1
|
Malintha GHT, Woo DW, Celino-Brady FT, Seale AP. Temperature modulates the osmosensitivity of tilapia prolactin cells. Sci Rep 2023; 13:20217. [PMID: 37980366 PMCID: PMC10657356 DOI: 10.1038/s41598-023-47044-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 11/08/2023] [Indexed: 11/20/2023] Open
Abstract
In euryhaline fish, prolactin (Prl) plays an essential role in freshwater (FW) acclimation. In the euryhaline and eurythermal Mozambique tilapia, Oreochromis mossambicus, Prl cells are model osmoreceptors, recently described to be thermosensitive. To investigate the effects of temperature on osmoreception, we incubated Prl cells of tilapia acclimated to either FW or seawater (SW) in different combinations of temperatures (20, 26 and 32 °C) and osmolalities (280, 330 and 420 mOsm/kg) for 6 h. Release of both Prl isoforms, Prl188 and Prl177, increased in hyposmotic media and were further augmented with a rise in temperature. Hyposmotically-induced release of Prl188, but not Prl177, was suppressed at 20 °C. In SW fish, mRNA expression of prl188 increased with rising temperatures at lower osmolalities, while and prl177 decreased at 32 °C and higher osmolalities. In Prl cells of SW-acclimated tilapia incubated in hyperosmotic media, the expressions of Prl receptors, prlr1 and prlr2, and the stretch-activated Ca2+ channel, trpv4,decreased at 32 °C, suggesting the presence of a cellular mechanism to compensate for elevated Prl release. Transcription factors, pou1f1, pou2f1b, creb3l1, cebpb, stat3, stat1a and nfat1c, known to regulate prl188 and prl177, were also downregulated at 32 °C. Our findings provide evidence that osmoreception is modulated by temperature, and that both thermal and osmotic responses vary with acclimation salinity.
Collapse
Affiliation(s)
- G H T Malintha
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI, 96822, USA
| | - Daniel W Woo
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI, 96822, USA
| | - Fritzie T Celino-Brady
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI, 96822, USA
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
| | - Andre P Seale
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI, 96822, USA.
| |
Collapse
|
2
|
Lee ZY, Tran T. Genomic and non-genomic effects of glucocorticoids in respiratory diseases. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 98:1-30. [PMID: 37524484 DOI: 10.1016/bs.apha.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Cortisol is an endogenous steroid hormone essential for the natural resolution of inflammation. Synthetic glucocorticoids (GCs) were developed and are currently amongst the most widely prescribed anti-inflammatory drugs in our modern clinical landscape owing to their potent anti-inflammatory activity. However, the extent of GC's effects has yet to be fully elucidated. Indeed, GCs modulate a broad spectrum of cellular activity, from their classical regulation of gene expression to acute non-genomic mechanisms of action. Furthermore, tissue specific effects, disease specific conditions, and dose-dependent responses complicate their use, with side-effects potentially plaguing their use. It is thus vital to outline and consolidate the effects of GCs, to demystify and maximize their therapeutic potential while avoiding pitfalls that would otherwise render them obsolete.
Collapse
Affiliation(s)
- Zhao-Yong Lee
- Infectious Disease Translational Research Program, National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thai Tran
- Infectious Disease Translational Research Program, National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
3
|
Gan L, Li Q, Pan J, Chen L. Glucocorticoids rapidly promote YAP phosphorylation via the cAMP-PKA pathway to repress mouse cardiomyocyte proliferative potential. Mol Cell Endocrinol 2022; 548:111615. [PMID: 35278645 DOI: 10.1016/j.mce.2022.111615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022]
Abstract
Adult mammalian cardiomyocytes (CMs) lose their proliferative potential due to cell-cycle withdrawal and polyploidization and fail to mount a proliferative response to regenerate new CMs after cardiac injury. The decline in the proliferative potential of mammalian CMs occurs in the neonatal period when the endocrine system undergoes drastic changes for adaptation to extra-uterine life. There is an increase in circulating glucocorticoid (GC) levels shortly after birth in mammals, and thus, we sought to determine the roles and mechanisms of GCs in regulating CM proliferation. Here, we showed that GCs suppressed CM proliferation in vitro and in vivo, decreased the total number of CMs, and increased the cross-sectional area of CMs. However, the glucocorticoid receptor antagonist had no effect on CM proliferation. Agonists of adenylate cyclase and protein kinase A (PKA) inhibited CM proliferation, while PKA antagonists or knockdown of PKA alleviated the inhibitory effect of GCs on CM proliferation. GCs and the activation of the cyclic adenosine monophosphate (cAMP)/PKA signaling pathway facilitated yes-associated protein (YAP) phosphorylation in mouse CMs and promoted YAP protein translocation from the nucleus to the cytoplasm. Meanwhile, blocking the cAMP/PKA signaling pathway partially blocked the effect of GCs on YAP protein phosphorylation and YAP protein translocation. Thus, our findings suggest that GCs suppress mouse CM proliferation in vitro and in vivo, through a mechanism that involves targeting the cAMP-PKA-YAP signaling pathway.
Collapse
Affiliation(s)
- Lu Gan
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Qiyong Li
- Department of Cardiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, PR China
| | - Jigang Pan
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, PR China.
| | - Li Chen
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, PR China.
| |
Collapse
|
4
|
Das C, Faught E, Vijayan MM. Cortisol rapidly stimulates calcium waves in the developing trunk muscle of zebrafish. Mol Cell Endocrinol 2021; 520:111067. [PMID: 33129866 DOI: 10.1016/j.mce.2020.111067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/09/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
Glucocorticoids (GCs) play a role in stress coping by activating the glucocorticoid receptor (GR), a ligand-bound transcription factor. GCs also exert rapid effects that are nongenomic by modulating second messenger signaling, including Ca2+. However, the mechanism of action of GCs in modulating cytoplasmic free calcium level ([Ca2+]i) is unclear. We hypothesized that cortisol increases ([Ca2+]i) in zebrafish (Danio rerio) muscle, and this is independent of GR activation. Indeed, cortisol rapidly stimulated ([Ca2+]i) rise in the developing trunk muscle (DTM), and this response was not abolished in the GR knockout zebrafish. The rapid cortisol-induced ([Ca2+]i) rise was reduced with EGTA, and completely abolished by the pharmacological inhibition of the calcium release-activated calcium channel (CRACC). Also, cortisol stimulation rapidly increased the expression of Orai1, the pore forming protein subunit of CRACC, in the DTM. Altogether, rapid nongenomic action of cortisol on muscle function may involve Ca2+ signaling by CRACC gating in zebrafish.
Collapse
Affiliation(s)
- Chinmayee Das
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N1N4, Canada
| | - Erin Faught
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N1N4, Canada
| | - Mathilakath M Vijayan
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N1N4, Canada.
| |
Collapse
|
5
|
Seale AP, Malintha GHT, Celino-Brady FT, Head T, Belcaid M, Yamaguchi Y, Lerner DT, Baltzegar DA, Borski RJ, Stoytcheva ZR, Breves JP. Transcriptional regulation of prolactin in a euryhaline teleost: Characterisation of gene promoters through in silico and transcriptome analyses. J Neuroendocrinol 2020; 32:e12905. [PMID: 32996203 PMCID: PMC8612711 DOI: 10.1111/jne.12905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 07/31/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022]
Abstract
The sensitivity of prolactin (Prl) cells of the Mozambique tilapia (Oreochromis mossambicus) pituitary to variations in extracellular osmolality enables investigations into how osmoreception underlies patterns of hormone secretion. Through the actions of their main secretory products, Prl cells play a key role in supporting hydromineral balance of fishes by controlling the major osmoregulatory organs (ie, gill, intestine and kidney). The release of Prl from isolated cells of the rostral pars distalis (RPD) occurs in direct response to physiologically relevant reductions in extracellular osmolality. Although the particular signal transduction pathways that link osmotic conditions to Prl secretion have been identified, the processes that underlie hyposmotic induction of prl gene expression remain unknown. In this short review, we describe two distinct tilapia gene loci that encode Prl177 and Prl188 . From our in silico analyses of prl177 and prl188 promoter regions (approximately 1000 bp) and a transcriptome analysis of RPDs from fresh water (FW)- and seawater (SW)-acclimated tilapia, we propose a working model for how multiple transcription factors link osmoreceptive processes with adaptive patterns of prl177 and prl188 gene expression. We confirmed via RNA-sequencing and a quantitative polymerase chain reaction that multiple transcription factors emerging as predicted regulators of prl gene expression are expressed in the RPD of tilapia. In particular, gene transcripts encoding pou1f1, stat3, creb3l1, pbxip1a and stat1a were highly expressed; creb3l1, pbxip1a and stat1a were elevated in fish acclimated to SW vs FW. Combined, our in silico and transcriptome analyses set a path for resolving how adaptive patterns of Prl secretion are achieved via the integration of osmoreceptive processes with the control of prl gene transcription.
Collapse
Affiliation(s)
- Andre P. Seale
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai’i at Mānoa, Honolulu, HI, USA
| | | | - Fritzie T. Celino-Brady
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai’i at Mānoa, Honolulu, HI, USA
| | - Tony Head
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai’i at Mānoa, Honolulu, HI, USA
| | - Mahdi Belcaid
- Hawai’i Institute of Marine Biology, University of Hawai’i at Mānoa, Kaneohe, HI, USA
| | - Yoko Yamaguchi
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan
| | - Darren T. Lerner
- University of Hawai’i Sea Grant College Program, University of Hawai’i at Mānoa, Honolulu, HI, USA
| | - David A. Baltzegar
- Genomic Sciences Laboratory, Office of Research and Innovation, North Carolina State University, Raleigh, NC, USA
| | - Russell J. Borski
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Zoia R. Stoytcheva
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai’i at Mānoa, Honolulu, HI, USA
| | - Jason P. Breves
- Department of Biology, Skidmore College, Saratoga Springs, NY, USA
| |
Collapse
|
6
|
Villalba M, Gómez G, Torres L, Maldonado N, Espiñeira C, Payne G, Vargas-Chacoff L, Figueroa J, Yáñez A, Olavarría VH. Prolactin peptide (pPRL) induces anti-prolactin antibodies, ROS and cortisol but suppresses specific immune responses in rainbow trout. Mol Immunol 2020; 127:87-94. [PMID: 32947170 DOI: 10.1016/j.molimm.2020.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 01/25/2023]
Abstract
Prolactin has several immune functions in fish however, the effects on innate and specific components of rainbow trout immunity are currently unknown. Therefore in this study, prolactin peptide (pPRL) injection in rainbow trout generated anti-PRL antibodies that were confirmed through Western blot assays of fish brain tissue extract. At the same time, this group of fish was immunized with a viral antigen (VP2) and the specific antibody titer generated by the rainbow trout was subsequently determined, as well as the sero-neutralizing capacity of the antibodies. Interestingly, this group of fish (pPRL-VP2) generated approximately 150% less antibodies compared with fish immunized only with the viral antigen (VP2), and pPRL-VP2 fish increased their cortisol level by 4 times compared to the control. Additionally, through qPCR assay, we determined that the pPRL-VP2 fish group decreased pro-inflammatory transcript expression, and the serum of these (pPRL-VP2) fish stimulated ROS production in untreated fish leukocytes, a phenomenon that was blocked by the pharmacological cortisol receptor inhibitor (RU486). Collectively, this is the first report that indicates that pPRL could modulate both components of immunity in rainbow trout.
Collapse
Affiliation(s)
- Melina Villalba
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Gabriel Gómez
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Lidia Torres
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Nicolas Maldonado
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Constanza Espiñeira
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Gardenia Payne
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Luis Vargas-Chacoff
- Facultad de Ciencias, Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Jaime Figueroa
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar, Chile
| | - Alejandro Yáñez
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar, Chile
| | - Víctor H Olavarría
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile.
| |
Collapse
|
7
|
Rahman ML, Zahangir MM, Kitahashi T, Shahjahan M, Ando H. Effects of high and low temperature on expression of GnIH, GnIH receptor, GH and PRL genes in the male grass puffer during breeding season. Gen Comp Endocrinol 2019; 282:113200. [PMID: 31199926 DOI: 10.1016/j.ygcen.2019.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/29/2019] [Accepted: 06/10/2019] [Indexed: 01/19/2023]
Abstract
Gonadotropin-inhibitory hormone (GnIH) is a multifunctional hypophysiotropic neurohormone and has a stimulatory role in the control of reproduction in the grass puffer. To clarify the neuroendocrine mechanisms underlying the effect of changes in water temperature on reproduction in fish, we previously revealed that, in parallel to gonadal regression, both low and high temperature significantly decreased the expressions of the genes encoding kisspeptin (kiss2), kisspeptin receptor (kiss2r), gonadotropin-releasing hormone 1 (gnrh1) in the brain and gonadotropin (GTH) subunits (fshb and lhb) in the pituitary of sexually mature male grass puffer. In this study, we examined the changes in expression of gnih and GnIH receptor gene (gnihr) in the brain and pituitary along with the genes for growth hormone (gh) and prolactin (prl) in the pituitary of male grass puffer exposed to low temperature (14 °C), normal temperature (21 °C, as initial control) and high temperature (28 °C) conditions for 7 days. The levels of gnih and gnihr mRNAs were significantly decreased in both low and high temperature conditions compared to normal temperature in the brain and pituitary. Similarly, the gh mRNA levels were significantly decreased in both low and high temperature conditions. The prl mRNAs showed no significant changes at high temperature, whereas drastically decreased at low temperature possibly by dysfunctional cold stress. Taken together, the present results suggest that, in addition to the inhibitory effect of temperature changes on the Kiss2/GnRH1/GTH system, the suppression of GnIH/GH system may also be involved in the termination of reproduction by high temperature at the end of breeding season.
Collapse
Affiliation(s)
- Mohammad Lutfar Rahman
- Marine Biological Station, Sado Island Center for Ecological Sustainability, Niigata University, Sado, Niigata 952-2135, Japan; Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Mahiuddin Zahangir
- Marine Biological Station, Sado Island Center for Ecological Sustainability, Niigata University, Sado, Niigata 952-2135, Japan; Department of Fish Biology and Biotechnology, Chittagong Veterinary and Animal Sciences University, Chittagong 4225, Bangladesh
| | - Takashi Kitahashi
- Marine Biological Station, Sado Island Center for Ecological Sustainability, Niigata University, Sado, Niigata 952-2135, Japan
| | - Md Shahjahan
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Hironori Ando
- Marine Biological Station, Sado Island Center for Ecological Sustainability, Niigata University, Sado, Niigata 952-2135, Japan.
| |
Collapse
|
8
|
Johnstone WM, Honeycutt JL, Deck CA, Borski RJ. Nongenomic glucocorticoid effects and their mechanisms of action in vertebrates. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 346:51-96. [PMID: 31122395 DOI: 10.1016/bs.ircmb.2019.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Glucocorticoids (GC) act on multiple organ systems to regulate a variety of physiological processes in vertebrates. Due to their immunosuppressive and anti-inflammatory actions, glucocorticoids are an attractive target for pharmaceutical development. Accordingly, they are one of the most widely prescribed classes of therapeutics. Through the classical mechanism of steroid action, glucocorticoids are thought to mainly affect gene transcription, both in a stimulatory and suppressive fashion, regulating de novo protein synthesis that subsequently leads to the physiological response. However, over the past three decades multiple lines of evidence demonstrate that glucocorticoids may work through rapid, nonclassical mechanisms that do not require alterations in gene transcription or translation. This review assimilates evidence across the vertebrate taxa on the diversity of nongenomic actions of glucocorticoids and the membrane-associated cellular mechanisms that may underlie rapid glucocorticoid responses to include potential binding sites characterized to date.
Collapse
Affiliation(s)
- William M Johnstone
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Jamie L Honeycutt
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Courtney A Deck
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Russell J Borski
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
9
|
Panettieri RA, Schaafsma D, Amrani Y, Koziol-White C, Ostrom R, Tliba O. Non-genomic Effects of Glucocorticoids: An Updated View. Trends Pharmacol Sci 2018; 40:38-49. [PMID: 30497693 DOI: 10.1016/j.tips.2018.11.002] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/09/2018] [Accepted: 11/01/2018] [Indexed: 01/01/2023]
Abstract
Glucocorticoid (GC) anti-inflammatory effects generally require a prolonged onset of action and involve genomic processes. Because of the rapidity of some of the GC effects, however, the concept that non-genomic actions may contribute to GC mechanisms of action has arisen. While the mechanisms have not been completely elucidated, the non-genomic effects may play a role in the management of inflammatory diseases. For instance, we recently reported that GCs 'rapidly' enhanced the effects of bronchodilators, agents used in the treatment of allergic asthma. In this review article, we discuss (i) the non-genomic effects of GCs on pathways relevant to the pathogenesis of inflammatory diseases and (ii) the putative role of the membrane GC receptor. Since GC side effects are often considered to be generated through its genomic actions, understanding GC non-genomic effects will help design GCs with a better therapeutic index.
Collapse
Affiliation(s)
- Reynold A Panettieri
- Department of Medicine, Rutgers Institute for Translational Medicine and Science, Robert Wood Johnson School of Medicine, New Brunswick, NJ, USA
| | | | - Yassine Amrani
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, Leicester Biomedical Research Center Respiratory, Leicester, UK
| | - Cynthia Koziol-White
- Department of Medicine, Rutgers Institute for Translational Medicine and Science, Robert Wood Johnson School of Medicine, New Brunswick, NJ, USA
| | - Rennolds Ostrom
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, USA
| | - Omar Tliba
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, USA.
| |
Collapse
|
10
|
Das C, Thraya M, Vijayan MM. Nongenomic cortisol signaling in fish. Gen Comp Endocrinol 2018; 265:121-127. [PMID: 29673844 DOI: 10.1016/j.ygcen.2018.04.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/12/2018] [Accepted: 04/14/2018] [Indexed: 10/17/2022]
Abstract
Glucocorticoids are critical regulators of the cellular processes that allow animals to cope with stressors. In teleosts, cortisol is the primary circulating glucocorticoid and this hormone mediates a suite of physiological responses, most importantly energy substrate mobilization that is essential for acute stress adaptation. Cortisol signaling has been extensively studied and the majority of work has been on the activation of the glucocorticoid receptor (GR), a ligand-bound transcription factor, and the associated downstream transcriptional and protein responses. Despite the role of this hormone in acute stress adaptation, very few studies have examined the rapid effects of this hormone on cellular function. The nongenomic corticosteroid effects, which are rapid (seconds to minutes) and independent of transcription and translation, involve changes to second-messenger pathways and effector proteins, but the primary receptors involved in this pathway activation remain elusive. In teleosts, a few studies suggested the possibility that GR located on the membrane may be initiating a rapid response based on the abrogation of this effect with RU486, a GR antagonist. However, studies have also proposed other signaling mechanisms, including a putative novel membrane receptor and changes to membrane biophysical properties as initiators of rapid signaling in response to cortisol stimulation. Emerging evidence suggests that cortisol activates multiple signaling pathways in cells to bring about rapid effects, but the underlying physiological implications on acute stress adaptation are far from clear.
Collapse
Affiliation(s)
- Chinmayee Das
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Marwa Thraya
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Mathilakath M Vijayan
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
11
|
Bronson DR, Preuss T. Cellular Mechanisms of Cortisol-Induced Changes in Mauthner-Cell Excitability in the Startle Circuit of Goldfish. Front Neural Circuits 2017; 11:68. [PMID: 29033795 PMCID: PMC5625080 DOI: 10.3389/fncir.2017.00068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/11/2017] [Indexed: 11/13/2022] Open
Abstract
Predator pressure and olfactory cues (alarm substance) have been shown to modulate Mauthner cell (M-cell) initiated startle escape responses (C-starts) in teleost fish. The regulation of such adaptive responses to potential threats is thought to involve the release of steroid hormones such as cortisol. However, the mechanism by which cortisol may regulate M-cell excitability is not known. Here, we used intrasomatic, in vivo recordings to elucidate the acute effects of cortisol on M-cell membrane properties and sound evoked post-synaptic potentials (PSPs). Cortisol tonically decreased threshold current in the M-cell within 10 min before trending towards baseline excitability over an hour later, which may indicate the involvement of non-genomic mechanisms. Consistently, current ramp injection experiments showed that cortisol increased M-cell input resistance in the depolarizing membrane, i.e., by a voltage-dependent postsynaptic mechanism. Cortisol also increases the magnitude of sound-evoked M-cell PSPs by reducing the efficacy of local feedforward inhibition (FFI). Interestingly, another pre-synaptic inhibitory network mediating prepulse inhibition (PPI) remained unaffected. Together, our results suggest that cortisol rapidly increases M-cell excitability via a post-synaptic effector mechanism, likely a chloride conductance, which, in combination with its dampening effect on FFI, will modulate information processing to reach threshold. Given the central role of the M-cell in initiating startle, these results are consistent with a role of cortisol in mediating the expression of a vital behavior.
Collapse
Affiliation(s)
- Daniel R Bronson
- The Graduate Center, City University of New York, New York, NY, United States
| | - Thomas Preuss
- Hunter College, City University of New York, New York, NY, United States
| |
Collapse
|
12
|
Yamaguchi Y, Moriyama S, Lerner DT, Grau EG, Seale AP. Autocrine Positive Feedback Regulation of Prolactin Release From Tilapia Prolactin Cells and Its Modulation by Extracellular Osmolality. Endocrinology 2016; 157:3505-16. [PMID: 27379370 PMCID: PMC6285229 DOI: 10.1210/en.2015-1969] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 06/27/2016] [Indexed: 12/24/2022]
Abstract
Prolactin (PRL) is a vertebrate hormone with diverse actions in osmoregulation, metabolism, reproduction, and in growth and development. Osmoregulation is fundamental to maintaining the functional structure of the macromolecules that conduct the business of life. In teleost fish, PRL plays a critical role in osmoregulation in fresh water. Appropriately, PRL cells of the tilapia are directly osmosensitive, with PRL secretion increasing as extracellular osmolality falls. Using a model system that employs dispersed PRL cells from the euryhaline teleost fish, Oreochromis mossambicus, we investigated the autocrine regulation of PRL cell function. Unknown was whether these PRL cells might also be sensitive to autocrine feedback and whether possible autocrine regulation might interact with the well-established regulation by physiologically relevant changes in extracellular osmolality. In the cell-perfusion system, ovine PRL and two isoforms of tilapia PRL (tPRL), tPRL177 and tPRL188, stimulated the release of tPRLs from the dispersed PRL cells. These effects were significant within 5-10 minutes and lasted the entire course of exposure, ceasing within 5-10 minutes of removal of tested PRLs from the perifusion medium. The magnitude of response varied between tPRL177 and tPRL188 and was modulated by extracellular osmolality. On the other hand, the gene expression of tPRLs was mainly unchanged or suppressed by static incubations of PRL cells with added PRLs. By demonstrating the regulatory complexity driven by positive autocrine feedback and its interaction with osmotic stimuli, these findings expand upon the knowledge that pituitary PRL cells are regulated complexly through multiple factors and interactions.
Collapse
Affiliation(s)
- Yoko Yamaguchi
- Hawai'i Institute of Marine Biology (Y.Y., D.T.L., E.G.G., A.P.S.), University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i 96744; School of Marine Biosciences (S.M.), Kitasato University, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan; and University of Hawai'i Sea Grant College Program (D.T.L.) and Department of Human Nutrition, Food and Animal Sciences (A.P.S.), University of Hawai'i at Mānoa, Honolulu, Hawai'i 96822
| | - Shunsuke Moriyama
- Hawai'i Institute of Marine Biology (Y.Y., D.T.L., E.G.G., A.P.S.), University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i 96744; School of Marine Biosciences (S.M.), Kitasato University, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan; and University of Hawai'i Sea Grant College Program (D.T.L.) and Department of Human Nutrition, Food and Animal Sciences (A.P.S.), University of Hawai'i at Mānoa, Honolulu, Hawai'i 96822
| | - Darren T Lerner
- Hawai'i Institute of Marine Biology (Y.Y., D.T.L., E.G.G., A.P.S.), University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i 96744; School of Marine Biosciences (S.M.), Kitasato University, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan; and University of Hawai'i Sea Grant College Program (D.T.L.) and Department of Human Nutrition, Food and Animal Sciences (A.P.S.), University of Hawai'i at Mānoa, Honolulu, Hawai'i 96822
| | - E Gordon Grau
- Hawai'i Institute of Marine Biology (Y.Y., D.T.L., E.G.G., A.P.S.), University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i 96744; School of Marine Biosciences (S.M.), Kitasato University, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan; and University of Hawai'i Sea Grant College Program (D.T.L.) and Department of Human Nutrition, Food and Animal Sciences (A.P.S.), University of Hawai'i at Mānoa, Honolulu, Hawai'i 96822
| | - Andre P Seale
- Hawai'i Institute of Marine Biology (Y.Y., D.T.L., E.G.G., A.P.S.), University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i 96744; School of Marine Biosciences (S.M.), Kitasato University, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan; and University of Hawai'i Sea Grant College Program (D.T.L.) and Department of Human Nutrition, Food and Animal Sciences (A.P.S.), University of Hawai'i at Mānoa, Honolulu, Hawai'i 96822
| |
Collapse
|
13
|
Mechanisms of cortisol action in fish hepatocytes. Comp Biochem Physiol B Biochem Mol Biol 2016; 199:136-145. [DOI: 10.1016/j.cbpb.2016.06.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/21/2016] [Accepted: 06/27/2016] [Indexed: 12/17/2022]
|
14
|
Breves JP, Inokuchi M, Yamaguchi Y, Seale AP, Hunt BL, Watanabe S, Lerner DT, Kaneko T, Grau EG. Hormonal regulation of aquaporin 3: opposing actions of prolactin and cortisol in tilapia gill. J Endocrinol 2016; 230:325-37. [PMID: 27402066 DOI: 10.1530/joe-16-0162] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 06/29/2016] [Indexed: 12/11/2022]
Abstract
Aquaporins (Aqps) are expressed within key osmoregulatory tissues where they mediate the movement of water and selected solutes across cell membranes. We leveraged the functional plasticity of Mozambique tilapia (Oreochromis mossambicus) gill epithelium to examine how Aqp3, an aquaglyceroporin, is regulated in response to osmoregulatory demands. Particular attention was paid to the actions of critical osmoregulatory hormones, namely, prolactin (Prl), growth hormone and cortisol. Branchial aqp3 mRNA levels were modulated following changes in environmental salinity, with enhanced aqp3 mRNA expression upon transfer from seawater to freshwater (FW). Accordingly, extensive Aqp3 immunoreactivity was localized to cell membranes of branchial epithelium in FW-acclimated animals. Upon transferring hypophysectomized tilapia to FW, we identified that a pituitary factor(s) is required for Aqp3 expression in FW. Replacement with ovine Prl (oPrl) was sufficient to stimulate Aqp3 expression in hypophysectomized animals held in FW, an effect blocked by coinjection with cortisol. Both oPrl and native tilapia Prls (tPrl177 and tPrl188) stimulated aqp3 in incubated gill filaments in a concentration-related manner. Consistent with in vivo responses, coincubation with cortisol blocked oPrl-stimulated aqp3 expression in vitro Our data indicate that Prl and cortisol act directly upon branchial epithelium to regulate Aqp3 in tilapia. Thus, within the context of the diverse actions of Prl on hydromineral balance in vertebrates, we define a new role for Prl as a regulator of Aqp expression.
Collapse
Affiliation(s)
- Jason P Breves
- Department of BiologySkidmore College, Saratoga Springs, New York, USA
| | - Mayu Inokuchi
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at Mānoa, Kāne'ohe, Hawai'i, USA Department of Aquatic BioscienceGraduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Tokyo, Japan
| | - Yoko Yamaguchi
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at Mānoa, Kāne'ohe, Hawai'i, USA
| | - Andre P Seale
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at Mānoa, Kāne'ohe, Hawai'i, USA
| | - Bethany L Hunt
- Department of BiologySkidmore College, Saratoga Springs, New York, USA
| | - Soichi Watanabe
- Department of Aquatic BioscienceGraduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Tokyo, Japan
| | - Darren T Lerner
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at Mānoa, Kāne'ohe, Hawai'i, USA University of Hawai'i Sea Grant College ProgramUniversity of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Toyoji Kaneko
- Department of Aquatic BioscienceGraduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Tokyo, Japan
| | - E Gordon Grau
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at Mānoa, Kāne'ohe, Hawai'i, USA
| |
Collapse
|
15
|
Maryoung LA, Lavado R, Bammler TK, Gallagher EP, Stapleton PL, Beyer RP, Farin FM, Hardiman G, Schlenk D. Differential Gene Expression in Liver, Gill, and Olfactory Rosettes of Coho Salmon (Oncorhynchus kisutch) After Acclimation to Salinity. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:703-17. [PMID: 26260986 PMCID: PMC4636457 DOI: 10.1007/s10126-015-9649-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 05/15/2015] [Indexed: 05/28/2023]
Abstract
Most Pacific salmonids undergo smoltification and transition from freshwater to saltwater, making various adjustments in metabolism, catabolism, osmotic, and ion regulation. The molecular mechanisms underlying this transition are largely unknown. In the present study, we acclimated coho salmon (Oncorhynchus kisutch) to four different salinities and assessed gene expression through microarray analysis of gills, liver, and olfactory rosettes. Gills are involved in osmotic regulation, liver plays a role in energetics, and olfactory rosettes are involved in behavior. Between all salinity treatments, liver had the highest number of differentially expressed genes at 1616, gills had 1074, and olfactory rosettes had 924, using a 1.5-fold cutoff and a false discovery rate of 0.5. Higher responsiveness of liver to metabolic changes after salinity acclimation to provide energy for other osmoregulatory tissues such as the gills may explain the differences in number of differentially expressed genes. Differentially expressed genes were tissue- and salinity-dependent. There were no known genes differentially expressed that were common to all salinity treatments and all tissues. Gene ontology term analysis revealed biological processes, molecular functions, and cellular components that were significantly affected by salinity, a majority of which were tissue-dependent. For liver, oxygen binding and transport terms were highlighted. For gills, muscle, and cytoskeleton-related terms predominated and for olfactory rosettes, immune response-related genes were accentuated. Interaction networks were examined in combination with GO terms and determined similarities between tissues for potential osmosensors, signal transduction cascades, and transcription factors.
Collapse
Affiliation(s)
- Lindley A Maryoung
- Department of Environmental Sciences, University of California, 2258 Geology Building, 900 University Ave, Riverside, CA, 92521, USA.
| | - Ramon Lavado
- Department of Environmental Sciences, University of California, 2258 Geology Building, 900 University Ave, Riverside, CA, 92521, USA
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Evan P Gallagher
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Patricia L Stapleton
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Richard P Beyer
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Federico M Farin
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Gary Hardiman
- Department of Medicine and Public Health and Center for Genomics Medicine, Medical University of South Carolina, 135 Cannon Street, Suite 303 MSC 835, Charleston, SC, 29425, USA
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, 2258 Geology Building, 900 University Ave, Riverside, CA, 92521, USA
| |
Collapse
|
16
|
Davis A, Abraham E, McEvoy E, Sonnenfeld S, Lewis C, Hubbard CS, Dolence EK, Rose JD, Coddington E. Corticosterone suppresses vasotocin-enhanced clasping behavior in male rough-skinned newts by novel mechanisms interfering with V1a receptor availability and receptor-mediated endocytosis. Horm Behav 2015; 69:39-49. [PMID: 25528549 DOI: 10.1016/j.yhbeh.2014.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 11/14/2014] [Accepted: 12/11/2014] [Indexed: 12/17/2022]
Abstract
In rough-skinned newts, Taricha granulosa, exposure to an acute stressor results in the rapid release of corticosterone (CORT), which suppresses the ability of vasotocin (VT) to enhance clasping behavior. CORT also suppresses VT-induced spontaneous activity and sensory responsiveness of clasp-controlling neurons in the rostromedial reticular formation (Rf). The cellular mechanisms underlying this interaction remain unclear. We hypothesized that CORT blocks VT-enhanced clasping by interfering with V1a receptor availability and/or VT-induced endocytosis. We administered a physiologically active fluorescent VT conjugated to Oregon Green (VT-OG) to the fourth ventricle 9 min after an intraperitoneal injection of CORT (0, 10, 40 μg/0.1mL amphibian Ringers). The brains were collected 30 min post-VT-OG, fixed, and imaged with confocal microscopy. CORT diminished the number of endocytosed vesicles, percent area containing VT-OG, sum intensity of VT-OG, and the amount of VT-V1a within each vesicle; indicating that CORT was interfering with V1a receptor availability and VT-V1a receptor-mediated endocytosis. CORT actions were brain location-specific and season-dependent in a manner that is consistent with the natural and context-dependent expression of clasping behavior. Furthermore, the sensitivity of the Rf to CORT was much higher in animals during the breeding season, arguing for ethologically appropriate seasonal variation in CORT's ability to prevent VT-induced endocytosis. Our data are consistent with the time course and interaction effects of CORT and VT on clasping behavior and neurophysiology. CORT interference with VT-induced endocytosis may be a common mechanism employed by hormones across taxa for mediating rapid context- and season-specific behavioral responses.
Collapse
Affiliation(s)
- Audrey Davis
- Department of Biology, Willamette University, Salem, OR 97301, USA
| | - Emily Abraham
- Department of Biology, Willamette University, Salem, OR 97301, USA
| | - Erin McEvoy
- Department of Biology, Willamette University, Salem, OR 97301, USA
| | - Sarah Sonnenfeld
- Department of Biology, Willamette University, Salem, OR 97301, USA
| | - Christine Lewis
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Catherine S Hubbard
- Department of Neural & Pain Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - E Kurt Dolence
- School of Pharmacy, University of Wyoming, Laramie, WY, USA
| | - James D Rose
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Emma Coddington
- Department of Biology, Willamette University, Salem, OR 97301, USA.
| |
Collapse
|
17
|
Maryoung LA, Lavado R, Schlenk D. Impacts of hypersaline acclimation on the acute toxicity of the organophosphate chlorpyrifos to salmonids. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 152:284-290. [PMID: 24799192 DOI: 10.1016/j.aquatox.2014.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/09/2014] [Accepted: 04/14/2014] [Indexed: 06/03/2023]
Abstract
Acclimation to hypersaline conditions enhances the acute toxicity of certain thioether organophosphate and carbamate pesticides in some species of euryhaline fish. As the organophosphate chlorpyrifos is commonly detected in salmonid waterways, the impacts of hypersaline conditions on its toxicity were examined. In contrast to other previously examined pesticides, time to death by chlorpyrifos was more rapid in freshwater than in hypersaline water (16ppth). The median lethal time (LT50) after 100μg/L chlorpyrifos exposure was 49h (95% CI: 31-78) and 120h (95% CI: 89-162) for rainbow trout (Oncorhynchus mykiss) in freshwater and those acclimated to hypersaline conditions, respectively. Previous studies with hypersaline acclimated fish indicated induction of xenobiotic metabolizing enzymes that may detoxify chlorpyrifos. In the current study, chlorpyrifos metabolism was unaltered in liver and gill microsomes of freshwater and hypersaline acclimated fish. Acetylcholinesterase inhibition in brain and bioavailability of chlorpyrifos from the aqueous exposure media were also unchanged. In contrast, mRNA expression of neurological targets: calcium calmodulin dependent protein kinase II delta, chloride intracellular channel 4, and G protein alpha i1 were upregulated in saltwater acclimated fish, consistent with diminished neuronal signaling which may protect animals from cholinergic overload associated with acetylcholinesterase inhibition. These results indicate targets other than acetylcholinesterase may contribute to the altered toxicity of chlorpyrifos in salmonids under hypersaline conditions.
Collapse
Affiliation(s)
- Lindley A Maryoung
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States.
| | - Ramon Lavado
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| |
Collapse
|
18
|
Seale AP, Yamaguchi Y, Johnstone WM, Borski RJ, Lerner DT, Grau EG. Endocrine regulation of prolactin cell function and modulation of osmoreception in the Mozambique tilapia. Gen Comp Endocrinol 2013; 192:191-203. [PMID: 23722201 DOI: 10.1016/j.ygcen.2013.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 05/11/2013] [Accepted: 05/14/2013] [Indexed: 01/06/2023]
Abstract
Prolactin (PRL) cells of the Mozambique tilapia, Oreochromis mossambicus, are osmoreceptors by virtue of their intrinsic osmosensitivity coupled with their ability to directly regulate hydromineral homeostasis through the actions of PRL. Layered upon this fundamental osmotic reflex is an array of endocrine control of PRL synthesis and secretion. Consistent with its role in fresh water (FW) osmoregulation, PRL release in tilapia increases as extracellular osmolality decreases. The hyposmotically-induced release of PRL can be enhanced or attenuated by a variety of hormones. Prolactin release has been shown to be stimulated by gonadotropin-releasing hormone (GnRH), 17-β-estradiol (E2), testosterone (T), thyrotropin-releasing hormone (TRH), atrial natriuretic peptide (ANP), brain-natriuretic peptide (BNP), C-type natriuretic peptide (CNP), ventricular natriuretic peptide (VNP), PRL-releasing peptide (PrRP), angiotensin II (ANG II), leptin, insulin-like growth factors (IGFs), ghrelin, and inhibited by somatostatin (SS), urotensin-II (U-II), dopamine, cortisol, ouabain and vasoactive intestinal peptide (VIP). This review is aimed at providing an overview of the hypothalamic and extra-hypothalamic hormones that regulate PRL release in euryhaline Mozambique tilapia, particularly in the context on how they may modulate osmoreception, and mediate the multifunctional actions of PRL. Also considered are the signal transduction pathways through which these secretagogues regulate PRL cell function.
Collapse
Affiliation(s)
- A P Seale
- Hawai'i Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Johnstone WM, Mills KA, Alyea RA, Thomas P, Borski RJ. Characterization of membrane receptor binding activity for cortisol in the liver and kidney of the euryhaline teleost, Mozambique tilapia (Oreochromis mossambicus). Gen Comp Endocrinol 2013; 192:107-14. [PMID: 23851043 DOI: 10.1016/j.ygcen.2013.06.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/11/2013] [Accepted: 06/19/2013] [Indexed: 11/22/2022]
Abstract
Glucocorticoids (GCs) regulate an array of physiological responses in vertebrates. Genomic GC actions mediated by nuclear steroid receptors require a lag time on the order of hours to days to generate an appreciable physiological response. Experimental evidence has accumulated that GCs, can also act rapidly through a nongenomic mechanism to modulate cellular physiology in vertebrates. Causal evidence in the Mozambique tilapia (Oreochromis mossambicus) suggests that the GC cortisol exerts rapid, nongenomic actions in the gills, liver, and pituitary of this euryhaline teleost, but the membrane receptor mediating these actions has not been characterized. Radioreceptor binding assays were conducted to identify a putative GC membrane receptor site in O. mossambicus. The tissue distribution, binding kinetics, and pharmacological signature of the GC membrane-binding activity were characterized. High affinity (Kd=9.527±0.001 nM), low-capacity (Bmax=1.008±0.116 fmol/mg protein) [(3)H] cortisol binding was identified on plasma membranes prepared from the livers and a lower affinity (Kd=30.08±2.373 nM), low capacity (Bmax=4.690±2.373 fmol/mg protein) binding was found in kidney membrane preparations. Competitors with high binding affinity for nuclear GC receptors, mifepristone (RU486), dexamethasone, and 11-deoxycorticosterone, displayed no affinity for the membrane GC receptor. The association and dissociation kinetics of [(3)H] cortisol binding to membranes were orders of magnitude faster (t1/2=1.7-2.6 min) than those for the intracellular (nuclear) GC receptor (t1/2=10.2h). Specific [(3)H] cortisol membrane binding was also detected in the gill and pituitary but not in brain tissue. This study represents the first characterization of a membrane GC receptor in fishes and one of only a few characterized in vertebrates.
Collapse
Affiliation(s)
- William M Johnstone
- Department of Biology, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | |
Collapse
|
20
|
Seale AP, Watanabe S, Grau EG. Osmoreception: perspectives on signal transduction and environmental modulation. Gen Comp Endocrinol 2012; 176:354-60. [PMID: 22036842 DOI: 10.1016/j.ygcen.2011.10.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/05/2011] [Accepted: 10/12/2011] [Indexed: 01/16/2023]
Abstract
Osmoregulation is essential to life in vertebrates and osmoreception is a fundamental element in osmoregulation. Progress in characterizing the mechanisms that mediate osmoreception has been made possible by using a uniquely accessible cell model, the prolactin (PRL) cell of the euryhaline tilapia, Oreochromis mossambicus. In addition to a brief historical overview, we offer a summary of our recent progress on signal transduction and osmosensitivity in the tilapia PRL cell model. Prolactin is a central regulator of hydromineral balance in teleosts in freshwater (FW). Consistent with its essential role in FW osmoregulation, PRL release in tilapia is inversely related to extracellular osmolality, both in vivo and in vitro. Osmotically-driven changes in PRL cell volume control PRL release. A decrease in extracellular osmolality increases cell volume, leading to a rapid influx of Ca(2+) through stretch-activated channels followed by a sharp rise in PRL release. Our recent studies also suggest that cAMP is involved in the osmotic signal transduction, and that acclimation salinity can modulate PRL cell osmosensitivity. Prolactin cells from FW tilapia show a larger rise in PRL release after a reduction in medium osmolality than those from SW fish. Paradoxically, hyposmotically-induced increase in PRL mRNA was observed only in cells from SW fish. Our studies have revealed differences in the abundance of the water channel, aquaporin 3 (AQP3), and the stretch activated Ca(2+) channel, transient receptor potential vanilloid 4 (TRPV4) in PRL cells of FW and SW fish that may explain their differing osmosensitivity and osmoreceptive output in differing acclimation salinities.
Collapse
Affiliation(s)
- A P Seale
- Hawai'i Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA.
| | | | | |
Collapse
|
21
|
Thomas P. Rapid steroid hormone actions initiated at the cell surface and the receptors that mediate them with an emphasis on recent progress in fish models. Gen Comp Endocrinol 2012; 175:367-83. [PMID: 22154643 PMCID: PMC3264783 DOI: 10.1016/j.ygcen.2011.11.032] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 02/06/2023]
Abstract
In addition to the classic genomic mechanism of steroid action mediated by activation of intracellular nuclear receptors, there is now extensive evidence that steroids also activate receptors on the cell surface to initiate rapid intracellular signaling and biological responses that are often nongenomic. Recent progress in our understanding of rapid, cell surface-initiated actions of estrogens, progestins, androgens and corticosteroids and the identities of the membrane receptors that act as their intermediaries is briefly reviewed with a special emphasis on studies in teleost fish. Two recently discovered novel proteins with seven-transmembrane domains, G protein-coupled receptor 30 (GPR30), and membrane progestin receptors (mPRs) have the ligand binding and signaling characteristics of estrogen and progestin membrane receptors, respectively, but their functional significance is disputed by some researchers. GPR30 is expressed on the cell surface of fish oocytes and mediates estrogen inhibition of oocyte maturation. mPRα is also expressed on the oocyte cell surface and is the intermediary in progestin induction of oocyte maturation in fish. Recent results suggest there is cross-talk between these two hormonal pathways and that there is reciprocal down-regulation of GPR30 and mPRα expression by estrogens and progestins at different phases of oocyte development to regulate the onset of oocyte maturation. There is also evidence in fish that mPRs are involved in progestin induction of sperm hypermotility and anti-apoptotic actions in ovarian follicle cells. Nonclassical androgen and corticosteroid actions have also been described in fish models but the membrane receptors mediating these actions have not been identified.
Collapse
Affiliation(s)
- Peter Thomas
- The University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| |
Collapse
|
22
|
Seale AP, Mita M, Hirano T, Gordon Grau E. Involvement of the cAMP messenger system and extracellular Ca(2+) during hyposmotically-induced prolactin release in the Mozambique tilapia. Gen Comp Endocrinol 2011; 170:401-7. [PMID: 21050855 DOI: 10.1016/j.ygcen.2010.10.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 09/15/2010] [Accepted: 10/23/2010] [Indexed: 11/21/2022]
Abstract
In accord with its role in freshwater osmoregulation, prolactin (PRL) release from the tilapia pituitary is stimulated by small, physiologically relevant reductions in plasma osmolality, a response that is mediated by an acute influx of intracellular Ca(2+) through stretch-activated Ca(2+)channels. In the present study, the role of the calcium and cyclic AMP (cAMP) messenger system in the transduction of a response to a hyposmotic stimulus was examined using dispersed PRL cells and PRL cell membrane preparations from freshwater-acclimated tilapia. When PRL cells were treated with the phosphodiesterase (PDE) inhibitor, 3-isobutyl-1-methylxanthine (IBMX) (100μM), significant increases in cAMP levels and PRL release were observed at 1h. Exposure to reduced medium osmolality (300 mOsmolal) in the presence of IBMX further augmented PRL release. Depletion of Ca(2+) from the incubation medium blocked PRL release even in the presence of IBMX. By contrast, exposure of PRL cells to cholera toxin (CTX), an activator of adenylyl cyclase (AC), stimulated PRL release and cAMP accumulation in both the presence and absence of extracellular Ca(2+). On the other hand, treatment with the Ca(2+) ionophore A23187, which elicits a large rise in intracellular free Ca(2+), reduced cAMP accumulation. Likewise, the AC activity of a PRL cell membrane preparation was reduced as extracellular Ca(2+) concentration increased from 0.1 to 1 μM. These results indicate that: (1) the stimulation of PRL release and cAMP formation by a fall in extracellular osmolality are Ca(2+)-dependent; (2) large increases in intracellular Ca(2+) attenuate cAMP formation; (3) direct agonists of cAMP messenger system, such as cholera toxin, however, stimulate PRL release independently of the extracellular Ca(2+). These findings add to the evidence that the osmosensitive response of the tilapia PRL cell is mediated through a Ca(2+)-dependent mechanism. Nevertheless, the present findings also suggest that tilapia PRL cells have the ability to rapidly augment release PRL both via a Ca(2+)-dependent manner and via a cAMP-dependent pathway in the absence of extracellular Ca(2+).
Collapse
Affiliation(s)
- Andre P Seale
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
| | | | | | | |
Collapse
|
23
|
Dual in vitro effects of cortisol on cell turnover in the medaka esophagus via the glucocorticoid receptor. Life Sci 2011; 88:239-45. [DOI: 10.1016/j.lfs.2010.11.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 10/19/2010] [Accepted: 11/15/2010] [Indexed: 01/26/2023]
|
24
|
Fuentes J, Brinca L, Guerreiro PM, Power DM. PRL and GH synthesis and release from the sea bream (Sparus auratus L.) pituitary gland in vitro in response to osmotic challenge. Gen Comp Endocrinol 2010; 168:95-102. [PMID: 20406642 DOI: 10.1016/j.ygcen.2010.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 04/13/2010] [Accepted: 04/14/2010] [Indexed: 11/15/2022]
Abstract
The endocrine factors prolactin (PRL) and growth hormone (GH) are believed to have counteracting effects in the adaption of fish to changes in environmental salinity. In order to further investigate this interaction sea bream were challenged with full seawater (SW) or freshwater (FW) for 7 days and the response of pituitary glands cultured in vitro to an osmotic challenge (230, 275 and 320 mOsm/kg) was assessed. In vitro PRL secretion from pituitaries of SW-adapted fish was unaltered in response to an osmotic challenge, while GH secretion increased in the lowest osmolality (230 mOsm/kg). In contrast, both GH and PRL secretion by pituitaries from FW challenged fish was significantly increased (p<0.01) over that of pituitaries from SW fish at the highest osmolality (320 mOsm/kg). After FW challenge pituitary PRL content and de novo synthesised and released PRL were significantly increased (p<0.01), while total PRL secretion was not different from SW animals. GH pituitary content decreased in FW animals while total secretion and secretion of de novo synthesised protein were significantly increased (p<0.01). In addition, after transfer of fish to FW expression of PRL and GH increased 3- and 2-fold, respectively. Despite the increase in PRL expression, no increase in total PRL secretion occurred and although in gills a 2-fold increase in the osmoregulatory marker, Na(+)/K(+)-ATPase activity was detected, profound haemodilution and a cumulative mortality of 40% occurred in sea bream placed in FW. Taken together the results suggest that the sea bream pituitary gland fails to respond appropriately to the osmotic challenge caused by low salinity and the physiological response evoked in vivo is not enough to allow this species to withstand and adapt to FW.
Collapse
Affiliation(s)
- Juan Fuentes
- Centro de Ciências do Mar (CCMar), CIMAR Laboratório Associado, University of Algarve, 8005-139 Faro, Portugal.
| | | | | | | |
Collapse
|
25
|
Kawauchi H, Sower SA, Moriyama S. Chapter 5 The Neuroendocrine Regulation of Prolactin and Somatolactin Secretion in Fish. FISH PHYSIOLOGY 2009. [DOI: 10.1016/s1546-5098(09)28005-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
26
|
Huang MH, So EC, Liu YC, Wu SN. Glucocorticoids stimulate the activity of large-conductance Ca2+ -activated K+ channels in pituitary GH3 and AtT-20 cells via a non-genomic mechanism. Steroids 2006; 71:129-40. [PMID: 16274717 DOI: 10.1016/j.steroids.2005.09.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Revised: 08/23/2005] [Accepted: 09/07/2005] [Indexed: 12/18/2022]
Abstract
The effects of glucocorticoids on ion currents were investigated in pituitary GH3 and AtT-20 cells. In whole-cell configuration, dexamethasone, a synthetic glucocorticoid, reversibly increased the density of Ca2+ -activated K+ current (IK(Ca)) with an EC50 value of 21 +/- 5 microM. Dexamethasone-induced increase in IK(Ca) density was suppressed by paxilline (1 microM), yet not by glibenclamide (10 microM), pandinotoxin-Kalpha (1 microM) or mifepristone (10 microM). Paxilline is a blocker of large-conductance Ca2+ -activated K+ (BKCa) channels, while glibenclamide and pandinotoxin-Kalpha are blockers of ATP-sensitive and A-type K+ channels, respectively. Mifepristone can block cytosolic glucocorticoid receptors. In inside-out configuration, the application of dexamethasone (30 microM) into the intracellular surface caused no change in single-channel conductance; however, it did increase BKCa -channel activity. Its effect was associated with a negative shift of the activation curve. However, no Ca2+ -sensitiviy of these channels was altered by dexamethasone. Dexamethasone-stimulated channel activity involves an increase in mean open time and a decrease in mean closed time. Under current-clamp configuration, dexamethasone decreased the firing frequency of action potentials. In pituitary AtT-20 cells, dexamethasone (30 microM) also increased BKCa -channel activity. Dexamethasone-mediated stimulation of IK(Ca) presented here that is likely pharmacological, seems to be not linked to a genomic mechanism. The non-genomic, channel-stimulating properties of dexamethasone may partly contribute to the underlying mechanisms by which glucocorticoids affect neuroendocrine function.
Collapse
Affiliation(s)
- Mei-Han Huang
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, No. 1, University Road, Tainan, Taiwan
| | | | | | | |
Collapse
|
27
|
Elango A, Shepherd B, Chen TT. Effects of endocrine disrupters on the expression of growth hormone and prolactin mRNA in the rainbow trout pituitary. Gen Comp Endocrinol 2006; 145:116-27. [PMID: 16188257 DOI: 10.1016/j.ygcen.2005.08.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Revised: 07/12/2005] [Accepted: 08/06/2005] [Indexed: 11/29/2022]
Abstract
It is now widely accepted that chemical pollutants in the environment can interfere with the endocrine system of animals, thus affecting development and reproduction. Some of these endocrine disrupters (EDs) can have estrogenic or antiestrogenic effects. Most studies to date have focused on the effects of EDs on the reproductive system and sex hormones and only limited information exists on how EDs may affect pituitary gland function. A rainbow trout (Oncorhynchus mykiss) pituitary gland culture system was used for studying the effects of EDs on growth hormone (GH) and prolactin (PRL) mRNA expression. We determined that the pituitary glands actively synthesized and secreted GH and PRL over the experimental time-course. In addition, we found that treatment with 17beta-estradiol (positive control) increased levels of GH and PRL mRNA, in a concentration-dependent manner. Treatment of pituitary glands with 500 and 1000 nM of a xenoestrogen, o,p'-DDT (o,p'-dichlorodiphenyltrichloroethane), resulted in a significant induction of GH and PRL mRNA, with a 20-fold increase for PRL and 3-fold increase for GH following treatment with 1000 nM o,p'-DDT. Co-incubation of pituitary glands with ICI 182 780 (a selective estrogen receptor antagonist) and o,p'-DDT resulted in inhibition of PRL mRNA levels; however, the stimulatory effect of DDT on GH mRNA was not seen in this experiment, nor was the inhibitory effect of ICI 182 780 observed with GH mRNA. To the contrary, ICI 182 780 (2.5 nM) had a stimulatory effect on GH mRNA levels. TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin), which is known to exert antiestrogenic effects, had an estrogenic-like effect that resulted in a concentration-dependent increase in the levels of GH and PRL mRNA. Co-incubation of pituitaries with TCDD and alpha-napthoflavone (ANF), which is an inhibitor of the aryl hydrocarbon receptor (AhR), caused an inhibition of TCDD-induced PRL mRNA at the higher and lower concentrations, but these effects were less consistent on GH mRNA levels. However, the responses of PRL and GH mRNA to co-incubation with TCDD and ANF, at the various concentrations, were bi-phasic wherein stimulation was seen at the low concentrations and inhibition at the high concentrations. Combined, these results suggest that o,p'-DDT and TCDD are xenoestrogens and that their effects on the expression of GH and PRL genes in the rainbow trout pituitary are modulated, in part, through the ER and AhR, respectively.
Collapse
Affiliation(s)
- Anitha Elango
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | | | | |
Collapse
|
28
|
Kajimura S, Seale AP, Hirano T, Cooke IM, Grau EG. Physiological concentrations of ouabain rapidly inhibit prolactin release from the tilapia pituitary. Gen Comp Endocrinol 2005; 143:240-50. [PMID: 15922343 DOI: 10.1016/j.ygcen.2005.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2004] [Revised: 04/02/2005] [Accepted: 04/03/2005] [Indexed: 11/24/2022]
Abstract
Ouabain, a cardiac glycoside and inhibitor of Na(+), K(+)-ATPase, is now believed to be a steroid hormone in mammals. We have recently identified ouabain immunoreactivity in the plasma of the tilapia, a euryhaline teleost. Changes in plasma concentrations of immunoreactive ouabain (20-40 pM) in response to salinity change were well correlated with the changes in plasma osmolality and cortisol. Our previous studies have shown that cortisol rapidly inhibits prolactin (PRL) release from the tilapia pituitary by suppressing intracellular Ca(2+) ([Ca(2+)]i) and cAMP. In the present study, low doses of ouabain (10-1000 pM) inhibited PRL release dose-dependently during 2-24 h of incubation. There was no effect on growth hormone (GH) release, except for a significant increase at 1000 pM during 8-24 h of incubation. Significant dose-related increases in PRL release were observed at higher doses of ouabain (100-1000 nM), whereas significant inhibition was seen in GH release at 1000 nM during 2-24h of incubation. Ouabain at 1-100 pM had no effect on Na(+), K(+)-ATPase activity of the pituitary homogenate. The enzyme activity was inhibited by higher concentrations of ouabain, 10% at 1 nM, 15% at 10 nM, 28% at 100 nM, and 45% at 1000 nM. Ouabain also attenuated stimulation of PRL release by the Ca(2+) ionophore, A23187, and by a combination of dibutyryl cAMP and a phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthin. Intracellular Ca(2+) concentrations were monitored in the dispersed PRL cells with the Ca(2+)-sensitive dye, fura-2. Ouabain at 1 nM reversibly reduced [Ca(2+)]i within seconds, whereas 1 microM ouabain increased [Ca(2+)]i. A rapid reduction in [Ca(2+)]i was also observed when PRL cells were exposed to 1 microM cortisol, whereas there was no consistent effect at 1 nM. These results suggest that ouabain at physiological concentrations rapidly inhibits PRL release from the tilapia pituitary by suppressing intracellular Ca(2+) and cAMP metabolism. The stimulation of PRL release by high concentrations of ouabain (100-1000 nM) may result from an increase in [Ca(2+)]i, and subsequent depolarization due to the inhibition of Na(+), K(+)-ATPase activity.
Collapse
Affiliation(s)
- Shingo Kajimura
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
| | | | | | | | | |
Collapse
|
29
|
Tipsmark CK, Weber GM, Strom CN, Grau EG, Hirano T, Borski RJ. Involvement of phospholipase C and intracellular calcium signaling in the gonadotropin-releasing hormone regulation of prolactin release from lactotrophs of tilapia (Oreochromis mossambicus). Gen Comp Endocrinol 2005; 142:227-33. [PMID: 15862567 DOI: 10.1016/j.ygcen.2004.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 10/01/2004] [Accepted: 11/19/2004] [Indexed: 11/19/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is a potent stimulator of prolactin (PRL) secretion in various vertebrates including the tilapia, Oreochromis mossambicus. The mechanism by which GnRH regulates lactotroph cell function is poorly understood. Using the advantageous characteristics of the teleost pituitary gland from which a nearly pure population of PRL cells can be isolated, we examined whether GnRH might stimulate PRL release through an increase in phospholipase C (PLC), inositol triphosphate (IP3), and intracellular calcium (Ca(i)2+) signaling. Using Ca(i)2+ imaging and the calcium-sensitive dye fura-2, we found that chicken GnRH-II (cGnRH-II) induced a rapid dose-dependent increase in Ca(i)2+ in dispersed tilapia lactotrophs. The Ca(i)2+ signal was abolished by U-73122, an inhibitor of PLC-dependent phosphoinositide hydrolysis. Correspondingly, cGnRH-II-induced tPRL188 secretion was inhibited by U-73122, suggesting that activation of PLC mediates cGnRH-II's stimulatory effect on PRL secretion. Pretreatment with 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate hydrochloride (TMB-8), an inhibitor of Ca2+ release from intracellular stores, impeded the effect of cGnRH-II on Ca(i)2+. To further address the possible involvement of intracellular Ca2+ stores, IP3 concentrations in the tilapia rostral pars distalis (RPD containing 95-99% PRL cells) was determined by a radioreceptor assay. We found that GnRH-II induces a rapid (<5min) and sustained increase in IP3 concentration in the RPD. Secretion of tPRL(188) in response to cGnRH-II was suppressed by Ca2+ antagonists (TMB-8 and nifedipine). These data, along with our previous findings that show PRL release increases with a rise in Ca(i)2+, suggest that GnRH may elicit its PRL releasing effect by increasing Ca(i)2+. Furthermore, the rise in Ca(i)2+ may be derived from PLC/IP3-induced mobilization of Ca2+ from intracellular stores along with influx through L-type voltage-gated Ca2+ channels.
Collapse
Affiliation(s)
- C K Tipsmark
- Department of Zoology, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | | | |
Collapse
|
30
|
Han JZ, Lin W, Chen YZ. Inhibition of ATP-induced calcium influx in HT4 cells by glucocorticoids: involvement of protein kinase A. Acta Pharmacol Sin 2005; 26:199-204. [PMID: 15663899 DOI: 10.1111/j.1745-7254.2005.00539.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM In our previous observations, adenosine triphosphate (ATP) was found to evoke immediate elevations in intracellular free calcium concentration ([Ca2+]i) in HT4 neuroblastoma cells of mice. We tried to see if a brief pretreatment of glucocorticoids could inhibit the Ca2+ response and reveal the underlying signaling mechanism. METHODS Measurement of [Ca2+]i was carried out using the dual-wavelength fluorescence method with Fura-2 as the indicator. RESULTS Pre-incubation of HT4 cells for 5 min with corticosterone (B) or bovine serum albumin conjugated corticosterone (B-BSA) inhibited the peak [Ca2+]i increments in a concentration-dependent manner. Cortisol and dexamethasone had a similar action, while deoxycorticosterone and cholesterol were ineffective. Both extracellular Ca2+ influx and internal Ca2+ release contributed to ATP-induced [Ca2+]i elevation. The brief treatment with only B attenuated Ca2+ influx. Furthermore, the [Ca2+]i elevation induced by the P2X receptor agonist adenosine 5'-(beta, gamma-methylene) triphosphate (beta, gamma-meATP) was also suppressed. The rapid inhibitory effect of B can be reproduced by forskolin 1 mmol/L and blocked by H89 20 mmol/L. Neither nuclear glucocorticoid receptor antagonist mifepristone nor protein kinase C inhibitors influenced the rapid action of B. CONCLUSION Our results suggest that glucocorticoids modulate P2X receptor-medicated Ca2+ influx through a membrane-initiated, non-genomic and PKA-dependent pathway in HT4 cells.
Collapse
Affiliation(s)
- Jian-Zhong Han
- Neuroscience Research Institute and Department of Neurobiology, College of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | | | | |
Collapse
|
31
|
Célérier A, Piérard C, Rachbauer D, Sarrieau A, Béracochéa D. Contextual and serial discriminations: a new learning paradigm to assess simultaneously the effects of acute stress on retrieval of flexible or stable information in mice. Learn Mem 2004; 11:196-204. [PMID: 15054135 PMCID: PMC379690 DOI: 10.1101/lm.65604] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The present study was aimed at simultaneously determining on the same subject, the effects of stress on retrieval of flexible (contextual or temporal) or stable (spatial) information. Three behavioral paradigms carried out in a four-hole board were designed as follows: (1) Simple Discrimination (SD), in which mice learned a single discrimination; (2) Contextual and Serial Discriminations (CSD), in which mice learned two successive discriminations on two different internal contexts; (3) Spatial Serial Discriminations (SSD), in which mice learned two successive discriminations on an identical internal context. The stressor (three inescapable electric footshocks) was delivered 5 min before retention, occurring 5 min or 24 h after acquisition. Results showed that this stressor increased plasmatic corticosterone levels and fear reactivity in an elevated-plus-maze, as compared with nonstressed mice. The stressor reversed the normal pattern of retrieval observed in nonstressed controls in the CSD task, this effect being context dependent, as it was not observed in the SSD task. Overall, our study shows that stress affected the retrieval of flexible and old information, but spared the retrieval of stable or recent ones. Therefore, these behavioral paradigms allow us to study simultaneously, on the same animal, the effects of stress on distinct forms of memory retrieval.
Collapse
Affiliation(s)
- Aurélie Célérier
- Laboratoire de Neurosciences Cognitives, Unite Mixte de Recherche Centre National Recherche Scientifique 5601, Bâtiment de Biologie Animale, 33405 Talence Cedex, France
| | | | | | | | | |
Collapse
|
32
|
McDonald MD, Wood CM, Grosell M, Walsh PJ. Glucocorticoid receptors are involved in the regulation of pulsatile urea excretion in toadfish. J Comp Physiol B 2004; 174:649-58. [PMID: 15517282 DOI: 10.1007/s00360-004-0456-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2004] [Indexed: 10/26/2022]
Abstract
The objectives of this study were to characterize the pattern of pulsatile urea excretion in the gulf toadfish in the wake of exogenous cortisol loading and to determine the receptors involved in the regulation of this mechanism. Toadfish were fitted with indwelling arterial catheters and were infused with isosmotic NaCl for 48 h after which fish were treated with cortisol alone, cortisol + peanut oil, cortisol + RU486 (a glucocorticoid receptor antagonist) or cortisol + spironolactone (a mineralocorticoid receptor antagonist). Upon cortisol loading, fish treated with cortisol alone, cortisol + oil or cortisol + spironolactone experienced a two- to threefold reduction in pulsatile urea excretion. This reduction was due to a decrease in urea pulse size with no effect on pulse frequency compared to values measured during the control NaCl infusion period. In addition, these fish showed an increase in plasma urea concentrations upon treatment. These apparent effects of cortisol treatment were abolished in fish treated with cortisol + RU486. In contrast, these fish showed an increase in pulsatile urea excretion mediated by a twofold increase in pulse size with no change in frequency. Likewise, fish treated with cortisol + RU486 showed a significant decrease in plasma urea concentrations over the course of the experiment. The findings of this study indicate that high levels of cortisol reduce pulsatile urea excretion by decreasing pulse size. In addition, it appears that glucocorticoid receptors and not mineralocorticoid receptors are involved in the regulation of the toadfish pulsatile urea excretion mechanism.
Collapse
Affiliation(s)
- M D McDonald
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| | | | | | | |
Collapse
|
33
|
Hyde GN, Seale AP, Grau EG, Borski RJ. Cortisol rapidly suppresses intracellular calcium and voltage-gated calcium channel activity in prolactin cells of the tilapia (Oreochromis mossambicus). Am J Physiol Endocrinol Metab 2004; 286:E626-33. [PMID: 14656715 DOI: 10.1152/ajpendo.00088.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cortisol was previously shown to rapidly (10-20 min) reduce the release of prolactin (PRL) from pituitary glands of tilapia (Oreochromis mossambicus). This inhibition of PRL release by cortisol is accompanied by rapid reductions in (45)Ca(2+) and cAMP accumulation. Cortisol's early actions occur through a protein synthesis-independent pathway and are mimicked by a membrane-impermeable analog. The signaling pathway that mediates rapid, nongenomic membrane effects of glucocorticoids is poorly understood. Using the advantageous characteristics of the teleost pituitary gland from which a nearly pure population of PRL cells can be isolated and incubated in defined medium, we examined whether cortisol rapidly reduces intracellular free calcium (Ca(i)(2+)) and suppresses L-type voltage-gated ion channel activity in events that lead to reduced PRL release. Microspectrofluorometry, used in combination with the Ca(2+)-sensitive dye fura 2 revealed that cortisol reversibly reduces basal and hyposmotically induced Ca(i)(2+) within seconds (P < 0.001) in dispersed pituitary cells. Somatostatin, a peptide known to inhibit PRL release through a membrane receptor-coupled mechanism, similarly reduces Ca(i)(2+). Under depolarizing [K(+)], the L-type calcium channel agonist BAY K 8644, a factor known to delay the closing of L-type Ca(2+) channels, stimulates PRL release in a concentration-dependent fashion (P < 0.01). Cortisol (and somatostatin) blocks BAY K 8644-induced PRL release (P < 0.01; 30 min), well within the time course over which its actions occur, independent of protein synthesis and at the level of the plasma membrane. Results indicate that cortisol inhibits tilapia PRL release through rapid reductions in Ca(i)(2+) that likely involve an attenuation of Ca(2+) entry through L-type voltage-gated Ca(2+) channels. These results provide further evidence that glucocorticoids rapidly modulate hormone secretion via a membrane-associated mechanism similar to that observed with the fast effects of peptides and neurotransmitters.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/antagonists & inhibitors
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Animals
- Anti-Inflammatory Agents/pharmacology
- Calcium/metabolism
- Calcium Channel Agonists/pharmacology
- Calcium Channel Blockers
- Calcium Channels, L-Type/drug effects
- Calcium Radioisotopes
- Cyclic AMP/metabolism
- Electrophoresis, Polyacrylamide Gel
- Fura-2
- Hormone Antagonists/pharmacology
- Hydrocortisone/pharmacology
- In Vitro Techniques
- Ion Channel Gating/drug effects
- Ion Channel Gating/physiology
- Male
- Osmotic Pressure
- Pituitary Gland, Anterior/cytology
- Pituitary Gland, Anterior/drug effects
- Pituitary Gland, Anterior/metabolism
- Prolactin/physiology
- Somatostatin/pharmacology
- Tilapia/physiology
Collapse
Affiliation(s)
- Gregory N Hyde
- Department of Zoology, North Carolina State University, Box 7617, Raleigh, NC 27695-7617, USA
| | | | | | | |
Collapse
|
34
|
Uchida K, Yoshikawa-Ebesu JSM, Kajimura S, Yada T, Hirano T, Gordon Grau E. In vitro effects of cortisol on the release and gene expression of prolactin and growth hormone in the tilapia, Oreochromis mossambicus. Gen Comp Endocrinol 2004; 135:116-25. [PMID: 14644651 DOI: 10.1016/j.ygcen.2003.08.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Exposure to cortisol inhibits prolactin (PRL) release from the tilapia pituitary within 10-20min through a plasma membrane-associated, non-genomic pathway. In the present study, in vitro effects of cortisol on the release and mRNA levels of two PRLs (PRL(188) and PRL(177)) and growth hormone (GH) were examined in the organ-cultured pituitary of the Mozambique tilapia, Oreochromis mossambicus. The PRL release was significantly greater in hyposmotic (300mOsmolal) than in hyperosmotic (350mOsmolal) medium during the 2-8h of incubation. The mRNA levels of two PRLs, as estimated by RNase protection assay, were increased after 8h in hyposmotic medium. Cortisol (200nM) inhibited the release of two PRLs under hyposmotic conditions within 1h, and the inhibitory effects lasted for 24h. Cortisol also reduced the gene transcription of both PRLs during 2-8h of incubation but not after 24h. No effect of cortisol was observed on PRL release or on its mRNA levels under hyperosmotic condition. There was no significant effect of medium osmolality on the release or mRNA levels of GH during 8h of incubation. However, GH release was significantly stimulated by cortisol after 4h, and the effect lasted for 24h under both hyposmotic and hyperosmotic conditions. Cortisol also caused a significant increase in GH mRNA levels at 8 and 24h. These results suggest that cortisol inhibits PRL release from the tilapia pituitary through non-genomic and also through transcriptional pathways, while stimulating GH release through classical genomically mediated glucocorticoid actions.
Collapse
Affiliation(s)
- Katsuhisa Uchida
- Hawaii Institute of Marine Biology, University of Hawaii, P.O. Box 1346, Kaneohe, HI 96744, USA
| | | | | | | | | | | |
Collapse
|
35
|
Falcón J, Besseau L, Fazzari D, Attia J, Gaildrat P, Beauchaud M, Boeuf G. Melatonin modulates secretion of growth hormone and prolactin by trout pituitary glands and cells in culture. Endocrinology 2003; 144:4648-58. [PMID: 12960030 DOI: 10.1210/en.2003-0707] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In Teleost fish, development, growth, and reproduction are influenced by the daily and seasonal variations of photoperiod and temperature. Early in vivo studies indicated the pineal gland mediates the effects of these external factors, most probably through the rhythmic production of melatonin. The present investigation was aimed at determining whether melatonin acts directly on the pituitary to control GH and prolactin (PRL) secretion in rainbow trout. We show that 2-[125I]-iodomelatonin, a melatonin analog, binds selectively to membrane preparations and tissue sections from trout pituitaries. The affinity was within the range of that found for the binding to brain microsomal preparations, but the number of binding sites was 20-fold less than in the brain. In culture, melatonin inhibited pituitary cAMP accumulation induced by forskolin, the adenyl cyclase stimulator. Forskolin also induced an increase in GH release, which was reduced in the presence of picomolar concentrations of melatonin. At higher concentrations, the effects of melatonin became stimulatory. In the absence of forskolin, melatonin induced a dose-dependent increase in GH release, and a dose-dependent decrease in PRL release. Melatonin effects were abolished upon addition of luzindole, a melatonin antagonist. Our results provide the first evidence that melatonin modulates GH and PRL secretion in Teleost fish pituitary. Melatonin effects on GH have never been reported in any vertebrate before. The effects result from a direct action of melatonin on pituitary cells. The complexity of the observed responses suggests several types of melatonin receptors might be involved.
Collapse
Affiliation(s)
- J Falcón
- Laboratoire Arago, Unité Mixte de Recherche 7628, Centre National de la Recherche Scientifique/Université P et M Curie, BP 44, F-66651 Banyuls sur Mer, France.
| | | | | | | | | | | | | |
Collapse
|
36
|
Qiu J, Wang CG, Huang XY, Chen YZ. Nongenomic mechanism of glucocorticoid inhibition of bradykinin-induced calcium influx in PC12 cells: possible involvement of protein kinase C. Life Sci 2003; 72:2533-42. [PMID: 12650862 DOI: 10.1016/s0024-3205(03)00168-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Many stimulants, including bradykinin (BK), can induce increase in [Ca(2+)](i) in PC12 cells. Bradykinin induces an increase in [Ca(2+)](i) via intracellular Ca(2+) release and extracellular Ca(2+) influx through the transduction of G protein, but not through voltage-sensitive calcium channels. In this experiment, We analyzed how corticosterone (Cort) influences BK-induced intracellular Ca(2+) release and extracellular Ca(2+) influx, and further studied the mechanism of glucocorticoid's action. To dissociate the intracellular Ca(2+) release and extracellular Ca(2+) influx induced by BK, the Ca(2+)-free/Ca(2+)- reintroduction protocol was used. The results were as follows: (1) The Ca(2+) influx induced by BK could be rapidly inhibited by Cort, but intracellular Ca(2+) release could not be affected significantly. (2) The inhibitory effect of Cort-BSA (BSA -conjugated Cort) on Ca(2+) influx induced by BK was the same as the effect of free Cort. (3) Protein kinase C (PKC) activator (phorbol 12-myristate 13-acetate) could mimic and PKC inhibitor Gö6976 could reverse the inhibitory effect of Cort. (4) There was no inhibitory effect of Cort on Ca(2+) influx induced by BK when pretreated with pertussis toxin. The results suggested, for the first time, that Cort might act via a putative membrane receptor and inhibit the Ca(2+) influx induced by BK through the pertussis toxin -sensitive G protein-PKC pathway.
Collapse
Affiliation(s)
- Jian Qiu
- Department of Physiology, Second Military Medical University, 200433, Shanghai, China
| | | | | | | |
Collapse
|
37
|
Brinca L, Fuentes J, Power DM. The regulatory action of estrogen and vasoactive intestinal peptide on prolactin secretion in sea bream (Sparus aurata, L.). Gen Comp Endocrinol 2003; 131:117-25. [PMID: 12679088 DOI: 10.1016/s0016-6480(02)00628-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of estradiol-17beta (E(2)) implants on the in vitro secretion of prolactin (PRL) and its modulation by vasoactive intestinal peptide (VIP) in a marine teleost, sea bream (Sparus aurata L.), was determined. Experiments were conducted during winter and spring. During winter, fish (n=130, body weight 50-70 g) were randomly divided into 2 groups; control and E(2) treated (10 mg/kg, wet weight). Fish were sacrificed after 7 days treatment and in vitro pituitary cultures in Ringer bicarbonate supplemented with increasing doses (0-200 nM) of VIP were carried out for 18 h. Culture medium was analysed by PAGE and secreted PRL quantified by densitometry. Fish treated with E(2) secreted significantly more PRL (P<0.05) in vitro than control fish. In E(2) primed fish VIP caused a dose-dependent inhibition of PRL secretion in vitro. VIP had no detectable effect on the secretion of PRL from control pituitaries. Treatment with E(2) had a different effect during spring; PRL secretion was significantly decreased (P<0.01) compared with the control fish. Anatomical evidence of abundant VIP immunoreactive nerve fibres in neurohypophysial (NH) tissue penetrating the rostral pars distalis provide further evidence supporting an action for VIP in the regulation of PRL cells. In conclusion, the responsiveness of PRL in the pituitary gland varied with season. Moreover, in the sea bream VIP appears to modulate PRL secretion from E(2) primed pituitary glands.
Collapse
Affiliation(s)
- Lilia Brinca
- Centro de Ciências de MAR, Universidade do Algarve, Campus de Gambelas, Faro 8000-810, Portugal
| | | | | |
Collapse
|
38
|
Maier C, Rünzler D, Wagner L, Grabner G, Köhler G, Luger A. Evidence for Specific Glucocorticoid Binding Sites on the Cell Membrane by Fluorescence Correlation Spectroscopy. ACTA ACUST UNITED AC 2002. [DOI: 10.1002/1438-5171(200208)3:4<211::aid-simo211>3.0.co;2-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Abstract
Noninvasive administration of cortisol through the diet resulted in relatively rapid (<1.5 h) and highly reproducible increases in plasma cortisol in rainbow trout, comparable to changes seen in fish subjected to substantial stress. Juvenile rainbow trout were reared in isolation for 1 week, before their daily food ration was replaced by a meal of cortisol-treated food corresponding to 6 mg cortisol kg(-1). All fish were observed for 30 min, beginning at 1 or 48 h following the introduction of cortisol-treated food. Additional cortisol (75% of the original dose on Day 2, and 50% on Day 3) was administered to the long-term cortisol-treated group. The resulting blood plasma concentrations of cortisol were similar in short- and long-term treated fish, and corresponded to those previously seen in stressed rainbow trout. Controls were fed similar food without cortisol. Half of the fish from each treatment group (controls and short- and long-term cortisol) were subjected to an intruder test (a smaller conspecific introduced into the aquarium), while half of the fish were observed in isolation. In fish challenged by a conspecific intruder, short-term cortisol treatment stimulated locomotor activity, while long-term treatment inhibited locomotion. Aggressive behavior was also inhibited by long-term cortisol treatment, but not by short-term exposure to cortisol. Cortisol treatment had no effect on locomotor activity in undisturbed fish, indicating that the behavioral effects of cortisol were mediated through interaction with other signal systems activated during the simulated territorial intrusion test. This study demonstrates for the first time that cortisol has time- and context-dependent effects on behavior in teleost fish.
Collapse
Affiliation(s)
- Øyvind Øverli
- Evolutionary Biology Centre, Department of Animal Development and Genetics, Uppsala University, Norbyvägen 18A, SE-752 36 Uppsala, Sweden.
| | | | | |
Collapse
|
40
|
Borski RJ, Hyde GN, Fruchtman S. Signal transduction mechanisms mediating rapid, nongenomic effects of cortisol on prolactin release. Steroids 2002; 67:539-48. [PMID: 11960633 DOI: 10.1016/s0039-128x(01)00197-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
While the mechanisms governing genomically mediated glucocorticoid actions are becoming increasingly understood, relatively little is known with regard to the cell signaling pathways that transduce rapid glucocorticoid actions. Studies of the cultured tilapia rostral pars distalis (RPD), a naturally segregated region of the fish pituitary gland that contains a 95-99% pure population of prolactin (PRL) cells and is easily dissected and maintained in a completely defined, serum-free media, indicate that physiological concentrations of cortisol rapidly inhibit PRL release. The attenuative action of cortisol on PRL release occurs within 10-20 min, is insensitive to the protein synthesis inhibitor, cycloheximide, and mimicked by its membrane impermeable analog, cortisol-21 hemisuccinate-conjugated bovine serum albumin (BSA). Cortisol and somatostatin, a peptide known to work through membrane receptors to inhibit PRL release, rapidly and reversibly reduces intracellular free Ca(2+) (Ca(i)(2+)), and inhibits 45Ca(2+) influx and BAYK-8644 induced PRL release. Preliminary investigations show cortisol, but not somatostatin, suppresses phospholipase C (PLC) activity in PRL cell membrane preparations. In addition, cortisol and somatostatin reduce intracellular cAMP and membrane adenylyl cyclase activity. These findings indicate that the acute inhibitory effects of cortisol on PRL release occur through a nongenomic mechanism involving interactions with the plasma membrane and inhibition of both the Ca(2+) and cAMP signal transduction pathways. Cortisol may reduce Ca(i)(2+) by inhibiting influx through L-type voltage-gated channels and possibly release through a PLC/inositol triphosphate sensitive intracellular Ca(2+) pool. In addition, it is also likely the steroid inhibits adenylyl cyclase activity in events leading to reduced cAMP production and the subsequent release of PRL.
Collapse
Affiliation(s)
- Russell J Borski
- Department of Zoology, North Carolina State University, Raleigh, NC, USA.
| | | | | |
Collapse
|
41
|
Sunny F, Lakshmy PS, Oommen OV. Rapid action of cortisol and testosterone on lipogenic enzymes in a fresh water fish Oreochromis mossambicus: short-term in vivo and in vitro study. Comp Biochem Physiol B Biochem Mol Biol 2002; 131:297-304. [PMID: 11959013 DOI: 10.1016/s1096-4959(02)00023-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Rapid action of steroid hormones on lipid metabolism is not reported so far in any vertebrate. The present study was intended to evaluate the quick actions of cortisol and testosterone on enzymes, namely malic enzyme (ME), glucose-6-phosphate dehydrogenase (G6PDH), and isocitrate dehydrogenase (ICDH) in Oreochromis mossambicus. Cortisol and testosterone produced rapid and opposite effects on the lipogenic enzymes studied. Cortisol significantly decreased the activities of ME, G6PDH, as early as 5 min and ICDH as early as 10 min in vitro (10(-6) M), and 30 min in vivo (0.1 microg/g body wt.) whereas the same doses of testosterone significantly stimulated the activity of all enzymes as early as 5 min in vitro and 30 min in vivo. Actinomycin D treatment did not interfere with the inhibiting effect of cortisol on enzyme activities when measured at 10 min in the in vitro system. The transcriptional inhibitor appeared to partially block the effect of cortisol in vivo. The stimulatory effect of testosterone was insensitive to the action of actinomycin D both in vivo and in vitro. These effects appear to be brought about independently of new protein synthesis because the rapid responses occurred within a latent period of 5-30 min and were insensitive to the action of actinomycin D, suggesting a non-genomic action.
Collapse
Affiliation(s)
- Francis Sunny
- Endocrinology and Biochemistry Division, Department of Zoology, University of Kerala, Kariavattom, Trivandrum 695 581, Kerala, India
| | | | | |
Collapse
|
42
|
Seale AP, Itoh T, Moriyama S, Takahashi A, Kawauchi H, Sakamoto T, Fujimoto M, Riley LG, Hirano T, Grau EG. Isolation and characterization of a homologue of mammalian prolactin-releasing peptide from the tilapia brain and its effect on prolactin release from the tilapia pituitary. Gen Comp Endocrinol 2002; 125:328-39. [PMID: 11884078 DOI: 10.1006/gcen.2001.7727] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the tilapia (Oreochromis mossambicus), as in many teleosts, prolactin (PRL) plays a major role in osmoregulation in freshwater. Recently, PRL-releasing peptides (PrRPs) have been characterized in mammals. Independently, a novel C-terminal RF (arginine-phenylalanine) amide peptide (Carrasius RF amide; C-RFa), which is structurally related to mammalian PrRPs, has been isolated from the brain of the Japanese crucian carp. The putative PrRP was purified from an acid extract of tilapia brain by affinity chromatography with antibody against synthetic C-RFa and HPLC on a reverse-phase ODS-120 column. The tilapia PrRP cDNA was subsequently cloned by polymerase chain reaction. The cDNA consists of 619 bp encoding a preprohormone of 117 amino acids. Sequence comparison of the isolated peptide and the preprohormone revealed that tilapia PrRP contains 20 amino acids and is identical to C-RFa. Incubation of the tilapia pituitary with synthetic C-RFa (100 nM) significantly stimulated the release of two forms of tilapia PRL (PRL188 and PRL177). However, the effect of C-RFa was less pronounced than the marked increase in PRL release in response to hyposmotic medium. The ability of C-RFa to stimulate PRL release appears to be specific, since C-RFa failed to stimulate growth hormone release from the pituitary in organ culture. In contrast, rat and human PrRPs had no effect on PRL release. C-RFa was equipotent with chicken GnRH in stimulating PRL release in the pituitary preincubated with estradiol 17beta. Circulating levels of PRL were significantly increased 1 h after intraperitoneal injection of 0.1 microg/g of C-RFa in female tilapia in freshwater but not in males. These results suggest that C-RFa is physiologically involved in the control of PRL secretion in tilapia.
Collapse
Affiliation(s)
- A P Seale
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, Hawaii 96744, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sutter-Dub MT. Rapid non-genomic and genomic responses to progestogens, estrogens, and glucocorticoids in the endocrine pancreatic B cell, the adipocyte and other cell types. Steroids 2002; 67:77-93. [PMID: 11755172 DOI: 10.1016/s0039-128x(01)00142-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Rapid biologic responses to injected steroids were described as early as 60 years ago. More recently, evidence has been presented that 17beta-estradiol given i.v. will double the uterine cAMP activity within 15 s (Proc Natl Acad Sci USA 1967;58:1711-8), and also that estrogens will bind to the outer surfaces of endometrial cells (Nature 1977;265:69-72), suggesting that these steroids can both engage and direct intracellular events. Unfortunately, studies of such rapid membrane effects of steroids have languished due to the accumulation of compelling data for the more slowly manifest actions of these compounds at the level of nuclear DNA. We report a number of observations in women, in experimental animals, and in isolated organ or cell systems using 17beta-estradiol, progesterone or glucocorticoids which provide ample evidence for rapid intracellular metabolic responses to these steroids, mediated by their actions at the cellular plasma membrane. Such rapid responses have been shown in various classic targets or not, such as the B cell of the endocrine pancreas and the fat cell. They involve plasma membrane binding, changes in membrane electrical activity, Ca2+ handling, G and Ras proteins, cAMP, cGMP, IP(3), DAG, phosphodiesterases, protein kinases, tyrosine kinases, ER kinases, and mitogen activated protein kinases (MAPks) and nitric oxide synthase. These recent findings are discussed in detail and should lead to a fuller understanding of the cellular effects of the steroid hormones.
Collapse
Affiliation(s)
- Marie Thérèse Sutter-Dub
- Université Bordeaux I, UFR de Biologie, Laboratoire d'Endocrinologie cellulaire: Mécanismes d'action d'hormones stéroides, Avenue des Facultés, F-33405 Talence Cedex, France.
| |
Collapse
|
44
|
Chen YZ, Qiu J. Possible genomic consequence of nongenomic action of glucocorticoids in neural cells. NEWS IN PHYSIOLOGICAL SCIENCES : AN INTERNATIONAL JOURNAL OF PHYSIOLOGY PRODUCED JOINTLY BY THE INTERNATIONAL UNION OF PHYSIOLOGICAL SCIENCES AND THE AMERICAN PHYSIOLOGICAL SOCIETY 2001; 16:292-6. [PMID: 11719608 DOI: 10.1152/physiologyonline.2001.16.6.292] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nongenomic, rapid effects of glucocorticoid activate multiple intracellular transduction pathways. This review proposes a possible genomic consequence of the nongenomic action of steroids. The genomic actions of hormonal steroids may be twofold: classic genomic and nongenomically induced genomic.
Collapse
Affiliation(s)
- Y Z Chen
- Institute of Neuroscience, Department of Neurobiology, Second Military Medical University, Shanghai 200433, China
| | | |
Collapse
|
45
|
Qiu J, Wang P, Jing Q, Zhang W, Li X, Zhong Y, Sun G, Pei G, Chen Y. Rapid activation of ERK1/2 mitogen-activated protein kinase by corticosterone in PC12 cells. Biochem Biophys Res Commun 2001; 287:1017-24. [PMID: 11573966 DOI: 10.1006/bbrc.2001.5691] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although the nongenomic effects of glucocorticoids have been well acknowledged, its precise intracellular signal transduction pathway remains to be elucidated. The present study using Western immunoblot and protein kinase activity assay, for the first time, showed that corticosterone (B) can induce a rapid activation of Erk1/2 mitogen-activated protein kinase (MAPK) in PC12 cells. The dose-response curve was bell shaped, with the maximal activation at 10(-9) M in 15 min. The results from immunofluorescence staining also revealed that the activated Erk1/2 MAPK was translocated from cytoplasm to nucleus of PC12 cells in 15 min. Activation of Erk1/2 MAPK by B was apparently not mediated by the classical cytosolic steroid receptors, for B-BSA can induce the phosphorylation of Erk1/2 MAPK, but the antagonist (RU38486) cannot block the phosphorylation of Erk1/2 MAPK induced by B. Phosphorylation of Erk1/2 MAPK induced by B was not affected by a tyrosine kinase inhibitor (genistein), suggesting that the pathway did not involve the tyrosine kinase activity. On the other hand, protein kinase C activator (PMA) can activate and protein kinase C inhibitor (Gö6976) can block the activation of Erk1/2 MAPK induced by B. Taken together, these data clearly demonstrated that B might act via putative membrane receptor and rapidly activate Erk1/2 MAPK through protein kinase C alpha in PC12 cells.
Collapse
Affiliation(s)
- J Qiu
- Institute of Neuroscience, Second Military Medical University, Shanghai, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sunny F, Oommen OV. Rapid action of glucocorticoids on branchial ATPase activity in Oreochromis mossambicus: an in vivo and in vitro study. Comp Biochem Physiol B Biochem Mol Biol 2001; 130:323-30. [PMID: 11567894 DOI: 10.1016/s1096-4959(01)00438-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The rapid action of cortisol and corticosterone on branchial Na(+)-K(+) ATPase, Ca(2+) ATPase activity and Na(+), K(+) and Ca(2+) ion contents was studied both in vivo and in vitro employing transcription inhibitor actinomycin D in Oreochromis mossambicus. Cortisol and corticosterone administration had significantly increased the activity of branchial Na(+)-K(+) ATPase and Ca(2+) ATPase in vivo after 30 min of injection, and the trend continued for 60 and 120 min for cortisol. The ionic contents were also significantly increased after 30 min in vivo. Na(+)-K(+) ATPase activity was significantly increased 5 min after hormone application in the in vitro system. Actinomycin D did not inhibit the effect of glucocorticoids on ATPase activity both in vivo and in vitro. It is concluded from the present study that cortisol and corticosterone produced a rapid stimulatory effect on branchial ATPase activity and ions in O. mossambicus both in vivo and in vitro. This effect could be due to a non-genomic action of these hormones since the enzyme activity was insensitive to actinomycin D.
Collapse
Affiliation(s)
- F Sunny
- Endocrinology and Biochemistry Division, Department of Zoology, University of Kerala, Kariavattom, Trivandrum 695 581, Kerala, India
| | | |
Collapse
|
47
|
Zhu XL, Sexton PS, Cenedella RJ. Characterization of membrane steroid binding protein mRNA and protein in lens epithelial cells. Exp Eye Res 2001; 73:213-9. [PMID: 11446771 DOI: 10.1006/exer.2001.1032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epithelial cells of the ocular lens contain a 28 kDa membrane protein which is proposed to mediate high affinity binding of steroid hormones and rapid non-genomic actions of steroid hormones. It has been named membrane steroid binding protein (MSBP). Our purpose was to further characterize this protein from cultured bovine lens epithelial cells (BLEC) and compare it to similar forms of the protein present in other species and tissues. The size of the protein's mRNA was examined by Northern blot analysis using a digoxigenin-labelled antisense riboprobe. The sequence of the mRNA was obtained by RT-PCR amplification of poly A+ RNA recovered from cultured BLEC. PCR amplification was conducted using three sets of nested sense and antisense primers, one set at a time. The amino acid sequence of the lens protein was deduced from the revealed cDNA sequence. The hydropathy of the protein was examined by Kyte-Doolittle plots. The sequence of the lens protein's cDNA (about 1.7 kb total) described an open reading frame of 582 residues which coded for a protein of 194 amino acids. The presence of a C-terminal isoprenylation motif suggested by earlier work was not found in the coding region. The deduced amino acid sequence of the lens protein was extremely similar to those of other species and tissues, being 95-98% homologous with that of the other members. All of the MSBPs apparently contain a single membrane spanning domain in the amino terminal. The highly conserved nature of this protein implies a useful function to the cell. We speculate that the protein is a receptor which mediates rapid actions of steroids on lens epithelial cells, such as calcium mobilization, and that the protein plays a role in the mechanism of steroid induced cataracts.
Collapse
Affiliation(s)
- X L Zhu
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, Kirksville, MO 63501, USA
| | | | | |
Collapse
|
48
|
Wood CM, Warne JM, Wang Y, McDonald MD, Balment RJ, Laurent P, Walsh PJ. Do circulating plasma AVT and/or cortisol levels control pulsatile urea excretion in the gulf toadfish (Opsanus beta)? Comp Biochem Physiol A Mol Integr Physiol 2001; 129:859-72. [PMID: 11440872 DOI: 10.1016/s1095-6433(01)00340-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Previous work has shown that pulsatile urea excretion at the gills of the gulf toadfish is due to periodic activation of a facilitated diffusion transport system with molecular and pharmacological similarity to the UT-A transport system of the mammalian kidney. In mammals, AVP and glucocorticoids are two important endocrine regulators of this system. The present study focused on the potential role of circulating AVT (the teleost homologue of AVP) and cortisol levels as possible triggers for urea pulses. Long-term (34-84 h) monitoring of plasma levels by repetitive sampling at 2-h intervals from chronic cannulae in individual toadfish demonstrated that circulating AVT concentrations are low (10(-12)-10(-11) M), and show no relationship to the occurrence of natural urea pulses. In contrast, plasma cortisol levels decline greatly prior to natural pulses and rise rapidly thereafter. AVT injections into the caudal artery or ventral aorta elicited pulse events, but these were extremely small (1-10%) relative to natural pulses, and occurred only at unphysiological dose levels (10(-9) M in the plasma). AVP was a partial agonist, but isotocin, insulin-like growth factor-1, and atrial natriuretic peptide were without effect at the same concentration. Artificially raising plasma cortisol levels by cortisol injection tended to reduce responsiveness to AVT. Pharmacological reduction of plasma cortisol levels by metyrapone injection elicited small pulses similar to those caused by AVT. Following such pulse events, AVT was ineffective in inducing pulses. We conclude that decreases in circulating cortisol play an important permissive role in urea pulsing, but that circulating AVT levels are not involved.
Collapse
Affiliation(s)
- C M Wood
- Division of Marine Biology and Fisheries, Rosenstiel School of Marine and Atmospheric Science, NIEHS Marine and Freshwater Biomedical Sciences Center, University of Miami, Miami, FL 33149, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Borski RJ, Hyde GN, Fruchtman S, Tsai WS. Cortisol suppresses prolactin release through a non-genomic mechanism involving interactions with the plasma membrane. Comp Biochem Physiol B Biochem Mol Biol 2001; 129:533-41. [PMID: 11399489 DOI: 10.1016/s1096-4959(01)00358-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the classical theory of steroid hormone action, steroids diffuse through the membrane and alter transcription of specific genes resulting in synthesis of proteins important for modulating cell function. Most often, steroids work solely through the genome to exert their physiological actions in a process that normally takes hours or days to occur. In tilapia (Oreochromis mossambicus), cortisol inhibits prolactin (PRL) release within 10-20 min in vitro. This action is accompanied by similarly rapid reductions in cellular Ca(2+) and cAMP levels, second messengers known to transduce the membrane effects of peptide hormones. We further examined whether cortisol might inhibit PRL release through a non-genomic, membrane-associated mechanism using the protein synthesis inhibitor, cycloheximide, and a membrane impermeant form of cortisol, cortisol-21 hemisuccinate BSA (HEF/BSA). Cycloheximide (2 and 10 microg/ml) was ineffective in overcoming PRL release induced by hyposmotic medium or that inhibited by cortisol over 4 h static incubations. These dosages reduced protein synthesis as measured by amino acid incorporation in pituitaries by 75 and 99%, respectively. During 4-h incubation, HEF/BSA and HEF significantly reduced PRL release in a dose-dependent fashion. These studies suggest that cortisol inhibits PRL release through a plasma membrane-associated, protein-synthesis independent (non-genomic) pathway.
Collapse
Affiliation(s)
- R J Borski
- Department of Zoology, North Carolina State University, Box 7617, 27695-7617, Raleigh, NC, USA.
| | | | | | | |
Collapse
|
50
|
Abstract
For decades, it was widely assumed that glucocorticoids (GCs) work solely through changes in gene expression to exert their physiological actions, a process that normally takes several hours to occur. However, recent evidence indicates that GCs might also act at the membrane through specific receptors to exert multiple rapid effects on various tissues and cells. GCs modulate hormone secretion, neuronal excitability, behavior, cell morphology, carbohydrate metabolism and other processes within seconds or minutes. These early actions occur independent of the genome and are transduced by the same biochemical effector pathways responsible for mediating rapid responses to neurotransmitters. The biological significance of most rapid GC effects are not well understood, but many might be related to the important functions that this hormone plays in modulating stress responses.
Collapse
Affiliation(s)
- R J Borski
- North Carolina State University, Department of Zoology, Box 7617, Raleigh, NC 27695, USA.
| |
Collapse
|