1
|
Yılmaz D, Culha M. Discrimination of Receptor-Mediated Endocytosis by Surface-Enhanced Raman Scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6281-6294. [PMID: 35549265 PMCID: PMC9134499 DOI: 10.1021/acs.langmuir.1c03305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Cellular energy required for the maintenance of cellular life is stored in the form of adenosine triphosphate (ATP). Understanding cellular mechanisms, including ATP-dependent metabolisms, is crucial for disease diagnosis and treatment, including drug development and investigation of new therapeutic systems. As an ATP-dependent metabolism, endocytosis plays a key role not only in the internalization of molecules but also in processes including cell growth, differentiation, and signaling. To understand cellular mechanisms including endocytosis, many techniques ranging from molecular approaches to spectroscopy are used. Surface-enhanced Raman scattering (SERS) is shown to provide valuable label-free molecular information from living cells. In this study, receptor-mediated endocytosis was investigated with SERS by inhibiting endocytosis with ATP depletion agents: sodium azide (NaN3) and 2-deoxy-d-glucose (dG). Human lung bronchial epithelium (Beas-2b) cells, normal prostate epithelium (PNT1A) cells, and cervical cancer epithelium (HeLa) cells were used as models. First, the effect of NaN3 and dG on the cells were examined through cytotoxicity, apoptosis-necrosis, ATP assay, and uptake inhibition analysis. An attempt to relate the spectral changes in the cellular spectra to the studied cellular events, receptor-mediated endocytosis inhibition, was made. It was found that the effect of two different ATP depletion agents can be discriminated by SERS, and hence receptor-mediated endocytosis can be tracked from single living cells with the technique without using a label and with limited sample preparation.
Collapse
Affiliation(s)
- Deniz Yılmaz
- Faculty
of Engineering, Department of Genetics and Bioengineering, Yeditepe University, 34755 Istanbul, Turkey
| | - Mustafa Culha
- Sabanci
University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
- Department
of Ophthalmology and Internal Medicine, Morsani College of Medicine, The University of South Florida, Tampa, Florida 33612, United States
| |
Collapse
|
2
|
Xu Y, Cheng S, Zeng H, Zhou P, Ma Y, Li L, Liu X, Shao F, Ding J. ARF GTPases activate Salmonella effector SopF to ADP-ribosylate host V-ATPase and inhibit endomembrane damage-induced autophagy. Nat Struct Mol Biol 2022; 29:67-77. [PMID: 35046574 DOI: 10.1038/s41594-021-00710-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022]
Abstract
Selective autophagy helps eukaryotes to cope with endogenous dangers or foreign invaders; its initiation often involves membrane damage. By studying a Salmonella effector SopF, we recently identified the vacuolar ATPase (V-ATPase)-ATG16L1 axis that initiates bacteria-induced autophagy. Here we show that SopF is an ADP-ribosyltransferase specifically modifying Gln124 of ATP6V0C in V-ATPase. We identify GTP-bound ADP-ribosylation factor (ARF) GTPases as a cofactor required for SopF functioning. Crystal structures of SopF-ARF1 complexes not only reveal structural basis of SopF ADP-ribosyltransferase activity but also a unique effector-binding mode adopted by ARF GTPases. Further, the N terminus of ARF1, although dispensable for high-affinity binding to SopF, is critical for activating SopF to modify ATP6V0C. Moreover, lysosome or Golgi damage-induced autophagic LC3 activation is inhibited by SopF or Q124A mutation of ATP6V0C, thus also mediated by the V-ATPase-ATG16L1 axis. In this process, the V-ATPase functions to sense membrane damages, which can be uncoupled from its proton-pumping activity.
Collapse
Affiliation(s)
- Yue Xu
- National Institute of Biological Sciences, Beijing, China.,Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sen Cheng
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Huan Zeng
- National Institute of Biological Sciences, Beijing, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ping Zhou
- National Institute of Biological Sciences, Beijing, China
| | - Yan Ma
- National Institute of Biological Sciences, Beijing, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, China
| | - Xiaoyun Liu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, China. .,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China. .,Research Unit of Pyroptosis and Immunity, Chinese Academy of Medical Sciences and National Institute of Biological Sciences, Beijing, China. .,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| | - Jingjin Ding
- National Institute of Biological Sciences, Beijing, China. .,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Kissing S, Saftig P, Haas A. Vacuolar ATPase in phago(lyso)some biology. Int J Med Microbiol 2017; 308:58-67. [PMID: 28867521 DOI: 10.1016/j.ijmm.2017.08.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/28/2017] [Accepted: 08/23/2017] [Indexed: 12/23/2022] Open
Abstract
Many eukaryotic cells ingest extracellular particles in a process termed phagocytosis which entails the generation of a new intracellular compartment, the phagosome. Phagosomes change their composition over time and this maturation process culminates in their fusion with acidic, hydrolase-rich lysosomes. During the maturation process, degradation and, when applicable, killing of the cargo may ensue. Many of the events that are pathologically relevant depend on strong acidification of phagosomes by the 'vacuolar' ATPase (V-ATPase). This protein complex acidifies the lumen of some intracellular compartments at the expense of ATP hydrolysis. We discuss here the roles and importance of V-ATPase in intracellular trafficking, its distribution, inhibition and activities, its role in the defense against microorganisms and the counteractivities of pathogens.
Collapse
Affiliation(s)
- Sandra Kissing
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Paul Saftig
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany.
| | - Albert Haas
- Institut für Zellbiologie, Friedrich-Wilhelms-Universität Bonn, Ulrich-Haberland-Str. 61A, D-53121 Bonn, Germany.
| |
Collapse
|
4
|
Maxson ME, Grinstein S. The vacuolar-type H⁺-ATPase at a glance - more than a proton pump. J Cell Sci 2015; 127:4987-93. [PMID: 25453113 DOI: 10.1242/jcs.158550] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The vacuolar H(+)-ATPase (V-ATPase) has long been appreciated to function as an electrogenic H(+) pump. By altering the pH of intracellular compartments, the V-ATPase dictates enzyme activity, governs the dissociation of ligands from receptors and promotes the coupled transport of substrates across membranes, a role often aided by the generation of a transmembrane electrical potential. In tissues where the V-ATPase is expressed at the plasma membrane, it can serve to acidify the extracellular microenvironment. More recently, however, the V-ATPase has been implicated in a bewildering variety of additional roles that seem independent of its ability to translocate H(+). These non-canonical functions, which include fusogenicity, cytoskeletal tethering and metabolic sensing, are described in this Cell Science at a Glance article and accompanying poster, together with a brief overview of the conventional functions of the V-ATPase.
Collapse
Affiliation(s)
- Michelle E Maxson
- Program in Cell Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 290 Victoria Street, Toronto, ON, M5C 1N8, Canada
| |
Collapse
|
5
|
Marshansky V, Rubinstein JL, Grüber G. Eukaryotic V-ATPase: novel structural findings and functional insights. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:857-79. [PMID: 24508215 DOI: 10.1016/j.bbabio.2014.01.018] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 12/25/2013] [Accepted: 01/27/2014] [Indexed: 02/06/2023]
Abstract
The eukaryotic V-type adenosine triphosphatase (V-ATPase) is a multi-subunit membrane protein complex that is evolutionarily related to F-type adenosine triphosphate (ATP) synthases and A-ATP synthases. These ATPases/ATP synthases are functionally conserved and operate as rotary proton-pumping nano-motors, invented by Nature billions of years ago. In the first part of this review we will focus on recent structural findings of eukaryotic V-ATPases and discuss the role of different subunits in the function of the V-ATPase holocomplex. Despite structural and functional similarities between rotary ATPases, the eukaryotic V-ATPases are the most complex enzymes that have acquired some unconventional cellular functions during evolution. In particular, the novel roles of V-ATPases in the regulation of cellular receptors and their trafficking via endocytotic and exocytotic pathways were recently uncovered. In the second part of this review we will discuss these unique roles of V-ATPases in modulation of function of cellular receptors, involved in the development and progression of diseases such as cancer and diabetes as well as neurodegenerative and kidney disorders. Moreover, it was recently revealed that the V-ATPase itself functions as an evolutionarily conserved pH sensor and receptor for cytohesin-2/Arf-family GTP-binding proteins. Thus, in the third part of the review we will evaluate the structural basis for and functional insights into this novel concept, followed by the analysis of the potentially essential role of V-ATPase in the regulation of this signaling pathway in health and disease. Finally, future prospects for structural and functional studies of the eukaryotic V-ATPase will be discussed.
Collapse
Affiliation(s)
- Vladimir Marshansky
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Simches Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA; Kadmon Pharmaceuticals Corporation, Alexandria Center for Life Science, 450 East 29th Street, New York, NY 10016, USA.
| | - John L Rubinstein
- Molecular Structure and Function Program, The Hospital for Sick Children Research Institute, University of Toronto, Toronto, ON M5G 1X8, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5G 1X8, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Gerhard Grüber
- Nanyang Technological University, Division of Structural Biology and Biochemistry, School of Biological Sciences, Singapore 637551, Republic of Singapore; Bioinformatics Institute, A(⁎)STAR, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| |
Collapse
|
6
|
Abstract
Being deeply connected to signalling, cell dynamics, growth, regulation, and defence, endocytic processes are linked to almost all aspects of cell life and disease. In this review, we focus on endosomes in the classical endocytic pathway, and on the programme of changes that lead to the formation and maturation of late endosomes/multivesicular bodies. The maturation programme entails a dramatic transformation of these dynamic organelles disconnecting them functionally and spatially from early endosomes and preparing them for their unidirectional role as a feeder pathway to lysosomes.
Collapse
|
7
|
Burr CA, Leslie ME, Orlowski SK, Chen I, Wright CE, Daniels MJ, Liljegren SJ. CAST AWAY, a membrane-associated receptor-like kinase, inhibits organ abscission in Arabidopsis. PLANT PHYSIOLOGY 2011; 156:1837-50. [PMID: 21628627 PMCID: PMC3149937 DOI: 10.1104/pp.111.175224] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Receptor-like kinase-mediated cell signaling pathways play fundamental roles in many aspects of plant growth and development. A pair of Arabidopsis (Arabidopsis thaliana) leucine-rich repeat receptor-like kinases (LRR-RLKs), HAESA (HAE) and HAESA-LIKE2 (HSL2), have been shown to activate the cell separation process that leads to organ abscission. Another pair of LRR-RLKs, EVERSHED (EVR) and SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1, act as inhibitors of abscission, potentially by modulating HAE/HSL2 activity. Cycling of these RLKs to and from the cell surface may be regulated by NEVERSHED (NEV), a membrane trafficking regulator that is essential for organ abscission. We report here the characterization of CAST AWAY (CST), a receptor-like cytoplasmic kinase that acts as a spatial inhibitor of cell separation. Disruption of CST suppresses the abscission defects of nev mutant flowers and restores the discrete identity of the trans-Golgi network in nev abscission zones. After organ shedding, enlarged abscission zones with obscured boundaries are found in nev cst flowers. We show that CST is a dual-specificity kinase in vitro and that myristoylation at its amino terminus promotes association with the plasma membrane. Using the bimolecular fluorescence complementation assay, we have detected interactions of CST with HAE and EVR at the plasma membrane of Arabidopsis protoplasts and hypothesize that CST negatively regulates cell separation signaling directly and indirectly. A model integrating the potential roles of receptor-like kinase signaling and membrane trafficking during organ separation is presented.
Collapse
|
8
|
He J, Scott JL, Heroux A, Roy S, Lenoir M, Overduin M, Stahelin RV, Kutateladze TG. Molecular basis of phosphatidylinositol 4-phosphate and ARF1 GTPase recognition by the FAPP1 pleckstrin homology (PH) domain. J Biol Chem 2011; 286:18650-7. [PMID: 21454700 PMCID: PMC3099681 DOI: 10.1074/jbc.m111.233015] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 03/19/2011] [Indexed: 11/06/2022] Open
Abstract
Four-phosphate-adaptor protein 1 (FAPP1) regulates secretory transport from the trans-Golgi network (TGN) to the plasma membrane. FAPP1 is recruited to the Golgi through binding of its pleckstrin homology (PH) domain to phosphatidylinositol 4-phosphate (PtdIns(4)P) and a small GTPase ADP-ribosylation factor 1 (ARF1). Despite the critical role of FAPP1 in membrane trafficking, the molecular basis of its dual function remains unclear. Here, we report a 1.9 Å resolution crystal structure of the FAPP1 PH domain and detail the molecular mechanisms of the PtdIns(4)P and ARF1 recognition. The FAPP1 PH domain folds into a seven-stranded β-barrel capped by an α-helix at one edge, whereas the opposite edge is flanked by three loops and the β4 and β7 strands that form a lipid-binding pocket within the β-barrel. The ARF1-binding site is located on the outer side of the β-barrel as determined by NMR resonance perturbation analysis, mutagenesis, and measurements of binding affinities. The two binding sites have little overlap, allowing FAPP1 PH to associate with both ligands simultaneously and independently. Binding to PtdIns(4)P is enhanced in an acidic environment and is required for membrane penetration and tubulation activity of FAPP1, whereas the GTP-bound conformation of the GTPase is necessary for the interaction with ARF1. Together, these findings provide structural and biochemical insight into the multivalent membrane anchoring by the PH domain that may augment affinity and selectivity of FAPP1 toward the TGN membranes enriched in both PtdIns(4)P and GTP-bound ARF1.
Collapse
Affiliation(s)
- Ju He
- From the Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Jordan L. Scott
- the Department of Chemistry and Biochemistry and the Walther Center for Cancer Research, University of Notre Dame, Notre Dame, Indiana 46556
| | - Annie Heroux
- the Department of Biology, Brookhaven National Laboratory, Upton, New York 11973, and
| | - Siddhartha Roy
- From the Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Marc Lenoir
- the School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Michael Overduin
- the School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Robert V. Stahelin
- the Department of Chemistry and Biochemistry and the Walther Center for Cancer Research, University of Notre Dame, Notre Dame, Indiana 46556
- the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, Indiana 46617
| | - Tatiana G. Kutateladze
- From the Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045
| |
Collapse
|
9
|
Häussinger D, Reinehr R. Osmotic Regulation of Bile Acid Transport, Apoptosis and Proliferation in Rat Liver. Cell Physiol Biochem 2011; 28:1089-98. [DOI: 10.1159/000335845] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2011] [Indexed: 01/04/2023] Open
|
10
|
Liljegren SJ, Leslie ME, Darnielle L, Lewis MW, Taylor SM, Luo R, Geldner N, Chory J, Randazzo PA, Yanofsky MF, Ecker JR. Regulation of membrane trafficking and organ separation by the NEVERSHED ARF-GAP protein. Development 2009; 136:1909-18. [PMID: 19429787 DOI: 10.1242/dev.033605] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cell separation, or abscission, is a highly specialized process in plants that facilitates remodeling of their architecture and reproductive success. Because few genes are known to be essential for organ abscission, we conducted a screen for mutations that alter floral organ shedding in Arabidopsis. Nine recessive mutations that block shedding were found to disrupt the function of an ADP-ribosylation factor-GTPase-activating protein (ARF-GAP) we have named NEVERSHED (NEV). As predicted by its homology to the yeast Age2 ARF-GAP and transcriptional profile, NEV influences other aspects of plant development, including fruit growth. Co-localization experiments carried out with NEV-specific antiserum and a set of plant endomembrane markers revealed that NEV localizes to the trans-Golgi network and endosomes in Arabidopsis root epidermal cells. Interestingly, transmission electron micrographs of abscission zone regions from wild-type and nev flowers reveal defects in the structure of the Golgi apparatus and extensive accumulation of vesicles adjacent to the cell walls. Our results suggest that NEV ARF-GAP activity at the trans-Golgi network and distinct endosomal compartments is required for the proper trafficking of cargo molecules required for cell separation.
Collapse
Affiliation(s)
- Sarah J Liljegren
- Department of Biology and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Brown D, Paunescu TG, Breton S, Marshansky V. Regulation of the V-ATPase in kidney epithelial cells: dual role in acid-base homeostasis and vesicle trafficking. ACTA ACUST UNITED AC 2009; 212:1762-72. [PMID: 19448085 DOI: 10.1242/jeb.028803] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The proton-pumping V-ATPase is a complex, multi-subunit enzyme that is highly expressed in the plasma membranes of some epithelial cells in the kidney, including collecting duct intercalated cells. It is also located on the limiting membranes of intracellular organelles in the degradative and secretory pathways of all cells. Different isoforms of some V-ATPase subunits are involved in the targeting of the proton pump to its various intracellular locations, where it functions in transporting protons out of the cell across the plasma membrane or acidifying intracellular compartments. The former process plays a critical role in proton secretion by the kidney and regulates systemic acid-base status whereas the latter process is central to intracellular vesicle trafficking, membrane recycling and the degradative pathway in cells. We will focus our discussion on two cell types in the kidney: (1) intercalated cells, in which proton secretion is controlled by shuttling V-ATPase complexes back and forth between the plasma membrane and highly-specialized intracellular vesicles, and (2) proximal tubule cells, in which the endocytotic pathway that retrieves proteins from the glomerular ultrafiltrate requires V-ATPase-dependent acidification of post-endocytotic vesicles. The regulation of both of these activities depends upon the ability of cells to monitor the pH and/or bicarbonate content of their extracellular environment and intracellular compartments. Recent information about these pH-sensing mechanisms, which include the role of the V-ATPase itself as a pH sensor and the soluble adenylyl cyclase as a bicarbonate sensor, will be addressed in this review.
Collapse
Affiliation(s)
- Dennis Brown
- Center for Systems Biology, Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | |
Collapse
|
12
|
Wartosch L, Fuhrmann JC, Schweizer M, Stauber T, Jentsch TJ. Lysosomal degradation of endocytosed proteins depends on the chloride transport protein ClC-7. FASEB J 2009; 23:4056-68. [PMID: 19661288 DOI: 10.1096/fj.09-130880] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mutations in either ClC-7, a late endosomal/lysosomal member of the CLC family of chloride channels and transporters, or in its beta-subunit Ostm1 cause osteopetrosis and lysosomal storage disease in mice and humans. The severe phenotype of mice globally deleted for ClC-7 or Ostm1 and the absence of storage material in cultured cells hampered investigations of the mechanism leading to lysosomal pathology in the absence of functional ClC-7/Ostm1 transporters. Tissue-specific ClC-7-knockout mice now reveal that accumulation of storage material occurs cell-autonomously in neurons or renal proximal tubular cells lacking ClC-7. Almost all ClC-7-deficient neurons die. The activation of glia is restricted to brain regions where ClC-7 has been inactivated. The effect of ClC-7 disruption on lysosomal function was investigated in renal proximal tubular cells, which display high endocytotic activity. Pulse-chase endocytosis experiments in vivo with mice carrying chimeric deletion of ClC-7 in proximal tubules allowed a direct comparison of the handling of endocytosed protein between cells expressing or lacking ClC-7. Whereas protein was endocytosed similarly in cells of either genotype, its half-life increased significantly in ClC-7-deficient cells. These experiments demonstrate that lysosomal pathology is a cell-autonomous consequence of ClC-7 disruption and that ClC-7 is important for lysosomal protein degradation.
Collapse
Affiliation(s)
- Lena Wartosch
- Leibniz-Institut für Molekulare Pharmakologie and Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Str. 10, D-13125 Berlin, Germany
| | | | | | | | | |
Collapse
|
13
|
Hucthagowder V, Morava E, Kornak U, Lefeber DJ, Fischer B, Dimopoulou A, Aldinger A, Choi J, Davis EC, Abuelo DN, Adamowicz M, Al-Aama J, Basel-Vanagaite L, Fernandez B, Greally MT, Gillessen-Kaesbach G, Kayserili H, Lemyre E, Tekin M, Türkmen S, Tuysuz B, Yüksel-Konuk B, Mundlos S, Van Maldergem L, Wevers RA, Urban Z. Loss-of-function mutations in ATP6V0A2 impair vesicular trafficking, tropoelastin secretion and cell survival. Hum Mol Genet 2009; 18:2149-65. [PMID: 19321599 DOI: 10.1093/hmg/ddp148] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Autosomal recessive cutis laxa type 2 (ARCL2), a syndrome of growth and developmental delay and redundant, inelastic skin, is caused by mutations in the a2 subunit of the vesicular ATPase H+-pump (ATP6V0A2). The goal of this study was to define the disease mechanisms that lead to connective tissue lesions in ARCL2. In a new cohort of 17 patients, DNA sequencing of ATP6V0A2 detected either homozygous or compound heterozygous mutations. Considerable allelic and phenotypic heterogeneity was observed, with a missense mutation of a moderately conserved residue p.P87L leading to unusually mild disease. Abnormal N- and/or mucin type O-glycosylation was observed in all patients tested. Premature stop codon mutations led to decreased ATP6V0A2 mRNA levels by destabilizing the mutant mRNA via the nonsense-mediated decay pathway. Loss of ATP6V0A2 either by siRNA knockdown or in ARCL2 cells resulted in distended Golgi cisternae, accumulation of abnormal lysosomes and multivesicular bodies. Immunostaining of ARCL2 cells showed the accumulation of tropoelastin (TE) in the Golgi and in large, abnormal intracellular and extracellular aggregates. Pulse-chase studies confirmed impaired secretion and increased intracellular retention of TE, and insoluble elastin assays showed significantly reduced extracellular deposition of mature elastin. Fibrillin-1 microfibril assembly and secreted lysyl oxidase activity were normal in ARCL2 cells. TUNEL staining demonstrated increased rates of apoptosis in ARCL2 cell cultures. We conclude that loss-of-function mutations in ATP6V0A2 lead to TE aggregation in the Golgi, impaired clearance of TE aggregates and increased apoptosis of elastogenic cells.
Collapse
Affiliation(s)
- Vishwanathan Hucthagowder
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8208, St Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Guillot TS, Miller GW. Protective actions of the vesicular monoamine transporter 2 (VMAT2) in monoaminergic neurons. Mol Neurobiol 2009; 39:149-70. [PMID: 19259829 DOI: 10.1007/s12035-009-8059-y] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 02/18/2009] [Indexed: 12/13/2022]
Abstract
Vesicular monoamine transporters (VMATs) are responsible for the packaging of neurotransmitters such as dopamine, serotonin, norepinephrine, and epinephrine into synaptic vesicles. These proteins evolved from precursors in the major facilitator superfamily of transporters and are among the members of the toxin extruding antiporter family. While the primary function of VMATs is to sequester neurotransmitters within vesicles, they can also translocate toxicants away from cytosolic sites of action. In the case of dopamine, this dual role of VMAT2 is combined-dopamine is more readily oxidized in the cytosol where it can cause oxidative stress so packaging into vesicles serves two purposes: neurotransmission and neuroprotection. Furthermore, the deleterious effects of exogenous toxicants on dopamine neurons, such as MPTP, can be attenuated by VMAT2 activity. The active metabolite of MPTP can be kept within vesicles and prevented from disrupting mitochondrial function thereby sparing the dopamine neuron. The highly addictive drug methamphetamine is also neurotoxic to dopamine neurons by using dopamine itself to destroy the axon terminals. Methamphetamine interferes with vesicular sequestration and increases the production of dopamine, escalating the amount in the cytosol and leading to oxidative damage of terminal components. Vesicular transport seems to resist this process by sequestering much of the excess dopamine, which is illustrated by the enhanced methamphetamine neurotoxicity in VMAT2-deficient mice. It is increasingly evident that VMAT2 provides neuroprotection from both endogenous and exogenous toxicants and that while VMAT2 has been adapted by eukaryotes for synaptic transmission, it is derived from phylogenetically ancient proteins that originally evolved for the purpose of cellular protection.
Collapse
Affiliation(s)
- Thomas S Guillot
- Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
15
|
Bassham DC, Blatt MR. SNAREs: cogs and coordinators in signaling and development. PLANT PHYSIOLOGY 2008; 147:1504-15. [PMID: 18678742 PMCID: PMC2492632 DOI: 10.1104/pp.108.121129] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2008] [Accepted: 05/14/2008] [Indexed: 05/18/2023]
Affiliation(s)
- Diane C Bassham
- Department of Genetics, Development, and Cell Biology and Plant Sciences Institute, Iowa State University, Ames, Iowa 50011, USA.
| | | |
Collapse
|
16
|
Abstract
V-ATPase (vesicular H(+)-ATPase)-driven intravesicular acidification is crucial for vesicular trafficking. Defects in vesicular acidification and trafficking have recently been recognized as essential determinants of various human diseases. An important role of endosomal acidification in receptor-ligand dissociation and in activation of lysosomal hydrolytic enzymes is well established. However, the molecular mechanisms by which luminal pH information is transmitted to the cytosolic small GTPases that control trafficking events such as budding, coat formation and fusion are unknown. Here, we discuss our recent discovery that endosomal V-ATPase is a pH-sensor regulating the degradative pathway. According to our model, V-ATPase is responsible for: (i) the generation of a pH gradient between vesicular membranes; (ii) sensing of intravesicular pH; and (iii) transmitting this information to the cytosolic side of the membrane. We also propose the hypothetical molecular mechanism involved in function of the V-ATPase a2-subunit as a putative pH-sensor. Based on extensive experimental evidence on the crucial role of histidine residues in the function of PSPs (pH-sensing proteins) in eukaryotic cells, we hypothesize that pH-sensitive histidine residues within the intra-endosomal loops and/or C-terminal luminal tail of the a2-subunit could also be involved in the pH-sensing function of V-ATPase. However, in order to identify putative pH-sensitive histidine residues and to test this hypothesis, it is absolutely essential that we increase our understanding of the folding and transmembrane topology of the a-subunit isoforms of V-ATPase. Thus the crucial role of intra-endosomal histidine residues in pH-dependent conformational changes of the V-ATPase a2-isoform, its interaction with cytosolic small GTPases and ultimately in its acidification-dependent regulation of the endosomal/lysosomal protein degradative pathway remain to be determined.
Collapse
|
17
|
Huynh KK, Grinstein S. Regulation of vacuolar pH and its modulation by some microbial species. Microbiol Mol Biol Rev 2007; 71:452-62. [PMID: 17804666 PMCID: PMC2168644 DOI: 10.1128/mmbr.00003-07] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
To survive within the host, pathogens such as Mycobacterium tuberculosis and Helicobacter pylori need to evade the immune response and find a protected niche where they are not exposed to microbicidal effectors. The pH of the microenvironment surrounding the pathogen plays a critical role in dictating the organism's fate. Specifically, the acidic pH of the endocytic organelles and phagosomes not only can affect bacterial growth directly but also promotes a variety of host microbicidal responses. The development of mechanisms to avoid or resist the acidic environment generated by host cells is therefore crucial to the survival of many pathogens. Here we review the processes that underlie the generation of organellar acidification and discuss strategies employed by pathogens to circumvent it, using M. tuberculosis and H. pylori as examples.
Collapse
Affiliation(s)
- Kassidy K Huynh
- Cell Biology Program, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | |
Collapse
|
18
|
Reinehr R, Häussinger D. CD95 activation in the liver: ion fluxes and oxidative signaling. Arch Biochem Biophys 2007; 462:124-31. [PMID: 17258167 DOI: 10.1016/j.abb.2006.12.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 12/14/2006] [Accepted: 12/16/2006] [Indexed: 12/18/2022]
Abstract
Apoptosis is characterized by typical features as cell shrinkage, nuclear condensation, DNA fragmentation, and apoptotic body formation. Whereas some signs of apoptosis are cell type-and death signal-dependent, apoptotic cell volume decrease is an early and ubiquitous event and little is known about the signalling events, which are localized upstream of the plasma membrane transport steps leading to apoptotic cell volume decrease and the proapoptotic events, which are induced by osmolyte loss and cell shrinkage. Ion fluxes and oxidative signaling were recently shown to play an important role in signal transduction with respect to apoptotic cell death within the liver, as a ceramide-dependent activation of the NADPH oxidase was identified as the source of reactive oxygen species generation in rat hepatocytes upon treatment with CD95 ligand, hydrophobic bile salts or hyperosmolarity. The NADPH oxidase-derived ROS signal then allows via Yes, JNK, and EGFR activation for CD95 tyrosine phosphorylation as a prerequisite for CD95 targeting to the plasma membrane and formation of the death inducing signalling complex. Other covalent modifications such as CD95-tyrosine-nitration or CD95-serine/threonine-phosphorylation can interfere with the CD95 activation process. The findings not only provide a mechanistic explanation for the high susceptibility of dehydrated cells for apoptosis, but also give insight into the role of ion fluxes and oxidative signaling with respect to apoptotic cell death within the liver.
Collapse
Affiliation(s)
- Roland Reinehr
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich-Heine-University, Düsseldorf, Germany
| | | |
Collapse
|
19
|
Abstract
Cell shrinkage, nuclear condensation, DNA fragmentation, and apoptotic body formation are hallmarks of programmed apoptotic cell death. Herein, apoptotic volume decrease (AVD) is an early and ubiquitous event. Conversely, in hepatocytes, hyperosmotic cell shrinkage leads to an activation of the CD95 death receptor system, which involves CD95 tyrosine phosphorylation, CD95 oligomerization, and subsequent trafficking of the CD95 to the plasma membrane, and sensitizes hepatocytes toward CD95 ligand (CD95L)-induced apoptosis. Early signaling events leading to CD95 activation by hyperosmolarity have been identified. In hepatocytes, hyperosmotic exposure induces an almost instantaneous acidification of an acidic sphingomyelinase (ASM) containing endosomal compartment, which is followed by an increase in the intracellular ceramide concentration. Inhibition of anion channels or the vacuolar-type H(+)-ATPase abolishes not only endosomal acidification and subsequent ceramide generation, but also the otherwise observed hyperosmotically induced generation of reactive oxygen species (ROS) by NADPH oxidase isoforms. Hyperosmolarity-induced ROS formation then leads to a Src-family kinase Yes-mediated activation of the epidermal growth factor receptor (EGFR) and to an activation of the c-Jun-N-terminal kinase (JNK). JNK then provides a signal for CD95/EGFR association and subsequent CD95 tyrosine phosphorylation, which is mediated by the EGFR tyrosine kinase activity. CD95 tyrosine phosphorylation then allows for CD95 receptor oligomerization, translocation of the CD95/EGFR protein complex to the plasma membrane, and formation of the death inducing signaling complex (DISC). Mild hyperosmotic exposure, that is, 405 mosmol/liter, does not lead to a reduction of cell viability, even if DISC formation and subsequent caspase 8 and 3 activation occur, but sensitizes hepatocytes to CD95L-induced apoptosis. However, activation of the CD95 system by a more severe hyperosmotic challenge (>505 mosmol/liter) is followed by execution of the apoptotic cell death. Other covalent modifications of CD95, such as CD95 tyrosine nitration or CD95 serine/threonine phosphorylation, were shown to inhibit the CD95 activation process.
Collapse
Affiliation(s)
- Roland Reinehr
- Clinic for Gastroenterology, Hepatology, and Infectiology, Heinrich-Heine-University Düsseldorf, Germany
| | | |
Collapse
|
20
|
Schumacher K. Endomembrane proton pumps: connecting membrane and vesicle transport. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:595-600. [PMID: 17008121 DOI: 10.1016/j.pbi.2006.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 09/15/2006] [Indexed: 05/12/2023]
Abstract
pH-homeostasis in the endomembrane system requires the activity of proton-pumps. In animals, the progressive acidification of compartments along the endocytic and secretory pathways is critical for protein sorting and vesicle trafficking, and is achieved by the activity of the vacuolar H(+)-ATPase (V-ATPase). Plants have an additional endomembrane pump, the vacuolar H(+)-pyrophosphatase (V-PPase), and previous research was largely focused on the respective functions of the two pumps in secondary active transport across the tonoplast. Recent approaches, including reverse genetics, have not only provided evidence that both enzymes play unique and essential roles but have also highlighted the important functions of the two proton pumps in endocytic and secretory trafficking.
Collapse
Affiliation(s)
- Karin Schumacher
- ZMBP-Plant Physiology, Universität Tübingen, Auf der Morgenstelle 1, 72076 Tübingen, Germany.
| |
Collapse
|
21
|
Okiyoneda T, Niibori A, Harada K, Kohno T, Hashimoto Y, Kusuhara H, Takada T, Shuto T, Suico MA, Sugiyama Y, Kai H. Bafilomycin A1-sensitive pathway is required for the maturation of cystic fibrosis transmembrane conductance regulator. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1017-23. [PMID: 17005267 DOI: 10.1016/j.bbamcr.2006.08.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 07/03/2006] [Accepted: 08/21/2006] [Indexed: 11/22/2022]
Abstract
Cystic fibrosis (CF) is the most common lethal genetic disease in Caucasians caused by the trafficking defects of CF transmembrane conductance regulator (CFTR), which is a cAMP-dependent Cl- channel at the plasma membrane. The trafficking pathway of CFTR is thought to be non-conventional because CFTR maturation is inhibited by the dysfunction of syntaxin 13, which is involved in protein recycling via endosomal pathway. In this study, to clarify whether the endosomal trafficking is required for CFTR maturation, we utilized a specific vacuolar H+-ATPase inhibitor, bafilomycin A1 (BafA1), which inhibits the protein trafficking from early endosome. Our data showed that low concentration of BafA1 (50 nM) decreased the expression of mature CFTR but induced the accumulation of immature CFTR in the juxta-nuclear region containing an early endosome marker. Pulse-chase analysis showed that BafA1 inhibited the maturation of CFTR, but it slightly stabilized immature CFTR. These results indicate that BafA1-sensitive pathway is required for CFTR maturation and emphasize that endosomal trafficking pathway might be involved in the maturation of CFTR.
Collapse
Affiliation(s)
- Tsukasa Okiyoneda
- Department of Molecular Medicine, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Reinehr R, Becker S, Braun J, Eberle A, Grether-Beck S, Haüssinger D. Endosomal Acidification and Activation of NADPH Oxidase Isoforms Are Upstream Events in Hyperosmolarity-induced Hepatocyte Apoptosis. J Biol Chem 2006; 281:23150-66. [PMID: 16772302 DOI: 10.1074/jbc.m601451200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hyperosmotic exposure of rat hepatocytes induced a rapid oxidative-stress(ROS) response as an upstream signal for proapoptotic CD95 activation. This study shows that hyperosmotic ROS formation involves a rapid ceramide- and protein kinase Czeta (PKCzeta)-dependent serine phosphorylation of p47phox and subsequent activation of NADPH oxidase isoforms. Hyperosmotic p47phox phosphorylation and ROS formation were sensitive to inhibition of sphingomyelinases and were strongly blunted after knockdown of acidic sphingomyelinase (ASM) or of p47phox protein. Hyperosmolarity induced a rapid bafilomycin- and 4,4 '-diisothiocyanostilbene-2,2 '-disulfonic acid disodium salt (DIDS)-sensitive acidification of a vesicular compartment, which was accessible to endocytosed fluorescein isothiocyanate-dextran and colocalized with ASM, PKCzeta, and the NADPH oxidase isoform Nox 2 (gp91phox). Bafilomycin and DIDS prevented the hyperosmolarity-induced increase in ceramide formation, p47phox phosphorylation, and ROS formation. As shown recently (Reinehr, R., Becker, S., Höngen, A., and Häussinger, D. (2004) J. Biol. Chem. 279, 23977-23987), hyperosmolarity induced a Yes-dependent activation of JNK and the epidermal growth factor receptor (EGFR), followed by EGFR-CD95 association, EGFR-catalyzed CD95-tyrosine phosphorylation, and translocation of the EGFR-CD95 complex to the plasma membrane, where formation of the deathinducing signaling complex occurs. These proapoptotic responses were not only sensitive to inhibitors of sphingomyelinase, PKCzeta, or NADPH oxidases but also to ASM knockdown, bafilomycin, and DIDS, i.e. maneuvers largely preventing hyperosmolarity-induced endosomal acidification and/or ceramide formation. In hepatocytes from p47phox knock-out mice, hyperosmolarity failed to activate the CD95 system. The data suggest that hyperosmolarity induces endosomal acidification as an important upstream event for CD95 activation through stimulation of ASM-dependent ceramide formation and activation of NADPH oxidase isoforms.
Collapse
Affiliation(s)
- Roland Reinehr
- Clinic for Gastroenterology, Hepatology, and Infectiology, Heinrich-Heine-University and Institut für Umweltmedizinische Forschung, D-40225 Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Dettmer J, Hong-Hermesdorf A, Stierhof YD, Schumacher K. Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis. THE PLANT CELL 2006; 18:715-30. [PMID: 16461582 PMCID: PMC1383645 DOI: 10.1105/tpc.105.037978] [Citation(s) in RCA: 678] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In eukaryotic cells, compartments of the highly dynamic endomembrane system are acidified to varying degrees by the activity of vacuolar H(+)-ATPases (V-ATPases). In the Arabidopsis thaliana genome, most V-ATPase subunits are encoded by small gene families, thus offering potential for a multitude of enzyme complexes with different kinetic properties and localizations. We have determined the subcellular localization of the three Arabidopsis isoforms of the membrane-integral V-ATPase subunit VHA-a. Colocalization experiments as well as immunogold labeling showed that VHA-a1 is preferentially found in the trans-Golgi network (TGN), the main sorting compartment of the secretory pathway. Uptake experiments with the endocytic tracer FM4-64 revealed rapid colocalization with VHA-a1, indicating that the TGN may act as an early endosomal compartment. Concanamycin A, a specific V-ATPase inhibitor, blocks the endocytic transport of FM4-64 to the tonoplast, causes the accumulation of FM4-64 together with newly synthesized plasma membrane proteins, and interferes with the formation of brefeldin A compartments. Furthermore, nascent cell plates are rapidly stained by FM4-64, indicating that endocytosed material is redirected into the secretory flow after reaching the TGN. Together, our results suggest the convergence of the early endocytic and secretory trafficking pathways in the TGN.
Collapse
Affiliation(s)
- Jan Dettmer
- Center for Plant Molecular Biology-Plant Physiology, Universität Tübingen, 72076 Tübingen, Germany
| | | | | | | |
Collapse
|
25
|
Hurtado-Lorenzo A, Skinner M, El Annan J, Futai M, Sun-Wada GH, Bourgoin S, Casanova J, Wildeman A, Bechoua S, Ausiello DA, Brown D, Marshansky V. V-ATPase interacts with ARNO and Arf6 in early endosomes and regulates the protein degradative pathway. Nat Cell Biol 2006; 8:124-36. [PMID: 16415858 DOI: 10.1038/ncb1348] [Citation(s) in RCA: 366] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Accepted: 11/21/2005] [Indexed: 01/28/2023]
Abstract
The recruitment of the small GTPase Arf6 and ARNO from cytosol to endosomal membranes is driven by V-ATPase-dependent intra-endosomal acidification. The molecular mechanism that mediates this pH-sensitive recruitment and its role are unknown. Here, we demonstrate that Arf6 interacts with the c-subunit, and ARNO with the a2-isoform of V-ATPase. The a2-isoform is targeted to early endosomes, interacts with ARNO in an intra-endosomal acidification-dependent manner, and disruption of this interaction results in reversible inhibition of endocytosis. Inhibition of endosomal acidification abrogates protein trafficking between early and late endosomal compartments. These data demonstrate the crucial role of early endosomal acidification and V-ATPase/ARNO/Arf6 interactions in the regulation of the endocytic degradative pathway. They also indicate that V-ATPase could modulate membrane trafficking by recruiting and interacting with ARNO and Arf6; characteristics that are consistent with the role of V-ATPase as an essential component of the endosomal pH-sensing machinery.
Collapse
Affiliation(s)
- Andrés Hurtado-Lorenzo
- Program in Membrane Biology & Nephrology Division, Richard Simches Research Center, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Pietrement C, Sun-Wada GH, Silva ND, McKee M, Marshansky V, Brown D, Futai M, Breton S. Distinct expression patterns of different subunit isoforms of the V-ATPase in the rat epididymis. Biol Reprod 2005; 74:185-94. [PMID: 16192400 DOI: 10.1095/biolreprod.105.043752] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In the epididymis and vas deferens, the vacuolar H(+)ATPase (V-ATPase), located in the apical pole of narrow and clear cells, is required to establish an acidic luminal pH. Low pH is important for the maturation of sperm and their storage in a quiescent state. The V-ATPase also participates in the acidification of intracellular organelles. The V-ATPase contains many subunits, and several of these subunits have multiple isoforms. So far, only subunits ATP6V1B1, ATP6V1B2, and ATP6V1E2, previously identified as B1, B2, and E subunits, have been described in the rat epididymis. Here, we report the localization of V-ATPase subunit isoforms ATP6V1A, ATP6V1C1, ATP6V1C2, ATP6V1G1, ATP6V1G3, ATP6V0A1, ATP6V0A2, ATP6V0A4, ATP6V0D1, and ATP6V0D2, previously labeled A, C1, C2, G1, G3, a1, a2, a4, d1, and d2, in epithelial cells of the rat epididymis and vas deferens. Narrow and clear cells showed a strong apical staining for all subunits, except the ATP6V0A2 isoform. Subunits ATP6V0A2 and ATP6V1A were detected in intracellular structures closely associated but not identical to the TGN of principal cells and narrow/clear cells, and subunit ATP6V0D1 was strongly expressed in the apical membrane of principal cells in the apparent absence of other V-ATPase subunits. In conclusion, more than one isoform of subunits ATP6V1C, ATP6V1G, ATP6V0A, and ATP6V0D of the V-ATPase are present in the epididymal and vas deferens epithelium. Our results confirm that narrow and clear cells are well fit for active proton secretion. In addition, the diverse functions of the V-ATPase may be established through the utilization of specific subunit isoforms. In principal cells, the ATP6V0D1 isoform may have a physiological function that is distinct from its role in proton transport via the V-ATPase complex.
Collapse
Affiliation(s)
- C Pietrement
- Program in Membrane Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Lee SA, Eyeson R, Cheever ML, Geng J, Verkhusha VV, Burd C, Overduin M, Kutateladze TG. Targeting of the FYVE domain to endosomal membranes is regulated by a histidine switch. Proc Natl Acad Sci U S A 2005; 102:13052-7. [PMID: 16141328 PMCID: PMC1201587 DOI: 10.1073/pnas.0503900102] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Specific recognition of phosphatidylinositol 3-phosphate [PtdIns3P] by the FYVE domain targets cytosolic proteins to endosomal membranes during key signaling and trafficking events within eukaryotic cells. Here, we show that this membrane targeting is regulated by the acidic cellular environment. Lowering the cytosolic pH enhances PtdIns3P affinity of the FYVE domain, reinforcing the anchoring of early endosome antigen 1 (EEA1) to endosomal membranes. Reversibly, increasing the pH disrupts phosphoinositide binding and leads to cytoplasmic redistribution of EEA1. pH dependency is due to a pair of conserved His residues, the successive protonation of which is required for PtdIns3P head group recognition as revealed by NMR. Substitution of the His residues abolishes PtdIns3P binding by the FYVE domain in vitro and in vivo. Another PtdIns3P-binding module, the PX domain of Vam7 and p40phox is shown to be pH-independent. This provides the fundamental functional distinction between the two phosphoinositide-recognizing domains. The presented mode of FYVE regulation establishes the unique function of FYVE proteins as low pH sensors of PtdIns3P and reveals the critical role of the histidine switch in targeting of these proteins to endosomal membranes.
Collapse
Affiliation(s)
- Stephanie A Lee
- Department of Pharmacology and Molecular Biology Program, University of Colorado Health Sciences Center, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Vacuolar H(+)-ATPases are ubiquitous multisubunit complexes mediating the ATP-dependent transport of protons. In addition to their role in acidifying the lumen of various intracellular organelles, vacuolar H(+)-ATPases fulfill special tasks in the kidney. Vacuolar H(+)-ATPases are expressed in the plasma membrane in the kidney almost along the entire length of the nephron with apical and/or basolateral localization patterns. In the proximal tubule, a high number of vacuolar H(+)-ATPases are also found in endosomes, which are acidified by the pump. In addition, vacuolar H(+)-ATPases contribute to proximal tubular bicarbonate reabsorption. The importance in final urinary acidification along the collecting system is highlighted by monogenic defects in two subunits (ATP6V0A4, ATP6V1B1) of the vacuolar H(+)-ATPase in patients with distal renal tubular acidosis. The activity of vacuolar H(+)-ATPases is tightly regulated by a variety of factors such as the acid-base or electrolyte status. This regulation is at least in part mediated by various hormones and protein-protein interactions between regulatory proteins and multiple subunits of the pump.
Collapse
Affiliation(s)
- Carsten A Wagner
- Institute of Physiology, Univ. of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
29
|
Faundez V, Hartzell HC. Intracellular Chloride Channels: Determinants of Function in the Endosomal Pathway. Sci Signal 2004; 2004:re8. [PMID: 15150424 DOI: 10.1126/stke.2332004re8] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Endosomes, and related subcellular compartments, contain various Cl- channels in the ClC family. In this review, we describe the known roles of intracellular Cl- channels and also explore some of the functional implications of transmembrane Cl- flux in these organelles. Cl- influx acts to control intralumenal pH, both by shunting the effects of the proton pump on membrane potential and, possibly, through direct effects of Cl- on the proton pump. Changes in intralumenal pH likely help regulate membrane trafficking. We propose that changes in intralumenal Cl- concentration ([Cl-]) could theoretically play a direct role in regulating membrane trafficking and organellar function through effects on chloride-sensitive proteins in the vesicular membrane, which could transduce information about intralumenal [Cl-] to the outside of the vesicle and thereby recruit various signaling molecules. We present a model in which regulation of cytosolic [Cl-] and vesicular Cl- conductance could help control the amount or type of neurotransmitter stored in a particular population of synaptic vesicles.
Collapse
Affiliation(s)
- Victor Faundez
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
30
|
Abstract
Acidification of some organelles, including the Golgi complex, lysosomes, secretory granules, and synaptic vesicles, is important for many of their biochemical functions. In addition, acidic pH in some compartments is also required for the efficient sorting and trafficking of proteins and lipids along the biosynthetic and endocytic pathways. Despite considerable study, however, our understanding of how pH modulates membrane traffic remains limited. In large part, this is due to the diversity of methods to perturb and monitor pH, as well as to the difficulties in isolating individual transport steps within the complex pathways of membrane traffic. This review summarizes old and recent evidence for the role of acidification at various steps of biosynthetic and endocytic transport in mammalian cells. We describe the mechanisms by which organelle pH is regulated and maintained, as well as how organelle pH is monitored and quantitated. General principles that emerge from these studies as well as future directions of interest are discussed.
Collapse
Affiliation(s)
- Ora A Weisz
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| |
Collapse
|
31
|
Appenzeller-Herzog C, Roche AC, Nufer O, Hauri HP. pH-induced conversion of the transport lectin ERGIC-53 triggers glycoprotein release. J Biol Chem 2004; 279:12943-50. [PMID: 14718532 DOI: 10.1074/jbc.m313245200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The recycling mannose lectin ERGIC-53 operates as a transport receptor by mediating efficient endoplasmic reticulum (ER) export of some secretory glycoproteins. Binding of cargo to ERGIC-53 in the ER requires Ca2+. Cargo release occurs in the ERGIC, but the molecular mechanism is unknown. Here we report efficient binding of purified ERGIC-53 to immobilized mannose at pH 7.4, the pH of the ER, but not at slightly lower pH. pH sensitivity of the lectin was more prominent when Ca2+ concentrations were low. A conserved histidine in the center of the carbohydrate recognition domain was required for lectin activity suggesting it may serve as a molecular pH/Ca2+ sensor. Acidification of cells inhibited the association of ERGIC-53 with the known cargo cathepsin Z-related protein and dissociation of this glycoprotein in the ERGIC was impaired by organelle neutralization that did not impair the transport of a control protein. The results elucidate the molecular mechanism underlying reversible lectin/cargo interaction and establish the ERGIC as the earliest low pH site of the secretory pathway.
Collapse
|
32
|
Marshansky V, Ausiello DA, Brown D. Physiological importance of endosomal acidification: potential role in proximal tubulopathies. Curr Opin Nephrol Hypertens 2002; 11:527-37. [PMID: 12187318 DOI: 10.1097/00041552-200209000-00009] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW In recent years, there have been significant advances in our understanding of the molecular mechanisms relating proximal tubule abnormalities to the pathogenesis of renal Fanconi syndrome. This review focuses on the role of intra-endosomal acidification-machinery proteins (V-ATPase, CLC-5, NHE-3), as well as apical receptors (megalin and cubilin), in the receptor-mediated endocytosis pathway and in the pathogenesis of proximal tubulopathies. RECENT FINDINGS Animal models, including CLC-5 and megalin knockout mice, cubilin-deficient dogs and cadmium-toxicity studies in rats, have shed light on defects leading to low-molecular-weight proteinuria. In particular, the important contribution of defective endosomal acidification and membrane-protein recycling to the pathogenesis of the Fanconi syndrome has emerged from these studies. These observations, together with recent findings in patients with Dent's disease, Lowe's syndrome, autosomal-dominant idiopathic Fanconi syndrome and Imerslund-Grasbeck disease, show that the proteinuria of the Fanconi syndrome is more generalized than previously suspected. High concentrations of polypeptides, including hormones, vitamin-binding proteins and chemokines in urine from these patients and animals may play an important role in the progressive renal failure that is associated with the syndrome. SUMMARY The molecular mechanism of proximal tubule protein reabsorption, which is defective in renal Fanconi syndrome, includes a crucial role for endosomal acidification-machinery proteins, in particular the V-ATPase and CLC-5 chloride channels, in the trafficking and acidification-dependent recycling of apical membrane proteins, including the endocytotic receptors megalin and cubilin. An increased understanding of the roles of V-ATPase and CLC-5 in proximal tubule endosomal acidification, in the regulation of the megalin/cubilin-mediated endocytosis pathway and finally in the pathogenesis of human Fanconi syndrome will help in the devising of appropriate strategies for therapeutic intervention for this disorder.
Collapse
Affiliation(s)
- Vladimir Marshansky
- Massachusetts General Hospital, Department of Medicine, Harvard Medical School, Boston 02129-2020, USA.
| | | | | |
Collapse
|
33
|
Yang J, Hodel A, Holman GD. Insulin and isoproterenol have opposing roles in the maintenance of cytosol pH and optimal fusion of GLUT4 vesicles with the plasma membrane. J Biol Chem 2002; 277:6559-66. [PMID: 11751852 DOI: 10.1074/jbc.m108610200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Insulin treatment of rat adipocytes increases both cytoplasmic alkalinity and glucose transport activity. Both processes are blocked by the phosphatidylinositol 3-kinase inhibitor wortmannin. Isoproterenol pre-treatment reverses the alkalinizing effects of insulin and leads to attenuation of insulin-stimulated glucose transport activity and exposure of GLUT4 to photolabeling reagents at the cell surface. These effects of isoproterenol are mimicked by acid loading and are reversed by cell-alkalinizing conditions. However, neither isoproterenol nor acid loading alters the total level of GLUT4 at the plasma membrane as revealed by Western blotting of plasma membrane fractions or immunodetection of GLUT4 in plasma membrane lawns. GLUT4 is therefore occluded from participation in glucose transport catalysis by a pH-sensitive process. To examine the kinetics of trafficking that lead to these changes in cell surface GLUT4 occlusion, we have utilized a new biotinylated photolabel, GP15. This reagent has a 70-atom spacer between the biotin and the photolabeling diazirine group, and this allows quenching of the surface signal of biotinylated GLUT4 by extracellular avidin. The rates of GLUT4 internalization are only slightly altered by isoproterenol or acidification, mainly due to reduced recycling over long internalization times. By contrast, insulin stimulation of GLUT4 exocytosis is slowed by isoproterenol or acidification pre-treatments. Biphasic time courses are evident, with an initial burst of exposure at the cell surface followed by a slow phase. It is hypothesized that the burst kinetics are a consequence of a two-phase fusion reaction that is rapid in the presence of insulin but slowed by cytosol acidification.
Collapse
Affiliation(s)
- Jing Yang
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | | | | |
Collapse
|
34
|
Maranda B, Brown D, Bourgoin S, Casanova JE, Vinay P, Ausiello DA, Marshansky V. Intra-endosomal pH-sensitive recruitment of the Arf-nucleotide exchange factor ARNO and Arf6 from cytoplasm to proximal tubule endosomes. J Biol Chem 2001; 276:18540-50. [PMID: 11278939 DOI: 10.1074/jbc.m011577200] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Kidney proximal tubule epithelial cells have an extensive apical endocytotic apparatus that is critical for the reabsorption and degradation of proteins that traverse the glomerular filtration barrier and that is also involved in the extensive recycling of functionally important apical plasma membrane transporters. We show here that an Arf-nucleotide exchange factor, ARNO (ADP-ribosylation factor nucleotide site opener) as well as Arf6 and Arf1 small GTPases are located in the kidney proximal tubule receptor-mediated endocytosis pathway, and that ARNO and Arf6 recruitment from cytosol to endosomes is pH-dependent. In proximal tubules in situ, ARNO and Arf6 partially co-localized with the V-ATPase in apical endosomes in proximal tubules. Arf1 was localized both at the apical pole of proximal tubule epithelial cells, but also in the Golgi. By Western blot analysis ARNO, Arf6, and Arf1 were detected both in purified endosomes and in proximal tubule cytosol. A translocation assay showed that ATP-driven endosomal acidification triggered the recruitment of ARNO and Arf6 from proximal tubule cytosol to endosomal membranes. The translocation of both ARNO and Arf6 was reversed by V-type ATPase inhibitors and by uncouplers of endosomal intralumenal pH, and was correlated with the magnitude of intra-endosomal acidification. Our data suggest that V-type ATPase-dependent acidification stimulates the selective recruitment of ARNO and Arf6 to proximal tubule early endosomes. This mechanism may play an important role in the pH-dependent regulation of receptor-mediated endocytosis in proximal tubules in situ.
Collapse
Affiliation(s)
- B Maranda
- Program in Membrane Biology & Renal Unit, Massachusetts General Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, 02129-2020, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Mousavi SA, Kjeken R, Berg TO, Seglen PO, Berg T, Brech A. Effects of inhibitors of the vacuolar proton pump on hepatic heterophagy and autophagy. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1510:243-57. [PMID: 11342162 DOI: 10.1016/s0005-2736(00)00354-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Bafilomycin A(1) (BAF) and concanamycin A (ConcA) are selective inhibitors of the H(+)-ATPases of the vacuolar system. We have examined the effects of these inhibitors on different steps in endocytic pathways in rat hepatocytes, using [(125)I]tyramine-cellobiose-labeled asialoorosomucoid ([(125)I]TC-AOM) and [(125)I]tyramine-cellobiose-labeled bovine serum albumin ([(125)I]TC-BSA) as probes for respectively receptor-mediated endocytosis and pinocytosis (here defined as fluid phase endocytosis). The effects of BAF and ConcA were in principle identical, although ConcA was more effective than BAF. The main findings were as follows. (1) BAF/ConcA reduced the rate of uptake of both [(125)I]TC-AOM and [(125)I]TC-BSA. The reduced uptake of [(125)I]TC-AOM was partly due to a redistribution of the asialoglycoprotein receptors (ASGPR) such that the number of surface receptors was reduced approximately 40% without a change in the total number of receptors. (2) BAF/ConcA at the same time increased retroendocytosis (recycling) of both probes. The increased recycling of the ligand ([(125)I]TC-AOM) is partly a consequence of the enhanced pH in endosomes, which prevents dissociation of ligand. (3) It was furthermore found that the ligand remained bound to the receptor in presence of BAF/ConcA and that the total amount of ligand molecules internalized in BAF/ConcA-treated cells was only slightly in excess of the total number of receptors. These data indicate that reduced pH in endosomes is the prime cause of receptor inactivation and release of ligand in early endosomes. (4) Subcellular fractionation experiments showed that [(125)I]TC-AOM remained in early endosomes, well separated from lysosomes in sucrose gradients. The fluid phase marker, [(125)I]TC-BSA, on the other hand, seemed to reach a later endosome in the BAF/ConcA-treated cells. This organelle coincided with lysosomes in the gradient, but hypotonic medium was found to selectively release a lysosomal enzyme (beta-acetylglucosaminidase), indicating that even [(125)I]TC-BSA remained in a prelysosomal compartment in the BAF/ConcA-treated cells. (5) Electron microscopy using horseradish peroxidase (HRP) as a fluid phase marker verified that BAF/ConcA inhibited transfer of material from late endosomes ('multivesicular bodies'). (6) BAF/ConcA led to accumulation of lactate dehydrogenase (LDH) in autophagic vacuoles, but although the drugs partly inhibited fusion between autophagosomes and lysosomes a number of autolysosomes was formed in the presence of BAF/ConcA. This observation explains the reduced buoyant density of lysosomes (revealed in sucrose density gradients). In conclusion, BAF/ConcA inhibit transfer of endocytosed material from late endosomes to lysosomes, but do not at the same time prevent fusion between autophagosomes and lysosomes.
Collapse
Affiliation(s)
- S A Mousavi
- Department of Biology, University of Oslo, Norway
| | | | | | | | | | | |
Collapse
|
36
|
Gu F, Gruenberg J. ARF1 regulates pH-dependent COP functions in the early endocytic pathway. J Biol Chem 2000; 275:8154-60. [PMID: 10713138 DOI: 10.1074/jbc.275.11.8154] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Coat proteins of the COP family were recently shown by us and others to be involved in membrane transport in the endocytic pathway, in addition to their known functions in the biosynthetic pathway. We have also shown that membrane association of endosomal COPs depends on the acidic endosomal pH, in contrast to biosynthetic COPs. In this paper, we report that both membrane recruitment of endosomal COPs and in vitro biogenesis of transport intermediates destined for late endosomes, depend on a cytosolic factor, which we identified as the small GTP-binding protein ARF1. Our data indicate that ARF1 does not act via activation of an endosomal phospholipase D. We also find that ARF1 membrane association is regulated by the endosomal pH, and that this controls the pH-dependent association of endosomal COPs. These studies thus show that ARF1 regulates COP functions in the endocytic pathway, and indicate that ARF1 acts as the cytosolic component of a transmembrane pH-sensing mechanism.
Collapse
Affiliation(s)
- F Gu
- Department of Biochemistry, Sciences II, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | | |
Collapse
|
37
|
Jones AT, Spiro DJ, Kirchhausen T, Melançon P, Wessling-Resnick M. Studies on the inhibition of endosome fusion by GTPgammaS-bound ARF. J Cell Sci 1999; 112 ( Pt 20):3477-85. [PMID: 10504296 DOI: 10.1242/jcs.112.20.3477] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Using a cell free assay, we have previously shown that ARF is not required for endosome fusion but that inhibition of fusion by GTPgammaS is dependent on a cytosolic pool of ARFs. Since ARF is proposed to function in intracellular membrane traffic by promoting vesicle biogenesis, and components of clathrin- and COP-coated vesicles have been localized on endosomal structures, we investigated whether ARF-mediated inhibition of early endosome fusion involves the recruitment or irreversible association of these proteins onto endosomal membranes. We now report that depletion of components of clathrin coated vesicles (clathrin, AP-1 and AP-2) or COPI vesicles (beta COP) does not affect the capacity of GTPgammaS-activated ARF to inhibit endosome fusion. Inhibition of fusion by activated ARF is also independent of endosomal acidification since assays performed in the presence of the vacuolar ATPase inhibitor bafilomycin A1 are equally sensitive to GTPgammaS-bound ARF. Finally, in contrast to reported effects on lysosomes, we demonstrate that ARF-GTPgammaS does not induce endosomal lysis. These combined data argue that sequestration of known coat proteins to membranes by activated ARF is not involved in the inhibition of early endosome fusion and that its capacity to inhibit fusion involves other specific interactions with the endosome surface. These results contrast with the mechanistic action of ARF on intra-Golgi transport and nuclear envelope assembly.
Collapse
Affiliation(s)
- A T Jones
- Department of Nutrition, Harvard School of Public Health, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
38
|
Londoño I, Marshansky V, Bourgoin S, Vinay P, Bendayan M. Expression and distribution of adenosine diphosphate-ribosylation factors in the rat kidney. Kidney Int 1999; 55:1407-16. [PMID: 10201005 DOI: 10.1046/j.1523-1755.1999.00365.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Adenosine diphosphate (ADP)-ribosylation factors (ARFs) are small guanosine triphosphatases involved in membrane traffic regulation. Aiming to explore the possible involvement of ARF1 and ARF6 in the reabsorptive properties of the nephron, we evaluated their distribution along the different renal epithelial segments. METHODS ARFs were detected by immunofluorescence and immunogold cytochemistry on renal sections, using specific anti-ARF antibodies. RESULTS ARF1 was detected in proximal and distal tubules, thick ascending limbs of Henle's loops, and cortical and medullary collecting ducts. By immunofluorescence, labeling was mostly localized to the cell cytoplasm, particularly in Golgi areas. By electron microscopy, the Golgi apparatus and the endosomal compartment of proximal and distal tubular cells were labeled. ARF6 immunofluorescence was observed in brush border membranes and the cytoplasm of proximal convoluted tubular cells, whereas it was restricted to the apical border of proximal straight tubules. ARF6 immunogold labeling was detected over microvilli and endocytic compartments of proximal tubular cells. CONCLUSIONS This study demonstrates the following: (a) the heterogeneous distributions of ARF1 and ARF6 along the nephron, (b) the existence of cytosolic and membrane-bound forms for both ARFs, and (c) their association with microvilli and endocytic compartments, suggesting an active participation in renal reabsorption.
Collapse
Affiliation(s)
- I Londoño
- Department of Pathology and Cell Biology, Université de Montréal, Quebec, Canada
| | | | | | | | | |
Collapse
|
39
|
Jayadev S, Petranka JG, Cheran SK, Biermann JA, Barrett JC, Murphy E. Reduced capacitative calcium entry correlates with vesicle accumulation and apoptosis. J Biol Chem 1999; 274:8261-8. [PMID: 10075732 DOI: 10.1074/jbc.274.12.8261] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A preneoplastic variant of Syrian hamster embryo cells, sup(+), exhibits decreased endoplasmic reticulum calcium levels and subsequently undergoes apoptosis in low serum conditions (Preston, G. A., Barrett, J. C., Biermann, J. A., and Murphy, E. (1997) Cancer Res. 57, 537-542). This decrease in endoplasmic reticulum calcium appears to be due, at least in part, to reduced capacitative calcium entry at the plasma membrane. Thus we investigated whether inhibition of capacitative calcium entry per se could reduce endoplasmic reticulum calcium and induce apoptosis of cells. We find that treatment with either SKF96365 (30-100 microM) or cell-impermeant 1,2-bis(o-amino-5-bromophenoxy)ethane-N,N,N', N'-tetraacetic acid (5-10 mM) is able to induce apoptosis of cells in conditions where apoptosis does not normally occur. Because previous work has implicated vesicular trafficking as a mechanism of regulating capacitative calcium entry, we investigated whether disruption of vesicular trafficking could lead to decreased capacitative calcium entry and subsequent apoptosis of cells. Coincident with low serum-induced apoptosis, we observed an accumulation of vesicles within the cell, suggesting deregulated vesicle trafficking. Treatment of cells with bafilomycin (30-100 nM), an inhibitor of the endosomal proton ATPase, produced an accumulation of vesicles, decreased capacitative entry, and induced apoptosis. These data suggest that deregulation of vesicular transport results in reduced capacitative calcium entry which in turn results in apoptosis.
Collapse
Affiliation(s)
- S Jayadev
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Huang CF, Buu LM, Yu WL, Lee FJ. Characterization of a novel ADP-ribosylation factor-like protein (yARL3) in Saccharomyces cerevisiae. J Biol Chem 1999; 274:3819-27. [PMID: 9920936 DOI: 10.1074/jbc.274.6.3819] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ADP-ribosylation factors (ARFs) are highly conserved, approximately 20-kDa guanine nucleotide-binding proteins that enhance the ADP-ribosyltransferase activity of cholera toxin and have an important role in vesicular transport. Several cDNAs for ARF-like proteins (ARLs) have been cloned from human, Drosophila, rat, and yeast, although the biological function(s) of ARLs is unknown. We have identified a yeast gene (yARL3) encoding a protein that is structurally related (>43% identical) to the mammalian ARF-like protein ARP. Biochemical studies of purified recombinant yARL3 protein revealed properties similar to those of ARF and ARL proteins, including the ability to bind and hydrolyze GTP. Like other ARLs, recombinant yARL3 did not stimulate cholera toxin-catalyzed auto-ADP-ribosylation. Anti-yARL3 antibodies did not cross-react with yARFs or yARL1. yARL3 was not essential for cell viability, but disruption of yARL3 resulted in cold-sensitive cell growth. At the nonpermissive temperature, processing of alkaline phosphatase and carboxypeptidase Y in arl3 mutant was slowed. yARL3 might be required for protein transport from endoplasmic reticulum to Golgi or from Golgi to vacuole at nonpermissive temperatures. On subcellular fractionation, unlike its mammalian homologue ARP, yARL3 was detected in the soluble fraction but not in the plasma membrane. Indirect immunofluorescence analysis revealed that yARL3 when overexpressed was associated in part with the endoplasmic reticulum-nuclear envelope. Thus, the structural and functional characteristics of yARL3 indicate that it may have a unique role(s) in vesicular trafficking.
Collapse
Affiliation(s)
- C F Huang
- Institute of Molecular Medicine, School of Medicine, National Taiwan University, 7 Chung Shan South Rd., Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
41
|
Abstract
Intracellular CFTR: Localization and Function. Physiol. Rev. 79, Suppl.: S175-S191, 1999. - There is considerable evidence that CFTR can function as a chloride-selective anion channel. Moreover, this function has been localized to the apical membrane of chloride secretory epithelial cells. However, because cystic fibrosis transmembrane conductance regulator (CFTR) is an integral membrane protein, it will also be present, to some degree, in a variety of other membrane compartments (including endoplasmic reticulum, Golgi stacks, endosomes, and lysosomes). An incomplete understanding of the molecular mechanisms by which alterations in an apical membrane chloride conductance could give rise to the various clinical manifestations of cystic fibrosis has prompted the suggestion that CFTR may also play a role in the normal function of certain intracellular compartments. A variety of intracellular functions have been attributed to CFTR, including regulation of membrane vesicle trafficking and fusion, acidification of organelles, and transport of small anions. This paper aims to review the evidence for localization of CFTR in intracellular organelles and the potential physiological consequences of that localization.
Collapse
Affiliation(s)
- N A Bradbury
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pennsylvania, USA
| |
Collapse
|
42
|
Abstract
Observation of the flow of material along the endocytic pathway has lead to the description of the basic architecture of the pathway and provided insight into the relationship between compartments. Significant advances have been made in the study of endocytic transport steps at the molecular level, of which studies of cargo selection, vesicle budding and membrane fusion events comprise the major part. Progress in this area has been driven by two approaches, yeast genetics and in vitro or cell-free assays, which reconstitute particular transport steps and allow biochemical manipulation. The complex protein machineries that control vesicle budding and fusion are significantly conserved between the secretory and endocytic pathways such that proteins that regulate particular steps are often part of a larger family of proteins which exercise a conserved function at other locations within the cell. Well characterized examples include vesicle coat proteins, rabs (small GTPases) and soluble N-ethylmaleimide-sensitive fusion protein (NSF) attachment protein (SNAP) receptors (SNAREs). Intracompartmental pH, lipid composition and cytoskeletal organization have also been identified as important determinants of the orderly flow of material within the endocytic pathway.
Collapse
Affiliation(s)
- M J Clague
- Physiological Laboratory, University of Liverpool, Crown Street, Liverpool L69 3BX, U.K.
| |
Collapse
|
43
|
Palokangas H, Ying M, Väänänen K, Saraste J. Retrograde transport from the pre-Golgi intermediate compartment and the Golgi complex is affected by the vacuolar H+-ATPase inhibitor bafilomycin A1. Mol Biol Cell 1998; 9:3561-78. [PMID: 9843588 PMCID: PMC25677 DOI: 10.1091/mbc.9.12.3561] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The effect of the vacuolar H+-ATPase inhibitor bafilomycin A1 (Baf A1) on the localization of pre-Golgi intermediate compartment (IC) and Golgi marker proteins was used to study the role of acidification in the function of early secretory compartments. Baf A1 inhibited both brefeldin A- and nocodazole-induced retrograde transport of Golgi proteins to the endoplasmic reticulum (ER), whereas anterograde ER-to-Golgi transport remained largely unaffected. Furthermore, p58/ERGIC-53, which normally cycles between the ER, IC, and cis-Golgi, was arrested in pre-Golgi tubules and vacuoles, and the number of p58-positive approximately 80-nm Golgi (coatomer protein I) vesicles was reduced, suggesting that the drug inhibits the retrieval of the protein from post-ER compartments. In parallel, redistribution of beta-coatomer protein from the Golgi to peripheral pre-Golgi structures took place. The small GTPase rab1p was detected in short pre-Golgi tubules in control cells and was efficiently recruited to the tubules accumulating in the presence of Baf A1. In contrast, these tubules showed no enrichment of newly synthesized, anterogradely transported proteins, indicating that they participate in retrograde transport. These results suggest that the pre-Golgi structures contain an active H+-ATPase that regulates retrograde transport at the ER-Golgi boundary. Interestingly, although Baf A1 had distinct effects on peripheral pre-Golgi structures, only more central, p58-containing elements accumulated detectable amounts of 3-(2, 4-dinitroanilino)-3'-amino-N-methyldipropylamine (DAMP), a marker for acidic compartments, raising the possibility that the lumenal pH of the pre-Golgi structures gradually changes in parallel with their translocation to the Golgi region.
Collapse
Affiliation(s)
- H Palokangas
- Department of Biochemistry and Molecular Biology, University of Bergen, Norway
| | | | | | | |
Collapse
|
44
|
Nordeng TW, Gorvel JP, Bakke O. Intracellular transport of molecules engaged in the presentation of exogenous antigens. Curr Top Microbiol Immunol 1998; 232:179-215. [PMID: 9557399 DOI: 10.1007/978-3-642-72045-1_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- T W Nordeng
- Department of Biology, University of Oslo, Norway
| | | | | |
Collapse
|
45
|
Henkel JR, Weisz OA. Influenza virus M2 protein slows traffic along the secretory pathway. pH perturbation of acidified compartments affects early Golgi transport steps. J Biol Chem 1998; 273:6518-24. [PMID: 9497387 DOI: 10.1074/jbc.273.11.6518] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
M2, an acid-activated ion channel, is an influenza A virus membrane protein required for efficient nucleocapsid release after viral fusion with the endosomal membrane. Recombinant M2 slows protein traffic through the Golgi complex (Sakaguchi, T., Leser, G. P)., and Lamb, R. A. (1996) J. Cell Biol. 133, 733-47). Despite its critical role in viral infection, little is known about the subcellular distribution of M2 or its fate following delivery to the plasma membrane (PM). We measured the kinetics of M2 transport in HeLa cells, and found that active M2 reached the PM considerably more slowly than inactive M2. In addition, M2 delayed intra-Golgi transport and cell surface delivery of influenza hemagglutinin (HA). We hypothesized that the effects of M2 on transport through non-acidified compartments are due to inefficient retrieval from the trans-Golgi of machinery required for intra-Golgi transport. In support of this, acutely activated M2 had no effect on intra-Golgi transport of HA, but still slowed HA delivery to the PM. Thus, M2 has an indirect effect on early transport steps, but a direct effect on late steps in PM delivery. These findings may help explain the conflicting and unexplained effects on protein traffic observed with other perturbants of intraorganelle pH such as weak bases and inhibitors of V-type ATPases.
Collapse
Affiliation(s)
- J R Henkel
- Laboratory of Epithelial Cell Biology, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania 15213-2500, USA
| | | |
Collapse
|
46
|
Haller T, Ortmayr J, Friedrich F, Völkl H, Dietl P. Dynamics of surfactant release in alveolar type II cells. Proc Natl Acad Sci U S A 1998; 95:1579-84. [PMID: 9465058 PMCID: PMC19102 DOI: 10.1073/pnas.95.4.1579] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/1997] [Indexed: 02/06/2023] Open
Abstract
Pulmonary surfactant, secreted via exocytosis of lamellar bodies (LB) by alveolar type II (AT II) cells, maintains low alveolar surface tension and is therefore essential for normal lung function. Here we describe real-time monitoring of exocytotic activity in these cells by visualizing and quantifying LB fusion with the plasma membrane (PM). Two approaches were used. First, fluorescence of LysoTracker Green DND-26 (LTG) in LB disappeared when the dye was released after exocytosis. Second, phospholipid staining by FM 1-43 resulted in bright fluorescence when this dye entered the LB through the fusion pore. Both processes were restricted to and colocalized with LB and occurred simultaneously. In AT II cells, FM 1-43 offered the unique advantage to independently define the moment and cellular location of single exocytotic events as well as the amount of material released, and to monitor its extracellular fate. Furthermore, both dyes could be used in combination with fura-2. The results indicate considerable diversity in the dynamics of LB exocytosis. In the majority of cells stimulated with ATP and isoproterenol, the first fusion of LB coincided with the rise of [Ca2+]i, but subsequent response of other LB in the same cell considerably outlasted this signal. In other cells, however, the onset of exocytosis was delayed by several minutes. After LB fusion, release of surfactant from LB into an aqueous solution was slow. In summary, stimulated exocytosis in AT II cells occurs at a much slower rate than in most other secretory cells but is still a more dynamic process than predicted from conventional measurements of surfactant released into cell supernatants.
Collapse
Affiliation(s)
- T Haller
- Department of Physiology, University of Innsbruck, A-6020 Innsbruck, Austria
| | | | | | | | | |
Collapse
|
47
|
Lee FJ, Huang CF, Yu WL, Buu LM, Lin CY, Huang MC, Moss J, Vaughan M. Characterization of an ADP-ribosylation factor-like 1 protein in Saccharomyces cerevisiae. J Biol Chem 1997; 272:30998-1005. [PMID: 9388248 DOI: 10.1074/jbc.272.49.30998] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
ADP-ribosylation factors (ARFs) are highly conserved approximately 20-kDa guanine nucleotide-binding proteins that enhance the ADP-ribosyltransferase activity of cholera toxin and are believed to participate in vesicular transport in both exocytic and endocytic pathways. Several ARF-like proteins (ARLs) have been cloned from Drosophila, rat, and human; however, the biological functions of ARLs are unknown. We have identified a yeast gene (ARL1) encoding a protein that is structurally related (>60% identical) to human, rat, and Drosophila ARL1. Biochemical analyses of purified recombinant yeast ARL1 (yARL1) protein revealed properties similar to those ARF and ARL1 proteins, including the ability to bind and hydrolyze GTP. Like other ARLs, recombinant yARL1 protein did not stimulate cholera toxin-catalyzed auto-ADP-ribosylation. yARL1 was not recognized by antibodies against mammalian ARLs or yeast ARFs. Anti-yARL1 antibodies did not cross-react with yeast ARFs, but did react with human ARLs. On subcellular fractionation, yARL1, similar to yARF1, was localized to the soluble fraction. The amino terminus of yARL1, like that of ARF, was myristoylated. Unlike Drosophila Arl1, yeast ARL1 was not essential for cell viability. Like rat ARL1, yARL1 might be associated in part with the Golgi complex. However, yARL1 was not required for endoplasmic reticulum-to-Golgi protein transport, and it may offer an opportunity to define an ARL function in another kind of vesicular trafficking, such as the regulated secretory pathway.
Collapse
Affiliation(s)
- F J Lee
- Institute of Molecular Medicine, School of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Fernando KC, Gregory RB, Katsis F, Kemp BE, Barritt GJ. Evidence that a low-molecular-mass GTP-binding protein is required for store-activated Ca2+ inflow in hepatocytes. Biochem J 1997; 328 ( Pt 2):463-71. [PMID: 9371702 PMCID: PMC1218942 DOI: 10.1042/bj3280463] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The roles of a monomeric GTP-binding regulatory protein in the activation of store-activated plasma membrane Ca2+ channels and in the release of Ca2+ from the smooth endoplasmic reticulum (SER) in rat liver parenchymal cells were investigated with the use of freshly isolated rat hepatocytes and rat liver microsomes. A low concentration (approx. 130 microM intracellular) of guanosine 5'-[gamma-thio]triphosphate (GTP[S]) activated Ca2+ inflow in intact hepatocytes in the absence of an agonist, whereas a high concentration (approx. 530 microM intracellular) of GTP-S- or guanosine 5'-[betagamma-imido]triphosphate (p[NH]ppG) inhibited the Ca2+ inflow induced by inhibitors of the activity of the endoplasmic-reticulum Ca2+-ATPase (SERCA) and by vasopressin. GTP (530 microM) prevented the inhibition of Ca2+ inflow by GTP-S- and p[NH]ppG. Brefeldin A and the peptide human Arf-1-(2-17), which inhibit many functions of ADP ribosylation factor (Arf) proteins, inhibited the Ca2+ inflow induced by SERCA inhibitors and vasopressin, and altered the profile of Ca2+ release from the SER. These effects were observed at concentrations of Brefeldin A and Arf-1-(2-17) comparable with those that inhibit the functions of Arf proteins in other systems. Succinylated Arf-1-(2-17) had a negligible effect on Ca2+ inflow. GTP[S] and Arf-1-(2-17) completely inhibited the synergistic action of GTP and Ins(1,4,5)P3 in releasing 45Ca2+ from rat liver microsomes loaded with 45Ca2+. AlF4(-) (under conditions expected to activate trimeric G-proteins) and succinylated Arf-1-(2-17) had no effect on GTP/Ins(1,4,5))3-induced 45Ca2+ release, and a mastoparan analogue caused partial inhibition. Arf-1-(2-17) did not inhibit 45Ca2+ release induced by either thapsigargin or ionomycin. It is concluded that a low-molecular-mass G-protein, most probably a member of the Arf protein family, is required for store-activated Ca2+ inflow in rat hepatocytes. The idea that the role of this G-protein is to maintain a region of the SER in the correct intracellular location is discussed briefly.
Collapse
Affiliation(s)
- K C Fernando
- Department of Medical Biochemistry, School of Medicine, Faculty of Health Sciences, Flinders University, G.P.O. Box 2100, Adelaide, South Australia, 5001, Australia
| | | | | | | | | |
Collapse
|
49
|
Marshansky V, Bourgoin S, Londoño I, Bendayan M, Maranda B, Vinay P. Receptor-mediated endocytosis in kidney proximal tubules: recent advances and hypothesis. Electrophoresis 1997; 18:2661-76. [PMID: 9580051 DOI: 10.1002/elps.1150181423] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Preparation of kidney proximal tubules in suspension allows the study of receptor-mediated endocytosis, protein reabsorption, and traffic of endosomal vesicles. The study of tubular protein transport in vitro coupled with that of the function of endosomal preparation offers a unique opportunity to investigate a receptor-mediated endocytosis pathway under physiological and pathological conditions. We assume that receptor-mediated endocytosis of albumin in kidney proximal tubules in situ and in vitro can be regulated, on the one hand, by the components of the acidification machinery (V-type H+-ATPase, Cl(-)-channel and Na+/H+-exchanger), giving rise to formation and dissipation of a proton gradient in endosomal vesicles, and, on the other hand, by small GTPases of the ADP-ribosylation factor (Arf)-family. In this paper we thus analyze the recent advances of the studies of cellular and molecular mechanisms underlying the identification, localization, and function of the acidification machinery (V-type H+-ATPase, Cl(-)-channel) as well as Arf-family small GTPases and phospholipase D in the endocytotic pathway of kidney proximal tubules. Also, we explore the possible functional interaction between the acidification machinery and Arf-family small GTPases. Finally, we propose the hypothesis of the regulation of translocation of Arf-family small GTPases by an endosomal acidification process and its role during receptor-mediated endocytosis in kidney proximal tubules. The results of this study will not only enhance our understanding of the receptor-mediated endocytosis pathway in kidney proximal tubules under physiological conditions but will also have important implications with respect to the functional consequences under some pathological circumstances. Furthermore, it may suggest novel targets and approaches in the prevention and treatment of various diseases (cystic fibrosis, Dent's disease, diabetes and autosomal dominant polycystic kidney disease).
Collapse
Affiliation(s)
- V Marshansky
- Centre de Recherche L.-C. Simard, Centre Hospitalier de l'Université de Montréal, Université de Montréal, Québec, Canada.
| | | | | | | | | | | |
Collapse
|
50
|
Jilling T, Kirk KL. The biogenesis, traffic, and function of the cystic fibrosis transmembrane conductance regulator. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 172:193-241. [PMID: 9102394 DOI: 10.1016/s0074-7696(08)62361-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cyclic AMP-activated chloride channel that is encoded by the gene that is defective in cystic fibrosis. This ion channel resides at the luminal surfaces and in endosomes of epithelial cells that line the airways, intestine, and a variety of exocrine glands. In this article we discuss current hypotheses regarding how CFTR functions as a regulated ion channel and how CF mutations lead to disease. We also evaluate the emerging notion that CFTR is a multifunctional protein that is capable of regulating epithelial physiology at several levels, including the modulation of other ion channels and the regulation of intracellular membrane traffic. Elucidating the various functions of CFTR should contribute to our understanding of the pathology in cystic fibrosis, the most common lethal genetic disorder among Caucasians.
Collapse
Affiliation(s)
- T Jilling
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham 35294, USA
| | | |
Collapse
|