1
|
Carter NM, Hankore WD, Yang YK, Yang C, Hutcherson SM, Fales W, Ghosh A, Mongia P, Mackinnon S, Brennan A, Leone RD, Pomerantz JL. QRICH1 mediates an intracellular checkpoint for CD8 + T cell activation via the CARD11 signalosome. Sci Immunol 2025; 10:eadn8715. [PMID: 40085689 DOI: 10.1126/sciimmunol.adn8715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/19/2025] [Indexed: 03/16/2025]
Abstract
Antigen receptor signaling pathways that control lymphocyte activation depend on signaling hubs and negative regulatory proteins to fine-tune signaling outputs to ensure host defense and avoid pathogenic responses. Caspase recruitment domain-containing protein 11 (CARD11) is a critical signaling scaffold that translates T cell receptor (TCR) triggering into the activation of nuclear factor κB (NF-κB), c-Jun N-terminal kinase (JNK), mechanistic target of rapamycin (mTOR), and Akt. Here, we identify glutamine-rich protein 1 (QRICH1) as a regulator of CARD11 signaling that mediates an intracellular checkpoint for CD8+ T cell activation. QRICH1 associates with CARD11 after TCR engagement and negatively regulates CARD11 signaling to NF-κB. QRICH1 binding to CARD11 is controlled by an autoregulatory intramolecular interaction between QRICH1 domains of previously uncharacterized function. QRICH1 controls the antigen-induced activation, proliferation, and effector status of CD8+ T cells by regulating numerous genes critical for CD8+ T cell function. Our results define a component of antigen receptor signaling circuitry that fine-tunes effector output in response to antigen recognition.
Collapse
Affiliation(s)
- Nicole M Carter
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wihib D Hankore
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yong-Kang Yang
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chao Yang
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shelby M Hutcherson
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wyatt Fales
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anushka Ghosh
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Piyusha Mongia
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sophie Mackinnon
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anna Brennan
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert D Leone
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joel L Pomerantz
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Zheng Q, Liu R, Jiang B, Sun J, Wang T, Ruan Q. NF-κB c-Rel Is a Potential Therapeutic Target for Acute Corneal Transplant Rejection. Invest Ophthalmol Vis Sci 2023; 64:16. [PMID: 37962530 PMCID: PMC10653260 DOI: 10.1167/iovs.64.14.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
Purpose The purpose of this study was to determine the role of nuclear factor kappa B (NF-κB) c-Rel during acute corneal transplant rejection and whether targeting c-Rel can reduce corneal transplant rejection. Methods Allogeneic corneal transplantation was performed in wild-type and c-Rel-deficient mice. Corneal graft survival rate, opacity, neovascularization, and edema were evaluated by slit-lamp microscopy. Adeno-associated virus 6 (AAV6) expressing c-Rel-specific small hairpin RNA (AAV6-shRel) and the small-molecule compound pentoxifylline (PTXF) were used to reduce c-Rel expression. Enzyme-linked immunosorbent assay was used to determine the expression of inflammatory cytokines. c-Rel expression was determined by quantitative RT-PCR and western blot. The effect of c-Rel inhibition on corneal transplant rejection was examined using a mouse model of acute allogeneic corneal transplantation. Tear production and corneal sensitivity were measured to determine the potential toxicity of AAV6-shRel and PTXF. Results The expression of c-Rel and its inflammatory targets was increased in both mice and patients with corneal transplant rejection. Loss of c-Rel reduced corneal transplant rejection in mouse. Both AAV6-shRel and PTXF were able to downregulate the expression of c-Rel and its inflammatory targets in vitro. Treatment with AAV6-shRel or PTXF reduced corneal transplant rejection in mouse and downregulated the expression of inflammatory cytokines in peripheral blood mononuclear cells from patients with corneal transplant rejection. Treatment with AAV6-shRel or PTXF displayed no side effects on tear production or corneal sensitivity. Conclusions Increased expression of c-Rel is a risk factor for acute corneal transplant rejection, and targeting c-Rel can efficiently reduce corneal transplant rejection.
Collapse
Affiliation(s)
- Qian Zheng
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, China
- Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, China
| | - Ruiling Liu
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, China
| | - Bian Jiang
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Jijun Sun
- Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, China
| | - Ting Wang
- Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, China
| | - Qingguo Ruan
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, China
| |
Collapse
|
3
|
Gauthier T, Chen W. IFN-γ and TGF-β, Crucial Players in Immune Responses: A Tribute to Howard Young. J Interferon Cytokine Res 2022; 42:643-654. [PMID: 36516375 PMCID: PMC9917322 DOI: 10.1089/jir.2022.0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/18/2022] [Indexed: 12/15/2022] Open
Abstract
Interferon gamma (IFN-γ) and transforming growth factor beta (TGF-β), both pleiotropic cytokines, have been long studied and described as critical mediators of the immune response, notably in T cells. One of the investigators who made seminal and critical discoveries in the field of IFN-γ biology is Dr. Howard Young. In this review, we provide an overview of the biology of IFN-γ as well as its role in cancer and autoimmunity with an emphasis on Dr. Young's critical work in the field. We also describe how Dr. Young's work influenced our own research studying the role of TGF-β in the modulation of immune responses.
Collapse
Affiliation(s)
- Thierry Gauthier
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA
| | - WanJun Chen
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Chukwurah E, Farabaugh KT, Guan BJ, Ramakrishnan P, Hatzoglou M. A tale of two proteins: PACT and PKR and their roles in inflammation. FEBS J 2021; 288:6365-6391. [PMID: 33387379 PMCID: PMC9248962 DOI: 10.1111/febs.15691] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/14/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022]
Abstract
Inflammation is a pathological hallmark associated with bacterial and viral infections, autoimmune diseases, genetic disorders, obesity and diabetes, as well as environmental stresses including physical and chemical trauma. Among numerous proteins regulating proinflammatory signaling, very few such as Protein kinase R (PKR), have been shown to play an all-pervading role in inflammation induced by varied stimuli. PKR was initially characterized as an interferon-inducible gene activated by viral double-stranded RNA with a role in protein translation inhibition. However, it has become increasingly clear that PKR is involved in multiple pathways that promote inflammation in response to stress activation, both dependent on and independent of its cellular protein activator of PKR (PACT). In this review, we discuss the signaling pathways that contribute to the initiation of inflammation, including Toll-like receptor, interferon, and RIG-I-like receptor signaling, as well as inflammasome activation. We go on to discuss the specific roles that PKR and PACT play in such proinflammatory signaling, as well as in metabolic syndrome- and environmental stress-induced inflammation.
Collapse
Affiliation(s)
- Evelyn Chukwurah
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106
| | - Kenneth T. Farabaugh
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106
| | - Bo-Jhih Guan
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106
| | | | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
5
|
Neonatal Vitamin C and Cysteine Deficiencies Program Adult Hepatic Glutathione and Specific Activities of Glucokinase, Phosphofructokinase, and Acetyl-CoA Carboxylase in Guinea Pigs' Livers. Antioxidants (Basel) 2021; 10:antiox10060953. [PMID: 34204849 PMCID: PMC8231532 DOI: 10.3390/antiox10060953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 11/17/2022] Open
Abstract
Premature neonates are submitted to an early-life oxidative stress from parenteral nutrition, which is vitamin C (VC) deficient and induces low endogenous levels of glutathione. The oxidative stress caused by these deficiencies may permanently affect liver glycolysis and lipogenesis. This study evaluates the short- and long-term effects of neonatal VC and cysteine deficient diets on redox and energy metabolism. Three-day-old Hartley guinea pigs from both sexes were given a regular or a deficient diet (VC, cysteine, or both) until week 1 of life. Half of the animals were sacrificed at this age, while the other half ate a complete diet until 12 weeks. Liver glutathione and the activity and protein levels of glucokinase, phosphofructokinase, and acetyl-CoA-carboxylase were measured. Statistics: factorial ANOVA (5% threshold). At 1 week, all deficient diets decreased glutathione and the protein levels of glucokinase and phosphofructokinase, while cysteine deficiency decreased acetyl-CoA-carboxylase levels. A similar enzyme level was observed in control animals at 12 weeks. At this age, VC deficiency decreased glutathione, while cysteine increased it. Acetyl-CoA-carboxylase protein levels were increased, which decreased its specific activity. Early-life VC and cysteine deficiencies induce neonatal oxidative stress and an adult-like metabolism, while predisposing to increased lipogenic rates during adulthood.
Collapse
|
6
|
Garg SK, Welsh EA, Fang B, Hernandez YI, Rose T, Gray J, Koomen JM, Berglund A, Mulé JJ, Markowitz J. Multi-Omics and Informatics Analysis of FFPE Tissues Derived from Melanoma Patients with Long/Short Responses to Anti-PD1 Therapy Reveals Pathways of Response. Cancers (Basel) 2020; 12:cancers12123515. [PMID: 33255891 PMCID: PMC7768436 DOI: 10.3390/cancers12123515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/21/2020] [Indexed: 01/14/2023] Open
Abstract
Simple Summary Immune based therapies have benefited many melanoma patients, but many patients still do not respond. This study analyzes biospecimens obtained from patients undergoing a type of immune based therapy called anti-PD-1 to understand mechanisms of response and resistance to this treatment. The operational definition of good response utilized in this investigation permitted us to examine the biochemical pathways that are facilitating anti-PD-1 responses independent of prior therapies received by patients. Currently, there are no clinically available tests to reliably test for the outcome of patients treated with anti-PD-1 therapy. The purpose of this study was to facilitate the development of prospective biomarker-directed trials to guide therapy, as even though the side effect profile is favorable for anti-PD-1 therapy, some patients do not respond to therapy with significant toxicity. Each patient may require testing for the pathways upregulated in the tumor to predict optimal benefit to anti-PD-1 treatment. Abstract Anti-PD-1 based immune therapies are thought to be dependent on antigen processing and presentation mechanisms. To characterize the immune-dependent mechanisms that predispose stage III/IV melanoma patients to respond to anti-PD-1 therapies, we performed a multi-omics study consisting of expression proteomics and targeted immune-oncology-based mRNA sequencing. Formalin-fixed paraffin-embedded tissue samples were obtained from stage III/IV patients with melanoma prior to anti-PD-1 therapy. The patients were first stratified into poor and good responders based on whether their tumors had or had not progressed while on anti-PD-1 therapy for 1 year. We identified 263 protein/gene candidates that displayed differential expression, of which 223 were identified via proteomics and 40 via targeted-mRNA analyses. The downstream analyses of expression profiles using MetaCore software demonstrated an enrichment of immune system pathways involved in antigen processing/presentation and cytokine production/signaling. Pathway analyses showed interferon (IFN)-γ-mediated signaling via NF-κB and JAK/STAT pathways to affect immune processes in a cell-specific manner and to interact with the inducible nitric oxide synthase. We review these findings within the context of available literature on the efficacy of anti-PD-1 therapy. The comparison of good and poor responders, using efficacy of PD-1-based therapy at 1 year, elucidated the role of antigen presentation in mediating response or resistance to anti-PD-1 blockade.
Collapse
Affiliation(s)
- Saurabh K. Garg
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (S.K.G.); (Y.I.H.)
| | - Eric A. Welsh
- Biostatistics and Bioinformatics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA;
| | - Bin Fang
- Proteomics & Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (B.F.); (J.M.K.)
| | - Yuliana I. Hernandez
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (S.K.G.); (Y.I.H.)
| | - Trevor Rose
- Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA;
- Department of Oncologic Sciences, University of South Florida Health Morsani College of Medicine, Tampa, FL 33620, USA; (J.G.); (A.B.); (J.J.M.)
| | - Jhanelle Gray
- Department of Oncologic Sciences, University of South Florida Health Morsani College of Medicine, Tampa, FL 33620, USA; (J.G.); (A.B.); (J.J.M.)
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - John M. Koomen
- Proteomics & Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (B.F.); (J.M.K.)
- Department of Oncologic Sciences, University of South Florida Health Morsani College of Medicine, Tampa, FL 33620, USA; (J.G.); (A.B.); (J.J.M.)
| | - Anders Berglund
- Department of Oncologic Sciences, University of South Florida Health Morsani College of Medicine, Tampa, FL 33620, USA; (J.G.); (A.B.); (J.J.M.)
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - James J. Mulé
- Department of Oncologic Sciences, University of South Florida Health Morsani College of Medicine, Tampa, FL 33620, USA; (J.G.); (A.B.); (J.J.M.)
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Joseph Markowitz
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (S.K.G.); (Y.I.H.)
- Department of Oncologic Sciences, University of South Florida Health Morsani College of Medicine, Tampa, FL 33620, USA; (J.G.); (A.B.); (J.J.M.)
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-813-745-8581
| |
Collapse
|
7
|
Zhang Y, Xin Q, Zhang JY, Wang YY, Cheng JT, Cai WQ, Han ZW, Zhou Y, Cui SZ, Peng XC, Wang XW, Ma Z, Xiang Y, Su XL, Xin HW. Transcriptional Regulation of Latency-Associated Transcripts (LATs) of Herpes Simplex Viruses. J Cancer 2020; 11:3387-3399. [PMID: 32231745 PMCID: PMC7097949 DOI: 10.7150/jca.40186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
Herpes simplex viruses (HSVs) cause cold sores and genital herpes and can establish lifelong latent infection in neurons. An engineered oncolytic HSV (oHSV) has recently been approved to treat tumors in clinics. HSV latency-associated transcripts (LATs) are associated with the latent infection, but LAT transcriptional regulation was seldom reported. For a better treatment of HSV infection and tumors, here we sequenced the LAT encoding DNA and LAT transcription regulatory region of our recently isolated new strain HSV-1-LXMW and did comparative analysis of the sequences together with those of other four HSV-1 and two HSV-2 strains. Phylogenetic analysis of LATs revealed that HSV-1-LXMW is evolutionarily close to HSV-1-17 from MRC University, Glasgow, UK. For the first time, Using a weight matrix-based program Match and multi-sequences alignment of the 6 HSV strains, we identified HSV LAT transcription regulatory sequences that bind to 9 transcription factors: AP-1, C-REL, Comp1, E2F, Hairy, HFH-3, Kr, TCF11/MAFG, v-Myb. Interestingly, these transcription regulatory sequences and factors are either conserved or unique among LATs of HSV-1 and HSV-2, suggesting they are potentially functional. Furthermore, literature analysis found that the transcription factors v-myb and AP-1 family member JunD are functional in regulating HSV gene transcription, including LAT transcription. For the first time, we discovered seven novel transcription factors and their corresponding transcription regulatory sequences of HSV LATs. Based on our findings and other reports, we proposed potential mechanisms of the initiation and maintenance of HSV latent infection. Our findings may have significant implication in our understanding of HSV latency and engineering of better oncolytic HSVs.
Collapse
Affiliation(s)
- Ying Zhang
- The First School of Clinical Medicine, Health Science Center, Yangtze University, Nanhuan Road, Jingzhou, Hubei 434023, China.,Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Qiang Xin
- Clinical Medical Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Jun-Yi Zhang
- Department of Neural Surgery, People's Hospital of Dongsheng District of Erdos City, Erdos, Inner Mongolia, 017000, China
| | - Ying-Ying Wang
- The First School of Clinical Medicine, Health Science Center, Yangtze University, Nanhuan Road, Jingzhou, Hubei 434023, China.,Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Jun-Ting Cheng
- The First School of Clinical Medicine, Health Science Center, Yangtze University, Nanhuan Road, Jingzhou, Hubei 434023, China.,Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Wen-Qi Cai
- The First School of Clinical Medicine, Health Science Center, Yangtze University, Nanhuan Road, Jingzhou, Hubei 434023, China.,Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Zi-Wen Han
- The First School of Clinical Medicine, Health Science Center, Yangtze University, Nanhuan Road, Jingzhou, Hubei 434023, China.,Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Yang Zhou
- The First School of Clinical Medicine, Health Science Center, Yangtze University, Nanhuan Road, Jingzhou, Hubei 434023, China.,Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Shu-Zhong Cui
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Xiao-Chun Peng
- The First School of Clinical Medicine, Health Science Center, Yangtze University, Nanhuan Road, Jingzhou, Hubei 434023, China.,Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China.,Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Xian-Wang Wang
- The First School of Clinical Medicine, Health Science Center, Yangtze University, Nanhuan Road, Jingzhou, Hubei 434023, China.,Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China.,Department of Laboratory Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
| | - Zhaowu Ma
- The First School of Clinical Medicine, Health Science Center, Yangtze University, Nanhuan Road, Jingzhou, Hubei 434023, China.,Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Ying Xiang
- The First School of Clinical Medicine, Health Science Center, Yangtze University, Nanhuan Road, Jingzhou, Hubei 434023, China.,Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Xiu-Lan Su
- Clinical Medical Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Hong-Wu Xin
- The First School of Clinical Medicine, Health Science Center, Yangtze University, Nanhuan Road, Jingzhou, Hubei 434023, China.,Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| |
Collapse
|
8
|
Yadav D, Nath Mishra B, Khan F. 3D-QSAR and docking studies on ursolic acid derivatives for anticancer activity based on bladder cell line T24 targeting NF-kB pathway inhibition. J Biomol Struct Dyn 2019; 37:3822-3837. [PMID: 30261824 DOI: 10.1080/07391102.2018.1528888] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/20/2018] [Accepted: 09/20/2018] [Indexed: 01/08/2023]
Abstract
Bladder cancer is the common reason for mortality worldwide, and its increasing rate announces as a significant area of research in drug designing. The side effects and toxicity of existing drugs and the consequence of gradual cancer cell resistance against the available therapy make the treatment poor. Globally, there is a continuous high demand to develop new, more potent, and easily affordable drugs against cancer. The current research article illustrates the application of developed three-dimensional quantitative structure-activity relationship (3D-QSAR) based on human bladder cancer cell line T24 in vitro anticancer activity. The derived QSAR model has been used for prediction of natural compounds and analogs with 80% similarity of the most active compound of the dataset. The developed model describes the structure-activity relationship for terpenes and their derivatives at the molecular level. The developed comparative molecular field analysis (CoMFA) model shows a satisfactory cross-validation correlation coefficient (q2) of 0.54 and a regression correlation coefficient (r2) of 0.86. In order to evaluate the compliance with electronic pharmacokinetic parameters, Lipinski's rule of five filter, absorption, distribution, metabolism, and excretion (ADME) and toxicity of predicted compounds have been calculated. Furthermore, molecular-docking study has been performed to prioritize these predicted compounds based on their docking score and binding pocket similarity through the identified potential anticancer targets. Finally, two compounds T9 and B42 have been identified as the best hit because these two fall within the standard limits of all filters and show a good binding affinity. Conclusively, all satisfactory results strongly suggest that the derived 3D-QSAR model and obtained candidate's binding structures are reasonable in the prediction of a new antagonist's activity. The strategy adopted in the present research is expected to be of immense importance and a great support in the identification and optimization of lead in the early and advance drug discovery.
Collapse
Affiliation(s)
- Deepika Yadav
- a Department of Metabolic and Structural Biology , CSIR - Central Institute of Medicinal and Aromatic Plants , Lucknow , Uttar Pradesh , India
- b Department of Biotechnology , Institute of Engineering and Technology (Dr. A.P.J. Abdul Kalam Technical University) , Lucknow , Uttar Pradesh , India
| | - Bhartendu Nath Mishra
- b Department of Biotechnology , Institute of Engineering and Technology (Dr. A.P.J. Abdul Kalam Technical University) , Lucknow , Uttar Pradesh , India
| | - Feroz Khan
- a Department of Metabolic and Structural Biology , CSIR - Central Institute of Medicinal and Aromatic Plants , Lucknow , Uttar Pradesh , India
| |
Collapse
|
9
|
Yi L, Chen L, Guo X, Lu T, Wang H, Ji X, Zhang J, Ren Y, Pan P, Kinghorn AD, Huang X, Wang LS, Fan Z, Caligiuri MA, Yu J. A Synthetic Disaccharide Derivative of Diphyllin, TAARD, Activates Human Natural Killer Cells to Secrete Interferon-Gamma via Toll-Like Receptor-Mediated NF-κB and STAT3 Signaling Pathways. Front Immunol 2018; 9:1509. [PMID: 30072983 PMCID: PMC6058043 DOI: 10.3389/fimmu.2018.01509] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 06/18/2018] [Indexed: 11/29/2022] Open
Abstract
Natural products and their derivatives have long been used as pharmacological agents in the fight against cancer. Human natural killer (NK) cells are critical in our immune system in that they are capable of destroying tumor cells directly. However, there are few reports that elucidate the role of natural products in activating NK cells. In this study, we discovered that a synthetic disaccharide derivative of diphyllin, 4-O-{[2′′,3′′,4′′-tri-O-acetyl-α-D-arabinopyranosyl-(1′′→4′)]-2′,3′-di-O-acetyl-α-L-rhamnopyranosyl}diphyllin (TAARD), can alone stimulate interferon (IFN)-γ secretion in primary human NK cells and the NKL cell line. Additionally, it had an additive effect with IL-12 or IL-15 on IFN-γ production, but little adverse effects on NK cells. Mechanistically, TAARD induced the phosphorylation of NF-κB and STAT3, resulting in their binding on the IFNG promoter, which was dependent on TLR1 and TLR3 signaling, respectively. STAT3 and NF-κB knockdown with lentivirus shRNA as well as the NF-κB-specific inhibitor, N-tosyl-l-phenylalaninechloromethyl ketone, significantly suppressed TAARD-induced IFN-γ generation in primary NK cells. Blockade of TLR1 and TLR3 with neutralizing antibodies considerably decreased TAARD-induced activation of NF-κB and STAT3, respectively, as well as IFN-γ generation in NK cells. Collectively, our data suggest that TAARD can induce NK cell IFN-γ production through TLR1-NF-κB and TLR3-STAT3 signaling pathways, rendering its potential use as an agent for cancer prevention or treatment.
Collapse
Affiliation(s)
- Long Yi
- Research Center for Nutrition and Food Safety and Third Affiliated Hospital, Third Military Medical University, Chongqing, China.,The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Luxi Chen
- Biomedical Sciences Graduate Program, Medical Scientist Training Program, The Ohio State University, Columbus, OH, United States
| | - Xiaofeng Guo
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States.,State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, China
| | - Ting Lu
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Haixia Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, China
| | - Xiaotian Ji
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, China
| | - Jianying Zhang
- Center for Biostatistics, Department of Bioinformatics, The Ohio State University, Columbus, OH, United States
| | - Yulin Ren
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Pan Pan
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - A Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Xiaohua Huang
- Department of Chemistry, The University of Memphis, Memphis, TN, United States
| | - Li-Shu Wang
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, China
| | - Michael A Caligiuri
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States.,Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States.,The James Cancer Hospital, Columbus, OH, United States
| | - Jianhua Yu
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States.,Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States.,The James Cancer Hospital, Columbus, OH, United States
| |
Collapse
|
10
|
Gebhardt F, Bürger H, Brandt B. Modulation of EGFR Gene Transcription by a Polymorphic Repetitive Sequence – a Link between Genetics and Epigenetics. Int J Biol Markers 2018; 15:105-10. [PMID: 10763151 DOI: 10.1177/172460080001500120] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The epidermal growth factor receptor (EGFR) plays a crucial role in growth, differentiation and motility of normal as well as tumor cells. The transduction of extracellular signals to the cytoplasm via the receptor not only depends on ligand binding, but is also determined by the receptor density on the cell surface. Therefore, with regard to cancer diagnosis and therapeutic approaches targeting EGFR it is important to know how the expression level of EGFR is controlled. We found that transcription activity declines with increasing numbers of CA dinucleotides of a highly polymorphic CA repeat in the first intron of the epidermal growth factor receptor gene. In vivo data from cultured cell lines support these findings, although other regulation mechanisms can compensate this effect. In addition, we showed that RNA elongation terminates at a site closely downstream of the simple sequence repeat (SSR) and that there are two separate major transcription start sites. Model calculations for the helical DNA conformation revealed a high bendability in the EGFR polymorphic region, especially if the CA stretch is extended. These data suggest that the CA-SSR can act like a joint, bringing the promoter in proximity to a putative repressor protein bound downstream of the CA-SSR. The data indicate that this polymorphism may be a marker for cancer, linking genetic and epigenetic risk factors. Furthermore, in breast cancer, heterozygous tumors with short CA-SSR showed an elevated EGFR-expression in contrast to tumours with longer CA-SSR. Tumours with loss of heterozygosity in intron 1 of egfr revealed an increased EGFR expression if the longer allele was lost. Moreover, decreased EGFR gene levels were significantly correlated with poor prognosis in breast cancer.
Collapse
Affiliation(s)
- F Gebhardt
- Institute for Clinical Chemistry, University of Münster, Germany
| | | | | |
Collapse
|
11
|
Bielawski K, Klos P, Welnicka-Jaskiewicz M, Tidow N, Brandt B, Falkiewicz B, Zaczek A. An Epidermal Growth Factor Receptor Intron 1 Polymorphism in Healthy Women in Poland. Int J Biol Markers 2018. [DOI: 10.1177/172460080502000306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The frequency of CA allele combinations was assessed in healthy women from Poland and compared to previously published polymorphism data of individuals from Germany and a Caucasian reference group. There were close similarities between these three geographically and ethnically similar populations. By contrast, the distribution of these alleles in European and Asian (Japan) populations proved to be different. There might therefore be major ethnic differences in allelic frequencies of EGFR intron 1 polymorphism. Our results provide new data on EGFR microsatellite instability and may contribute to the understanding of EGFR gene expression regulation. The clinical relevance of these findings warrants further evaluation.
Collapse
Affiliation(s)
- K.P. Bielawski
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk
| | - P. Klos
- Molecular Diagnostics Division, Hospital for Infectious Diseases, Gdansk
- Department of Microbiology, University of Gdansk - Poland
| | | | - N. Tidow
- Institute for Clinical Chemistry, University of Münster, Münster - Germany
| | - B. Brandt
- Institute for Clinical Chemistry, University of Münster, Münster - Germany
| | - B. Falkiewicz
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk
| | - A. Zaczek
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk
- Department of Oncology and Radiotherapy, Medical University of Gdansk
| |
Collapse
|
12
|
El-Bendary M, Neamatallah M, Elalfy H, Besheer T, El-Setouhy M, Kasim N, Abou El-Khier NT, Kamel E, Eladl AH, El-Waseef A, Abdel-Aziz AAF, Esmat G. Association of interferon gamma gene polymorphism and susceptibility to hepatitis C virus infection in Egyptian patients: A multicenter, family-based study. JGH OPEN 2017; 1:140-147. [PMID: 30483551 PMCID: PMC6207041 DOI: 10.1002/jgh3.12024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/17/2017] [Accepted: 10/03/2017] [Indexed: 12/17/2022]
Abstract
Background and Aim Polymorphisms in some genes may influence the persistence of hepatitis C virus (HCV) infection, clinical outcome, HCV replication, and liver damage. This study was conducted to investigate the role of the interferon gamma (IFN‐γ) gene at (+874 T/A, −764 G/C, −179 C/A) single‐nucleotide polymorphisms (SNPs) and its receptor (IFN‐γR2) at (rs 2786067 A/C) SNP in the susceptibility of Egyptian families to HCV infection with high‐resolution techniques. Methods In total, 517 Egyptian families, with 2246 subjects, were recruited to this study from the Upper and Lower Egypt governorates and were classified into three groups: 1034 patients with chronic hepatitis C virus, 108 subjects with spontaneous virus clearance (SVC), and 1104 subjects as a healthy control group. All subjects were genotyped for (+874 T/A, rs2430561, −764 G/C, rs2069707, −179 C/A, rs2069709, and rs 27860067, A/C) SNPs of the IFN‐γ gene using the allelic discrimination real‐time polymerase chain reaction technique and were confirmed using sequence‐based typing. Results The carriage of T allele of (+874) IFN‐γ is a risky allele and was significantly higher in chronic hepatitis C more than other two groups (odds ratio [OR]: 2.6646, P < 0.0002). On the other hand, the C allele of (−764, rs2069707) is a protective allele and was higher in SVC than the other two groups (OR: 0.2709, P < 0.0001). However, both (−179 C/A, rs 2069709) and (rs 27860067, A/C) SNPs are not polymorphic enough to be studied in the Egyptian population. Conclusions HCV infection is associated with the T allele of (+874 rs2430561), while SVC of HCV is associated with the C allele of (−764, rs2069707) of the IFN‐γ gene.
Collapse
Affiliation(s)
- Mahmoud El-Bendary
- Tropical Medicine and Hepatology Department, Mansoura Faculty of Medicine Mansoura University Mansoura Egypt
| | - Mustafa Neamatallah
- Medical Biochemistry Department, Mansoura Faculty of Medicine Mansoura University Mansoura Egypt
| | - Hatem Elalfy
- Tropical Medicine and Hepatology Department, Mansoura Faculty of Medicine Mansoura University Mansoura Egypt
| | - Tarek Besheer
- Tropical Medicine and Hepatology Department, Mansoura Faculty of Medicine Mansoura University Mansoura Egypt
| | - Maged El-Setouhy
- Department of Community, Environmental and Occupational Medicine, Ain-Shams Faculty of Medicine Ain-Shams University Cairo Egypt.,Substance Abuse Research Center (SARC) Jazan University Jazan Kingdom of Saudi Arabia
| | - Nihal Kasim
- Biochemistry Department, Faculty of Science Mansoura University Mansoura Egypt
| | - Noha T Abou El-Khier
- Medical Microbiology and Immunology Department, Faculty of Medicine Mansoura University Mansoura Egypt
| | - Emily Kamel
- Public Health and Preventive Medicine Department, Mansoura Faculty of Medicine Mansoura University Mansoura Egypt
| | - Abdel-Hamid Eladl
- Internal Medicine Department, Alazhar Faculty of Medicine Assiut University Assiut Egypt
| | - Ahmad El-Waseef
- Biochemistry Department, Faculty of Science Mansoura University Mansoura Egypt
| | | | - Gamal Esmat
- Tropical Medicine and Hepatology Department, Cairo Faculty of Medicine Cairo University Giza Egypt
| |
Collapse
|
13
|
Yang X, Hondur G, Tezel G. Antioxidant Treatment Limits Neuroinflammation in Experimental Glaucoma. Invest Ophthalmol Vis Sci 2016; 57:2344-54. [PMID: 27127934 PMCID: PMC4855827 DOI: 10.1167/iovs.16-19153] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Purpose Besides primary neurotoxicity, oxidative stress may compromise the glial immune regulation and shift the immune homeostasis toward neurodegenerative inflammation in glaucoma. We tested this hypothesis through the analysis of neuroinflammatory and neurodegenerative outcomes in mouse glaucoma using two experimental paradigms of decreased or increased oxidative stress. Methods The first experimental paradigm tested the effects of Tempol, a multifunctional antioxidant, given through osmotic mini-pumps for drug delivery by constant infusion. Following a 6-week treatment period after microbead/viscoelastic injection-induced ocular hypertension, retina and optic nerve samples were analyzed for markers of oxidative stress and cytokine profiles using specific bioassays. We also analyzed a redox-sensitive transcriptional regulator of neuroinflammation, namely NF-κB. The second paradigm included a similar analysis of the effects of overloaded oxidative stress on retina and optic nerve inflammation in mice knockout for a major antioxidant enzyme (SOD1−/−). Results Increased antioxidant capacity and decreased protein carbonyls and HNE adducts with Tempol treatment verified the drug delivery and biological function. Among a range of cytokines measured, proinflammatory cytokines, including IL-1, IL-2, IFN-γ, and TNF-α, exhibited more than 2-fold decreased titers in Tempol-treated ocular hypertensive eyes. Antioxidant treatment also resulted in a prominent decrease in NF-κB activation in the ocular hypertensive retina and optic nerve. Although pharmacological treatment limiting the oxidative stress resulted in decreased neuroinflammation, ocular hypertension–induced neuroinflammatory responses were increased in SOD1−/− mice with defective antioxidant response. Conclusions These findings support the oxidative stress–related mechanisms of neuroinflammation and the potential of antioxidant treatment as an immunomodulation strategy for neuroprotection in glaucoma.
Collapse
|
14
|
Pleiotropic Effects of Levofloxacin, Fluoroquinolone Antibiotics, against Influenza Virus-Induced Lung Injury. PLoS One 2015; 10:e0130248. [PMID: 26086073 PMCID: PMC4473075 DOI: 10.1371/journal.pone.0130248] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 05/19/2015] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) and nitric oxide (NO) are major pathogenic molecules produced during viral lung infections, including influenza. While fluoroquinolones are widely used as antimicrobial agents for treating a variety of bacterial infections, including secondary infections associated with the influenza virus, it has been reported that they also function as anti-oxidants against ROS and as a NO regulator. Therefore, we hypothesized that levofloxacin (LVFX), one of the most frequently used fluoroquinolone derivatives, may attenuate pulmonary injuries associated with influenza virus infections by inhibiting the production of ROS species such as hydroxyl radicals and neutrophil-derived NO that is produced during an influenza viral infection. The therapeutic impact of LVFX was examined in a PR8 (H1N1) influenza virus-induced lung injury mouse model. ESR spin-trapping experiments indicated that LVFX showed scavenging activity against neutrophil-derived hydroxyl radicals. LVFX markedly improved the survival rate of mice that were infected with the influenza virus in a dose-dependent manner. In addition, the LVFX treatment resulted in a dose-dependent decrease in the level of 8-hydroxy-2'-deoxyguanosine (a marker of oxidative stress) and nitrotyrosine (a nitrative marker) in the lungs of virus-infected mice, and the nitrite/nitrate ratio (NO metabolites) and IFN-γ in BALF. These results indicate that LVFX may be of substantial benefit in the treatment of various acute inflammatory disorders such as influenza virus-induced pneumonia, by inhibiting inflammatory cell responses and suppressing the overproduction of NO in the lungs.
Collapse
|
15
|
Barnes SE, Wang Y, Chen L, Molinero LL, Gajewski TF, Evaristo C, Alegre ML. T cell-NF-κB activation is required for tumor control in vivo. J Immunother Cancer 2015; 3:1. [PMID: 25648675 PMCID: PMC4308877 DOI: 10.1186/s40425-014-0045-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/03/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND T cells have the capacity to eliminate tumors but the signaling pathways by which they do so are incompletely understood. T cell priming requires activation of the transcription factors AP-1, NFAT and NF-κB downstream of the TCR, but whether activation of T cell-NF-κB in vivo is required for tumor control has not been addressed. In humans and mice with progressively growing tumors, the activity of T cell-intrinsic NF-κB is often reduced. However, it is not clear if this is causal for an inability to reject transformed cells, or if it is a consequence of tumor growth. T cell-NF-κB is important for T cell survival and effector differentiation and plays an important role in enabling T cells to reject cardiac and islet allografts, suggesting the possibility that it may also be required for tumor elimination. In this study, we tested whether normal T cell-NF-κB activation is necessary for the rejection of tumors whose growth is normally controlled by the immune system. METHODS Mice with genetically impaired T cell-NF-κB activity were subcutaneously injected with MC57-SIY tumor cells. Tumor growth was measured over time, and the anti-tumor immune response was evaluated using flow cytometry and cytokine detection assays. RESULTS Mice with impaired T cell-NF-κB activity were unable to reject tumors that were otherwise eliminated by wildtype mice, despite equal accumulation of tumor-reactive T cells. In addition, specific impairment of NF-κB signaling downstream of the TCR was sufficient to prevent tumor rejection. Tumor antigen-specific T cell-IFN-γ and TNF-α production, as well as cytotoxic ability, were all reduced in mice with impaired T cell-NF-κB, suggesting an important role for this transcription factor in the effector differentiation of tumor-specific effector T cells. CONCLUSIONS Our results have identified the NF-κB pathway as an important signaling axis in T cells, required for the elimination of growing tumors in vivo. Maintaining or enhancing T cell-NF-κB activity may be a promising avenue for anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Sarah E Barnes
- />Department of Medicine, The University of Chicago, 924 E. 57th St. JFK-R312, Chicago, IL 60637 USA
| | - Ying Wang
- />Department of Medicine, The University of Chicago, 924 E. 57th St. JFK-R312, Chicago, IL 60637 USA
| | - Luqiu Chen
- />Department of Medicine, The University of Chicago, 924 E. 57th St. JFK-R312, Chicago, IL 60637 USA
| | - Luciana L Molinero
- />Genentech, Inc., 1 DNA Way MS: 245c, South San Francisco, CA 94080 USA
| | - Thomas F Gajewski
- />Department of Medicine, The University of Chicago, 924 E. 57th St. JFK-R312, Chicago, IL 60637 USA
- />Department of Pathology, The University of Chicago, 927 E. 57th St, Chicago, IL 60637 USA
| | - Cesar Evaristo
- />Department of Medicine, The University of Chicago, 924 E. 57th St. JFK-R312, Chicago, IL 60637 USA
| | - Maria-Luisa Alegre
- />Department of Medicine, The University of Chicago, 924 E. 57th St. JFK-R312, Chicago, IL 60637 USA
| |
Collapse
|
16
|
Silva GAV, Santos MP, Mota-Passos I, Boechat AL, Malheiro A, Naveca FG, de Paula L. IFN-γ +875 microsatellite polymorphism as a potential protection marker for leprosy patients from Amazonas state, Brazil. Cytokine 2012; 60:493-7. [PMID: 22683002 DOI: 10.1016/j.cyto.2012.04.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 04/26/2012] [Accepted: 04/29/2012] [Indexed: 12/18/2022]
Abstract
Polymorphisms present in the first intron of IFN-γ may have an important role in the regulation of the immune response, which could have functional consequences for gene transcription. Leprosy patients are characterized by different immune responses in different clinical forms. We investigated a possible association of the +874 polymorphism and CA repeats present in the first intron of IFN-γ with susceptibility to leprosy and with the manifestation of the different clinical forms. Nucleotide sequencing was performed with samples from 108 leprosy patients and 113 controls subjects, as well as immunophenotyping of CD(4)(+), CD(8)(+) and CD(69)(+) T cells by flow cytometry. The data showed that there were no significant differences between patients and control subjects, as well as according classification of Ridley-Jopling. However, the A/A genotype was significantly increased in paucibacillary patients (p=0.028) and the microsatellite encoding 16 CA repeats were significantly associated with paucibacillary compared to multibacillary patients (p=0.019). Individuals homozygous for the +874 A allele, the mean level of CD(4)(+) and CD(69)(+) T cells was higher. Our data suggest that polymorphisms present in the first intron of IFN-γ are not associated with susceptibility to leprosy, nevertheless, the +874 polymorphism and the CA repeats number encoded in IFN-γ gene may be related to a higher cellular immune response in patients and are consistently more frequently detected in PB patients.
Collapse
Affiliation(s)
- G A V Silva
- Programa de Pós-graduação em Imunologia Básica e Aplicada - PPGIBA, Universidade Federal do Amazonas - UFAM, Brazil
| | | | | | | | | | | | | |
Collapse
|
17
|
Romio M, Reinbeck B, Bongardt S, Hüls S, Burghoff S, Schrader J. Extracellular purine metabolism and signaling of CD73-derived adenosine in murine Treg and Teff cells. Am J Physiol Cell Physiol 2011; 301:C530-9. [PMID: 21593451 DOI: 10.1152/ajpcell.00385.2010] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CD73-derived adenosine acts as potent inhibitor of inflammation, and regulatory T cells (Treg) have been shown to express CD73 as a novel marker. This study explored the role of endogenously formed adenosine in modulating NF-κB activity and cytokine/chemokine release from murine Treg and effector T cells (Teff) including key enzymes/purinergic receptors of extracellular ATP catabolism. Stimulating murine splenocytes and CD4(+) T cells with anti-CD3/anti-CD28 significantly upregulated activated NF-κB in CD73(-/-) T cells (wild type: 4.36 ± 0.21; CD73(-/-): 6.58 ± 0.75; n = 4; P = 0.029). This was associated with an augmented release of proinflammatory cytokines IL-2, TNF-α, and IFN-γ. Similar changes were observed with the CD73 inhibitor APCP (50 μM) on NF-κB and IFN-γ in wild-type CD4(+) T-cells. Treatment of stimulated CD4(+) T-cells with adenosine (25 μM) potently reduced IFN-γ release which is mediated by adenosine A2a receptors (A2aR). AMP (50 μM) also reduced cytokine release which was not inhibited by APCP. In Teff, A2aR activation (CGS21680) potently inhibited the release of IL-1, IL-2, IL-3, IL-4, IL-12, IL-13, IFN-γ, TNF-α, granulocyte-macrophage colony-stimulating factor (GM-CSF), CCL3, and CCL4. However, in Treg, CGS21680 did not alter cytokine/chemokine release. In summary, CD73-derived adenosine tonically inhibits active NF-κB in CD4(+) T-cells, thereby modulating the release of a broad spectrum of proinflammatory cytokines and chemokines. Downregulation of P2X7 and upregulation of CD73 in Treg after antigenic stimulation may be an important mechanism to maintain the ability of Treg to generate immunosuppressive adenosine.
Collapse
Affiliation(s)
- Michael Romio
- Department of Cardiovascular Physiology, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Balasubramani A, Mukasa R, Hatton RD, Weaver CT. Regulation of the Ifng locus in the context of T-lineage specification and plasticity. Immunol Rev 2011; 238:216-32. [PMID: 20969595 DOI: 10.1111/j.1600-065x.2010.00961.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Study of the development of distinct CD4(+) T-cell subsets from naive precursors continues to provide excellent opportunities for dissection of mechanisms that control lineage-specific gene expression or repression. Whereas it had been thought that the induction of transcription networks that control T-lineage commitment were highly stable, reinforced by epigenetic processes that confer heritability of functional phenotypes by the progeny of mature T cells, recent findings support a more dynamic view of T-lineage commitment. Here, we highlight advances in the mapping and functional characterization of cis elements in the Ifng locus that have provided new insights into the control of the chromatin structure and transcriptional activity of this signature T-helper 1 cell gene. We also examine epigenetic features of the Ifng locus that have evolved to enable its reprogramming for expression by other T-cell subsets, particularly T-helper 17 cells, and contrast features of the Ifng locus with those of the Il17a-Il17f locus, which appears less promiscuous.
Collapse
Affiliation(s)
- Anand Balasubramani
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | |
Collapse
|
19
|
Abstract
Interferon-γ (IFN-γ) production by natural killer (NK) cells and cytotoxic lymphocytes is a key component of innate and adaptive immune responses. Because inhibitor of κB-ζ (IκBζ), a Toll-like receptor (TLR)/interleukin-1 receptor (IL-1R) inducible transcription factor, regulates IFN-γ production in KG-1 cells, we tested IκBζ's role in the classic lymphocyte pathway of IL-12/IL-18-induced IFN-γ. Upon stimulation with IL-12/IL-18, monocyte-depleted human peripheral blood lymphocytes expressed the 79-kDa form of IκBζ and released IFN-γ. CD56(+) NK cells were shown to be the IκBζ-producing lymphocyte subpopulation, which also released abundant IFN-γ in response to IL-12/IL-18. Importantly, IκBζ was undetectable in CD56(-) lymphocytes where IFN-γ release was 10-fold lower. In addition, small interfering RNA knockdown of IκBζ suppressed IFN-γ expression in CD56(+) cells. The association of IκBζ with the IFN-γ promoter was documented by chromatin immunoprecipitation. IFN-γ promoter activity from IκBζ overexpression was confirmed by luciferase reporter assay. Finally, IκBζ coprecipitated with p65 and p50 NF-κB in NK cells in response to IL-12/IL-18, suggesting that IκBζ's effects on IFN-γ promoter activity are coregulated by NF-κB. These results suggest that IκBζ functions as an important regulator of IFN-γ in human NK cells, further expanding the class of IκBζ-modulated genes.
Collapse
|
20
|
Darsigny M, St-Jean S, Boudreau F. Cux1 transcription factor is induced in inflammatory bowel disease and protects against experimental colitis. Inflamm Bowel Dis 2010; 16:1739-50. [PMID: 20848487 DOI: 10.1002/ibd.21274] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Cux1 is a ubiquitous transcriptional factor that has been associated with cell proliferation, migration, invasion, and differentiation. Cux1 is an effector of the transforming growth factor beta (TGFβ) pathway, PAR(2) receptor signaling, and cellular migration, mechanisms intimately related to inflammatory bowel diseases (IBD). METHODS CD1 mice treated with dextran sulfate sodium (DSS) in drinking water and cultured intestinal epithelial cells were used to determine Cux1 expression under inflammatory conditions. A commercial cDNA library was used to monitor CUX1 expression in IBD patients. The Cux1(ΔHD/ΔHD) hypomorphic mouse model (Cux1ΔHD) treated with DSS in drinking water was used and the disease severity assessed. RESULTS Cux1 expression increased in cultured intestinal epithelial cells stimulated with tumor necrosis factor alpha (TNFα), in the mouse intestinal epithelium during experimental colitis and in human IBD patient samples. DSS-induced colitis in Cux1ΔHD mice was more severe according to clinical observations such as weight loss, colon length, and rectal bleeding. Histological observations confirmed an increase of IBD-related morphological changes including ulceration and mucosal infiltration of leukocytes in Cux1ΔHD mice. An increased number of pSer(276)-RelA-positive cells and higher expression levels of proinflammatory cytokines were also measured in the colon of Cux1ΔHD diseased animals. Elevated levels of Cxcl1 were measured before and after DSS-treatment and a greater neutrophilic infiltration was quantified in DSS-treated Cux1ΔHD mice. Finally, mucosal healing was significantly impaired in Cux1ΔHD mice during recovery from DSS treatment. CONCLUSIONS CUX1 is increased in response to inflammatory stress and its nuclear expression is crucial to protect against DSS-induced colitis and subsequent mucosal healing.
Collapse
Affiliation(s)
- Mathieu Darsigny
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | |
Collapse
|
21
|
Kallel I, Kharrat N, Al-fadhly S, Rebai M, Khabir A, Boudawara TS, Rebaï A. HER2 polymorphisms and breast cancer in Tunisian women. Genet Test Mol Biomarkers 2010; 14:29-35. [PMID: 19929405 DOI: 10.1089/gtmb.2009.0069] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
HER2 has been thought to play a critical role in both breast cancer development and progression. Any functional polymorphisms can potentially affect breast cancer risk as well as cancer phenotype and outcome. In our study, we analyzed three polymorphisms in the HER2 gene: the single-nucleotide polymorphism (SNP) HER2 Ile(655)Val as well as another SNP (rs903506) close to it and a new screened dinucleotide repeat H(AC)I4 in intron 4, in a sample of 148 cases and 290 controls from the Tunisian population and investigated their association with breast cancer risk. For the HER2 Ile(655)Val, we found similar allele frequencies between cases and controls (frequency of I allele was 0.92 and 0.91, respectively). The same was observed for the noncoding SNP (rs903506). These two SNPs also showed no association with any clinical parameters, except the association of HER2 Ile(655)Val with tumor size (p = 0.002). But, a significant association was found between the short tandem repeat (STR) [H(AC)I4] and breast cancer risk at both genotypic and allelic levels (p = 0.0004 and p = 0.0001, respectively). Multivariate analysis with binary logistic regression of disease status on genotypes of the three polymorphisms confirmed the association of STR with breast cancer risk (p = 0.016). Therefore, this STR seems to be a promising biomarker in breast cancer and deserves further investigation.
Collapse
Affiliation(s)
- Imen Kallel
- Bioinformatics and Signalling Group, Centre de Biotechnologie de Sfax, Sfax, Tunisia
| | | | | | | | | | | | | |
Collapse
|
22
|
Reuter S, Charlet J, Juncker T, Teiten MH, Dicato M, Diederich M. Effect of curcumin on nuclear factor kappaB signaling pathways in human chronic myelogenous K562 leukemia cells. Ann N Y Acad Sci 2009; 1171:436-47. [PMID: 19723087 DOI: 10.1111/j.1749-6632.2009.04731.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Curcumin, a natural product isolated from the plant Curcuma longa, has a diverse range of molecular targets that influence numerous biochemical and molecular cascades. Curcumin has been shown to inhibit nuclear factor kappaB (NF-kappaB) activation at several steps in the NF-kappaB signaling pathways and thereby controls numerous NF-kappaB-regulated genes involved in various diseases. In the present study, we investigated the effect of curcumin pretreatment on 84 tumor necrosis factor-alpha (TNF-alpha)-activated genes of NF-kappaB pathways in K562 cells, using a real-time PCR array. Our results show that transcription of 29 NF-kappaB-related mRNAs was significantly downregulated (CARD4, CCL2, CD40, CSF2, F2R, ICAM1, IKBKB, IKBKE, IL1A, IL1B, IL6, IL8, IRAK2, MALT1, MAP3K1, MYD88, NFKB1, NFKB2, NFKBIA, PPM1A, RAF1, RELB, STAT1, TLR3, TNF, TNFalphaIP3, TNFSF10, and TICAM1), whereas 10 mRNAs were induced (AGT, CASP1, CSF3, FOS, IFNG, IL10, TICAM2, TLR2, TLR9, and TNFRSF7). Western blot analysis of CD40, NFKB1 (p50), RELB, NFKBIA (IkappaBalpha), and IL10 as well as an IL8 secretion assay confirmed our results. Taken together, we show that curcumin regulates an impressive number of NF-kappaB genes within the different NF-kappaB signaling pathways.
Collapse
Affiliation(s)
- Simone Reuter
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg.
| | | | | | | | | | | |
Collapse
|
23
|
BCL11B enhances TCR/CD28-triggered NF-kappaB activation through up-regulation of Cot kinase gene expression in T-lymphocytes. Biochem J 2009; 417:457-66. [PMID: 18831712 DOI: 10.1042/bj20080925] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BCL11B is a transcriptional regulator with an important role in T-cell development and leukaemogenesis. We demonstrated recently that BCL11B controls expression from the IL (interleukin)-2 promoter through direct binding to the US1 (upstream site 1). In the present study, we provide evidence that BCL11B also participates in the activation of IL-2 gene expression by enhancing NF-kappaB (nuclear factor kappaB) activity in the context of TCR (T-cell receptor)/CD28-triggered T-cell activation. Enhanced NF-kappaB activation is not a consequence of BCL11B binding to the NF-kappaB response elements or association with the NF-kappaB-DNA complexes, but rather the result of higher translocation of NF-kappaB to the nucleus caused by enhanced degradation of IkappaB (inhibitor of NF-kappaB). The enhanced IkappaB degradation in cells with increased levels of BCL11B was specific for T-cells activated through the TCR, but not for cells activated through TNFalpha (tumour necrosis factor alpha) or UV light, and was caused by increased activity of IkappaB kinase, as indicated by its increase in phosphorylation. As BCL11B is a transcription factor, we investigated whether the expression of genes upstream of IkappaB kinase in the TCR/CD28 signalling pathway was affected by increased BCL11B expression, and found that Cot (cancer Osaka thyroid oncogene) kinase mRNA levels were elevated. Cot kinase is known to promote enhanced IkappaB kinase activity, which results in the phosphorylation and degradation of IkappaB and activation of NF-kappaB. The implied involvement of Cot kinase in BCL11B-mediated NF-kappaB activation in response to TCR activation is supported by the fact that a Cot kinase dominant-negative mutant or Cot kinase siRNA (small interfering RNA) knockdown blocked BCL11B-mediated NF-kappaB activation. In support of our observations, in the present study we report that BCL11B enhances the expression of several other NF-kappaB target genes, in addition to IL-2. In addition, we provide evidence that BCL11B associates with intron 2 of the Cot kinase gene to regulate its expression.
Collapse
|
24
|
Weissinger EM, Dickinson AM. Immunogenomics and proteomics in hematopoietic stem cell transplantation: predicting post-hematopoietic stem cell transplant complications. Cancer Treat Res 2009; 144:95-129. [PMID: 19779872 DOI: 10.1007/978-0-387-78580-6_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Affiliation(s)
- Eva M Weissinger
- Hannover Medical School, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Carl-Neuberg-Str.1, 30625 Hannover, Germany.
| | | |
Collapse
|
25
|
Kharrat N, Al'fadhli S, RebaÏ A. Screening and Validation of Dinucleotide Repeats in Intron 1 of the Human EGFR Gene and its Paralog in the HER2 Gene. J Recept Signal Transduct Res 2008; 28:475-83. [DOI: 10.1080/10799890802439958] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
26
|
Samten B, Townsend JC, Weis SE, Bhoumik A, Klucar P, Shams H, Barnes PF. CREB, ATF, and AP-1 transcription factors regulate IFN-gamma secretion by human T cells in response to mycobacterial antigen. THE JOURNAL OF IMMUNOLOGY 2008; 181:2056-64. [PMID: 18641343 DOI: 10.4049/jimmunol.181.3.2056] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IFN-gamma production by T cells is pivotal for defense against many pathogens, and the proximal promoter of IFN-gamma, -73 to -48 bp upstream of the transcription start site, is essential for its expression. However, transcriptional regulation mechanisms through this promoter in primary human cells remain unclear. We studied the effects of cAMP response element binding protein/activating transcription factor (CREB/ATF) and AP-1 transcription factors on the proximal promoter of IFN-gamma in human T cells stimulated with Mycobacterium tuberculosis. Using EMSA, supershift assays, and promoter pulldown assays, we demonstrated that CREB, ATF-2, and c-Jun, but not cyclic AMP response element modulator, ATF-1, or c-Fos, bind to the proximal promoter of IFN-gamma upon stimulation, and coimmunoprecipitation indicated the possibility of interaction among these transcription factors. Chromatin immunoprecipitation confirmed the recruitment of these transcription factors to the IFN-gamma proximal promoter in live Ag-activated T cells. Inhibition of ATF-2 activity in T cells with a dominant-negative ATF-2 peptide or with small interfering RNA markedly reduced the expression of IFN-gamma and decreased the expression of CREB and c-Jun. These findings suggest that CREB, ATF-2, and c-Jun are recruited to the IFN-gamma proximal promoter and that they up-regulate IFN-gamma transcription in response to microbial Ag. Additionally, ATF-2 controls expression of CREB and c-Jun during T cell activation.
Collapse
Affiliation(s)
- Buka Samten
- Center for Pulmonary and Infectious Disease Control, University of Texas Health Center, Tyler, TX 75708, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Miah SMS, Hughes TL, Campbell KS. KIR2DL4 differentially signals downstream functions in human NK cells through distinct structural modules. THE JOURNAL OF IMMUNOLOGY 2008; 180:2922-32. [PMID: 18292514 DOI: 10.4049/jimmunol.180.5.2922] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
KIR2DL4 (2DL4) is a member of the killer cell Ig-like receptor (KIR) family in human NK cells. It can stimulate potent cytokine production and weak cytolytic activity in resting NK cells, but the mechanism for 2DL4-mediated signaling remains unclear. In this study we characterized the signaling pathways stimulated by 2DL4 engagement. In a human NK-like cell line, KHYG-1, cross-linking of 2DL4 activated MAPKs including JNK, ERK, and p38. Furthermore, 2DL4 cross-linking resulted in phosphorylation of IkappaB kinase beta (IKKbeta) and the phosphorylation and degradation of IkappaBalpha, which indicate activation of the classical NF-kappaB pathway. Engagement of 2DL4 was also shown to activate the transcription and translation of a variety of cytokine genes, including TNF-alpha, IFN-gamma, MIP1alpha, MIP1beta, and IL-8. Pharmacological inhibitors of JNK, MEK1/2 and p38, blocked IFN-gamma, IL-8, and MIP1alpha production, suggesting that MAPKs are regulating 2DL4-mediated cytokine production in a nonredundant manner. Activation of both p38 and ERK appear to be upstream of the stimulation of NF-kappaB. Mutation of a transmembrane arginine in 2DL4 to glycine (R/G mutant) abrogated FcepsilonRI-gamma association, as well as receptor-mediated cytolytic activity and calcium responses. Surprisingly, the R/G mutant still activated MAPKs and the NF-kappaB pathway and selectively stimulated the production of MIP1alpha, but not that of IFN-gamma or IL-8. In conclusion, we provide evidence that the activating functions of 2DL4 can be compartmentalized into two distinct structural modules: 1) through transmembrane association with FcepsilonRI-gamma; and 2) through another receptor domain independent of the transmembrane arginine.
Collapse
Affiliation(s)
- S M Shahjahan Miah
- Fox Chase Cancer Center, Division of Basic Science, Institute for Cancer Research, Philadelphia, PA 19111, USA
| | | | | |
Collapse
|
28
|
NF-kappaB activation by the viral oncoprotein StpC enhances IFN-gamma production in T cells. Immunol Cell Biol 2008; 86:622-30. [PMID: 18560378 DOI: 10.1038/icb.2008.43] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Interferon-gamma (IFN-gamma) is an essential regulator of innate and adaptive immune responses and a hallmark of the Th1 T-cell subset. It is produced at high levels by human T lymphocytes upon transformation with Herpesvirus saimiri, which depends on the expression of the viral oncoproteins saimiri transformation-associated protein of subgroup C (StpC) and tyrosine kinase-interacting protein (Tip). Here, we show that IFN-gamma production was induced by Tip in Jurkat T cells. StpC by itself did not affect IFN-gamma expression, but enhanced the effect of Tip. Our results substantiated the findings that StpC induces NF-kappaB activation and demonstrated that other transcription factors, including NFAT, AP-1 and serum response element regulators, were not activated by StpC in unstimulated T cells. Studies using StpC mutants deficient in NF-kappaB activation, dominant negative IkappaBalpha and constitutively active IKK2, established the importance of NF-kappaB in StpC-mediated upregulation of IFN-gamma production. These observations suggest that NF-kappaB induction by StpC contributes to the Th1-like phenotype of virus-transformed human T cells.
Collapse
|
29
|
Abstract
Interferon-gamma (IFN-gamma) is crucial for immunity against intracellular pathogens and for tumor control. However, aberrant IFN-gamma expression has been associated with a number of autoinflammatory and autoimmune diseases. This cytokine is produced predominantly by natural killer (NK) and natural killer T (NKT) cells as part of the innate immune response, and by Th1 CD4 and CD8 cytotoxic T lymphocyte (CTL) effector T cells once antigen-specific immunity develops. Herein, we briefly review the functions of IFN-gamma, the cells that produce it, the cell extrinsic signals that induce its production and influence the differentiation of naïve T cells into IFN-gamma-producing effector T cells, and the signaling pathways and transcription factors that facilitate, induce, or repress production of this cytokine. We then review and discuss recent insights regarding the molecular regulation of IFN-gamma, focusing on work that has led to the identification and characterization of distal regulatory elements and epigenetic modifications with the IFN-gamma locus (Ifng) that govern its expression. The epigenetic modifications and three-dimensional structure of the Ifng locus in naive CD4 T cells, and the modifications they undergo as these cells differentiate into effector T cells, suggest a model whereby the chromatin architecture of Ifng is poised to facilitate either rapid opening or silencing during Th1 or Th2 differentiation, respectively.
Collapse
|
30
|
dela Paz NG, Simeonidis S, Leo C, Rose DW, Collins T. Regulation of NF-kappaB-dependent gene expression by the POU domain transcription factor Oct-1. J Biol Chem 2007; 282:8424-34. [PMID: 17192276 DOI: 10.1074/jbc.m606923200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Maintenance of the cells of the vessel wall in a quiescent state is an important aspect of normal vascular physiology. Transcriptional repressors are widely believed to regulate this process, yet the exact factors involved and the mechanism of repression are not known. Here, we report that the POU domain transcription factor Oct-1 represses the expression of E-selectin and vascular cell adhesion molecule (VCAM-1), two cytokine-inducible, NF-kappaB-dependent endothelial-leukocyte adhesion molecules that participate in the leukocyte recruitment phase of the inflammatory response. Co-transfection and microinjection studies demonstrate that Oct-1 blocks tumor necrosis factor alpha-stimulated E-selectin and VCAM-1 expression. Gene expression arrays indicate that control of tumor necrosis factor alpha-induced, NF-kappaB-dependent gene expression by Oct-1 is promoter-specific. A DNA-binding mutant of Oct-1 represses NF-kappaB-dependent reporter gene expression. Biochemically, Oct-1 interacts with p65, suggesting that Oct-1 is involved in the regulation of NF-kappaB transactivation function. NF-kappaB-dependent gene expression is more pronounced in Oct-1-deficient than in wild-type murine embryonic fibroblasts, and reintroduction of human Oct-1 abolishes these differences. Finally, the cytokine interleukin-6 induces Oct-1 gene expression, providing a biologically relevant means by which NF-kappaB-dependent gene expression can be selectively reverted by Oct-1 to quiescent levels.
Collapse
Affiliation(s)
- Nathaniel G dela Paz
- Molecular Pathology Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California 92093-0673, and Department of Pathology, Children's Hospital, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
31
|
Huang Y, Yang H, Borg BB, Su X, Rhodes SL, Yang K, Tong X, Tang G, Howell CD, Rosen HR, Thio CL, Thomas DL, Alter HJ, Sapp RK, Liang TJ. A functional SNP of interferon-gamma gene is important for interferon-alpha-induced and spontaneous recovery from hepatitis C virus infection. Proc Natl Acad Sci U S A 2007; 104:985-90. [PMID: 17215375 PMCID: PMC1783426 DOI: 10.1073/pnas.0609954104] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Indexed: 12/17/2022] Open
Abstract
Cytokine polymorphisms are associated with disease outcome and interferon (IFN) treatment response in hepatitis C virus (HCV) infection. We genotyped eight SNPs spanning the entire IFN-gamma gene in two cohorts and assessed the association between those polymorphisms and treatment response or spontaneous viral clearance. The first cohort was composed of 284 chronically HCV-infected patients who had received IFN-alpha-based therapy and the second was 251 i.v. drug users who had either spontaneously cleared HCV or become chronically infected. A SNP variant located in the proximal IFN-gamma promoter region next to the binding motif of heat shock transcription factor (HSF), -764G, was significantly associated with sustained virological response [P = 0.01, odds ratio (OR) = 2.66 [corrected] (confidence interval 1.3-5.6)[corrected]]. The association was independently significant in multiple logistic regression (P = 0.04) along with race, viral titer, and genotype. This variant was also significantly associated with spontaneous recovery [P = 0.04, OR = 3.51 (1.0-12.5)] in the second cohort. Functional analyses show that the G allele confers a two- to three-fold higher promoter activity and stronger binding affinity to HSF1 than the C allele. Our study suggests that the IFN-gamma promoter SNP -764G/C is functionally important in determining viral clearance and treatment response in HCV-infected patients and may be used as a genetic marker to predict sustained virological response in HCV-infected patients.
Collapse
Affiliation(s)
- Ying Huang
- *Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Huiying Yang
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Brian B. Borg
- *Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Xiaowen Su
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Shannon L. Rhodes
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Kai Yang
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Xiaomei Tong
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - George Tang
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | | | - Hugo R. Rosen
- Division of Gastroenterology/Hepatology, University of Colorado Health Sciences Center, Denver, CO 80262
| | - Chloe L. Thio
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21231; and
| | - David L. Thomas
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21231; and
| | - Harvey J. Alter
- Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, MD 20892
| | - Ronda K. Sapp
- *Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - T. Jake Liang
- *Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
32
|
Garcia CS, Curiel RE, Mwatibo JM, Pestka S, Li H, Espinoza-Delgado I. The antineoplastic agent bryostatin-1 differentially regulates IFN-gamma receptor subunits in monocytic cells: transcriptional and posttranscriptional control of IFN-gamma R2. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2006; 177:2707-16. [PMID: 16888033 DOI: 10.4049/jimmunol.177.4.2707] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bryostatin-1 (Bryo-1) is a potent ligand and modulator of protein kinase C that exerts antineoplastic and immunomodulatory activities both in vitro and in vivo. We have previously reported that Bryo-1 synergized with IFN-gamma to induce NO synthase and NO by macrophages. To determine whether this effect was associated with changes in levels of IFN-gammaR, we investigated the effects of Bryo-1 on the expression and regulation of IFN-gammaR chains in monocytic cells. Northern blot analysis revealed that Bryo-1 treatment of the human monocytic cell lines MonoMac6 and THP-1 and human monocytes enhanced the expression of IFN-gammaR2 mRNA but did not affect IFN-gammaR1 mRNA expression. Bryo-1 increased IFN-gammaR2 mRNA in a dose-dependent manner as early as 3 h posttreatment. Bryo-1-induced up-regulation of IFN-gammaR2 mRNA levels is not dependent on de novo protein synthesis as shown by cell treatment with the protein-synthesis inhibitor cycloheximide. Bryo-1 treatment increased the IFN-gammaR2 mRNA half-life by 2 h. EMSA analysis from Bryo-1-treated MonoMac6 cells showed an increased nuclear protein binding to the NF-kappaB motif present in the 5' flanking region of the human IFN-gammaR2 promoter that was markedly decreased by pretreatment with the NF-kappaB inhibitor SN50. These results show for the first time that Bryo-1 up-regulates IFN-gammaR2 expression in monocytic cells. Given the pivotal role that IFN-gamma exerts on monocyte activation and in the initiation and outcome of the immune response, the induction of IFN-gammaR2 by Bryo-1 has significant implications in immunomodulation and could overcome some of the immune defects observed in cancer patients.
Collapse
Affiliation(s)
- Carmen S Garcia
- Department of Medicine and Stanley S. Scott Cancer Center, Louisiana State University Medical Center, New Orleans, LA 70112, USA
| | | | | | | | | | | |
Collapse
|
33
|
Arora R, Saha A, Malhotra D, Rath P, Kar P, Bamezai R. Promoter and intron-1 region polymorphisms in the IFNG gene in patients with hepatitis E. Int J Immunogenet 2006; 32:207-12. [PMID: 15932627 DOI: 10.1111/j.1744-313x.2005.00512.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Allelic and genotype variations in the promoter region and the dinucleotide (CA)(n) repeat region in intron 1 of the interferon-g (IFNG) gene were analysed by direct sequencing and simple sequence length polymorphism (SSLP), respectively, in patients with acute hepatitis, and the prevalence was compared with that in healthy controls. Our results showed a significant association of heterozygous genotypes (CA)12/(CA)14 and (CA)12/(CA)16 in intron 1 of the IFNG gene in all categories of patients with acute hepatitis, classified on the basis of presence or absence of hepatitis E virus (HEV), in comparison with healthy controls. A novel polymorphism, -288 A-->T [from the translational start site, as per Human Genome Organization (HUGO) nomenclature], in the promoter region of the IFNG gene leading to a loss of the consensus domain for the interferon-stimulated response element (ISRE), as predicted by in silico analysis, was observed in 12.5% of patients with acute HEV infection. However, no significant difference in allele or genotype frequency was observed for the -288 promoter polymorphism, although the heterozygous -288 A/T genotype showed a moderate risk in patients with acute HEV infection alone (P = 0.29, odds ratio = 1.964, confidence interval = 0.46-8.45). The data suggest that the genotype at intron 1 of IFNG might affect susceptibility to acute hepatitis in HEV infection, which warrants further elucidation in a larger sample and also functional studies.
Collapse
Affiliation(s)
- R Arora
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | | | | | | |
Collapse
|
34
|
Yu H, Zhu QR, Gu SQ, Fei LE. Relationship between IFN-γ gene polymorphism and susceptibility to intrauterine HBV infection. World J Gastroenterol 2006; 12:2928-31. [PMID: 16718821 PMCID: PMC4087813 DOI: 10.3748/wjg.v12.i18.2928] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the susceptibility of children to intrauterine HBV infection by studying the relationship between IFN-γ gene polymorphism, including IFN-γ+874A/T single nucleotide polymorphism(SNP) and CA repeat microsatellite polymorphism and intrauterine HBV infection.
METHODS: A TaqMan fluorescence polymerase chain reaction in the IFN-γ+874A/T single nucleotide polymorphism was tested in the intrauterine HBV infection group(group I) and the normal immune children group(group II). Capillary electrophoresis was performed in the above two groups to assay the IFN-γ CA repeat microsatellite polymorphism.
RESULTS: Frequencies of AA, AT and TT genotypes were 67.4%, 19.6% and 13.0% in the intrauterine HBV infection group, and 45.2%, 30.1% and 24.7% in the normal immune children group, respectively. A significant difference was found in the frequency distribution of IFN-γ+874 genotype between the two groups (χ2 = 5.102, P = 0.02389). In the intrauterine HBV infection group the AA genotype was more common than in the normal immune group. Frequency of IFN-γ+874A allele was 77.17% in the intrauterine HBV infection group, and 60.27% in the normal immune children group. In the intrauterine HBV infection group the IFN-γ+874A allele was more common than in normal immune group. A significant difference was found in the frequency distribution between the two groups (χ2 = 7.238, P = 0.02389, OR = 2.228, 95% CI = 1.244-3.992). (CA12)+/(CA12)+ of IFN-γ CA microsatellite polymorphism was 11.90% in the intrauterine HBV infection group and 26.47% in the normal immune children group. A significant difference was found in the frequency distribution between the two groups (χ2 = 5.64, P = 0.0176). Frequency of IFN-γ CA repeat was 25% in the intrauterine HBV infection group and 43.38% in the normal immune children group. The frequency of IFN-γ CA repeat was less in the intrauterine HBV infection group than in normal immune group. A significant difference was found in the frequency distribution between the two groups (χ2 = 7.548, P = 0.0060).
CONCLUSION: There is a relationship between IFN-γ+874A/T SNP and intrauterine HBV infection as well as between IFN-γ CA microsatellite polymorphism and intrauterine HBV infection. IFN-γ gene polymorphism might be important in determining individual’s susceptibility to intrauterine HBV infection.
Collapse
Affiliation(s)
- Hui Yu
- Department of Infectious Disease, Children's Hospital of Fudan University, Shanghai 200032, China.
| | | | | | | |
Collapse
|
35
|
Bogunia-Kubik K, Mlynarczewska A, Jaskula E, Lange A. The presence of IFNG 3/3 genotype in the recipient associates with increased risk for Epstein-Barr virus reactivation after allogeneic haematopoietic stem cell transplantation. Br J Haematol 2006; 132:326-32. [PMID: 16409297 DOI: 10.1111/j.1365-2141.2005.05875.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recent studies have shown that interferon-gamma gene (IFNG) polymorphism constitutes a risk factor for acute and chronic graft-versus-host disease (GvHD) after allogeneic haematopoietic stem cell transplantation (HSCT). Patients with IFNG 3/3 have been found to be more prone to GvHD. This rather puzzling result, as 3/3 genotype is associated with a decreased IFN-gamma production, was investigated in the present study in the context of Epstein-Barr virus (EBV) reactivation. Microsatellite polymorphism (CA)n within the first intron of IFNG gene was assessed in 83 HSCT recipients and related to EBV load. Quantification of EBV copies was performed by a real-time polymerase chain reaction in peripheral blood cells taken from the patients 2-3 months after HSCT. It was found, that patients having IFNG 3/3 genotype presented with a high number of EBV copies (over 10/10(5) blood cells) when compared with the recipients with other IFNG genotypes (10/14 vs. 17/69, P < 0.001). This association was independent of recipient's age, underlying disease, conditioning regimen, type of donor, source of stem cells or pretransplant donor and recipient EBV serological status. Thus IFNG 3/3 genotype, known to be associated with a decreased IFN-gamma production, appeared as a factor significantly contributing to the risk of EBV reactivation after allogeneic HSCT.
Collapse
Affiliation(s)
- Katarzyna Bogunia-Kubik
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | | | | | | |
Collapse
|
36
|
Tato CM, Mason N, Artis D, Shapira S, Caamano JC, Bream JH, Liou HC, Hunter CA. Opposing roles of NF-kappaB family members in the regulation of NK cell proliferation and production of IFN-gamma. Int Immunol 2006; 18:505-13. [PMID: 16481345 PMCID: PMC1800429 DOI: 10.1093/intimm/dxh391] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It is well established that the nuclear factor-kappaB (NF-kappaB) family of transcription factors participates in the regulation of many aspects of innate and adaptive immunity. The majority of these reports have focused on the role of NF-kappaB in accessory cell and T or B cell function, but less is known about the role of NF-kappaB in NK cells. However, several studies have demonstrated that these transcription factors are required for NK cell production of IFN-gamma and proliferation. The studies presented here examine the role of two NF-kappaB members, c-Rel and p50, in NK cell function. In vitro data revealed that in the absence of c-Rel, NK cells have a defect in their ability to secrete IFN-gamma, but remain unaffected in their capacity to proliferate. In contrast, p50-/- NK cells have enhanced proliferative and IFN-gamma responses compared with wild-type NK cells. The latter findings suggest a role for p50 as a negative regulator of NK cell production of IFN-gamma and chromatin immunoprecipitation assays demonstrated the association of p50 with the IFN-gamma promoter of resting NK cells. Consistent with the in vitro studies, in vivo studies with NF-kappaB gene-deficient mice infected with Toxoplasma gondii revealed that the absence of p50 leads to enhanced NK cell proliferation and production of IFN-gamma. Together, these studies define distinct roles for c-Rel and p50 in the function of NK cells.
Collapse
Affiliation(s)
- Cristina M Tato
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104-6008, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Natividad A, Wilson J, Koch O, Holland MJ, Rockett K, Faal N, Jallow O, Joof HM, Burton MJ, Alexander NDE, Kwiatkowski DP, Mabey DCW, Bailey RL. Risk of trachomatous scarring and trichiasis in Gambians varies with SNP haplotypes at the interferon-gamma and interleukin-10 loci. Genes Immun 2005; 6:332-40. [PMID: 15789056 DOI: 10.1038/sj.gene.6364182] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Experimental evidence implicates interferon gamma (IFNgamma) in protection from and resolution of chlamydial infection. Conversely, interleukin 10 (IL10) is associated with susceptibility and persistence of infection and pathology. We studied genetic variation within the IL10 and IFNgamma loci in relation to the risk of developing severe complications of human ocular Chlamydia trachomatis infection. A total of 651 Gambian subjects with scarring trachoma, of whom 307 also had potentially blinding trichiasis and pair-matched controls with normal eyelids, were screened for associations between single-nucleotide polymorphisms (SNPs), SNP haplotypes and the risk of disease. MassEXTEND (Sequenom) and MALDI-TOF mass spectrometry were used for detection and analysis of SNPs and the programs PHASE and SNPHAP used to infer haplotypes from population genetic data. Multivariate conditional logistic regression analysis identified IL10 and IFNgamma SNP haplotypes associated with increased risk of both trachomatous scarring and trichiasis. SNPs in putative IFNgamma and IL10 regulatory regions lay within the disease-associated haplotypes. The IFNgamma +874A allele, previously linked to lower IFNgamma production, lies in the IFNgamma risk haplotype and was more common among cases than controls, but not significantly so. The promoter IL10-1082G allele, previously associated with high IL10 expression, is in both susceptibility and resistance haplotypes.
Collapse
Affiliation(s)
- A Natividad
- London School of Hygiene and Tropical Medicine, London University, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Mason NJ, Artis D, Hunter CA. New lessons from old pathogens: what parasitic infections have taught us about the role of nuclear factor-kappaB in the regulation of immunity. Immunol Rev 2005; 201:48-56. [PMID: 15361232 DOI: 10.1111/j.0105-2896.2004.00189.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The nuclear factor-kappaB (NF-kappaB) family of transcription factors is activated by many infectious and inflammatory stimuli. This family regulates the expression of multiple genes, whose products include cytokines, chemokines, adhesion molecules, and antiapoptotic factors that are important components of the innate and adaptive immune response. A prominent role of NF-kappaB transcription factors in resistance to a variety of infectious diseases was revealed by studies with mice that lack individual family members. However, little is known about the basis for these effects or about the role of individual family members during a coordinated immune response to infection. Diverse parasites such as Toxoplasma gondii, Leishmania major, and Trichuris muris provide a unique opportunity to understand the role of the NF-kappaB system in the development of innate and adaptive immunity to these infections. The basis for resistance and susceptibility to these parasites is well understood, and studies using these experimental systems have provided unique insights into the role of NF-kappaB in the regulation of T-helper 1 cell (Th1) and Th2 type responses. It has become clear that NF-kappaB family members have cell lineage-specific functions and that their relative importance varies with type of infection as well as route of pathogen entry. Thus, studies with models of parasitic infection have revealed that individual NF-kappaB family members perform distinct, nonoverlapping, and biologically significant functions in the regulation of immunity and inflammation.
Collapse
Affiliation(s)
- Nicola J Mason
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
39
|
Malmgaard L. Induction and regulation of IFNs during viral infections. J Interferon Cytokine Res 2005; 24:439-54. [PMID: 15320958 DOI: 10.1089/1079990041689665] [Citation(s) in RCA: 327] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Interferons (IFN)s are involved in numerous immune interactions during viral infections and contribute to both induction and regulation of innate and adaptive antiviral mechanisms. IFNs play a pivotal rule in the outcome of a viral infection, as demonstrated by the impaired resistance against different viruses in mice deficient for the receptors IFNAR-2 and IFNGR. During viral infections, IFNs are involved in numerous immune interactions as inducers, regulators, and effectors of both innate and adaptive antiviral mechanisms. IFN-alpha/beta is produced rapidly when viral factors, such as envelope glycoproteins, CpG DNA, or dsRNA, interact with cellular pattern-recognition receptors (PRRs), such as mannose receptors, toll-like receptors (TLRs), and cytosolic receptors. These host-virus interactions signal downstream to activate transcription factors needed to achieve expression from IFN-alpha/beta genes. These include IFN regulatory factor-3 (IRF-3), IRF-5, IRF-7, c-Jun/ATF-2, and NF-kappaB. In contrast, IFN-gamma is induced by receptor-mediated stimulation or in response to early produced cytokines, including interleukin-2 (IL-12), IL-18, and IFN-alpha/beta, or by stimulation through T cell receptors (TCRs) or natural killer (NK) cell receptors. IFNs signal through transmembrane receptors, activating mainly Jak-Stat pathways but also other signal transduction pathways. Cytokine and TCR-induced IFN-gamma expression uses distinct signal transduction pathways involving such transcription factors as NFAT, Stats and NF-kappaB. This results in induction and activation of numerous intrinsic antiviral factors, such as RNA-activated protein kinase (PKR), the 2-5A system, Mx proteins, and several apoptotic pathways. In addition, IFNs modulate distinct aspects of both innate and adaptive immunity. Thus, IFN-alpha/beta and IFN-gamma affect activities of macrophages, NK cells, dendritic cells (DC), and T cells by enhancing antigen presentation, cell trafficking, and cell differentiation and expression profiles, ultimately resulting in enhanced antiviral effector functions. This review focuses on the latest findings regarding induction and regulation of IFNs, primarily during the early phase of an antiviral immune response. Both cellular and molecular aspects are discussed from the perspective of host-virus interactions.
Collapse
Affiliation(s)
- Lene Malmgaard
- Department of Medical Microbiology and Immunology, University of Aarhus, 8000 Aarhus C, Denmark.
| |
Collapse
|
40
|
Dieckhoff K, Graf P, Beinhauer B, Schwaerzler C, Carballido JM, Neumann C, Zachmann K, Jung T. Deficient translocation of c-Rel is associated with impaired Th1 cytokine production in T cells from atopic dermatitis patients. Exp Dermatol 2005; 14:17-25. [PMID: 15660915 DOI: 10.1111/j.0906-6705.2005.00241.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Decreased production of T helper type 1 (Th1) cytokines, such as interferon-gamma (IFN-gamma) or interleukin-2 (IL-2), is a hallmark of atopic diseases. While accessory signals from antigen-presenting cells may be missing, T cells themselves may be suppressed in their ability to produce substantial amounts of Th1 cytokines. We show, in this study, that T cell receptor (TCR)-activated T cells from atopic dermatitis (AD) patients proliferate less than control T cells and produce lower amounts of IFN-gamma and IL-2, but comparable amounts of IL-4. Because mice lacking the nuclear factor kappa B (NF-kappaB) transcription factors - p65 or c-Rel - show reduced Th1, but undisturbed Th2 responses, we investigated the role of c-Rel and p65 for Th1 cytokine production in T cells from healthy and severe AD patients. TCR-activated primary T cells from healthy donors treated with c-Rel antisense oligonucleotides produced lower levels of IL-2 and IFN-gamma and proliferated less efficiently than the corresponding control T cells. Moreover, transfection of primary T cells with c-Rel or p65 enhanced proliferation and production of IL-2 and IFN-gamma. Nuclear extracts of activated primary T cells from AD donors bound weakly to NF-kappaB-specific oligonucleotides, compared to extracts from healthy control T cells. Western blotting studies revealed that nuclear, but not cytosolic, extracts from T cells of AD patients lacked significant amounts of c-Rel and p65. T cell clones derived from AD patients failed to sufficiently translocate c-Rel and p65 into the nucleus following activation. Thus, impaired nuclear translocation of c-Rel and p65 may determine an impaired Th1 cytokine response in AD.
Collapse
|
41
|
Aviles DH, Matti Vehaskari V, Manning J, Ochoa AC, Zea AH. Decreased expression of T-cell NF-κB p65 subunit in steroid-resistant nephrotic syndrome. Kidney Int 2004; 66:60-7. [PMID: 15200413 DOI: 10.1111/j.1523-1755.2004.00706.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Although the etiology of childhood nephrotic syndrome is unclear, there is evidence to suggest an important role for T cells in the pathogenesis. Steroid resistance is considered a poor prognostic sign but the mechanism of the resistance is unknown. The study examined the potential role of T-cell nuclear transcription factors in the steroid resistance. METHODS The expression of the nuclear transcription factors activating protein-1 (AP-1) and nuclear factor-kappaB (NF-kappaB) as well as that of lymphokines interleukin (IL)-2, IL-4, and interferon-gamma (IFN-gamma) were compared in T cells obtained from normal subjects, children with steroid-sensitive nephrotic syndrome (SSNS) and children with steroid-resistant nephrotic syndrome (SRNS) before any treatment was given. Changes in expression and binding of the nuclear transcription factors were studied with electrophoretic mobility shift assay (EMSA) and Western blot, whereas mRNA cytokine expression were evaluated by enzyme-linked immunosorbent assay (ELISA)-linked reverse transcription-polymerase chain reaction (RT-PCR). RESULTS A significant decrease of the p65 subunit protein of NF-kappaB but not in p50 was documented by both EMSA (N= 7) and Western blotting (N= 5) in five of five SRNS patients but not in control subjects or SSNS patients; there was a decrease in mRNA expression as shown by ELISA-linked RT-PCR. In contrast, there were no significant differences in AP-1 expression by EMSA. IL-2 mRNA level was higher in T cells from SRNS patients than in T cells from either SSNS or control subjects. IL-4 and IFN-gamma were equally decreased in both groups of patients. CONCLUSION The results show differences in T cells between untreated SSNS and SRNS patients. The decrease of NF-kappaB p65 subunit and up-regulation of IL-2 are potential mechanism of glucocorticoid resistance in SRNS.
Collapse
Affiliation(s)
- Diego H Aviles
- LSU Health Sciences Center Department of Pediatrics and The Tumor Immunology Program, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.
| | | | | | | | | |
Collapse
|
42
|
Mason NJ, Liou HC, Hunter CA. T Cell-Intrinsic Expression of c-Rel Regulates Th1 Cell Responses Essential for Resistance to Toxoplasma gondii. THE JOURNAL OF IMMUNOLOGY 2004; 172:3704-11. [PMID: 15004174 DOI: 10.4049/jimmunol.172.6.3704] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ability of many microbial and inflammatory stimuli to activate members of the Rel/NF-kappaB family of transcription factors is associated with the regulation of innate and adaptive responses required to control infection. Individual family members play distinct roles during different infectious and inflammatory responses. For example, c-Rel is essential for the production of IL-12 in response to LPS, but dispensable for IL-12 production in response to Toxoplasma Ag. To assess the role of c-Rel during immunity to the intracellular pathogen Toxoplasma gondii, wild-type (WT) and c-Rel(-/-) mice were infected with Toxoplasma and the immune response was analyzed. c-Rel(-/-) mice developed severe toxoplasmic encephalitis with increased numbers of parasites compared with WT controls and succumbed to infection within 5-8 wk. Although increased susceptibility of c-Rel(-/-) mice was associated with decreased T cell activation, proliferation, and production of IFN-gamma, these mice were able to generate Th1 effector cells that were present in the brain during chronic infection. In vitro mixing studies using WT and c-Rel(-/-) dendritic cells and WT and c-Rel(-/-) TCR transgenic T cells indicated that c-Rel(-/-) dendritic cells are defective in their ability to stimulate T cell responses. However, when c-Rel(-/-) T cells were transferred into T cell-deficient hosts, early defects in T cell activation, proliferation, and IFN-gamma production persisted, and these mice remained susceptible to infection. Together, these studies indicate that although c-Rel is an important regulator of innate immune responses, it also plays an important role in optimization and maintenance of adaptive T cell responses during infection.
Collapse
Affiliation(s)
- Nicola J Mason
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
43
|
Eivazova ER, Aune TM. Dynamic alterations in the conformation of the Ifng gene region during T helper cell differentiation. Proc Natl Acad Sci U S A 2004; 101:251-6. [PMID: 14691261 PMCID: PMC314171 DOI: 10.1073/pnas.0303919101] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2003] [Accepted: 11/13/2003] [Indexed: 01/14/2023] Open
Abstract
Gene expression and silencing in eukaryotic systems can be controlled by regulatory elements acting over a distance. Here, we analyze chromatin conformation of the 24-kb region of the Ifng gene during CD4(+) T helper (Th) cell differentiation. We find that chromatin within this region is a highly flexible structure that undergoes dynamic changes during the course of transcriptional activation and silencing of the Ifng gene. Each Th subset displays a common core conformation in this gene region and unique features that distinguish neutral and effector Th1 and Th2 lineages. This chromatin configuration brings distal regions into close proximity to the gene. Th1 cells that produce high levels of IFN-gamma display the most open conformation. In contrast, IFN-gamma silent Th2 cells have a tightly closed conformation. Therefore, we postulate that there is a direct structure-function relationship between the spatial organization of the chromatin around the Ifng gene and its transcriptional potential.
Collapse
Affiliation(s)
- Elvira R Eivazova
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
44
|
Ritchie AJ, Yam AOW, Tanabe KM, Rice SA, Cooley MA. Modification of in vivo and in vitro T- and B-cell-mediated immune responses by the Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl)-L-homoserine lactone. Infect Immun 2003; 71:4421-31. [PMID: 12874321 PMCID: PMC165988 DOI: 10.1128/iai.71.8.4421-4431.2003] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
N-3-(oxododecanoyl)-L-homoserine lactone (OdDHL), a quorum-sensing molecule of Pseudomonas aeruginosa, plays an important role in the pathogenesis of the organism through its control of virulence factor expression. Several reports have suggested that OdDHL can also directly modulate host immune responses. However, the nature of the modulation is controversial, with different reports suggesting promotion of either humoral (Th2-mediated) or inflammatory (Th1-mediated) responses. This report describes a series of studies which demonstrate for the first time that in vivo administration of OdDHL can modulate the course of an antibody response, with an increase in ovalbumin (OVA)-specific immunogloblulin G1 (IgG1) but not IgG2a in OdDHL-treated OVA-immunized BALB/c mice compared to levels for controls. In vitro stimulation of lymphocytes from both Th1-biased C57Bl/6 and T-cell receptor transgenic mice and Th2-biased BALB/c mice in the presence of OdDHL demonstrated that OdDHL inhibits in vitro cytokine production in response to both mitogen and antigen, with gamma interferon (IFN-gamma) tending to be more inhibited than interleukin-4 (IL-4). In vitro mitogen or antigen restimulation of cells from mice treated with OdDHL in vivo shows effects on cytokine production which depend on the underlying immune bias of the mouse strain used, with a relative increase of IFN-gamma in Th1-biased C57Bl/6 mice and a relative increase of IL-4 in Th2-biased BALB/c mice. Thus, the mode of action of OdDHL on T-cell cytokine production is likely to be a relatively nonspecific one which accentuates an underlying immune response bias rather than one which specifically targets either Th1 or Th2 responses.
Collapse
Affiliation(s)
- Adam J Ritchie
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia 2052
| | | | | | | | | |
Collapse
|
45
|
Muegge K, Young H, Ruscetti F, Mikovits J. Epigenetic control during lymphoid development and immune responses: aberrant regulation, viruses, and cancer. Ann N Y Acad Sci 2003; 983:55-70. [PMID: 12724212 DOI: 10.1111/j.1749-6632.2003.tb05962.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methylation of cytosines controls a number of biologic processes such as imprinting and X chromosomal inactivation. DNA hypermethylation is closely associated with transcriptional silencing, while DNA hypomethylation is associated with transcriptional activation. Hypoacetylation of histones leads to compact chromatin with reduced accessibility to the transcriptional machinery. Methyl-CpG binding proteins can recruit corepressors and histone deacetylases; thus, the interplay between these epigenetic mechanisms regulates gene activation. Methylation has been implicated as an important mechanism during immune development, controlling VDJ recombination, lineage-specific expression of cell surface antigens, and transcriptional regulation of cytokine genes during immune responses. Aberrations in epigenetic machinery, either by genetic mutations or by somatic changes such as viral infections, are associated with early alterations in chronic diseases such as immunodeficiency and cancer.
Collapse
Affiliation(s)
- Kathrin Muegge
- Laboratories of Molecular Immunoregulation, SAIC, Frederick, Maryland 21702, USA
| | | | | | | |
Collapse
|
46
|
Lieberman LA, Hunter CA. Regulatory pathways involved in the infection-induced production of IFN-gamma by NK cells. Microbes Infect 2002; 4:1531-8. [PMID: 12505525 DOI: 10.1016/s1286-4579(02)00036-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The production of interferon gamma (IFN-gamma) by natural killer (NK) cells provides an innate mechanism of resistance to many intracellular pathogens. These events are regulated by multiple cytokines and transcription factors which have both positive and negative effects. This article reviews the role of cytokines, as well as costimulatory and signaling pathways, involved in NK cell responses associated with resistance to infection.
Collapse
Affiliation(s)
- Linda A Lieberman
- Department of Pathobiology, University of Pennsylvania, School of Veterinary Medicine, Rosenthal Bldg Room 226, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | | |
Collapse
|
47
|
Soutto M, Zhang F, Enerson B, Tong Y, Boothby M, Aune TM. A minimal IFN-gamma promoter confers Th1 selective expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:4205-12. [PMID: 12370350 DOI: 10.4049/jimmunol.169.8.4205] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Th1 and Th2 cells differentiate from naive precursors to effector cells that produce either IFN-gamma or IL-4, respectively. To identify transcriptional paths leading to activation and silencing of the IFN-gamma gene, we analyzed transgenic mice that express a reporter gene under the control of the 5' IFN-gamma promoter. We found that as the length of the promoter is increased, -110 to -225 to -565 bp, the activity of the promoter undergoes a transition from Th1 nonselective to Th1 selective. This is due, at least in part, to a T box expressed in T cells-responsive unit within the -565 to -410 region of the IFN-gamma promoter. The -225 promoter is silent when compared with the -110 promoter and silencing correlates with Yin Yang 1 binding to the promoter. The p38 mitogen-activated protein kinase signaling pathway, which also regulates IFN-gamma gene transcription, regulates the -70- to -44-bp promoter element. Together, the results demonstrate that a minimal IFN-gamma promoter contains a T box expressed in T cells responsive unit and is sufficient to confer Th1 selective expression upon a reporter.
Collapse
Affiliation(s)
- Mohammed Soutto
- Division of Rheumatology, Department of Medicine, Vanderbilt University School of Medicine, Medical Center North T3219, 21st and Garland, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
48
|
Yang H, Thomas D, Boffa DJ, Ding R, Li B, Muthukumar T, Sharma VK, Lagman M, Luo GX, Kapur S, Liou HC, Hancock WW, Suthanthiran M. Enforced c-REL deficiency prolongs survival of islet allografts1. Transplantation 2002; 74:291-8. [PMID: 12177605 DOI: 10.1097/00007890-200208150-00002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The NF-kappaB/Rel family of transcription factors regulates biologic processes ranging from apoptosis to inflammation and innate immunity. Whether c-Rel, a lymphoid-predominant member of the NF-kappaB/Rel family, is essential for transplantation immunity is not known. METHODS We explored the role of c-Rel in the anti-allograft repertory using mice with targeted disruption of the c-Rel gene (c-Rel-/-) as recipients of H-2 mismatched islet allografts. Allogeneic DBA/2 (H-2d) islets were transplanted into the renal subcapsular space of diabetic c-Rel-/- C57BL/6 (H-2b) mice or the c-Rel +/+ C57BL/6 wild-type mice. Islet graft survival, cellular traffic into the islet grafts and their phenotype, and intragraft expression of cytokines and cytotoxic attack molecules were determined at the protein (by immunohistochemistry) and mRNA (by real-time quantitative polymerase chain reaction) levels. RESULTS We found superior islet graft survival in the c-Rel-/- recipients compared to c-Rel+/+ C57BL/6 recipients. Splenocytes from c-Rel-/- mice proliferated poorly compared to splenocytes from the c-Rel+/+ mice on stimulation with anti-CD3 mAbs or Con A. Peri-islet infiltration composed of T lymphocytes and macrophages was found in both c-Rel+/+ recipients and c-Rel-/- recipients, but intra-islet infiltration was observed only in c-Rel+/+ recipients. Immunohistologic and molecular studies showed impaired T helper-type 1 immunity and decreased intragraft expression of cytotoxic attack molecules perforin and granzyme B in c-Rel-/- recipients as compared to wild-type recipients. CONCLUSIONS Our results demonstrate that c-Rel is essential for robust rejection of islet allografts and support the idea that strategies that impair c-Rel function may be of value for constraining alloimmunity and facilitating survival of allogafts.
Collapse
Affiliation(s)
- Hua Yang
- Division of Nephrology, Department of Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wong LH, Sim H, Chatterjee-Kishore M, Hatzinisiriou I, Devenish RJ, Stark G, Ralph SJ. Isolation and characterization of a human STAT1 gene regulatory element. Inducibility by interferon (IFN) types I and II and role of IFN regulatory factor-1. J Biol Chem 2002; 277:19408-17. [PMID: 11909852 DOI: 10.1074/jbc.m111302200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The transcription factor STAT1 plays a pivotal role in signal transduction of type I and II interferons (IFNs). STAT1 activation leads to changes in expression of key regulatory genes encoding caspases and cell cycle inhibitors. Deficient STAT1 expression in human cancer cells and virally mediated inhibition of STAT1 function have been associated with cellular resistance to IFNs and mycobacterial infection in humans. Thus, given the relative importance of STAT1, we isolated and characterized a human STAT1 intronic enhancer region displaying IFN-regulated activity. Functional analyses by transient expression identified a repressor region and type I and II IFN-inducible elements within the STAT1 enhancer sequence. A candidate IRF-E/GAS/IRF-E (IGI) sequence containing GAAANN nucleotide repeats was shown by gel shift assay to bind to IFN regulatory factor-1 (IRF-1), but not to IFN-stimulated gene factor-3 (ISGF-3) or STAT1-3. An additional larger IGI-binding complex containing IRF-1 was identified. Mutation of the GAAANN repeats within the IGI DNA element eliminated IRF-1 binding and the IFN-regulated activity of the STAT1 intronic enhancer region. Transfection of the IFN-resistant MM96 cell line to express increased levels of IRF-1 protein also elevated STAT1, STAT2, and p48/IRF-9 expression and enhanced cellular responsiveness to IFN-beta. Reciprocating regulation between IRF-1 and STAT1 genes and encoded proteins indicates that an intracellular amplifier circuit exists controlling cellular responsiveness to the IFNs.
Collapse
MESH Headings
- Amino Acid Motifs
- Base Sequence
- Binding Sites
- Blotting, Northern
- Blotting, Western
- Chromosome Mapping
- Chromosomes, Artificial, Yeast
- Chromosomes, Human, Pair 2
- DNA, Complementary/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Dose-Response Relationship, Drug
- Enhancer Elements, Genetic
- Exons
- Genes, Reporter
- Genetic Vectors
- Humans
- Interferon Regulatory Factor-1
- Interferon Type I/pharmacology
- Interferon-gamma/pharmacology
- Introns
- Luciferases/metabolism
- Models, Genetic
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Phosphoproteins/metabolism
- Polymerase Chain Reaction
- Protein Binding
- STAT1 Transcription Factor
- Time Factors
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription, Genetic
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Lee H Wong
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3168, Australia
| | | | | | | | | | | | | |
Collapse
|
50
|
Henri S, Stefani F, Parzy D, Eboumbou C, Dessein A, Chevillard C. Description of three new polymorphisms in the intronic and 3'UTR regions of the human interferon gamma gene. Genes Immun 2002; 3:1-4. [PMID: 11857052 DOI: 10.1038/sj.gene.6363809] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2001] [Revised: 09/10/2001] [Accepted: 09/10/2001] [Indexed: 11/08/2022]
Abstract
Interferon-gamma (IFN-gamma) is a key regulator of the development and functions of the immune system. In particular, this cytokine plays a major role in immune defense against infections by various human pathogens and polymorphisms in the IFN-gamma gene, including the transcription regulatory region, and might affect host resistance to infectious agents such as schistosomes. In this study on the genetics of human schistosomiasis we uncovered three new single nucleotide polymorphisms in the IFN-gamma genes. Two polymorphisms are located in the third intron and the third is in the 3'UTR region of this gene: an A to G transition at position +2109 from the transcription start and two G to A transitions at positions +3810 and +5134. In a SUDANESE population living in an endemic area of malaria and schistosomiasis, the allelic frequenciesare: 0.85 (+2109A), 0.15 (+2109G), 0.92 (+3810G), 0.08 (+3810A), (+5134G) and 0.04 (+5134A).
Collapse
Affiliation(s)
- S Henri
- INSERM U399, Immunologie et Génétique des Maladies Parasitaires, Faculté de Médecine, 27 bd J. Moulin, 13385 Marseille cedex, France
| | | | | | | | | | | |
Collapse
|