1
|
Wakasugi K, Yokosawa T. The high-affinity tryptophan uptake transport system in human cells. Biochem Soc Trans 2024; 52:1149-1158. [PMID: 38813870 PMCID: PMC11346423 DOI: 10.1042/bst20230742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
The L-tryptophan (Trp) transport system is highly selective for Trp with affinity in the nanomolar range. This transport system is augmented in human interferon (IFN)-γ-treated and indoleamine 2,3-dioxygenase 1 (IDO1)-expressing cells. Up-regulated cellular uptake of Trp causes a reduction in extracellular Trp and initiates immune suppression. Recent studies demonstrate that both IDO1 and tryptophanyl-tRNA synthetase (TrpRS), whose expression levels are up-regulated by IFN-γ, play a pivotal role in high-affinity Trp uptake into human cells. Furthermore, overexpression of tryptophan 2,3-dioxygenase (TDO2) elicits a similar effect as IDO1 on TrpRS-mediated high-affinity Trp uptake. In this review, we summarize recent findings regarding this Trp uptake system and put forward a possible molecular mechanism based on Trp deficiency induced by IDO1 or TDO2 and tryptophanyl-AMP production by TrpRS.
Collapse
Affiliation(s)
- Keisuke Wakasugi
- Komaba Organization for Educational Excellence, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takumi Yokosawa
- Komaba Organization for Educational Excellence, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
2
|
Li XQ, Cai MP, Wang MY, Shi BW, Yang GY, Wang J, Chu BB, Ming SL. Pseudorabies virus manipulates mitochondrial tryptophanyl-tRNA synthetase 2 for viral replication. Virol Sin 2024; 39:403-413. [PMID: 38636706 PMCID: PMC11279775 DOI: 10.1016/j.virs.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/11/2024] [Indexed: 04/20/2024] Open
Abstract
The pseudorabies virus (PRV) is identified as a double-helical DNA virus responsible for causing Aujeszky's disease, which results in considerable economic impacts globally. The enzyme tryptophanyl-tRNA synthetase 2 (WARS2), a mitochondrial protein involved in protein synthesis, is recognized for its broad expression and vital role in the translation process. The findings of our study showed an increase in both mRNA and protein levels of WARS2 following PRV infection in both cell cultures and animal models. Suppressing WARS2 expression via RNA interference in PK-15 cells led to a reduction in PRV infection rates, whereas enhancing WARS2 expression resulted in increased infection rates. Furthermore, the activation of WARS2 in response to PRV was found to be reliant on the cGAS/STING/TBK1/IRF3 signaling pathway and the interferon-alpha receptor-1, highlighting its regulation via the type I interferon signaling pathway. Further analysis revealed that reducing WARS2 levels hindered PRV's ability to promote protein and lipid synthesis. Our research provides novel evidence that WARS2 facilitates PRV infection through its management of protein and lipid levels, presenting new avenues for developing preventative and therapeutic measures against PRV infections.
Collapse
Affiliation(s)
- Xiu-Qing Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Henan Agricultural University, Zhengzhou 450046, China
| | - Meng-Pan Cai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Henan Agricultural University, Zhengzhou 450046, China
| | - Ming-Yang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Henan Agricultural University, Zhengzhou 450046, China
| | - Bo-Wen Shi
- School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Guo-Yu Yang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Jiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China.
| | - Bei-Bei Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Henan Agricultural University, Zhengzhou 450046, China; Longhu Advanced Immunization Laboratory, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China.
| | - Sheng-Li Ming
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
3
|
Yokosawa T, Wakasugi K. Tryptophan-Starved Human Cells Overexpressing Tryptophanyl-tRNA Synthetase Enhance High-Affinity Tryptophan Uptake via Enzymatic Production of Tryptophanyl-AMP. Int J Mol Sci 2023; 24:15453. [PMID: 37895133 PMCID: PMC10607379 DOI: 10.3390/ijms242015453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
Our previous study demonstrated that L-tryptophan (Trp)-depleted cells display a marked enhancement in Trp uptake facilitated by extracellular tryptophanyl-tRNA synthetase (TrpRS). Here, we show that Trp uptake into TrpRS-overexpressing cells is also markedly elevated upon Trp starvation. These findings indicate that a Trp-deficient condition is critical for Trp uptake, not only into cells to which TrpRS protein has been added but also into TrpRS-overexpressing cells. We also show that overexpression of TrpRS mutants, which cannot synthesize tryptophanyl-AMP, does not promote Trp uptake, and that inhibition of tryptophanyl-AMP synthesis suppresses this uptake. Overall, these data suggest that tryptophanyl-AMP production by TrpRS is critical for high-affinity Trp uptake.
Collapse
Affiliation(s)
- Takumi Yokosawa
- Komaba Organization for Educational Excellence, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Keisuke Wakasugi
- Komaba Organization for Educational Excellence, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Biros E, Malabu UH, Vangaveti VN, Birosova E, Moran CS. The IFN-γ-mini/TrpRS signaling axis: an insight into the pathophysiology of osteoporosis and therapeutic potential. Cytokine Growth Factor Rev 2022; 64:7-11. [DOI: 10.1016/j.cytogfr.2022.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/19/2022] [Indexed: 12/21/2022]
|
5
|
Mini-TrpRS is essential for IFNγ-induced monocyte-derived giant cell formation. Cytokine 2021; 142:155486. [PMID: 33721618 DOI: 10.1016/j.cyto.2021.155486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/07/2021] [Accepted: 02/24/2021] [Indexed: 11/24/2022]
Abstract
Truncated tryptophanyl-tRNA synthetase (mini-TrpRS), like any other aminoacyl-tRNA synthetases, canonically functions as a protein synthesis enzyme. Here we provide evidence for an additional signaling role of mini-TrpRS in the formation of monocyte-derived multinuclear giant cells (MGCs). Interferon-gamma (IFNγ) readily induced monocyte aggregation leading to MGC formation with paralleled marked upregulation of mini-TrpRS. Small interfering (si)RNA, targeting mini-TrpRS in the presence of IFNγ prevented monocyte aggregation. Moreover, blockade of mini-TrpRS, either by siRNA, or the cognate amino acid and decoy substrate D-Tryptophan to prevent mini-TrpRS signaling, resulted in a marked reduction in expression of the purinergic receptor P2X 7 (P2RX7) in monocytes activated by IFNγ. Our findings identify mini-TrpRS as a critical signaling molecule in a mechanism by which IFNγ initiates monocyte-derived giant cell formation.
Collapse
|
6
|
Biros E, Reznik JE, Moran CS. Role of inflammatory cytokines in genesis and treatment of atherosclerosis. Trends Cardiovasc Med 2021; 32:138-142. [PMID: 33571665 DOI: 10.1016/j.tcm.2021.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/18/2021] [Accepted: 02/02/2021] [Indexed: 01/09/2023]
Abstract
Atherosclerosis demonstrates an increased rate of vascular smooth muscle cells (VSMC) plasticity characterized by switching from the differentiated contractile phenotype to a de-differentiated synthetic state. In healthy blood vessels, phenotypic switching represents a fundamental property of VSMC in maintaining vascular homeostasis. However, in atherosclerosis, it is an initial and necessary step in VSMC-derived foam cell formation. These foam cells play a decisive role in atherosclerosis progression since approximately half of all the foam cells are of VSMC origin. Our recent work showed that interferon-gamma (IFN-γ), a primary inflammatory cytokine in progressive atherosclerosis, mediates VSMC phenotype switching exclusively through upregulating mini-tryptophanyl-tRNA synthetase (mini-TrpRS). Here, we discuss the pro-atherosclerotic implication of this phenomenon that inevitably occurs in the context of a more complex regulation mediated by IFN-γ. An emerging therapeutic option for patients with progressive atherosclerosis is also discussed.
Collapse
Affiliation(s)
- Erik Biros
- College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia.
| | - Jacqueline E Reznik
- College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Corey S Moran
- College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
7
|
Yokosawa T, Sato A, Wakasugi K. Tryptophan Depletion Modulates Tryptophanyl-tRNA Synthetase-Mediated High-Affinity Tryptophan Uptake into Human Cells. Genes (Basel) 2020; 11:genes11121423. [PMID: 33261077 PMCID: PMC7760169 DOI: 10.3390/genes11121423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/07/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022] Open
Abstract
The novel high-affinity tryptophan (Trp)-selective transport system is present at elevated levels in human interferon-γ (IFN-γ)-treated and indoleamine 2,3-dioxygenase 1 (IDO1)-expressing cells. High-affinity Trp uptake into cells results in extracellular Trp depletion and immune suppression. We have previously shown that both IDO1 and tryptophanyl-tRNA synthetase (TrpRS), whose expression levels are increased by IFN-γ, have a crucial function in high-affinity Trp uptake into human cells. Here, we aimed to elucidate the relationship between TrpRS and IDO1 in high-affinity Trp uptake. We demonstrated that overexpression of IDO1 in HeLa cells drastically enhances high-affinity Trp uptake upon addition of purified TrpRS protein to uptake assay buffer. We also clarified that high-affinity Trp uptake by Trp-starved cells is significantly enhanced by the addition of TrpRS protein to the assay buffer. Moreover, we showed that high-affinity Trp uptake is also markedly elevated by the addition of TrpRS protein to the assay buffer of cells overexpressing another Trp-metabolizing enzyme, tryptophan 2,3-dioxygenase (TDO2). Taken together, we conclude that Trp deficiency is crucial for high-affinity Trp uptake mediated by extracellular TrpRS.
Collapse
Affiliation(s)
- Takumi Yokosawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan;
| | - Aomi Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan;
| | - Keisuke Wakasugi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan;
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan;
- Correspondence: ; Tel.: +81-3-5454-4392
| |
Collapse
|
8
|
Wakasugi K, Yokosawa T. Non-canonical functions of human cytoplasmic tyrosyl-, tryptophanyl- and other aminoacyl-tRNA synthetases. Enzymes 2020; 48:207-242. [PMID: 33837705 DOI: 10.1016/bs.enz.2020.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Aminoacyl-tRNA synthetases catalyze the aminoacylation of their cognate tRNAs. Here we review the accumulated knowledge of non-canonical functions of human cytoplasmic aminoacyl-tRNA synthetases, especially tyrosyl- (TyrRS) and tryptophanyl-tRNA synthetase (TrpRS). Human TyrRS and TrpRS have an extra domain. Two distinct cytokines, i.e., the core catalytic "mini TyrRS" and the extra C-domain, are generated from human TyrRS by proteolytic cleavage. Moreover, the core catalytic domains of human TyrRS and TrpRS function as angiogenic and angiostatic factors, respectively, whereas the full-length forms are inactive for this function. It is also known that many synthetases change their localization in response to a specific signal and subsequently exhibit alternative functions. Furthermore, some synthetases function as sensors for amino acids by changing their protein interactions in an amino acid-dependent manner. Further studies will be necessary to elucidate regulatory mechanisms of non-canonical functions of aminoacyl-tRNA synthetases in particular, by analyzing the effect of their post-translational modifications.
Collapse
Affiliation(s)
- Keisuke Wakasugi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Takumi Yokosawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Jobin PG, Solis N, Machado Y, Bell PA, Kwon NH, Kim S, Overall CM, Butler GS. Matrix metalloproteinases inactivate the proinflammatory functions of secreted moonlighting tryptophanyl-tRNA synthetase. J Biol Chem 2019; 294:12866-12879. [PMID: 31324718 DOI: 10.1074/jbc.ra119.009584] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/11/2019] [Indexed: 01/08/2023] Open
Abstract
Tryptophanyl-tRNA synthetase (WRS) is a cytosolic aminoacyl-tRNA synthetase essential for protein synthesis. WRS is also one of a growing number of intracellular proteins that are attributed distinct noncanonical "moonlighting" functions in the extracellular milieu. Moonlighting aminoacyl-tRNA synthetases regulate processes such as inflammation, but how these multifunctional enzymes are themselves regulated remains unclear. Here, we demonstrate that WRS is secreted from human macrophages, fibroblasts, and endothelial cells in response to the proinflammatory cytokine interferon γ (IFNγ). WRS signaled primarily through Toll-like receptor 2 (TLR2) in macrophages, leading to phosphorylation of the p65 subunit of NF-κB with associated loss of NF-κB inhibitor α (IκB-α) protein. This signaling initiated secretion of tumor necrosis factor α (TNFα) and CXCL8 (IL8) from macrophages. We also demonstrated that WRS is a potent monocyte chemoattractant. Of note, WRS increased matrix metalloproteinase (MMP) activity in the conditioned medium of macrophages in a TNFα-dependent manner. Using purified recombinant proteins and LC-MS/MS to identify proteolytic cleavage sites, we demonstrated that multiple MMPs, but primarily macrophage MMP7 and neutrophil MMP8, cleave secreted WRS at several sites. Loss of the WHEP domain following cleavage at Met48 generated a WRS proteoform that also results from alternative splicing, designated Δ1-47 WRS. The MMP-cleaved WRS lacked TLR signaling and proinflammatory activities. Thus, our results suggest that moonlighting WRS promotes IFNγ proinflammatory activities, and these responses can be dampened by MMPs.
Collapse
Affiliation(s)
- Parker G Jobin
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Nestor Solis
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Faculty of Dentistry, Vancouver, British Columbia V6T 1Z3, Canada
| | - Yoan Machado
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Faculty of Dentistry, Vancouver, British Columbia V6T 1Z3, Canada
| | - Peter A Bell
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Faculty of Dentistry, Vancouver, British Columbia V6T 1Z3, Canada
| | - Nam Hoon Kwon
- College of Pharmacy, Seoul National University, 151-742 Seoul, Republic of Korea; Medicinal Bioconvergance Research Center, Seoul National University, 151-742 Seoul, Republic of Korea
| | - Sunghoon Kim
- College of Pharmacy, Seoul National University, 151-742 Seoul, Republic of Korea; Medicinal Bioconvergance Research Center, Seoul National University, 151-742 Seoul, Republic of Korea
| | - Christopher M Overall
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Faculty of Dentistry, Vancouver, British Columbia V6T 1Z3, Canada.
| | - Georgina S Butler
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Faculty of Dentistry, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
10
|
Sánchez JM, Mathew DJ, Behura SK, Passaro C, Charpigny G, Butler ST, Spencer TE, Lonergan P. Bovine endometrium responds differentially to age-matched short and long conceptuses†. Biol Reprod 2019; 101:26-39. [PMID: 30977805 PMCID: PMC6614577 DOI: 10.1093/biolre/ioz060] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/01/2019] [Accepted: 04/09/2019] [Indexed: 12/15/2022] Open
Abstract
This study combined in vitro production of bovine blastocysts, multiple embryo transfer techniques, and a conceptus-endometrial explant co-culture system to test the hypothesis that bovine endometrium exposed to long vs. short day 15 conceptuses would exhibit a different transcriptome profile reflective of potential for successful pregnancy establishment. Bovine endometrial explants collected at the late luteal stage of the estrous cycle were cultured in RPMI medium for 6 h with nothing (control), 100 ng/mL recombinant ovine interferon tau (IFNT), a long day 15 conceptus, or a short day 15 conceptus. Transcriptional profiling of the endometrial explants found that exposure of endometrium to IFNT, long conceptuses, or short conceptuses altered (P < 0.05) expression of 491, 498, and 230 transcripts, respectively, compared to the control. Further analysis revealed three categories of differentially expressed genes (DEG): (i) commonly responsive to exposure to IFNT and conceptuses, irrespective of size (n = 223); (ii) commonly responsive to IFNT and long conceptuses only (n = 168); and genes induced by the presence of a conceptus but independent of IFNT (n = 108). Of those 108 genes, 101 were exclusively induced by long conceptuses and functional analysis revealed that regulation of molecular function, magnesium-ion transmembrane transport, and clathrin coat assembly were the principal gene ontologies associated with these DEG. In conclusion, bovine endometrium responds differently to age-matched conceptuses of varying size in both an IFNT-dependent and -independent manner, which may be reflective of the likelihood of successful pregnancy establishment.
Collapse
Affiliation(s)
- José María Sánchez
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Daniel J Mathew
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Claudia Passaro
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Gilles Charpigny
- INRA, Biologie du Développement et Reproduction, Jouy en Josas, France
| | - Stephen T Butler
- Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
11
|
Frazão JB, Colombo M, Simillion C, Bilican A, Keller I, Wüthrich D, Zhu Z, Okoniewski MJ, Bruggmann R, Condino-Neto A, Newburger PE. Gene expression in chronic granulomatous disease and interferon-γ receptor-deficient cells treated in vitro with interferon-γ. J Cell Biochem 2019; 120:4321-4332. [PMID: 30260027 PMCID: PMC6336507 DOI: 10.1002/jcb.27718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/29/2018] [Indexed: 12/12/2022]
Abstract
Interferon-γ (IFN-γ) plays an important role in innate and adaptive immunity against intracellular infections and is used clinically for the prevention and control of infections in chronic granulomatous disease (CGD) and inborn defects in the IFN-γ/interleukin (IL)-12 axis. Using transcriptome profiling (RNA-seq), we sought to identify differentially expressed genes, transcripts and exons in Epstein-Barr virus-transformed B lymphocytes (B-EBV) cells from CGD patients, IFN-γ receptor deficiency patients, and normal controls, treated in vitro with IFN-γ for 48 hours. Our results show that IFN-γ increased the expression of a diverse array of genes related to different cellular programs. In cells from normal controls and CGD patients, IFN-γ-induced expression of genes relevant to oxidative killing, nitric oxide synthase pathway, proteasome-mediated degradation, antigen presentation, chemoattraction, and cell adhesion. IFN-γ also upregulated genes involved in diverse stages of messenger RNA (mRNA) processing including pre-mRNA splicing, as well as others implicated in the folding, transport, and assembly of proteins. In particular, differential exon expression of WARS (encoding tryptophanyl-transfer RNA synthetase, which has an essential function in protein synthesis) induced by IFN-γ in normal and CGD cells suggests that this gene may have an important contribution to the benefits of IFN-γ treatment for CGD. Upregulation of mRNA and protein processing related genes in CGD and IFNRD cells could mediate some of the effects of IFN-γ treatment. These data support the concept that IFN-γ treatment may contribute to increased immune responses against pathogens through regulation of genes important for mRNA and protein processing.
Collapse
Affiliation(s)
- Josias B. Frazão
- Department of Immunology, Institutes of Biomedical Sciences, and Tropical Medicine, University of São Paulo, São Paulo, SP 05508-000, Brazil
- Departments of Pediatrics and Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Martino Colombo
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, CH-3012, Switzerland
| | - Cedric Simillion
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, CH-3012, Switzerland
- Department of Clinical Research, University of Bern, Bern, CH-3008, Switzerland
| | - Adem Bilican
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, CH-3012, Switzerland
| | - Irene Keller
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, CH-3012, Switzerland
- Department of Clinical Research, University of Bern, Bern, CH-3008, Switzerland
| | - Daniel Wüthrich
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, CH-3012, Switzerland
| | - Zhiqing Zhu
- Departments of Pediatrics and Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Michal J. Okoniewski
- Scientific IT Services, Swiss Federal Institute of Technology, Zurich, CH-8057, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, CH-3012, Switzerland
| | - Antonio Condino-Neto
- Department of Immunology, Institutes of Biomedical Sciences, and Tropical Medicine, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Peter E. Newburger
- Departments of Pediatrics and Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
12
|
Miyanokoshi M, Yokosawa T, Wakasugi K. Tryptophanyl-tRNA synthetase mediates high-affinity tryptophan uptake into human cells. J Biol Chem 2018; 293:8428-8438. [PMID: 29666190 DOI: 10.1074/jbc.ra117.001247] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/03/2018] [Indexed: 01/08/2023] Open
Abstract
The tryptophan (Trp) transport system has a high affinity and selectivity toward Trp, and has been reported to exist in both human and mouse macrophages. Although this system is highly expressed in interferon-γ (IFN-γ)-treated cells and indoleamine 2,3-dioxygenase 1 (IDO1)-expressing cells, its identity remains incompletely understood. Tryptophanyl-tRNA synthetase (TrpRS) is also highly expressed in IFN-γ-treated cells and also has high affinity and selectivity for Trp. Here, we investigated the effects of human TrpRS expression on Trp uptake into IFN-γ-treated human THP-1 monocytes or HeLa cells. Inhibition of human TrpRS expression by TrpRS-specific siRNAs decreased and overexpression of TrpRS increased Trp uptake into the cells. Of note, the TrpRS-mediated uptake system had more than hundred-fold higher affinity for Trp than the known System L amino acid transporter, promoted uptake of low Trp concentrations, and had very high Trp selectivity. Moreover, site-directed mutagenesis experiments indicated that Trp- and ATP-binding sites, but not tRNA-binding sites, in TrpRS are essential for TrpRS-mediated Trp uptake into the human cells. We further demonstrate that the addition of purified TrpRS to cell culture medium increases Trp uptake into cells. Taken together, our results reveal that TrpRS plays an important role in high-affinity Trp uptake into human cells.
Collapse
Affiliation(s)
- Miki Miyanokoshi
- From the Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan and
| | - Takumi Yokosawa
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keisuke Wakasugi
- From the Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan and .,Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
13
|
Drewes JL, Croteau JD, Shirk EN, Engle EL, Zink MC, Graham DR. Distinct Patterns of Tryptophan Maintenance in Tissues during Kynurenine Pathway Activation in Simian Immunodeficiency Virus-Infected Macaques. Front Immunol 2016; 7:605. [PMID: 28066416 PMCID: PMC5165277 DOI: 10.3389/fimmu.2016.00605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/01/2016] [Indexed: 12/02/2022] Open
Abstract
Induction of the kynurenine pathway (KP) of tryptophan (TRP) catabolism has been proposed to contribute to T cell dysfunction during human/simian immunodeficiency virus (SIV) infection via depletion of local TRP levels and production of immunomodulatory KP metabolites. However, while changes in TRP and KP metabolites have been observed in plasma, their levels in lymphoid tissues and levels of enzymes downstream of indoleamine 2,3-dioxygenase (IDO1) have been relatively unexplored. We used our SIV-infected pigtailed macaque model to analyze longitudinal changes in KP metabolites and enzymes by gas chromatography/mass spectrometry and NanoString nCounter gene expression analysis, respectively, in spleen and blood compared to changes previously established in brain and CSF. We found that TRP levels were remarkably stable in tissue sites despite robust depletion in the circulating plasma and CSF. We also demonstrated that intracellular TRP reserves were maintained in cultured cells even in the presence of depleted extracellular TRP levels. Kynurenine (KYN), 3-hydroxykynurenine, quinolinic acid, and the KP enzymes all displayed highly divergent patterns in the sites examined, though IDO1 expression always correlated with local KYN/TRP ratios. Finally, we demonstrated by fluorescence-activated cell sorting that myeloid dendritic cells and cells of monocytic lineage were the highest producers of IDO1 in chronically infected spleens. Overall, our study reveals insights into the tissue-specific regulation of KP enzymes and metabolites and, in particular, highlights the multiple mechanisms by which cells and tissues seek to prevent TRP starvation during inflammation.
Collapse
Affiliation(s)
- Julia L. Drewes
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joshua D. Croteau
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Erin N. Shirk
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth L. Engle
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - M. C. Zink
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David R. Graham
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Lee CW, Chang KP, Chen YY, Liang Y, Hsueh C, Yu JS, Chang YS, Yu CJ. Overexpressed tryptophanyl-tRNA synthetase, an angiostatic protein, enhances oral cancer cell invasiveness. Oncotarget 2016; 6:21979-92. [PMID: 26110569 PMCID: PMC4673140 DOI: 10.18632/oncotarget.4273] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/05/2015] [Indexed: 12/11/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common neoplasms worldwide. Previously, we identified the angiostatic agent tryptophanyl-tRNA synthetase (TrpRS) as a dysregulated protein in OSCC based on a proteomics approach. Herein, we show that TrpRS is overexpressed in OSCC tissues (139/146, 95.2%) compared with adjacent normal tissues and that TrpRS expression positively correlates with tumor stage, overall TNM stage, perineural invasion and tumor depth. Importantly, the TrpRS levels were significantly higher in tumor cells from metastatic lymph nodes than in corresponding primary tumor cells. TrpRS knockdown or treatment with conditioned media obtained from TrpRS-knockdown cells significantly reduced oral cancer cell viability and invasiveness. TrpRS overexpression promoted cell migration and invasion. In addition, the extracellular addition of TrpRS rescued the invasion ability of TrpRS-knockdown cells. Subcellular fractionation and immunofluorescence staining further revealed that TrpRS was distributed on the cell surface, suggesting that secreted TrpRS promotes OSCC progression via an extrinsic pathway. Collectively, our results demonstrated the clinical significance and a novel role of TrpRS in OSCC.
Collapse
Affiliation(s)
- Chien-Wei Lee
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Kai-Ping Chang
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Lin-Kou, Tao-Yuan, Taiwan
| | - Yan-Yu Chen
- Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
| | - Ying Liang
- Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
| | - Chuen Hsueh
- Department of Pathology, Chang Gung Memorial Hospital, Lin-Kou, Tao-Yuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan.,Pathology Core, Chang Gung University, Tao-Yuan, Taiwan
| | - Jau-Song Yu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
| | - Yu-Sun Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
| | - Chia-Jung Yu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
| |
Collapse
|
15
|
Norris EL, Headlam MJ, Dave KA, Smith DD, Bukreyev A, Singh T, Jayakody BA, Chappell KJ, Collins PL, Gorman JJ. Proteoform-Specific Insights into Cellular Proteome Regulation. Mol Cell Proteomics 2016; 15:3297-3320. [PMID: 27451424 PMCID: PMC5054351 DOI: 10.1074/mcp.o116.058438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Indexed: 01/29/2023] Open
Abstract
Knowledge regarding compositions of proteomes at the proteoform level enhances insights into cellular phenotypes. A strategy is described herein for discovery of proteoform-specific information about cellular proteomes. This strategy involved analysis of data obtained by bottom-up mass spectrometry of multiple protein OGE separations on a fraction by fraction basis. The strategy was exemplified using five matched sets of lysates of uninfected and human respiratory syncytial virus-infected A549 cells. Template matching demonstrated that 67.3% of 10475 protein profiles identified focused to narrow pI windows indicative of efficacious focusing. Furthermore, correlation between experimental and theoretical pI gradients indicated reproducible focusing. Based on these observations a proteoform profiling strategy was developed to identify proteoforms, detect proteoform diversity and discover potential proteoform regulation. One component of this strategy involved examination of the focusing profiles for protein groups. A novel concordance analysis facilitated differentiation between proteoforms, including proteoforms generated by alternate splicing and proteolysis. Evaluation of focusing profiles and concordance analysis were applicable to cells from a single and/or multiple biological states. Statistical analyses identified proteoform variation between biological states. Regulation relevant to cellular responses to human respiratory syncytial virus was revealed. Western blotting and Protomap analyses validated the proteoform regulation. Discovery of STAT1, WARS, MX1, and HSPB1 proteoform regulation by human respiratory syncytial virus highlighted the impact of the profiling strategy. Novel truncated proteoforms of MX1 were identified in infected cells and phosphorylation driven regulation of HSPB1 proteoforms was correlated with infection. The proteoform profiling strategy is generally applicable to investigating interactions between viruses and host cells and the analysis of other biological systems.
Collapse
Affiliation(s)
| | | | | | - David D Smith
- §Statistics Unit, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Alexander Bukreyev
- ¶Respiratory Virus Section, Laboratory of Infectious Diseases, National Institute for Allergy and Infectious Diseases, NIH, Bethesda, Maryland, and
| | | | | | - Keith J Chappell
- ‖School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Peter L Collins
- ¶Respiratory Virus Section, Laboratory of Infectious Diseases, National Institute for Allergy and Infectious Diseases, NIH, Bethesda, Maryland, and
| | - Jeffrey J Gorman
- From the ‡Protein Discovery Centre and ‖School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
16
|
Identification of a residue crucial for the angiostatic activity of human mini tryptophanyl-tRNA synthetase by focusing on its molecular evolution. Sci Rep 2016; 6:24750. [PMID: 27094087 PMCID: PMC4837363 DOI: 10.1038/srep24750] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 04/04/2016] [Indexed: 11/28/2022] Open
Abstract
Human tryptophanyl-tRNA synthetase (TrpRS) exists in two forms: a full-length TrpRS and a mini TrpRS. We previously found that human mini, but not full-length, TrpRS is an angiostatic factor. Moreover, it was shown that the interaction between mini TrpRS and the extracellular domain of vascular endothelial (VE)-cadherin is crucial for its angiostatic activity. However, the molecular mechanism of the angiostatic activity of human mini TrpRS is only partly understood. In the present study, we investigated the effects of truncated (mini) form of TrpRS proteins from human, bovine, or zebrafish on vascular endothelial growth factor (VEGF)-stimulated chemotaxis of human umbilical vein endothelial cells (HUVECs). We show that both human and bovine mini TrpRSs inhibited VEGF-induced endothelial migration, whereas zebrafish mini TrpRS did not. Next, to identify residues crucial for the angiostatic activity of human mini TrpRS, we prepared several site-directed mutants based on amino acid sequence alignments among TrpRSs from various species and demonstrated that a human mini K153Q TrpRS mutant cannot inhibit VEGF-stimulated HUVEC migration and cannot bind to the extracellular domain of VE-cadherin. Taken together, we conclude that the Lys153 residue of human mini TrpRS is a VE-cadherin binding site and is therefore crucial for its angiostatic activity.
Collapse
|
17
|
Al-Gubory K, Arianmanesh M, Garrel C, Fowler P. The conceptus regulates tryptophanyl-tRNA synthetase and superoxide dismutase 2 in the sheep caruncular endometrium during early pregnancy. Int J Biochem Cell Biol 2015; 60:112-8. [DOI: 10.1016/j.biocel.2014.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/07/2014] [Accepted: 12/22/2014] [Indexed: 10/24/2022]
|
18
|
Al-Gubory KH, Arianmanesh M, Garrel C, Bhattacharya S, Cash P, Fowler PA. Proteomic analysis of the sheep caruncular and intercaruncular endometrium reveals changes in functional proteins crucial for the establishment of pregnancy. Reproduction 2014; 147:599-614. [DOI: 10.1530/rep-13-0600] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The expression and regulation of endometrial proteins are crucial for conceptus implantation and development. However, little is known about site-specific proteome profiles of the mammalian endometrium during the peri-implantation period. We utilised a two-dimensional gel electrophoresis/mass spectrometry-based proteomics approach to compare and identify differentially expressed proteins in sheep endometrium. Caruncular and intercaruncular endometrium were collected on days 12 (C12) and 16 (C16) of the oestrous cycle and at three stages of pregnancy corresponding to conceptus pre-attachment (P12), implantation (P16) and post-implantation (P20). Abundance and localisation changes in differentially expressed proteins were determined by western blot and immunohistochemistry. In caruncular endometrium, 45 protein spots (5% of total spots) altered between day 12 of pregnancy (P12) and P16 while 85 protein spots (10% of total spots) were differentially expressed between P16 and C16. In intercaruncular endometrium, 31 protein spots (2% of total spots) were different between P12 and P16 while 44 protein spots (4% of total spots) showed differential expression between C12 and C16. The pattern of protein changes between caruncle and intercaruncle sites was markedly different. Among the protein spots with implantation-related changes in volume, 11 proteins in the caruncular endometrium and six proteins in the intercaruncular endometrium, with different functions such as protein synthesis and degradation, antioxidant defence, cell structural integrity, adhesion and signal transduction, were identified. Our findings highlight the different but important roles of the caruncular and intercaruncular proteins during early pregnancy.
Collapse
|
19
|
Transcriptional events during the recovery from MRSA lung infection: a mouse pneumonia model. PLoS One 2013; 8:e70176. [PMID: 23936388 PMCID: PMC3731344 DOI: 10.1371/journal.pone.0070176] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/14/2013] [Indexed: 11/19/2022] Open
Abstract
Community associated methicillin-resistant Staphylococcus aureus (CA-MRSA) is an emerging threat to human health throughout the world. Rodent MRSA pneumonia models mainly focus on the early innate immune responses to MRSA lung infection. However, the molecular pattern and mechanisms of recovery from MRSA lung infection are largely unknown. In this study, a sublethal mouse MRSA pneumonia model was employed to investigate late events during the recovery from MRSA lung infection. We compared lung bacterial clearance, bronchoalveolar lavage fluid (BALF) characterization, lung histology, lung cell proliferation, lung vascular permeability and lung gene expression profiling between days 1 and 3 post MRSA lung infection. Compared to day 1 post infection, bacterial colony counts, BALF total cell number and BALF protein concentration significantly decreased at day 3 post infection. Lung cDNA microarray analysis identified 47 significantly up-regulated and 35 down-regulated genes (p<0.01, 1.5 fold change [up and down]). The pattern of gene expression suggests that lung recovery is characterized by enhanced cell division, vascularization, wound healing and adjustment of host adaptive immune responses. Proliferation assay by PCNA staining further confirmed that at day 3 lungs have significantly higher cell proliferation than at day 1. Furthermore, at day 3 lungs displayed significantly lower levels of vascular permeability to albumin, compared to day 1. Collectively, this data helps us elucidate the molecular mechanisms of the recovery after MRSA lung infection.
Collapse
|
20
|
Dewan V, Reader J, Forsyth KM. Role of aminoacyl-tRNA synthetases in infectious diseases and targets for therapeutic development. Top Curr Chem (Cham) 2013; 344:293-329. [PMID: 23666077 DOI: 10.1007/128_2013_425] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aminoacyl-tRNA synthetases (AARSs) play a pivotal role in protein synthesis and cell viability. These 22 "housekeeping" enzymes (1 for each standard amino acid plus pyrrolysine and o-phosphoserine) are specifically involved in recognizing and aminoacylating their cognate tRNAs in the cellular pool with the correct amino acid prior to delivery of the charged tRNA to the protein synthesis machinery. Besides serving this canonical function, higher eukaryotic AARSs, some of which are organized in the cytoplasm as a multisynthetase complex of nine enzymes plus additional cellular factors, have also been implicated in a variety of non-canonical roles. AARSs are involved in the regulation of transcription, translation, and various signaling pathways, thereby ensuring cell survival. Based in part on their versatility, AARSs have been recruited by viruses to perform essential functions. For example, host synthetases are packaged into some retroviruses and are required for their replication. Other viruses mimic tRNA-like structures in their genomes, and these motifs are aminoacylated by the host synthetase as part of the viral replication cycle. More recently, it has been shown that certain large DNA viruses infecting animals and other diverse unicellular eukaryotes encode tRNAs, AARSs, and additional components of the protein-synthesis machinery. This chapter will review our current understanding of the role of host AARSs and tRNA-like structures in viruses and discuss their potential as anti-viral drug targets. The identification and development of compounds that target bacterial AARSs, thereby serving as novel antibiotics, will also be discussed. Particular attention will be given to recent work on a number of tRNA-dependent AARS inhibitors and to advances in a new class of natural "pro-drug" antibiotics called Trojan Horse inhibitors. Finally, we will explore how bacteria that naturally produce AARS-targeting antibiotics must protect themselves against cell suicide using naturally antibiotic resistant AARSs, and how horizontal gene transfer of these AARS genes to pathogens may threaten the future use of this class of antibiotics.
Collapse
Affiliation(s)
- Varun Dewan
- Department of Chemistry and Biochemistry, Ohio State Biochemistry Program, Center for RNA Biology, and Center for Retroviral Research, The Ohio State University, Columbus, OH, 43210, USA
| | | | | |
Collapse
|
21
|
The alternative translational profile that underlies the immune-evasive state of persistence in Chlamydiaceae exploits differential tryptophan contents of the protein repertoire. Microbiol Mol Biol Rev 2012; 76:405-43. [PMID: 22688818 DOI: 10.1128/mmbr.05013-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One form of immune evasion is a developmental state called "persistence" whereby chlamydial pathogens respond to the host-mediated withdrawal of L-tryptophan (Trp). A sophisticated survival mode of reversible quiescence is implemented. A mechanism has evolved which suppresses gene products necessary for rapid pathogen proliferation but allows expression of gene products that underlie the morphological and developmental characteristics of persistence. This switch from one translational profile to an alternative translational profile of newly synthesized proteins is proposed to be accomplished by maximizing the Trp content of some proteins needed for rapid proliferation (e.g., ADP/ATP translocase, hexose-phosphate transporter, phosphoenolpyruvate [PEP] carboxykinase, the Trp transporter, the Pmp protein superfamily for cell adhesion and antigenic variation, and components of the cell division pathway) while minimizing the Trp content of other proteins supporting the state of persistence. The Trp starvation mechanism is best understood in the human-Chlamydia trachomatis relationship, but the similarity of up-Trp and down-Trp proteomic profiles in all of the pathogenic Chlamydiaceae suggests that Trp availability is an underlying cue relied upon by this family of pathogens to trigger developmental transitions. The biochemically expensive pathogen strategy of selectively increased Trp usage to guide the translational profile can be leveraged significantly with minimal overall Trp usage by (i) regional concentration of Trp residue placements, (ii) amplified Trp content of a single protein that is required for expression or maturation of multiple proteins with low Trp content, and (iii) Achilles'-heel vulnerabilities of complex pathways to high Trp content of one or a few enzymes.
Collapse
|
22
|
Trp-tRNA synthetase bridges DNA-PKcs to PARP-1 to link IFN-γ and p53 signaling. Nat Chem Biol 2012; 8:547-54. [PMID: 22504299 DOI: 10.1038/nchembio.937] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 02/07/2012] [Indexed: 12/11/2022]
Abstract
Interferon-γ (IFN-γ) engenders strong antiproliferative responses, in part through activation of p53. However, the long-known IFN-γ-dependent upregulation of human Trp-tRNA synthetase (TrpRS), a cytoplasmic enzyme that activates tryptophan to form Trp-AMP in the first step of protein synthesis, is unexplained. Here we report a nuclear complex of TrpRS with the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) and with poly(ADP-ribose) polymerase 1 (PARP-1), the major PARP in human cells. The IFN-γ-dependent poly(ADP-ribosyl)ation of DNA-PKcs (which activates its kinase function) and concomitant activation of the tumor suppressor p53 were specifically prevented by Trp-SA, an analog of Trp-AMP that disrupted the TrpRS-DNA-PKcs-PARP-1 complex. The connection of TrpRS to p53 signaling in vivo was confirmed in a vertebrate system. These and further results suggest an unexpected evolutionary expansion of the protein synthesis apparatus to a nuclear role that links major signaling pathways.
Collapse
|
23
|
Guo M, Yang XL, Schimmel P. New functions of aminoacyl-tRNA synthetases beyond translation. Nat Rev Mol Cell Biol 2010; 11:668-74. [PMID: 20700144 DOI: 10.1038/nrm2956] [Citation(s) in RCA: 266] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Over the course of evolution, eukaryotic aminoacyl-tRNA synthetases (aaRSs) progressively incorporated domains and motifs that have no essential connection to aminoacylation reactions. Their accretive addition to virtually all aaRSs correlates with the progressive evolution and complexity of eukaryotes. Based on recent experimental findings focused on a few of these additions and analysis of the aaRS proteome, we propose that they are markers for aaRS-associated functions beyond translation.
Collapse
Affiliation(s)
- Min Guo
- Min Guo, Xiang-Lei Yang and Paul Schimmel are at The Skaggs Institute for Chemical Biology and Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
24
|
Zeng R, Chen YC, Zeng Z, Liu WQ, Liu XX, Liu R, Qiang O, Li X. Different angiogenesis effect of mini-TyrRS/mini-TrpRS by systemic administration of modified siRNAs in rats with acute myocardial infarction. Heart Vessels 2010; 25:324-32. [DOI: 10.1007/s00380-009-1200-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 08/27/2009] [Indexed: 11/29/2022]
|
25
|
Billing AM, Fack F, Turner JD, Muller CP. Cortisol is a potent modulator of lipopolysaccharide-induced interferon signaling in macrophages. Innate Immun 2010; 17:302-20. [PMID: 20501517 DOI: 10.1177/1753425910369269] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The effects of cortisol (CORT) on resting and lipopolysaccharide (LPS)-activated monocyte-derived THP-1 macrophages were investigated by proteomics. Forty-seven proteins were found to be modulated, 20 by CORT, 11 by LPS, and 16 by CORT and LPS. Cortisol-sensitive chaperones and cytoskeletal proteins were mostly repressed. HCLS1, MGN, and MX1 were new proteins identified to be under the transcriptional control of this steroid and new CORT-sensitive variants of MX1, SYWC and IFIT3 were found. FKBP51, a known CORT target gene, showed the strongest response to CORT and synergism with LPS. In resting THP-1 macrophages, 18 proteins were modulated by CORT, with 15 being down-regulated. Activation of macrophages by LPS was associated with enhanced expression of immune response and metabolic proteins. In activated macrophages, CORT had a more equilibrated effect and almost all metabolism-related proteins were up-regulated, whereas immune response proteins were mostly down-regulated. The majority of the LPS up-regulated immune response-related proteins are known interferon (IFN) target genes (IFIT3, MX1, SYWC, PSME2) suggesting activation of the IRF3 signaling pathway. They were all suppressed by CORT. This is the first proteomics study to investigate the effects of CORT on activated immune cells.
Collapse
Affiliation(s)
- Anja M Billing
- Institute of Immunology, CRP-Santé/National Public Health Laboratory, 20A rue Auguste Lumiére, Luxembourg, Grand Duchy of Luxembourg
| | | | | | | |
Collapse
|
26
|
Expression of genes in gastrointestinal and lymphatic tissues during parasite infection in sheep genetically resistant or susceptible to Trichostrongylus colubriformis and Haemonchus contortus. Int J Parasitol 2010; 40:417-29. [DOI: 10.1016/j.ijpara.2009.09.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 09/22/2009] [Accepted: 09/23/2009] [Indexed: 02/07/2023]
|
27
|
Small interfering RNA knockdown of mini-TyrRS and mini-TrpRS effects angiogenesis in human umbilical vein endothelial cells in hypoxic culture. Cytotechnology 2008; 56:219-31. [PMID: 19002860 DOI: 10.1007/s10616-008-9151-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Accepted: 05/23/2008] [Indexed: 02/05/2023] Open
Abstract
Aim We studied the role of mini-TyrRS and mini-TrpRS in angiogenesis by using small interfering RNA-mediated mini-TyrRS/mini-TrpRS knockout in hypoxic culture of human umbilical vein endothelial cells. Methods SiRNA was used as the main method to inhibited the gene function. Silencing efficiency was assayed by real-time reverse transcription-polymerase chain reaction and western blotting. The angiogenic activity in vitro was evaluated by transwell migration assay and Matrigel-induced capillary tube formation in hypoxic culture. Cell proliferation was determined by crystal violet staining. Results The results showed that levels of the mini-TyrRS/mini-TrpRS gene and protein in mock transfection group and negative control group were higher, but noticeably decreased in experimental group. However, no significant difference was detected between mock transfection group and negative control group, but there was a statistically significant difference compared with experimental group. For mini-TyrRS-siRNA group, the cell migration, tube formation and the rate of cell proliferation were respectively inhibited by (47.4, 56.3, 65.4, 73.7%), (60.5, 69.1, 75.9, 83.6%) and (40.4, 56.2, 61.2, 68.0%). For mini-TrpRS-siRNA, were respectively increased by (18.0, 33.8, 45.1, 56.4%), (18.3, 31.2, 40.3, 45.7%) and (8.4, 26.4, 38.2, 46.6%). Conclusion These results indicated that angiogenesis is either stimulated by mini-TyrRS or inhibited by mini-TrpRS in matrigel models in hypoxic culture, raising the possibility that mini-TyrRS stimulates a common downstream signaling event. Thus, naturally occurring fragments of two proteins involved in translation, TyrRS and TrpRS, have opposing activity on endothelial cell angiogenesis in the matrigel assays. The opposing activities of the two tRNA synthetases suggest tight regulation of the balance between pro- and anti-angiogenic stimuli.
Collapse
|
28
|
Kapoor M, Zhou Q, Otero F, Myers CA, Bates A, Belani R, Liu J, Luo JK, Tzima E, Zhang DE, Yang XL, Schimmel P. Evidence for Annexin II-S100A10 Complex and Plasmin in Mobilization of Cytokine Activity of Human TrpRS. J Biol Chem 2008; 283:2070-7. [DOI: 10.1074/jbc.m706028200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
29
|
Stratton CW, Wheldon DB. Antimicrobial treatment of multiple sclerosis. Infection 2007; 35:383-5; author reply 386. [PMID: 17882356 DOI: 10.1007/s15010-007-7036-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Accepted: 04/25/2007] [Indexed: 10/22/2022]
|
30
|
Zhu L, Ji F, Wang Y, Zhang Y, Liu Q, Zhang JZ, Matsushima K, Cao Q, Zhang Y. Synovial Autoreactive T Cells in Rheumatoid Arthritis Resist IDO-Mediated Inhibition. THE JOURNAL OF IMMUNOLOGY 2006; 177:8226-33. [PMID: 17114500 DOI: 10.4049/jimmunol.177.11.8226] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A hallmark of T cell-mediated autoimmunity is the persistence of autoreactive T cells. However, it remains to elucidate the manner in which synovial T cells are sustained in patients with rheumatoid arthritis (RA). We found that dendritic cells (DC) and tissues from the synovial joints of RA patients expressed higher levels of IDO than DC from healthy donors. Interestingly, T cells derived from the joint synovial fluid (SF) of RA patients proliferated in response to either autologous or allogeneic IDO-positive DC, an outcome that was not affected by the addition of IDO inhibitor 1-methyl-D-tryptophan (1-MT). In contrast, addition of 1-MT to the culture stimulated with allogeneic or autologous IDO-positive DC significantly enhanced the proliferation of T cells derived from peripheral blood of healthy donors or from peripheral blood of RA patients. Furthermore, we found that functionally active tryptophanyl-tRNA-synthetase (TTS) was significantly elevated in T cells derived from the SF of RA patients, leading to enhanced storage of tryptophan in T cells and to subsequent resistance to IDO-mediated deprivation of tryptophan. The RA SF enhancement of TTS expression in T cells was blocked by mAb to IFN-gamma and TNF-alpha. These results suggest that the resistance of T cells to IDO-mediated deprivation of tryptophan represents a mechanism by which autoreactive T cells are sustained in vivo in RA patients. Specifically, blocking of the up-regulation of TTS expression in T cells presents an avenue for development of a novel therapeutic approach to treatment of RA.
Collapse
Affiliation(s)
- Lingqiao Zhu
- Joint Immunology Laboratory, Institute of Health Sciences and Shanghai Institute of Immunology, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, 225 South Chongqing Road, Shanghai 200225, China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Craven RA, Stanley AJ, Hanrahan S, Totty N, Jackson DP, Popescu R, Taylor A, Frey J, Selby PJ, Patel PM, Banks RE. Identification of proteins regulated by interferon-? in resistant and sensitive malignant melanoma cell lines. Proteomics 2004; 4:3998-4009. [PMID: 15449380 DOI: 10.1002/pmic.200400870] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Treatment of patients with malignant melanoma with interferon-alpha achieves a response in a small but significant subset of patients. Currently, although much is known about interferon biology, little is known about either the particular mechanisms of interferon-alpha activity that are crucial for response or why only some patients respond to interferon-alpha therapy. Two melanoma cell lines (MeWo and MM418) that are known to differ in their response to the antiproliferative activity of interferon-alpha, have been used as a model system to investigate interferon-alpha action. Using a proteomics approach based on two-dimensional polyacrylamide gel electrophoresis and mass spectrometry, several proteins induced in response to interferon-alpha have been identified. These include a number of gene products previously known to be type I interferon responsive (tryptophanyl tRNA synthetase, leucine aminopeptidase, ubiquitin cross-reactive protein, gelsolin, FUSE binding protein 2 and hPNPase) as well as a number of proteins not previously reported to be induced by type I interferon (cathepsin B, proteasomal activator 28alpha and alpha-SNAP). Although the proteins upregulated by interferon-alpha were common between the cell lines when examined at the level of Western blotting, the disparity in the basal level of cathepsin B was striking, raising the possibility that the higher level in MM418 may contribute to the sensitivity of this cell line to interferon-alpha treatment.
Collapse
Affiliation(s)
- Rachel A Craven
- Cancer Research UK Clinical Centre, St. James's University Hospital, Leeds, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
T helper (Th) cells can be polarized into two different main subtypes, Th1 and Th2 cells. Their activation is linked to the eradication of different pathogens and to dissimilar immunological dysfunctions, which implies differences also in their protein expression patterns. To identify these differences, CD4(+) T cells were isolated from human cord blood, polarized in vitro to Th1 and Th2 and activated via CD3 and CD28. Cells were lysed, soluble proteins were separated with two-dimensional electrophoresis and differing protein spots were identified with peptide mass fingerprinting. The expression of 14 proteins differed in Th1 and Th2 cells after both 7 and 14 days of polarization. Twelve of the proteins could be identified, most of which are new in this context. Two proteins were differentially modified in the two cell types. Especially, N-terminal acetylation of cyclophilin A was stronger in Th1 than in Th2 cells. To compare the RNA and the protein levels of the identified genes, mRNA expression was measured with Affymetrix oligonucleotide microarrays (HG-U133A). The mRNA and protein expression level correlated only in six cases out of eleven, which highlights the complementary roles that proteomics and transcriptomics have in the elucidation of biological phenomena.
Collapse
Affiliation(s)
- Kirsi Rautajoki
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, BioCity, Turku, Finland
| | | | | |
Collapse
|
33
|
Xie G, Bonner CA, Jensen RA. Dynamic diversity of the tryptophan pathway in chlamydiae: reductive evolution and a novel operon for tryptophan recapture. Genome Biol 2002; 3:research0051. [PMID: 12225590 PMCID: PMC126876 DOI: 10.1186/gb-2002-3-9-research0051] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2002] [Revised: 05/06/2002] [Accepted: 07/02/2002] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Complete genomic sequences of closely related organisms, such as the chlamydiae, afford the opportunity to assess significant strain differences against a background of many shared characteristics. The chlamydiae are ubiquitous intracellular parasites that are important pathogens of humans and other organisms. Tryptophan limitation caused by production of interferon-gamma by the host and subsequent induction of indoleamine dioxygenase is a key aspect of the host-parasite interaction. It appears that the chlamydiae have learned to recognize tryptophan depletion as a signal for developmental remodeling. The consequent non-cultivable state of persistence can be increasingly equated to chronic disease conditions. RESULTS The genes encoding enzymes of tryptophan biosynthesis were the focal point of this study. Chlamydophila psittaci was found to possess a compact operon containing PRPP synthase, kynureninase, and genes encoding all but the first step of tryptophan biosynthesis. All but one of the genes exhibited translational coupling. Other chlamydiae (Chlamydia trachomatis, C. muridarum and Chlamydophila pneumoniae) lack genes encoding PRPP synthase, kynureninase, and either lack tryptophan-pathway genes altogether or exhibit various stages of reductive loss. The origin of the genes comprising the trp operon does not seem to have been from lateral gene transfer. CONCLUSIONS The factors that accommodate the transition of different chlamydial species to the persistent (chronic) state of pathogenesis include marked differences in strategies deployed to obtain tryptophan from host resources. C. psittaci appears to have a novel mechanism for intercepting an early intermediate of tryptophan catabolism and recycling it back to tryptophan. In effect, a host-parasite metabolic mosaic has evolved for tryptophan recycling.
Collapse
Affiliation(s)
- Gary Xie
- Department of Microbiology and Cell Science, Gainesville, FL 32611, USA
| | | | | |
Collapse
|
34
|
Barceló-Batllori S, André M, Servis C, Lévy N, Takikawa O, Michetti P, Reymond M, Felley-Bosco E. Proteomic analysis of cytokine induced proteins in human intestinal epithelial cells: implications for inflammatory bowel diseases. Proteomics 2002; 2:551-60. [PMID: 11987129 DOI: 10.1002/1615-9861(200205)2:5<551::aid-prot551>3.0.co;2-o] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A role for cytokine regulated proteins in epithelial cells has been suggested in the pathogenesis of inflammatory bowel diseases (IBD). The aim of this study was to identify such cytokine regulated targets using a proteomic functional approach. Protein patterns from (35)S-radiolabeled homogenates of cultured colon epithelial cells were compared before and after exposure to interferon-gamma, interleukin-1beta and interleukin-6. Proteins were separated by two-dimensional polyacrylamide gel electrophoresis. Both autoradiographies and silver stained gels were analyzed. Proteins showing differential expression were identified by tryptic in-gel digestion and mass spectrometry. Metabolism related proteins were also investigated by Western blot analysis. Tryptophanyl-tRNA synthetase, indoleamine-2,3-dioxygenase, heterogeneous nuclear ribonucleoprotein JKTBP, interferon-induced 35kDa protein, proteasome subunit LMP2 and arginosuccinate synthetase were identified as cytokine modulated proteins in vitro. Using purified epithelial cells from patients, overexpression of indoleamine-2,3-dioxygenase, an enzyme involved in tryptophan metabolism, was confirmed in Crohn's disease as well as in ulcerative colitis, as compared to normal mucosa. No such difference was found in diverticulitis. Potentially, this observation opens new avenues in the treatment of IBD.
Collapse
|
35
|
Guo Q, Gong Q, Tong KL, Vestergaard B, Costa A, Desgres J, Wong M, Grosjean H, Zhu G, Wong JTF, Xue H. Recognition by tryptophanyl-tRNA synthetases of discriminator base on tRNATrp from three biological domains. J Biol Chem 2002; 277:14343-9. [PMID: 11834741 DOI: 10.1074/jbc.m111745200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To study the recognition by tryptophanyl-tRNA synthetase (TrpRS) of tRNA(Trp) discriminator base, mutations were introduced into the discriminator base of Bacillus subtilis, Archeoglobus fulgidus, and bovine tRNA(Trp), representing the three biological domains. When B. subtilis, A. fulgidus, and human TrpRS were used to acylate these tRNA(Trp), two distinct preference profiles regarding the discriminator base of different tRNA(Trp) substrates were found: G>A>U>C for B. subtilis TrpRS, and A>C>U>G for A. fulgidus and human TrpRS. The preference for G73 in tRNA(Trp) by bacterial TrpRS is much stronger than the modest preferences for A73 by the archaeal and eukaryotic TrpRS. Cross-species reactivities between TrpRS and tRNA(Trp) from the three domains were in accordance with the view that the evolutionary position of archaea is intermediate between those of eukarya and bacteria. NMR spectroscopy revealed that mutation of A73 to G73 in bovine tRNA(Trp) elicited a conformational alteration in the G1-C72 base pair. Mutation of G1-C72 to A1-U72 or disruption of the G1-C72 base pair also caused reduction of Trp-tRNA(Trp) formation. These observations identify a tRNA(Trp) structural region near the end of acceptor stem comprising A73 and G1-C72 as a crucial domain required for effective recognition by human TrpRS.
Collapse
Affiliation(s)
- Qing Guo
- Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wakasugi K, Slike BM, Hood J, Otani A, Ewalt KL, Friedlander M, Cheresh DA, Schimmel P. A human aminoacyl-tRNA synthetase as a regulator of angiogenesis. Proc Natl Acad Sci U S A 2002; 99:173-7. [PMID: 11773626 PMCID: PMC117534 DOI: 10.1073/pnas.012602099] [Citation(s) in RCA: 222] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aminoacyl-tRNA synthetases catalyze the first step of protein synthesis. It was shown recently that human tyrosyl-tRNA synthetase (TyrRS) can be split into two fragments having distinct cytokine activities, thereby linking protein synthesis to cytokine signaling pathways. Tryptophanyl-tRNA synthetase (TrpRS) is a close homologue of TyrRS. A natural fragment, herein designated as mini TrpRS, was shown by others to be produced by alternative splicing. Production of this fragment is reported to be stimulated by IFN-gamma, a cytokine that also stimulates production of angiostatic factors. Mini TrpRS is shown here to be angiostatic in a mammalian cell culture system, the chicken embryo, and two independent angiogenesis assays in the mouse. The full-length enzyme is inactive in the same assays. Thus, protein synthesis may be linked to the regulation of angiogenesis by a natural fragment of TrpRS.
Collapse
Affiliation(s)
- Keisuke Wakasugi
- The Skaggs Institute for Chemical Biology and Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Otani A, Slike BM, Dorrell MI, Hood J, Kinder K, Ewalt KL, Cheresh D, Schimmel P, Friedlander M. A fragment of human TrpRS as a potent antagonist of ocular angiogenesis. Proc Natl Acad Sci U S A 2002; 99:178-83. [PMID: 11773625 PMCID: PMC117535 DOI: 10.1073/pnas.012601899] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pathological angiogenesis contributes directly to profound loss of vision associated with many diseases of the eye. Recent work suggests that human tyrosyl- and tryptophanyl-tRNA synthetases (TrpRS) link protein synthesis to signal transduction pathways including angiogenesis. In this study, we show that a recombinant form of a COOH-terminal fragment of TrpRS is a potent antagonist of vascular endothelial growth factor-induced angiogenesis in a mouse model and of naturally occurring retinal angiogenesis in the neonatal mouse. The angiostatic activity is dose-dependent in both systems. The recombinant fragment is similar in size to one generated naturally by alternative splicing and can be produced by proteolysis of the full-length protein. In contrast, the full-length protein is inactive as an antagonist of angiogenesis. These results suggest that fragments of TrpRS, as naturally occurring and potentially nonimmunogenic anti-angiogenics, can be used for the treatment of neovascular eye diseases.
Collapse
Affiliation(s)
- Atsushi Otani
- Department of Cell Biology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Xu F, Jia J, Jin Y, Wang DT. High-level expression and single-step purification of human tryptophanyl-tRNA synthetase. Protein Expr Purif 2001; 23:296-300. [PMID: 11676605 DOI: 10.1006/prep.2001.1500] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human trpS gene was cloned into the expression vector pET-24a(+) to yield pET-24a(+)-HTrpRS, which could direct the synthesis of a mammalian derived protein in Escherichia coli BL21-CodonPlus(DE3)-RIL. The vector allows overproduction and single-step purification of His(6)-tagged human tryptophanyl-tRNA synthetase by the facilitation of metal (Ni(2+)) chelate affinity chromatography. The expression level of human TrpRS was about 40% of total cell proteins after isopropyl beta-D-thiogalactoside induction. The overproduced human TrpRS-His(6) could be purified to homogeneity within 2 h and about 24 mg purified enzyme could be obtained from 400 ml cell culture. The His(6) tag at C terminus had little effect on the binding ability of its substrates.
Collapse
Affiliation(s)
- F Xu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes of Life Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | | | | | | |
Collapse
|
39
|
Aberger F, Costa-Pereira AP, Schlaak JF, Williams TM, O'Shaughnessy RF, Hollaus G, Kerr IM, Frischauf AM. Analysis of gene expression using high-density and IFN-gamma-specific low-density cDNA arrays. Genomics 2001; 77:50-7. [PMID: 11543632 DOI: 10.1006/geno.2001.6623] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The combination of high and low density cDNA filter array technology potentially permits both the identification of subsets of induced genes and convenient and rapid multisample expression profiling of such subsets under a variety of conditions. The JAK/STAT1 pathway for IFN-gamma signaling in human cells has been well characterized, but the extent and importance of additional pathways remain to be established. Here, using high-density filter arrays of the RZPD UniGene set, we identified 18 novel IFN-gamma-inducible genes. Expression profiling was carried out using low-density arrays representing both novel and known IFN-gamma-inducible genes. Initial experiments failed to detect evidence for any novel non-JAK-dependent pathways in cells expressing a kinase-dead JAK2. The data, however, validated the potential of the combined methods in establishing rapid and convenient expression profiling of several hundred genes in response to any ligand of choice.
Collapse
Affiliation(s)
- F Aberger
- Institute of Genetics, University of Salzburg, Hellbrunnerstrasse 34, Salzburg, A-5020, Austria
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Despite being known for over 30 years, the functions of the dinucleoside polyphosphates, such as diadenosine 5',5"'-P(1), P(4)-tetraphosphate (Ap(4)A) and diadenosine 5',5"'-P(1), P(3)-triphosphate (Ap(3)A), are still unclear. On the one hand, they may have important signalling functions, both inside and outside the cell (friend), while on the other hand, they may simply be the unavoidable by-products of certain biochemical reactions, which, if allowed to accumulate, would be potentially toxic through their structural similarity to ATP and other essential mononucleotides (foe). Here, the occurrence, synthesis, degradation, and proposed functions of these compounds are briefly reviewed, along with some new data and recent evidence supporting roles for Ap(3)A and Ap(4)A in the cellular decision making processes leading to proliferation, quiescence, differentiation, and apoptosis. Hypotheses are forwarded for the involvement of Ap(4)A in the intra-S phase DNA damage checkpoint and for Ap(3)A and the pFhit (fragile histidine triad gene product) protein in tumour suppression. It is concluded that the roles of friend and foe are not incompatible, but are distinguished by the concentration range of nucleotide achieved under different circumstances.
Collapse
Affiliation(s)
- A G McLennan
- School of Biological Sciences, Life Sciences Building, University of Liverpool, Crown Street, L69 7ZB, Liverpool, UK.
| |
Collapse
|
41
|
Kim JE, Kim KH, Lee SW, Seol W, Shiba K, Kim S. An elongation factor-associating domain is inserted into human cysteinyl-tRNA synthetase by alternative splicing. Nucleic Acids Res 2000; 28:2866-72. [PMID: 10908348 PMCID: PMC102683 DOI: 10.1093/nar/28.15.2866] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The amino acid sequence of human cytoplasmic cysteinyl-tRNA synthetase (CRS) was examined by analyzing sequences of genomic and expressed sequence tag fragments. From theses analyses, a few interesting possibilities were suggested for the structure of human CRS. First, different isoforms of CRS may result from alternative splicing. Second, the largest one would comprise 831 amino acids. Third, a new exon was identified encoding an 83 amino acid domain that is homologous to parts of elongation factor-1 subunits as well as other proteins involved in protein synthesis. Northern blot analysis showed three different mRNAs for CRS (of approximately 3.0, 2.7 and 2.0 kb) from human testis while only the 2.7 kb mRNA was commonly detected in other tissues. Expression of the exon 2-containing transcript in testis was confirmed by RT-PCR and northern blotting. CRS containing the exon 2-encoded peptide retained catalytic activity comparable to that lacking this peptide. This peptide was responsible for the specific interaction of CRS with elongation factor-1gamma.
Collapse
Affiliation(s)
- J E Kim
- National Creative Research Initiatives Center for ARS Network, Sung Kyun Kwan University, 300 Chunchun-Dong, Changan-Ku, Suwon-Si, Kyunggi-Do 440-746, Korea
| | | | | | | | | | | |
Collapse
|
42
|
Jorgensen R, Søgaard TM, Rossing AB, Martensen PM, Justesen J. Identification and characterization of human mitochondrial tryptophanyl-tRNA synthetase. J Biol Chem 2000; 275:16820-6. [PMID: 10828066 DOI: 10.1074/jbc.275.22.16820] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A full-length cDNA clone encoding the human mitochondrial tryptophanyl-tRNA synthetase (h(mt)TrpRS) has been identified. The deduced amino acid sequence shows high homology to both the mitochondrial tryptophanyl-tRNA synthetase ((mt)TrpRS) from Saccharomyces cerevisiae and to different eubacterial forms of tryptophanyl-tRNA synthetase (TrpRS). Using the baculovirus expression system, we have expressed and purified the protein with a carboxyl-terminal histidine tag. The purified His-tagged h(mt)TrpRS catalyzes Trp-dependent exchange of PP(i) in the PP(i)-ATP exchange assay. Expression of h(mt)TrpRS in both human and insect cells leads to high levels of h(mt)TrpRS localizing to the mitochondria, and in insect cells the first 18 amino acids constitute the mitochondrial localization signal sequence. Until now the human cytoplasmic tryptophanyl-tRNA synthetase (hTrpRS) was thought to function as the h(mt)TrpRS, possibly in the form of a splice variant. However, no mitochondrial localization signal sequence was ever detected and the present identification of a different (mt)TrpRS almost certainly rules out that possibility. The h(mt)TrpRS shows kinetic properties similar to human mitochondrial phenylalanyl-tRNA synthetase (h(mt)PheRS), and h(mt)TrpRS is not induced by interferon-gamma as is hTrpRS.
Collapse
Affiliation(s)
- R Jorgensen
- Department of Molecular and Structural Biology, University of Aarhus, 8000 Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
43
|
Guranowski A, Galbas M, Hartmann R, Justesen J. Selective degradation of 2'-adenylated diadenosine tri- and tetraphosphates, Ap(3)A and Ap(4)A, by two specific human dinucleoside polyphosphate hydrolases. Arch Biochem Biophys 2000; 373:218-24. [PMID: 10620341 DOI: 10.1006/abbi.1999.1556] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is known that the interferon-inducible 2',5'-oligoadenylate synthetase can catalyze the 2'-adenylation of various diadenosine polyphosphates. However, catabolism of those 2'-adenylated compounds has not been investigated so far. This study shows that the mono- and bis-adenylated (or mono- and bis-deoxyadenylated) diadenosine triphosphates are not substrates of the human Fhit (fragile histidine triad) protein, which acts as a typical dinucleoside triphosphate hydrolase (EC 3.6.1.29). In contrast, the diadenosine tetraphosphate counterparts are substrates for the human (asymmetrical) Ap(4)A hydrolase (EC 3.6.1.17). The relative rates of the hydrolysis of 0.15 mM AppppA, (2'-pdA)AppppA, and (2'-pdA)AppppA(2"'-pdA) catalyzed by the latter enzyme were determined as 100:232:38, respectively. The asymmetrical substrate was hydrolyzed to ATP + (2'-pdA)AMP (80%) and to (2'-pdA)ATP + AMP (20%). The human Fhit protein, for which Ap(4)A is a poor substrate, did not degrade the 2'-adenylated diadenosine tetraphosphates either. The preference of the interferon-inducible 2'-5' oligoadenylate synthetase to use Ap(3)A over Ap(4)A as a primer for 2'-adenylation and the difference in the recognition of the 2'-adenylated diadenosine triphosphates versus the 2'-adenylated diadenosine tetraphosphates by the dinucleoside polyphosphate hydrolases described here provide a mechanism by which the ratio of the 2'-adenylated forms of the signalling molecules, Ap(3)A and Ap(4)A, could be regulated in vivo.
Collapse
Affiliation(s)
- A Guranowski
- Department of Molecular Biology, Aarhus University, Aarhus, Denmark.
| | | | | | | |
Collapse
|
44
|
Shaw AC, Røssel Larsen M, Roepstorff P, Justesen J, Christiansen G, Birkelund S. Mapping and identification of interferon gamma-regulated HeLa cell proteins separated by immobilized pH gradient two-dimensional gel electrophoresis. Electrophoresis 1999; 20:984-93. [PMID: 10344276 DOI: 10.1002/(sici)1522-2683(19990101)20:4/5<984::aid-elps984>3.0.co;2-r] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interferon gamma (IFN-gamma) is a potent immunomodulatory lymphokine, secreted by activated T-lymphocytes and NK-cells during the cellular immune response. Actions of IFN-gamma are mediated through binding to the IFN-gamma-receptor, present on most cells, and the subsequent activation of a great magnitude of IFN-gamma responsive genes has been reported previously. Our goal is to identify and map IFN-gamma-regulated HeLa cell proteins to the two-dimensional polyacrylamide gel electrophoresis with the immobilized pH gradient (IPG) two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) system. A semiconfluent layer of HeLa cells was grown on tissue culture plates, and changes in protein expression due to 100 U/mL IFN-gamma were investigated at different periods after treatment, using pulse labeling with [35S]methionine/cysteine in combination with 2-D PAGE (IPG). The identity of eight protein spots was elucidated by matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS), and several variants of the IFN-gamma-inducible tryptophanyl-tRNA synthetase (hWRS) were detected by immunoblotting.
Collapse
Affiliation(s)
- A C Shaw
- Department of Medical Microbiology and Immunology, University of Aarhus, Denmark.
| | | | | | | | | | | |
Collapse
|
45
|
Paley EL. Tryptamine-mediated stabilization of tryptophanyl-tRNA synthetase in human cervical carcinoma cell line. Cancer Lett 1999; 137:1-7. [PMID: 10376788 DOI: 10.1016/s0304-3835(98)00342-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tryptamine is an endogenous neuroactive metabolite of tryptophan. Interpretation of the function of this bioamine, however, is restricted to manipulation with tryptamine synthetic pathways. Meanwhile, tryptamine is a potent inhibitor of protein biosynthesis, via the competitive inhibition of tryptophanyl-tRNA synthetase (TrpRS). The influence of the persistent tryptamine inhibition on the half-life and cellular content of TrpRS was examined by chase labeling of HeLa cells and the tryptamine-resistant subline with [35S]methionine. The results indicate that long-term tryptamine treatment of HeLa cells led to a significant increase in the half-life of TrpRS while the content, in vivo phosphorylation and gene dose of TrpRS were unchanged. These findings suggest that survival of drug-resistant cells may not be due to TrpRS gene amplification, but to stabilization of TrpRS. It was shown that tryptamine is an effective inhibitor of HeLa cell growth. In contrast to the well-characterized antineoplastic compounds, conferring a many hundred-fold elevated drug resistance to tumor cells, resistance to tryptamine at very low levels was difficult to achieve, i.e. the 2-fold resistant subline was selected after 19 months of treatment of HeLa cells with gradually increasing concentrations of tryptamine. The tryptamine-resistant HeLa subline exhibited a slower growth rate than the original HeLa line when similar concentrations of both cell populations were seeded on the plates. A low tryptamine resistance and a lack of TrpRS gene amplification were observed in two tryptamine-resistant HeLa sublines and three Chinese hamster sublines. The role of TrpRS in oncogenesis and the perspective for tryptamine as a potential anti-cancer drug are discussed.
Collapse
Affiliation(s)
- E L Paley
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel.
| |
Collapse
|
46
|
Abstract
Common fragile sites form gaps at characteristic chromosome bands in metaphases from normal cells after aphidicolin induction. The distribution of common fragile sites parallels the positions of neoplasia-associated chromosomal rearrangements, prompting the proposal that fragility disposes to chromosomal rearrangements. Implicit in this hypothesis is that genes at fragile sites are altered by chromosome rearrangement and thus contribute to neoplastic growth. Chromosome band 3p14.2, encompassing the most inducible common fragile region, FRA3B, has been cloned and the FHIT gene, straddling FRA3B, characterized. The gene is inactivated by deletions in cancer-derived cell lines and primary tumors and Fhit protein is absent or reduced in lung, stomach, kidney, and cervical carcinomas, consistent with function as a tumor suppressor. FRA3B thus fulfills the prophecy that fragile site alterations contribute to the neoplastic process through inactivation of a tumor suppressor gene.
Collapse
Affiliation(s)
- K Huebner
- Kimmel Cancer Center, Jefferson Medical College, Philadelphia, Pennslvania 19107, USA.
| | | | | | | |
Collapse
|
47
|
Aboagye-Mathiesen G, Ebbesen P, von der Maase H, Celis JE. Interferon gamma regulates a unique set of proteins in fresh human bladder transitional cell carcinomas. Electrophoresis 1999; 20:344-8. [PMID: 10197441 DOI: 10.1002/(sici)1522-2683(19990201)20:2<344::aid-elps344>3.0.co;2-v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Poly(A) mRNA was isolated from human placental trophoblast cells stimulated with 100 U/mL of interleukin-2 and 5 microg/mL of phytohemagglutinin and reverse-transcribed. The cDNA coding for the mature interferon-gamma (IFN-gamma) protein was amplified using specific primers, cloned into the pGEX-4T2 vector, and expressed in Escherichia coli. Treatment of four fresh bladder transitional cell carcinoma (TCC) biopsies (TCCs 845-1, grade II, Ta; TCC 925-1, grade II, Ta; TCC 919-1, grade III, T1; TCC 950-1, grade III, T1) with the purified recombinant trophoblast IFN-gamma (50 U/mL, 20 h), followed by proteome analysis using two-dimensional gel electrophoresis, revealed several major proteins whose level of expression were affected by this cytokine. Of these, five (tryptophanyl-tRNA synthetase, the interferon gamma-inducible protein gamma3, mangase superoxide dismutase, and two unknown proteins of apparent molecular masses of 35.8 and 11.2 kDa, respectively) were upregulated in at least 75% of the tumors analyzed while one was downregulated (aldose reductase). Proteins were identified using a combination of techniques that included microsequencing, two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) immunoblotting and comparison with the transitional cell carcinoma isoelectric focusing (IEF) database (http://biobase.dk/cgi-bin/celis). Proteome profile analysis of primary cultures from a low-grade lesion (TCC 846-1, Grade II, Ta) labeled in the presence and absence of IFN-gamma showed that all of the proteins disregulated in vivo were also affected in the cultures. The cultured cells, on the other hand, exhibited additional changes that were not detected in vivo and that may reflect adaptation to the culturing conditions. Taken together, the results provide a first glance at the effect of IFN-gamma on the protein expression profiles of TCCs, and in due course may form the basis for more comprehensive studies aimed at evaluating the usefulness of this cytokine in bladder cancer management.
Collapse
Affiliation(s)
- G Aboagye-Mathiesen
- Institute for Medical Biochemistry and Danish Center for Human Genome Research, Aarhus University, Aarhus C.
| | | | | | | |
Collapse
|
48
|
Yuan W, Collado-Hidalgo A, Yufit T, Taylor M, Varga J. Modulation of cellular tryptophan metabolism in human fibroblasts by transforming growth factor-beta: selective inhibition of indoleamine 2,3-dioxygenase and tryptophanyl-tRNA synthetase gene expression. J Cell Physiol 1998; 177:174-86. [PMID: 9731757 DOI: 10.1002/(sici)1097-4652(199810)177:1<174::aid-jcp18>3.0.co;2-d] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Alterations in the rate of cellular tryptophan metabolism are involved in mediating important biological activities associated with cytokines and growth factors. Indoleamine 2,3-dioxygenase (IDO) and tryptophanyl-tRNA synthetase are enzymes of tryptophan metabolism whose expression in a variety of cells and tissues is highly inducible by interferon-gamma (IFN-gamma). Transforming growth factor-beta (TGF-beta) antagonizes many cellular responses to IFN-gamma. The interaction of these two cytokines plays an important role in maintaining homeostasis during inflammation and repair. In human skin and synovial fibroblasts in vitro, TGF-beta caused time- and dose-dependent abrogation of IFN-gamma-stimulated expression of IDO and tryptophanyl-tRNA synthetase mRNAs. The inhibition was selective and did not appear to be due to down-regulation of IFN-gamma signaling by TGF-beta. In parallel with its effect on IDO mRNA expression, TGF-beta caused a marked reduction in intracellular IDO protein levels and abrogated IDO activity and tryptophan catabolism in these cells induced by IFN-gamma. IFN-gamma caused a rapid and striking increase in the amount of IDO heterogeneous nuclear pre-mRNA and induced transcription of the IDO gene, as demonstrated by transient transfection assays. TGF-beta partially reversed this stimulation. IFN regulatory factor (IRF)-1 and stat1 are cellular intermediates in IFN signaling. Both are implicated in activation of IDO transcription in response to IFN-gamma. The stimulation by IFN-gamma of IRF-1 protein and mRNA expression was not prevented by treatment of fibroblasts with TGF-beta. Furthermore, gel mobility shift assays indicated that TGF-beta did not inhibit the induction of stat1 and IRF-1 binding activity to their cognate DNA recognition sites in the IDO gene promoter. In contrast, the stability of IDO mRNA transcripts was reduced in fibroblasts treated with TGF-beta, as shown by determination of mRNA half-lives following blockade of transcription with 5,6-dichlorobenzimidazole riboside. The findings indicate that TGF-beta prevents the induction of IDO and tryptophanyl-tRNA synthetase gene expression in fibroblasts. The repression of IDO expression by TGF-beta is mediated at both transcriptional and posttranscriptional levels. These results implicate TGF-beta in the negative regulation of tryptophan metabolism, provide evidence for the molecular basis of this regulation, and indicate that cellular tryptophan metabolism is under tight immunological control.
Collapse
Affiliation(s)
- W Yuan
- Section of Rheumatology, University of Illinois College of Medicine, Chicago 60607-7171, USA
| | | | | | | | | |
Collapse
|
49
|
Vartanian A, Prudovsky I, Suzuki H, Dal Pra I, Kisselev L. Opposite effects of cell differentiation and apoptosis on Ap3A/Ap4A ratio in human cell cultures. FEBS Lett 1997; 415:160-2. [PMID: 9350987 DOI: 10.1016/s0014-5793(97)01086-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The biological role of diadenosine oligophosphates (DAOP) remains obscure in spite of numerous attempts to solve this enigma. It is known that Ap3A contrary to Ap4A accumulates in human cultured cells treated with interferons (IFNs) alpha or gamma. Since IFNs are considered as antiproliferative regulators, we assumed that different cell status may be associated with varying intracellular levels of DAOP. Promyelocytic human cell line HL60 induced by phorbol ester (TPA) to differentiate to macrophage-like cells in culture exhibits a profound loss of proliferative potential. Here we have shown a 4-5-fold increase in Ap3A concentration in HL60 cells induced by TPA, similar to the effect of IFN, while the Ap4A concentration remained unchanged. On the contrary, in cells undergoing apoptosis induced by VP16, a topoisomerase II inhibitor, the Ap3A concentration considerably decreased, while the Ap4A concentration increased. These findings combined with earlier results suggest an involvement of the Ap3A/Ap4A ratio in signal transduction pathways controlling the cell status.
Collapse
Affiliation(s)
- A Vartanian
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow
| | | | | | | | | |
Collapse
|
50
|
Besançon F, Just J, Bourgeade MF, Van Weyenbergh J, Solomon D, Guillozo H, Wietzerbin J, Cayre YE. HIV-1 p17 and IFN-gamma both induce fructose 1,6-bisphosphatase. J Interferon Cytokine Res 1997; 17:461-7. [PMID: 9282826 DOI: 10.1089/jir.1997.17.461] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The p17 matrix protein of the human immunodeficiency virus type 1 (HIV-1) plays a crucial role in AIDS pathogenesis. It orchestrates viral assembly and directs the preintegration complex to the nucleus of infected cells. Recently, the three-dimensional structure of p17 was shown to resemble that of interferon-gamma (IFN-gamma), suggesting that both proteins might share analogous functions. We demonstrate that in monocytes, p17 shares with IFN-gamma the ability to induce 1alpha-hydroxylase activity and to activate fructose 1,6-bisphosphatase gene expression in the presence of 25-hydroxyvitamin D3. However, p17 does not bind to the IFN-gamma cell membrane receptor and fails to increase expression of IFN-gamma-induced proteins, such as tryptophanyl-tRNA synthetase, Fc gammaRI, and HLA DR or B7/BB1 antigens. Altogether, our results raise the possibility that the structural resemblance between p17 and IFN-gamma causes the selective activation of a common pathway resulting in the production of 1,25-dihydroxyvitamin D3. We also found that unlike IFN-gamma, p17 increases the intracellular ATP content. Since transport of the HIV-1 preintegration complex through the nuclear membrane is an ATP-dependent process, our observation suggests that p17 plays a double role in this active transport, not only by acting as a chaperone molecule but also by recruiting the necessary energy for this process.
Collapse
Affiliation(s)
- F Besançon
- INSERM Unité 417, Hôpital Saint-Antoine, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|