1
|
Lee E, Park HY, Kim SW, Kim J, Lim K. Vitamin C and glutathione supplementation: a review of their additive effects on exercise performance. Phys Act Nutr 2023; 27:36-43. [PMID: 37946445 PMCID: PMC10636510 DOI: 10.20463/pan.2023.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 11/12/2023] Open
Abstract
PURPOSE This review aimed to investigate the effects of vitamin C and glutathione supplementation on exercise performance. METHODS We conducted a literature search across the PubMed, Google Scholar, and Web of Science databases using the keywords vitamin C, glutathione, antioxidants, exercise, and oxidative stress. RESULTS The effects of vitamin C supplementation on exercise performance and oxidative stress levels are inconsistent. Glutathione, with its diverse forms of supplementation and methods, presents mixed outcomes. Vitamin C and glutathione have deeply interconnected antioxidant functions and are mutually essential to each other. Research investigating the combined intake of these two substances, which are intricately linked biochemically, and their effects on exercise performance remain largely unexplored. CONCLUSION Studies on the effects of vitamin C and glutathione intake on exercise have been conducted using diverse approaches; however, the results have not been consistent. Although an additive effect is anticipated with the combined intake of vitamin C and glutathione, research on this topic is currently insufficient, and further studies are required.
Collapse
Affiliation(s)
- Eunjoo Lee
- Department of Sports Medicine and Science, Graduate School, Konkuk University, Seoul, Republic of Korea
| | - Hun-Young Park
- Department of Sports Medicine and Science, Graduate School, Konkuk University, Seoul, Republic of Korea
- Physical Activity and Performance Institute (PAPI), Konkuk University. Seoul, Republic of Korea
| | - Sung-Woo Kim
- Department of Sports Medicine and Science, Graduate School, Konkuk University, Seoul, Republic of Korea
- Physical Activity and Performance Institute (PAPI), Konkuk University. Seoul, Republic of Korea
| | - Jisu Kim
- Department of Sports Medicine and Science, Graduate School, Konkuk University, Seoul, Republic of Korea
- Physical Activity and Performance Institute (PAPI), Konkuk University. Seoul, Republic of Korea
| | - Kiwon Lim
- Department of Sports Medicine and Science, Graduate School, Konkuk University, Seoul, Republic of Korea
- Physical Activity and Performance Institute (PAPI), Konkuk University. Seoul, Republic of Korea
- Department of Physical Education, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Chen J, Mao L, Jiang Y, Liu H, Wang X, Meng L, Du Q, Han J, He L, Huang H, Wang Y, Xiong C, Wei Y, Nie Z. Revealing the In Situ Behavior of Aggregation-Induced Emission Nanoparticles and Their Biometabolic Effects via Mass Spectrometry Imaging. ACS NANO 2023; 17:4463-4473. [PMID: 36802559 DOI: 10.1021/acsnano.2c10058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Simultaneous imaging of exogenous nanomaterials and endogenous metabolites in situ remains challenging and is beneficial for a systemic understanding of the biological behavior of nanomaterials at the molecular level. Here, combined with label-free mass spectrometry imaging, visualization and quantification of the aggregation-induced emission nanoparticles (NPs) in tissue were realized as well as related endogenous spatial metabolic changes simultaneously. Our approach enables us to identify the heterogeneous deposition and clearance behavior of nanoparticles in organs. The accumulation of nanoparticles in normal tissues results in distinct endogenous metabolic changes such as oxidative stress as indicated by glutathione depletion. The low passive delivery efficiency of nanoparticles to tumor foci suggested that the enrichment of NPs in tumors did not benefit from the abundant tumor vessels. Moreover, spatial-selective metabolic changes upon NPs mediated photodynamic therapy was identified, which enables understanding of the NPs induced apoptosis in the process of cancer therapy. This strategy allows us to simultaneously detect exogenous nanomaterials and endogenous metabolites in situ, hence to decipher spatial selective metabolic changes in drug delivery and cancer therapy processes.
Collapse
Affiliation(s)
- Junyu Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Liucheng Mao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuming Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Huihui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiao Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Lingwei Meng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Qiuyao Du
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jing Han
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Liuying He
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Hongye Huang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yawei Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Caiqiao Xiong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yen Wei
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical Engineering, Jiujiang University, Jiujiang, Jiangxi 332005, China
| |
Collapse
|
3
|
Fujii J, Osaki T, Bo T. Ascorbate Is a Primary Antioxidant in Mammals. Molecules 2022; 27:6187. [PMID: 36234722 PMCID: PMC9572970 DOI: 10.3390/molecules27196187] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/19/2022] Open
Abstract
Ascorbate (vitamin C in primates) functions as a cofactor for a number of enzymatic reactions represented by prolyl hydroxylases and as an antioxidant due to its ability to donate electrons, which is mostly accomplished through non-enzymatic reaction in mammals. Ascorbate directly reacts with radical species and is converted to ascorbyl radical followed by dehydroascorbate. Ambiguities in physiological relevance of ascorbate observed during in vivo situations could be attributed in part to presence of other redox systems and the pro-oxidant properties of ascorbate. Most mammals are able to synthesize ascorbate from glucose, which is also considered to be an obstacle to verify its action. In addition to animals with natural deficiency in the ascorbate synthesis, such as guinea pigs and ODS rats, three strains of mice with genetic removal of the responsive genes (GULO, RGN, or AKR1A) for the ascorbate synthesis have been established and are being used to investigate the physiological roles of ascorbate. Studies using these mice, along with ascorbate transporter (SVCT)-deficient mice, largely support its ability in protection against oxidative insults. While combined actions of ascorbate in regulating epigenetics and antioxidation appear to effectively prevent cancer development, pharmacological doses of ascorbate and dehydroascorbate may exert tumoricidal activity through redox-dependent mechanisms.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Tsukasa Osaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Tomoki Bo
- Laboratory Animal Center, Institute for Promotion of Medical Science Research, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| |
Collapse
|
4
|
Ritacca AG, Malacaria L, Sicilia E, Furia E, Mazzone G. Experimental and theoretical study of the complexation of Fe3+ and Cu2+ by l‑ascorbic acid in aqueous solution. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Zargar S, Wani TA. Protective Role of Quercetin in Carbon Tetrachloride Induced Toxicity in Rat Brain: Biochemical, Spectrophotometric Assays and Computational Approach. Molecules 2021; 26:molecules26247526. [PMID: 34946608 PMCID: PMC8709345 DOI: 10.3390/molecules26247526] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 01/14/2023] Open
Abstract
Carbon tetrachloride (CCL4) induces oxidative stress by free radical toxicities, inflammation, and neurotoxicity. Quercetin (Q), on the other hand, has a role as anti-inflammatory, antioxidant, antibacterial, and free radical-scavenging. This study explored protection given by quercetin against CCL4 induced neurotoxicity in rats at given concentrations. Male Wistar rats were divided into four groups Group C: control group; Group CCL4: given a single oral dose of 1 mL/kg bw CCL4; Group Q: given a single i.p injection of 100 mg/kg bw quercetin; and Group Q + CCL4: given a single i.p injection of 100 mg/kg bw quercetin before two hours of a single oral dose of 1 mL/kg bw CCL4. The results from brain-to-body weight ratio, morphology, lipid peroxidation, brain urea, ascorbic acid, reduced glutathione, sodium, and enzyme alterations (aspartate aminotransferase (AST), alanine aminotransferase (ALT), catalase, and superoxide dismutase) suggested alterations by CCL4 and a significant reversal of these parameters by quercetin. In silico analysis of quercetin with various proteins was conducted to understand the molecular mechanism of its protection. The results identified by BzScore4 D showed moderate binding between quercetin and the following receptors: glucocorticoids, estrogen beta, and androgens and weak binding between quercetin and the following proteins: estrogen alpha, Peroxisome proliferator-activated receptors (PPARγ), Herg k+ channel, Liver x, mineralocorticoid, progesterone, Thyroid α, and Thyroid β. Three-dimensional/four-dimensional visualization of binding modes of quercetin with glucocorticoids, estrogen beta, and androgen receptors was performed. Based on the results, a possible mechanism is hypothesized for quercetin protection against CCL4 toxicity in the rat brain.
Collapse
Affiliation(s)
- Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
- Correspondence:
| | - Tanveer A. Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
6
|
Zhitkovich A. Ascorbate: antioxidant and biochemical activities and their importance for in vitro models. Arch Toxicol 2021; 95:3623-3631. [PMID: 34596731 DOI: 10.1007/s00204-021-03167-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/16/2021] [Indexed: 12/19/2022]
Abstract
Ascorbate has many biological activities that involve fundamental cellular functions such as gene expression, differentiation, and redox homeostasis. Biochemically, it serves as a cofactor for a large family of dioxygenases (> 60 members) which control transcription, formation of extracellular matrix, and epigenetic processes of histone and DNA demethylation. Ascorbate is also a major antioxidant acting as a very effective scavenger of primary reactive oxygen species. Reduction of Fe(III) by ascorbate is important for cellular uptake of iron via DMT1. Cell culture models are extensively used in toxicology and pharmacology for mechanistic studies of nutrients, drugs and other xenobiotics. High-throughput screens in vitro, such as a large-scale Tox21 program in the US, offers opportunities to assess hazardous properties of a vast and growing number of industrial chemicals. However, cells in typical cultures are severely deficient in ascorbate, raising concerns about their ability to accurately recapitulate toxic and other responses in vivo. Scarcity of ascorbate and a frequently unrecognized use of media with its thiol substitute alters stress sensitivity of cells in different directions. Remediation of ascorbate deficiency in tissue culture restores the physiological state of many cellular processes and it should improve a currently limited toxicity predictability of in vitro bioassays.
Collapse
Affiliation(s)
- Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Room 507, Providence, RI, 02912, USA.
| |
Collapse
|
7
|
Fujii J. Ascorbate is a multifunctional micronutrient whose synthesis is lacking in primates. J Clin Biochem Nutr 2021; 69:1-15. [PMID: 34376908 PMCID: PMC8325764 DOI: 10.3164/jcbn.20-181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Ascorbate (vitamin C) is an essential micronutrient in primates, and exhibits multiple physiological functions. In addition to antioxidative action, ascorbate provides reducing power to α-ketoglutarate-dependent non-heme iron dioxygenases, such as prolyl hydroxylases. Demethylation of histones and DNA with the aid of ascorbate results in the reactivation of epigenetically silenced genes. Ascorbate and its oxidized form, dehydroascorbate, have attracted interest in terms of their roles in cancer therapy. The last step in the biosynthesis of ascorbate is catalyzed by l-gulono-γ-lactone oxidase whose gene Gulo is commonly mutated in all animals that do not synthesize ascorbate. One common explanation for this deficiency is based on the increased availability of ascorbate from foods. In fact, pathways for ascorbate synthesis and the detoxification of xenobiotics by glucuronate conjugation share the metabolic processes up to UDP-glucuronate, which prompts another hypothesis, namely, that ascorbate-incompetent animals might have developed stronger detoxification systems in return for their lack of ability to produce ascorbate, which would allow them to cope with their situation. Here, we overview recent advances in ascorbate research and propose that an enhanced glucuronate conjugation reaction may have applied positive selection pressure on ascorbate-incompetent animals, thus allowing them to dominate the animal kingdom.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| |
Collapse
|
8
|
Abstract
![]()
Vitamin
C (ascorbic acid) is a water-soluble antioxidant and a
cofactor for a large number of enzymes. It is present in all tissues
and especially abundant in corneal epithelium, stem cells, and neurons.
Although similar to thiols in its ability to react with many reactive
oxygen species (ROS), ascorbate is much better (>100× faster)
than glutathione at scavenging of primary ROS (superoxide radical
and singlet oxygen). Ascorbate appears to be especially important
for elimination of O2•– in the
nucleus which contains little or no SOD activity. Cofactor functions
of ascorbate involve the maintenance of activity of Fe(II)/2-oxoglutarate-dependent
dioxygenases via reduction of Fe(III). The most prominent activity
of ascorbate-dependent dioxygenases in the cytoplasm is hydroxylation
of prolines in proteins involved in the formation of extracellular
matrix and regulation of metabolism and hypoxia responses. In the
nucleus, ascorbate is important for oxidative demethylation of 5-methylcytosine
in DNA (by TET proteins) and removal of methyl groups from histone
lysines (by JmjC demethylases). Differentiation and other cellular
reprograming processes involving DNA demethylation are especially
sensitive to ascorbate insufficiency. High doses of vitamin C alone
or in combinations with drugs produced cancer-suppressive effects
which involved redox, immune, and epigenetic mechanisms. Solutions
to vitamin C deficiency in cultured cells are discussed to improve
the physiological relevance of in vitro models. An
abundance of vitamin C in rodents limits their ability to fully recapitulate
human sensitivity to adverse health effects of malnutrition and xenobiotics,
including neurotoxicity, lung injury, and intergenerational and other
epigenetic effects.
Collapse
Affiliation(s)
- Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence, Rhode Island 02912, United States
| |
Collapse
|
9
|
Lei H, Gruetter R. Metabolic and perfusion responses to acute hypoglycemia in the rat cortex: A non-invasive magnetic resonance approach. J Neurochem 2020; 154:71-83. [PMID: 32306383 DOI: 10.1111/jnc.15028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 11/30/2022]
Abstract
Hypoglycemia is critical condition during diabetic treatment that involves intensive insulin therapy, and it may impair brain function. We aimed to compare cortical responses of three hypoglycemic phases and the restoration of glycemia to control levels after a severe episode in rats using non-invasive perfusion magnetic resonance (MR) imaging and localized 1 H MR spectroscopy. Under light α-chloralose anesthesia, cortical blood flow (cCBF) was 42 ± 3 ml/100 g/min at euglycemia (~ 5 mM plasma glucose), was not altered at mild hypoglycemia I (42 ± 4 ml/100 g/min, 2-3.5 mM), increased to 60 ± 8 ml/100 g/min under moderate hypoglycemia II (1-2 mM) and amplified to 190 ± 35 ml/100 g/min at severe hypoglycemia III (< 1 mM). 1 H MRS revealed metabolic changes at hypoglycemia I without any perfusion alteration. At hypoglycemia III, glutamine and glutamate decreased, whereas aspartate increased. When animals subsequently regained glycemic control, not all metabolites returned to their control levels, for example, glutamine. Meanwhile, ascorbate was increased with amplified hypoglycemic severity, whereas glutathione was reduced; these compounds did not return to normal levels upon the restoration of glycemia. Our study is the first to report cCBF and neurochemical changes in cortex upon five glycemic stages. The cortical responses of different hypoglycemic phases would explain variable neuronal damages after hypoglycemia and might help identify the degrees of hypoglycemic insults and further improve alternative therapies.
Collapse
Affiliation(s)
- Hongxia Lei
- Animal Imaging Technology (AIT), Center for Biomedical Imaging Research (CIBM), Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Rolf Gruetter
- Animal Imaging Technology (AIT), Center for Biomedical Imaging Research (CIBM), Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.,Wuhan United Imaging Life Science Instruments Ltd., Wuhan, P.R.China.,Laboratory of Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.,Department of Radiology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
10
|
Sairam T, Patel AN, Subrahmanian M, Gopalan R, Pogwizd SM, Ramalingam S, Sankaran R, Rajasekaran NS. Evidence for a hyper-reductive redox in a sub-set of heart failure patients. J Transl Med 2018; 16:130. [PMID: 29776421 PMCID: PMC5960146 DOI: 10.1186/s12967-018-1503-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/03/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Oxidative stress has been linked to heart failure (HF) in humans. Antioxidant-based treatments are often ineffective. Therefore, we hypothesize that some of the HF patients might have a reductive stress (RS) condition. Investigating RS-related mechanisms will aid in personalized optimization of redox homeostasis for better outcomes among HF patients. METHODS Blood samples were collected from HF patients (n = 54) and healthy controls (n = 42) and serum was immediately preserved in - 80 °C for redox analysis. Malondialdehyde (MDA; lipid peroxidation) levels by HPLC, reduced glutathione (GSH) and its redox ratio (GSH/GSSG) using enzymatic-recycling assay in the serum of HF patients were measured. Further, the activities of key antioxidant enzymes were analyzed by UV-Vis spectrophotometry. Non-invasive echocardiography was used to relate circulating redox status with cardiac function and remodeling. RESULTS The circulatory redox state (GSH/MDA ratio) was used to stratify the HF patients into normal redox (NR), hyper-oxidative (HO), and hyper-reductive (HR) groups. While the majority of the HF patients exhibited the HO (42%), 41% of them had a normal redox (NR) state. Surprisingly, a subset of HF patients (17%) belonged to the hyper-reductive group, suggesting a strong implication for RS in the progression of HF. In all the groups of HF patients, SOD, GPx and catalase were significantly increased while GR activity was significantly reduced relative to healthy controls. Furthermore, echocardiography analyses revealed that 55% of HO patients had higher systolic dysfunction while 62.5% of the hyper-reductive patients had higher diastolic dysfunction. CONCLUSION These results suggest that RS may be associated with HF pathogenesis for a subset of cardiac patients. Thus, stratification of HF patients based on their circulating redox status may serve as a useful prognostic tool to guide clinicians designing personalized antioxidant therapies.
Collapse
Affiliation(s)
- Thiagarajan Sairam
- PSG Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences & Research (Affiliated to the Tamilnadu Dr MGR Medical University), Coimbatore, Tamil Nadu, India
| | - Amit N Patel
- Division of Cardiothoracic Surgery, University of Miami-Miller School of Medicine, Miami, FL, USA
| | - Meenu Subrahmanian
- PSG Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences & Research (Affiliated to the Tamilnadu Dr MGR Medical University), Coimbatore, Tamil Nadu, India
| | - Rajendiran Gopalan
- Department of Cardiology, PSG Institute of Medical Sciences & Research (Affiliated to the Tamilnadu Dr MGR Medical University), Coimbatore, Tamil Nadu, India
| | - Steven M Pogwizd
- Comprehensive Cardiovascular Center, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sudha Ramalingam
- PSG Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences & Research (Affiliated to the Tamilnadu Dr MGR Medical University), Coimbatore, Tamil Nadu, India
| | - Ramalingam Sankaran
- PSG Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences & Research (Affiliated to the Tamilnadu Dr MGR Medical University), Coimbatore, Tamil Nadu, India.
| | - Namakkal Soorapan Rajasekaran
- Cardiac Aging & Redox Signaling Laboratory, Center for Free Radical Biology, Division of Molecular & Cellular Pathology, Department of Pathology, UAB
- The University of Alabama at Birmingham, BMR2 Room 533
- 901 19th Street South, Birmingham, AL, 35294-2180, USA. .,PSG Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences & Research (Affiliated to the Tamilnadu Dr MGR Medical University), Coimbatore, Tamil Nadu, India. .,Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
11
|
Maldonado M, Inostroza E, Peña E, Moncada N, Mardones L, Medina JL, Muñoz A, Gatica M, Villagrán M, Escobar E, Mendoza P, Roa FJ, González M, Guzmán P, Gutiérrez-Castro FA, Sweet K, Muñoz-Montesino C, Vera JC, Rivas CI. Sustained blockade of ascorbic acid transport associated with marked SVCT1 loss in rat hepatocytes containing increased ascorbic acid levels after partial hepatectomy. Free Radic Biol Med 2017; 108:655-667. [PMID: 28419867 DOI: 10.1016/j.freeradbiomed.2017.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 03/20/2017] [Accepted: 04/06/2017] [Indexed: 11/22/2022]
Abstract
The liver has an extraordinary regenerative capacity in response to partial hepatectomy (PHx), which develops with neither tissue inflammation response nor alterations in the whole organism. This process is highly coordinated and it has been associated with changes in glutathione (GSH) metabolism. However, there are no reports indicating ascorbic acid (AA) levels after partial hepatectomy. AA and GSH act integrally as an antioxidant system that protects cells and tissues from oxidative damage and imbalance observed in a variety of diseases that affect the liver. Although rat hepatocytes are able to synthesize AA and GSH, which are the providers of AA for the whole organism, they also acquire AA from extracellular sources through the sodium-coupled ascorbic acid transporter-1 (SVCT1). Here, we show that hepatocytes from rat livers subjected to PHx increase their GSH and AA levels from 1 to 7 days post hepatectomy, whose peaks precede the peak in cell proliferation observed at 3 days post-hepatectomy. The increase in both antioxidants was associated with higher expression of the enzymes involved in their synthesis, such as the modifier subunit of enzyme glutamine cysteine ligase (GCLM), glutathione synthetase (GS), gulonolactonase (GLN) and gulonolactone oxidase (GULO). Importantly, rat hepatocytes, that normally exhibit kinetic evidence indicating only SVCT1-mediated transport of AA, lost more than 90% of their capacity to transport it at day 1 after PHx without evidence of recovery at day 7. This observation was in agreement with loss of SVCT1 protein expression, which was undetectable in hepatocytes as early as 2h after PHx, with partial recovery at day 7, when the regenerated liver weight returns to normal. We conclude that after PHx, rat hepatocytes enhance their antioxidant capacity by increasing GSH and AA levels prior to the proliferative peak. GSH and AA are increased by de novo synthesis, however paradoxically hepatocytes from rat subjected to PHx also suppress their capacity to acquire AA from extracellular sources through SVCT1.
Collapse
Affiliation(s)
- Mafalda Maldonado
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, PO Box 160C, Concepción, Chile.
| | - Eveling Inostroza
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, PO Box 160C, Concepción, Chile
| | - Eduardo Peña
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, PO Box 160C, Concepción, Chile
| | - Natacha Moncada
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, PO Box 160C, Concepción, Chile
| | - Lorena Mardones
- Departamento de Ciencias Básicas, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Alonso de Ribera 2850, Concepción, Chile
| | - José Luis Medina
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, PO Box 160C, Concepción, Chile
| | - Alejandra Muñoz
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, PO Box 160C, Concepción, Chile
| | - Marcell Gatica
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, PO Box 160C, Concepción, Chile
| | - Marcelo Villagrán
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, PO Box 160C, Concepción, Chile; Departamento de Ciencias Básicas, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Alonso de Ribera 2850, Concepción, Chile
| | - Elizabeth Escobar
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, PO Box 160C, Concepción, Chile
| | - Pamela Mendoza
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, PO Box 160C, Concepción, Chile
| | - Francisco J Roa
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, PO Box 160C, Concepción, Chile
| | - Mauricio González
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, PO Box 160C, Concepción, Chile
| | - Paula Guzmán
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, PO Box 160C, Concepción, Chile
| | | | - Karen Sweet
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, PO Box 160C, Concepción, Chile
| | - Carola Muñoz-Montesino
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, PO Box 160C, Concepción, Chile
| | - Juan Carlos Vera
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, PO Box 160C, Concepción, Chile
| | - Coralia I Rivas
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, PO Box 160C, Concepción, Chile.
| |
Collapse
|
12
|
Ohta Y, Yashiro K, Ohashi K, Horikoshi Y, Kusumoto C, Matsura T. Compound 48/80, a mast cell degranulator, causes oxidative damage by enhancing vitamin C synthesis via reduced glutathione depletion and lipid peroxidation through neutrophil infiltration in rat livers. J Clin Biochem Nutr 2017; 60:187-198. [PMID: 28584400 PMCID: PMC5453024 DOI: 10.3164/jcbn.16-89] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/19/2016] [Indexed: 01/14/2023] Open
Abstract
In this study, we examined whether compound 48/80 (C48/80), a mast cell degranulator, causes hepatic oxidative damage in rats. Serum and liver biochemical parameters were determined 0.5, 3 or 6 h after a single treatment with C48/80 (0.75 mg/kg). Serum histamine and serotonin levels increased 0.5 h after C48/80 treatment but diminished thereafter. Increases in serum vitamin C (VC) and transaminases and hepatic hydrogen peroxide, lipid peroxide, and myeloperoxidase levels and a decrease in hepatic reduced glutathione level occurred 0.5 h after C48/80 treatment and further proceeded at 3 h, but these changes diminished at 6 h. Serum lipid peroxide and hepatic VC levels increased 3 h after C48/80 treatment. Hepatic glycogen level decreased 0.5 h after C48/80 treatment and further decreased at 3 h. Pre-administered ketotifen diminished all these changes found at 3 h after treatment, while pre-administered NPC 14686 diminished these changes except changes in serum histamine and serotonin levels. Hepatocellular apoptosis observed at 3 h after C48/80 treatment was attenuated by pre-administered ketotifen and NPC 14686. These results indicate that C48/80 causes oxidative damage by enhancing VC synthesis via reduced glutathione depletion-dependent glycogenolysis and lipid peroxidation through neutrophil infiltration following mast cell degranulation in rat livers.
Collapse
Affiliation(s)
- Yosihiji Ohta
- Department of Chemistry, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Koji Yashiro
- Department of Chemistry, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Koji Ohashi
- Department of Clinical Biochemistry, Faculty of Medical Chemistry, Fujita Health University School of Health Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Yosuke Horikoshi
- Division of Medical Biochemistry, Department of Pathophysiological and Therapeutic Science, Totorri University Faculty of Medicine, 86 Nishimachi, Yonago, Tottori 683-8503, Japan
| | - Chiaki Kusumoto
- Department of Gastroenterology, Nippon Kokan Fukuyama Hospital, 1844 Tsunoshita, Daimon, Fukuyama, Hiroshima 721-0927, Japan
| | - Tatsuya Matsura
- Division of Medical Biochemistry, Department of Pathophysiological and Therapeutic Science, Totorri University Faculty of Medicine, 86 Nishimachi, Yonago, Tottori 683-8503, Japan
| |
Collapse
|
13
|
Berger TM, Rifai N, Avery ME, Frei B. Vitamin C in premature and full-term human neonates. Redox Rep 2016; 2:257-62. [DOI: 10.1080/13510002.1996.11747058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
14
|
Du Z, Jia XL, Wang Y, Wu T, Han ZH, Zhang XZ. Redox homeostasis and reactive oxygen species scavengers shift during ontogenetic phase changes in apple. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 236:283-94. [PMID: 26025541 DOI: 10.1016/j.plantsci.2015.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/14/2015] [Accepted: 04/16/2015] [Indexed: 05/12/2023]
Abstract
The change from juvenile to adult phase is a universal phenomenon in perennial plants such as apple. To validate the changes in hydrogen peroxide (H2O2) levels and scavenging during ontogenesis in apple seedlings, the H2O2 contents, its scavenging capacity, and the expression of related genes, as well as miR156 levels, were measured in leaf samples from different nodes in seedlings of 'Zisai Pearl' (Malus asiatica)×'Red Fuji' (M. domestica). Then in vitro shoots were treated with redox modulating chemicals to verify the response of miR156 to redox alteration. The expression of miR156 decreased gradually during ontogenesis, indicating a progressive loss of juvenility. During the phase changes, H2O2 and ascorbate contents, the ratio of ascorbate to dehydroascorbate, the ascorbate peroxidase, catalase and glutathione reductase activities, and the expressions of some MdGR and MdAPX gene family members increased remarkably. However, the glutathione content and glutathione to glutathione disulfide ratio declined. In chemicals treated in vitro shoots, the changes in miR156 levels were coordinated with GSH contents and GSH/GSSG ratio but not H2O2 contents. Conclusively, the relative reductive thiol redox status is critical for the maintenance of juvenility and the reductive ascorbate redox environment was elevated and sustained during the reproductive phase.
Collapse
Affiliation(s)
- Zhen Du
- Institute for Horticultural Plants, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing 100193, China
| | - Xiao Lin Jia
- Institute for Horticultural Plants, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing 100193, China
| | - Yi Wang
- Institute for Horticultural Plants, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing 100193, China
| | - Ting Wu
- Institute for Horticultural Plants, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing 100193, China
| | - Zhen Hai Han
- Institute for Horticultural Plants, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing 100193, China
| | - Xin Zhong Zhang
- Institute for Horticultural Plants, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing 100193, China.
| |
Collapse
|
15
|
Thompson CM, Proctor DM, Suh M, Haws LC, Kirman CR, Harris MA. Assessment of the mode of action underlying development of rodent small intestinal tumors following oral exposure to hexavalent chromium and relevance to humans. Crit Rev Toxicol 2013; 43:244-74. [PMID: 23445218 PMCID: PMC3604738 DOI: 10.3109/10408444.2013.768596] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 01/16/2013] [Accepted: 01/17/2013] [Indexed: 12/13/2022]
Abstract
Abstract Chronic exposure to high concentrations of hexavalent chromium (Cr(VI)) in drinking water causes intestinal adenomas and carcinomas in mice, but not in rats. Cr(VI) causes damage to intestinal villi and crypt hyperplasia in mice after only one week of exposure. After two years of exposure, intestinal damage and crypt hyperplasia are evident in mice (but not rats), as are intestinal tumors. Although Cr(VI) has genotoxic properties, these findings suggest that intestinal tumors in mice arise as a result of chronic mucosal injury. To better understand the mode of action (MOA) of Cr(VI) in the intestine, a 90-day drinking water study was conducted to collect histological, biochemical, toxicogenomic and pharmacokinetic data in intestinal tissues. Using MOA analyses and human relevance frameworks proposed by national and international regulatory agencies, the weight of evidence supports a cytotoxic MOA with the following key events: (a) absorption of Cr(VI) from the intestinal lumen, (b) toxicity to intestinal villi, (c) crypt regenerative hyperplasia and (d) clonal expansion of mutations within the crypt stem cells, resulting in late onset tumorigenesis. This article summarizes the data supporting each key event in the MOA, as well as data that argue against a mutagenic MOA for Cr(VI)-induced intestinal tumors.
Collapse
|
16
|
Morales NP, Yamaguchi Y, Murakami K, Kosem N, Utsumi H. Hepatic reduction of carbamoyl-PROXYL in ferric nitrilotriacetate induced iron overloaded mice: an in vivo ESR study. Biol Pharm Bull 2012; 35:1035-40. [PMID: 22791149 DOI: 10.1248/bpb.b110701] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reduction of a nitroxyl radical, carbamoyl-PROXYL in association of free radical production and hepatic glutathione (GSH) was investigated in iron overloaded mice using an in vivo L-band electron spin resonance (ESR) spectrometer. Significant increases in hepatic iron, lipid peroxidation and decrease in hepatic GSH were observed in mice intraperitoneally (i.p.) administrated with ferric nitrilotriacetate (Fe(III)-NTA, a total 45 µmol/mouse over a period of 3 weeks). Free radical production in iron overloaded mice was evidenced by significantly enhanced rate constant of ESR signal decay of carbamoyl-PROXYL, which was slightly reduced by treatment with iron chelator, deferoxamine. Moreover, the rate constant of ESR signal decay was negatively correlated with hepatic GSH level (r=-0.586, p<0.001). On the other hand, hepatic GSH-depletion (>80%) in mice through daily i.p. injection and drinking water supplementation of L-buthionine-[S,R]-sulfoximine (BSO) significantly retarded ESR signal decay, while there were no changes in serum aspartate aminotransferase and liver thiobarbituric acid-reactive substances levels. In conclusion, GSH plays two distinguish roles on ESR signal decay of carbamoyl-PROXYL, as an antioxidant and as a reducing agent, dependently on its concentration. Therefore, it should be taken into account in the interpretation of free radical production in each specific experimental setting.
Collapse
|
17
|
Groth E, Honaker A, Osterbur K, Deitschel SJ, Odunayo AO, Chang CH, DeClue A. Hyperascorbaemia in dogs admitted to a teaching hospital intensive care unit. J Small Anim Pract 2012; 53:652-6. [DOI: 10.1111/j.1748-5827.2012.01290.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- E. Groth
- Comparative Internal Medicine Laboratory, College of Veterinary Medicine; University of Missouri; Columbia MO 65211 USA
| | - A. Honaker
- Comparative Internal Medicine Laboratory, College of Veterinary Medicine; University of Missouri; Columbia MO 65211 USA
| | - K. Osterbur
- Comparative Internal Medicine Laboratory, College of Veterinary Medicine; University of Missouri; Columbia MO 65211 USA
| | - S. J. Deitschel
- Comparative Internal Medicine Laboratory, College of Veterinary Medicine; University of Missouri; Columbia MO 65211 USA
| | - A. O. Odunayo
- Comparative Internal Medicine Laboratory, College of Veterinary Medicine; University of Missouri; Columbia MO 65211 USA
| | - C.-H. Chang
- Comparative Internal Medicine Laboratory, College of Veterinary Medicine; University of Missouri; Columbia MO 65211 USA
| | - A. DeClue
- Comparative Internal Medicine Laboratory, College of Veterinary Medicine; University of Missouri; Columbia MO 65211 USA
| |
Collapse
|
18
|
Thompson CM, Fedorov Y, Brown DD, Suh M, Proctor DM, Kuriakose L, Haws LC, Harris MA. Assessment of Cr(VI)-induced cytotoxicity and genotoxicity using high content analysis. PLoS One 2012; 7:e42720. [PMID: 22905163 PMCID: PMC3414448 DOI: 10.1371/journal.pone.0042720] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 07/10/2012] [Indexed: 11/18/2022] Open
Abstract
Oral exposure to high concentrations of hexavalent chromium [Cr(VI)] induces intestinal redox changes, villus cytotoxicity, crypt hyperplasia, and intestinal tumors in mice. To assess the effects of Cr(VI) in a cell model relevant to the intestine, undifferentiated (proliferating) and differentiated (confluent) Caco-2 cells were treated with Cr(VI), hydrogen peroxide or rotenone for 2-24 hours. DNA damage was then assessed by nuclear staining intensity of 8-hydroxydeoxyguanosine (8-OHdG) and phosphorylated histone variant H2AX (γ-H2AX) measured by high content analysis methods. In undifferentiated Caco-2, all three chemicals increased 8-OHdG and γ-H2AX staining at cytotoxic concentrations, whereas only 8-OHdG was elevated at non-cytotoxic concentrations at 24 hr. Differentiated Caco-2 were more resistant to cytotoxicity and DNA damage than undifferentiated cells, and there were no changes in apoptotic markers p53 or annexin-V. However, Cr(VI) induced a dose-dependent translocation of the unfolded protein response transcription factor ATF6 into the nucleus. Micronucleus (MN) formation was assessed in CHO-K1 and A549 cell lines. Cr(VI) increased MN frequency in CHO-K1 only at highly cytotoxic concentrations. Relative to the positive control Mitomycin-C, Cr(VI) only slightly increased MN frequency in A549 at mildly cytotoxic concentrations. The results demonstrate that Cr(VI) genotoxicity correlates with cytotoxic concentrations, and that H2AX phosphorylation occurs at higher concentrations than oxidative DNA damage in proliferating Caco-2 cells. The findings suggest that in vitro genotoxicity of Cr(VI) is primarily oxidative in nature at low concentrations. Implications for in vivo intestinal toxicity of Cr(VI) will be discussed.
Collapse
|
19
|
Mardones L, Zúñiga FA, Villagrán M, Sotomayor K, Mendoza P, Escobar D, González M, Ormazabal V, Maldonado M, Oñate G, Angulo C, Concha II, Reyes AM, Cárcamo JG, Barra V, Vera JC, Rivas CI. Essential role of intracellular glutathione in controlling ascorbic acid transporter expression and function in rat hepatocytes and hepatoma cells. Free Radic Biol Med 2012; 52:1874-87. [PMID: 22348976 DOI: 10.1016/j.freeradbiomed.2012.02.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 02/07/2012] [Accepted: 02/09/2012] [Indexed: 01/21/2023]
Abstract
Although there is in vivo evidence suggesting a role for glutathione in the metabolism and tissue distribution of vitamin C, no connection with the vitamin C transport systems has been reported. We show here that disruption of glutathione metabolism with buthionine-(S,R)-sulfoximine (BSO) produced a sustained blockade of ascorbic acid transport in rat hepatocytes and rat hepatoma cells. Rat hepatocytes expressed the Na(+)-coupled ascorbic acid transporter-1 (SVCT1), while hepatoma cells expressed the transporters SVCT1 and SVCT2. BSO-treated rat hepatoma cells showed a two order of magnitude decrease in SVCT1 and SVCT2 mRNA levels, undetectable SVCT1 and SVCT2 protein expression, and lacked the capacity to transport ascorbic acid, effects that were fully reversible on glutathione repletion. Interestingly, although SVCT1 mRNA levels remained unchanged in rat hepatocytes made glutathione deficient by in vivo BSO treatment, SVCT1 protein was absent from the plasma membrane and the cells lacked the capacity to transport ascorbic acid. The specificity of the BSO treatment was indicated by the finding that transport of oxidized vitamin C (dehydroascorbic acid) and glucose transporter expression were unaffected by BSO treatment. Moreover, glutathione depletion failed to affect ascorbic acid transport, and SVCT1 and SVCT2 expression in human hepatoma cells. Therefore, our data indicate an essential role for glutathione in controlling vitamin C metabolism in rat hepatocytes and rat hepatoma cells, two cell types capable of synthesizing ascorbic acid, by regulating the expression and subcellular localization of the transporters involved in the acquisition of ascorbic acid from extracellular sources, an effect not observed in human cells incapable of synthesizing ascorbic acid.
Collapse
Affiliation(s)
- Lorena Mardones
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160C, Concepción, Chile
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Schepens MAA, Vink C, Schonewille AJ, Roelofs HMJ, Brummer RJ, van der Meer R, Bovee-Oudenhoven IMJ. Supplemental antioxidants do not ameliorate colitis development in HLA-B27 transgenic rats despite extremely low glutathione levels in colonic mucosa. Inflamm Bowel Dis 2011; 17:2065-75. [PMID: 21910168 DOI: 10.1002/ibd.21584] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 10/25/2010] [Indexed: 12/09/2022]
Abstract
BACKGROUND Oxidative stress is presumed to play an important role in inflammatory bowel disease (IBD). Accordingly, antioxidant supplementation might be protective. Dietary calcium inhibited colitis development in HLA-B27 transgenic rats, an animal model mimicking IBD. As antioxidants might act at mucosa level and calcium predominantly in the gut lumen, we hypothesize that the combination has additive protective effects on colitis development. METHODS HLA-B27 rats were fed a control diet or the same diet supplemented with the antioxidants glutathione, vitamin C, and vitamin E, or supplemented with both antioxidants and calcium. Oxidative stress in colonic mucosa, colonic inflammation, intestinal permeability, and diarrhea were quantified. RESULTS Intestinal permeability, diarrhea, myeloperoxidase, and interleukin-1β levels were significantly lower in rats fed both antioxidants and calcium compared to rats supplemented with antioxidants only. No beneficial effects were observed in rats fed the diet supplemented with antioxidants only. Strikingly, despite extremely low colonic mucosal glutathione levels in HLA-B27 rats, there was no oxidative stress-related damage. Subsequent analyses showed no defect in expression of glutathione synthesis genes. Additional experiments, comparing young and older HLA-B27 rats, showed that glutathione levels and also reactive oxygen species production decreased with progression of intestinal inflammation. CONCLUSIONS Antioxidant supplementation was ineffective in HLA-B27 rats despite low mucosal glutathione levels, because colitis development did not coincide with oxidative stress in this model. This indicates that the neutrophilic respiratory burst, and thus innate immune defense, is compromised in HLA-B27 rats. As supplementation with both calcium and antioxidants attenuated colitis development, we speculate that this protective effect is attributed to calcium only.
Collapse
|
21
|
N'guessan P, Pouyet L, Gosset G, Hamlaoui S, Seillier M, Cano CE, Seux M, Stocker P, Culcasi M, Iovanna JL, Dusetti NJ, Pietri S, Carrier A. Absence of tumor suppressor tumor protein 53-induced nuclear protein 1 (TP53INP1) sensitizes mouse thymocytes and embryonic fibroblasts to redox-driven apoptosis. Antioxid Redox Signal 2011; 15:1639-53. [PMID: 21235351 DOI: 10.1089/ars.2010.3553] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The p53-transcriptional target TP53INP1 is a potent stress-response protein promoting p53 activity. We previously showed that ectopic overexpression of TP53INP1 facilitates cell cycle arrest as well as cell death. Here we report a study investigating cell death in mice deficient for TP53INP1. Surprisingly, we found enhanced stress-induced apoptosis in TP53INP1-deficient cells. This observation is underpinned in different cell types in vivo (thymocytes) and in vitro (thymocytes and MEFs), following different types of injury inducing either p53-dependent or -independent cell death. Nevertheless, absence of TP53INP1 is unable to overcome impaired cell death of p53-deficient thymocytes. Stress-induced ROS production is enhanced in the absence of TP53INP1, and antioxidant NAC complementation abolishes increased sensitivity to apoptosis of TP53INP1-deficient cells. Furthermore, antioxidant defenses are defective in TP53INP1-deficient mice in correlation with ROS dysregulation. Finally, we show that autophagy is reduced in TP53INP1-deficient cells both at the basal level and upon stress. Altogether, these data show that impaired ROS regulation in TP53INP1-deficient cells is responsible for their sensitivity to induced apoptosis. In addition, they suggest that this sensitivity could rely on a defect of autophagy. Therefore, these data emphasize the role of TP53INP1 in protection against cell injury.
Collapse
Affiliation(s)
- Prudence N'guessan
- INSERM U624 Stress cellulaire, Case 915 Parc Scientifique de Luminy, Marseille Cedex 9, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Jun HJ, Kim S, Dawson K, Choi DW, Kim JS, Rodriguez RL, Lee SJ. Effects of Acute Oral Administration of Vitamin C on the Mouse Liver Transcriptome. J Med Food 2011; 14:181-94. [DOI: 10.1089/jmf.2010.1087] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Hee-Jin Jun
- Division of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sukyung Kim
- Division of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Kevin Dawson
- Laboratory for High Performance Computing and Informatics, University of California, Davis, California, USA
| | - Dal-Woong Choi
- Department of Environment and Public Health, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Jong-Sang Kim
- Major in Life and Food Sciences, School of Applied Bioscience, Kyungpook National University, Daegu, Republic of Korea
| | - Raymond L. Rodriguez
- Laboratory for High Performance Computing and Informatics, University of California, Davis, California, USA
| | - Sung-Joon Lee
- Division of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
23
|
Bando K, Kunimatsu T, Sakai J, Kimura J, Funabashi H, Seki T, Bamba T, Fukusaki E. GC-MS-based metabolomics reveals mechanism of action for hydrazine induced hepatotoxicity in rats. J Appl Toxicol 2010; 31:524-35. [DOI: 10.1002/jat.1591] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 08/16/2010] [Accepted: 08/16/2010] [Indexed: 11/11/2022]
|
24
|
Metabolic oxidation regulates embryonic stem cell differentiation. Nat Chem Biol 2010; 6:411-7. [PMID: 20436487 PMCID: PMC2873061 DOI: 10.1038/nchembio.364] [Citation(s) in RCA: 437] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Accepted: 02/26/2010] [Indexed: 12/30/2022]
Abstract
Metabolites offer an important unexplored complement to understanding the pluripotency of stem cells. Using mass spectrometry-based metabolomics, we show that embryonic stem cells are characterized by abundant metabolites with highly unsaturated structures whose levels decrease upon differentiation. By monitoring the reduced and oxidized glutathione ratio as well as ascorbic acid levels, we demonstrate that the stem cell redox status is regulated during differentiation. Based on the oxidative biochemistry of the unsaturated metabolites, we experimentally manipulated specific pathways in embryonic stem cells while monitoring the effects on differentiation. Inhibition of the eicosanoid signaling pathway promoted pluripotency and maintained levels of unsaturated fatty acids. In contrast, downstream oxidized metabolites (e.g., neuroprotectin D1) and substrates of pro-oxidative reactions (e.g., acyl-carnitines), promoted neuronal and cardiac differentiation. We postulate that the highly unsaturated metabolome sustained by stem cells makes them particularly attuned to differentiate in response to in vivo oxidative processes such as inflammation.
Collapse
|
25
|
Viviano K, Lavergne S, Goodman L, VanderWielen B, Grundahl L, Padilla M, Trepanier L. Glutathione, Cysteine, and Ascorbate Concentrations in Clinically Ill Dogs and Cats. J Vet Intern Med 2009; 23:250-7. [DOI: 10.1111/j.1939-1676.2008.0238.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
26
|
Langlois C, Jorquera R, Orejuela D, Bergeron A, Finegold MJ, Rhead WJ, Tanguay RM. Rescue from neonatal death in the murine model of hereditary tyrosinemia by glutathione monoethylester and vitamin C treatment. Mol Genet Metab 2008; 93:306-13. [PMID: 18023223 DOI: 10.1016/j.ymgme.2007.09.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 09/27/2007] [Accepted: 09/27/2007] [Indexed: 10/22/2022]
Abstract
Hereditary tyrosinemia type 1 (HT1) is a recessive disease caused by a deficiency of the enzyme fumarylacetoacetate hydrolase (FAH) that catalyzes the conversion of fumarylacetoacetate (FAA) into fumarate and acetoacetate. In mice models of HT1, FAH deficiency causes death within the first 24h after birth. Administration of 2-(2-nitro-4-trifluoro-methylbenzoyl)-1,3 cyclohexanedione (NTBC) prevents neonatal death in HT1 mice, ameliorates the HT1 phenotype but does not prevent development of hepatocellular carcinoma later on. FAA has been shown to deplete cells of glutathione by forming adducts. We tested whether a combination of a cell membrane permeable derivative of glutathione, glutathione monoethylester (GSH-MEE) and vitamin C could provide an alternative effective treatment for HT1. GSH-MEE (10 mmol/kg/j)/vitamin C (0.5 mmol/kg/j) treatment was given orally to pregnant/nursing female mice. While FAH-/- pups died in absence of treatment, all FAH-/- pups survived the critical first 24h of life when the mothers were on the GSH-MEE/vitamin C treatment and showed normal growth until postnatal day 10 (P10). However, after P10, pups showed failure to thrive, lethargy and died around P17. Thus, GSH-MEE/vitamin C supplementation could rescue the mice model of HT1 from neonatal death but it did not prevent the appearance of a HT1 phenotype in the second week after birth.
Collapse
Affiliation(s)
- Chantale Langlois
- Laboratory of Cellular and Developmental Genetics, CREFSIP, Department of Medicine, Pav. C-E Marchand, 1030 Av. De la Médecine, Université Laval, Que., Canada G1K 7P4
| | | | | | | | | | | | | |
Collapse
|
27
|
Ichi I, Takashima Y, Adachi N, Nakahara K, Kamikawa C, Harada-Shiba M, Kojo S. Effects of dietary cholesterol on tissue ceramides and oxidation products of apolipoprotein B-100 in ApoE-deficient mice. Lipids 2007; 42:893-900. [PMID: 17647040 DOI: 10.1007/s11745-007-3067-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 04/20/2007] [Indexed: 12/24/2022]
Abstract
Oxidized LDL (oxLDL) has been shown to activate the sphingomyelinase pathway producing ceramide in vascular smooth muscle cells. Therefore ceramide, which is a biologically active lipid causing apoptosis in a variety of cells, may be involved in the apoptotic action of oxLDL. In this study, we examined whether cholesterol enriched diets affected ceramide metabolism and oxidation product of LDL, represented by degradation of apolipoprotein B-100 (apoB) in apoE-deficient (apoE-/-) mice. ApoE-/- and wild type mice were fed a standard (AIN-76) diet or 1% cholesterol-enriched diet for 8 weeks. Tissue ceramide levels were analyzed using electrospray tandem mass spectrometry (LC-MS/MS). Ceramide levels in the plasma and the liver of apoE-/- mice were intrinsically higher than those of the wild type. In apoE-/- mice, dietary cholesterol significantly increased several ceramides and degradation products of apoB in plasma compared to those fed the control diet. Dietary cholesterol did not affect tissue ceramide levels in the wild type mice. Based on these results, plasma ceramides possibly correlate with the increase in LDL oxidation and are a risk factor for atherosclerosis.
Collapse
Affiliation(s)
- Ikuyo Ichi
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Thiele JJ, Ekanayake-Mudiyanselage S. Vitamin E in human skin: organ-specific physiology and considerations for its use in dermatology. Mol Aspects Med 2007; 28:646-67. [PMID: 17719081 DOI: 10.1016/j.mam.2007.06.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2007] [Revised: 06/12/2007] [Accepted: 06/12/2007] [Indexed: 11/30/2022]
Abstract
Vitamin E has been used for more than 50 years in experimental and clinical dermatology. While a large number of case reports were published in this time, there is still a lack of controlled clinical studies providing a rationale for well defined dosages and clinical indications. In contrast, advances in basic research on the physiology, mechanism of action, penetration, bioconversion and photoprotection of vitamin E in human skin has led to the development of numerous new formulations for use in cosmetics and skin care products. This article reviews basic mechanisms and possible cosmetic as well as clinical implications of the recent advances in cutaneous vitamin E research. Experimental evidence suggests that topical and oral vitamin E has antitumorigenic, photoprotective, and skin barrier stabilizing properties. While the current use of vitamin E is largely limited to cosmetics, controlled clinical studies for indications such as atopic dermatitis or preventions of photocarcinogenesis are needed to evaluate the clinical benefit of vitamin E.
Collapse
Affiliation(s)
- Jens J Thiele
- Department of Dermatology, Boston University Medical Center, 609 Albany Street, Boston, MA 02118, United States.
| | | |
Collapse
|
29
|
Cabungcal JH, Preissmann D, Delseth C, Cuénod M, Do KQ, Schenk F. Transitory glutathione deficit during brain development induces cognitive impairment in juvenile and adult rats: Relevance to schizophrenia. Neurobiol Dis 2007; 26:634-45. [PMID: 17459716 DOI: 10.1016/j.nbd.2007.03.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 02/08/2007] [Accepted: 03/07/2007] [Indexed: 01/12/2023] Open
Abstract
Glutathione (GSH) metabolism dysfunction is one risk factor in schizophrenia. A transitory brain GSH deficit was induced in Wistar (WIS) and mutant (ODS; lacking ascorbic acid synthesis) rats using BSO (l-buthionine-(S,R)-sulfoximine) from post-natal days 5-16. When GSH was re-established to physiological levels, juvenile BSO-ODS rats were impaired in the water maze task. Long after treatment cessation, adult BSO-WIS/-ODS rats showed impaired place discrimination in the homing board with distributed visual or olfactory cues. Their accuracy was restored when a single cue marked the trained position. Similarly, more working memory errors were made by adult BSO-WIS in the radial maze when several olfactory cues were present. These results reveal that BSO rats did not suffer simple sensory impairment. They were selectively impaired in spatial memory when the task required the integration of multimodal or olfactory cues. These results, in part, resemble some of the reported olfactory discrimination and cognitive impairment in schizophrenia.
Collapse
Affiliation(s)
- Jan-Harry Cabungcal
- Department of Physiology, University of Lausanne, CH-1005 Lausanne, Switzerland.
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Vitamin C, a reducing agent and antioxidant, is a cofactor in reactions catalyzed by Cu(+)-dependent monooxygenases and Fe(2+)-dependent dioxygenases. It is synthesized, in vertebrates having this capacity, from d-glucuronate. The latter is formed through direct hydrolysis of uridine diphosphate (UDP)-glucuronate by enzyme(s) bound to the endoplasmic reticulum membrane, sharing many properties with, and most likely identical to, UDP-glucuronosyltransferases. Non-glucuronidable xenobiotics (aminopyrine, metyrapone, chloretone and others) stimulate the enzymatic hydrolysis of UDP-glucuronate, accounting for their effect to increase vitamin C formation in vivo. Glucuronate is converted to l-gulonate by aldehyde reductase, an enzyme of the aldo-keto reductase superfamily. l-Gulonate is converted to l-gulonolactone by a lactonase identified as SMP30 or regucalcin, whose absence in mice leads to vitamin C deficiency. The last step in the pathway of vitamin C synthesis is the oxidation of l-gulonolactone to l-ascorbic acid by l-gulonolactone oxidase, an enzyme associated with the endoplasmic reticulum membrane and deficient in man, guinea pig and other species due to mutations in its gene. Another fate of glucuronate is its conversion to d-xylulose in a five-step pathway, the pentose pathway, involving identified oxidoreductases and an unknown decarboxylase. Semidehydroascorbate, a major oxidation product of vitamin C, is reconverted to ascorbate in the cytosol by cytochrome b(5) reductase and thioredoxin reductase in reactions involving NADH and NADPH, respectively. Transmembrane electron transfer systems using ascorbate or NADH as electron donors serve to reduce semidehydroascorbate present in neuroendocrine secretory vesicles and in the extracellular medium. Dehydroascorbate, the fully oxidized form of vitamin C, is reduced spontaneously by glutathione, as well as enzymatically in reactions using glutathione or NADPH. The degradation of vitamin C in mammals is initiated by the hydrolysis of dehydroascorbate to 2,3-diketo-l-gulonate, which is spontaneously degraded to oxalate, CO(2) and l-erythrulose. This is at variance with bacteria such as Escherichia coli, which have enzymatic degradation pathways for ascorbate and probably also dehydroascorbate.
Collapse
Affiliation(s)
- Carole L Linster
- Université Catholique de Louvain, Christian de Duve Institute of Cellular Pathology, Brussels, Belgium
| | | |
Collapse
|
31
|
Wang BS, Yen GC, Chang LW, Yen WJ, Duh PD. Protective effects of burdock (Arctium lappa Linne) on oxidation of low-density lipoprotein and oxidative stress in RAW 264.7 macrophages. Food Chem 2007. [DOI: 10.1016/j.foodchem.2006.01.051] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
32
|
Yu HM, Wang BS, Chu HL, Chang LW, Yen WJ, Lin CJ, Duh PD. Napiergrass (Pennisetum purpureum S.) protects oxidative damage of biomolecules and modulates antioxidant enzyme activity. Food Chem 2007. [DOI: 10.1016/j.foodchem.2007.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Vitvitsky V, Thomas M, Ghorpade A, Gendelman HE, Banerjee R. A functional transsulfuration pathway in the brain links to glutathione homeostasis. J Biol Chem 2006; 281:35785-93. [PMID: 17005561 DOI: 10.1074/jbc.m602799200] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxidative stress and diminished glutathione pools play critical roles in the pathogenesis of neurodegenerative diseases, including Alzheimer and Parkinson disease. Synthesis of glutathione, the most abundant mammalian antioxidant, is regulated at the substrate level by cysteine, which is synthesized from homocysteine via the transsulfuration pathway. Elevated homocysteine and diminished glutathione levels, seen in Alzheimer and Parkinson disease patients suggest impairments in the transsulfuration pathway that connects these metabolites. However, the very existence of this metabolic pathway in the brain is a subject of controversy. The product of the first of two enzymes in this pathway, cystathionine, is present at higher levels in brain as compared with other organs. This, together with the reported absence of the second enzyme, gamma-cystathionase, has led to the suggestion that the transsulfuration pathway is incomplete in the brain. In this study, we incubated mouse and human neurons and astrocytes and murine brain slices in medium with [35S]methionine and detected radiolabel incorporation into glutathione. This label transfer was sensitive to inhibition of gamma-cystathionase. In adult brain slices, approximately 40% of the glutathione was depleted within 10 h following gamma-cystathionase inhibition. In cultured human astrocytes, flux through the transsulfuration pathway increased under oxidative stress conditions, and blockade of this pathway led to reduced cell viability under oxidizing conditions. This study establishes the presence of an intact transsulfuration pathway and demonstrates its contribution to glutathione-dependent redox-buffering capacity under ex vivo conditions in brain cells and slices.
Collapse
Affiliation(s)
- Victor Vitvitsky
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | | | | | | | | |
Collapse
|
34
|
Yang CS, Chang SC, Tsai PJ, Chen WY, Kuo JS. Simultaneous Measurement of Ascorbic Acid and Glutathione: Application of Microdialysis and On-Line HPLC With Au/Hg Electrode in Anesthetized Rat Liver. J LIQ CHROMATOGR R T 2006. [DOI: 10.1080/10826079808001263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- C.-S. Yang
- a Department of Education and Research , Taichung Veterans General Hospital Taichung , Taiwan 407, R. O. C
| | - S.-C. Chang
- b Department of Chemistry , National Tsinghua University , Hsinchu, Taiwan 300, R. O. C
| | - P.-J. Tsai
- a Department of Education and Research , Taichung Veterans General Hospital Taichung , Taiwan 407, R. O. C
| | - W.-Y. Chen
- a Department of Education and Research , Taichung Veterans General Hospital Taichung , Taiwan 407, R. O. C
| | - J.-S. Kuo
- a Department of Education and Research , Taichung Veterans General Hospital Taichung , Taiwan 407, R. O. C
| |
Collapse
|
35
|
Cabungcal JH, Nicolas D, Kraftsik R, Cuénod M, Do KQ, Hornung JP. Glutathione deficit during development induces anomalies in the rat anterior cingulate GABAergic neurons: Relevance to schizophrenia. Neurobiol Dis 2006; 22:624-37. [PMID: 16481179 DOI: 10.1016/j.nbd.2006.01.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 12/19/2005] [Accepted: 01/02/2006] [Indexed: 10/25/2022] Open
Abstract
A series of studies in schizophrenic patients report a decrease of glutathione (GSH) in prefrontal cortex (PFC) and cerebrospinal fluid, a decrease in mRNA levels for two GSH synthesizing enzymes and a deficit in parvalbumin (PV) expression in a subclass of GABA neurons in PFC. GSH is an important redox regulator, and its deficit could be responsible for cortical anomalies, particularly in regions rich in dopamine innervation. We tested in an animal model if redox imbalance (GSH deficit and excess extracellular dopamine) during postnatal development would affect PV-expressing neurons. Three populations of interneurons immunolabeled for calcium-binding proteins were analyzed quantitatively in 16-day-old rat brain sections. Treated rats showed specific reduction in parvalbumin immunoreactivity in the anterior cingulate cortex, but not for calbindin and calretinin. These results provide experimental evidence for the critical role of redox regulation in cortical development and validate this animal model used in schizophrenia research.
Collapse
Affiliation(s)
- Jan-Harry Cabungcal
- Center for Research in Psychiatric Neuroscience, Department of Adult Psychiatry-CHUV, University of Lausanne, 1008-Prilly, Switzerland.
| | | | | | | | | | | |
Collapse
|
36
|
Cross CE, Vasu VT, Lim Y, Gohil K. Combating oxidative stress at respiratory tract biosurfaces: challenges yet to be resolved, a commentary on "Vitamin supplementation does not protect against symptoms in ozone-responsive subjects". Free Radic Biol Med 2006; 40:1693-7. [PMID: 16678007 DOI: 10.1016/j.freeradbiomed.2006.02.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Accepted: 02/16/2006] [Indexed: 11/20/2022]
Affiliation(s)
- Carroll E Cross
- Center for Comparative Respiratory Biology and Medicine, University of California, Davis, Division of Pulmonary and Critical Care Medicine, Genome and Biomedical Sciences Facility, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
37
|
|
38
|
Chan TS, Shangari N, Wilson JX, Chan H, Butterworth RF, O'Brien PJ. The biosynthesis of ascorbate protects isolated rat hepatocytes from cumene hydroperoxide-mediated oxidative stress. Free Radic Biol Med 2005; 38:867-73. [PMID: 15749382 DOI: 10.1016/j.freeradbiomed.2004.12.006] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Revised: 12/02/2004] [Accepted: 12/06/2004] [Indexed: 11/19/2022]
Abstract
Most animals synthesize ascorbate. It is an essential enzymatic cofactor for the synthesis of a variety of biological molecules and also a powerful antioxidant. There is, however, little direct evidence supporting an antioxidant role for endogenously produced ascorbate. Recently, we demonstrated that incubation of rat hepatocytes with 1-bromoheptane or phorone simultaneously depleted glutathione (GSH) and triggered rapid ascorbate synthesis. The present study investigates the hypothesis that endogenous ascorbate synthesis can confer protection against oxidative stress. Rat and guinea pig hepatocytes were depleted of GSH with 1-bromoheptane and subsequently treated with the oxidative stressor cumene hydroperoxide (CHP) in the presence or absence of the ascorbate synthesis inhibitor sorbinil. In rat hepatocytes, ascorbate content increased linearly (from 15.1 to 35.8 nmol/10(6) cells) over a 105-min incubation. Prior depletion of GSH increased CHP-induced cellular reactive oxygen species (ROS) production, lipid peroxidation, and cell death in rat and guinea pig hepatocytes. Inhibiting ascorbate synthesis, however, further elevated ROS production (2-fold), lipid peroxidation (1.5-fold), and cell death (2-fold) in rat hepatocytes only. This is the first time that endogenous ascorbate synthesis has been shown to decrease cellular susceptibility to oxidative stress. Protection by endogenously produced ascorbate may therefore need to be addressed when extrapolating data to humans from experiments using rodents capable of synthesizing ascorbate.
Collapse
Affiliation(s)
- Tom S Chan
- Faculty of Pharmacy, University of Toronto, 19 Russell Street, Room 522, Toronto, ON M5S 2S2, Canada
| | | | | | | | | | | |
Collapse
|
39
|
Yamamoto F, Kaneshiro T, Kato H, Mukai T, Kuwabara Y, Honda H, Maeda M. Decreased Tissue Accumulation of 6-Deoxy-6-[18F]fluoro-L-ascorbic Acid in Glutathione-Deficient Rats Induced by Administration of Diethyl Maleate. Biol Pharm Bull 2005; 28:1943-7. [PMID: 16204951 DOI: 10.1248/bpb.28.1943] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The relationship between in vivo biodistribution of 6-deoxy-6-[18F]fluoro-L-ascorbic acid (18F-DFA) and the content of tissue glutathione (GSH) was investigated in Wistar male rats. Following intravenous administration of 18F-DFA, the accumulation of radioactivity in most tissues, including the adrenal glands, liver and brain, was significantly reduced together with a decrease in the content of GSH by preloading of diethyl maleate (DEM) which depletes cellular GSH. Similar decreased uptake was also observed in the distribution of L-[1-14C]ascorbic acid (14C-AA) after DEM treatment. The possible biological mechanisms, including competition with endogenous AA and ascorbate recycling, that modulate the uptake and accumulation into tissues of 18F-DFA and 14C-AA in GSH-deficient rats are discussed.
Collapse
Affiliation(s)
- Fumihiko Yamamoto
- Faculty of Pharmaceutical Sciences, Kyushu University; Fukuoka 812-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Steffner RJ, Wu L, Powers AC, May JM. Ascorbic acid recycling by cultured beta cells: effects of increased glucose metabolism. Free Radic Biol Med 2004; 37:1612-21. [PMID: 15477012 DOI: 10.1016/j.freeradbiomed.2004.07.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Revised: 07/20/2004] [Accepted: 07/29/2004] [Indexed: 10/26/2022]
Abstract
Ascorbic acid is necessary for optimal insulin secretion from pancreatic islets. We evaluated ascorbate recycling and whether it is impaired by increased glucose metabolism in the rat beta-cell line INS-1. INS-1 cells, engineered with the potential for overexpression of glucokinase under the control of a tetracycline-inducible gene expression system, took up and reduced dehydroascorbic acid to ascorbate in a concentration-dependent manner that was optimal in the presence of physiologic D-glucose concentrations. Ascorbate uptake did not affect intracellular GSH concentrations. Whereas depletion of GSH in culture to levels about 25% of normal also did not affect the ability of the cells to reduce dehydroascorbic acid, more severe acute GSH depletion to less than 10% of normal levels did impair dehydroascorbic acid reduction. Culture of inducible cells in 11.8 mM D-glucose and doxycycline for 48 h enhanced glucokinase activity, increased glucose utilization, abolished D-glucose-dependent insulin secretion, and increased generation of reactive oxygen species. The latter may have contributed to subsequent decreases in the ability of the cells both to maintain intracellular ascorbate and to recycle it from dehydroascorbic acid. Cultured beta cells have a high capacity to recycle ascorbate, but this is sensitive to oxidant stress generated by increased glucose metabolism due to culture in high glucose concentrations and increased glucokinase expression. Impaired ascorbate recycling as a result of increased glucose metabolism may have implications for the role of ascorbate in insulin secretion in diabetes mellitus and may partially explain glucose toxicity in beta cells.
Collapse
Affiliation(s)
- Robert J Steffner
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-6303, USA
| | | | | | | |
Collapse
|
41
|
Chan TS, Wilson JX, O'Brien PJ. Glycogenolysis is directed towards ascorbate synthesis by glutathione conjugation. Biochem Biophys Res Commun 2004; 317:149-56. [PMID: 15047160 DOI: 10.1016/j.bbrc.2004.03.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Indexed: 11/29/2022]
Abstract
Using isolated rat hepatocytes we have shown that glutathione (GSH) depletion by glutathione-S-transferase (GST)-catalyzed conjugation with 1-bromoheptane or phorone was accompanied by a significant elevation in ascorbate synthesis. Glycogenolysis was also stimulated without a significant rise in glucose synthesis. Furthermore, when glycogenolysis was stimulated in control hepatocytes by increasing intracellular cAMP levels (with glucagon or dibutyryl cAMP), cellular glucose levels, but not ascorbate levels, increased. These data suggest that GSH depletion can stimulate ascorbate synthesis independently of glucose synthesis and that hepatocytes can direct glycogenolysis towards ascorbate synthesis during GSH conjugation.
Collapse
Affiliation(s)
- Tom S Chan
- Faculty of Pharmacy, University of Toronto, 19 Russell St Rm 522, Toronto, Ont, Canada M5S 2S2
| | | | | |
Collapse
|
42
|
Castagné V, Rougemont M, Cuenod M, Do KQ. Low brain glutathione and ascorbic acid associated with dopamine uptake inhibition during rat's development induce long-term cognitive deficit: relevance to schizophrenia. Neurobiol Dis 2004; 15:93-105. [PMID: 14751774 DOI: 10.1016/j.nbd.2003.09.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Schizophrenia is associated with a cerebral glutathione deficit, which may leave the brain susceptible to oxidants. To study the consequences of a glutathione deficit, we treated developing rats with L-buthionine-(S,R)-sulfoximine (BSO), an inhibitor of glutathione synthesis, and later investigated their behaviour until adulthood. Since rodents may in some occasions compensate for a glutathione deficit by ascorbic acid (AA), we used Osteogenic Disorder Shionogi (ODS) mutant rats, which like humans, cannot synthetize ascorbic acid. Moreover, as hyperactivity of the dopaminergic system may be associated with schizophrenia, some rats were treated with the dopamine uptake inhibitor GBR 12909. Whereas ODS rats treated with either BSO or GBR 12909 alone had normal behaviour, rats treated with both BSO and GBR 12909 failed to discriminate between familiar and novel objects although other behaviours proved to be normal. In contrast, nonmutant rats were not affected by treatment with BSO and GBR 12909. Our results suggest that low brain glutathione and ascorbic acid levels associated with a perturbation of the dopaminergic system actively participate in the development of some cognitive deficits affecting schizophrenic patients.
Collapse
Affiliation(s)
- Vincent Castagné
- Center for Research in Psychiatric Neuroscience, Department of Adult Psychiatry, Lausanne University-CHUV, CH-1008 Prilly, Lausanne, Switzerland.
| | | | | | | |
Collapse
|
43
|
Castagné V, Cuénod M, Do KQ. An animal model with relevance to schizophrenia: sex-dependent cognitive deficits in osteogenic disorder-Shionogi rats induced by glutathione synthesis and dopamine uptake inhibition during development. Neuroscience 2004; 123:821-34. [PMID: 14751276 DOI: 10.1016/j.neuroscience.2003.11.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Low glutathione levels have been observed in the prefrontal cortex and the cerebrospinal fluid of schizophrenic patients, possibly enhancing the cerebral susceptibility to oxidative stress. We used osteogenic disorder Shionogi mutant rats, which constitute an adequate model of the human redox regulation because both are unable to synthesize ascorbic acid. To study the long-term consequences of a glutathione deficit, we treated developing rats with L-buthionine-(S,R)-sulfoximine (BSO), an inhibitor of glutathione synthesis, and later investigated their behavior until adulthood. Moreover, some rats were treated with the dopamine uptake inhibitor GBR 12909 in order to elevate dopamine extracellular levels, thereby mimicking the dopamine hyperactivity proposed to be involved in schizophrenia. BSO and GBR 12909 alone or in combination minimally affected the development of spontaneous alternation or basic sensory and motor skills. A major effect of BSO alone or in combination with GBR 12909 was the induction of cataracts in both sexes, whereas GBR 12909 induced an elevation of body weight in females only. Sex and age-dependent effects of the treatments were observed in a test of object recognition. At postnatal day 65, whereas male rats treated with both BSO and GBR 12909 failed to discriminate between familiar and novel objects, females were not affected. At postnatal day 94, male object recognition capacity was diminished by BSO and GBR 12909 alone or in combination, whereas females were only affected by the combination of both drugs. Inhibition of brain glutathione synthesis and dopamine uptake in developing rats induce long-term cognitive deficits occurring in adulthood. Males are affected earlier and more intensively than females, at least concerning object recognition. The present study suggests that the low glutathione levels observed in schizophrenic patients may participate in the development of some of their cognitive deficits.
Collapse
Affiliation(s)
- V Castagné
- Center for Research in Psychiatric Neuroscience, Department of Adult Psychiatry, Lausanne University-CHUV, Site de Cery, CH-1008 Prilly-Lausanne, Switzerland.
| | | | | |
Collapse
|
44
|
Rougemont M, Do KQ, Castagné V. New model of glutathione deficit during development: Effect on lipid peroxidation in the rat brain. J Neurosci Res 2002; 70:774-83. [PMID: 12444599 DOI: 10.1002/jnr.10439] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Glutathione is a major regulator of the redox equilibrium, so its deficit weakens tissue resistance to oxidants. The nervous system is particularly susceptible to oxidative insults and is therefore very dependent on its glutathione content, especially during development, when brain metabolism and growth are maximal. In addition, various pathologies affecting the nervous system involve oxidative stress, possibly associated with a diminution of glutathione concentrations. To study the involvement of glutathione in brain redox homeostasis, we set up an experimental model of chronic glutathione deficit. Developing rats were treated daily with L-buthionine-(S,R)-sulfoximine (BSO), an inhibitor of glutathione synthesis, and their brain levels of glutathione and lipid peroxidation products (TBARS) were measured. BSO induced a 40-50% glutathione deficit in the cortex, diencephalon, and pons/medulla. Despite the glutathione deficit induced by BSO, we did not observe any signs of oxidative stress. Because it is known that rats compensate for a glutathione deficit by enhancing their synthesis and tissue levels of ascorbic acid (AA), we performed the same experiment in osteogenic-disorder Shionogi (ODS) rats, a mutant strain that cannot synthetize AA. Although BSO induced a glutathione deficit of comparable intensity in the two strains of rats, it elevated TBARS levels in the diencephalon and pons/medulla only in ODS and not in nonmutant rats. These results suggest that ODS rats, which closely mimic the human redox regulation, will allow study of the long-term consequences of chronic glutathione deficit observed in various clinical situations.
Collapse
Affiliation(s)
- Michaël Rougemont
- Centre de Recherche en Neurosciences Psychiatriques, Hôpital Psychiatrique Universitaire de Cery, Prilly-Lausanne, Switzerland
| | | | | |
Collapse
|
45
|
Kanbagli O, Balkan J, Aykaç-Toker G, Uysal M. Hepatic mitochondrial prooxidant and antioxidant status in ethanol-induced liver injury in rats. Biol Pharm Bull 2002; 25:1482-4. [PMID: 12419965 DOI: 10.1248/bpb.25.1482] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, prooxidant and antioxidant status in liver homogenates and their mitochondrial fractions were investigated in both chronic and chronic plus acute ethanol-treated rats. Increases in serum transaminase activities, as well as increases in total lipid, triglyceride, malondialdehyde (MDA) and diene conjugate (DC) levels and decreases in glutathione (GSH), vitamin E and vitamin C levels, have been observed in liver homogenates following chronic ethanol treatment (20% ethanol, v/v as drinking water for 3 months), but CuZn-superoxide dismutase (CuZnSOD), glutathione peroxidase (GSH-Px) and glutathione transferase (GST) activities remained unchanged in postmitochondrial fractions. When an acute dose of ethanol (5 g/kg, i.p.) was given rats which had received ethanol chronically, serum transaminase activities and hepatic lipid and MDA and DC levels increased further, but GSH levels and antioxidant enzymes decreased more compared to the chronic ethanol-treated rats. There were no significant differences in the levels of MDA, DC and protein carbonyl and the activities of GSH-Px and GST in the hepatic mitochondrial fraction of rats following both chronic and chronic plus acute treatments. Mn-superoxide dismutase (MnSOD) activities increased in both groups, but mitochondrial GSH levels decreased only after chronic plus acute treatment. Therefore, we suggest that the increase in MnSOD activity may play an important role in the regulation of mitochondrial susceptibility against ethanol-induced oxidative stress.
Collapse
Affiliation(s)
- Oznur Kanbagli
- Department of Biochemistry, Istanbul Medical Faculty, University of Istanbul, Istanbul,Turkey
| | | | | | | |
Collapse
|
46
|
Ozolins TRS, Harrouk W, Doerksen T, Trasler JM, Hales BF. Buthionine sulfoximine embryotoxicity is associated with prolonged AP-1 activation. TERATOLOGY 2002; 66:192-200. [PMID: 12353216 DOI: 10.1002/tera.10084] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Many teratogens induce oxidative stress, altering redox status and redox signaling; this has led to the suggestion that developmental toxicants act by disturbing redox status. The goal of these studies was to determine the consequences of altering glutathione homeostasis during organogenesis on embryo development, total DNA methylation, and activator protein-1 (AP-1) DNA binding activity and gene expression. METHODS Gestational day 10.5 rat embryos were cultured in vitro for up to 44 hour in the presence of L-buthionine-S,R-sulfoximine (BSO), an irreversible inhibitor of gamma-glutamyl-cysteine synthetase, the rate limiting step in glutathione biosynthesis. Effects of BSO on total, oxidized and reduced glutathione, embryo development, DNA methylation, AP-1 DNA binding activity and gene expression were investigated. RESULTS Significant depletion of glutathione by BSO was first noted at 6 hr in the embryo and at 3 hr in the yolk sac; total glutathione in the conceptus was depleted to the same extent after treatment with either 0.1 or 1.0 mM BSO. Exposure to 0.1 mM BSO did not cause a significant increase in embryotoxicity, although some impairment of growth and development was observed. In contrast, exposure to 1.0 mM BSO severely inhibited growth and development, significantly increasing the incidence of swollen hindbrains and of blebs in the forebrain, limb and maxillary regions. No significant treatment-related differences in total DNA methylation were observed. Interestingly, AP-1 DNA binding activity was similar in control and 0.1 mM BSO-treated conceptuses; however, exposure to 1.0 mM BSO increased AP-1 DNA binding at 6, 24, and 44 hr. The expression of several AP-1 family genes and of gamma-glutamylcysteine synthetase was induced in embryos cultured with 1.0 mM BSO. CONCLUSION Exposure of embryos in vitro to BSO at a concentration that was embryotoxic induced prolonged AP-1 DNA binding activity and altered gene expression. These data suggest that AP-1 induction may serve as a biomarker of embryo stress.
Collapse
Affiliation(s)
- Terence R S Ozolins
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada H3G 1Y6
| | | | | | | | | |
Collapse
|
47
|
Deaton CM, Marlin DJ, Roberts CA, Smith N, Harris PA, Kelly FJ, Schroter RC. Antioxidant supplementation and pulmonary function at rest and exercise. Equine Vet J 2002:58-65. [PMID: 12405660 DOI: 10.1111/j.2042-3306.2002.tb05392.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Antioxidants have been implicated in the reduction and prevention of oxidative stress during exercise. We hypothesised that a dietary supplement containing a mixture of natural antioxidants together with vitamins E, C and selenium, given for 4 weeks, would increase the systemic and pulmonary antioxidant capacity leading to a reduction in markers of oxidative damage and an improvement in pulmonary function during exercise. In 6 healthy horses studied, the antioxidant supplement significantly increased plasma concentrations of ascorbic acid (from mean +/- s.d. 16 +/- 7 to 23 +/- 4 micromol/l; P = 0.007) and alpha-tocopherol (from 10 +/- 3 to 14 +/- 3 micromol/l; P = 0.02) and increased the bronchoalveolar lavage pulmonary epithelial lining fluid (ELF) concentration of ascorbic acid compared to a placebo, but not significantly (2.0 +/- 0.9 mmol/l and 1.2 +/- 0.9 mmol/l, respectively; P>0.05). Alpha-tocopherol was not detected in ELF either before or after supplementation or exercise. The mean concentration of malondialdehyde (MDA) in ELF was lower following antioxidant supplementation compared to placebo and control periods, but not significantly. An intermittent exercise test consisting of 2 min at 70, 80 and 90% of the horses' individual maximum oxygen uptake, failed to induce significant systemic or pulmonary oxidative stress (based on the glutathione redox ratio (GRR) and the ascorbic acid redox ratio (ARR)) and lipid peroxidation (based on the concentration of thiobarbituric acid reactive substances in plasma and MDA in ELF) either for placebo or antioxidant treatments. There was a strong correlation between GRR and ARR in the pulmonary epithelial lining fluid (r = 0.89; P<0.0001). In healthy horses on a diet containing adequate levels of antioxidants, additional antioxidant supplementation has no apparent beneficial or detrimental effect on pulmonary function during moderate intensity exercise. The importance of antioxidant supplementation may only become apparent if the diet is deficient in antioxidants, if exercise intensity is higher or more prolonged, or if disease or additional stresses are present.
Collapse
Affiliation(s)
- C M Deaton
- Centre for Equine Studies, Animal Health Trust, Kentford, Suffolk, UK
| | | | | | | | | | | | | |
Collapse
|
48
|
Kim HJ, Jung KJ, Yu BP, Cho CG, Chung HY. Influence of aging and calorie restriction on MAPKs activity in rat kidney. Exp Gerontol 2002; 37:1041-53. [PMID: 12213555 DOI: 10.1016/s0531-5565(02)00082-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mitogen-activated protein kinases (MAPK), which include the extracellular signal-related kinases (ERK), the c-Jun N-terminal kinases (JNK), and the p38 MAPK, are important regulatory proteins by which a wide variety of extracellular signals are transduced into intracellular sites. Recent studies reported that mitogenic signal transduction in various cell types are exquisitely sensitive to reactive oxygen species (ROS) and the celluar redox status. In the present study, we investigated the activation of MAPK activity by aging and calorie restriction (CR) in rat kidneys isolated from Fischer 344 rats, ages 6, 12, 18, and 24 months fed ad libitum (AL) and CR diets. Results showed that the aging process strongly enhanced all three of the MAPK activities studied, ERK, JNK, and p38 MAPK, in parallel to increased ROS status. In contrast, we observed CR to markedly suppress the age-related activation of MAPKs. Based on these data, we concluded that an age-related increase in MAPK activity is associated with increased ROS, which was effectively suppressed by the anti-oxidative action of CR.
Collapse
Affiliation(s)
- Hyon Jeen Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Gumjung-ku, Pusan 609-735, South Korea
| | | | | | | | | |
Collapse
|
49
|
Yamaguchi T, Katoh I, Kurata SI. Azidothymidine causes functional and structural destruction of mitochondria, glutathione deficiency and HIV-1 promoter sensitization. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2782-8. [PMID: 12047388 DOI: 10.1046/j.1432-1033.2002.02954.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mitochondrial functional and structural impairment and generation of oxidative stress have been implicated in aging, various diseases and chemotherapies. This study analyzed azidothymidine (AZT)-caused failures in mitochondrial functions, in redox regulation and activation of the HIV-1 gene expression. We monitored intracellular concentrations of ATP and glutathione (GSH) as the indicators of energy production and redox conditions, respectively, during the time-course experiments with U937 and MOLT4 human lymphoid cells in the presence of AZT (0.05 mg x mL(-1)) or H(2)O(2) (0.01 mm) for 15-25 days. Mitochondrial DNA integrity and NF-kappa B-driven HIV-1 promoter activity were also assessed. ATP concentration began to decrease within several days after exposure to AZT or H(2)O(2), and the decrease continued to reach 30-40% of the normal level. However, decline of GSH was detectable after a retention period for at least 5-6 days, and progressed likewise. PCR analyses found that mitochondrial DNA destruction occurred when the ATP and GSH depletion had progressed, detecting a difference in the deletion pattern between AZT and H(2)O(2)-treated cells. The GSH decrease coincided with HIV-1 promoter sensitization detected by enhanced DNA binding ability of NF-kappa B and induction of the gene expression upon H(2)O(2)-rechallenge. Our results suggest that, in the process of AIDS myopathy development, AZT or oxidative agents directly impair the energy-producing system of mitochondria, causing dysfunction of cellular redox control, which eventually leads to loss of the mitochondrial DNA integrity. The mechanism of cellular redox condition-mediated NF-kappa B activation is discussed.
Collapse
Affiliation(s)
- Tokio Yamaguchi
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | |
Collapse
|
50
|
|