level of mature BDNF and less activity in supporting neurite development of primary cortical neurons. These results suggest that aggregates formed by mutant htt552 affect processing and secretion of the BDNF in astrocytes, which might contribute to the neuronal dysfunction and degeneration in HD.
Collapse
Affiliation(s)
- Linhui Wang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Soochow University School of Pharmacy, Suzhou 215123, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Stress and IL-1beta contribute to the development of depressive-like behavior following peripheral nerve injury. Mol Psychiatry 2010; 15:404-14. [PMID: 19773812 PMCID: PMC5214062 DOI: 10.1038/mp.2009.91] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The physiological link between neuropathic pain and depression remains unknown despite a high comorbidity between these two disorders. A mouse model of spared nerve injury (SNI) was used to test the hypothesis that nerve injury precipitates depression through the induction of inflammation in the brain, and that prior exposure to stress exacerbates the behavioral and neuroinflammatory consequences of nerve injury. As compared with sham surgery, SNI induced mechanical allodynia, and significantly increased depressive-like behavior. Moreover, SNI animals displayed increased interleukin-1beta (IL-1beta) gene expression within the frontal cortex and concurrent increases in the expression of glial fibrillary acidic protein (GFAP) within the periaqueductal grey (PAG). Additionally, exposure to chronic restraint stress for 2 weeks before SNI exacerbated mechanical allodynia and depressive-like behavior, and resulted in an increase in IL-1beta gene expression in the frontal cortex and brain-derived neurotrophic factor (BDNF) gene expression in PAG. Treatment with metyrapone (MET), a corticosteroid synthesis inhibitor, before stress eliminated deleterious effects of chronic stress on SNI. Finally, this study showed that interference with IL-1beta signaling, through administration of IL-1 receptor antagonist (IL-1ra), ameliorated the effects of neuropathic pain on depressive-like behavior. Taken together, these data suggest that peripheral nerve injury leads to increased cytokine expression in the brain, which in turn, contributes to the development of depressive-like behavior. Furthermore, stress can facilitate the development of depressive-like behavior after nerve injury by promoting IL-1beta expression.
Collapse
|
12
|
Marvizón JCG, Chen W, Murphy N. Enkephalins, dynorphins, and beta-endorphin in the rat dorsal horn: an immunofluorescence colocalization study. J Comp Neurol 2009; 517:51-68. [PMID: 19711397 DOI: 10.1002/cne.22130] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To characterize neuronal pathways that release opioid peptides in the rat dorsal horn, multiple-label immunohistochemistry, confocal microscopy, and computerized co-localization measures were used to characterize opioid-containing terminals and cells. An antibody that selectively recognized beta-endorphin labeled fibers and neurons in the ventral horn as well as fibers in the lateral funiculus and lamina X, but practically no fibers in the dorsal horn. An anti-enkephalin antibody, which recognized Leu-, Met-, and Phe-Arg-Met-enkephalin, labeled the dorsolateral funiculus and numerous puncta in laminae I-III and V of the dorsal horn. An antibody against Phe-Arg-Met-enkephalin, which did not recognize Leu- and Met-enkephalin, labeled the same puncta. Antibodies against dynorphin and prodynorphin labeled puncta and fibers in laminae I, II, and V, as well as some fibers in the rest of the dorsal horn. Dynorphin and prodynorphin immunoreactivities colocalized in some puncta and fibers, but the prodynorphin antibody additionally labeled cell bodies. There was no co-localization of dynorphin (or prodynorphin) with enkephalin (or Phe-Arg-Met-enkephalin). Enkephalin immunoreactivity did not colocalize with the C-fiber markers calcitonin gene-related peptide (CGRP), substance P, and isolectin B4. In contrast, there was some colocalization of dynorphin and prodynorphin with CGRP and substance P, but not with isolectin B4. Both enkephalin and dynorphin partly colocalized with vesicular glutamate transporter 2, a marker of glutamatergic terminals. The prodynorphin-positive neurons in the dorsal horn were distinct from neurons expressing mu-opioid receptors, neurokinin 1 receptors, and protein kinase C-gamma. These results show that enkephalins and dynorphins are present in different populations of dorsal horn neurons. In addition, dynorphin is present in some C-fibers.
Collapse
Affiliation(s)
- Juan Carlos G Marvizón
- Center for the Neurobiology of Stress, Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA.
| | | | | |
Collapse
|
13
|
Ren K, Dubner R. Pain facilitation and activity-dependent plasticity in pain modulatory circuitry: role of BDNF-TrkB signaling and NMDA receptors. Mol Neurobiol 2008; 35:224-35. [PMID: 17917111 DOI: 10.1007/s12035-007-0028-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 11/30/1999] [Accepted: 01/08/2007] [Indexed: 12/18/2022]
Abstract
Pain modulatory circuitry in the brainstem exhibits considerable synaptic plasticity. The increased peripheral neuronal barrage after injury activates spinal projection neurons that then activate multiple chemical mediators including glutamatergic neurons at the brainstem level, leading to an increased synaptic strength and facilitatory output. It is not surprising that a well-established regulator of synaptic plasticity, brain-derived neurotrophic factor (BDNF), contributes to the mechanisms of descending pain facilitation. After tissue injury, BDNF and TrkB signaling in the brainstem circuitry is rapidly activated. Through the intracellular signaling cascade that involves phospholipase C, inositol trisphosphate, protein kinase C, and nonreceptor protein tyrosine kinases; N-methyl-D-aspartate (NMDA) receptors are phosphorylated, descending facilitatory drive is initiated, and behavioral hyperalgesia follows. The synaptic plasticity observed in the pain pathways shares much similarity with more extensively studied forms of synaptic plasticity such as long-term potentiation (LTP) and long-term depression (LTD), which typically express NMDA receptor dependency and regulation by trophic factors. However, LTP and LTD are experimental phenomena whose relationship to functional states of learning and memory has been difficult to prove. Although mechanisms of synaptic plasticity in pain pathways have typically not been related to LTP and LTD, pain pathways have an advantage as a model system for synaptic modifications as there are many well-established models of persistent pain with clear measures of the behavioral phenotype. Further studies will elucidate cellular and molecular mechanisms of pain sensitization and further our understanding of principles of central nervous system plasticity and responsiveness to environmental challenge.
Collapse
Affiliation(s)
- Ke Ren
- Department of Biomedical Sciences, Dental School & Program in Neuroscience, University of Maryland, 650 W. Baltimore St., Baltimore, MD 21201-1586, USA.
| | | |
Collapse
|
14
|
Rao AA, Sridhar GR, Srinivas B, Das UN. Bioinformatics analysis of functional protein sequences reveals a role for brain-derived neurotrophic factor in obesity and type 2 diabetes mellitus. Med Hypotheses 2008; 70:424-9. [PMID: 17553627 DOI: 10.1016/j.mehy.2007.03.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 03/12/2007] [Indexed: 10/23/2022]
Abstract
Using bioinformatics techniques and sequence analyses algorithms, a comparative study between human and rodents revealed similarity in the behavior of genes involved in the control of energy homeostasis. Brain-derived neurotrophic factor (BDNF) modulates the secretion and actions of insulin, leptin, ghrelin, various neurotransmitters and peptides, and pro-inflammatory cytokines involved in energy homeostasis suggesting that it (BDNF) has a significant role in the pathobiology of obesity and type 2 diabetes mellitus. Based on these evidences, we propose that obesity and type 2 diabetes could be disorders of the brain and BDNF could serve as a biomarker in predicting their development. Hence, methods developed to selectively deliver BDNF to appropriate hypothalamic neurons may form a novel approach in their treatment.
Collapse
Affiliation(s)
- Allam Appa Rao
- Department of Computer Science and Systems Engineering, Andhra University, Visakhapatnam 530 003, India
| | | | | | | |
Collapse
|
15
|
Krause S, Schindowski K, Zechel S, von Bohlen und Halbach O. Expression of trkB and trkC receptors and their ligands brain-derived neurotrophic factor and neurotrophin-3 in the murine amygdala. J Neurosci Res 2008; 86:411-21. [PMID: 17828769 DOI: 10.1002/jnr.21490] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) and their cognate receptors, trkB and trkC, have a variety of physiological brain functions, ranging from cell survival to mechanisms involved in learning and memory and long-term potentiation (LTP). LTP can be induced in the cortex and hippocampus, as well as within the amygdala. However, the role of neurotrophins in amygdalar LTP is largely unknown. Expression patterns of BDNF and NT-3 and their cognate receptors in the adult mouse amygdala have not been analyzed in detail. We have therefore examined the expression of trkB, trkC, BDNF, and NT-3 mRNA and protein in different amygdalar nuclei as well as in the hippocampal areas CA1-CA3 and the dentate gyrus. The distribution pattern of trkB, trkC, BDNF, and NT-3 mRNA in the murine hippocampus is comparable to that seen in rats. Within most amygdalar nuclei, a moderate BDNF mRNA expression was found; however, BDNF mRNA was virtually absent from the central nucleus. No expression of NT-3 mRNA was found within the amygdala, but trkC mRNA-expressing cells were widely distributed within this brain region. trkB mRNA was strongly expressed in the amygdala. Because trkB is expressed in a full-length and a truncated form (the latter form is also expressed by nonneuronal cells), we also investigated the distribution of full-length trkB mRNA-expressing cells and could demonstrate that this version of trkB receptors is also widely expressed in the amygdala. These results can serve as a basis for studies elucidating the physiological roles of these receptors in the amygdala.
Collapse
Affiliation(s)
- S Krause
- Interdisziplinäres Zentrum für Neurowissenschaften (IZN), Neuroanatomie, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | | | | | | |
Collapse
|
16
|
Pruunsild P, Kazantseva 1 A, Aid T, Palm K, Timmusk T. Dissecting the human BDNF locus: bidirectional transcription, complex splicing, and multiple promoters. Genomics 2007; 90:397-406. [PMID: 17629449 PMCID: PMC2568880 DOI: 10.1016/j.ygeno.2007.05.004] [Citation(s) in RCA: 506] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 05/13/2007] [Accepted: 05/14/2007] [Indexed: 12/11/2022]
Abstract
Brain-derived neurotrophic factor (BDNF), a member of the nerve growth factor family of neurotrophins, has central roles in the development, physiology, and pathology of the nervous system. We have elucidated the structure of the human BDNF gene, identified alternative transcripts, and studied their expression in adult human tissues and brain regions. In addition, the transcription initiation sites for human BDNF transcripts were determined and the activities of BDNF promoters were analyzed in transient overexpression assays. Our results show that the human BDNF gene has 11 exons and nine functional promoters that are used tissue and brain-region specifically. Furthermore, noncoding natural antisense RNAs that display complex splicing and expression patterns are transcribed in the BDNF gene locus from the antiBDNF gene (approved gene symbol BDNFOS). We show that BDNF and antiBDNF transcripts form dsRNA duplexes in the brain in vivo, suggesting an important role for antiBDNF in regulating BDNF expression in human.
Collapse
|
17
|
Kim JK, Jeon SM, Lee KM, Park ES, Cho HJ. Expression of brain-derived neurotrophic factor in the rat forebrain and upper brain stem during postnatal development: an immunohistochemical study. Neuroscience 2007; 146:1128-36. [PMID: 17395388 DOI: 10.1016/j.neuroscience.2007.02.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 02/05/2007] [Accepted: 02/10/2007] [Indexed: 11/26/2022]
Abstract
The present study was undertaken to characterize the regional and temporal patterns of brain-derived neurotrophic factor (BDNF) in the rat forebrain and upper brain stem during postnatal development using an immunohistochemical approach. Results indicated that BDNF-immunoreactive (IR) cells could be divided into three groups based on their postnatal developmental patterns: (group 1) BDNF-IR cells were first detected between postnatal days (PND) 1 and 7, and thereafter they increased in number and remained stable during later stages of ontogeny; (group 2) BDNF-IR cells progressively increased in number with age, and then decreased in adults; (group 3) numerous BDNF-IR cells detected between PND 1 and 7 showed a dramatic reductions in number with few IR cells in adults. In contrast, the developmental pattern of most BDNF-IR fibers differed from that of IR neurons, i.e. they appeared between PND 1-28 and thereafter continued to increase in number showing a maximum level in adults. Additionally, BDNF-IR cells in the superficial layer of the neocortex and IR fibers in the stratum oriens of CA2 first appeared as late as PND 28 and in adults, respectively. After colchicine treatment, reexpression or a marked increase in the number of BDNF-IR neurons was observed in many areas of the adult brain where a progressive decrease in BDNF-IR cell numbers during development and scant or some IR neurons in adults were shown. These results showed both transient and persistent expression of BDNF in various regions of the developing rat brain.
Collapse
Affiliation(s)
- J K Kim
- Department of Occupational Therapy, Daegu Health College, San 7, Taejeon-1 Dong, Buk-gu, Daegu 702-867, South Korea
| | | | | | | | | |
Collapse
|
18
|
Zhang HT, Li LY, Zou XL, Song XB, Hu YL, Feng ZT, Wang TTH. Immunohistochemical distribution of NGF, BDNF, NT-3, and NT-4 in adult rhesus monkey brains. J Histochem Cytochem 2006; 55:1-19. [PMID: 16899765 DOI: 10.1369/jhc.6a6952.2006] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Immunohistochemical distribution and cellular localization of neurotrophins was investigated in adult monkey brains using antisera against nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4). Western blot analysis showed that each antibody specifically recognized appropriate bands of approximately 14.7 kDa, 14.2 kDa, 13.6 kDa, and 14.5 kDa, for NGF, BDNF, NT-3, and NT-4, respectively. These positions coincided with the molecular masses of the neurotrophins studied. Furthermore, sections exposed to primary antiserum preadsorbed with full-length NGF, BDNF, NT-3, and NT-4 exhibited no detectable immunoreactivity, demonstrating specificities of the antibodies against the tissues prepared from rhesus monkeys. The study provided a systematic report on the distribution of NGF, BDNF, NT-3, and NT-4 in the monkey brain. Varying intensity of immunostaining was observed in the somata and processes of a wide variety of neurons and glial cells in the cerebrum, cerebellum, hippocampus, and other regions of the brain. Neurons in some regions such as the cerebral cortex and the hippocampus, which stained for neurotrophins, also expressed neurotrophic factor mRNA. In some other brain regions, there was discrepancy of protein distribution and mRNA expression reported previously, indicating a retrograde or anterograde action mode of neurotrophins. Results of this study provide a morphological basis for the elucidation of the roles of NGF, BDNF, NT-3, and NT-4 in adult primate brains.
Collapse
Affiliation(s)
- Hong-Tian Zhang
- Institute for Research on Neuroscience, Kunming Medical College, Kunming, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Guo W, Robbins MT, Wei F, Zou S, Dubner R, Ren K. Supraspinal brain-derived neurotrophic factor signaling: a novel mechanism for descending pain facilitation. J Neurosci 2006; 26:126-37. [PMID: 16399679 PMCID: PMC6674294 DOI: 10.1523/jneurosci.3686-05.2006] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the adult mammalian brain, brain-derived neurotrophic factor (BDNF) is critically involved in long-term synaptic plasticity. Here, we show that supraspinal BDNF-tyrosine kinase receptor B (TrkB) signaling contributes to pain facilitation. We show that BDNF-containing neurons in the periaqueductal gray (PAG), the central structure for pain modulation, project to and release BDNF in the rostral ventromedial medulla (RVM), a relay between the PAG and spinal cord. BDNF in PAG and TrkB phosphorylation in RVM neurons are upregulated after inflammation. Intra-RVM sequestration of BDNF and knockdown of TrkB by RNA interference attenuate inflammatory pain. Microinjection of BDNF (10-100 fmol) into the RVM facilitates nociception, which is dependent on NMDA receptors (NMDARs). In vitro studies with RVM slices show that BDNF induces tyrosine phosphorylation of the NMDAR NR2A subunit in RVM via a signal transduction cascade involving IP(3), PKC, and Src. The supraspinal BDNF-TrkB signaling represents a previously unknown mechanism underlying the development of persistent pain. Our findings also caution that application of BDNF for recovery from CNS disorders could lead to undesirable central pain.
Collapse
Affiliation(s)
- Wei Guo
- Department of Biomedical Sciences, Program in Neuroscience, Dental School, University of Maryland, Baltimore, Maryland 21201, USA
| | | | | | | | | | | |
Collapse
|
20
|
Hansson AC, Sommer WH, Metsis M, Strömberg I, Agnati LF, Fuxe K. Corticosterone actions on the hippocampal brain-derived neurotrophic factor expression are mediated by exon IV promoter. J Neuroendocrinol 2006; 18:104-14. [PMID: 16420279 DOI: 10.1111/j.1365-2826.2005.01390.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) expression is strongly regulated by adrenocorticosteroids via activated gluco- and mineralocorticoid receptors. Four separate promoters are located upstream of the BDNF noncoding exons I to IV and may thus be involved in adrenocorticosteroid-mediated gene regulation. In adrenalectomised rats, corticosterone (10 mg/kg s.c.) induces a robust down-regulation of both BDNF mRNA and protein levels in the hippocampus peaking at 2-8 h. To study the role of the individual promoters in the corticosterone response, we employed exon-specific riboprobe in situ hybridisation as well as real-time polymerase chain reaction (PCR) in the dentate gyrus. We found a down-regulation, mainly of exon IV and the protein-coding exon V, in nearby all hippocampal subregions, but exon II was only down-regulated in the dentate gyrus. Exon I and exon III transcripts were not affected by corticosterone treatment. The results could be confirmed with real-time PCR in the dentate gyrus. It appears as if the exon IV promoter is the major target for corticosterone-mediated transcriptional regulation of BDNF in the hippocampus.
Collapse
Affiliation(s)
- A C Hansson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
21
|
Koyama Y, Baba A, Matsuda T. Endothelins stimulate the expression of neurotrophin-3 in rat brain and rat cultured astrocytes. Neuroscience 2005; 136:425-33. [PMID: 16181740 DOI: 10.1016/j.neuroscience.2005.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 07/31/2005] [Accepted: 08/01/2005] [Indexed: 10/25/2022]
Abstract
Endothelins play a role in the regulation of astrocytic functions in brain pathologies such as hyperplasia and neurotrophic factor production. The present study examined the effects of endothelins on production of neurotrophin-3, a member of the neurotrophin family of neurotrophic factors, in cultured astrocytes and rat brain. Quantitative reverse transcription-PCR analysis of mRNA copy numbers showed that cultured astrocytes expressed comparable numbers of neurotrophin-3 and neurotrophin-4/5 mRNA copies to nerve growth factor and brain-derived neurotrophic factor. Endothelin-1 (100 nM) and Ala1,3,11,15-endothelin-1 (an endothelinB receptor agonist, 100 nM) caused a transient increase in neurotrophin-3 mRNA levels, but not in neurotrophin-4/5 levels, in cultured astrocytes. The increases in mRNA levels were accompanied with that in extracellular release of neurotrophin-3. The effects of endothelin-1 on neurotrophin-3 mRNA levels were reduced by BQ788, an endothelinB receptor antagonist. I.c.v. administration of 500 pmol/day Ala1,3,11,15-endothelin-1 increased mRNA and peptide levels of neurotrophin-3 in rat caudate putamen and cerebrum. On the other hand, neurotrophin-3 production in hippocampus was not affected by Ala1,3,11,15-endothelin-1. Immunohistochemical examination of Ala1,3,11,15-endothelin-1-infused rats showed that neurotrophin-3 was mainly expressed in glial fibrillary acidic protein-positive astrocytes in caudate putamen and cerebrum. endothelin-induced increases in neurotrophin-3 expression in cultured astrocytes were inhibited by chelation of intracellular Ca2+ and PD98095 (an ERK inhibitor). These results suggest that endothelin is an extracellular signal that stimulates astrocytic neurotrophin-3 production in brain pathologies.
Collapse
Affiliation(s)
- Y Koyama
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-Oka 1-6 Suita, 565-0871, Japan
| | | | | |
Collapse
|
22
|
Zaidi SIA, Jafri A, Doggett T, Haxhiu MA. Airway-related vagal preganglionic neurons express brain-derived neurotrophic factor and TrkB receptors: implications for neuronal plasticity. Brain Res 2005; 1044:133-43. [PMID: 15885212 DOI: 10.1016/j.brainres.2005.02.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 01/28/2005] [Accepted: 02/03/2005] [Indexed: 01/19/2023]
Abstract
Recent evidence indicates that brain-derived neurotrophic factor (BDNF) is present in neurons and may affect neurotransmitter release, cell excitability, and synaptic plasticity via activation of tyrosine kinase B (TrkB) receptors. However, whether airway-related vagal preganglionic neurons (AVPNs) produce BDNF and contain TrkB receptors is not known. Hence, in ferrets, we examined BDNF and TrkB receptor expression in identified AVPNs using in situ hybridization and immunohistochemistry. BDNF protein levels were measured within the rostral nucleus ambiguus (rNA) region by ELISA. We observed that the subpopulation of AVPNs, identified by neuroanatomical tract tracing, within the rNA region express BDNF mRNA, BDNF protein, as well as TrkB receptor. In addition, brain tissue from the rNA region contained measurable amounts of BDNF that were comparable to the hippocampal region of the brain. These data indicate, for the first time, that the BDNF-TrkB system is expressed by AVPNs and may play a significant role in regulating cholinergic outflow to the airways.
Collapse
Affiliation(s)
- Syed I A Zaidi
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC 20059, USA.
| | | | | | | |
Collapse
|
23
|
Li Q, Goodchild AK, Seyedabadi M, Pilowsky PM. Preprotachykinin A mRNA is colocalized with tyrosine hydroxylase-immunoreactivity in bulbospinal neurons. Neuroscience 2005; 136:205-16. [PMID: 16198496 DOI: 10.1016/j.neuroscience.2005.07.057] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Revised: 06/06/2005] [Accepted: 07/20/2005] [Indexed: 11/16/2022]
Abstract
Previous studies have generated controversy about the extent of co-localization between substance P- and catecholamine-containing neurons that project to the spinal cord. In earlier studies, estimates using immunofluorescence after colchicine have ranged from almost all, to almost none. We sought to resolve this issue by combining in situ hybridization and immunofluorescence. Catecholamine (A1 to A7, C1 to C3; tyrosine hydroxylase immunoreactive) neurons in the rat brainstem were examined to determine their content of mRNA for the preprotachykinin-A gene. In the A1 to A7 and the C1 to C3 cell groups, preprotachykinin-A mRNA was found only in substantial amounts in the C1-C3 cell groups. On average 20.9+/-0.9% (234/1120, n=3) of rostral C1 neurons contained preprotachykinin-A mRNA. Co-localization was also observed in C2 and C3 neurons to a similar extent. Retrograde tract-tracing with cholera toxin B subunit was used to identify bulbospinal neurons and 17.9+/-2.7% (96/529 cells) of the bulbospinal tyrosine hydroxylase-containing neurons of the rostral C1 cell group were found to contain preprotachykinin-A mRNA. In addition a new population of non-catecholaminergic bulbospinal preprotachykinin-A neurons is described in an area corresponding to the recently described caudal pressor area. To confirm that the preprotachykinin-A mRNA observed in cells in the medulla was converted to protein, dual immunofluorescence for fiber labeling at the confocal level was carried out. This confirmed colocalization of substance P and tyrosine hydroxylase in the intermediolateral cell column, but nowhere else, in a small number of cases. The results provide evidence for a much larger population of substance P/neurokinin A containing neurons in the brainstem than was previously suspected. Furthermore, many of these neurons are catecholaminergic and spinally projecting. The specific sympathetic outflow that these neurons influence remains to be determined.
Collapse
Affiliation(s)
- Q Li
- Department of Physiology, University of Sydney, NSW 2000, Australia
| | | | | | | |
Collapse
|
24
|
Albeck DS, Beck KD, Kung LH, Sano K, Brennan FX. Leverpress escape/avoidance training increases neurotrophin levels in rat brain. ACTA ACUST UNITED AC 2005; 40:28-34. [PMID: 16491929 DOI: 10.1007/bf02734186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In addition to their well-known role in neural development, the neurotrophins BDNF and NGF help mediate the plasticity that occurs in the brain to promote learning. Exposure to learning procedures often leads to increases in neurotrophins, while exposure to stress often results in decreases. It is unclear how the neurotrophins would respond to an aversive learning task. Therefore, BDNF and NGF content in the dorsal striatum, hippocampus, and basal forebrain was measured following discrete trial lever-press escape/avoidance conditioning. Conditioning significantly increased levels of both neurotrophins in hippocampus and basal forebrain, relative to home cage controls (HCC). Contrary to expectations, the dorsal striatum did not show any significant changes. However, significant correlations were observed between dorsal striatal neurotrophins and aspects of avoidance performance. This may indicate that the dorsal striatum is involved in the performance aspects of the task. Results are discussed in terms of the role of neurotrophins in the acquisition of new information, and the neural structures involved in different types of memory.
Collapse
Affiliation(s)
- David S Albeck
- Department of Psychology, University of Colorado at Denver, CO 80217-3364, USA.
| | | | | | | | | |
Collapse
|
25
|
Zaman V, Nelson ME, Gerhardt GA, Rohrer B. Neurodegenerative alterations in the nigrostriatal system of trkB hypomorphic mice. Exp Neurol 2004; 190:337-46. [PMID: 15530873 DOI: 10.1016/j.expneurol.2004.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 08/02/2004] [Accepted: 08/10/2004] [Indexed: 12/21/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) acts through the neurotrophin receptor TrkB and promotes survival and differentiation of dopaminergic ventral mesencephalic neurons. To further evaluate the role of TrkB in the nigrostriatal pathway, we studied neurotrophin levels, dopamine metabolism, and morphology of dopaminergic neurons of the substantia nigra (SN-DA) in young adult hypomorphic trkB mice (trkBfbz/fbz), which express only approximately 25% of wild type levels of TrkB. Tyrosine hydroxylase immunostaining revealed altered morphology of SN-DA neurons in trkBfbz/fbz when compared to wild type mice, in particular a significant enlargement of nuclear size. Cell counts revealed a pronounced loss of SN-DA neurons in these mice. Measurement of monoamine levels by high performance liquid chromatography (HPLC) showed that dopamine (DA) levels in the target field (striatum) were significantly elevated in trkBfbz/fbz compared to trkB+/fbz and wild type mice (P < 0.05), without altering DA turnover. Likewise, enzyme-linked immunosorbent assay (ELISA) for neurotrophic factors measurement showed that BDNF levels were increased in the striatum (P < 0.01) and frontal cortex (P < 0.005) of trkBfbz/fbz mice, but not in the SN when compared to trkB+/fbz and wild type mice. These data suggest that elevated neurotransmitter and neurotrophic factor levels might be a compensatory mechanism following dopaminergic cell loss in the SN. Thus, TrkB-activation seems essential for the maintenance of the nigrostriatal dopaminergic system.
Collapse
Affiliation(s)
- Vandana Zaman
- Department of Physiology and Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | |
Collapse
|
26
|
Stanic D, Tripanichkul W, Drago J, Finkelstein DI, Horne MK. Glial responses associated with dopaminergic striatal reinnervation following lesions of the rat substantia nigra. Brain Res 2004; 1023:83-91. [PMID: 15364022 DOI: 10.1016/j.brainres.2004.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2004] [Indexed: 11/22/2022]
Abstract
Lesioning of dopaminergic substantia nigra pars compacta (SNpc) neurons leads to depletion of dopamine (DA) and dopaminergic axons in the dorsal striatum, followed by subsequent compensatory sprouting of dopaminergic fibers and striatal reinnervation. In this study, the response of striatal glia (microglia and astroglia) was compared with the degeneration and regeneration of dopaminergic axons following SNpc lesions. Following partial SNpc lesions, density of dopamine transporter (DAT) immunoreactive (-ir) terminals in the dorsal striatum returned to normal within 16 weeks of injury, suggesting that dopaminergic reinnervation of the striatum was complete. In conjunction, the glial responses in the dorsal striatum consisted of two peaks. The first peak in glial density occurred immediately after lesioning, peaking at 7 days, implying that it was likely to be associated with removal of debris from degenerating terminals. The second glial response commenced 8 weeks after lesioning and peaked some time after 16 weeks. The time of onset of the second peak suggests that it may be associated with the establishment of synapses rather than with axonal guidance.
Collapse
Affiliation(s)
- Davor Stanic
- Department of Medicine, Monash University, Monash Medical Centre, Block E, Level 5, 246 Clayton Rd, Clayton 3168, Australia
| | | | | | | | | |
Collapse
|
27
|
Brown A, Ricci MJ, Weaver LC. NGF message and protein distribution in the injured rat spinal cord. Exp Neurol 2004; 188:115-27. [PMID: 15191808 DOI: 10.1016/j.expneurol.2004.03.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 03/03/2004] [Accepted: 03/10/2004] [Indexed: 01/07/2023]
Abstract
Nerve growth factor (NGF) content of the spinal cord is increased after cord injury. NGF can cause central sprouting of sensory fibers after spinal cord injury (SCI), leading to autonomic dysfunction and pain. NGF also can promote the death of oligodendroglia after SCI. Knowing the source of intraspinal NGF would benefit strategies for minimizing abnormal plasticity and cell death after SCI. We identified these sources, using RNA in situ hybridization to detect NGF mRNA and double-labeling immunocytochemistry for NGF and cell-marking antigens. In uninjured and sham-injured rats, we identified NGF mRNA in leptomeningeal cells and in neurons in the intermediate grey matter, whereas NGF protein was observed only in leptomeningeal cells. At 3-7 days after transection or clip-compression SCI, NGF mRNA and protein were expressed in the lesion and throughout the intermediate grey matter and white matter rostral and caudal to the injury site. Transection-SCI was used to permit comparisons to previous studies; clip-compression injury was used as a more clinically relevant model. mRNA and protein in adjacent sections were expressed in ramified microglia, astrocytes, intermediate grey neurons, pial cells, and leptomeningeal and Schwann cells in the lateral white matter and the lesion site. Rounded macrophages in the lesion were immunoreactive (Ir) for NGF, but the cells expressing NGF mRNA were not in the same areas of the lesion and were not stained by a macrophage marker. Our data demonstrate that glia, neurons, meningeal cells and Schwann cells but not macrophages contribute to the increased intraspinal NGF after SCI.
Collapse
Affiliation(s)
- Arthur Brown
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
28
|
Bolaños CA, Nestler EJ. Neurotrophic mechanisms in drug addiction. Neuromolecular Med 2004; 5:69-83. [PMID: 15001814 DOI: 10.1385/nmm:5:1:069] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2003] [Accepted: 09/23/2003] [Indexed: 11/11/2022]
Abstract
The involvement of neurotrophic factors in neuronal survival and differentiation is well established. The more recent realization that these factors also play pivotal roles in the maintenance and activity-dependent remodeling of neuronal functioning in the adult brain has generated excitement in the neurosciences. Neurotrophic factors have been implicated in the modulation of synaptic transmission and in the mechanisms underlying learning and memory, mood disorders, and drug addiction. Here the evidence for the role of neurotrophins and other neurotrophic factors-and the signaling pathways they activate-in mediating long-term molecular, cellular, and behavioral adaptations associated with drug addiction is reviewed.
Collapse
Affiliation(s)
- Carlos A Bolaños
- Department of Psychiatry and Center for Basic Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9070, USA
| | | |
Collapse
|
29
|
Blurton-Jones M, Kuan PN, Tuszynski MH. Anatomical evidence for transsynaptic influences of estrogen on brain-derived neurotrophic factor expression. J Comp Neurol 2004; 468:347-60. [PMID: 14681930 DOI: 10.1002/cne.10989] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Several studies have demonstrated that estrogen modulates brain-derived neurotrophic factor (BDNF) mRNA and protein within the adult hippocampus and cortex. However, mechanisms underlying this regulation are unknown. Although an estrogen response element (ERE)-like sequence has been identified within the BDNF gene, such a classical mechanism of estrogen-induced transcriptional activation requires the colocalized expression of estrogen receptors within cells that produce BDNF. Developmental studies have demonstrated such a relationship, but to date no studies have examined colocalization of estrogen receptors and BDNF within the adult brain. By utilizing double-label immunohistochemistry for BDNF, estrogen receptor-alpha (ER-alpha), and estrogen receptor-beta (ER-beta), we found only sparse colocalization between ER-alpha and BDNF in the hypothalamus, amygdala, prelimbic cortex, and ventral hippocampus. Furthermore, ER-beta and BDNF do not colocalize in any brain region. Given the recent finding that cortical ER-beta is almost exclusively localized to parvalbumin-immunoreactive GABAergic neurons, we performed BDNF/parvalbumin double labeling and discovered that axons from cortical ER-beta-expressing inhibitory neurons terminate on BDNF-immunoreactive pyramidal cells. Collectively, these findings support a potential transsynaptic relationship between estrogen state and cortical BDNF: By directly modulating GABAergic interneurons, estrogen may indirectly influence the activity and expression of BDNF-producing cortical neurons.
Collapse
Affiliation(s)
- M Blurton-Jones
- Department of Neurosciences, University of California-San Diego, La Jolla, California 92093-0626, USA
| | | | | |
Collapse
|
30
|
Eisch AJ, Bolaños CA, de Wit J, Simonak RD, Pudiak CM, Barrot M, Verhaagen J, Nestler EJ. Brain-derived neurotrophic factor in the ventral midbrain-nucleus accumbens pathway: a role in depression. Biol Psychiatry 2003; 54:994-1005. [PMID: 14625141 DOI: 10.1016/j.biopsych.2003.08.003] [Citation(s) in RCA: 314] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Previous work has shown that brain-derived neurotrophic factor (BDNF) and its receptor, tyrosine kinase receptor B (TrkB), are involved in appetitive behavior. Here we show that BDNF in the ventral tegmental area-nucleus accumbens (VTA-NAc) pathway is also involved in the development of a depression-like phenotype. METHODS Brain-derived neurotrophic factor signaling in the VTA-NAc pathway was altered in two complementary ways. One group of rats received intra-VTA infusion of vehicle or BDNF for 1 week. A second group of rats received intra-NAc injections of vehicle or adeno-associated viral vectors encoding full-length (TrkB.FL) or truncated (TrkB.T1) TrkB; the latter is kinase deficient and serves as a dominant-negative receptor. Rats were examined in the forced swim test and other behavioral tests. RESULTS Intra-VTA infusions of BDNF resulted in 57% shorter latency to immobility relative to control animals, a depression-like effect. Intra-NAc injections of TrkB.T1 resulted in and almost fivefold longer latency to immobility relative to TrkB.FL and control animals, an antidepressant-like effect. No effect on anxiety-like behaviors or locomotion was seen. CONCLUSIONS These data suggest that BDNF action in the VTA-NAc pathway might be related to development of a depression-like phenotype. This interpretation is intriguing in that it suggests a role for BDNF in the VTA-NAc that is opposite of the proposed role for BDNF in the hippocampus.
Collapse
Affiliation(s)
- Amelia J Eisch
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Texas, Dallas 75390-9070, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Koyama Y, Tsujikawa K, Matsuda T, Baba A. Intracerebroventricular administration of an endothelin ETB receptor agonist increases expressions of GDNF and BDNF in rat brain. Eur J Neurosci 2003; 18:887-94. [PMID: 12925014 DOI: 10.1046/j.1460-9568.2003.02797.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Endothelins (ETs) are suggested to be involved in functional alterations of astrocytes after brain injury, including proliferation, hypertrophy and production of neurotrophic factors. In this study, effects of Ala1,3,11,15-endothelin-1 (Ala1,3,11,15-ET-1), an ETB receptor selective agonist, on neurotrophic factor production were examined in rat brain. A continuous intracerebroventricular administration of Ala1,3,11,15-ET-1 (500 pmol/day for 7 days) increased the numbers of GFAP- and vimentin-positive astrocytes in the hippocampus, caudate putamen and cerebrum. Ala1,3,11,15-ET-1 did not induce neuronal degeneration and activation of microglia/macrophage in these brain regions. The intracerebroventricular administration of Ala1,3,11,15-ET-1 for 7 days caused two- to three-fold increases in glial cell line-derived neurotrophic factors (GDNF) mRNA in the hippocampus and cerebrum. The mRNA levels of brain-derived neurotrophic factors (BDNF) in caudate putamen were increased by Ala1,3,11,15-ET-1. Expressions of nerve growth factor (NGF) and basic fibroblast growth factor (bFGF) mRNA in these regions were not largely affected by Ala1,3,11,15-ET-1, except cerebral NGF mRNA level was increased. The Ala1,3,11,15-ET-1-induced increases in GDNF and BDNF mRNA levels were accompanied by increases in immunoreactive GDNF and BDNF. Immunohistochemical observations showed that GFAP-positive astrocytes expressed GDNF and BDNF in the brain regions of Ala1,3,11,15-ET-1-infused rats. In cultured rat astrocytes, Ala1,3,11,15-ET-1 (100 nm) increased mRNA levels of GDNF and BDNF. These results suggest that activation of brain ETB receptors induced GDNF and BDNF expression in astrocytes.
Collapse
Affiliation(s)
- Yutaka Koyama
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-Oka 1-6 Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
32
|
Lu P, Jones LL, Snyder EY, Tuszynski MH. Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp Neurol 2003; 181:115-29. [PMID: 12781986 DOI: 10.1016/s0014-4886(03)00037-2] [Citation(s) in RCA: 620] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neural stem cells (NSCs) offer the potential to replace lost tissue after nervous system injury. This study investigated whether grafts of NSCs (mouse clone C17.2) could also specifically support host axonal regeneration after spinal cord injury and sought to identify mechanisms underlying such growth. In vitro, prior to grafting, C17.2 NSCs were found for the first time to naturally constitutively secrete significant quantities of several neurotrophic factors by specific ELISA, including nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor. When grafted to cystic dorsal column lesions in the cervical spinal cord of adult rats, C17.2 NSCs supported extensive growth of host axons of known sensitivity to these growth factors when examined 2 weeks later. Quantitative real-time RT-PCR confirmed that grafted stem cells expressed neurotrophic factor genes in vivo. In addition, NSCs were genetically modified to produce neurotrophin-3, which significantly expanded NSC effects on host axons. Notably, overexpression of one growth factor had a reciprocal effect on expression of another factor. Thus, stem cells can promote host neural repair in part by secreting growth factors, and their regeneration-promoting activities can be modified by gene delivery.
Collapse
Affiliation(s)
- P Lu
- Department of Neurosciences, University of California at San Diego, La Jolla 92093-0626, USA
| | | | | | | |
Collapse
|
33
|
Freeman AY, Soghomonian JJ, Pierce RC. Tyrosine kinase B and C receptors in the neostriatum and nucleus accumbens are co-localized in enkephalin-positive and enkephalin-negative neuronal profiles and their expression is influenced by cocaine. Neuroscience 2003; 117:147-56. [PMID: 12605901 DOI: 10.1016/s0306-4522(02)00802-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Single- and double-label immunohistochemistry were used to determine the extent to which the tyrosine kinase B and C receptors, are expressed in enkephalin-immunopositive or enkephalin-immunonegative neuronal profiles in the rat neostriatum and nucleus accumbens. Results indicate that tyrosine kinase B and C receptors are co-localized in both enkephalin-positive and enkephalin-negative neurons in both of these nuclei, which suggests that these receptors influence both the striatal-pallidal (enkephalin) and striatal-ventral mesencephalic (substance P/dynorphin) pathways. We also examined the influence of acute or repeated injections of cocaine on the number of tyrosine kinase B and C receptors immunoreactive neuronal profiles in the rat neostriatum and nucleus accumbens. Following an acute injection of cocaine (15 mg/kg, i.p.), there were significant decreases in the number of tyrosine kinase B and C receptors immunoreactive profiles in specific regions of the neostriatum and nucleus accumbens relative to saline-pretreated rats. One or 14 days following the last of seven daily injections of 15 mg/kg cocaine or saline there were no differences in the numbers of tyrosine kinase B or C receptors immunoreactive neuronal profiles between these treatment groups.Collectively, the present results indicate that tyrosine kinase B and C receptors in the neostriatum and nucleus accumbens are co-localized in enkephalin-positive and enkephalin-negative neuronal profiles, which suggests that the striatal medium spiny neurons expressing tyrosine kinase B and C receptors include those that project to the pallidum or the ventral mesencephalon. The current results also show that an acute injection of cocaine results in a decrease in the number of tyrosine kinase B and C receptors immunoreactive neuronal profiles in specific regions of the nucleus accumbens and neostriatum, indicating that cocaine-induced increases in extracellular dopamine in the striatal complex result in compensatory decreases in the expression of tyrosine kinase B and C receptors.
Collapse
Affiliation(s)
- A Y Freeman
- Laboratory of Neuropsychopharmacology, Department of Pharmacology, R-612, Boston University School of Medicine, 715 Albany Street, Boston 02118, USA
| | | | | |
Collapse
|
34
|
Freeman AY, Pierce RC. Neutralization of neutrophin-3 in the ventral tegmental area or nucleus accumbens differentially modulates cocaine-induced behavioral plasticity in rats. Synapse 2002; 46:57-65. [PMID: 12211082 DOI: 10.1002/syn.10123] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
These experiments were designed to assess the influence of neurotrophin-3 (NT-3) and brain-derived neurotrophic factor (BDNF) in the mesoaccumbens dopamine system on the initiation of behavioral sensitization to cocaine. A neutralizing antibody for NT-3, BDNF or their vehicle was administered into the ventral tegmental area (VTA) or nucleus accumbens prior to each of four daily injections of 15 mg/kg cocaine. Behavioral sensitization was operationally defined as a significant increase in the behavioral response to cocaine relative to the first daily injection. Results indicated that the NT-3 antibody had differential effects when administered into the VTA or nucleus accumbens. Intra-VTA microinjection of anti-NT-3 resulted in enhanced sensitization to repeated cocaine injections in that the cocaine-induced behavioral response in the anti-NT-3 group was significantly greater than the vehicle group following the second and third daily injections of cocaine. Administration of anti-NT-3 into the nucleus accumbens increased the behavioral response to cocaine over all 4 days of cocaine administration, with no sensitization of this behavioral response. In contrast, pretreatment with anti-BDNF into the VTA or nucleus accumbens had no influence on the initiation of behavioral sensitization to cocaine. Taken together, these data indicate that neutralization of NT-3 in the VTA enhances cocaine-induced behavioral sensitization, while administration of the NT-3 antibody into the nucleus accumbens increases the hyperactive behavioral response induced by cocaine but impairs the further development of behavioral sensitization.
Collapse
Affiliation(s)
- Antoinette Y Freeman
- Department of Pharmacology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | |
Collapse
|
35
|
Bajrović F, Kovacic U, Pavcnik M, Sketelj J. Interneuronal signalling is involved in induction of collateral sprouting of nociceptive axons. Neuroscience 2002; 111:587-96. [PMID: 12031346 DOI: 10.1016/s0306-4522(01)00588-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Collateral sprouting of cutaneous nociceptive axons into the adjacent denervated skin critically depends on the nerve growth factor, presumably originating from the degenerated neural pathways and denervated skin. We hypothesised that the degenerated neural pathways are necessary, but not sufficient, to induce collateral sprouting of nociceptive axons, and, in addition, that the interaction between the injured and non-injured neurones within a dorsal root ganglion can trigger sprouting of nociceptive axons also in the absence of the denervated skin. End-to-side nerve anastomosis, made in female Wistar rats by suturing the end of an excised peroneal nerve segment to the side of the intact sural nerve, was used as a model for sprouting which allowed us to study the putative induction mechanisms separately. If the nerves adjacent to the sural nerve were transected concomitantly with the coaptation of the end-to-side anastomosis, robust nociceptive axon sprouting into the anastomosed nerve segment was observed by the nerve pinch test and counting of myelinated axons. Collateral sprouting did not occur, however, either if the cells in the anastomosed nerve segment were killed by freezing and thawing, or if the adjacent nerves had not been injured. However, if the ipsilateral dorsal cutaneous nerves, having their neurones in the same dorsal root ganglia as the sural nerve, were transected, but no other nerves were injured, then the sural nerve axons sprouted in abundance through the anastomosis even in the absence of denervated skin around the sural nerve terminals. From these results we suggest that cells (probably proliferating Schwann cells) in the degenerated neural pathways are necessary but not sufficient to induce collateral sprouting of nociceptive axons, and that interactions between the injured and non-injured neurones within the dorsal root ganglion (i.e. direct or indirect interneuronal signalling) are important in this regard.
Collapse
Affiliation(s)
- F Bajrović
- Institute of Pathophysiology, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| | | | | | | |
Collapse
|
36
|
Rudge JS, Alderson RF, Pasnikowski E, McClain J, Ip NY, Lindsay RM. Expression of Ciliary Neurotrophic Factor and the Neurotrophins-Nerve Growth Factor, Brain-Derived Neurotrophic Factor and Neurotrophin 3-in Cultured Rat Hippocampal Astrocytes. Eur J Neurosci 2002; 4:459-471. [PMID: 12106332 DOI: 10.1111/j.1460-9568.1992.tb00896.x] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cultured astrocytes are known to possess a range of neurotrophic activities in culture. In order to examine which factors may be responsible for these activities, we have examined the expression of the genes for four known neurotrophic factors-ciliary neurotrophic factor (CNTF), nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin 3 (NT3)-in purified astrocyte cultures derived from neonatal rat hippocampus. Hippocampal astrocytes were found to express mRNA for three neurotrophic factors-CNTF, NGF and NT3-at significantly higher levels than other cultured cell types or cell lines examined. BDNF messenger RNA (mRNA), however, was undetectable in these astrocytes. The levels of CNTF, NGF and NT3 mRNA in astrocytes were largely unaffected by their degree of confluency, while serum removal caused only a transient decrease in mRNA levels, which returned to basal levels within 48 h. Astrocyte-derived CNTF was found to comigrate with recombinant rat CNTF at 23 kD on a Western blot. Immunocytochemical analysis revealed strong CNTF immunoreactivity in the cytoplasm of astrocytes, weak staining in the nucleus, but no CNTF at the cell surface. NGF and NT3 were undetectable immunocytochemically. CNTF-like activity, as assessed by bioassay on ciliary ganglion neurons, was found in the extract of cultured astrocytes but not in conditioned medium, whereas astrocyte-conditioned medium supported survival of dorsal root ganglion neurons but not ciliary or nodose ganglion neurons. This conditioned medium activity was neutralized with antibodies to NGF. Astrocyte extract also supported survival of dorsal root ganglion and nodose ganglion neurons, but these activities were not blocked by anti-NGF. Part, but not all, of the activity in astrocyte extracts which sustained nodose ganglion neurons could be attributed to CNTF.
Collapse
Affiliation(s)
- John S. Rudge
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | | | | | | | | | | |
Collapse
|
37
|
Giardino L, Giuliani A, Battaglia A, Carfagna N, Aloe L, Calza' L. Neuroprotection and aging of the cholinergic system: a role for the ergoline derivative nicergoline (Sermion). Neuroscience 2002; 109:487-97. [PMID: 11823061 DOI: 10.1016/s0306-4522(01)00470-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The aging brain is characterized by selective neurochemical changes involving several neural populations. A deficit in the cholinergic system of the basal forebrain is thought to contribute to the development of cognitive symptoms of dementia. Attempts to prevent age-associated cholinergic vulnerability and deterioration therefore represent a crucial point for pharmacotherapy in the elderly. In this paper we provide evidence for the protective effect of nicergoline (Sermion) on the degeneration of cholinergic neurons induced by nerve growth factor deprivation. Nerve growth factor deprivation was induced by colchicine administration in rats 13 and 18 months old. Colchicine induces a rapid and substantial down-regulation of choline acetyltransferase messenger RNA level in the basal forebrain in untreated adult, middle-aged and old rats. Colchicine failed to cause these effects in old rats treated for 120 days with nicergoline 10 mg/kg/day, orally. Moreover, a concomitant increase of both nerve growth factor and brain-derived neurotrophic factor content was measured in the basal forebrain of old, nicergoline-treated rats. Additionally, the level of messenger RNA for the brain isoform of nitric oxide synthase in neurons of the basal forebrain was also increased in these animals. Based on the present findings, nicergoline proved to be an effective drug for preventing neuronal vulnerability due to experimentally induced nerve growth factor deprivation.
Collapse
Affiliation(s)
- L Giardino
- Department of Veterinary Morphophysiology and Animal Production (DIMORFIPA), University of Bologna, 40064 Ozano dell'Emilia, Italy
| | | | | | | | | | | |
Collapse
|
38
|
Pierce RC, Bari AA. The role of neurotrophic factors in psychostimulant-induced behavioral and neuronal plasticity. Rev Neurosci 2001; 12:95-110. [PMID: 11392459 DOI: 10.1515/revneuro.2001.12.2.95] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Several neurotrophic factors influence the development, maintenance and survival of dopaminergic neurons in the mammalian central nervous system (CNS), including neurotrophin-3 (NT-3), brain derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), basic fibroblast growth factor (bFGF) and glial derived neurotrophic factor (GDNF). This review focuses on the role of these neurotrophic factors in psychostimulant-induced behavioral sensitization, a form of dopamine-mediated neuronal plasticity that models aspects of paranoid schizophrenia as well as drug craving among psychostimulant addicts. Whereas NT-3, CNTF and bFGF appear to play a positive role in psychostimulant-induced behavioral sensitization, GDNF inhibits this form of behavioral plasticity. The role of BDNF in behavioral sensitization, however, remains elusive. While it has been shown that neurotrophic factors can influence the behavioral, structural and biochemical phenomena related to psychostimulant-induced neuronal plasticity, it is unclear which neurotrophic factors are important physiologically and which have purely pharmacological effects. In either case, examining the role of neurotrophic factors in behavioral sensitization may enhance our understanding of the mechanisms underlying the development of paranoid psychosis and drug craving and lead to the development of novel pharmacological treatments for these disorders.
Collapse
Affiliation(s)
- R C Pierce
- Department of Pharmacology, Boston University School of Medicine, MA 02118, USA.
| | | |
Collapse
|
39
|
Song QH, Toriizuka K, Jin GB, Yabe T, Cyong JC. Long term effects of Toki-shakuyaku-san on brain dopamine and nerve growth factor in olfactory-bulb-lesioned mice. JAPANESE JOURNAL OF PHARMACOLOGY 2001; 86:183-8. [PMID: 11459120 DOI: 10.1254/jjp.86.183] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We used olfactory-bulb-lesioned mice induced by intranasal irrigation with zinc sulfate as a model of dementia, to investigate the effects of Toki-shakuyaku-san (TSS) on monoamines and nerve growth factor (NGF) in brain regions. TSS was given daily through the drinking water for either 1, 2, 3, 4 or 8 weeks from the day after olfactory lesion. The administration of TSS significantly suppressed the decrease of 3,4-dihydroxyphenyl acetic acid (DOPAC) and homovanillic acid (HVA) in olfactory bulb of olfactory-lesioned mice at 1 week, and tended to suppress the decrease of DOPAC and HVA during the experimental session. However, the administration of TSS had no influence on dopamine contents. NGF contents in the olfactory bulb were increased after the irrigation, and the value returned to the same level as the control at 8 weeks after. Although the NGF contents in the olfactory bulb of TSS-treated mice were immediately increased at 1 and 2 weeks, the value returned to normal level within 3 weeks. These findings indicate that oral administration of TSS prevents the reduction of dopamine metabolites, DOPAC and HVA, and immediately increased NGF contents in the olfactory bulb. This suggested that TSS treatment promotes the NGF contents in olfactory nerves and rescue the neurons from damage.
Collapse
Affiliation(s)
- Q H Song
- The Research Division, Oriental Medicine Research Center, The Kitasato Institute, Tokyo, Japan
| | | | | | | | | |
Collapse
|
40
|
Berger MA, Defagot MC, Villar MJ, Antonelli MC. D4 dopamine and metabotropic glutamate receptors in cerebral cortex and striatum in rat brain. Neurochem Res 2001; 26:345-52. [PMID: 11495344 DOI: 10.1023/a:1010990812840] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The characterization of the functional interactions between the metabotropic glutamate receptors (mGluR) and the dopaminergic (DR) receptors in the corticostriatal projections may provide a possible interpretation of synaptic events in the basal ganglia. It has been suggested that presynaptic D2-type receptor located on glutamatergic corticostriatal neurons regulates the release of glutamate. In a first approach we have studied the cellular distribution of the D4R and the mGluRs in cerebral cortex and striatum employing immunocytochemistry. D4R positive neurons were particularly numerous in medial prefrontal cortex mainly occupying layers II and III. An even distribution was found on small round-shaped neurons in the striatum. Group I mGluR1alpha-like immunoreactivity (mGluR1alpha-LI) was found in medial and deep layers of the cerebral cortex while group III mGluR4a labeled more superficial layers; group II mGluR2/3 signal was intense on fine fibers with a punctate appearance. In the striatum, mGluR1alpha and mGluR2/3 stained mainly fibers while mGluR4a labeled round shaped cell bodies. After lateral ventricular injection of colchicine, an axonal transport and firing activity blocker, D4R labeling significantly increased in cerebral cortex and decreased in the striatum. mGluR1alpha and mGluR4a signal decreased in cerebral cortex and only mGluR4a signal decreased in the striatum. These results support previous reports indicating a presynaptic localization of D4R in the striatum. In contrast, striatal mGluR1alpha appears to be a postsynaptic receptor probably synthesized in situ. Our results do not support the hypothesis of a colocalization of D4 receptor and one or more of the metabotropic glutamatergic receptors studied here.
Collapse
Affiliation(s)
- M A Berger
- Instituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
41
|
Hinks GL, Chari DM, O'Leary MT, Zhao C, Keirstead HS, Blakemore WF, Franklin RJ. Depletion of endogenous oligodendrocyte progenitors rather than increased availability of survival factors is a likely explanation for enhanced survival of transplanted oligodendrocyte progenitors in X-irradiated compared to normal CNS. Neuropathol Appl Neurobiol 2001; 27:59-67. [PMID: 11299003 DOI: 10.1046/j.0305-1846.2001.00303.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Oligodendrocyte progenitors (OPs) survive and migrate following transplantation into adult rat central nervous system (CNS) exposed to high levels of X-irradiation but fail to do so if they are transplanted into normal adult rat CNS. In the context of developing OP transplantation as a potential therapy for repairing demyelinating diseases it is clearly of some importance to understand what changes have occurred in X-irradiated CNS that permit OP survival. This study addressed two alternative hypotheses. Firstly, X-irradiation causes an increase in the availability of OP survival factors, allowing the CNS to support a greater number of progenitors. Secondly, X-irradiation depletes the endogenous OP population thereby providing vacant niches that can be occupied by transplanted OPs. In situ hybridization was used to examine whether X-irradiation causes an increase in mRNA expression of five known OP survival factors, CNTF, IGF-I, PDGF-A, NT-3 and GGF-2. The levels of expression of these factors at 4 and 10 days following exposure of the adult rat spinal cord to X-irradiation remain the same as the expression levels in normal tissue. Using intravenous injection of horseradish peroxidase, no evidence was found of X-irradiation-induced change in blood-brain barrier permeability that might have exposed X-irradiated tissue to serum-derived survival factors. However, in support of the second hypothesis, a profound X-irradiation-induced decrease in the number of OPs was noted. These data suggest that the increased survival of transplanted OPs in X-irradiated CNS is not a result of the increases in the availability of the OP survival factors examined in this study but rather the depletion of endogenous OPs creating 'space' for transplanted OPs to integrate into the host tissue.
Collapse
Affiliation(s)
- G L Hinks
- Department of Clinical Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | |
Collapse
|
42
|
Murer MG, Yan Q, Raisman-Vozari R. Brain-derived neurotrophic factor in the control human brain, and in Alzheimer's disease and Parkinson's disease. Prog Neurobiol 2001; 63:71-124. [PMID: 11040419 DOI: 10.1016/s0301-0082(00)00014-9] [Citation(s) in RCA: 633] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a small dimeric protein, structurally related to nerve growth factor, which is abundantly and widely expressed in the adult mammalian brain. BDNF has been found to promote survival of all major neuronal types affected in Alzheimer's disease and Parkinson's disease, like hippocampal and neocortical neurons, cholinergic septal and basal forebrain neurons, and nigral dopaminergic neurons. In this article, we summarize recent work on the molecular and cellular biology of BDNF, including current ideas about its intracellular trafficking, regulated synthesis and release, and actions at the synaptic level, which have considerably expanded our conception of BDNF actions in the central nervous system. But our primary aim is to review the literature regarding BDNF distribution in the human brain, and the modifications of BDNF expression which occur in the brain of individuals with Alzheimer's disease and Parkinson's disease. Our knowledge concerning BDNF actions on the neuronal populations affected in these pathological states is also reviewed, with an aim at understanding its pathogenic and pathophysiological relevance.
Collapse
Affiliation(s)
- M G Murer
- Departamento de Fisiologia, Facultad de Medicina, Universidad de Buenos Aires, Paraguay.
| | | | | |
Collapse
|
43
|
Hinks GL, Franklin RJ. Delayed changes in growth factor gene expression during slow remyelination in the CNS of aged rats. Mol Cell Neurosci 2000; 16:542-56. [PMID: 11083917 DOI: 10.1006/mcne.2000.0897] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study we have examined whether the slower rate of CNS remyelination that occurs with age is associated with a change in growth factor expression patterns, an association that would provide further support for a causal relationship between growth factors and remyelination. Using quantitative in situ hybridization we have shown that there are differences in IGF-I, TGF-beta 1, and PDGF-A mRNA expression during remyelination of lysolecithin-induced demyelination in the spinal cord of young adult and old adult rats. IGF-I and TGF-beta1 mRNA expression in old rats had a delayed and lower peak expression compared to young rats. The initial increase in PDGF-A mRNA expression was delayed in old rats compared to young rats, but after 5 days both age groups had similar patterns of expression, as was the expression pattern of FGF-2 mRNA at all survival times. In neither age group were increases in CNTF, NT-3, or GGF-2 mRNA expression detected. An analysis of the macrophage response using oligonucleotide probes for scavenger receptor-B mRNA indicated that differences in the macrophage response in young and old animals was the likely cause of the age related change in IGF-I and TGF-beta 1 mRNA expression patterns. On the basis of these data we suggest a model of remyelination in which PDGF is involved in the initial phase of oligodendrocyte progenitor recruitment, while IGF-I and TGF-beta 1 trigger the differentiation of the recruited cells into myelinating oligodendrocytes.
Collapse
Affiliation(s)
- G L Hinks
- Department of Clinical Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom
| | | |
Collapse
|
44
|
Abstract
Nerve growth factor (NGF) is crucial for the development of sympathetic and small-diameter sensory neurons and for maintenance of their mature phenotype. Its role in generating neuronal pathophysiology is less well understood. After spinal cord injury, central processes of primary afferent fibers sprout into the dorsal horn, contributing to the development of autonomic dysfunctions and pain. NGF may promote these states as it stimulates sprouting of small-diameter afferent fibers and its concentration in the spinal cord increases after cord injury. The cells responsible for this increase must be identified to develop a strategy to prevent the afferent sprouting. Using immunocytochemistry, we identified cells containing NGF in spinal cord sections from intact rats and from rats 1 and 2 weeks after high thoracic cord transection. In intact rats, this neurotrophin was present in a few ramified microglia and in putative Schwann cells in the dorsal root. Within and close to the lesion of cord-injured rats, NGF was in many activated, ramified microglia, in a subset of astrocytes, and in small, round cells that were neither glia nor macrophages. NGF-immunoreactive putative Schwann cells were prevalent throughout the thoracolumbar cord in the dorsal roots and the dorsal root entry zones. Oligodendrocytes were never immunoreactive for this protein. Therapeutic strategies targeting spinal cord cells that produce NGF may prevent primary afferent sprouting and resulting clinical disorders after cord injury.
Collapse
Affiliation(s)
- N R Krenz
- John P Robarts Research Institute, Department of Physiology, University of Western Ontario, London, Canada
| | | |
Collapse
|
45
|
Alonso-Vanegas MA, Fawcett JP, Causing CG, Miller FD, Sadikot AF. Characterization of dopaminergic midbrain neurons in a DBH:BDNF transgenic mouse. J Comp Neurol 1999; 413:449-62. [PMID: 10502251 DOI: 10.1002/(sici)1096-9861(19991025)413:3<449::aid-cne7>3.0.co;2-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) has been implicated in the survival and differentiation of central nervous system neurons, including dopaminergic cells in culture. To determine whether BDNF might play a role in the development of dopaminergic neurons in vivo, we used a previously characterized transgenic mouse (DBH:BDNF) that overexpresses BDNF in adrenergic and noradrenergic neurons as a result of fusion of the BDNF gene to the dopamine beta-hydroxylase (DBH) gene promoter. We quantified dopaminergic neuronal profiles at four midbrain coronal levels and compared DBH:BDNF transgenic animals with wild-type mice of the same genetic background. Analysis of sections immunostained with tyrosine hydroxylase (TH) showed that the mean number of dopaminergic neurons in the four selected midbrain sections was 52% greater (one-way analysis of variance, P < 0.0005) in transgenic mice (2,165 +/- 55 S. E.M., n = 4) than in control mice (1,428 +/- 71 S.E.M., n = 4). The increase in dopaminergic neuron profile count in DBH:BDNF transgenic animals was confirmed by analysis of the pars compacta of the substantia nigra on Nissl-stained sections. Surface area of the reference region of interest containing TH-immunoreactive neurons was similar in transgenic and control mice. Regional analysis of different midbrain areas containing dopaminergic neurons suggested that the increase in cell profile count occurs in a relatively homogeneous manner. Comparison of TH-immunoreactive cell size showed a tendency for smaller neurons in transgenic animals, but the difference was not statistically significant. We conclude that DBH:BDNF transgenic mice show increased number of TH-immunoreactive cells in the midbrain. We propose that BDNF rescues dopaminergic neurons from the perinatal period of developmental cell death as a consequence of increased anterograde transport of the neurotrophin via the coeruleonigral projection.
Collapse
Affiliation(s)
- M A Alonso-Vanegas
- Department of Neurology and Neurosurgery, Cone Laboratory and Center for Neuronal Survival, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | | | | | |
Collapse
|
46
|
Neurotrophin-3 contributes to the initiation of behavioral sensitization to cocaine by activating the Ras/Mitogen-activated protein kinase signal transduction cascade. J Neurosci 1999. [PMID: 10493769 DOI: 10.1523/jneurosci.19-19-08685.1999] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
These experiments were designed to assess the role of neurotrophins and the Ras/mitogen-activated protein kinase (MAP) signal transduction cascade in behavioral sensitization to cocaine. The first experiments evaluated the effect of three daily intra-ventral tegmental area (VTA) microinjections of neurotrophin-3 (NT-3) or brain-derived neurotrophic factor (BDNF) on the behavioral-activating effects of a subsequent challenge injection of cocaine in rats. Results indicated that, although NT-3 did not influence behavior across the three microinjection days, animals displayed a sensitized behavioral response to the subsequent cocaine challenge injection. In contrast, BDNF microinjections resulted in a progressive increase in behavioral activity but did not influence the subsequent behavioral response to cocaine. A second series of experiments assessed the effect of inhibiting the MAP kinase signal transduction cascade on the initiation of behavioral sensitization to cocaine. The MAP kinase kinase inhibitor PD98059, or its vehicle, was microinjected into the VTA before three daily cocaine injections. Although PD98059 did not influence the acute behavioral response to cocaine, it blocked sensitization. Finally, the effects of acute and repeated cocaine injections on NT-3 and BDNF mRNA levels in the VTA, substantia nigra, and hippocampus were assessed. Results indicated that an acute cocaine injection resulted in a transient increase in NT-3 mRNA levels in the VTA. Collectively, these results suggest that NT-3 contributes to the initiation of behavioral sensitization to cocaine by activating the Ras/MAP kinase signal transduction system. The present data also indicate that BDNF itself produced a progressive augmentation in behavioral activation with repeated administration.
Collapse
|
47
|
Pierce RC, Pierce-Bancroft AF, Prasad BM. Neurotrophin-3 contributes to the initiation of behavioral sensitization to cocaine by activating the Ras/Mitogen-activated protein kinase signal transduction cascade. J Neurosci 1999; 19:8685-95. [PMID: 10493769 PMCID: PMC6783001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/1999] [Revised: 06/17/1999] [Accepted: 06/20/1999] [Indexed: 02/14/2023] Open
Abstract
These experiments were designed to assess the role of neurotrophins and the Ras/mitogen-activated protein kinase (MAP) signal transduction cascade in behavioral sensitization to cocaine. The first experiments evaluated the effect of three daily intra-ventral tegmental area (VTA) microinjections of neurotrophin-3 (NT-3) or brain-derived neurotrophic factor (BDNF) on the behavioral-activating effects of a subsequent challenge injection of cocaine in rats. Results indicated that, although NT-3 did not influence behavior across the three microinjection days, animals displayed a sensitized behavioral response to the subsequent cocaine challenge injection. In contrast, BDNF microinjections resulted in a progressive increase in behavioral activity but did not influence the subsequent behavioral response to cocaine. A second series of experiments assessed the effect of inhibiting the MAP kinase signal transduction cascade on the initiation of behavioral sensitization to cocaine. The MAP kinase kinase inhibitor PD98059, or its vehicle, was microinjected into the VTA before three daily cocaine injections. Although PD98059 did not influence the acute behavioral response to cocaine, it blocked sensitization. Finally, the effects of acute and repeated cocaine injections on NT-3 and BDNF mRNA levels in the VTA, substantia nigra, and hippocampus were assessed. Results indicated that an acute cocaine injection resulted in a transient increase in NT-3 mRNA levels in the VTA. Collectively, these results suggest that NT-3 contributes to the initiation of behavioral sensitization to cocaine by activating the Ras/MAP kinase signal transduction system. The present data also indicate that BDNF itself produced a progressive augmentation in behavioral activation with repeated administration.
Collapse
Affiliation(s)
- R C Pierce
- Laboratory of Neuropsychopharmacology, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
48
|
Aguado F, Pozas E, Blasi J. Colchicine administration in the rat central nervous system induces SNAP-25 expression. Neuroscience 1999; 93:275-83. [PMID: 10430491 DOI: 10.1016/s0306-4522(99)00103-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
he arrest of axonal transport by colchicine administration has been extensively used in immunocytochemical studies to increase the levels of neuroactive compounds in neuronal somata. In order to study the accumulation rates of a variety of proteins with location and physiological action at the synaptic terminal, we analysed, by immunocytochemical methods, the neuronal cell body content of these synaptic proteins in colchicine-injected rats. In sham-injected animals, all synaptic proteins tested were essentially observed in nerve fibres and terminal boutons. After colchicine administration, intense SNAP-25 immunoreactivity was found in many neuronal cell bodies throughout the CNS. In contrast, immunostaining for the rest of the synaptic proteins analysed (syntaxin 1A and 1B, synaptobrevin I and II, Rab3A, synaptophysin, synapsin I, synaptotagmin I and GAP-43) was virtually absent in neuronal cell bodies in treated animals. Furthermore, northern blot and in situ hybridization analysis revealed an increase in SNAP-25a and SNAP-25b messenger RNA isoforms in the brains of adult colchicine-administered animals. In addition, colchicine administration in five-day-old rat pups induced a notable increase in both SNAP-25 transcript isoforms. The present results indicate that in vivo colchicine administration, under conditions known to inhibit axoplasmic transport, upregulates SNAP-25 expression in the rat brain.
Collapse
Affiliation(s)
- F Aguado
- Departament de Biologia Cellular i Anatomia Patològica, Universitat de Barcelona, Hospital de Bellvitge, Spain
| | | | | |
Collapse
|
49
|
Hinks GL, Franklin RJ. Distinctive patterns of PDGF-A, FGF-2, IGF-I, and TGF-beta1 gene expression during remyelination of experimentally-induced spinal cord demyelination. Mol Cell Neurosci 1999; 14:153-68. [PMID: 10532806 DOI: 10.1006/mcne.1999.0771] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Although remyelination is a well-recognized regenerative process following both experimental and naturally occurring CNS demyelination, remarkably little is known about the molecules involved in its orchestration. In this study we have examined the mRNA expression of seven growth factors that influence oligodendrocyte lineage cells, during the remyelination of lysolecithin-induced demyelination in the rat spinal cord. These lesions involve rapid demyelination of axons, which undergo extensive remyelination between 10 and 28 days. The distribution and levels of expression of PDGF-A, IGF-I, CNTF, FGF-2, TGF-beta1, GGF-2, and NT-3 mRNAs were examined at 2, 5, 7, 10, 14, 21, and 28 days post-lesion induction, both within the lesion and within dorsal root ganglia whose axons transverse the lesion, by quantitative in situ hybridization using 35S-labeled oligonucleotide probes. large increases in IGF-I and TGF-beta1 mRNAs were evident within the spinal cord by 5 days. These levels peaked at 10 days at a time when new myelin sheaths appear and had declined by 28 days. Increases in FGF-2 and PDGF-A mRNAs were less intense and less widely distributed than those of IGF-I and TGF-1, but remained elevated for a longer duration. There were no changes in expression of CNTF, NT-3, or GGF-2 mRNAs within the lesioned cords; neither were ther changes in levels of expression of any growth factor mRNAs in the dorsal root ganglia. This work therefore indicates that some but not all members of the family of growth factors that affect the oligodendrocyte lineage are expressed during remyelination of demyelinated spinal cord axons and provides the data on which future studies on the specific roles of these factors in orchestrating this important regenerative process will be based.
Collapse
Affiliation(s)
- G L Hinks
- Department of Clinical Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 OES, United Kingdom
| | | |
Collapse
|
50
|
Cho HJ, Yoon KT, Kim HS, Lee SJ, Kim JK, Kim DS, Lee WJ. Expression of brain-derived neurotrophic factor in catecholaminergic neurons of the rat lower brainstem after colchicine treatment or hemorrhage. Neuroscience 1999; 92:901-9. [PMID: 10426531 DOI: 10.1016/s0306-4522(99)00039-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Widespread brain-derived neurotrophic factor messenger RNA expression has been detected in the region of catecholamine groups of the rat lower brainstem, while few brain-derived neurotrophic factor-immunoreactive cells were found in this area. In the present study, a double-color immunofluorescence technique for brain-derived neurotrophic factor and tyrosine hydroxylase after colchicine treatment was employed to evaluate the possible presence of brain-derived neurotrophic factor immunoreactivity in the catecholaminergic cells of the rat lower brainstem. We detected many new brain-derived neurotrophic factor-immunoreactive cells in the A1, A2, A4, A6-A10 and C1-C3 cell groups and in the other lower brainstem nuclei where, without colchicine treatment, brain-derived neurotrophic factor messenger RNA was expressed, but not brain-derived neurotrophic factor immunoreactivity. In addition, the catecholaminergic neurons were found to express brain-derived neurotrophic factor immunoreactivity with the co-existence being greatest, in percentage terms, in medullary catecholaminergic cell groups. Hypotensive hemorrhage, which activates medullary catecholaminergic neurons, induced the expression of brain-derived neurotrophic factor immunoreactivity in catecholaminergic neurons (A1/C1 and C2). The results demonstrate that brain-derived neurotrophic factor is regulated by neuronal activity in medullary catecholaminergic cell groups involved in central cardiovascular regulation.
Collapse
Affiliation(s)
- H J Cho
- Department of Anatomy, School of Medicine, Kyungpook National University, Dongin Dong, Taegu, South Korea
| | | | | | | | | | | | | |
Collapse
|