1
|
Paine KM, Laidlaw KME, Evans GJO, MacDonald C. The phosphatase Glc7 controls the eisosomal response to starvation via post-translational modification of Pil1. J Cell Sci 2023; 136:jcs260505. [PMID: 37387118 PMCID: PMC10399984 DOI: 10.1242/jcs.260505] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 06/22/2023] [Indexed: 07/01/2023] Open
Abstract
The yeast (Saccharomyces cerevisiae) plasma membrane (PM) is organised into specific subdomains that regulate surface membrane proteins. Surface transporters actively uptake nutrients in particular regions of the PM where they are also susceptible to substrate-induced endocytosis. However, transporters also diffuse into distinct subdomains termed eisosomes, where they are protected from endocytosis. Although most nutrient transporter populations are downregulated in the vacuole following glucose starvation, a small pool is retained in eisosomes to provide efficient recovery from starvation. We find the core eisosome subunit Pil1, a Bin, Amphiphysin and Rvs (BAR) domain protein required for eisosome biogenesis, is phosphorylated primarily by the kinase Pkh2. In response to acute glucose starvation, Pil1 is rapidly dephosphorylated. Enzyme localisation and activity screens suggest that the phosphatase Glc7 is the primary enzyme responsible for Pil1 dephosphorylation. Defects in Pil1 phosphorylation, achieved by depletion of GLC7 or expression of phospho-ablative or phospho-mimetic mutants, correlate with reduced retention of transporters in eisosomes and inefficient starvation recovery. We propose that precise post-translational control of Pil1 modulates nutrient transporter retention within eisosomes, depending on extracellular nutrient levels, to maximise recovery following starvation.
Collapse
Affiliation(s)
- Katherine M. Paine
- York Biomedical Research Institute. University of York, York YO10 5DD, UK
- Department of Biology, University of York, York YO10 5DD, UK
| | - Kamilla M. E. Laidlaw
- York Biomedical Research Institute. University of York, York YO10 5DD, UK
- Department of Biology, University of York, York YO10 5DD, UK
| | - Gareth J. O. Evans
- York Biomedical Research Institute. University of York, York YO10 5DD, UK
- Department of Biology, University of York, York YO10 5DD, UK
| | - Chris MacDonald
- York Biomedical Research Institute. University of York, York YO10 5DD, UK
- Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
2
|
Francisco CS, McDonald BA, Palma-Guerrero J. A transcription factor and a phosphatase regulate temperature-dependent morphogenesis in the fungal plant pathogen Zymoseptoria tritici. Fungal Genet Biol 2023; 167:103811. [PMID: 37196910 DOI: 10.1016/j.fgb.2023.103811] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/26/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Naturally fluctuating temperatures provide a constant environmental stress that requires adaptation. Some fungal pathogens respond to heat stress by producing new morphotypes that maximize their overall fitness. The fungal wheat pathogen Zymoseptoria tritici responds to heat stress by switching from its yeast-like blastospore form to hyphae or chlamydospores. The regulatory mechanisms underlying this switch are unknown. Here, we demonstrate that a differential heat stress response is ubiquitous in Z. tritici populations around the world. We used QTL mapping to identify a single locus associated with the temperature-dependent morphogenesis and we found two genes, the transcription factor ZtMsr1 and the protein phosphatase ZtYvh1, regulating this mechanism. We find that ZtMsr1 regulates repression of hyphal growth and induces chlamydospore formation whereas ZtYvh1 is required for hyphal growth. We next showed that chlamydospore formation is a response to the intracellular osmotic stress generated by the heat stress. This intracellular stress stimulates the cell wall integrity (CWI) and high-osmolarity glycerol (HOG) MAPK pathways resulting in hyphal growth. If cell wall integrity is compromised, however, ZtMsr1 represses the hyphal development program and may induce the chlamydospore-inducing genes as a stress-response survival strategy. Taken together, these results suggest a novel mechanism through which morphological transitions are orchestrated in Z. tritici - a mechanism that may also be present in other pleomorphic fungi.
Collapse
Affiliation(s)
| | - Bruce A McDonald
- Plant Pathology Group, Institute of Integrative Biology, 8092 ETH Zürich, Switzerland
| | - Javier Palma-Guerrero
- Plant Pathology Group, Institute of Integrative Biology, 8092 ETH Zürich, Switzerland.
| |
Collapse
|
3
|
DaDalt AA, Bonham CA, Lotze GP, Luiso AA, Vacratsis PO. Src-mediated phosphorylation of the ribosome biogenesis factor hYVH1 affects its localization, promoting partitioning to the 60S ribosomal subunit. J Biol Chem 2022; 298:102679. [PMID: 36370849 PMCID: PMC9731860 DOI: 10.1016/j.jbc.2022.102679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Yeast VH1-related phosphatase (YVH1) (also known as DUSP12) is a member of the atypical dual-specificity phosphatase subfamily. Although no direct substrate has been firmly established, human YVH1 (hYVH1) has been shown to protect cells from cellular stressors, regulate the cell cycle, disassemble stress granules, and act as a 60S ribosome biogenesis factor. Despite knowledge of hYVH1 function, further research is needed to uncover mechanisms of its regulation. In this study, we investigate cellular effects of a Src-mediated phosphorylation site at Tyr179 on hYVH1. We observed that this phosphorylation event attenuates localization of hYVH1 to stress granules, enhances shuttling of hYVH1 to the nucleus, and promotes hYVH1 partitioning to the 60S ribosomal subunit. Quantitative proteomics reveal that Src coexpression with hYVH1 reduces formation of ribosomal species that represent stalled intermediates through the alteration of associating factors that mediate translational repression. Collectively, these results implicate hYVH1 as a novel Src substrate and provide the first demonstrated role of tyrosine phosphorylation regulating the activity of a YVH1 ortholog. Moreover, the ribosome proteome alterations point to a collaborative function of hYVH1 and Src in maintaining translational fitness.
Collapse
|
4
|
Zang H, Shackelford R, Bewley A, Beeser AE. Mutational Analyses of the Cysteine-Rich Domain of Yvh1, a Protein Required for Translational Competency in Yeast. BIOLOGY 2022; 11:1246. [PMID: 36009873 PMCID: PMC9404827 DOI: 10.3390/biology11081246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022]
Abstract
Ribosome assembly is a complex biological process facilitated by >200 trans-acting factors (TAFs) that function as scaffolds, place-holders or complex remodelers to promote efficient and directional ribosomal subunit assembly but are not themselves part of functional ribosomes. One such yeast TAF is encoded by Mrt4 which assembles onto pre-60S complexes in the nuclear compartment and remains bound to pre-60S complexes as they are exported into the cytoplasm. There, Mrt4 is displaced from pre-60S complexes facilitating the subsequent addition of the ribosomal stalk complex (P0/P1/P2). Ribosomal stalk proteins interact with translational GTPases (trGTPase) which facilitate and control protein synthesis on the ribosome. The rRNA-binding domain of Mrt4 is structurally similar to P0, with both proteins binding to the same interface of pre-60S subunits in a mutually exclusive manner; the addition of the ribosomal stalk therefore requires the displacement of Mrt4 from pre-60S subunits. Mrt4 removal requires the C-terminal cysteine-rich domain (CRD) of the dual-specificity phosphatase Yvh1. Unlike many other TAFs, yeast lacking Yvh1 are viable but retain Mrt4 on cytoplasmic pre-60S complexes precluding ribosomal stalk addition. Although Yvh1’s role in Mrt4 removal is well established, how Yvh1 accomplishes this is largely unknown. Here, we report an unbiased genetic screen to isolate Yvh1 variants that fail to displace Mrt4 from pre-60S ribosomes. Bioorthogonal non-canonical amino acid tagging (BONCAT) approaches demonstrate that these YVH1 loss-of-function variants also display defects in nascent protein production. The further characterization of one LOF variant, Yvh1F283L, establishes it as an expression-dependent, dominant-negative variant capable of interfering with endogenous Yvh1 function, and we describe how this Yvh1 variant can be used as a novel probe to better understand ribosome maturation and potentially ribosome heterogeneity in eukaryotes.
Collapse
Affiliation(s)
- Hannah Zang
- Duke University School of Medicine, Durham, NC 27708, USA
| | | | - Alice Bewley
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
5
|
Jin JH, Choi MK, Cho HS, Bahn YS. Zinc-binding domain mediates pleiotropic functions of Yvh1 in Cryptococcus neoformans. J Microbiol 2021; 59:658-665. [PMID: 34212289 DOI: 10.1007/s12275-021-1287-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 11/28/2022]
Abstract
Yvh1 is a dual-specificity phosphatase (DUSP) that is evolutionarily conserved in eukaryotes, including yeasts and humans. Yvh1 is involved in the vegetative growth, differentiation, and virulence of animal and plant fungal pathogens. All Yvh1 orthologs have a conserved DUSP catalytic domain at the N-terminus and a zinc-binding (ZB) domain with two zinc fingers (ZFs) at the C-terminus. Although the DUSP domain is implicated in the regulation of MAPK signaling in humans, only the ZB domain is essential for most cellular functions of Yvh1 in fungi. This study aimed to analyze the functions of the DUSP and ZB domains of Yvh1 in the human fungal pathogen Cryptococcus neoformans, whose Yvh1 (CnYvh1) contains a DUSP domain at the C-terminus and a ZB domain at the N-terminus. Notably, CnYvh1 has an extended internal domain between the two ZF motifs in the ZB domain. To elucidate the function of each domain, we constructed individual domain deletions and swapping strains by complementing the yvh1Δ mutant with wild-type (WT) or mutated YVH1 alleles and examined their Yvh1-dependent phenotypes, including growth under varying stress conditions, mating, and virulence factor production. Here, we found that the complementation of the yvh1Δ mutant with the mutated YVH1 alleles having two ZFs of the ZB domain, but not the DUSP and extended internal domains, restored the WT phenotypic traits in the yvh1Δ mutant. In conclusion, the ZB domain, but not the N-terminal DUSP domain, plays a pivotal role in the pathobiological functions of cryptococcal Yvh1.
Collapse
Affiliation(s)
- Jae-Hyung Jin
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Myung Kyung Choi
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyun-Soo Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
6
|
Characterization of Single Gene Deletion Mutants Affecting Alternative Oxidase Production in Neurospora crassa: Role of the yvh1 Gene. Microorganisms 2020; 8:microorganisms8081186. [PMID: 32759834 PMCID: PMC7463738 DOI: 10.3390/microorganisms8081186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 01/21/2023] Open
Abstract
The Neurospora crassa AOD1 protein is a mitochondrial alternative oxidase that passes electrons directly from ubiquinol to oxygen. The enzyme is encoded by the nuclear aod-1 gene and is produced when the standard electron transport chain is inhibited. We previously identified eleven strains in the N. crassa single gene deletion library that were severely deficient in their ability to produce AOD1 when grown in the presence of chloramphenicol, an inhibitor of mitochondrial translation that is known to induce the enzyme. Three mutants affected previously characterized genes. In this report we examined the remaining mutants and found that the deficiency of AOD1 was due to secondary mutations in all but two of the strains. One of the authentic mutants contained a deletion of the yvh1 gene and was found to have a deficiency of aod-1 transcripts. The YVH1 protein localized to the nucleus and a post mitochondrial pellet from the cytoplasm. A zinc binding domain in the protein was required for rescue of the AOD1 deficiency. In other organisms YVH1 is required for ribosome assembly and mutants have multiple phenotypes. Lack of YVH1 in N. crassa likely also affects ribosome assembly leading to phenotypes that include altered regulation of AOD1 production.
Collapse
|
7
|
Lang R, Raffi FAM. Dual-Specificity Phosphatases in Immunity and Infection: An Update. Int J Mol Sci 2019; 20:ijms20112710. [PMID: 31159473 PMCID: PMC6600418 DOI: 10.3390/ijms20112710] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 12/26/2022] Open
Abstract
Kinase activation and phosphorylation cascades are key to initiate immune cell activation in response to recognition of antigen and sensing of microbial danger. However, for balanced and controlled immune responses, the intensity and duration of phospho-signaling has to be regulated. The dual-specificity phosphatase (DUSP) gene family has many members that are differentially expressed in resting and activated immune cells. Here, we review the progress made in the field of DUSP gene function in regulation of the immune system during the last decade. Studies in knockout mice have confirmed the essential functions of several DUSP-MAPK phosphatases (DUSP-MKP) in controlling inflammatory and anti-microbial immune responses and support the concept that individual DUSP-MKP shape and determine the outcome of innate immune responses due to context-dependent expression and selective inhibition of different mitogen-activated protein kinases (MAPK). In addition to the canonical DUSP-MKP, several small-size atypical DUSP proteins regulate immune cells and are therefore also reviewed here. Unexpected and complex findings in DUSP knockout mice pose new questions regarding cell type-specific and redundant functions. Another emerging question concerns the interaction of DUSP-MKP with non-MAPK binding partners and substrate proteins. Finally, the pharmacological targeting of DUSPs is desirable to modulate immune and inflammatory responses.
Collapse
Affiliation(s)
- Roland Lang
- Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Faizal A M Raffi
- Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
8
|
Liu X, Yang J, Qian B, Cai Y, Zou X, Zhang H, Zheng X, Wang P, Zhang Z. MoYvh1 subverts rice defense through functions of ribosomal protein MoMrt4 in Magnaporthe oryzae. PLoS Pathog 2018; 14:e1007016. [PMID: 29684060 PMCID: PMC5933821 DOI: 10.1371/journal.ppat.1007016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 05/03/2018] [Accepted: 04/10/2018] [Indexed: 01/10/2023] Open
Abstract
The accumulation of the reactive oxygen species (ROS) in rice is important in its interaction with the rice blast fungus Magnaporthe oryzae during which the pathogen scavenges ROS through the production of extracellular enzymes that promote blast. We previously characterized the MoYvh1 protein phosphatase from M. oryzae that plays a role in scavenging of ROS. To understand the underlying mechanism, we found that MoYvh1 is translocated into the nucleus following oxidative stress and that this translocation is dependent on MoSsb1 and MoSsz1 that are homologous to heat-shock protein 70 (Hsp70) proteins. In addition, we established a link between MoYvh1 and MoMrt4, a ribosome maturation factor homolog whose function also involves shuttling between the cytoplasm and the nucleus. Moreover, we found that MoYvh1 regulates the production of extracellular proteins that modulate rice-immunity. Taking together, our evidence suggests that functions of MoYvh1 in regulating ROS scavenging require its nucleocytoplasmic shuttling and the partner proteins MoSsb1 and MoSsz1, as well as MoMrt4. Our findings provide novel insights into the mechanism by which M. oryzae responds to and subverts host immunity through the regulation of ribosome biogenesis and protein biosynthesis. ROS accumulation is important for the interaction between the blast fungus M. oryzae and its rice host. The protein phosphatase MoYvh1 affects the scavenging of host-derived ROS that promotes M. oryzae infection. We found that MoYvh1 is translocated to the nucleus under oxidative stress by a mechanism that is dependent on its interactions with MoSsb1 and MoSsz1. MoYvh1 triggers the release of MoMrt4 from the ribosome in the nucleus that contributes to ribosome maturation. Importantly, we have provided evidence to demonstrate that MoYvh1 is important for the synthesis of extracellular proteins that are involved in ROS scavenging. Our findings provide insight into the mechanism by which M. oryzae responds to host immunity through MoYvh1 that regulates ribosome function to evade the host defense response.
Collapse
Affiliation(s)
- Xinyu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Jie Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Bin Qian
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Yongchao Cai
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Xi Zou
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Ping Wang
- Departments of Pediatrics, and Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- * E-mail:
| |
Collapse
|
9
|
Geng Q, Xhabija B, Knuckle C, Bonham CA, Vacratsis PO. The Atypical Dual Specificity Phosphatase hYVH1 Associates with Multiple Ribonucleoprotein Particles. J Biol Chem 2016; 292:539-550. [PMID: 27856639 DOI: 10.1074/jbc.m116.715607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/03/2016] [Indexed: 12/30/2022] Open
Abstract
Human YVH1 (hYVH1), also known as dual specificity phosphatase 12 (DUSP12), is a poorly characterized atypical dual specificity phosphatase widely conserved throughout evolution. Recent findings have demonstrated that hYVH1 expression affects cellular DNA content and is a novel cell survival phosphatase preventing both thermal and oxidative stress-induced cell death, whereas studies in yeast have established YVH1 as a novel 60S ribosome biogenesis factor. In this study, we have isolated novel hYVH1-associating proteins from human U2OS osteosarcoma cells using affinity chromatography coupled to mass spectrometry employing ion mobility separation. Numerous ribosomal proteins were identified, confirming the work done in yeast. Furthermore, proteins known to be present on additional RNP particles were identified, including Y box-binding protein 1 (YB-1) and fragile X mental retardation protein, proteins that function in translational repression and stress granule regulation. Follow-up studies demonstrated that hYVH1 co-localizes with YB-1 and fragile X mental retardation protein on stress granules in response to arsenic treatment. Interestingly, hYVH1-positive stress granules were significantly smaller, whereas knocking down hYVH1 expression attenuated stress granule breakdown during recovery from arsenite stress, indicating a possible role for hYVH1 in stress granule disassembly. These results propagate a role for dual specificity phosphatases at RNP particles and suggest that hYVH1 may affect a variety of fundamental cellular processes by regulating messenger ribonucleoprotein (mRNP) dynamics.
Collapse
Affiliation(s)
- Qiudi Geng
- From the Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Besa Xhabija
- From the Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Colleen Knuckle
- From the Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Christopher A Bonham
- From the Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Panayiotis O Vacratsis
- From the Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
10
|
Liu X, Qian B, Gao C, Huang S, Cai Y, Zhang H, Zheng X, Wang P, Zhang Z. The Putative Protein Phosphatase MoYvh1 Functions Upstream of MoPdeH to Regulate the Development and Pathogenicity in Magnaporthe oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:496-507. [PMID: 27110741 DOI: 10.1094/mpmi-11-15-0259-r] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Protein phosphatases are critical regulators in eukaryotic cells. For example, the budding yeast Saccharomyces cerevisiae dual specificity protein phosphatase (DSP) ScYvh1 regulates growth, sporulation, and glycogen accumulation. Despite such importance, functions of Yvh1 proteins in filamentous fungi are not well understood. In this study, we characterized putative protein phosphatase MoYvh1, an Yvh1 homolog in the rice blast fungus Magnaporthe oryzae. Deletion of the MoYVH1 gene resulted in significant reductions in vegetative growth, conidial production, and virulence. The ΔMoyvh1 mutant also displayed defects in cell-wall integrity and was hyposensitive to the exogenous osmotic stress. Further examination revealed that the ΔMoyvh1 mutant had defects in appressorium function and invasive hyphae growth, resulting attenuated pathogenicity. Interestingly, we found that MoYvh1 affects the scavenging of host-derived reactive oxygen species that promotes M. oryzae infection. Finally, overexpression of the phosphodiesterase MoPDEH suppressed the defects in conidia formation and pathogenicity of the ΔMoyvh1 mutant, suggesting MoYvh1 could regulate MoPDEH for its function. Our study reveals not only the importance of MoYvh1 proteins in growth, differentiation, and virulence of the rice blast fungus but, also, a genetic link between MoYvh1 and MoPDEH-cAMP signaling in this fungus.
Collapse
Affiliation(s)
- Xinyu Liu
- 1 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Bin Qian
- 1 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Chuyun Gao
- 1 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Shuohan Huang
- 2 Department of Pharmacy, Nanjing Medical University, Nanjing 210029, China; and
| | - Yongchao Cai
- 1 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Haifeng Zhang
- 1 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Xiaobo Zheng
- 1 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Ping Wang
- 3 Department of Pediatrics, Louisiana State University Health Sciences Center, New Orleans, LA 70118, U.S.A
| | - Zhengguang Zhang
- 1 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| |
Collapse
|
11
|
|
12
|
Salomon D, Orth K. What pathogens have taught us about posttranslational modifications. Cell Host Microbe 2014; 14:269-79. [PMID: 24034613 DOI: 10.1016/j.chom.2013.07.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pathogens use various mechanisms to manipulate host processes to promote infection. Decades of research on pathogens have revealed not only the molecular mechanisms that these microbes use to replicate and survive within host cells, but also seminal information on how host signaling machinery regulates cellular processes. Among these discoveries are mechanisms involving posttranslational modifications that alter the activity, localization, or interactions of the modified protein. Herein, we examine how pathogens have contributed to our basic understanding of three posttranslational modifications: phosphorylation, NMPylation, and ubiquitylation. Over the years, technologies, techniques and research tools have developed side by side with the study of pathogens, facilitating the discovery of protein modifications and furthering our understanding of how they contribute to both infection and cellular functions.
Collapse
Affiliation(s)
- Dor Salomon
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | | |
Collapse
|
13
|
Prichard MN, Kern ER. Orthopoxvirus targets for the development of new antiviral agents. Antiviral Res 2012; 94:111-25. [PMID: 22406470 PMCID: PMC3773844 DOI: 10.1016/j.antiviral.2012.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/10/2012] [Accepted: 02/21/2012] [Indexed: 12/29/2022]
Abstract
Investments in the development of new drugs for orthopoxvirus infections have fostered new avenues of research, provided an improved understanding of orthopoxvirus biology and yielded new therapies that are currently progressing through clinical trials. These broad-based efforts have also resulted in the identification of new inhibitors of orthopoxvirus replication that target many different stages of viral replication cycle. This review will discuss progress in the development of new anti-poxvirus drugs and the identification of new molecular targets that can be exploited for the development of new inhibitors. The prototype of the orthopoxvirus group is vaccinia virus and its replication cycle will be discussed in detail noting specific viral functions and their associated gene products that have the potential to serve as new targets for drug development. Progress that has been achieved in recent years should yield new drugs for the treatment of these infections and might also reveal new approaches for antiviral drug development with other viruses.
Collapse
Affiliation(s)
- Mark N Prichard
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL 35233-1711, United States.
| | | |
Collapse
|
14
|
Cain EL, Braun SE, Beeser A. Characterization of a human cell line stably over-expressing the candidate oncogene, dual specificity phosphatase 12. PLoS One 2011; 6:e18677. [PMID: 21556130 PMCID: PMC3080379 DOI: 10.1371/journal.pone.0018677] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 03/15/2011] [Indexed: 12/29/2022] Open
Abstract
Background Analysis of chromosomal rearrangements within primary tumors has been influential in the identification of novel oncogenes. Identification of the “driver” gene(s) within cancer-derived amplicons is, however, hampered by the fact that most amplicons contain many gene products. Amplification of 1q21–1q23 is strongly associated with liposarcomas and microarray-based comparative genomic hybridization narrowed down the likely candidate oncogenes to two: the activating transcription factor 6 (atf6) and the dual specificity phosphatase 12 (dusp12). While atf6 is an established transcriptional regulator of the unfolded protein response, the potential role of dusp12 in cancer remains uncharacterized. Methodology/Principal Findings To evaluate the oncogenic potential of dusp12, we established stable cell lines that ectopically over-express dusp12 in isolation and determined whether this cell line acquired properties frequently associated with transformed cells. Here, we demonstrate that cells over-expressing dusp12 display increased cell motility and resistance to apoptosis. Additionally, over-expression of dusp12 promoted increased expression of the c-met proto-oncogene and the collagen and laminin receptor intergrin alpha 1 (itga1) which is implicated in metastasis. Significance Collectively, these results suggest that dusp12 is oncologically relevant and exposes a potential association between dusp12 and established oncogenes that could be therapeutically targeted.
Collapse
Affiliation(s)
- Erica L. Cain
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Sterling E. Braun
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Alexander Beeser
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| |
Collapse
|
15
|
Lo KY, Li Z, Wang F, Marcotte EM, Johnson AW. Ribosome stalk assembly requires the dual-specificity phosphatase Yvh1 for the exchange of Mrt4 with P0. ACTA ACUST UNITED AC 2009; 186:849-62. [PMID: 19797078 PMCID: PMC2753163 DOI: 10.1083/jcb.200904110] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The step by step assembly process from preribosome in the nucleus to translation-competent 60S ribosome subunit in the cytoplasm is revealed (also see Kemmler et al. in this issue). The ribosome stalk is essential for recruitment of translation factors. In yeast, P0 and Rpl12 correspond to bacterial L10 and L11 and form the stalk base of mature ribosomes, whereas Mrt4 is a nuclear paralogue of P0. In this study, we show that the dual-specificity phosphatase Yvh1 is required for the release of Mrt4 from the pre-60S subunits. Deletion of YVH1 leads to the persistence of Mrt4 on pre-60S subunits in the cytoplasm. A mutation in Mrt4 at the protein–RNA interface bypasses the requirement for Yvh1. Pre-60S subunits associated with Yvh1 contain Rpl12 but lack both Mrt4 and P0. These results suggest a linear series of events in which Yvh1 binds to the pre-60S subunit to displace Mrt4. Subsequently, P0 loads onto the subunit to assemble the mature stalk, and Yvh1 is released. The initial assembly of the ribosome with Mrt4 may provide functional compartmentalization of ribosome assembly in addition to the spatial separation afforded by the nuclear envelope.
Collapse
Affiliation(s)
- Kai-Yin Lo
- Department of Chemistry and Biochemistry, Section of Molecular Genetics and Microbiology, The Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|
16
|
The dual-specificity phosphatase hYVH1 interacts with Hsp70 and prevents heat-shock-induced cell death. Biochem J 2009; 418:391-401. [PMID: 18973475 DOI: 10.1042/bj20081484] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
hYVH1 [human orthologue of YVH1 (yeast VH1-related phosphatase)] is an atypical dual-specificity phosphatase that is widely conserved throughout evolution. Deletion studies in yeast have suggested a role for this phosphatase in regulating cell growth. However, the role of the human orthologue is unknown. The present study used MS to identify Hsp70 (heat-shock protein 70) as a novel hYVH1-binding partner. The interaction was confirmed using endogenous co-immunoprecipitation experiments and direct binding of purified proteins. Endogenous Hsp70 and hYVH1 proteins were also found to co-localize specifically to the perinuclear region in response to heat stress. Domain deletion studies revealed that the ATPase effector domain of Hsp70 and the zinc-binding domain of hYVH1 are required for the interaction, indicating that this association is not simply a chaperone-substrate complex. Thermal phosphatase assays revealed hYVH1 activity to be unaffected by heat and only marginally affected by non-reducing conditions, in contrast with the archetypical dual-specificity phosphatase VHR (VH1-related protein). In addition, Hsp70 is capable of increasing the phosphatase activity of hYVH1 towards an exogenous substrate under non-reducing conditions. Furthermore, the expression of hYVH1 repressed cell death induced by heat shock, H2O2 and Fas receptor activation but not cisplatin. Co-expression of hYVH1 with Hsp70 further enhanced cell survival. Meanwhile, expression of a catalytically inactive hYVH1 or a hYVH1 variant that is unable to interact with Hsp70 failed to protect cells from the various stress conditions. The results suggest that hYVH1 is a novel cell survival phosphatase that co-operates with Hsp70 to positively affect cell viability in response to cellular insults.
Collapse
|
17
|
A mutant plasma membrane protein is stabilized upon loss of Yvh1, a novel ribosome assembly factor. Genetics 2008; 181:907-15. [PMID: 19114459 DOI: 10.1534/genetics.108.100099] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pma1-10 is a mutant plasma membrane ATPase defective at the restrictive temperature in stability at the cell surface. At 37 degrees, Pma1-10 is ubiquitinated and internalized from the plasma membrane for degradation in the vacuole. YVH1, encoding a tyrosine phosphatase, is a mutant suppressor of pma1-10; in the absence of Yvh1, Pma1-10 remains stable at the plasma membrane, thereby permitting cells to grow. The RING finger domain of Yvh1, but not its phosphatase domain, is required for removal of mutant Pma1-10 from the plasma membrane. Yvh1 is a novel ribosome assembly factor: in yvh1Delta cells, free 60S and 80S ribosomal subunits are decreased, free 40S subunits are increased, and half-mer polysomes are accumulated. Pma1-10 is also stabilized by deletion of 60S ribosomal proteins Rpl19a and Rpl35a. We propose that changes in ribosome biogenesis caused by loss of Yvh1 or specific ribosomal proteins have effects on the plasma membrane, perhaps by producing specific translational changes.
Collapse
|
18
|
Liu Y, Chang A. Quality control of a mutant plasma membrane ATPase: ubiquitylation prevents cell-surface stability. J Cell Sci 2006; 119:360-9. [PMID: 16410553 DOI: 10.1242/jcs.02749] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The plasma membrane ATPase, Pma1, has remarkable longevity at the cell surface. In contrast to the wild-type protein, the temperature-sensitive mutant Pma1-10 is misfolded and undergoes rapid removal from the cell surface for vacuolar degradation. At the restrictive temperature, Pma1-10 becomes ubiquitylated before or upon arrival at the plasma membrane. Internalization from the plasma membrane and vacuolar degradation of Pma1-10 is dependent on the ubiquitin-interacting motif (UIM) of the epsin Ent1, suggesting recognition of ubiquitylated substrate by the endocytic machinery. Surprisingly, ubiquitylation of Pma1-10 is reversed when its internalization is blocked in an end3 mutant. Under these conditions, Pma1-10 acquires association with detergent-insoluble, glycolipid-enriched complexes (DIGs) which has been suggested to promote stability of wild-type Pma1. Ubiquitylation does not cause DIG exclusion because a Pma1-Ub fusion protein is not significantly excluded from DIGs. We suggest that ubiquitylation of Pma1-10 represents a component of a quality control mechanism that targets the misfolded protein for removal from the plasma membrane. Rapid internalization of Pma1-10 caused by its ubiquitylation may preempt establishment of stabilizing interactions.
Collapse
Affiliation(s)
- Yu Liu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 830 N. University, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
19
|
Hanaoka N, Umeyama T, Ueno K, Ueda K, Beppu T, Fugo H, Uehara Y, Niimi M. A putative dual-specific protein phosphatase encoded by YVH1 controls growth, filamentation and virulence in Candida albicans. MICROBIOLOGY-SGM 2005; 151:2223-2232. [PMID: 16000712 DOI: 10.1099/mic.0.27999-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In response to stimulants, such as serum, the yeast cells of the opportunistic fungal pathogen Candida albicans form germ tubes, which develop into hyphae. Yvh1p, one of the 29 protein phosphatases encoded in the C. albicans genome, has 45% identity with the dual-specific phosphatase Yvh1p of the model yeast Saccharomyces cerevisiae. In this study, Yvh1p expression was not observed during the initial step of germ tube formation, although Yvh1p was expressed constitutively in cell cycle progression of yeast or hyphal cells. In an attempt to analyse the function of Yvh1p phosphatase, the complete ORFs of both alleles were deleted by replacement with hph200-URA3-hph200 and ARG4. Although YVH1 has nine single-nucleotide polymorphisms in its coding sequence, both YVH1 alleles were able to complement the YVH1 gene disruptant. The vegetative growth of Deltayvh1 was significantly slower than the wild-type. The hyphal growth of Deltayvh1 on agar, or in a liquid medium, was also slower than the wild-type because of the delay in nuclear division and septum formation, although germ tube formation was similar between the wild-type and the disruptant. Despite the slow hyphal growth, the expression of several hypha-specific genes in Deltayvh1 was not delayed or repressed compared with that of the wild-type. Infection studies using mouse models revealed that the virulence of Deltayvh1 was less than that of the wild-type. Thus, YVH1 contributes to normal vegetative yeast or hyphal cell cycle progression and pathogenicity, but not to germ tube formation.
Collapse
Affiliation(s)
- Nozomu Hanaoka
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-city, Tokyo 183-8509, Japan
- Department of Bioactive Molecules, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Takashi Umeyama
- Department of Bioactive Molecules, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Keigo Ueno
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-8510, Japan
- Department of Bioactive Molecules, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kenji Ueda
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-8510, Japan
| | - Teruhiko Beppu
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-8510, Japan
| | - Hajime Fugo
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-city, Tokyo 183-8509, Japan
| | - Yoshimasa Uehara
- Department of Bioactive Molecules, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Masakazu Niimi
- Department of Bioactive Molecules, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| |
Collapse
|
20
|
Kresse SH, Berner JM, Meza-Zepeda LA, Gregory SG, Kuo WL, Gray JW, Forus A, Myklebost O. Mapping and characterization of the amplicon near APOA2 in 1q23 in human sarcomas by FISH and array CGH. Mol Cancer 2005; 4:39. [PMID: 16274472 PMCID: PMC1308856 DOI: 10.1186/1476-4598-4-39] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Accepted: 11/07/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Amplification of the q21-q23 region on chromosome 1 is frequently found in sarcomas and a variety of other solid tumours. Previous analyses of sarcomas have indicated the presence of at least two separate amplicons within this region, one located in 1q21 and one located near the apolipoprotein A-II (APOA2) gene in 1q23. In this study we have mapped and characterized the amplicon in 1q23 in more detail. RESULTS We have used fluorescence in situ hybridisation (FISH) and microarray-based comparative genomic hybridisation (array CGH) to map and define the borders of the amplicon in 10 sarcomas. A subregion of approximately 800 kb was identified as the core of the amplicon. The amplification patterns of nine possible candidate target genes located to this subregion were determined by Southern blot analysis. The genes activating transcription factor 6 (ATF6) and dual specificity phosphatase 12 (DUSP12) showed the highest level of amplification, and they were also shown to be over-expressed by quantitative real-time reverse transcription PCR (RT-PCR). In general, the level of expression reflected the level of amplification in the different tumours. DUSP12 was expressed significantly higher than ATF6 in a subset of the tumours. In addition, two genes known to be transcriptionally activated by ATF6, glucose-regulated protein 78 kDa and -94 kDa (GRP78 and GRP94), were shown to be over-expressed in the tumours that showed over-expression of ATF6. CONCLUSION ATF6 and DUSP12 seem to be the most likely candidate target genes for the 1q23 amplification in sarcomas. Both genes have possible roles in promoting cell growth, which makes them interesting candidate targets.
Collapse
Affiliation(s)
- Stine H Kresse
- Department of Tumour Biology, The Norwegian Radium Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Norway
| | | | | | - Simon G Gregory
- Center for Human Genetics, Duke University Medical Center, Durham, USA
| | - Wen-Lin Kuo
- Comprehensive Cancer Centre, University of California San Francisco, USA
| | - Joe W Gray
- Comprehensive Cancer Centre, University of California San Francisco, USA
| | - Anne Forus
- Department of Tumour Biology, The Norwegian Radium Hospital, Oslo, Norway
| | - Ola Myklebost
- Department of Tumour Biology, The Norwegian Radium Hospital, Oslo, Norway
- Department of Molecular Biosciences, University of Oslo, Norway
| |
Collapse
|
21
|
Abraham R, Schäfer J, Rothe M, Bange J, Knyazev P, Ullrich A. Identification of MMP-15 as an anti-apoptotic factor in cancer cells. J Biol Chem 2005; 280:34123-32. [PMID: 16093241 DOI: 10.1074/jbc.m508155200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have performed an in vitro selection for an anti-apoptotic phenotype that resembles the selection process that pre-malignant cells undergo in the initial phase of carcinogenesis in vivo. Using the cervical carcinoma cell line HeLa S3 as a model system, the selection procedure yielded cell clones that displayed increased resistance to apoptosis induced by Fas, tumor necrosis factor-related apoptosis-inducing ligand, and serum starvation. Gene expression profiling using gene family focused cDNA arrays revealed numerous genes that are differentially expressed in HeLa S3 and the resistant subclones and therefore are potentially involved in the definition of sensitivity to apoptotic stimuli. From the genes identified in this functional genomics approach we validated the anti-apoptotic activity of the membrane-anchored matrix metalloproteinase 15 (MMP-15) by means of small interfering RNA-mediated knock-down and ectopic expression in parental HeLa S3 cells and, to confirm a more general significance of our findings, in other cancer cell lines. The in vivo relevance of these findings is supported by the overexpression of MMP-15 in human lung adenocarcinoma compared with normal lung. Because MMP-15 is known to promote invasion, our results suggest that this protease connects metastasis and apoptosis resistance by an unknown regulatory mechanism. Our findings therefore strongly suggest that cancer characteristics such as metastatic potential, which are thought to evolve late in cancer progression, could be manifested early on by selection for an anti-apoptotic phenotype.
Collapse
Affiliation(s)
- Reimar Abraham
- Department of Molecular Biology, Max-Planck-Institute for Biochemistry, 82152 Martinsried, Germany.
| | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Kumar R, Musiyenko A, Cioffi E, Oldenburg A, Adams B, Bitko V, Krishna SS, Barik S. A zinc-binding dual-specificity YVH1 phosphatase in the malaria parasite, Plasmodium falciparum, and its interaction with the nuclear protein, pescadillo. Mol Biochem Parasitol 2004; 133:297-310. [PMID: 14698441 DOI: 10.1016/j.molbiopara.2003.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Biochemical evidence revealed protein tyrosine kinase and phosphatase activities in the human malarial parasite Plasmodium falciparum, a member of the Apicomplexa. A novel cDNA sequence of a dual-specificity phosphatase was identified in both sexual and asexual stages of P. falciparum, and named PfYVH1, since the predicted primary structure of the 278-amino acid polypeptide showed significant similarity to the human and yeast YVH1 phosphatases. The N-terminal half of PfYVH1 contained a conserved tyrosine phosphatase catalytic domain within a dual-specificity phosphatase domain. The C-terminal region, consisting of one histidine and eight cysteines, represented a zinc-binding domain with a potentially unconventional architecture. Recombinant PfYVH1 contained 2mol of zinc per mol protein and dephosphorylated both phosphoserine and phosphotyrosine residues. Mutation of specific Cys residues in the putative zinc finger region abolished zinc binding and drastically reduced phosphatase activity, suggesting an allosteric role of zinc in catalysis. PfYVH1 was expressed in essentially all erythrocytic stages of the parasite, and shuttled between the nucleus and the cytoplasm in a stage-specific manner. A Plasmodium ortholog of the nuclear pescadillo protein (PfPES) was also characterized and shown to interact with PfYVH1, thus implicating PfYVH1 in the regulation of parasitic development. PfYVH1 represents the first dual-specificity zinc-finger phosphatase characterized in the protozoan kingdom.
Collapse
Affiliation(s)
- Rajinder Kumar
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, 307 University Boulevard, Mobile, AL 36688-0002, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Sakumoto N, Matsuoka I, Mukai Y, Ogawa N, Kaneko Y, Harashima S. A series of double disruptants for protein phosphatase genes in Saccharomyces cerevisiae and their phenotypic analysis. Yeast 2002; 19:587-99. [PMID: 11967829 DOI: 10.1002/yea.860] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Thirty-two protein phosphatase (PPase) genes were identified in Saccharomyces cerevisiae based on the nucleotide sequences of the entire genome. In an effort to understand the role of PPases and their functional redundancy in the cellular physiology of one of the reference eukaryotic organisms, a series of single and double PPase gene disruptants were constructed in the W303 strain background. Two single disruptants for the CDC14 and GLC7 genes were lethal. Double disruptants for 30 non-essential PPase genes were constructed in all possible 435 combinations. No double disruptant showed synthetic lethality. Several phenotypes of the viable 30 single and 435 double disruptants were examined; temperature-sensitive growth, utilization of carbon sources and sensitivity to cations and drugs. Four double disruptants exhibited synthetic phenotypes in addition to eight single ones: the pph21 pph22 double disruptant showed slow growth on complete medium, as did the sit4 and yvh1 single ones. In addition to the ptc1, ynr022c and ycr079w single disruptants, the ppz1 ppz2 double disruptant showed temperature-sensitive slow growth. The msg5 ptp2 double disruptant, like the ynr022c single one, did not grow on complete medium containing 0.3 M CaCl(2). The double msg5 ptc2 disruptant failed to grow on medium containing 1.0 M NaCl and, like the ynr022c single deletion, also could not grow on medium containing 0.3 M CaCl(2). The synthetic phenotypes in the two latter cases where each of the PPases is categorized in a different phosphatase family led us to discuss the novel mechanism involved in the functional redundancy of the PPases.
Collapse
Affiliation(s)
- Naoko Sakumoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Sakumoto N, Yamashita H, Mukai Y, Kaneko Y, Harashima S. Dual-specificity protein phosphatase Yvh1p, which is required for vegetative growth and sporulation, interacts with yeast pescadillo homolog in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2001; 289:608-15. [PMID: 11716519 DOI: 10.1006/bbrc.2001.6021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Saccharomyces cerevisiae dual-specificity protein phosphatase Yvh1p, identified as vaccinia VH1 homolog, regulates cell growth, sporulation, and glycogen accumulation. Transcription of YVH1 is induced by lowering temperature and nitrogen starvation. Using the yeast two-hybrid system, we searched for Yvh1p-interacting proteins, including substrates and regulatory subunits of Yvh1p. Two clones were identified encoding a segment of YPH1 (yeast pescadillo homolog), which is essential for cell cycle progression in yeast. Deletion analysis revealed that the catalytic domain of Yvh1p and the BRCT domain of Yph1p are sufficient for this interaction. We found that the multicopy of YPH1 not only suppressed slow growth but also decreased IME2 expression in the yvh1 disruptant. These observations indicate that Yph1p plays a role in sporulation in addition to cell cycle progression, and is a candidate for a substrate or a regulatory subunit of Yvh1p.
Collapse
Affiliation(s)
- N Sakumoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
26
|
Zhan XL, Wishart MJ, Guan KL. Nonreceptor tyrosine phosphatases in cellular signaling: regulation of mitogen-activated protein kinases. Chem Rev 2001; 101:2477-96. [PMID: 11749384 DOI: 10.1021/cr000245u] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- X L Zhan
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA.
| | | | | |
Collapse
|
27
|
Abstract
Reversible protein phosphorylation is the most common mechanism for cellular regulation in eukaryotic systems. Indeed, approximately 5% of the Arabidopsis genome encodes protein kinases and phosphatases. Among the thousands of such enzymes, only a small fraction has been examined experimentally. Studies have demonstrated that Ser/Thr phosphorylation and dephosphorylation play a key role in the regulation of plant physiology and development. However, function of tyrosine phosphorylation, despite the overwhelming importance in animals, has not been systematically studied in higher plants. As a result, it is still controversial whether tyrosine phosphorylation is important in plant signal transduction. Recently, the first two protein tyrosine phosphatases (PTPs) from a higher plant were characterized. A diverse group of genes encoding putative PTPs have been identified from the Arabidopsis genome sequence databases. Genetic analyses of various PTPs are underway and preliminary results have provided evidence that these PTPs serve critical functions in plant responses to stress signals and in plant development.
Collapse
Affiliation(s)
- Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Julie Ting
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Rajeev Gupta
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
28
|
Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 2001; 22:153-83. [PMID: 11294822 DOI: 10.1210/edrv.22.2.0428] [Citation(s) in RCA: 1318] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitogen-activated protein (MAP) kinases comprise a family of ubiquitous proline-directed, protein-serine/threonine kinases, which participate in signal transduction pathways that control intracellular events including acute responses to hormones and major developmental changes in organisms. MAP kinases lie in protein kinase cascades. This review discusses the regulation and functions of mammalian MAP kinases. Nonenzymatic mechanisms that impact MAP kinase functions and findings from gene disruption studies are highlighted. Particular emphasis is on ERK1/2.
Collapse
Affiliation(s)
- G Pearson
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Muñoz-Alonso MJ, Guillemain G, Kassis N, Girard J, Burnol AF, Leturque A. A novel cytosolic dual specificity phosphatase, interacting with glucokinase, increases glucose phosphorylation rate. J Biol Chem 2000; 275:32406-12. [PMID: 10913113 DOI: 10.1074/jbc.m000841200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel protein was cloned from a rat liver cDNA library by interaction with the liver glucokinase. This protein contained 339 residues and possessed a canonical consensus sequence for a dual specificity phosphatase. The recombinant protein was able to dephosphorylate phosphotyrosyl and phosphoseryl/threonyl substrates. We called this protein the glucokinase-associated phosphatase (GKAP). The GKAP partially dephosphorylated the recombinant glucokinase previously phosphorylated, in vitro, by protein kinase A. The GKAP fused with green fluorescent protein was located in the cytosol, where glucokinase phosphorylates glucose, and not in the nucleus where the glucokinase is retained inactive by the glucokinase regulatory protein. More importantly, the GKAP accelerated the glucokinase activity in a dose-dependent manner and with a stoichiometry compatible with a physiological mechanism. This strongly suggested that the interaction between GKAP and glucokinase had a functional significance. The cloning of this novel protein with a dual specificity phosphatase activity allows the description of a possible new regulatory step in controlling the glycolysis flux.
Collapse
Affiliation(s)
- M J Muñoz-Alonso
- CNRS UPR 1524, 9, rue Jules Hetzel, 92190 Meudon, INSERM U505, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | | | | | | | | | | |
Collapse
|
30
|
Lee WJ, Kim SH, Kim YS, Han SJ, Park KS, Ryu JH, Hur MW, Choi KY. Inhibition of mitogen-activated protein kinase by a Drosophila dual-specific phosphatase. Biochem J 2000; 349 Pt 3:821-8. [PMID: 10903144 PMCID: PMC1221210 DOI: 10.1042/bj3490821] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Drosophila extracellular signal-regulated kinase (DERK) mitogen-activated protein kinase (MAPK) is involved in the regulation of multiple differentiation and developmental processes. Tight control of MAPK activity is critical for normal cell behaviour. We identified a novel Drosophila MAPK phosphatase (DMKP) cDNA from the expressed-sequence-tag database and characterized it. Analysis of the nucleotide sequence revealed an open reading frame encoding the 203-amino acid protein, with a calculated molecular mass of 23 kDa, which has a high amino acid sequence similarity with 'VH1-like' dual-specific phosphatases at the broad region near the catalytic sites. The expression of DMKP mRNA occurs from the late larval stages to adulthood in Drosophila development. The recombinant DMKP protein produced in yeast retained its phosphatase activity. When expressed in Schneider cells, DMKP dose-dependently inhibited DERK and Drosophila c-Jun N-terminal kinase activities with high selectivity towards DERK. However, DMKP did not have any affect on Drosophila p38 activity. When DMKP was expressed in yeast, it down-regulated the fus1-lacZ trans-reporter gene of the pheromone MAPK pathway without any significant effect on the high-osmolarity-glycerol-response pathway.
Collapse
Affiliation(s)
- W J Lee
- Department of Biochemistry and Molecular Biology, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Beeser AE, Cooper TG. The dual-specificity protein phosphatase Yvh1p regulates sporulation, growth, and glycogen accumulation independently of catalytic activity in Saccharomyces cerevisiae via the cyclic AMP-dependent protein kinase cascade. J Bacteriol 2000; 182:3517-28. [PMID: 10852885 PMCID: PMC101947 DOI: 10.1128/jb.182.12.3517-3528.2000] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yvh1p, a dual-specific protein phosphatase induced specifically by nitrogen starvation, regulates cell growth as well as initiation and completion of sporulation. We demonstrate that yvh1 disruption mutants are also unable to accumulate glycogen in stationary phase. A catalytically inactive variant of yvh1 (C117S) and a DNA fragment encoding only the Yvh1p C-terminal 159 amino acids (which completely lacks the phosphatase domain) complement all three phenotypes as well as the wild-type allele; no complementation occurs with a fragment encoding only the C-terminal 74 amino acids. These observations argue that phosphatase activity is not required for the Yvh1p functions we measured. Mutations which decrease endogenous cyclic AMP (cAMP) levels partially suppress the sporulation and glycogen accumulation defects. In addition, reporter gene expression supported by a DRR2 promoter fragment, containing two stress response elements known to respond to cAMP-protein kinase A, decreases in a yvh1 disruption mutant. Therefore, our results identify three cellular processes that both require Yvh1p and respond to alterations in cAMP, and they lead us to suggest that Yvh1p may be a participant in and/or a contributor to regulation of the cAMP-dependent protein kinase cascade. The fact that decreasing the levels of cAMP alleviates the need for Yvh1p function supports this suggestion.
Collapse
Affiliation(s)
- A E Beeser
- Department of Microbiology and Immunology, University of Tennessee, Memphis 38163, USA
| | | |
Collapse
|
32
|
Sakumoto N, Mukai Y, Uchida K, Kouchi T, Kuwajima J, Nakagawa Y, Sugioka S, Yamamoto E, Furuyama T, Mizubuchi H, Ohsugi N, Sakuno T, Kikuchi K, Matsuoka I, Ogawa N, Kaneko Y, Harashima S. A series of protein phosphatase gene disruptants in Saccharomyces cerevisiae. Yeast 1999; 15:1669-79. [PMID: 10572263 DOI: 10.1002/(sici)1097-0061(199911)15:15<1669::aid-yea480>3.0.co;2-6] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Thirty-two protein phosphatase (PPase) genes were identified in the genome nucleotide sequence of Saccharomyces cerevisiae. We constructed S. cerevisiae disruptants for each of the PPase genes and examined their growth under various conditions. The disruptants of six putative PPase genes, i.e. of YBR125c, YCR079w, YIL113w, YJR110w, YNR022c and YOR090c, were created for the first time in this study. The glc7, sit4 and cdc14 disruptants were lethal in our strain background. The remaining 29 PPase gene disruptants were viable at 30 degrees C and 37 degrees C, but only one disruptant, yvh1, showed intrinsic cold-sensitive growth at 13 degrees C. Transcription of the YVH1 gene was induced at 13 degrees C, consistent with an idea that Yvh1p has a specific role for growth at a low temperature. The viable disruptants grew normally on nutrient medium containing sucrose, galactose, maltose or glycerol as carbon sources. The ppz1 disruptant was tolerant to NaCl and LiCl, while the cmp2 disruptant was sensitive to these salts, as reported previously, and none of the other viable PPase disruptants exhibited the salt sensitivity. When the viable disruptants were tested for sensitivity to drugs, i.e. benomyl, caffeine and hydroxyurea, ppz1 and ycr079w disruptants exhibited sensitivity to caffeine.
Collapse
Affiliation(s)
- N Sakumoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Beeser AE, Cooper TG. The dual-specificity protein phosphatase Yvh1p acts upstream of the protein kinase mck1p in promoting spore development in Saccharomyces cerevisiae. J Bacteriol 1999; 181:5219-24. [PMID: 10464190 PMCID: PMC94025 DOI: 10.1128/jb.181.17.5219-5224.1999] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diploid Saccharomyces cerevisiae cells induce YVH1 expression and enter the developmental pathway, leading to sporulation when starved for nitrogen. We show that yvh1 disruption causes a defect in spore maturation; overexpression of MCK1 or IME1 suppresses this yvh1 phenotype. While mck1 mutations are epistatic to those in yvh1 relative to spore maturation, overexpression of MCK1 does not suppress the yvh1 slow-vegetative-growth phenotype. We conclude that (i) Yvh1p functions earlier than Mck1p and Ime1p in the signal transduction cascade that regulates sporulation and is triggered by nitrogen starvation and (ii) the role of Yvh1p in gametogenesis can be genetically distinguished from its role in vegetative growth.
Collapse
Affiliation(s)
- A E Beeser
- Department of Microbiology and Immunology, University of Tennessee, Memphis, Tennessee 38163, USA
| | | |
Collapse
|
34
|
Muda M, Manning ER, Orth K, Dixon JE. Identification of the human YVH1 protein-tyrosine phosphatase orthologue reveals a novel zinc binding domain essential for in vivo function. J Biol Chem 1999; 274:23991-5. [PMID: 10446167 DOI: 10.1074/jbc.274.34.23991] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A human orthologue of the Saccharomyces cerevisiae YVH1 protein-tyrosine phosphatase is able to rescue the slow growth defect caused by the disruption of the S. cerevisiae YVH1 gene. The human YVH1 gene is located on chromosome 1q21-q22, which falls in a region amplified in human liposarcomas. The evolutionary conserved COOH-terminal noncatalytic domain of human YVH1 is essential for in vivo function. The cysteine-rich COOH-terminal domain is capable of coordinating 2 mol of zinc/mol of protein, defining it as a novel zinc finger domain. Human YVH1 is the first protein-tyrosine phosphatase that contains and is regulated by a zinc finger domain.
Collapse
Affiliation(s)
- M Muda
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0606, USA
| | | | | | | |
Collapse
|
35
|
Beeser AE, Cooper TG. Control of nitrogen catabolite repression is not affected by the tRNAGln-CUU mutation, which results in constitutive pseudohyphal growth of Saccharomyces cerevisiae. J Bacteriol 1999; 181:2472-6. [PMID: 10198011 PMCID: PMC93673 DOI: 10.1128/jb.181.8.2472-2476.1999] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae responds to nitrogen availability in several ways. (i) The cell is able to distinguish good nitrogen sources from poor ones through a process designated nitrogen catabolite repression (NCR). Good and poor nitrogen sources do not demonstrably affect the cell cycle other than to influence the cell's doubling time. (ii) Nitrogen starvation promotes the initiation of sporulation and pseudohyphal growth. (iii) Nitrogen starvation strongly affects the cell cycle; nitrogen-starved cells arrest in G1. A specific allele of the SUP70/CDC65 tRNAGln gene (sup70-65) has been reported to be defective in nitrogen signaling associated with pseudohyphal formation, sporulation, and NCR. Our data confirm that pseudohyphal growth occurs gratuitously in sup70-65 mutants cultured in nitrogen-rich medium at 30 degrees C. However, we find neither any defect in NCR in the sup70-65 mutant nor any alteration in the control of YVH1 expression, which has been previously shown to be specifically induced by nitrogen starvation.
Collapse
Affiliation(s)
- A E Beeser
- Department of Microbiology and Immunology, University of Tennessee, Memphis, Tennessee 38163, USA
| | | |
Collapse
|
36
|
Gupta R, Huang Y, Kieber J, Luan S. Identification of a dual-specificity protein phosphatase that inactivates a MAP kinase from Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 16:581-589. [PMID: 10036776 DOI: 10.1046/j.1365-313x.1998.00327.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) play a key role in plant responses to stress and pathogens. Activation and inactivation of MAPKs involve phosphorylation and dephosphorylation on both threonine and tyrosine residues in the kinase domain. Here we report the identification of an Arabidopsis gene encoding a dual-specificity protein phosphatase capable of hydrolysing both phosphoserine/threonine and phosphotyrosine in protein substrates. This enzyme, designated AtDsPTP1 (Arabidopsis thaliana dual-specificity protein tyrosine phosphatase), dephosphorylated and inactivated AtMPK4, a MAPK member from the same plant. Replacement of a highly conserved cysteine by serine abolished phosphatase activity of AtDsPTP1, indicating a conserved catalytic mechanism of dual-specificity protein phosphatases from all eukaryotes.
Collapse
Affiliation(s)
- R Gupta
- Department of Plant and Microbial Biology, University of California at Berkeley 94720, USA
| | | | | | | |
Collapse
|
37
|
Peinado-Ramón P, Wallén A, Hallböök F. MAP kinase phosphatase-1 mRNA is expressed in embryonic sympathetic neurons and is upregulated after NGF stimulation. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 56:256-67. [PMID: 9602144 DOI: 10.1016/s0169-328x(98)00047-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The family of Tyr/Thr protein phosphatases, called dual-specificity phosphatases, have been implicated in the feedback regulation of the MAP kinase cascade by dephosphorylating the MAP kinases. Using low stringent cDNA screening we have isolated a chicken homologue of the CL100 phosphatase also called MAP kinase phosphatase 1 (MKP-1). The chicken MKP-1 has 84% and 85.5% identity to the rat and human amino acid sequence, respectively. Using RNase protection assay and in situ hybridization we have found that MKP-1 mRNA is expressed at low levels in most tissues during development. In embryonic dorsal root and sympathetic ganglia MKP-1 mRNA expression increases with age. The expression in large cells in dorsal root ganglia suggests that it is neurons which express MKP-1 mRNA. We also show that MKP-1 mRNA is induced in dissociated embryonic sympathetic neurons after nerve growth factor stimulation. In addition, our results show that MKP-1 mRNA is induced after NGF stimulation of fibroblasts expressing the NGF receptor TrkA, suggesting that MKP-1 is upregulated after activation of the TrkA receptor. These data show that the MKP-1 gene is regulated in a tissue and temporal specific fashion with strong expression in the developing peripheral ganglia, and suggest that the activation of MKP-1 mRNA expression by NGF is a ubiquitously induced response to TrkA activation, independent of the cellular origin or type on which the TrkA receptor is active.
Collapse
Affiliation(s)
- P Peinado-Ramón
- Department of Developmental Neuroscience, Biomedical Centre, University of Uppsala, Box 587, S-751 23, Uppsala, Sweden
| | | | | |
Collapse
|
38
|
Csank C, Makris C, Meloche S, Schröppel K, Röllinghoff M, Dignard D, Thomas DY, Whiteway M. Derepressed hyphal growth and reduced virulence in a VH1 family-related protein phosphatase mutant of the human pathogen Candida albicans. Mol Biol Cell 1997; 8:2539-51. [PMID: 9398674 PMCID: PMC25726 DOI: 10.1091/mbc.8.12.2539] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/1997] [Accepted: 09/08/1997] [Indexed: 02/05/2023] Open
Abstract
Mitogen-activated protein (MAP) kinases are pivotal components of eukaryotic signaling cascades. Phosphorylation of tyrosine and threonine residues activates MAP kinases, but either dual-specificity or monospecificity phosphatases can inactivate them. The Candida albicans CPP1 gene, a structural member of the VH1 family of dual- specificity phosphatases, was previously cloned by its ability to block the pheromone response MAP kinase cascade in Saccharomyces cerevisiae. Cpp1p inactivated mammalian MAP kinases in vitro and acted as a tyrosine-specific enzyme. In C. albicans a MAP kinase cascade can trigger the transition from the budding yeast form to a more invasive filamentous form. Disruption of the CPP1 gene in C. albicans derepressed the yeast to hyphal transition at ambient temperatures, on solid surfaces. A hyphal growth rate defect under physiological conditions in vitro was also observed and could explain a reduction in virulence associated with reduced fungal burden in the kidneys seen in a systemic mouse model. A hyper-hyphal pathway may thus have some detrimental effects on C. albicans cells. Disruption of the MAP kinase homologue CEK1 suppressed the morphological effects of the CPP1 disruption in C. albicans. The results presented here demonstrate the biological importance of a tyrosine phosphatase in cell-fate decisions and virulence in C. albicans.
Collapse
Affiliation(s)
- C Csank
- Centre de Recherche, Hôtel-Dieu de Montréal and Department of Pharmacology, University of Montreal, Montreal, Quebec, Canada H2W 1T8
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Ramponi G, Stefani M. Structure and function of the low Mr phosphotyrosine protein phosphatases. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1341:137-56. [PMID: 9357953 DOI: 10.1016/s0167-4838(97)00087-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Phosphotyrosine protein phosphatases (PTPases) catalyse the hydrolysis of phosphotyrosine residues in proteins and are hence implicated in the complex mechanism of the control of cell proliferation and differentiation. The low Mr PTPases are a group of soluble PTPases displaying a reduced molecular mass; in addition, a group of low molecular mass dual specificity (ds)PTPases which hydrolyse phosphotyrosine and phosphoserine/threonine residues in proteins are known. The enzymes belonging to the two groups are unrelated to each other and to other PTPase classes except for the presence of a CXXXXXRS/T sequence motif containing some of the catalytic residues (active site signature) and for the common catalytic mechanism, clearly indicating convergent evolution. The low Mr PTPases have a long evolutionary history since microbial (prokaryotic and eukaryotic) counterparts of both tyrosine-specific and dsPTPases have been described. Despite the relevant number of data reported on the structural and catalytic features of a number of low Mr PTPases, only limited information is presently available on the substrate specificity and the true biological roles of these enzymes, in prokaryotic, yeast and eukaryotic cells.
Collapse
Affiliation(s)
- G Ramponi
- Department of Biochemical Sciences, University of Florence, Italy
| | | |
Collapse
|
40
|
Abstract
Genetic engineering of wine yeast strains requires the identification of gene promoters specifically activated under wine processing conditions. In this study, transcriptional activation of specific genes was followed during the time course of wine fermentation by quantifying mRNA levels in a haploid wine strain of Saccharomyces cerevisiae grown on synthetic or natural winery musts. Northern analyses were performed using radioactive probes from 19 genes previously described as being expressed under laboratory growth conditions or on molasses in S. cerevisiae during the stationary phase and/or under nitrogen starvation. Nine genes, including members of the HSP family, showed a transition-phase induction profile. For three of them, mRNA transcripts could be detected until the end of the fermentation. Expression of one of these genes, HSP30, was further studied using a HSP30::lacZ fusion on both multicopy and monocopy expression vectors. The production of beta-galactosidase by recombinant cells was measured during cell growth and fermentation on synthetic and natural winery musts. We showed that the HSP30 promoter can induce high gene expression during late stationary phase and remains active until the end of the wine fermentation process. Similar expression profiles were obtained on five natural winery musts.
Collapse
Affiliation(s)
- C Riou
- Laboratoire de Microbiologie et Technologie des Fermentations, INRA-IPV, Montpellier, France
| | | | | | | |
Collapse
|
41
|
Abstract
Since the isolation of the first yeast protein phosphatase genes in 1989, much progress has been made in understanding this important group of proteins. Yeast contain genes encoding all the major types of protein phosphatase found in higher eukaryotes and the ability to use genetic approaches will complement the wealth of biochemical information available from other systems. This review will summarize recent progress in understanding the structure, function and regulation of the PPP family of protein serine-threonine phosphatases, concentrating on the budding yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- M J Stark
- Department of Biochemistry, University of Dundee, UK
| |
Collapse
|
42
|
Ernsting BR, Dixon JE. The PPS1 gene of Saccharomyces cerevisiae codes for a dual specificity protein phosphatase with a role in the DNA synthesis phase of the cell cycle. J Biol Chem 1997; 272:9332-43. [PMID: 9083070 DOI: 10.1074/jbc.272.14.9332] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We report the identification of the PPS1 gene of Saccharomyces cerevisiae. The deduced amino acid sequence of PPS1p shows similarity with protein-tyrosine phosphatases (PTPases) and is most closely related to a subfamily of PTPases that are capable of dephosphorylating phosphoseryl and phosphothreonyl residues as well as phosphotyrosyl residues. Analysis of the predicted amino acid sequence suggests that the protein consists of an active phosphatase domain, an inactive phosphatase-like domain, and an NH2-terminal extension. Mutation of the catalytic cysteinyl residue in the active phosphatase domain reduced the in vitro activity of the mutant protein to less than 0.5% of wild type activity, while mutation of the corresponding cysteinyl residue of the inactive phosphatase-like domain had no effect on in vitro activity. The PPS1 protein was expressed in Escherichia coli, and the protein was shown to catalyze the hydrolysis of p-nitrophenyl phosphate, dephosphorylate phosphotyrosyl, and phosphothreonyl residues in synthetic diphosphorylated peptides and to inactivate the human ERK1 protein. PPS1 transcript abundance is coregulated with that of the divergently transcribed DPB3 gene, which codes for a subunit of DNA polymerase II, with both transcripts showing peak abundance in S phase. pps1Delta mutant strains did not differ from PPS1 strains under any of the conditions tested, but overexpression of the PPS1 protein in S. cerevisiae led to synchronous growth arrest and to aberrant DNA synthesis. A screen for suppressors of this growth arrest identified the RAS2 gene as a multicopy suppressor of the PPS1p overexpression arrest. The arrest was not suppressed by the presence of multicopy RAS1, TPK2, or TPK3 genes or by the presence of 5 mM cAMP in the growth medium, suggesting that PPS1 functions in a pathway involving RAS2, but not TPK kinases or adenylate cyclase.
Collapse
Affiliation(s)
- B R Ernsting
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA
| | | |
Collapse
|
43
|
Abstract
Since the isolation of the first yeast protein phosphatase genes in 1989, much progress has been made in understanding this important group of proteins. Yeast contain genes encoding all the major types of protein phosphatase found in higher eukaryotes and the ability to use genetic approaches will complement the wealth of biochemical information available from other systems. This review will summarize recent progress in understanding the structure, function and regulation of the PPP family of protein serine-threonine phosphatases, concentrating on the budding yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- M J Stark
- Department of Biochemistry, University of Dundee, UK
| |
Collapse
|
44
|
Loda M, Capodieci P, Mishra R, Yao H, Corless C, Grigioni W, Wang Y, Magi-Galluzzi C, Stork PJ. Expression of mitogen-activated protein kinase phosphatase-1 in the early phases of human epithelial carcinogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 1996; 149:1553-64. [PMID: 8909245 PMCID: PMC1865259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Many mitogens and human oncogenes activate extracellular regulated kinases (ERKs), which in turn convey proliferation signals. ERKs or mitogen-activated protein (MAP) kinases are inactivated in vitro by MAP kinase phosphatases (MKPs). The gene encoding one of these MKPs, MKP-1, is a serum-inducible gene and is transcriptionally activated by mitogenic signals in cultured cells. As MKP-1 has been shown to block DNA synthesis by inhibiting ERKs when expressed at elevated levels in cultured cells, it has been suggested that it may act as a tumor suppressor. MKP-1 mRNA and MAP kinase (ERK-1 and -2) protein expression was assessed in 164 human epithelial tumors of diverse tissue origin by in situ hybridization and immunohistochemistry. MKP-1 was overexpressed in the early phases of prostate, colon, and bladder carcinogenesis, with progressive loss of expression with higher histological grade and in metastases. In contrast, breast carcinomas showed significant MKP-1 expression even when poorly differentiated or in late stages of the disease. MKP-1, ERK-1, and ERK-2 were co-expressed in most tumors examined. In a subset of 15 tumors, ERK-1 enzymatic activity as well as structural alterations that might be responsible for loss of function of MKP-1 during tumor progression, were examined. ERK-1 enzymatic activity was found to be elevated despite MKP-1 overexpression. No loss of 5q35-ter (containing the MKP-1 locus) was detected by polymerase chain reaction in metastases compared with primary tumors. Finally, no mutations were found in the catalytic domain of MKP-1. These data indicate that MKP-1 is an early marker for a wide range of human epithelial tumors and suggest that MKP-1 does not behave as a tumor suppressor in epithelial tumors.
Collapse
Affiliation(s)
- M Loda
- Department of Pathology, Deaconess Hospital, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Park HD, Beeser AE, Clancy MJ, Cooper TG. The S. cerevisiae nitrogen starvation-induced Yvh1p and Ptp2p phosphatases play a role in control of sporulation. Yeast 1996; 12:1135-51. [PMID: 8896280 DOI: 10.1002/(sici)1097-0061(19960915)12:11<1135::aid-yea11>3.0.co;2-l] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Starvation for nitrogen in the absence of a fermentable carbon source causes diploid Saccharomyces cerevisiae cells to leave vegetative growth, enter meiosis, and sporulare; the former nutritional condition also induces expression of the YVH1 gene that encodes a protein phosphatase. This correlation prompted us to determine whether the Yvh1p phosphatase was a participant in the network that controls the onset of meiosis and sporulation. We found that expression of the IME2 gene, encoding a protein kinase homologue required for meiosis- and sporulation-specific gene expression, is decreased in a yvh1 disrupted strain. We also observed a decrease, albeit a smaller one, in the expression of IME1 which encodes an activator protein required for IME2 expression. Under identical experimental conditions, expression of the MCKI and IME4 genes (which promote sporulation but do not require Ime1p for expression) was not affected. These results demonstrate the specificity of the yvh1 disruption phenotype. They suggest that decreased steady-state levels of IME1 and IME2 mRNA were not merely the result of non-specific adverse affects on nucleic acid metabolism caused by the yvh1 disruption. Sporulation of a homozygous yvh1 disruption mutant was delayed and less efficient overall compared to an isogenic wild-type strain, a result which correlates with decreased IME1 and IME2 gene expression. We also observed that expression of the PTP2 tyrosine phosphatase gene (a negative regulator of the osmosensing MAP kinase cascade), but not the PTP1 gene (also encoding a tyrosine phosphatase) was induced by nitrogen-starvation. Although disruption of PTP2 alone did not demonstrably affect sporulation or IME2 gene expression, sporulation was decreased more in a yvh1, ptp2 double mutant than in a yvh1 single mutant; it was nearly abolished in the double mutant. These data suggest that the YVH1 and PTP2 encoded phosphatases likely participate in the control network regulating meiosis and sporulation. Expression of YVH1 and PTP2 was not affected by nitrogen source quality (asparagine compared to proline) suggesting that nitrogen starvation-induced YVH1 and PTP2 expression and sensitivity to nitrogen catabolite repression are on two different branches of the nitrogen regulatory network.
Collapse
Affiliation(s)
- H D Park
- Department of Microbiology and Immunology, University of Tennessee, Memphis 38163, USA
| | | | | | | |
Collapse
|
46
|
Mourey RJ, Vega QC, Campbell JS, Wenderoth MP, Hauschka SD, Krebs EG, Dixon JE. A novel cytoplasmic dual specificity protein tyrosine phosphatase implicated in muscle and neuronal differentiation. J Biol Chem 1996; 271:3795-802. [PMID: 8631996 DOI: 10.1074/jbc.271.7.3795] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Dual specificity protein tyrosine phosphatases (dsPTPs) are a subfamily of protein tyrosine phosphatases implicated in the regulation of mitogen-activated protein kinase (MAPK). In addition to hydrolyzing phosphotyrosine, dsPTPs can hydrolyze phosphoserine/threonine-containing substrates and have been shown to dephosphorylate activated MAPK. We have identified a novel dsPTP, rVH6, from rat hippocampus. rVH6 contains the conserved dsPTP active site sequence, VXVHCX2GX2RSX5AY(L/I)M, and exhibits phosphatase activity against activated MAPK. In PC12 cells, rVH6 mRNA is induced during nerve growth factor-mediated differentiation but not during insulin or epidermal growth factor mitogenic stimulation. In MM14 muscle cells, rVH6 mRNA is highly expressed in proliferating cells and declines rapidly during differentiation. rVH6 expression correlates with the inability of fibroblast growth factor to stimulate MAPK activity in proliferating but not in differentiating MM14 cells. rVH6 protein localizes to the cytoplasm and is the first dsPTP to be localized outside the nucleus. This novel subcellular localization may expose rVH6 to potential substrates that differ from nuclear dsPTPs substrates.
Collapse
Affiliation(s)
- R J Mourey
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Liu K, Lemon B, Traktman P. The dual-specificity phosphatase encoded by vaccinia virus, VH1, is essential for viral transcription in vivo and in vitro. J Virol 1995; 69:7823-34. [PMID: 7494294 PMCID: PMC189726 DOI: 10.1128/jvi.69.12.7823-7834.1995] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The genetic complexity of vaccinia virus is such that as well as encoding its own transcription and replication machinery, it encodes two protein kinases and a protein phosphatase. The latter enzyme, designated VH1, is a prototype for the dual-specificity class of phosphatases. Here we report that the H1 phosphatase is encapsidated within vaccinia virions and describe the construction of a viral recombinant in which expression of the H1 gene is regulated by the presence or absence of isopropylthiogalactopyranoside (IPTG) in the culture medium. When expression of H1 is repressed, the number of viral particles produced is not compromised but the fraction of these particles which is infectious is significantly reduced. The lack of infectivity of the H1-deficient particles is specifically correlated with their inability to direct the transcription of early genes either in vitro or in vivo. A proximal role for the viral phosphatase in regulating the onset of viral gene expression is implied. Prominent among the encapsidated proteins found to be hyperphosphorylated in H1-deficient virions is the 11-kDa product of the F18 gene; this protein is the major DNA-binding component of the viral nucleoprotein complex. The ability of recombinant H1 phosphatase to reverse this hyperphosphorylation in permeabilized virions strengthens the conclusion that the F18 protein is a bona fide substrate for the H1 phosphatase.
Collapse
Affiliation(s)
- K Liu
- Program in Molecular Biology, Cornell University Graduate School of Medical Sciences, New York, New York, USA
| | | | | |
Collapse
|
48
|
Feng L, Xia Y, Seiffert D, Wilson CB. Oxidative stress-inducible protein tyrosine phosphatase in glomerulonephritis. Kidney Int 1995; 48:1920-8. [PMID: 8587253 DOI: 10.1038/ki.1995.492] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Previously we found that rat mesangial cells express 3CH134/CL100 protein-tyrosine phosphatase (PTPase) in response to reactive oxygen intermediates (ROIs), and we now extend these studies to glomerulonephritis (GN), where ROI have been demonstrated to play a role. The rat homologue of 3CH134/CL100 was cloned from a rat macrophage cDNA library. The rat 3CH134/CL100 mRNA was strongly induced in the lung, liver, and heart the first day after birth, suggesting that hyperoxic adaption might be involved in the induction of the PTPase mRNA. In anti-glomerular basement membrane (GBM) antibody (Ab) GN in rats, the 3CH134/CL100 PTPase mRNA was expressed in glomeruli as early as 30 minutes after anti-GBM Ab injection. The 3CH134/CL100 mRNA expression was modulated by the ROI scavenger dimethylthiourea (DMTU), indicating that its induction was ROI related. In contrast to the glomerular lesion, PTPase mRNA expression was not induced in experimental tubulointerstitial nephritis. In situ hybridization suggested that mesangial and some infiltrating cells were the major glomerular cell sources of the PTPase mRNA. These results indicate that rat CCH134/CL100 PTPase is actively induced in glomeruli as part of an acute immune injury at least in part related to oxidative stress. PTPase induction in GN and potentially other forms of inflammation may play an important regulatory role in protein kinase signaling pathways.
Collapse
Affiliation(s)
- L Feng
- Department of Immunology, Scripps Research Institute, La Jolla, California, USA
| | | | | | | |
Collapse
|
49
|
Wilson LK, Benton BM, Zhou S, Thorner J, Martin GS. The yeast immunophilin Fpr3 is a physiological substrate of the tyrosine-specific phosphoprotein phosphatase Ptp1. J Biol Chem 1995; 270:25185-93. [PMID: 7559654 DOI: 10.1074/jbc.270.42.25185] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The tyrosine-specific phosphoprotein phosphatase encoded by the Saccharomyces cerevisiae PTP1 gene dephosphorylates artificial substrates in vitro, but little is known about its functions and substrates in vivo. The presence of Ptp1 resulted in dephosphorylation of multiple tyrosine-phosphorylated proteins in yeast expressing a heterologous tyrosine-specific protein kinase, indicating that Ptp1 can dephosphorylate a broad range of substrates in vivo. Correspondingly, several proteins phosphorylated at tyrosine by endogenous protein kinases exhibited a marked increase in tyrosine phosphorylation in ptp1 mutant cells. One of these phosphotyrosyl proteins (p70) was also dephosphorylated in vitro when incubated with recombinant Ptp1. p70 was purified to homogeneity; analysis of four tryptic peptides revealed that p70 is identical to the recently described FPR3 gene product, a nucleolarly localized proline rotamase of the FK506- and rapamycin-binding family. The identity of p70 with Fpr3 was confirmed in the demonstration that the abundance of tyrosine-phosphorylated p70 in ptp1 mutants was strictly correlated with the level of FPR3 expression; immobilized phosphotyrosyl Fpr3 was directly dephosphorylated by recombinant Ptp1. Site-directed mutagenesis demonstrated that the site of tyrosine phosphorylation is Tyr-184, which resides within the nucleolin-like amino-terminal domain of Fpr3. Protein kinase activities from yeast cell extracts can bind to and phosphorylate the immobilized amino-terminal domain of Fpr3 on serine, threonine, and tyrosine. Fpr3 represents the first phosphotyrosyl protein identified in S. cerevisiae that is not itself a protein kinase and is as yet the only known physiological substrate of Ptp1.
Collapse
Affiliation(s)
- L K Wilson
- Division of Biochemistry and Molecular Biology, University of California at Berkeley 94720-3204, USA
| | | | | | | | | |
Collapse
|
50
|
Plochocka-Zulinska D, Rasmussen G, Rasmussen C. Regulation of calcineurin gene expression in Schizosaccharomyces pombe. Dependence on the ste11 transcription factor. J Biol Chem 1995; 270:24794-9. [PMID: 7559598 DOI: 10.1074/jbc.270.42.24794] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Calmodulin and its target enzymes are important regulators of numerous cellular processes, including reversible protein phosphorylation. The calmodulin-dependent protein phosphatase (calcineurin) has been suggested to play roles in activation of T cells and in the mating response of yeast. Recently, studies have shown it to be the target of immunosuppressant drugs such as cyclosporin and FK-506. In this study, we have cloned the gene for the catalytic subunit of calcineurin, CnA, from the yeast Schizosaccharomyces pombe. The gene (named ppb1+) has been mapped to chromosome II by analysis of the hybridization of a genomic DNA probe to an ordered library. The gene produces a single mRNA species of 2.5 kilobases, which varies during the cell cycle in exponentially growing cells. In addition, expression of ppb1+ mRA is induced by nitrogen starvation, a condition that favors mating in S. pombe. The ppb1+ gene promoter contains a cis-acting element for the ste11 transcription factor, and we have shown that induction of the ppb1+ mRNA during nitrogen starvation is dependent on the ste11 gene product. Together with earlier studies showing that disruption of the ppb1+ gene in S. pombe results in sterility (Yoshida, T., Toda, T., and Yanagida, M. (1994) J. Cell Sci., 107, 1725-1735), our studies suggest that the ppb1+ gene plays a role in the gene expression cascade that is essential for mating and sporulation in S. pombe.
Collapse
|