1
|
Zhang X, Zhang B, Masoudi A, Wang X, Xue X, Li M, Xiao Q, Wang M, Liu J, Wang H. Comprehensive analysis of protein expression levels and phosphorylation levels in host skin in response to tick (Haemaphysalis longicornis) bite. J Proteomics 2020; 226:103898. [PMID: 32682108 DOI: 10.1016/j.jprot.2020.103898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 11/15/2022]
Abstract
Ticks are parasitic arthropods that suck blood from the surface of most vertebrates. They can transmit a variety of pathogens. The blood sucking of ticks causes varying degrees of damage to the skin of the host. Proteins related to immune regulation, vascular repair, and wound healing in mammalian skin respond to tick bites by regulating their expression and post-translational modifications to protect the skin from injury. Phosphorylation of proteins, as the most common post-translational modification of proteins, plays an important role in the rapid regulation of cell signal transduction, gene expression and cell cycle. To systematically explore the molecular regulatory mechanisms employed by mammalian skin to resist tick bites, larval, nymphal, and adult Haemaphysalis longicornis were used to bite the skin tissues of healthy rabbits in the present study. The quantitative proteomic technology data-independent acquisition was then carried out to investigate in depth the changes in protein expression and phosphorylation in rabbit skin after tick bite. The results showed that among the 4034 proteins and 1795 phosphorylated proteins identified, a total of 202 proteins and 435 phosphorylation sites were changed after H. longicornis bite. In order to provide convenience for sucking blood, active substances in the saliva of H. longicornis injected into the rabbit's skin can cause the expression level of trichohyalin and peptidyl arginine deiminase 3 in the skin of the host downregulate, which can make the host hair loss and regeneration disorders. At the same time, the active substances in saliva of the H. longicornis led to the phosphorylation of microtubule actin cross-linking factor 1 in the host's skin and further inactivation, so as to delay the healing of the host wound. In response to tick bites, the host skin promotes coagulation through high expression of fibrinogen and fibronectin, and vascular repair through high expression of integrin linked kinase and tenascin C, as well as accelerated phosphorylation of the phosphorylated protein Nck adaptor protein 1, and wound healing through high expression of ezrin and integrin. The upregulation of proteins such as coronin, NADPH oxidase, calnexin, and calreticulin and phosphorylation level of IL-4R in the host skin after the H. longicornis bite indicated that the immune response was playing an important defensive role in response to tick bites. Meanwhile, we found that the upregulated two lectins, mannose receptor C-type 1 and DC-SIGN, may serve as molecular makers to identify and monitor whether the skin is bitten by ticks. SIGNIFICANCE: Haemaphysalis longicornis are parasitic arthropods that suck blood from the surface of most vertebrates. They can transmit a variety of pathogens and are harmful to humans and livestock. The present study is the first quantitative proteomic study on protein expression levels in the rabbit skin after infection by H. longicornis. It is also the first quantitative phosphoproteomic study in the host skin infected by ticks. In this study, we found that tick bites cause the host hair loss and regeneration disorders. For resisting tick bite, the host activates the immune response and initiates vascular repair and wound-healing systems. In addition, some phosphorylated proteins promote host immunity and vascular repair. These results can help us further understand the defence mechanism of the host against tick bites, provide a basis for the development of an anti-tick vaccine, the development of anti-tick drugs, and the diagnosis of tick-borne diseases.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Baowen Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Abolfazl Masoudi
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Xiaoshuang Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Xiaomin Xue
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Mengxue Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Qi Xiao
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Minjing Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China.
| | - Hui Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China.
| |
Collapse
|
2
|
Huang Y, Hui K, Jin M, Yin S, Wang W, Ren Q. Two endoplasmic reticulum proteins (calnexin and calreticulin) are involved in innate immunity in Chinese mitten crab (Eriocheir sinensis). Sci Rep 2016; 6:27578. [PMID: 27279413 PMCID: PMC4899775 DOI: 10.1038/srep27578] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 05/23/2016] [Indexed: 01/19/2023] Open
Abstract
Calnexin (Cnx) and calreticulin (Crt), which are important chaperones in the endoplasmic reticulum (ER), participate in the folding and quality control of client proteins. Cnx and Crt identified from Chinese mitten crab (Eriocheir sinensis) are designated as EsCnx and EsCrt, respectively. EsCnx and EsCrt are expressed in the hemocyte, hepatopancrea, gill, and intestine at the mRNA and protein level. Immunofluorescence analysis indicated that EsCnx and EsCRT are located in the ER. Moreover, the mRNA and protein expression levels of EsCnx and EsCrt were altered by challenge with lipopolysaccharides (LPS), peptidoglycans (PGN), Staphyloccocus aureus, and Vibrio parahaemolyticus. Recombinant EsCnx and EsCrt (rEsCnx and rEsCrt, respectively) proteins can bind to various Gram-positive and Gram-negative bacteria, as well as to different polysaccharides (LPS and PGN). rEsCnx and rEsCrt assisted in the clearance of V. parahaemolyticus in vivo, and the clearance efficiency was impaired after silencing of EsCnx and EsCrt. Our results suggest that the two ER proteins are involved in anti-bacterial immunity in E. sinensis.
Collapse
Affiliation(s)
- Ying Huang
- Jiangsu Key Laboratory for Biodiversity &Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Kaimin Hui
- Jiangsu Key Laboratory for Biodiversity &Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Min Jin
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, SOA, Xiamen 361005, China
| | - Shaowu Yin
- Jiangsu Key Laboratory for Biodiversity &Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China.,Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, PR China
| | - Wen Wang
- Jiangsu Key Laboratory for Biodiversity &Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Qian Ren
- Jiangsu Key Laboratory for Biodiversity &Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| |
Collapse
|
3
|
Hodas JJL, Nehring A, Höche N, Sweredoski MJ, Pielot R, Hess S, Tirrell DA, Dieterich DC, Schuman EM. Dopaminergic modulation of the hippocampal neuropil proteome identified by bioorthogonal noncanonical amino acid tagging (BONCAT). Proteomics 2012; 12:2464-76. [PMID: 22744909 DOI: 10.1002/pmic.201200112] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Local protein synthesis and its activity-dependent modulation via dopamine receptor stimulation play an important role in synaptic plasticity - allowing synapses to respond dynamically to changes in their activity patterns. We describe here the metabolic labeling, enrichment, and MS-based identification of candidate proteins specifically translated in intact hippocampal neuropil sections upon treatment with the selective D1/D5 receptor agonist SKF81297. Using the noncanonical amino acid azidohomoalanine and click chemistry, we identified over 300 newly synthesized proteins specific to dendrites and axons. Candidates specific for the SKF81297-treated samples were predominantly involved in protein synthesis and synapse-specific functions. Furthermore, we demonstrate a dendrite-specific increase in proteins synthesis upon application of SKF81297. This study provides the first snapshot in the dynamics of the dopaminergic hippocampal neuropil proteome.
Collapse
Affiliation(s)
- Jennifer J L Hodas
- Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Calì T, Vanoni O, Molinari M. The endoplasmic reticulum crossroads for newly synthesized polypeptide chains. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2008; 83:135-79. [PMID: 19186254 DOI: 10.1016/s0079-6603(08)00604-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tito Calì
- Institute for Research in Biomedicine, Bellizona, Switzerland
| | | | | |
Collapse
|
5
|
van Lith M, Benham AM. The DMalpha and DMbeta chain cooperate in the oxidation and folding of HLA-DM. THE JOURNAL OF IMMUNOLOGY 2007; 177:5430-9. [PMID: 17015729 DOI: 10.4049/jimmunol.177.8.5430] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
HLA-DM (DM) is a heterodimeric MHC molecule that catalyzes the peptide loading of classical MHC class II molecules in the endosomal/lysosomal compartments of APCs. Although the function of DM is well-established, little is known about how DMalpha and beta-chains fold, oxidize, and form a complex in the endoplasmic reticulum (ER). In this study, we show that glycosylation promotes, but is not essential for, DMalphabeta ER exit. However, glycosylation of DMalpha N15 is required for oxidation of the alpha-chain. The DMalpha and beta-chains direct each others fate: single DMalpha chains cannot fully oxidize without DMbeta, while DMbeta forms disulfide-linked homodimers without DMalpha. Correct oxidation and subsequent ER egress depend on the unique DMbeta C25 and C35 residues. This suggests that the C25-C35 disulfide bond in the peptide-binding domain overcomes the need for stabilizing peptides required by other MHC molecules.
Collapse
Affiliation(s)
- Marcel van Lith
- Department of Biological Sciences, University of Durham, Durham, United Kingdom
| | | |
Collapse
|
6
|
Barel MT, Hassink GC, van Voorden S, Wiertz EJHJ. Human cytomegalovirus-encoded US2 and US11 target unassembled MHC class I heavy chains for degradation. Mol Immunol 2006; 43:1258-66. [PMID: 16098592 DOI: 10.1016/j.molimm.2005.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Accepted: 07/06/2005] [Indexed: 02/07/2023]
Abstract
Surface MHC class I molecules serve important immune functions as ligands for both T and NK cell receptors for the elimination of infected and malignant cells. In order to reach the cell surface, MHC class I molecules have to fold properly and form trimers consisting of a heavy chain (HC), a beta2-microglobulin light chain and an 8-10-mer peptide. A panel of ER chaperones facilitates the folding and assembly process. Incorrectly assembled or folded MHC class I HCs are detected by the ER quality-control system and transported to the cytosol for degradation by proteasomes. In human cytomegalovirus-infected cells, two viral proteins are synthesized, US2 and US11, which target MHC class I HCs for proteasomal degradation. It is unknown at which stage of MHC class I folding and complex formation US2 and US11 come into play. In addition, it is unclear if the disposal takes place via the same pathway through which proteins are removed that fail to pass ER quality control. In this study, we show with a beta2m-deficient cell line that US2 and US11 both target unassembled HCs for degradation. This suggests that US2 and US11 both act at an early stage of MHC class I complex formation. In addition, our data indicate that US11-mediated degradation involves mechanisms that are similar to those normally used to remove terminally misfolded HCs.
Collapse
Affiliation(s)
- Martine T Barel
- Department of Medical Microbiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | | | | | | |
Collapse
|
7
|
Nelson CA, Pekosz A, Lee CA, Diamond MS, Fremont DH. Structure and intracellular targeting of the SARS-coronavirus Orf7a accessory protein. Structure 2005; 13:75-85. [PMID: 15642263 PMCID: PMC7125549 DOI: 10.1016/j.str.2004.10.010] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Revised: 10/18/2004] [Accepted: 10/19/2004] [Indexed: 11/17/2022]
Abstract
The open reading frame (ORF) 7a of the SARS-associated coronavirus (SARS-CoV) encodes a unique type I transmembrane protein of unknown function. We have determined the 1.8 Å resolution crystal structure of the N-terminal ectodomain of orf7a, revealing a compact seven-stranded β sandwich unexpectedly similar in fold and topology to members of the Ig superfamily. We also demonstrate that, in SARS-CoV- infected cells, the orf7a protein is expressed and retained intracellularly. Confocal microscopy studies using orf7a and orf7a/CD4 chimeras implicate the short cytoplasmic tail and transmembrane domain in trafficking of the protein within the endoplasmic reticulum and Golgi network. Taken together, our findings provide a structural and cellular framework in which to explore the role of orf7a in SARS-CoV pathogenesis.
Collapse
Affiliation(s)
- Christopher A. Nelson
- Department of Pathology and Immunology , 660 South Euclid Avenue, St. Louis, Missouri 63110
| | - Andrew Pekosz
- Department of Pathology and Immunology , 660 South Euclid Avenue, St. Louis, Missouri 63110
- Department of Molecular Microbiology , 660 South Euclid Avenue, St. Louis, Missouri 63110
| | - Chung A. Lee
- Department of Pathology and Immunology , 660 South Euclid Avenue, St. Louis, Missouri 63110
| | - Michael S. Diamond
- Department of Pathology and Immunology , 660 South Euclid Avenue, St. Louis, Missouri 63110
- Department of Molecular Microbiology , 660 South Euclid Avenue, St. Louis, Missouri 63110
- Department of Medicine , 660 South Euclid Avenue, St. Louis, Missouri 63110
| | - Daved H. Fremont
- Department of Pathology and Immunology , 660 South Euclid Avenue, St. Louis, Missouri 63110
- Department of Biochemistry , and Molecular Biophysics , Washington University School of Medicine , 660 South Euclid Avenue , St. Louis, Missouri 63110
- Ph: (314) 747-6547; Fax: (314) 362-8888
| |
Collapse
|
8
|
Schröder M, Kaufman RJ. ER stress and the unfolded protein response. Mutat Res 2005; 569:29-63. [PMID: 15603751 DOI: 10.1016/j.mrfmmm.2004.06.056] [Citation(s) in RCA: 1316] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Accepted: 06/10/2004] [Indexed: 02/08/2023]
Abstract
Conformational diseases are caused by mutations altering the folding pathway or final conformation of a protein. Many conformational diseases are caused by mutations in secretory proteins and reach from metabolic diseases, e.g. diabetes, to developmental and neurological diseases, e.g. Alzheimer's disease. Expression of mutant proteins disrupts protein folding in the endoplasmic reticulum (ER), causes ER stress, and activates a signaling network called the unfolded protein response (UPR). The UPR increases the biosynthetic capacity of the secretory pathway through upregulation of ER chaperone and foldase expression. In addition, the UPR decreases the biosynthetic burden of the secretory pathway by downregulating expression of genes encoding secreted proteins. Here we review our current understanding of how an unfolded protein signal is generated, sensed, transmitted across the ER membrane, and how downstream events in this stress response are regulated. We propose a model in which the activity of UPR signaling pathways reflects the biosynthetic activity of the ER. We summarize data that shows that this information is integrated into control of cellular events, which were previously not considered to be under control of ER signaling pathways, e.g. execution of differentiation and starvation programs.
Collapse
Affiliation(s)
- Martin Schröder
- School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, UK
| | | |
Collapse
|
9
|
Verma R, Ramnath J, Clemens F, Kaspin LC, Landolph JR. Molecular biology of nickel carcinogenesis: identification of differentially expressed genes in morphologically transformed C3H10T1/2 Cl 8 mouse embryo fibroblast cell lines induced by specific insoluble nickel compounds. Mol Cell Biochem 2004; 255:203-16. [PMID: 14971661 DOI: 10.1023/b:mcbi.0000007276.94488.3d] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Inhalation of mixtures of insoluble and soluble nickel compounds by humans during nickel refining has been associated with excess lung and nasal sinus cancers. Insoluble nickel subsulfide (Ni3S2) and nickel oxide (NiO) are carcinogenic to rodents by inhalation. We previously showed that insoluble Ni3S2, crystalline nickel monosulfide (NiS), and green (high temperature, HT) and black (low temperature, LT) NiO, induced morphological transformation in cultured C3H/10T1/2 Cl 8 (10T1/2) mouse embryo cells. To understand molecular mechanisms of carcinogenesis by insoluble nickel compounds, we used random, arbitrarily primed-polymerase chain reaction (RAP-PCR) mRNA differential display and identified nine cDNA fragments that were differentially expressed between nontransformed and nickel-transformed cell lines in approximately 10.0% of the total mRNA. Expression of the calnexin gene (encoding a type I membrane protein/molecular chaperone), the ect-2 proto-oncogene, and the stress-inducible gene, Wdr1, was upregulated. Expression of six genes--the vitamin D interacting protein/thyroid hormone activating protein 80 (DRIP/TRAP-80) gene, the insulin-like growth factor receptor 1 (IGFR1) gene, the small nuclear activating protein (SNAP C3) gene, and three unknown genes, was down-regulated, in nickel-transformed cell lines. We hypothesize that these resulting aberrations in gene expression could contribute to the induction and/or maintenance of morphological transformation induced by specific insoluble nickel compounds.
Collapse
Affiliation(s)
- Rini Verma
- Department of Molecular Microbiology and Immunology, USC/Norris Comprehensive Cancer Center Keck School of Medicine, University of Southern California, Los Angeles, CA 90031, USA
| | | | | | | | | |
Collapse
|
10
|
Momburg F, Tan P. Tapasin-the keystone of the loading complex optimizing peptide binding by MHC class I molecules in the endoplasmic reticulum. Mol Immunol 2002; 39:217-33. [PMID: 12200052 DOI: 10.1016/s0161-5890(02)00103-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
MHC class I molecules are loaded with peptides that mostly originate from the degradation of cytosolic protein antigens and that are translocated across the endoplasmic reticulum (ER) membrane by the transporter associated with antigen processing (TAP). The ER-resident molecule tapasin (Tpn) is uniquely dedicated to tether class I molecules jointly with the chaperone calreticulin (Crt) and the oxidoreductase ERp57 to TAP. As learned from the study of a Tpn-deficient cell line and from mice harboring a disrupted Tpn gene, the transient association of class I molecules with Tpn and TAP is critically important for the stabilization of class I molecules and the optimization of the peptide cargo presented to cytotoxic T cells. The different functions of molecular domains of Tpn and the highly coordinated formation of the TAP-associated peptide loading complex will also be discussed in this review.
Collapse
Affiliation(s)
- F Momburg
- Department of Molecular Immunology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | | |
Collapse
|
11
|
Landolph JR, Verma A, Ramnath J, Clemens F. Molecular biology of deregulated gene expression in transformed C3H/10T1/2 mouse embryo cell lines induced by specific insoluble carcinogenic nickel compounds. ENVIRONMENTAL HEALTH PERSPECTIVES 2002; 110 Suppl 5:845-850. [PMID: 12426144 PMCID: PMC1241258 DOI: 10.1289/ehp.02110s5845] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In the past, exposure of workers to mixtures of soluble and insoluble nickel compounds by inhalation during nickel refining correlated with increased incidences of lung and nasal cancers. Insoluble nickel subsulfide and nickel oxide (NiO) are carcinogenic in animals by inhalation; soluble nickel sulfate is not. Particles of insoluble nickel compounds were phagocytized by C3H/10T1/2 mouse embryo cells and induced morphological transformation in these cells with the following order of potency: NiO (black) > NiO (green) > nickel subsulfide. Foci induced by black/green NiO and nickel monosulfide developed into anchorage-independent transformed cell lines. Random arbitrarily primed-polymerase chain reaction mRNA differential display showed that nine c-DNA fragments are differentially expressed between nontransformed and nickel compound-transformed 10T1/2 cell lines in 6% of total mRNA; 130 genes would be differentially expressed in 100% of the mRNA. Fragment R3-2 was a sequence in the mouse calnexin gene, fragment R3-1 a portion of the Wdr1 gene, and fragment R2-4 a portion of the ect-2 protooncogene. These three genes were overexpressed in transformed cell lines. Fragment R1-2 was 90% homologous to a fragment of the DRIP/TRAP-80 (vitamin D receptor interacting protein/thyroid hormone receptor-activating protein 80) genes and was expressed in nontransformed but not in nickel-transformed cell lines. Specific insoluble carcinogenic nickel compounds are phagocytized into 10T1/2 cells and likely generate oxygen radicals, which would cause mutations in protooncogenes, and chromosome breakage, and mutations in tumor suppressor genes, inactivating them. These compounds also induce methylation of promoters of tumor suppressor genes, inactivating them. This could lead to permanent overexpresssion of the ect-2, calnexin, and Wdr1 genes and suppression of expression of the DRIP/TRAP-80 gene that we observed, which likely contribute to induction and maintenance of transformed phenotypes.
Collapse
Affiliation(s)
- Joseph R Landolph
- Department of Molecular Microbiology and Immunology, Cancer Research Laboratory, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1303 N. Mission Road, Los Angeles, CA 90031, USA.
| | | | | | | |
Collapse
|
12
|
Pellegrini S, Censini S, Guidotti S, Iacopetti P, Rocchi M, Bianchi M, Covacci A, Gabrielli F. A human short-chain dehydrogenase/reductase gene: structure, chromosomal localization, tissue expression and subcellular localization of its product. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1574:215-22. [PMID: 11997086 DOI: 10.1016/s0167-4781(01)00323-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have previously described the cloning of Hep27, a short-chain dehydrogenase/reductase, which is synthesized in human hepatoblastoma HepG2 cells following growth arrest induced by butyrate treatment. The present report describes the cloning, the structure and the physical and cytogenetic mapping of the gene coding for Hep27. We also show that Hep27 is synthesized in a limited number of human normal tissues and that it is localized in the nuclei and cytoplasm of HepG2 cells.
Collapse
Affiliation(s)
- Silvia Pellegrini
- Department of Experimental Pathology and Medical Biotechnology, University of Pisa, Via S. Zeno 37, I-56127 Pisa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Roth J. Protein N-glycosylation along the secretory pathway: relationship to organelle topography and function, protein quality control, and cell interactions. Chem Rev 2002; 102:285-303. [PMID: 11841244 DOI: 10.1021/cr000423j] [Citation(s) in RCA: 334] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jürgen Roth
- Division of Cell and Molecular Pathology, Department of Pathology, University of Zurich, CH-8091 Zurich, Switzerland.
| |
Collapse
|
14
|
Abstract
Apolipoprotein E (apoE) plays a role in the distribution of lipid within many organs and cell types in the human body, including neurons and astrocytes of the central nervous system (CNS). The apoE4 isoform is also a genetic risk factor for late onset Alzheimer's disease (AD). However, the mechanism by which apoE is involved in AD is largely unknown. In order to understand how apoE is involved in the distribution of lipid in the CNS, we sought to investigate not only the origin of intraneuronal apoE, but the pathway by which it is processed once synthesized. We have established that human neurons can synthesize apoE in the presence of astrocytes, and that intracellular neuronal apoE is processed through the rough endoplasmic reticulum, golgi, and CD63-positive lysosomes where it may be stored before secretion. Our results also suggest that apoE synthesis is regulated by a feedback mechanism, controlled by the neuron itself. This regulatory mechanism may be essential to the maintenance of neuronal cholesterol concentrations and in turn membrane stability.
Collapse
Affiliation(s)
- R M Dekroon
- Neuroscience Unit, School of Biological Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | | |
Collapse
|
15
|
Chillarón J, Adán C, Haas IG. Mannosidase action, independent of glucose trimming, is essential for proteasome-mediated degradation of unassembled glycosylated Ig light chains. Biol Chem 2000; 381:1155-64. [PMID: 11209750 DOI: 10.1515/bc.2000.143] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In order to study the role of N-glycans in the ER-associated degradation of unassembled immunoglobulin light (Ig L) chains, we introduced N-glycan acceptor sites into the variable domain of the murine Ig L chain kappaNS1, which is unfolded in unassembled molecules. We investigated the fate of kappaNS1 glycosylated at position 70 (K70) and of a double mutant (kappa18/70) in stably transfected HeLa cells. Degradation of both chains was impaired by lactacystin, a specific inhibitor of the proteasome. The mannosidase inhibitor dMNJ also blocked degradation in a step preceding proteasome action, as did two protein synthesis inhibitors, cycloheximide and puromycin. In contrast, ER glucosidase inhibitors dramatically accelerated the degradation of the chains when added either pre- or posttranslationally. The accelerated degradation was sensitive to lactacystin, dMNJ and cycloheximide, too. None of these drugs, except lactacystin, affected the degradation of unglycosylated kappaNS1 chains. We conclude that ER mannosidases and proteasome activities, but not glucose trimming (and therefore, most likely not the calnexin/calreticulin UDP:glucose glycoprotein glucosyl transferase cycle), are essential for ER-associated degradation (ERAD) of soluble glycoproteins. A role for a short-lived protein, acting before or simultaneously to ER mannosidases, is suggested.
Collapse
|
16
|
Rothwell SW, Wassef NM, Alving CR, Rao M. Proteasome inhibitors block the entry of liposome-encapsulated antigens into the classical MHC class I pathway. Immunol Lett 2000; 74:141-52. [PMID: 10996390 DOI: 10.1016/s0165-2478(00)00206-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Liposome-encapsulated conalbumin (L(conalbumin)) is an antigen that is efficiently phagocytosed by bone marrow-derived macrophages and presented to effector cells as part of the major histocompatibility complex (MHC) class I complex. In this report, we show that the conalbumin component of L(conalbumin) is degraded to small peptide fragments and translocated to the area of the Golgi. Golgi localization is confirmed by co-localization of L(Texas red-conalbumin) (L(TR-conalbumin))with both NBD-ceramide, a lipid Golgi marker, and green fluorescent protein (GFP)-galactosyl transferase, a Golgi resident enzyme. Incubation of the cells with brefeldin A disrupts the Golgi and disperses the TR-conalbumin. Furthermore, when macrophages were incubated with another liposome-encapsulated antigen, L(ovalbumin), ovalbumin peptides were observed in the Golgi area and MHC class I-peptide complexes could be detected on the cell surface by both immunofluorescence microscopy and flow cytometry. The Golgi localization observed in vitro in cultured macrophages is mirrored by the in vivo uptake and Golgi localization of fluorescent L(conalbumin) in macrophages isolated from the spleen of a mouse injected with L(TR-conalbumin). The accumulation of peptide fragments in the Golgi is inhibited by the addition of the proteasome inhibitors, lactacystin and MG-132, demonstrating the role of the proteasome in this activity. In addition, when macrophages or a macrophage-derived cell line, are incubated with liposome-enccapsulated antigens and used as target cells in a cytotoxic T-cell (CTL) assay, the CTLs recognize the processed peptide-MHC complexes and kill the cells. In contrast, specific lysis of target cells by CTLs is inhibited when the target cells are first incubated with lactacystin. These results suggest that uptake and processing of L(antigen) follows the classical MHC class I pathway.
Collapse
Affiliation(s)
- S W Rothwell
- Department of Resuscitative Medicine, Walter Reed Army Institute of Research, Washington, DC, USA.
| | | | | | | |
Collapse
|
17
|
Ho SC, Chaudhuri S, Bachhawat A, McDonald K, Pillai S. Accelerated proteasomal degradation of membrane Ig heavy chains. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:4713-9. [PMID: 10779777 DOI: 10.4049/jimmunol.164.9.4713] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Membrane IgG H chains turn over considerably more rapidly than secretory Ig H chains in the 18-81 A2 pre-B cell line. This rapid degradation occurs in proteasomes. N-Glycosylated membrane Ig H chains accumulate in the endoplasmic reticulum in the presence of proteasomal inhibitors, suggesting that retrotranslocation and proteasomal degradation of membrane Ig H chains may be closely coupled processes. Accelerated proteasomal degradation of membrane Ig H chains was also observed in transfected nonlymphoid cells. At steady state, the membrane form of the H chain associates more readily with Bip and calnexin than its secretory counterpart. The preferential recognition of membrane, as opposed to secretory, Ig H chains by some endoplasmic reticulum chaperones, may provide an explanation for the accelerated proteasomal degradation of the former.
Collapse
Affiliation(s)
- S C Ho
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA 02129, USA
| | | | | | | | | |
Collapse
|
18
|
Taguchi T, Kiyokawa N, Sato N, Saito M, Fujimoto J. Characteristic expression of Hck in human B-cell precursors. Exp Hematol 2000; 28:55-64. [PMID: 10658677 DOI: 10.1016/s0301-472x(99)00127-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To identify molecules involved in signaling for early B-cell development, we investigated the expression of signal transduction-related proteins in B-cell progenitors. MATERIALS AND METHODS [corrected] Normal as well as leukemic B-cell progenitors were examined by immunoblotting and immunofluorescence study. RESULTS [corrected] In a survey of the expression of a broad range of signal transduction molecules, the Src-family protein tyrosine kinases were found to be differentially expressed in early B-cell differentiation. [corrected] Analysis of freshly prepared precursor-B acute lymphoblastic leukemia cells and B-lineage cell lines showed Hck and Lyn are major Src-family protein tyrosine kinases expressed in this type of leukemic blasts. [corrected] However, heterogeneity of Hck and Lyn expression was found in these cells, and precursor-B acute lymphoblastic leukemia cells subsequently were classified according to the expression pattern of Hck and Lyn as Hck/Lyn dual-negative, Hck-predominant, Hck/Lyn dual-positive, and Lyn-predominant. Further studies on normal B-lineage cells indicated that the Src-family protein tyrosine kinases are expressed sequentially in a differentiation-dependent fashion during B-cell ontogeny and that the predominant expression of Hck is a common feature in B-cell progenitors, whereas Lyn expression is more significant in mature B cells. CONCLUSIONS Although the biologic significance remains unknown, sequential expression of Src-family protein tyrosine kinases should play a role in regulation of early B-cell differentiation.
Collapse
Affiliation(s)
- T Taguchi
- Department of Pathology, National Children's Medical Research Center, Tokyo, Japan
| | | | | | | | | |
Collapse
|
19
|
Abstract
The endoplasmic reticulum (ER) is a major protein folding compartment for secreted, plasma membrane and organelle proteins. Each of these newly-synthesized polypeptides folds in a deterministic process, affected by the unique conditions that exist in the ER. An understanding of protein folding in the ER is a fundamental biomolecular challenge at two levels. The first level addresses how the amino acid sequence programs that polypeptide to efficiently arrive at a particular fold out of a multitude of alternatives, and how different sequences obtain similar folds. At the second level are the issues introduced by folding not in the cytosol, but in the ER, including the risk of aggregation in a molecularly crowded environment, accommodation of post-translational modifications and the compatibility with subsequent intracellular trafficking. This review discusses both the physicochemical and cell biological constraints of folding, which are the challenges that the ER molecular chaperones help overcome.
Collapse
Affiliation(s)
- F J Stevens
- Biosciences Division, Argonne National Lab, IL 60439, USA
| | | |
Collapse
|
20
|
Harris MR, Yu YYL, Kindle CS, Hansen TH, Solheim JC. Calreticulin and Calnexin Interact with Different Protein and Glycan Determinants During the Assembly of MHC Class I. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.11.5404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Before peptide binding, a variety of endoplasmic reticulum (ER) proteins are associated with class I including calnexin, TAP, calreticulin, and tapasin. Although the selective functions of any one of these ER proteins have been difficult to define, individually or in combination they perform two general chaperone functions for class I. They promote assembly of the class I heterotrimeric molecule (heavy (H) chain, β2m, and peptide) and they retain incompletely assembled complexes in the ER. In this study, we present evidence that calreticulin clearly differs from calnexin in how it associates with class I. Regarding the structural basis of the association, the oligosaccharide moiety in the α1 domain and the amino acid residue at position 227 in the α3 domain were both found to be critical for the interaction of class I with calreticulin. Interestingly, calreticulin displayed sensitivity to class I peptide binding even in TAP-deficient human or mouse cells. Thus, calreticulin is clearly more specific than calnexin in the structures and conformation of the class I molecule with which it can interact.
Collapse
Affiliation(s)
- Michael R. Harris
- *Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Yik Y. L. Yu
- *Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Cathy S. Kindle
- *Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Ted H. Hansen
- *Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Joyce C. Solheim
- †Department of Microbiology, University of South Dakota School of Medicine, Vermillion, SD 57069
| |
Collapse
|
21
|
Nordeng TW, Gorvel JP, Bakke O. Intracellular transport of molecules engaged in the presentation of exogenous antigens. Curr Top Microbiol Immunol 1998; 232:179-215. [PMID: 9557399 DOI: 10.1007/978-3-642-72045-1_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- T W Nordeng
- Department of Biology, University of Oslo, Norway
| | | | | |
Collapse
|
22
|
Momburg F, Hämmerling GJ. Generation and TAP-mediated transport of peptides for major histocompatibility complex class I molecules. Adv Immunol 1998; 68:191-256. [PMID: 9505090 DOI: 10.1016/s0065-2776(08)60560-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- F Momburg
- Department of Molecular Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | |
Collapse
|
23
|
Møgelsvang S, Simpson DJ. Changes in the levels of seven proteins involved in polypeptide folding and transport during endosperm development of two barley genotypes differing in storage protein localisation. PLANT MOLECULAR BIOLOGY 1998; 36:541-552. [PMID: 9484449 DOI: 10.1023/a:1005916427024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The Russian barley cultivar Nevsky lacks gamma 3 hordein and accumulates most of its hordein in the lumen of the endoplasmic reticulum and only a minor portion in the vacuole. In wild type barley and all other temperate cereals, storage proteins are deposited in the vacuole. F1 crosses revealed that the Nevsky phenotype is recessive; but the extent of hordein accumulation in the endoplasmic reticulum in F2 endosperm lacking gamma 3 hordein was very much less than in the Nevsky parent. In order to study the Nevsky endosperm phenotype we have measured the levels of seven proteins and two mRNAs involved in protein folding in the ER lumen or ER to Golgi transport during endosperm development. The protein levels were unaltered in Nevsky as compared to the wild-type variety Bomi. When the levels of these seven proteins were correlated with the rate of hordein accumulation, four of these (HSP70, PDI, Sar1p and Sec18p) were consistently up-regulated with hordein synthesis. Accumulation of hordein in the endoplasmic reticulum appears to be determined by the absence of gamma 3 hordein, or the product of a gene closely linked to it, plus one or more other recessive genes.
Collapse
Affiliation(s)
- S Møgelsvang
- Department of Physiology, Carlsberg Laboratory, Valby, Denmark
| | | |
Collapse
|
24
|
Fiedler K, Kellner R, Simons K. Mapping the protein composition of trans-Golgi network (TGN)-derived carrier vesicles from polarized MDCK cells. Electrophoresis 1997; 18:2613-9. [PMID: 9527491 DOI: 10.1002/elps.1150181417] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In polarized MDCK cells, proteins and lipids are sorted in the trans-Golgi network /TGN) and packaged into different vesicular carriers that are delivered to the apical or basolateral cell surface. To gain insight into the sorting and trafficking machinery, we have previously isolated TGN-derived carrier vesicles from perforated MDCK cells. The composition of immuno-isolated apical and basolateral carriers was mapped by two-dimensional (2-D) gel electrophoresis. Here we describe the identification of several components of the vesicle fraction by using three different methods. 2-D gel comigration was performed with carrier vesicles isolated from metabolically labeled MDCK cells and human epidermal keratinocyte lysates. This allowed us to assign eleven known components by a comparison with the comprehensive keratinocyte 2-D gel database. These comprised two members of the 14-3-3 family of proteins that have been implicated in vesicular trafficking. Five proteins were purified from preparative 2-D gels and identified by peptide microsequencing, including the beta1 and beta2 subunit of trimeric G proteins and an annexin II variant. A member of the SNARE family of proteins was identified by immunoblotting. The combination of 2-D gel electrophoresis and 2-D gel databases allows the rapid assessment of the purity of subcellular fractions and to characterize components involved in vesicular transport.
Collapse
Affiliation(s)
- K Fiedler
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | | | |
Collapse
|
25
|
Machold RP, Ploegh HL. Intermediates in the assembly and degradation of class I major histocompatibility complex (MHC) molecules probed with free heavy chain-specific monoclonal antibodies. J Exp Med 1996; 184:2251-9. [PMID: 8976180 PMCID: PMC2211561 DOI: 10.1084/jem.184.6.2251] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/1996] [Revised: 09/20/1996] [Indexed: 02/03/2023] Open
Abstract
Unassembled (free) heavy chains appear during two stages of the class I MHC molecule's existence: immediately after translation but before assembly with peptide and beta 2-microglobulin, and later, upon disintegration of the heterotrimeric complex. To characterize the structures of folding and degradation intermediates of the class I heavy chain, three monoclonal antibodies have been produced that recognize epitopes along the H-2K(b) heavy chain which are obscured upon proper folding and subsequent assembly with beta 2-microglobulin (KU1: residues 49-54; KU2: residues 23-30; KU4: residues 193-198). The K(b) heavy chain is inserted into the lumen of the endoplasmic reticulum in an unfolded state reactive with KU1, KU2, and KU4. Shortly after completion of the polypeptide chain, reactivity with KU1, KU2, and KU4 is lost synchronously, suggesting that folding of the class I heavy chain is a rapid, cooperative process. Perturbation of the folding environment in intact cells with the reducing agent dithiothreitol or the trimming glucosidase inhibitor N-7-oxadecyl-deoxynojirimycin prolongs the presence of mAb-reactive K(b) heavy chains. At the cell surface, a pool of free K(b) heavy chains appears after 60-120 min of chase, whose subsequent degradation, but not their initial appearance, is impaired in the presence of concanamycin B, an inhibitor of vacuolar acidification. Thus, free heavy chains that arise at the cell surface are destroyed after internalization.
Collapse
Affiliation(s)
- R P Machold
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
26
|
van Leeuwen JE, Kearse KP. Deglucosylation of N-linked glycans is an important step in the dissociation of calreticulin-class I-TAP complexes. Proc Natl Acad Sci U S A 1996; 93:13997-4001. [PMID: 8943049 PMCID: PMC19483 DOI: 10.1073/pnas.93.24.13997] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Recent evidence indicates that newly synthesized major histocompatibility complex (MHC) class I proteins interact with calnexin, a transmembrane endoplasmic reticulum protein specific for certain glycoproteins bearing monoglucosylated glycans. Here, we studied the association of newly synthesized class I proteins with calreticulin, a soluble calnexin-related ER protein, in murine T cells. We found that, unlike calnexin-class I interactions, calreticulin assembly with class I proteins was markedly decreased in the absence of beta 2 microglobulin expression and that calreticulin associated with a subset of class I glycoforms distinct from those assembled with calnexin but similar to those bound to TAP (transporter associated with antigen processing) proteins. Finally, these studies show that deglucosylation of N-linked glycans is important for dissociation of class I proteins from both calreticulin and TAP and that the vast majority of newly synthesized class I proteins associated with calreticulin are simultaneously assembled with TAP. The data demonstrate that calnexin and calreticulin chaperones assemble with distinct MHC class I assembly intermediates in the ER and show that glycan processing is functionally coupled to release of MHC class I proteins from peptide transport molecules.
Collapse
Affiliation(s)
- J E van Leeuwen
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1360, USA
| | | |
Collapse
|
27
|
Yamashita Y, Shimokata K, Mizuno S, Daikoku T, Tsurumi T, Nishiyama Y. Calnexin acts as a molecular chaperone during the folding of glycoprotein B of human cytomegalovirus. J Virol 1996; 70:2237-46. [PMID: 8642648 PMCID: PMC190064 DOI: 10.1128/jvi.70.4.2237-2246.1996] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Human cytomegalovirus glycoprotein B (gB) is synthesized as a 105-kDa nonglycosylated polypeptide and cotranslationally modified by addition of N-linked oligosaccharides to a 160-kDa precursor in the endoplasmic reticulum (ER). It is then transported to the Golgi complex, where it is endoproteolytically cleaved to form the disulfide-linked mature gp55-116 complex. Pulse-chase experiments demonstrate that the 160-kDa gB precursor was transiently associated with calnexin, a membrane-bound chaperone, in the ER. The association was maximal immediately after synthesis, and they dissociated with a half-time of 15 min. Complete inhibition of binding by tunicamycin or castanospermine indicates the importance of N-linked oligosaccharides for it. Nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated that during an initial stage in the biogenesis, the 160-kDa gB precursor was first synthesized as a fully reduced form and rapidly converted to an oxidized form, with a half-time of 18 min. Both forms of the gB precursor could bind to calnexin. The kinetics of the conversion from the fully reduced to the oxidized form coincided with that of dissociation of the 160-kDa gB precursor from calnexin, suggesting that the two steps are closely related.
Collapse
Affiliation(s)
- Y Yamashita
- Laboratory of Virology, Research Institute for Disease Mechanism and Control, Nagoya University School of Medicine, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Devergne O, Hummel M, Koeppen H, Le Beau MM, Nathanson EC, Kieff E, Birkenbach M. A novel interleukin-12 p40-related protein induced by latent Epstein-Barr virus infection in B lymphocytes. J Virol 1996; 70:1143-53. [PMID: 8551575 PMCID: PMC189923 DOI: 10.1128/jvi.70.2.1143-1153.1996] [Citation(s) in RCA: 263] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have isolated a cDNA encoding a novel hematopoietin receptor family member related to the p40 subunit of interleukin-12 and to the ciliary neurotrophic factor receptor, whose expression is induced in B lymphocytes by Epstein-Barr virus (EBV) infection. This gene, which we have designated EBV-induced gene 3 (EBI3), encodes a 34-kDa glycoprotein which lacks a membrane-anchoring motif and is secreted. Despite the absence of a membrane-anchoring motif and of cysteines likely to mediate covalent linkage to an integral membrane protein, EBI3 is also present on the plasma membrane of EBV-transformed B lymphocytes and of transfected cells. Most newly synthesized EBI3 is retained in the endoplasmic reticulum in an endoglycosidase H-sensitive form associated with the molecular chaperone calnexin and with a novel 60-kDa protein. EBI3 is expressed in vivo by scattered cells in interfollicular zones of tonsil tissue, by cells associated with sinusoids in perifollicular areas of spleen tissue, and at very high levels by placental syncytiotrophoblasts. EBI3 expression in vitro is induced in EBV-negative cell lines by expression of the EBV latent infection membrane protein-1 and in peripheral blood mononuclear cells by pokeweed mitogen stimulation. EBI3 maps to chromosome 19p13.2/3, near genes encoding the erythropoietin receptor and the cytokine receptor-associated kinase, Tyk2. EBI3 synthesis by trophoblasts and by EBV-transformed cells and similarities to interleukin-12 p40 are compatible with a role for EBI3 in regulating cell-mediated immune responses.
Collapse
Affiliation(s)
- O Devergne
- Department of Microbiology and Molecular Genetics, Harvard University, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Melnick J, Argon Y. Molecular chaperones and the biosynthesis of antigen receptors. IMMUNOLOGY TODAY 1995; 16:243-50. [PMID: 7779255 DOI: 10.1016/0167-5699(95)80167-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Oligomeric antigen receptors must fold and assemble in the endoplasmic reticulum (ER) before they can be expressed on the surface of lymphocytes. It is increasingly evident that these processes are facilitated by molecular chaperones. Here, Jeffrey Melnick and Yair Argon review the known ER chaperones, summarize their roles in the maturation of antigen receptors, and discuss how they may affect lymphocyte differentiation and function.
Collapse
Affiliation(s)
- J Melnick
- Dept of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
30
|
Ware FE, Vassilakos A, Peterson PA, Jackson MR, Lehrman MA, Williams DB. The molecular chaperone calnexin binds Glc1Man9GlcNAc2 oligosaccharide as an initial step in recognizing unfolded glycoproteins. J Biol Chem 1995; 270:4697-704. [PMID: 7876241 DOI: 10.1074/jbc.270.9.4697] [Citation(s) in RCA: 321] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Calnexin is a molecular chaperone that resides in the membrane of the endoplasmic reticulum. Most proteins that calnexin binds are N-glycosylated, and treatment of cells with tunicamycin or inhibitors of initial glucose trimming steps interferes with calnexin binding. To test if calnexin is a lectin that binds early oligosaccharide processing intermediates, a recombinant soluble calnexin was created. Incubation of soluble calnexin with a mixture of Glc0-3Man9GlcNAc2 oligosaccharides resulted in specific binding of the Glc1Man9GlcNAc2 species. Furthermore, Glc1Man5-7GlcNAc2 oligosaccharides bound relatively poorly, suggesting that, in addition to a requirement for the single terminal glucose residue, at least one of the terminal mannose residues was important for binding. To assess the involvement of oligosaccharide-protein interactions in complexes of calnexin and newly synthesized glycoproteins, alpha 1-antitrypsin or the heavy chain of the class I histocompatibility molecule were purified as complexes with calnexin and digested with endoglycosidase H. All oligosaccharides on either glycoprotein were accessible to this probe and could be removed without disrupting the association with calnexin. Furthermore, the addition of 1 M alpha-methyl glucoside or alpha-methyl mannoside had no effect on complex stability. These findings suggest that once complexes between calnexin and glycoproteins are formed, oligosaccharide binding does not contribute significantly to the overall interaction. However, it is likely that the binding of Glc1Man9GlcNAc2 oligosaccharides is a crucial event during the initial recognition of newly synthesized glycoproteins by calnexin.
Collapse
Affiliation(s)
- F E Ware
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas 75235-9041
| | | | | | | | | | | |
Collapse
|
31
|
Jannatipour M, Rokeach LA. The Schizosaccharomyces pombe homologue of the chaperone calnexin is essential for viability. J Biol Chem 1995; 270:4845-53. [PMID: 7876257 DOI: 10.1074/jbc.270.9.4845] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have cloned a Schizosaccharomyces pombe gene, here designated cnx1, encoding the homologue of the endoplasmic reticulum molecular chaperone calnexin. Disruption of the cnx1 gene was lethal, demonstrating that it has an essential cellular function. Transcription of cnx1 mRNA is initiated at multiple sites, and it can be induced by various stress treatments that lead to the accumulation of unfolded and/or misfolded proteins in the endoplasmic reticulum. The encoded Cnx1p protein more closely resembles its plant and animal calnexin homologues than that of Saccharomyces cerevisiae. Cnx1p is acidic and migrates aberrantly on SDS-polyacrylamide gel electrophoresis, similar to its mammalian counterparts. Cnx1p contains the hallmark KPEDWD motifs that are found in all members of the calnexin/calreticulin family of proteins. Using an in vitro translation-processing system, we have shown that Cnx1p has the characteristic type I topology of calnexin proteins. Unlike its higher eukaryotic homologues, Cnx1p has a site for N-glycosylation that was modified in an in vitro translation-processing assay.
Collapse
Affiliation(s)
- M Jannatipour
- Département de biochimie, Université de Montréal, Québec, Canada
| | | |
Collapse
|
32
|
Williams DB. The Merck Frosst Award Lecture 1994/La conference Merck Frosst 1994. Calnexin: a molecular chaperone with a taste for carbohydrate. Biochem Cell Biol 1995; 73:123-32. [PMID: 7576485 DOI: 10.1139/o95-015] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Calnexin is an integral membrane protein of the endoplasmic reticulum (ER) that binds transiently to a wide array of newly synthesized membrane and secretory proteins. It also exhibits prolonged binding to misfolded or incompletely folded proteins. Recent studies have demonstrated that calnexin functions as a molecular chaperone to facilitate the folding and assembly of proteins in the ER. It is also a component of the quality control system that prevents proteins from progressing along the secretory pathway until they have acquired proper tertiary or quaternary structure. Most proteins that are translocated into the ER are glycosylated at Asn residues, and calnexin's interactions are almost exclusively restricted to proteins that possess this posttranslational modification. The preference for glycoproteins resides in calnexin's ability to function as a lectin with specificity for the Glc1Man9GlcNAc2 oligosaccharide, an early intermediate in the processing of Asn-linked oligosaccharides. Calnexin also has the capacity to bind to polypeptide segments of unfolded glycoproteins. Available evidence suggests that calnexin utilizes its lectin property during initial capture of a newly synthesized glycoprotein and that subsequent association (and chaperone function) is mediated through polypeptide interactions. Unlike other molecular chaperones that are soluble proteins, calnexin is an intrinsic component of the ER membrane. Its unique ability to capture unfolded glycoproteins through their large oligosaccharide moieties may have evolved as a means to overcome accessibility problems imposed by being constrained within a lipid bilayer.
Collapse
Affiliation(s)
- D B Williams
- Department of Biochemistry, University of Toronto, ON, Canada
| |
Collapse
|
33
|
Arunachalam B, Cresswell P. Molecular requirements for the interaction of class II major histocompatibility complex molecules and invariant chain with calnexin. J Biol Chem 1995; 270:2784-90. [PMID: 7852350 DOI: 10.1074/jbc.270.6.2784] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Molecular chaperones are believed to retain misfolded and incompletely assembled oligomeric proteins in the endoplasmic reticulum (ER). Here, we have further analyzed the association of one such chaperone, calnexin, with human major histocompatibility complex class II alpha and beta subunits and the invariant chain. Calnexin associates with transport-competent invariant chain trimers (p33 or p41), as well as ER-retained trimers (p35/33 or p43/41), suggesting that ER retention of the latter is not because of calnexin association. Neither the replacement of the transmembrane segment of the DR beta subunit with a glycosyl phosphatidylinositol anchor nor deglycosylation of any of these proteins with tunicamycin or endoglycosidase H treatment abolished calnexin association. Using a cell-permeabilization system, we were unable to observe association of newly synthesized glycopeptides with calnexin, arguing that calnexin may not act like a simple lectin for association with glycoproteins. The results indicate that neither transmembrane regions nor N-linked glycans are exclusively responsible for calnexin association. Based on our data and the observations of others, we suggest that these features may have varying significance for different glycoproteins in determining their interaction with calnexin.
Collapse
Affiliation(s)
- B Arunachalam
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06510
| | | |
Collapse
|
34
|
Parlati F, Dominguez M, Bergeron JJ, Thomas DY. Saccharomyces cerevisiae CNE1 encodes an endoplasmic reticulum (ER) membrane protein with sequence similarity to calnexin and calreticulin and functions as a constituent of the ER quality control apparatus. J Biol Chem 1995; 270:244-53. [PMID: 7814381 DOI: 10.1074/jbc.270.1.244] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have used a polymerase chain reaction strategy to identify in the yeast Saccharomyces cerevisiae genes of the mammalian calnexin/calreticulin family, and we have identified and isolated a single gene, CNE1. The protein predicted from the CNE1 DNA sequence shares some of the motifs with calnexin and calreticulin, and it is 24% identical and 31% similar at the amino acid level with mammalian calnexin. On the basis of its solubility in detergents and its lack of extraction from membranes by 2.5 M urea, high salt, and sodium carbonate at pH 11.5, we have established that Cne1p is an integral membrane protein. However, unlike calnexins, the predicted carboxyl-terminal membrane-spanning domain of Cne1p terminates directly. Furthermore, based on its changed mobility from 76 to 60 kDa after endoglycosidase H digestion Cne1p was shown to be N-glycosylated. Localization of the Cne1p protein by differential and analytical subcellular fractionation as well as by confocal immunofluorescence microscopy showed that it was exclusively located in the endoplasmic reticulum (ER), despite the lack of known ER retention motifs. Although six Ca(2+)-binding proteins were detected in the ER fractions, they were all soluble proteins, and Ca2+ binding activity has not been detected for Cne1p. Disruption of the CNE1 gene did not lead to inviable cells or to gross effects on the levels of secreted proteins such as alpha-pheromone or acid phosphatase. However, in CNE1 disrupted cells, there was an increase of cell-surface expression of an ER retained temperature-sensitive mutant of the alpha-pheromone receptor, ste2-3p, and also an increase in the secretion of heterologously expressed mammalian alpha 1-antitrypsin. Hence, Cne1p appears to function as a constituent of the S. cerevisiae ER protein quality control apparatus.
Collapse
Affiliation(s)
- F Parlati
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
35
|
Nössner E, Parham P. Species-specific differences in chaperone interaction of human and mouse major histocompatibility complex class I molecules. J Exp Med 1995; 181:327-37. [PMID: 7807012 PMCID: PMC2191818 DOI: 10.1084/jem.181.1.327] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Previous studies have shown that immature mouse class I molecules transiently associate with a resident endoplasmic reticulum protein of 88 kD that has been proposed to act as a chaperone for class I assembly. Subsequently, this protein was demonstrated to be identical to calnexin and to associate with immature forms of the T cell receptor complex, immunoglobulin, and human class I HLA heavy chains. In this paper we define further the interaction of human class I HLA heavy chains with chaperone proteins and find key differences with the complexes observed in the mouse system. First, calnexin and immunoglobulin binding protein (BiP) both associate with immature HLA class I heavy chains. The two chaperones are not found within the same molecular complex, suggesting that calnexin and BiP do not interact simultaneously with the same HLA class I heavy chain. Second, only free HLA class I heavy chains, and not beta 2-microglobulin (beta 2m)-associated heavy chains are found associated with the chaperones. Indeed, addition of free beta 2m in vitro induces dissociation of chaperone-class I HLA heavy chain complexes. The kinetics for dissociation of the class I HLA heavy chain-chaperone complexes and for formation of the class I HLA heavy chain-beta 2m complex display a reciprocity that suggests the interactions with chaperone and beta 2m are mutually exclusive. Mouse class I heavy chains expressed in human cells exhibit the mouse pattern of interaction with human chaperones and human beta 2m and not the human pattern, showing the difference in behavior is purely a function of the class I heavy chain sequence.
Collapse
Affiliation(s)
- E Nössner
- Department of Cell Biology, Stanford University, California 94305
| | | |
Collapse
|
36
|
Bleackley RC, Atkinson EA, Burns K, Michalak M. Calreticulin: a granule-protein by default or design? Curr Top Microbiol Immunol 1995; 198:145-59. [PMID: 7774279 DOI: 10.1007/978-3-642-79414-8_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- R C Bleackley
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
37
|
Rademacher TW, Jones RH, Williams PJ. Significance and molecular basis for IgG glycosylation changes in rheumatoid arthritis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 376:193-204. [PMID: 8597248 DOI: 10.1007/978-1-4615-1885-3_20] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- T W Rademacher
- Dept. of Molecular Pathology, University College London Medical School, United Kingdom
| | | | | |
Collapse
|
38
|
Vey M, Schäfer W, Berghöfer S, Klenk HD, Garten W. Maturation of the trans-Golgi network protease furin: compartmentalization of propeptide removal, substrate cleavage, and COOH-terminal truncation. J Cell Biol 1994; 127:1829-42. [PMID: 7806563 PMCID: PMC2120303 DOI: 10.1083/jcb.127.6.1829] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have cloned a bovine cDNA encoding the trans-Golgi network (TGN) protease furin and expressed it via recombinant vaccinia viruses to investigate intracellular maturation. Pulse-chase labeling reveals that the 104-kD pro-furin bearing high mannose N-glycans is rapidly processed into the 98-kD protease whose N-glycans remain sensitive to endoglycosidase H for a certain period of time. Furthermore, in the presence of brefeldin A, pro-furin cleavage occurs. From these data we conclude that the ER is the compartment of propeptide removal. Studies employing the ionophore A23187 and DTT show that autocatalysis is Ca2+ dependent and that it does not occur under reducing conditions. Pro-furin produced under these conditions never gains endo H resistance indicating that it is retained in the ER. Coexpression of furin with the fowl plague virus hemagglutinin in the presence of brefeldin A and monensin reveals that furin has to enter the Golgi region to gain substrate cleaving activity. N-glycans of furin are sialylated proving its transit through the trans-Golgi network. A truncated form of furin is found in supernatants of cells. Truncation is inhibited in the absence of Ca2+ ions and in the presence of acidotropic agents indicating that it takes place in an acidic compartment of cells. Comparative analysis with furin expressed from cDNA reveals that the truncated form prevails in preparations of biologically active, endogenous furin obtained from MDBK cells. This observation supports the concept that secretion of truncated furin is a physiological event that may have important implications for the processing of extracellular substrates.
Collapse
Affiliation(s)
- M Vey
- Institut f. Virologie, Philipps-Universität Marburg, Germany
| | | | | | | | | |
Collapse
|
39
|
Sugita M, Brenner MB. An unstable beta 2-microglobulin: major histocompatibility complex class I heavy chain intermediate dissociates from calnexin and then is stabilized by binding peptide. J Exp Med 1994; 180:2163-71. [PMID: 7964491 PMCID: PMC2191763 DOI: 10.1084/jem.180.6.2163] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Proper assembly of the class I heavy chain (HC), beta 2-microglobulin (beta 2m), and peptide must occur in the endoplasmic reticulum (ER) in order for MHC class I molecules to be expressed on the cell surface. Newly synthesized class I HC bind calnexin, an ER resident chaperone. These calnexin-associated class I HC appeared to lack the stable association with beta 2m in peptide transporter-deficient T2 cells since beta 2m-unassociated class I HC-specific HC10 antibody, but not beta 2m-associated class I HC-specific W6/32 antibody, coimmunoprecipitated calnexin. To determine the precursor-product relationship of the pool of HC that bind peptide, class I-restricted peptides were added to lysates of T2 cells in vitro. These peptides stabilized preexisting beta 2m-associated HC complexes (beta 2m+:HC:pep-), but had no significant effect on the preexisting pool of calnexin-associated HC that lack beta 2m. Release of HC from calnexin appeared to be controlled by the binding of beta 2m, since beta 2m-deficient FO-1 cells showed a prolonged association of class I HC with calnexin, while beta 2m-transfected FO-1 cells displayed a more rapid dissociation of class I HC from calnexin. Consistent with this result, the dissociation of class I HC from calnexin did not appear to be dependent on peptide binding since the dissociation rates were similar in peptide transporter-deficient T2 cells and in wild-type T1 cells. From these observations, we speculate that in the stepwise assembly of class I molecules, calnexin may mediate dimerization of class I HC with beta 2m, and that the unstable beta 2m+:HC:pep- complexes, after dissociation from calnexin, subsequently bind peptide to complete the assembly.
Collapse
Affiliation(s)
- M Sugita
- Department of Rheumatology and Immunology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
40
|
Jimbow K, Hara H, Vinayagamoorthy T, Luo D, Dakour J, Yamada K, Dixon W, Chen H. Molecular control of melanogenesis in malignant melanoma: functional assessment of tyrosinase and lamp gene families by UV exposure and gene co-transfection, and cloning of a cDNA encoding calnexin, a possible melanogenesis "chaperone". J Dermatol 1994; 21:894-906. [PMID: 7531726 DOI: 10.1111/j.1346-8138.1994.tb03309.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Melanogenesis is a cascade of events significantly controlled by regulatory genes which are associated with the melanosomal membrane. This report introduces our current research efforts dealing with (a) the gene and protein expressions of tyrosinase and Lamp (lysosome-associated membrane protein) families by human melanoma cells after repeated exposures to UV light, (b) the coordinated alterations in the expression of the Lamp family gene and its encoding product after transfection of two genes of the tyrosinase family in human melanoma cells and (c) cloning and sequencing of a Ca(2+)-binding phosphoprotein, calnexin, which could be a candidate as a chaperone for sorting and maturation of tyrosinase and Lamp family glycoproteins in melanogenesis cascade. Our UV exposure study, as well as gene transfection and antisense hybridization experiments, has clearly indicated a marked and coordinated interaction of the Lamp-1 gene with the tyrosinase and TRP-1 genes in this process. We propose that melanogenesis is controlled at least by two major gene family products, i.e., (a) the tyrosinase family of tyrosinase, TRP-1 and TRP-2, and the Lamp family of Lamp-1, Lamp-2 and Lamp-3. These two gene families probably derived from primordial melanogenesis-associated genes which are common or closely related to each other.
Collapse
Affiliation(s)
- K Jimbow
- Faculty of Medicine, University of Alberta, Edmonton, Canada
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
In this paper we review some of the rapidly expanding information about calreticulin, a Ca(2+)-binding/storage protein of the endoplasmic reticulum. The emphasis is placed on the structure and function of calreticulin. We believe that calreticulin is a multifunctional Ca(2+)-binding protein and that distinct functional properties of the protein may be localized to each of the three structural domains of calreticulin. Most evidence indicates that calreticulin is a resident endoplasmic reticulum protein. However, it can also be found outside of the endoplasmic reticulum compartment, i.e. in the nuclear envelope, in the nucleus, in the cytotoxic granules in T-lymphocytes and in acrosomal vesicles of sperm cells. The evidence reviewed here clearly suggests that calreticulin has other functions in addition to its role as a Ca2+ storage protein in the endoplasmic reticulum.
Collapse
Affiliation(s)
- P D Nash
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
42
|
Warren AP, Ducroq DH, Lehner PJ, Borysiewicz LK. Human cytomegalovirus-infected cells have unstable assembly of major histocompatibility complex class I complexes and are resistant to lysis by cytotoxic T lymphocytes. J Virol 1994; 68:2822-9. [PMID: 8151753 PMCID: PMC236770 DOI: 10.1128/jvi.68.5.2822-2829.1994] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Viruses which cause persistence in the naturally infected host are predicted to have evolved immune evasion mechanisms. Human cytomegalovirus (HCMV) causes significant morbidity and mortality in immunocompromised patients yet persists without clinical manifestations in seropositive individuals who have normal immune function. We report that HCMV infection in vitro impairs major histocompatibility complex class I (MHC-I) assembly accompanied by resistance to killing by cytotoxic CD8+ T lymphocytes. Pulse-chase metabolic labelling experiments show that MHC-I complexes continue to be assembled by both uninfected and HCMV-infected cells. However, MHC-I molecules are unstable in HCMV-infected cells and are rapidly broken down. Endoglycosidase H treatment of immunoprecipitates indicates that the breakdown of MHC-I complexes in HCMV-infected cells occurs primarily in a pre-Golgi compartment. Interference with normal MHC-I assembly and expression, if relevant in vivo, may have implications for the restriction of the diversity of the CD8+ cytotoxic T lymphocyte repertoire directed against HCMV antigens and may be an important mechanism of viral persistence.
Collapse
Affiliation(s)
- A P Warren
- Department of Medicine, University of Wales College of Medicine, Heath Park, Cardiff, United Kingdom
| | | | | | | |
Collapse
|
43
|
Class I histocompatibility molecule association with phosphorylated calnexin. Implications for rates of intracellular transport. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)78172-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
44
|
Participation of the endoplasmic reticulum chaperone calnexin (p88, IP90) in the biogenesis of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)99944-8] [Citation(s) in RCA: 262] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
45
|
In vivo regulation of the assembly and intracellular transport of class I major histocompatibility complex molecules. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37477-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
46
|
Helenius A. How N-linked oligosaccharides affect glycoprotein folding in the endoplasmic reticulum. Mol Biol Cell 1994; 5:253-65. [PMID: 8049518 PMCID: PMC301034 DOI: 10.1091/mbc.5.3.253] [Citation(s) in RCA: 475] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- A Helenius
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510
| |
Collapse
|
47
|
Hammond C, Braakman I, Helenius A. Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc Natl Acad Sci U S A 1994; 91:913-7. [PMID: 8302866 PMCID: PMC521423 DOI: 10.1073/pnas.91.3.913] [Citation(s) in RCA: 633] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Using a pulse-chase approach combined with immunoprecipitation, we showed that newly synthesized influenza virus hemagglutinin (HA) and vesicular stomatitis virus G protein associate transiently during their folding with calnexin, a membrane-bound endoplasmic reticulum (ER) chaperone. Inhibitors of N-linked glycosylation (tunicamycin) and glucosidases I and II (castanospermine and 1-deoxynojirimycin) prevented the association, whereas inhibitors of ER alpha-mannosidases did not. Our results indicated that binding of these viral glycoproteins to calnexin correlated closely with the composition of their N-linked oligosaccharide side chains. Proteins with monoglucosylated oligosaccharides were the most likely binding species. On the basis of our data and existing information concerning the role of monoglucosylated oligosaccharides on glycoproteins, we propose that the ER contains a unique folding and quality control machinery in which calnexin acts as a chaperone that binds proteins with partially glucose-trimmed carbohydrate side chains. In this model glucosidases I and II serve as signal modifiers and UDP-glucose:glycoprotein glucosyltransferase, as a folding sensor.
Collapse
Affiliation(s)
- C Hammond
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510
| | | | | |
Collapse
|
48
|
Jackson MR, Cohen-Doyle MF, Peterson PA, Williams DB. Regulation of MHC class I transport by the molecular chaperone, calnexin (p88, IP90). Science 1994; 263:384-7. [PMID: 8278813 DOI: 10.1126/science.8278813] [Citation(s) in RCA: 308] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Assembled class I histocompatibility molecules, consisting of heavy chain, beta 2-microglobulin, and peptide ligand, are transported rapidly to the cell surface. In contrast, the intracellular transport of free heavy chains or peptide-deficient heavy chain-beta 2-microglobulin heterodimers is impaired. A 90-kilodalton membrane-bound chaperone of the endoplasmic reticulum (ER), termed calnexin, associates quantitatively with newly synthesized class I heavy chains, but the functions of calnexin in this interaction are unknown. Class I subunits were expressed alone or in combination with calnexin in Drosophila melanogaster cells. Calnexin retarded the intracellular transport of both peptide-deficient heavy chain-beta 2-microglobulin heterodimers and free heavy chains. Calnexin also impeded the rapid intracellular degradation of free heavy chains. The ability of calnexin to protect and retain class I assembly intermediates is likely to contribute to the efficient intracellular formation of class I-peptide complexes.
Collapse
Affiliation(s)
- M R Jackson
- Department of Immunology, Scripps Research Institute, La Jolla, CA 92037
| | | | | | | |
Collapse
|
49
|
Rajagopalan S, Xu Y, Brenner MB. Retention of unassembled components of integral membrane proteins by calnexin. Science 1994; 263:387-90. [PMID: 8278814 DOI: 10.1126/science.8278814] [Citation(s) in RCA: 189] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Quality control mechanisms prevent the cell surface expression of incompletely assembled multisubunit receptors such as the T cell receptor (TCR). The molecular chaperone function of calnexin (IP90, p88), a 90-kilodalton protein that resides in the endoplasmic reticulum (ER), in the retention of representative chains of the TCR-CD3 complex in the ER was tested. Truncation mutants of calnexin, when transiently expressed in COS cells, were exported from the ER and either accumulated in the Golgi or progressed to the cell surface. CD3 epsilon chains cotransfected with the forms of calnexin that were not retained in the ER exited the ER and colocalized with calnexin. Since engineered calnexin determined the intracellular localization of the proteins associated with it, it is concluded that calnexin interacts with incompletely assembled TCR components and retains them in the ER.
Collapse
Affiliation(s)
- S Rajagopalan
- Department of Rheumatology and Immunology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | | | | |
Collapse
|
50
|
McFadden G, Kane K. How DNA viruses perturb functional MHC expression to alter immune recognition. Adv Cancer Res 1994; 63:117-209. [PMID: 8036987 DOI: 10.1016/s0065-230x(08)60400-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- G McFadden
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | |
Collapse
|