1
|
Cherf GM, Lee RB, Mehta N, Clifford C, Torres K, Kintzing JR, Cochran JR. An engineered ultrahigh affinity bi-paratopic uPAR targeting agent confers enhanced tumor targeting. Biotechnol Bioeng 2024; 121:3169-3180. [PMID: 38965775 DOI: 10.1002/bit.28790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/08/2024] [Accepted: 06/16/2024] [Indexed: 07/06/2024]
Abstract
Urokinase-type plasminogen activator receptor (uPAR) is overexpressed on tumor cells in multiple types of cancer and contributes to disease progression and metastasis. In this work, we engineered a novel bi-paratopic uPAR targeting agent by fusing the binding domains of two native uPAR ligands: uPA and vitronectin, with a flexible peptide linker. The linker length was optimized to facilitate simultaneous engagement of both domains to their adjacent epitopes on uPAR, resulting in a high affinity and avid binding interaction. Furthermore, the individual domains were affinity-matured using yeast surface display and directed evolution, resulting in a bi-paratopic protein with affinity in the picomolar to femtomolar range. This engineered uPAR targeting agent demonstrated significantly enhanced tumor localization in mouse tumor models compared to the native uPAR ligand and warrants further investigation as a diagnostic and therapeutic agent for cancer.
Collapse
Affiliation(s)
- Gerald M Cherf
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Robert B Lee
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Department of Chemical Engineering, Stanford University, Stanford, California, USA
| | - Nishant Mehta
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Claire Clifford
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Kathleen Torres
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - James R Kintzing
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Jennifer R Cochran
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Department of Chemical Engineering, Stanford University, Stanford, California, USA
- Stanford Cancer Institute, Stanford University, Stanford, California, USA
| |
Collapse
|
2
|
Nayerpour Dizaj T, Doustmihan A, Sadeghzadeh Oskouei B, Akbari M, Jaymand M, Mazloomi M, Jahanban-Esfahlan R. Significance of PSCA as a novel prognostic marker and therapeutic target for cancer. Cancer Cell Int 2024; 24:135. [PMID: 38627732 PMCID: PMC11020972 DOI: 10.1186/s12935-024-03320-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/30/2024] [Indexed: 04/20/2024] Open
Abstract
One of the contributing factors in the diagnosis and treatment of most cancers is the identification of their surface antigens. Cancer tissues or cells have their specific antigens. Some antigens that are present in many cancers elicit different functions. One of these antigens is the prostate stem cell antigen (PSCA) antigen, which was first identified in the prostate. PSCA is a cell surface protein that has different functions in different tissues. It can play an inhibitory role in cell proliferation as well as a tumor-inducing role. PSCA has several genetic variants involved in cancer susceptibility in some tissues, so identifying the characteristics of this antigen and its relationship with clinical features can provide more information on diagnosis and treatment of patients with cancers. Most studies on the PSCA have focused on prostate cancer. While it is also expressed in other cancers, little attention has been paid to its role as a valuable diagnostic, prognostic, and therapeutic tool in other cancers. PSCA has several genetic variants that seem to play a significant role in cancer susceptibility in some tissues, so identifying the characteristics of this antigen and its relationship and variants with clinical features can be beneficial in concomitant cancer therapy and diagnosis, as theranostic tools. In this study, we will review the alteration of the PSCA expression and its polymorphisms and evaluate its clinical and theranostics significance in various cancers.
Collapse
Affiliation(s)
- Tina Nayerpour Dizaj
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Doustmihan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Sadeghzadeh Oskouei
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Akbari
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - MirAhmad Mazloomi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Leth JM, Ploug M. Targeting the Urokinase-Type Plasminogen Activator Receptor (uPAR) in Human Diseases With a View to Non-invasive Imaging and Therapeutic Intervention. Front Cell Dev Biol 2021; 9:732015. [PMID: 34490277 PMCID: PMC8417595 DOI: 10.3389/fcell.2021.732015] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/26/2021] [Indexed: 12/31/2022] Open
Abstract
The interaction between the serine protease urokinase-type plasminogen activator (uPA) and its glycolipid-anchored receptor (uPAR) focalizes plasminogen activation to cell surfaces, thereby regulating extravascular fibrinolysis, cell adhesion, and migration. uPAR belongs to the Ly6/uPAR (LU) gene superfamily and the high-affinity binding site for uPA is assembled by a dynamic association of its three consecutive LU domains. In most human solid cancers, uPAR is expressed at the invasive areas of the tumor-stromal microenvironment. High levels of uPAR in resected tumors or shed to the plasma of cancer patients are robustly associated with poor prognosis and increased risk of relapse and metastasis. Over the years, a plethora of different strategies to inhibit uPA and uPAR function have been designed and investigated in vitro and in vivo in mouse models, but so far none have been implemented in the clinics. In recent years, uPAR-targeting with the intent of cytotoxic eradication of uPAR-expressing cells have nonetheless gained increasing momentum. Another avenue that is currently being explored is non-invasive imaging with specific uPAR-targeted reporter-molecules containing positron emitting radionuclides or near-infrared (NIR) florescence probes with the overarching aim of being able to: (i) localize disease dissemination using positron emission tomography (PET) and (ii) assist fluorescence guided surgery using optical imaging. In this review, we will discuss these advancements with special emphasis on applications using a small 9-mer peptide antagonist that targets uPAR with high affinity.
Collapse
Affiliation(s)
- Julie Maja Leth
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Mahmood N, Rabbani SA. Fibrinolytic System and Cancer: Diagnostic and Therapeutic Applications. Int J Mol Sci 2021; 22:ijms22094358. [PMID: 33921923 PMCID: PMC8122389 DOI: 10.3390/ijms22094358] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Fibrinolysis is a crucial physiological process that helps to maintain a hemostatic balance by counteracting excessive thrombosis. The components of the fibrinolytic system are well established and are associated with a wide array of physiological and pathophysiological processes. The aberrant expression of several components, especially urokinase-type plasminogen activator (uPA), its cognate receptor uPAR, and plasminogen activator inhibitor-1 (PAI-1), has shown a direct correlation with increased tumor growth, invasiveness, and metastasis. As a result, targeting the fibrinolytic system has been of great interest in the field of cancer biology. Even though there is a plethora of encouraging preclinical evidence on the potential therapeutic benefits of targeting the key oncogenic components of the fibrinolytic system, none of them made it from “bench to bedside” due to a limited number of clinical trials on them. This review summarizes our existing understanding of the various diagnostic and therapeutic strategies targeting the fibrinolytic system during cancer.
Collapse
Affiliation(s)
- Niaz Mahmood
- Department of Medicine, McGill University, Montréal, QC H4A3J1, Canada;
- Department of Medicine, McGill University Health Centre, Montréal, QC H4A3J1, Canada
| | - Shafaat A. Rabbani
- Department of Medicine, McGill University, Montréal, QC H4A3J1, Canada;
- Department of Medicine, McGill University Health Centre, Montréal, QC H4A3J1, Canada
- Correspondence:
| |
Collapse
|
5
|
Plasmin and Plasminogen System in the Tumor Microenvironment: Implications for Cancer Diagnosis, Prognosis, and Therapy. Cancers (Basel) 2021; 13:cancers13081838. [PMID: 33921488 PMCID: PMC8070608 DOI: 10.3390/cancers13081838] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In this review, we present a detailed discussion of how the plasminogen-activation system is utilized by tumor cells in their unrelenting attack on the tissues surrounding them. Plasmin is an enzyme which is responsible for digesting several proteins that hold the tissues surrounding solid tumors together. In this process tumor cells utilize the activity of plasmin to digest tissue barriers in order to leave the tumour site and spread to other parts of the body. We specifically focus on the role of plasminogen receptor—p11 which is an important regulatory protein that facilitates the conversion of plasminogen to plasmin and by this means promotes the attack by the tumour cells on their surrounding tissues. Abstract The tumor microenvironment (TME) is now being widely accepted as the key contributor to a range of processes involved in cancer progression from tumor growth to metastasis and chemoresistance. The extracellular matrix (ECM) and the proteases that mediate the remodeling of the ECM form an integral part of the TME. Plasmin is a broad-spectrum, highly potent, serine protease whose activation from its precursor plasminogen is tightly regulated by the activators (uPA, uPAR, and tPA), the inhibitors (PAI-1, PAI-2), and plasminogen receptors. Collectively, this system is called the plasminogen activation system. The expression of the components of the plasminogen activation system by malignant cells and the surrounding stromal cells modulates the TME resulting in sustained cancer progression signals. In this review, we provide a detailed discussion of the roles of plasminogen activation system in tumor growth, invasion, metastasis, and chemoresistance with specific emphasis on their role in the TME. We particularly review the recent highlights of the plasminogen receptor S100A10 (p11), which is a pivotal component of the plasminogen activation system.
Collapse
|
6
|
Yuan C, Guo Z, Yu S, Jiang L, Huang M. Development of inhibitors for uPAR: blocking the interaction of uPAR with its partners. Drug Discov Today 2021; 26:1076-1085. [PMID: 33486111 DOI: 10.1016/j.drudis.2021.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/22/2020] [Accepted: 01/11/2021] [Indexed: 12/25/2022]
Abstract
Urokinase-type plasminogen activator receptor (uPAR) mediates a multitude of biological activities, has key roles in several clinical indications, including malignancies and inflammation, and, thus, has attracted intensive research over the past few decades. The pleiotropic functions of uPAR can be attributed to its interaction with an array of partners. Many inhibitors have been developed to intervene with the interaction of uPAR with these partners. Here, we review the development of these classes of uPAR inhibitor and their inhibitory mechanisms to promote the translation of these inhibitors to clinical applications.
Collapse
Affiliation(s)
- Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Zhanzhi Guo
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Shujuan Yu
- College of Chemistry, Fuzhou University, Fujian, 350116, China
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fujian, 350116, China.
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fujian, 350116, China.
| |
Collapse
|
7
|
Bum-Erdene K, Liu D, Xu D, Ghozayel MK, Meroueh SO. Design and Synthesis of Fragment Derivatives with a Unique Inhibition Mechanism of the uPAR·uPA Interaction. ACS Med Chem Lett 2021; 12:60-66. [PMID: 33488965 DOI: 10.1021/acsmedchemlett.0c00422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
There is substantial interest in the development of small molecules that inhibit the tight and highly challenging protein-protein interaction between the glycophosphatidylinositol (GPI)-anchored cell surface receptor uPAR and the serine protease uPA. While preparing derivatives of a fragment-like compound that previously emerged from a computational screen, we identified compound 5 (IPR-3242), which inhibited binding of uPA to uPAR with submicromolar IC50s. The high inhibition potency prompted us to carry out studies to rule out potential aggregation, lack of stability, reactivity, and nonspecific inhibition. We designed and prepared 16 derivatives to further explore the role of each substituent. Interestingly, the compounds only partially inhibited binding of a fluorescently labeled α-helical peptide that binds to uPAR at the uPAR·uPA interface. Collectively, the results suggest that the compounds bind to uPAR outside of the uPAR·uPA interface, trapping the receptor into a conformation that is not able to bind to uPA. Additional studies will have to be carried out to determine whether this unique inhibition mechanism can occur at the cell surface.
Collapse
Affiliation(s)
- Khuchtumur Bum-Erdene
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Degang Liu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - David Xu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Mona K. Ghozayel
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Samy O. Meroueh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| |
Collapse
|
8
|
Mahmood N, Arakelian A, Khan HA, Tanvir I, Mazar AP, Rabbani SA. uPAR antibody (huATN-658) and Zometa reduce breast cancer growth and skeletal lesions. Bone Res 2020; 8:18. [PMID: 32337090 PMCID: PMC7165173 DOI: 10.1038/s41413-020-0094-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/16/2020] [Accepted: 02/22/2020] [Indexed: 12/12/2022] Open
Abstract
Urokinase plasminogen activator receptor (uPAR) is implicated in tumor growth and metastasis due to its ability to activate latent growth factors, proteases, and different oncogenic signaling pathways upon binding to different ligands. Elevated uPAR expression is correlated with the increased aggressiveness of cancer cells, which led to its credentialing as an attractive diagnostic and therapeutic target in advanced solid cancer. Here, we examine the antitumor effects of a humanized anti-uPAR antibody (huATN-658) alone and in combination with the approved bisphosphonate Zometa (Zoledronic acid) on skeletal lesion through a series of studies in vitro and in vivo. Treatment with huATN-658 or Zometa alone significantly decreased human MDA-MB-231 cell proliferation and invasion in vitro, effects which were more pronounced when huATN-658 was combined with Zometa. In vivo studies demonstrated that huATN-658 treatment significantly reduced MDA-MB-231 primary tumor growth compared with controls. In a model of breast tumor-induced bone disease, huATN-658 and Zometa were equally effective in reducing skeletal lesions. The skeletal lesions were significantly reduced in animals receiving the combination of huATN-658 + Zometa compared with monotherapy treatment. These effects were due to a significant decrease in osteoclastic activity and tumor cell proliferation in the combination treatment group. Transcriptome analysis revealed that combination treatment significantly changes the expression of genes from signaling pathways implicated in tumor progression and bone remodeling. Results from these studies provide a rationale for the continued development of huATN-658 as a monotherapy and in combination with currently approved agents such as Zometa in patients with metastatic breast cancer.
Collapse
Affiliation(s)
- Niaz Mahmood
- Department of Medicine, McGill University, Montréal, QC H4A3J1 Canada
| | - Ani Arakelian
- Department of Medicine, McGill University, Montréal, QC H4A3J1 Canada
| | | | | | | | | |
Collapse
|
9
|
Nassir AM, Kamel HFM. Explication of the roles of prostate health index (PHI) and urokinase plasminogen activator (uPA) as diagnostic and predictor tools for prostate cancer in equivocal PSA range of 4-10 ng/mL. Saudi J Biol Sci 2020; 27:1975-1984. [PMID: 32714021 PMCID: PMC7376136 DOI: 10.1016/j.sjbs.2020.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/11/2020] [Accepted: 04/01/2020] [Indexed: 12/28/2022] Open
Abstract
Background Prostate cancer (PCa) is one of the most commonly encountered cancers and the leading cause of death worldwide. Currently used biomarkers accounts difficulties in discriminating benign from malignant cases or predicting outcome, so investigating new biomarkers performance is needed. Objectives Assessment of diagnostic and predictor roles of prostate health index (PHI) and urokinase plasminogen activator (uPA) in PCa. Methods 194 males with initial tPSA of 4-10 ng/mL were categorized into three groups: PCa, benign prostatic hyperplasia (BPH) and healthy control. Serum levels of tPSA, fPSA, p2PSA, and uPA were performed by ELISA with calculation of PHI as (p2PSA/fPSA) × √PSA. Results PHI and uPA were significantly higher in PCa patients relevant to BPH and healthy control (p ≤ 0.001). Both markers outperformed all assessed biomarkers and showed the highest area under the curve (AUC) in ROC curve analysis. Both were significantly higher in PCa patients with {Gleason score ≥ 7, late stages (cT2b,c; T3), LN extension and distant metastasis}relative to their counterparts. Additionally, PHI and uPA and were independent predictors of distant metastasis and Gleason score ≥ 7, while PHI was predictor of LN invasion (β = 0.25, p = 0.004). Conclusion PHI and uPA would be of potential value in discriminating between PCa, BPH and healthy men in addition, both are promising as independent predictors of adverse pathological features.
Collapse
Affiliation(s)
- Anmar M Nassir
- Surgery Department, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Hala F M Kamel
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia.,Medical Biochemistry Department, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
10
|
Kim KY, Yoon M, Cho Y, Lee KH, Park S, Lee SR, Choi SY, Lee D, Yang C, Cho EH, Jeon SD, Kim SH, Kim C, Kim MG. Targeting metastatic breast cancer with peptide epitopes derived from autocatalytic loop of Prss14/ST14 membrane serine protease and with monoclonal antibodies. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:363. [PMID: 31426843 PMCID: PMC6701106 DOI: 10.1186/s13046-019-1373-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/09/2019] [Indexed: 11/10/2022]
Abstract
Background In order to develop a new immunotherapeutic agent targeting metastatic breast cancers, we chose to utilize autocatalytic feature of the membrane serine protease Prss14/ST14, a specific prognosis marker for ER negative breast cancer as a target molecule. Methods The study was conducted using three mouse breast cancer models, 4 T1 and E0771 mouse breast cancer cells into their syngeneic hosts, and an MMTV-PyMT transgenic mouse strain was used. Prss14/ST14 knockdown cells were used to test function in tumor growth and metastasis, peptides derived from the autocatalytic loop for activation were tested as preventive metastasis vaccine, and monoclonal and humanized antibodies to the same epitope were tested as new therapeutic candidates. ELISA, immunoprecipitation, Immunofluorescent staining, and flow cytometry were used to examine antigen binding. The functions of antibodies were tested in vitro for cell migration and in vivo for tumor growth and metastasis. Results Prss14/ST14 is critically involved in the metastasis of breast cancer and poor survival rather than primary tumor growth in two mouse models. The epitopes derived from the specific autocatalytic loop region of Prss14/ST14, based on structural modeling acted as efficient preventive metastasis vaccines in mice. A new specific monoclonal antibody mAb3F3 generated against the engineered loop structure could reduce cell migration, eliminate metastasis in PyMT mice, and can detect the Prss14/ST14 protein expressed in various human cancer cells. Humanized antibody huAb3F3 maintained the specificity and reduced the migration of human breast cancer cells in vitro. Conclusion Our study demonstrates that Prss14/ST14 is an important target for modulating metastasis. Our newly developed hybridoma mAbs and humanized antibody can be further developed as new promising candidates for the use in diagnosis and in immunotherapy of human metastatic breast cancer. Electronic supplementary material The online version of this article (10.1186/s13046-019-1373-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ki Yeon Kim
- Department of Biological Sciences, Inha University, Inharo 100, Michuhol-Gu, Incheon, Republic of Korea
| | - Minsang Yoon
- Department of Biological Sciences, Inha University, Inharo 100, Michuhol-Gu, Incheon, Republic of Korea
| | - Youngkyung Cho
- Division of Life Sciences, Seoul National University, Seoul, South Korea
| | - Kwang-Hoon Lee
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju, South Korea
| | - Sora Park
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju, South Korea
| | - Se-Ra Lee
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju, South Korea
| | - So-Young Choi
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju, South Korea
| | - Deokjae Lee
- Department of Biological Sciences, Inha University, Inharo 100, Michuhol-Gu, Incheon, Republic of Korea.,MedyTox, 114, Central town-ro, Yeongtong-gu, Suwon, South Korea
| | - Chansik Yang
- Department of Biological Sciences, Inha University, Inharo 100, Michuhol-Gu, Incheon, Republic of Korea.,Division of Life Sciences, Seoul National University, Seoul, South Korea
| | - Eun Hye Cho
- Department of Biological Sciences, Inha University, Inharo 100, Michuhol-Gu, Incheon, Republic of Korea
| | - Sangjun Davie Jeon
- Department of Biological Sciences, Inha University, Inharo 100, Michuhol-Gu, Incheon, Republic of Korea
| | - Seok-Hyung Kim
- Department of Pathology, College of Medicine, Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
| | - Chungho Kim
- Department of Life Sciences, Korea University, Seoul, South Korea
| | - Moon Gyo Kim
- Department of Biological Sciences, Inha University, Inharo 100, Michuhol-Gu, Incheon, Republic of Korea. .,Convergent Research Institute for Metabolism and Immunoregulation, Inha University, Incheon, South Korea.
| |
Collapse
|
11
|
Vasiljeva O, Hostetter DR, Moore SJ, Winter MB. The multifaceted roles of tumor-associated proteases and harnessing their activity for prodrug activation. Biol Chem 2019; 400:965-977. [PMID: 30913028 DOI: 10.1515/hsz-2018-0451] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
Abstract
The role of proteases in cancer was originally thought to be limited to the breakdown of basement membranes and extracellular matrix (ECM), thereby promoting cancer cell invasion into surrounding normal tissues. It is now well understood that proteases play a much more complicated role in all stages of cancer progression and that not only tumor cells, but also stromal cells are an important source of proteases in the tumor microenvironment. Among all the proteolytic enzymes potentially associated with cancer, some proteases have taken on heightened importance due to their significant up-regulation and ability to participate at multiple stages of cancer progression and metastasis. In this review, we discuss some of the advances in understanding of the roles of several key proteases from different classes in the development and progression of cancer and the potential to leverage their upregulated activity for the development of novel targeted treatment strategies.
Collapse
Affiliation(s)
- Olga Vasiljeva
- CytomX Therapeutics Inc., Platform Biology, 151 Oyster Point Blvd, South San Francisco, CA 94080, USA
| | - Daniel R Hostetter
- CytomX Therapeutics Inc., Platform Biology, 151 Oyster Point Blvd, South San Francisco, CA 94080, USA
| | - Stephen J Moore
- CytomX Therapeutics Inc., Platform Biology, 151 Oyster Point Blvd, South San Francisco, CA 94080, USA
| | - Michael B Winter
- CytomX Therapeutics Inc., Platform Biology, 151 Oyster Point Blvd, South San Francisco, CA 94080, USA
| |
Collapse
|
12
|
Insights into the antineoplastic mechanism of Chelidonium majus via systems pharmacology approach. QUANTITATIVE BIOLOGY 2019. [DOI: 10.1007/s40484-019-0165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
García Muñiz JL, Alvarez A, Fernández Llana B, Fernández Raigoso P, Allende MT, Ruibal A. Cytosolic tissue-type plasminogen activator (t-PA) levels in ductal infiltrating carcinomas of the breast classified according to different clinical and biological parameters. Int J Biol Markers 2018; 10:119-21. [PMID: 7561238 DOI: 10.1177/172460089501000211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Paule B, Deslandes E, Le Mouel SE, Bastien L, Podgorniak MP, Allory Y, de la Taille A, Menashi S, Calvo F, Mourah S. Identification of a Novel Biomarker Signature Associated with Risk for Bone Metastasis in Patients with Renal Cell Carcinoma. Int J Biol Markers 2018; 25:112-5. [DOI: 10.1177/172460081002500209] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
When renal cell carcinoma (RCC) metastasizes to bone (a frequent site of systemic spread of this cancer) it becomes highly resistant to radiation therapy and chemotherapy. A better understanding of the biology of bone metastasis in RCC may permit to identify biomarkers for early detection of subclinical disease and better stratification of patients prior to treatment. We therefore investigated in this study, using a multiplex real-time RT-PCR assay, the expression of a panel of 16 biomarkers involved in angiogenesis and tumor invasion; the panel was applied to primary tumors and normal tissues obtained from clear-cell RCC patients with and without bone metastases. We identified a novel combination of biomarkers associated with the risk of bone metastasis. Among the transcripts of the genes studied, VEGFR-1, VEGFR-2, HIF-1α, uPA, and PAI-1 overexpression in tumor tissues was significantly associated with the presence of bone metastasis (p=0.02, p=0.02, p<0.0001, p=0.04, and p=0.03, respectively). No differences were found in the expression of these transcripts in the corresponding normal tissues. This preliminary study provides a promising tool that may help in the management of RCC patients with bone metastasis. Indeed, these predictive markers could be useful to identify subclinical disease, improve staging, and guide treatment decisions.
Collapse
Affiliation(s)
- Bernard Paule
- Inserm, UMRS 940, Paris - France
- Department of Urology, AP-HP, Hôpital Henri Mondor, Inserm-U841Eq07, Créteil - France
| | - Emmanuelle Deslandes
- Department of Biostatistics and Medical Data Processing, Inserm-U717, Université Paris 7, Hôpital Saint-Louis, Paris - France
| | | | - Laurence Bastien
- Department of Urology, AP-HP, Hôpital Henri Mondor, Inserm-U841Eq07, Créteil - France
| | | | - Yves Allory
- Department of Urology, AP-HP, Hôpital Henri Mondor, Inserm-U841Eq07, Créteil - France
| | | | | | - Fabien Calvo
- Inserm, UMRS 940, Paris - France
- AP-HP, Laboratory of Pharmacology, Hôpital Saint-Louis, Paris - France
- Université Paris 7, Denis Diderot, Paris - France
| | - Samia Mourah
- Inserm, UMRS 940, Paris - France
- AP-HP, Laboratory of Pharmacology, Hôpital Saint-Louis, Paris - France
- Université Paris 7, Denis Diderot, Paris - France
| |
Collapse
|
15
|
Raigoso P, Junco A, Andicoechea A, Gonzalez A, García-Muñiz JL, Allende MT, García-Morán M, Vizoso F. Tissue-Type Plasminogen Activator (tPA) Content in Colorectal Cancer and in Surrounding Mucosa: Relationship with Clinicopathologic Parameters and Prognostic Significance. Int J Biol Markers 2018; 15:44-50. [PMID: 10763140 DOI: 10.1177/172460080001500108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aim of this study was to evaluate the cytosolic tissue-type plasminogen activator (tPA) content in colorectal cancer, its possible relationship with the clinicopathologic parameters of tumors, and its prognostic significance. We have therefore examined by immunoenzymatic assay the cytosolic tPA content in tumors and paired surrounding normal mucosa samples from 162 colorectal cancer patients. Cytosolic tPA levels were significantly higher in surrounding normal mucosa samples than in neoplastic tissues (4.01±5.07 vs 2.63±5.82 ng/mg protein; p<0.0001). By contrast, no significant correlation was found between tPA content and clinicopathologic tumor parameters such as location, Dukes’ stage, histologic grade, and DNA content or S-phase fraction. However, the results indicated that a high cytosolic tPA content (>0.75 ng/mg protein) in tumors predicted for a shorter relapse-free and overall survival (both p<0.05) in 123 resectable colorectal cancer patients who were prospectively evaluated during a mean follow-up period of 32.2 months. This suggests that tPA may give additional information to that provided by other biochemical markers currently used in colorectal cancer.
Collapse
Affiliation(s)
- P Raigoso
- Department of Nuclear Medicine, Hospital Central de Asturias, Oviedo
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Mahmood N, Mihalcioiu C, Rabbani SA. Multifaceted Role of the Urokinase-Type Plasminogen Activator (uPA) and Its Receptor (uPAR): Diagnostic, Prognostic, and Therapeutic Applications. Front Oncol 2018; 8:24. [PMID: 29484286 PMCID: PMC5816037 DOI: 10.3389/fonc.2018.00024] [Citation(s) in RCA: 307] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/24/2018] [Indexed: 01/01/2023] Open
Abstract
The plasminogen activator (PA) system is an extracellular proteolytic enzyme system associated with various physiological and pathophysiological processes. A large body of evidence support that among the various components of the PA system, urokinase-type plasminogen activator (uPA), its receptor (uPAR), and plasminogen activator inhibitor-1 and -2 (PAI-1 and PAI-2) play a major role in tumor progression and metastasis. The binding of uPA with uPAR is instrumental for the activation of plasminogen to plasmin, which in turn initiates a series of proteolytic cascade to degrade the components of the extracellular matrix, and thereby, cause tumor cell migration from the primary site of origin to a distant secondary organ. The components of the PA system show altered expression patterns in several common malignancies, which have identified them as ideal diagnostic, prognostic, and therapeutic targets to reduce cancer-associated morbidity and mortality. This review summarizes the various components of the PA system and focuses on the role of uPA-uPAR in different biological processes especially in the context of malignancy. We also discuss the current state of knowledge of uPA-uPAR-targeted diagnostic and therapeutic strategies for various malignancies.
Collapse
Affiliation(s)
- Niaz Mahmood
- Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Catalin Mihalcioiu
- Department of Oncology, McGill University Health Centre, Montreal, QC, Canada
| | - Shafaat A. Rabbani
- Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
- Department of Oncology, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
17
|
Solis-Calero C, Zanatta G, Pessoa CDÓ, Carvalho HF, Freire VN. Explaining urokinase type plasminogen activator inhibition by amino-5-hydroxybenzimidazole and two naphthamidine-based compounds through quantum biochemistry. Phys Chem Chem Phys 2018; 20:22818-22830. [DOI: 10.1039/c8cp04315a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Urokinase plasminogen activator (uPA) is a biomarker and therapeutic target for several cancer types whose inhibition has been shown to slow tumor growth and metastasis.
Collapse
Affiliation(s)
- Christian Solis-Calero
- Department of Structural and Functional Biology
- State University of Campinas
- 13083-863 Campinas
- Brazil
| | - Geancarlo Zanatta
- Department of Physics
- Federal University of Ceará
- 60455-760 Fortaleza
- Brazil
| | - Claudia do Ó Pessoa
- Department of Physiology and Pharmacology
- Federal University of Ceará
- 60430-270 Fortaleza
- Brazil
| | - Hernandes F. Carvalho
- Department of Structural and Functional Biology
- State University of Campinas
- 13083-863 Campinas
- Brazil
| | - Valder N. Freire
- Department of Physics
- Federal University of Ceará
- 60455-760 Fortaleza
- Brazil
| |
Collapse
|
18
|
Zhou H, Wang H, Yu G, Wang Z, Zheng X, Duan H, Sun J. Synergistic inhibitory effects of an engineered antibody-like molecule ATF-Fc and trastuzumab on tumor growth and invasion in a human breast cancer xenograft mouse model. Oncol Lett 2017; 14:5189-5196. [PMID: 29113154 PMCID: PMC5656026 DOI: 10.3892/ol.2017.6896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/11/2017] [Indexed: 01/28/2023] Open
Abstract
The overexpression of the oncogene human epidermal growth factor receptor 2 (HER-2) has been associated with decreased disease-free survival and is a marker of poor prognosis of invasive breast cancer. Although the high efficacy of trastuzumab, a drug that targets the HER-2 oncogene, has been widely recognized, the efficiency of the treatment remains at ~30%. Therefore, novel effective treatments are required for patients with recurrent metastatic breast cancer. The present study aimed to investigate the effects of an engineered antibody-like molecule administered alone or in combination with trastuzumab on the tumor growth and metastasis of HER-2-positive breast cancer. Another aim was to investigate novel cancer therapies for HER-2-positive breast cancer. The engineered antibody-like molecule consists of the amino-terminal fragment (ATF) of human urokinase-type plasminogen (uPA) and is conjugated with the Fc fragment of human immunoglobulin G1 (ATF-Fc). The anti-cancer effect of ATF-Fc (alone and in combination with trastuzumab) on tumor cells and in a nude mouse tumor model was evaluated by detecting the expression of uPA, urokinase plasminogen activator receptor (uPAR) and HER-2. In vitro experiments demonstrated that specifically blocking the uPA-uPAR and HER-2 signaling pathways may effectively promote the apoptosis of breast cancer cells. Additionally, ATF-Fc-induced cell death in HER-2-positive breast cancer cells was observed in vivo. When ATF-Fc was administered in combination with trastuzumab, cell death was increased and breast cancer metastasis was reduced. The novel engineered antibody-like molecule ATF-Fc was able to inhibit HER-2-positive breast cancer cell growth and metastasis by interfering with uPA and its receptor (uPA-uPAR) system. Additionally, the antibody-like molecule exhibits a synergistic inhibitory effect when administered in combination with trastuzumab.
Collapse
Affiliation(s)
- Hongwei Zhou
- Department of Geriatric Oncology, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, P.R. China
| | - Hongwei Wang
- Department of Pathology, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, P.R. China
| | - Guangyuan Yu
- Department of Medicine, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, P.R. China
| | - Zhihong Wang
- Department of Geriatric Oncology, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, P.R. China
| | - Xi Zheng
- Department of Geriatric Oncology, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, P.R. China
| | - Haifeng Duan
- Beijing Institute of Radiation Medicine, Beijing 100039, P.R. China
| | - Junzhong Sun
- Department of Geriatric Oncology, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, P.R. China
| |
Collapse
|
19
|
Tajbakhsh A, Mokhtari-Zaer A, Rezaee M, Afzaljavan F, Rivandi M, Hassanian SM, Ferns GA, Pasdar A, Avan A. Therapeutic Potentials of BDNF/TrkB in Breast Cancer; Current Status and Perspectives. J Cell Biochem 2017; 118:2502-2515. [PMID: 28230291 DOI: 10.1002/jcb.25943] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 12/14/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a potent neurotrophic factor that has been shown to stimulate breast cancer cell growth and metastasis via tyrosine kinase receptors TrkA, TrkB, and the p75NTR death receptor. The aberrant activation of BDNF/TrkB pathways can modulate several signaling pathways, including Akt/PI3K, Jak/STAT, NF-kB, UPAR/UPA, Wnt/β-catenin, and VEGF pathways as well as the ER receptor. Several microRNAs have been identified that are involved in the modulation of BDNF/TrkB pathways. These include miR-206, miR-204, MiR-200a/c, MiR-210, MiR-134, and MiR-191; and these may be of value as prognostic and predictive biomarkers for detecting patients at high risk of developing breast cancer. It has been also been demonstrated that a high expression of genes involved in the BDNF pathway in breast cancer is associated with poor clinical outcome and reduced survival of patients. Several approaches have been developed for targeting this pathway, for example TKr inhibitors (AZD6918, CEP-701) and RNA interference. The aim of the current review was to provide an overview of the role of BDNF/TrkB pathways in the pathogenesis of breast cancer and its value as a potential therapeutic target. J. Cell. Biochem. 118: 2502-2515, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Mokhtari-Zaer
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Centre and Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Rezaee
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fahimeh Afzaljavan
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Rivandi
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, UK
| | - Alireza Pasdar
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Division of Applied Medicine, Medical School, University of Aberdeen, Foresterhill, Aberdeen, UK.,Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
Menou A, Duitman J, Flajolet P, Sallenave JM, Mailleux AA, Crestani B. Human airway trypsin-like protease, a serine protease involved in respiratory diseases. Am J Physiol Lung Cell Mol Physiol 2017; 312:L657-L668. [DOI: 10.1152/ajplung.00509.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/15/2017] [Accepted: 02/15/2017] [Indexed: 01/12/2023] Open
Abstract
More than 2% of all human genes are coding for a complex system of more than 700 proteases and protease inhibitors. Among them, serine proteases play extraordinary, diverse functions in different physiological and pathological processes. The human airway trypsin-like protease (HAT), also referred to as TMPRSS11D and serine 11D, belongs to the emerging family of cell surface proteolytic enzymes, the type II transmembrane serine proteases (TTSPs). Through the cleavage of its four major identified substrates, HAT triggers specific responses, notably in epithelial cells, within the pericellular and extracellular environment, including notably inflammatory cytokine production, inflammatory cell recruitment, or anticoagulant processes. This review summarizes the potential role of this recently described protease in mediating cell surface proteolytic events, to highlight the structural features, proteolytic activity, and regulation, including the expression profile of HAT, and discuss its possible roles in respiratory physiology and disease.
Collapse
Affiliation(s)
- Awen Menou
- Inserm UMR1152, Medical School Xavier Bichat, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France; and
| | - JanWillem Duitman
- Inserm UMR1152, Medical School Xavier Bichat, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France; and
| | - Pauline Flajolet
- Inserm UMR1152, Medical School Xavier Bichat, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France; and
| | - Jean-Michel Sallenave
- Inserm UMR1152, Medical School Xavier Bichat, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France; and
| | - Arnaud André Mailleux
- Inserm UMR1152, Medical School Xavier Bichat, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France; and
| | - Bruno Crestani
- Inserm UMR1152, Medical School Xavier Bichat, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France; and
- APHP, Hôpital Bichat, Service de Pneumologie A, Paris, France
| |
Collapse
|
21
|
Tong W, Wang Q, Sun D, Suo J. Curcumin suppresses colon cancer cell invasion via AMPK-induced inhibition of NF-κB, uPA activator and MMP9. Oncol Lett 2016; 12:4139-4146. [PMID: 27895783 DOI: 10.3892/ol.2016.5148] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 07/01/2016] [Indexed: 01/31/2023] Open
Abstract
Curcumin, an active nontoxic ingredient of turmeric, possesses potent anti-inflammatory, antioxidant and anti-cancer properties; however, the molecular mechanisms of curcumin are not fully understood. The transcription factor nuclear factor-κB (NF-κB) is key in cellular processes, and the expression/activation of urokinase-type plasminogen activator (uPA) and matrix metalloproteinase-9 (MMP9) are crucial for cell invasion. The present study investigated the hypothesis that curcumin inhibits colon cancer cell invasion by modulating NF-κB-mediated expression and activation of uPA and MMP9. Human colon cancer SW480 and LoVo cells were treated with various concentrations of curcumin. Curcumin was demonstrated to dose-dependently inhibit the adhesion and proliferation ability of LoVo and SW480 cells using Transwell and MTT assays, respectively. In addition, curcumin activated 5' AMP-activated protein kinase (AMPK) and suppressed p65 NF-κB phosphorylation, as shown by western blot analysis. Compound C, a potent AMPK inhibitor, abolished curcumin-induced inhibition of NF-κB, uPA and MMP9, suggesting that AMPK activation is responsible for curcumin-mediated NF-κB, uPA and MMP9 inhibition. The binding activity of NF-κB to DNA was examined and western blotting and quantitative polymerase reaction was performed to detect the effect of curcumin on the expression of uPA and MMP9. The present results revealed that curcumin significantly decreased the expression of uPA and MMP9 and NF-κB DNA binding activity. Furthermore, curcumin decreased the level of the p65 subunit of NF-κB binding to the promoter of the gene encoding uPA and MMP9, which suppressed transcriptional activation of uPA and MMP9. Overall, the present data suggest that curcumin inhibits colon cancer cell invasion via AMPK activation and subsequent inhibition of p65 NF-κB, uPA and MMP9. The therapeutic potential of curcumin for colon cancer metastasis required additional study.
Collapse
Affiliation(s)
- Weihua Tong
- Department of Gastrointestinal-Colorectal Surgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Quan Wang
- Department of Gastrointestinal-Colorectal Surgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Donghui Sun
- Department of Gastrointestinal-Colorectal Surgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jian Suo
- Department of Gastrointestinal-Colorectal Surgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
22
|
Almholt K, Lærum OD, Nielsen BS, Lund IK, Lund LR, Rømer J, Jögi A. Spontaneous lung and lymph node metastasis in transgenic breast cancer is independent of the urokinase receptor uPAR. Clin Exp Metastasis 2015; 32:543-54. [PMID: 26040548 DOI: 10.1007/s10585-015-9726-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/28/2015] [Indexed: 02/06/2023]
Abstract
Urokinase-type plasminogen activator (uPA) is an extracellular protease that plays a pivotal role in tumor progression. uPA activity is spatially restricted by its anchorage to high-affinity uPA receptors (uPAR) at the cell surface. High tumor tissue expression of uPA and uPAR is associated with poor prognosis in lung, breast, and colon cancer patients in clinical studies. Genetic deficiency of uPA leads to a significant reduction in metastases in the murine transgenic MMTV-PyMT breast cancer model, demonstrating a causal role for uPA in cancer dissemination. To investigate the role of uPAR in cancer progression, we analyze the effect of uPAR deficiency in the same cancer model. uPAR is predominantly expressed in stromal cells in the mouse primary tumors, similar to human breast cancer. In a cohort of MMTV-PyMT mice [uPAR-deficient (n = 31) or wild type controls (n = 33)], tumorigenesis, tumor growth, and tumor histopathology were not significantly affected by uPAR deficiency. Lung and lymph node metastases were also not significantly affected by uPAR deficiency, in contrast to the significant reduction seen in uPA-deficient mice. Taken together, our data show that the genetic absence of uPAR does not influence the outcome of the MMTV-PyMT cancer model.
Collapse
Affiliation(s)
- Kasper Almholt
- The Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark,
| | | | | | | | | | | | | |
Collapse
|
23
|
LeBeau AM, Sevillano N, Markham K, Winter MB, Murphy ST, Hostetter DR, West J, Lowman H, Craik CS, VanBrocklin HF. Imaging active urokinase plasminogen activator in prostate cancer. Cancer Res 2015; 75:1225-35. [PMID: 25672980 DOI: 10.1158/0008-5472.can-14-2185] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 01/09/2015] [Indexed: 11/16/2022]
Abstract
The increased proteolytic activity of membrane-bound and secreted proteases on the surface of cancer cells and in the transformed stroma is a common characteristic of aggressive metastatic prostate cancer. We describe here the development of an active site-specific probe for detecting a secreted peritumoral protease expressed by cancer cells and the surrounding tumor microenvironment. Using a human fragment antigen-binding phage display library, we identified a human antibody termed U33 that selectively inhibited the active form of the protease urokinase plasminogen activator (uPA, PLAU). In the full-length immunoglobulin form, U33 IgG labeled with near-infrared fluorophores or radionuclides allowed us to noninvasively detect active uPA in prostate cancer xenograft models using optical and single-photon emission computed tomography imaging modalities. U33 IgG labeled with (111)In had a remarkable tumor uptake of 43.2% injected dose per gram (%ID/g) 72 hours after tail vein injection of the radiolabeled probe in subcutaneous xenografts. In addition, U33 was able to image active uPA in small soft-tissue and osseous metastatic lesions using a cardiac dissemination prostate cancer model that recapitulated metastatic human cancer. The favorable imaging properties were the direct result of U33 IgG internalization through an uPA receptor-mediated mechanism in which U33 mimicked the function of the endogenous inhibitor of uPA to gain entry into the cancer cell. Overall, our imaging probe targets a prostate cancer-associated protease, through a unique mechanism, allowing for the noninvasive preclinical imaging of prostate cancer lesions.
Collapse
Affiliation(s)
- Aaron M LeBeau
- Center for Molecular and Functional Imaging, Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California.
| | - Natalia Sevillano
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Kate Markham
- CytomX Therapeutics, Inc., South San Francisco, California
| | - Michael B Winter
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Stephanie T Murphy
- Center for Molecular and Functional Imaging, Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | | | - James West
- CytomX Therapeutics, Inc., South San Francisco, California
| | - Henry Lowman
- CytomX Therapeutics, Inc., South San Francisco, California
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Henry F VanBrocklin
- Center for Molecular and Functional Imaging, Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
24
|
Parris GE. Cell-Cell Fusion, Chemotaxis and Metastasis. INTERCELLULAR COMMUNICATION IN CANCER 2015:227-254. [DOI: 10.1007/978-94-017-7380-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
25
|
Tamura T, Morita E, Kawai S, Okada R, Naito M, Wakai K, Hori Y, Kondo T, Hamajima N. Significant association of urokinase plasminogen activator Pro141Leu with serum lipid profiles in a Japanese population. Gene 2013; 524:363-7. [DOI: 10.1016/j.gene.2013.04.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/05/2013] [Accepted: 04/07/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Takashi Tamura
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Noh H, Hong S, Huang S. Role of urokinase receptor in tumor progression and development. Am J Cancer Res 2013; 3:487-95. [PMID: 23843896 PMCID: PMC3706692 DOI: 10.7150/thno.4218] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 08/15/2012] [Indexed: 12/21/2022] Open
Abstract
Elevated level of urokinase receptor (uPAR) is detected in various aggressive cancer types and is closely associated with poor prognosis of cancers. Binding of uPA to uPAR triggers the conversion of plasminogen to plasmin and the subsequent activation of metalloproteinases. These events confer tumor cells with the capability to degrade the components of the surrounding extracellular matrix, thus contributing to tumor cell invasion and metastasis. uPA-uPAR interaction also elicits signals that stimulate cell proliferation/survival and the expression of tumor-promoting genes, thus assisting tumor development. In addition to its interaction with uPA, uPAR also interacts with vitronectin and this interaction promotes cancer metastasis by activating Rac and stimulating cell migration. Although underlying mechanisms are yet to be fully elucidated, uPAR has been shown to facilitate epithelial-mesenchymal transition (EMT) and induce cancer stem cell-like properties in breast cancer cells. The fact that uPAR lacks intracellular domain suggests that its signaling must be mediated through its co-receptors. Indeed, uPAR interacts with diverse transmembrane proteins including integrins, ENDO180, G protein-coupled receptors and growth factor receptors in cancer cells and these interactions are proven to be critical for the role of uPAR in tumorigenesis. Inhibitory peptide that prevents uPA-uPAR interaction has shown the promise to prolong patients' survival in the early stage of clinical trial. The importance of uPAR's co-receptor in uPAR's tumor-promoting effects implicate that anti-cancer therapeutic agents may also be developed by disrupting the interactions between uPAR and its functional partners.
Collapse
|
27
|
Mani T, Wang F, Knabe WE, Sinn AL, Khanna M, Jo I, Sandusky GE, Sledge GW, Jones DR, Khanna R, Pollok KE, Meroueh SO. Small-molecule inhibition of the uPAR·uPA interaction: synthesis, biochemical, cellular, in vivo pharmacokinetics and efficacy studies in breast cancer metastasis. Bioorg Med Chem 2013; 21:2145-55. [PMID: 23411397 DOI: 10.1016/j.bmc.2012.12.047] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/13/2012] [Accepted: 12/20/2012] [Indexed: 10/27/2022]
Abstract
The uPAR·uPA protein-protein interaction (PPI) is involved in signaling and proteolytic events that promote tumor invasion and metastasis. A previous study had identified 4 (IPR-803) from computational screening of a commercial chemical library and shown that the compound inhibited uPAR·uPA PPI in competition biochemical assays and invasion cellular studies. Here, we synthesize 4 to evaluate in vivo pharmacokinetic (PK) and efficacy studies in a murine breast cancer metastasis model. First, we show, using fluorescence polarization and saturation transfer difference (STD) NMR, that 4 binds directly to uPAR with sub-micromolar affinity of 0.2 μM. We show that 4 blocks invasion of breast MDA-MB-231, and inhibits matrix metalloproteinase (MMP) breakdown of the extracellular matrix (ECM). Derivatives of 4 also inhibited MMP activity and blocked invasion in a concentration-dependent manner. Compound 4 also impaired MDA-MB-231 cell adhesion and migration. Extensive in vivo PK studies in NOD-SCID mice revealed a half-life of nearly 5h and peak concentration of 5 μM. Similar levels of the inhibitor were detected in tumor tissue up to 10h. Female NSG mice inoculated with highly malignant TMD-MDA-MB-231 in their mammary fat pads showed that 4 impaired metastasis to the lungs with only four of the treated mice showing severe or marked metastasis compared to ten for the untreated mice. Compound 4 is a promising template for the development of compounds with enhanced PK parameters and greater efficacy.
Collapse
Affiliation(s)
- Timmy Mani
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Van Nuys Medical Science Building, MS 4023, 635 Barnhill Drive, Indianapolis, IN 46202-5122, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hald A, Eickhardt H, Maerkedahl RB, Feldborg CW, Egerod KL, Engelholm LH, Laerum OD, Lund LR, Rønø B. Plasmin-driven fibrinolysis facilitates skin tumor growth in a gender-dependent manner. FASEB J 2012; 26:4445-57. [PMID: 22815383 DOI: 10.1096/fj.12-208025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Rearrangement of the skin during wound healing depends on plasmin and plasminogen, which serve to degrade fibrin depositions in the provisional matrix and thereby facilitate keratinocyte migration. In the current study, we investigated whether plasmin and plasminogen likewise played a role during the development of skin cancer. To test this, we set up a chemically induced skin tumor model in a cohort of mice and found that skin tumor growth in Plg(-/-) male mice was reduced by 52% compared with wild-type controls. Histological analyses suggested that the growth-restricting effect of plasminogen deficiency was due to thrombosis and lost patency of the tumor vasculature, resulting in tumor necrosis. The connection between plasmin-dependent fibrinolysis, vascular patency, and tumor growth was further substantiated as the effect of plasminogen deficiency on tumor growth could be reverted by superimposing heterozygous fibrinogen deficiency on Plg(-/-) mice. Tumors derived from these Fib(-/+);Plg(-/-) mice displayed a significantly decreased level of tumor thrombosis compared with Plg(-/-) mice. In summary, these data indicate that plasmin-driven fibrinolysis facilitates tumor growth by maintaining patency of the tumor vasculature.
Collapse
Affiliation(s)
- Andreas Hald
- Finsen Laboratory, Rigshospitalet, Copenhagen Biocenter, Ole Maaloes Vej 5, DK-2200 Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Shishido SN, Varahan S, Yuan K, Li X, Fleming SD. Humoral innate immune response and disease. Clin Immunol 2012; 144:142-58. [PMID: 22771788 PMCID: PMC3576926 DOI: 10.1016/j.clim.2012.06.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 06/05/2012] [Accepted: 06/09/2012] [Indexed: 12/27/2022]
Abstract
The humoral innate immune response consists of multiple components, including the naturally occurring antibodies (NAb), pentraxins and the complement and contact cascades. As soluble, plasma components, these innate proteins provide key elements in the prevention and control of disease. However, pathogens and cells with altered self proteins utilize multiple humoral components to evade destruction and promote pathogy. Many studies have examined the relationship between humoral immunity and autoimmune disorders. This review focuses on the interactions between the humoral components and their role in promoting the pathogenesis of bacterial and viral infections and chronic diseases such as atherosclerosis and cancer. Understanding the beneficial and detrimental aspects of the individual components and the interactions between proteins which regulate the innate and adaptive response will provide therapeutic targets for subsequent studies.
Collapse
Affiliation(s)
- Stephanie N Shishido
- Department of Diagnostic Medicine and Pathology, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | |
Collapse
|
30
|
Provost JJ, Rastedt D, Canine J, Ngyuen T, Haak A, Kutz C, Berthelsen N, Slusser A, Anderson K, Dorsam G, Wallert MA. Urokinase plasminogen activator receptor induced non-small cell lung cancer invasion and metastasis requires NHE1 transporter expression and transport activity. Cell Oncol (Dordr) 2012; 35:95-110. [PMID: 22290545 DOI: 10.1007/s13402-011-0068-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2011] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND: Non-small cell lung cancers (NSLC) are aggressive cancers that are insensitive to chemotherapies and accounts for nearly 33% of all cancer deaths in the United States. Two hallmarks of cancer that allow cells to invade and metastasize are sustained proliferation and enhanced motility. In this study we investigate the relationship between urokinase plasminogen activator (uPA)/uPA receptor (uPAR) signaling and Na(+)/H(+) exchanger isoform 1 (NHE1) expression and activity. METHODS AND RESULTS: The addition of 10nM uPA increased the carcinogenic potential of three NSCLC cell lines, NCI-H358, NCI-H460, and NCI-H1299. This included an increase in the rate of cell proliferation 1.6 to 1.9 fold; an increase in the percentage of cells displaying stress fibers 3.05 to 3.17 fold; and an increase in anchorage-independent growth from 1.64 to 2.0 fold. In each of these cases the increase was blocked when the experiments were performed with NHE1 inhibited by 10 μM EIPA (ethylisopropyl amiloride). To further evaluate the role of uPA/uPAR and NHE1 in tumor progression we assessed signaling events using full-length uPA compared to the uPA amino terminal fragment (ATF). Comparing uPA and ATF signaling in H460 cells, we found that both uPA and ATF increased stress fiber formation approximately 2 fold, while uPA increased matrix metalloproteinase 9 (MMP9) activity 5.44 fold compared to 2.81 fold for ATF. To expand this signaling study, two new cell lines were generated, one with reduced NHE1 expression (H460 NHE1 K/D) and one with reduced uPAR expression (H460 uPAR K/D). Using the K/D cell lines we found that neither uPA nor ATF could stimulate stress fiber formation or MMP9 activity in cells with dramatically decreased NHE1 or uPAR expression. Finally, using in vivo tumor formation studies in athymic mice we found that when mice were injected with H460 cells 80% of mice formed tumors with an average volume of 390 mm(3). This was compared to 20% of H460 uPAR K/D injected mice forming tumors with an average volume of 15 mm(3) and 10% of H460 NHE1 K/D injected mice forming tumors with an average volume of 5 mm(3). CONCLUSION: Taken together, these data demonstrate that uPA/uPAR-mediated tumor progression and metastasis requires NHE1 in NSCLC cells and suggests a potential therapeutic approach to blocking cancer progression.
Collapse
Affiliation(s)
- J J Provost
- Department of Chemistry, Minnesota State University Moorhead, 407 Hagen Hall, Moorhead, MN, 56563, USA,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Molecular changes consistent with increased proliferation and invasion are common in rectal cancer. Clin Transl Oncol 2011; 13:753-9. [DOI: 10.1007/s12094-011-0728-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
32
|
Zong H, Wang F, Fan QX, Wang LX. Curcumin inhibits metastatic progression of breast cancer cell through suppression of urokinase-type plasminogen activator by NF-kappa B signaling pathways. Mol Biol Rep 2011; 39:4803-8. [PMID: 21947854 DOI: 10.1007/s11033-011-1273-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 09/14/2011] [Indexed: 10/17/2022]
Abstract
Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione), is extracted from the plant Curcuma longa. It was recently reported for its anticancer effect on several types of cancer cells in vitro however, the molecular mechanisms of this anticancer effect are not fully understood. In the present study, we evaluated the effects of curcumin on human mammary epithelial carcinoma MCF-7 cells. Cells were treated with curcumin and examined for cell viability by MTT assay. The cells invasion was demonstrated by transwell assay. The binding activity of NF-κB to DNA was examined in nuclear extracts using Trans-AM NF-κB ELISA kit. Western blot was performed to detect the effect of curcumin on the expression of uPA. Our results showed that curcumin dose-dependently inhibited (P < 0.05) the proliferation of MCF-7 cells. Meanwhile, the adhesion and invasion ability of MCF-7 cells were sharply inhibited when treated with different concentrations of curcumin. Curcumin also significantly decreased (P < 0.05) the expression of uPA and NF-κB DNA binding activity, respectively. It is concluded that curcumin inhibits the adhesion and invasion of MCF-7 cells through down-regulating the protein expression of uPA via of NF-κB activation. Accordingly, the therapeutic potential of curcumin for breast cancer deserves further study.
Collapse
Affiliation(s)
- Hong Zong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | | | | | | |
Collapse
|
33
|
Small molecule antagonists of the urokinase (uPA): urokinase receptor (uPAR) interaction with high reported potencies show only weak effects in cell-based competition assays employing the native uPAR ligand. Bioorg Med Chem 2011; 19:2549-56. [DOI: 10.1016/j.bmc.2011.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/02/2011] [Accepted: 03/07/2011] [Indexed: 11/24/2022]
|
34
|
Olshavsky NA, Comstock CE, Schiewer MJ, Augello MA, Hyslop T, Sette C, Zhang J, Parysek LM, Knudsen KE. Identification of ASF/SF2 as a critical, allele-specific effector of the cyclin D1b oncogene. Cancer Res 2010; 70:3975-84. [PMID: 20460515 PMCID: PMC2873684 DOI: 10.1158/0008-5472.can-09-3468] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The cyclin D1b oncogene arises from alternative splicing of the CCND1 transcript, and harbors markedly enhanced oncogenic functions not shared by full-length cyclin D1 (cyclin D1a). Recent studies showed that cyclin D1b is selectively induced in a subset of tissues as a function of tumorigenesis; however, the underlying mechanism(s) that control tumor-specific cyclin D1b induction remain unsolved. Here, we identify the RNA-binding protein ASF/SF2 as a critical, allele-specific, disease-relevant effector of cyclin D1b production. Initially, it was observed that SF2 associates with cyclin D1b mRNA (transcript-b) in minigene analyses and with endogenous transcript in prostate cancer (PCa) cells. SF2 association was altered by the CCND1 G/A870 polymorphism, which resides in the splice donor site controlling transcript-b production. This finding was significant, as the A870 allele promotes cyclin D1b in benign prostate tissue, but in primary PCa, cyclin D1b production is independent of A870 status. Data herein provide a basis for this disparity, as tumor-associated induction of SF2 predominantly results in binding to and accumulation of G870-derived transcript-b. Finally, the relevance of SF2 function was established, as SF2 strongly correlated with cyclin D1b (but not cyclin D1a) in human PCa. Together, these studies identify a novel mechanism by which cyclin D1b is induced in cancer, and reveal significant evidence of a factor that cooperates with a risk-associated polymorphism to alter cyclin D1 isoform production. Identification of SF2 as a disease-relevant effector of cyclin D1b provides a basis for future studies designed to suppress the oncogenic alternative splicing event.
Collapse
MESH Headings
- Alleles
- Alternative Splicing/genetics
- Biomarkers, Tumor/genetics
- Blotting, Western
- Cell Line, Tumor
- Cyclin D1/genetics
- Cyclin D1/metabolism
- Disease Progression
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Immunoenzyme Techniques
- Immunoprecipitation
- Male
- Neoplasms, Hormone-Dependent/genetics
- Neoplasms, Hormone-Dependent/metabolism
- Neoplasms, Hormone-Dependent/pathology
- Nuclear Proteins/physiology
- Oligonucleotide Array Sequence Analysis
- Polymorphism, Genetic/genetics
- Prostate/metabolism
- Prostate/pathology
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Protein Isoforms
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA-Binding Proteins
- Reverse Transcriptase Polymerase Chain Reaction
- Serine-Arginine Splicing Factors
Collapse
Affiliation(s)
- Nicholas A. Olshavsky
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, OH 45267
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Clay E.S. Comstock
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Matthew J. Schiewer
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Michael A. Augello
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Terry Hyslop
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107
| | - Claudio Sette
- Department of Public Health and Cell Biology, Section of Anatomy, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Jinsong Zhang
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, OH 45267
| | - Linda M. Parysek
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, OH 45267
| | - Karen E. Knudsen
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107
- Department of Urology, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
35
|
Mekkawy AH, Morris DL, Pourgholami MH. Urokinase plasminogen activator system as a potential target for cancer therapy. Future Oncol 2009; 5:1487-99. [PMID: 19903074 DOI: 10.2217/fon.09.108] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Proteolysis of extracellular matrix (ECM) and basement membrane is an essential mechanism used by cancer cells for their invasion and metastasis. The ECM proteinases are divided into three groups: metalloproteinases, cysteine proteinases and serine proteinases. The urokinase plasminogen activator (uPA) system is one of the serine proteinase systems involved in ECM degradation. Members of this system, including uPA and its receptor (uPAR), are overexpressed in several malignant tumors. This system plays a major role in adhesion, migration, invasion and metastasis of cancer cells, thus making it an important target for anticancer drug therapy. Several strategies, including the use of antisense oligodeoxynucleotides, ribozymes, DNAzyme, RNAi, uPA inhibitors, soluble uPAR, catalytically inactive uPA fragments, synthetic peptides and synthetic hybrids are under study, as they interfere with the expression and/or activity of uPA or uPAR in tumor cells. Herein, we discuss the various pharmaceutical strategies under investigation to combat the uPA activity in cancer.
Collapse
Affiliation(s)
| | | | - Mohammad H Pourgholami
- Cancer Research Laboratories, University of New South Wales, Department of Surgery, St George Hospital (SESIAHS), Sydney, NSW 2217, Australia
| |
Collapse
|
36
|
Gach K, Szemraj J, Fichna J, Piestrzeniewicz M, Delbro DS, Janecka A. The influence of opioids on urokinase plasminogen activator on protein and mRNA level in MCF-7 breast cancer cell line. Chem Biol Drug Des 2009; 74:390-6. [PMID: 19691469 DOI: 10.1111/j.1747-0285.2009.00875.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Urokinase plasminogen activator plays a key role in tumor-associated processes, increasing cancer cell invasion and metastasis, and is therefore used as a marker in cancer prognosis. In this study, we have determined the effect of mu-opioid receptor agonists and antagonists on the urokinase plasminogen activator secretion in MCF-7 cell line. It was shown that mu-opioid receptor agonists, such as morphine and endomorphins, greatly stimulate urokinase plasminogen activator secretion, while naloxone and MOR-selective antagonists elicit the opposite effect. The same tendency was observed also on the urokinase plasminogen activator mRNA level. However, neither agonists nor antagonists had any effect on proliferation of MCF-7 cells. The findings reported in this study may be useful in designing further experiments aimed at elucidating the role of the opioid system in cancer cells.
Collapse
Affiliation(s)
- Katarzyna Gach
- Department of Biomolecular Chemistry, Medical University of Lodz, Lodz, Poland
| | | | | | | | | | | |
Collapse
|
37
|
Jo M, Takimoto S, Montel V, Gonias SL. The urokinase receptor promotes cancer metastasis independently of urokinase-type plasminogen activator in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:190-200. [PMID: 19497996 DOI: 10.2353/ajpath.2009.081053] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The urokinase receptor (uPAR) promotes metastasis of human malignancies; however, its mechanism of action remains incompletely understood. Established models focus on the ability of uPAR to bind urokinase-type plasminogen activator (uPA) and promote protease activation in the tumor cell microenvironment; however, uPAR also regulates cell signaling and migration by both uPA-dependent and -independent mechanisms in vitro. The significance of uPAR as a cell-signaling receptor in vivo remains unclear. In this study, we expressed either human or mouse uPAR in human embryonic kidney (HEK-293) cells. We selected HEK-293 cells because, unlike most cancer cells, they do not express uPA or uPAR endogenously. Both mouse and human uPAR increased cell adhesion and migration on vitronectin. Rac1 was activated and responsible for the increase in cell migration. HEK-293 cells that did not express uPAR formed palpable tumors in severe combined immunodeficient mice; however, metastases were exceedingly rare. The xenografts contained abundant mouse uPA, produced by infiltrating mouse cells, but no human uPA. Mouse uPA bound only to mouse uPAR and not human uPAR and, thus, could not interact with human uPAR-expressing HEK-293 cells in xenografts. Nevertheless, both mouse and human uPAR significantly increased HEK-293 cell metastasis into the lungs. The activity of human uPAR suggests that uPAR may promote cancer metastasis independent of uPA. Candidate mechanisms include its effects on adhesion, migration, and Rac1 activation.
Collapse
Affiliation(s)
- Minji Jo
- Department of Pathology, UCSD School of Medicine, La Jolla, CA 92093-0612, USA
| | | | | | | |
Collapse
|
38
|
Balsara RD, Ploplis VA. Plasminogen activator inhibitor-1: the double-edged sword in apoptosis. Thromb Haemost 2008; 100:1029-1036. [PMID: 19132226 PMCID: PMC3674867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Plasminogen activator inhibitor type-1 (PAI-1) is a multi-functional protein. It is a fast-acting inhibitor of plasminogen activators; urokinase-plasminogen activator and tissue type plasminogen activator, and also plays an important role in regulating cell proliferation, adhesion, migration, and signal transduction pathways. These biological events are important processes during angiogenesis and restenosis. PAI-1 has been shown to regulate proliferation, migration, and apoptosis of vascular smooth muscle cells and endothelial cells. The ability of PAI-1 to regulate cellular proliferation and migration has been attributed to its ability to control plasmin production, modify signaling pathways, and its inherent multifactorial ability to bind to vitronectin and lipoprotein receptor-related protein. However, the mechanism by which PAI-1 regulates the apoptotic pathway is not well understood. Evidence from the literature suggests that PAI-1 or its deficiency alters key signalling pathways, such as the PI3-k/Akt and the Jak/STAT pathways, and is involved in maintaining endothelial cell integrity thereby regulating cell death. Other investigators have demonstrated that PAI-1 directly binds to caspases as a mechanism of PAI-1-mediated cellular apoptosis. Moreover, results from studies assessing the role of PAI-1 in apoptosis have suggested that PAI-1 can exert pathogenic or protective effects, which may be related to the disease model or type of injury employed.
Collapse
|
39
|
Hernández-Campo PM, Almeida J, Orfao A. Hemoglobinuria paroxística nocturna. Med Clin (Barc) 2008; 131:617-30. [DOI: 10.1157/13127921] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Gupta A, Lotan Y, Ashfaq R, Roehrborn CG, Raj GV, Aragaki CC, Montorsi F, Shariat SF. Predictive value of the differential expression of the urokinase plasminogen activation axis in radical prostatectomy patients. Eur Urol 2008; 55:1124-33. [PMID: 18585843 DOI: 10.1016/j.eururo.2008.06.054] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2008] [Accepted: 06/12/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND The urokinase plasminogen axis is composed of urokinase plasminogen activator (uPA), its receptor (uPAR), and its inhibitors (PAI-1 and PAI-2). This axis is involved in cell proliferation, angiogenesis, extracellular matrix degradation, invasion, and metastases. OBJECTIVE To assess the relationship of the uPA axis with pathologic features and outcomes in prostate cancer. DESIGN, SETTING, AND PARTICIPANTS Retrospective study of 230 consecutive patients treated with radical prostatectomy for clinically localized disease. INTERVENTIONS None. MEASUREMENTS Immunohistochemical staining for uPA, uPAR, and PAI-1 were carried out on serial archival tissue microarray specimens. These markers were histologically categorized as normal or overexpressed. Disease recurrence was classified as aggressive if metastases were present, if postrecurrence prostate-specific antigen (PSA) doubling time was <10 mo, or if the patients failed to respond to salvage local radiation therapy. RESULTS AND LIMITATIONS The median follow-up was 63 mo. The combined expression of uPA and PAI-1 was associated with extraprostatic extension (p=0.01) and seminal vesicle invasion (p=0.008). On multivariable analysis, the combined uPA/PAI-1 expression was associated with overall (risk ratio [RR]: 2.3; 95% confidence interval [CI]: 1.1-4.8; p=0.02) and aggressive disease recurrence (RR: 9.4; 95% CI: 3.5-25; p<0.0001) but not with nonaggressive disease recurrence. Expression of uPAR was not associated with any of the outcomes. The study is limited by its retrospective nature and lack of long-term follow-up. CONCLUSIONS Overexpression of both uPA and PAI-1 is associated with adverse pathologic features and higher risk of overall and aggressive disease recurrence in men treated with radical prostatectomy for clinically localized prostate cancer. After validation, these markers may be useful in selecting patients most likely to benefit from adjuvant therapy. These markers should also be considered for addition into postoperative prediction tools.
Collapse
Affiliation(s)
- Amit Gupta
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9110, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Sun Q, Xu Q, Dong X, Cao L, Huang X, Hu Q, Hua ZC. A hybrid protein comprising ATF domain of pro-UK and VAS, an angiogenesis inhibitor, is a potent candidate for targeted cancer therapy. Int J Cancer 2008; 123:942-50. [DOI: 10.1002/ijc.23537] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Matusik RJ, Jin RJ, Sun Q, Wang Y, Yu X, Gupta A, Nandana S, Case TC, Paul M, Mirosevich J, Oottamasathien S, Thomas J. Prostate epithelial cell fate. Differentiation 2008; 76:682-98. [PMID: 18462434 DOI: 10.1111/j.1432-0436.2008.00276.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Androgen receptor (AR) within prostatic mesenchymal cells, with the absence of AR in the epithelium, is still sufficient to induce prostate development. AR in the luminal epithelium is required to express the secretory markers associated with differentiation. Nkx3.1 is expressed in the epithelium in early prostatic embryonic development and expression is maintained in the adult. Induction of the mouse prostate gland by the embryonic mesenchymal cells results in the organization of a sparse basal layer below the luminal epithelium with rare neuroendocrine cells that are interdispersed within this basal layer. The human prostate shows similar glandular organization; however, the basal layer is continuous. The strong inductive nature of embryonic prostatic and bladder mesenchymal cells is demonstrated in grafts where embryonic stem (ES) cells are induced to differentiate and organize as a prostate and bladder, respectively. Further, the ES cells can be driven by the correct embryonic mesenchymal cells to form epithelium that differentiates into secretory prostate glands and differentiated bladders that produce uroplakin. This requires the ES cells to mature into endoderm that gives rise to differentiated epithelium. This process is control by transcription factors in both the inductive mesenchymal cells (AR) and the responding epithelium (FoxA1 and Nkx3.1) that allows for organ development and differentiation. In this review, we explore a molecular mechanism where the pattern of transcription factor expression controls cell determination, where the cell is assigned a developmental fate and subsequently cell differentiation, and where the assigned cell now emerges with it's own unique character.
Collapse
Affiliation(s)
- Robert J Matusik
- Department of Urologic Surgery, Vanderbilt University Medical Center, A-1302 Medical Center North, 1161 21st Ave South, Nashville, TN 37232 2765, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Even though liver metastasis accounts for the vast majority of cancer deaths in patients with colorectal cancer (CRC), fundamental questions about the molecular and cellular mechanisms of liver metastasis still remain unanswered. Determination of gene expression profiles by microarray technology has improved our knowledge of CRC molecular pathways. However, defined gene signatures are highly variable among studies. Expression profiles and molecular markers have been specifically linked to liver metastases mechanistic paths in CRC. However, to date, none of the identified signatures or molecular markers has been successfully validated as a diagnostic or prognostic tool applicable to routine clinical practice. To obtain a genetic signature for liver metastasis in CRC, measures to improve reproducibility, to increase consistency, and to validate results need to be implemented. Alternatives to expression profiling with microarray technology are continuing to be used. In the recent past, many genes codifying for proteins that are directly or indirectly involved in adhesion, invasion, angiogenesis, survival and cell growth have been linked to mechanisms of liver metastases in CRC.
Collapse
|
44
|
Brakenhielm E, Burton JB, Johnson M, Chavarria N, Morizono K, Chen I, Alitalo K, Wu L. Modulating metastasis by a lymphangiogenic switch in prostate cancer. Int J Cancer 2007; 121:2153-61. [PMID: 17583576 PMCID: PMC2838420 DOI: 10.1002/ijc.22900] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Prostate cancer dissemination is difficult to detect in the clinic, and few treatment options exist for patients with advanced-stage disease. Our aim was to investigate the role of tumor lymphangiogenesis during metastasis. Further, we implemented a noninvasive molecular imaging technique to facilitate the assessment of the metastatic process. The metastatic potentials of several human prostate cancer xenograft models, LAPC-4, LAPC-9, PC3 and CWR22Rv-1 were compared. The cells were labeled with luciferase, a bioluminescence imaging reporter gene, to enable optical imaging. After tumor implantation the animals were examined weekly during several months for the appearance of metastases. Metastatic lesions were confirmed by immunohistochemistry. Additionally, the angiogenic and lymphangiogenic profiles of the tumors were characterized. To confirm the role of lymphangiogenesis in mediating metastasis, the low-metastatic LAPC-9 tumor cells were engineered to overexpress VEGF-C, and the development of metastases was evaluated. Our results show CWR22Rv-1 and PC3 tumor cell lines to be more metastatic than LAPC-4, which in turn disseminates more readily than LAPC-9. The difference in metastatic potential correlated with the endogenous production levels of lymphangiogenic growth factor VEGF-C and the presence of tumor lymphatics. In agreement, induced overexpression of VEGF-C in LAPC-9 enhanced tumor lymphangiogenesis leading to the development of metastatic lesions. Taken together, our studies, based on a molecular imaging approach for semiquantitative detection of micrometastases, point to an important role of tumor lymphatics in the metastatic process of human prostate cancer. In particular, VEGF-C seems to play a key role in prostate cancer metastasis.
Collapse
Affiliation(s)
- Ebba Brakenhielm
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Jeremy B. Burton
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Mai Johnson
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Nelson Chavarria
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Kouki Morizono
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Irvin Chen
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Kari Alitalo
- Molecular/Cancer Biology Laboratory and Ludwig Institute for Cancer Research, Helsinki University Central Hospital, Helsinki, Finland
| | - Lily Wu
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Crump Institute of Molecular Imaging, David Geffen School of Medicine at UCLA, Los Angeles, CA
| |
Collapse
|
45
|
Du B, Leung H, Khan KMF, Miller CG, Subbaramaiah K, Falcone DJ, Dannenberg AJ. Tobacco smoke induces urokinase-type plasminogen activator and cell invasiveness: evidence for an epidermal growth factor receptor dependent mechanism. Cancer Res 2007; 67:8966-72. [PMID: 17875740 DOI: 10.1158/0008-5472.can-07-1388] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multiple tobacco smoke-related premalignant and malignant lesions develop synchronously or metachronously in various organ sites, including the oral cavity. Both field cancerization and clonal migration seem to contribute to the occurrence of multiple tumors. Although the importance of endogenous factors (e.g., oncogenes) in regulating clonal migration is well established, little is known about the role of exogenous factors. Hence, the main objective of this study was to elucidate the mechanism by which tobacco smoke stimulated the migration of cells through extracellular matrix (ECM). Treatment of MSK-Leuk1 cells with a saline extract of tobacco smoke induced the migration of cells through ECM. Tobacco smoke induced the expression of urokinase-type plasminogen activator (uPA), resulting in plasmin-dependent degradation of ECM and increased cell migration. AG1478, a small-molecule inhibitor of the epidermal growth factor receptor (EGFR) tyrosine kinase, a neutralizing antibody to EGFR, or an antibody to amphiregulin, an EGFR ligand, also blocked tobacco smoke-mediated induction of uPA and cell migration through ECM. PD98059, an inhibitor of mitogen-activated protein kinase (MAPK) kinase activity, caused similar inhibitory effects. Taken together, these results suggest that tobacco smoke activated the EGFR-->extracellular signal-regulated kinase 1/2 MAPK pathway, causing induction of uPA. This led, in turn, to increased plasmin-dependent degradation of matrix proteins and enhanced cell migration through ECM. These data strongly suggest that chemicals in tobacco smoke can mimic the effects of oncogenes in regulating uPA-dependent cell invasion through ECM. These findings also strengthen the rationale for determining whether inhibitors of EGFR tyrosine kinase reduce the risk of tobacco smoke-related second primary tumors.
Collapse
Affiliation(s)
- Baoheng Du
- Department of Medicine, Joan and Sanford I. Weill Medical College of Cornell University, New York, New York, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Jögi A, Pass J, Høyer-Hansen G, Lund LR, Nielsen BS, Danø K, Rømer J. Systemic administration of anti-urokinase plasminogen activator receptor monoclonal antibodies induces hepatic fibrin deposition in tissue-type plasminogen activator deficient mice. J Thromb Haemost 2007; 5:1936-44. [PMID: 17723133 DOI: 10.1111/j.1538-7836.2007.02653.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Degradation of extracellular matrix proteins, such as fibrin, is pivotal to tumor invasion. Inhibition of the interaction between urokinase plasminogen activator (u-PA) and its receptor (u-PAR), and hence pro-u-PA activation, is an attractive approach to anti-invasive cancer therapy. A number of inhibitors exist for the human system, but because of species specificity none of these are efficient in mice. We have recently generated an inhibitory monoclonal antibody (mAb) against mouse u-PAR (mR1) by immunization of u-PAR-deficient mice. OBJECTIVES To evaluate the effect of mR1 in vivo in a physiological setting sensitive to deregulated fibrinolysis, we have administered mR1 systemically and quantitated the effect on liver fibrin accumulation. METHODS Wild-type and tissue-type plasminogen activator (t-PA) deficient mice were administered with mR1, or control antibody, during 6 weeks. Thereafter, the livers were retrieved and the amount of liver fibrin measured by unbiased morphometrical analysis of immunofluorescence signal. RESULTS Systemic administration of mR1 caused significantly increased fibrin signal in anti-u-PAR treated t-PA-deficient mice compared to mock-treated, which mimics the phenotype of u-PAR;t-PA double-deficient mice. Fibrin and fibronectin accumulated within the sinusoidal space and was infiltrated by inflammatory cells. Analysis of small and rare hepatic fibrin plaques observed in t-PA-deficient mice showed infiltrating macrophages that, contrary to surrounding Kuppfer cells, expressed u-PAR. CONCLUSION We show that u-PAR-expressing macrophages are involved in cell-mediated fibrinolysis of liver fibrin deposits, and that the antimouse-u-PAR mAb is effective in vivo and thus suited for studies of the effect of targeting the u-PA/u-PAR interaction in mouse cancer models.
Collapse
Affiliation(s)
- A Jögi
- Finsen Laboratory, Rigshospitalet, Copenhagen Biocenter, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
47
|
Geden SE, Gardner RA, Fabbrini MS, Ohashi M, Phanstiel Iv O, Teter K. Lipopolyamine treatment increases the efficacy of intoxication with saporin and an anticancer saporin conjugate. FEBS J 2007; 274:4825-36. [PMID: 17714513 DOI: 10.1111/j.1742-4658.2007.06008.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Saporin is a type I ribosome-inactivating protein that is often appended with a cell-binding domain to specifically target and kill cancer cells. Urokinase plasminogen activator (uPA)-saporin, for example, is an anticancer toxin that consists of a chemical conjugate between the human uPA and native saporin. Both saporin and uPA-saporin enter the target cell by endocytosis and must then escape the endomembrane system to reach the cytosolic ribosomes. The latter process may represent a rate-limiting step for intoxication and would therefore directly affect toxin potency. In the present study, we document two treatments (shock with dimethylsulfoxide and lipopolyamine coadministration) that generate substantial cellular sensitization to saporin/uPA-saporin. With the use of lysosome-endosome X (LEX)1 and LEX2 mutant cell lines, an endosomal trafficking step preceding cargo delivery to the late endosomes was identified as a major site for the dimethylsulfoxide-facilitated entry of saporin into the cytosol. Dimethylsulfoxide and lipopolyamines are known to disrupt the integrity of endosome membranes, so these reagents could facilitate the rapid movement of toxin from permeabilized endosomes to the cytosol. However, the same pattern of toxin sensitization was not observed for dimethylsulfoxide- or lipopolyamine-treated cells exposed to diphtheria toxin, ricin, or the catalytic A chain of ricin. The sensitization effects were thus specific for saporin, suggesting a novel mechanism of saporin translocation by endosome disruption. Lipopolyamines have been developed as in vivo gene therapy vectors; thus, lipopolyamine coadministration with uPA-saporin or other saporin conjugates could represent a new approach for anticancer toxin treatments.
Collapse
Affiliation(s)
- Sandra E Geden
- Department of Molecular Biology and Microbiology and Biomolecular Science Center, University of Central Florida, FL, USA
| | | | | | | | | | | |
Collapse
|
48
|
Wu Z, McRoberts KS, Theodorescu D. The role of PTEN in prostate cancer cell tropism to the bone micro-environment. Carcinogenesis 2007; 28:1393-400. [PMID: 17347137 DOI: 10.1093/carcin/bgm050] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Little is known about the role of the tumor suppressor gene phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in prostate cancer bone metastasis. To explore this, we used a pTetOn PTEN cell line in which PTEN expression was reconstituted in a PTEN-null bone metastatic human prostate cancer cell line, LnCaP-C4-2. We found that C4-2 cells selectively migrated toward conditioned medium from primary mouse calvaria cells compared with that derived from lung fibroblasts. Further evaluation with conditioned medium from an established mouse calvaria osteoblast cell line and control non-osteoblast cell line indicates that osteoblastic characteristics convey this specific migration to C4-2 cells. We evaluated promiscuously metastatic PC-3 prostate as well as T24T and UMUC-3 bladder cells and found they did not have a specific migratory response to calvaria-conditioned medium as did C4-2. Induction of PTEN expression inhibited the motility of C4-2 cells toward calvaria-conditioned medium but had no effect on migration toward lung-conditioned medium and this inhibitory effect was dependent on the PTEN lipid phosphatase activity. Calvaria- but not lung-conditioned medium induced activation of the small GTPase Rac1. Constitutively active Rac1 but not focal adhesion kinase or Cdc42 could rescue cells from the inhibitory effect of PTEN on cell migration and PTEN induction was observed to inhibit Rac1 activation in response to calvaria-conditioned medium. Our results support the notion that loss of PTEN function in human prostate cancer may specifically facilitate bone rather than other organ metastasis and suggest that Rac1, as a PTEN effector, may contribute to this metastatic tropism.
Collapse
Affiliation(s)
- Z Wu
- Department of Molecular Physiology and Biological Physics, Box 422, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
49
|
|
50
|
Edwards S, Lalor PF, Tuncer C, Adams DH. Vitronectin in human hepatic tumours contributes to the recruitment of lymphocytes in an alpha v beta3-independent manner. Br J Cancer 2006; 95:1545-54. [PMID: 17088900 PMCID: PMC2360745 DOI: 10.1038/sj.bjc.6603467] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The degree of lymphocyte infiltration is a prognostic factor in liver cancer, but to date the mechanisms by which lymphocytes infiltrate into and are retained in hepatic tumours are poorly understood. We hypothesised that the extracellular matrix glycoprotein vitronectin, a major component of the stroma of hepatic tumours, might play a role in the recruitment and retention of tumour-infiltrating lymphocytes (TIL). Thus, we investigated the ability of vitronectin to support migration and adhesion of TIL isolated from hepatocellular carcinoma and colorectal hepatic metastases. Soluble vitronectin-induced dose-dependent migration of TIL in in vitro chemotaxis and haptotaxis assays and vitronectin in tissue sections was able to support TIL adhesion to tumour stroma. Neither adhesion nor migration was inhibited by a function blocking mAb against the major vitronectin receptor αvβ3 and we were unable to detect αvβ3 on TIL in vitro or in vivo on tumour tissue. However, TIL did express high levels of urokinase-type plasminogen activator receptor (uPAR) and inhibitory antibodies and amiloride both significantly inhibited TIL adhesion to vitronectin and reduced transendothelial migration of lymphocytes across liver endothelium in vitro. Thus, we provide evidence that vitronectin in liver tumours can support the recruitment and retention of effector lymphocytes by an uPAR-dependent mechanism.
Collapse
Affiliation(s)
- S Edwards
- Liver Research Group, Department of Medicine, 5th Floor, Institute of Biomedical Research, Wolfson Drive, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - P F Lalor
- Liver Research Group, Department of Medicine, 5th Floor, Institute of Biomedical Research, Wolfson Drive, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
- E-mail:
| | - C Tuncer
- Liver Research Group, Department of Medicine, 5th Floor, Institute of Biomedical Research, Wolfson Drive, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - D H Adams
- Liver Research Group, Department of Medicine, 5th Floor, Institute of Biomedical Research, Wolfson Drive, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|