1
|
Kulakova L, Li KH, Chiang AWT, Schwoerer MP, Schoffelen S, Elkholy K, Chao KL, Shahid S, Kumar B, Murray NB, Archer-Hartmann S, Azadi P, Voldborg BG, Marin A, Mariuzza RA, Andrianov AK, Ploss A, Lewis NE, Toth EA, Fuerst TR. Glycoengineering of the hepatitis C virus E2 glycoprotein leads to improved biochemical properties and enhanced immunogenicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.02.646860. [PMID: 40291659 PMCID: PMC12026506 DOI: 10.1101/2025.04.02.646860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
An effective vaccine against hepatitis C virus (HCV) must elicit the production of broadly neutralizing antibodies (bnAbs) reproducibly against the E1E2 glycoprotein complex. Little is known about how glycan content affects this process. Ideally, glycans would maximize epitope exposure without compromising antigen stability or exposing new epitopes. However, typical recombinant vaccines contain considerable heterogeneity in glycan content, which can affect the antibody response and neutralization potency. Here we employed glycoengineered Chinese hamster ovary (geCHO) cell lines that impart nearly homogeneous glycosylation as a means to test how specific glycan features influence antigenicity and immunogenicity for the secreted HCV E2 ectodomain (sE2). Specific geCHO antigens exhibited a modest but reproducible increase in affinity for some mAbs relative to CHO- and HEK293-produced sE2. Surprisingly, one geCHO sE2 antigen failed to bind the CD81 receptor, indicating the potential for significant glycan effects on biochemical properties. We immunized mice with the four antigens and found the total antibody response to be the same for all groups. However, sera from one geCHO group exhibited a 7-fold improvement in neutralization against the homologous HCV pseudovirus and had the most mice whose sera exhibited neutralization activity against genotypes 1b, 2a, 2b, and 3. Further analysis identified beneficial and deleterious glycan features, and the glycan that correlated the most with decreased potency was relatively small. However, size was not the sole determinant of glycan-driven effects on the antibody response. In summary, glycan content impacts biochemical properties of antigens to varying degrees and such effects can influence immune response quality and uniformity.
Collapse
|
2
|
Kundu J, Le HT, Logan M, Hockman D, Landi A, Crawford K, Wininger M, Johnson J, Kundu JK, Tiffney EA, Urbanowicz RA, Ball JK, Bailey JR, Bukh J, Law M, Foung S, Tyrrell DL, Houghton M, Law JL. Recombinant H77C gpE1/gpE2 heterodimer elicits superior HCV cross-neutralisation than H77C gpE2 alone. J Hepatol 2024; 81:941-948. [PMID: 38986744 PMCID: PMC11830426 DOI: 10.1016/j.jhep.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND & AIMS An optimal HCV vaccine requires the induction of antibodies that neutralise the infectivity of many heterogenous viral isolates. In this study, we have focused on determining the optimal recombinant envelope glycoprotein component to elicit cross-neutralising antibodies against global HCV genotypes. We compared the immunoreactivity and antigenicity of the HCV genotype 1a strain H77C-derived envelope glycoprotein heterodimer gpE1/gpE2 with that of recombinant gpE2 alone. METHODS Characterisation of the envelope glycoproteins was accomplished by determining their ability to bind to a panel of broadly cross-neutralising monoclonal antibodies. Immunogenicity was determined by testing the ability of vaccine antisera to neutralise the infectivity in vitro of a panel of pseudotyped HCV particles in which gpE1/gpE2 derived from representative isolates of the major global HCV genotypes were displayed. RESULTS gpE1/gpE2 binds to more diverse broadly cross-neutralising antibodies than gpE2 alone and elicits a broader profile of cross-neutralising antibodies in animals, especially against more heterologous, non-1a genotypes. While not all heterologous HCV strains can be potently inhibited in vitro by gpE1/gpE2 antisera derived from a single HCV strain, the breadth of heterologous cross-neutralisation is shown to be substantial. CONCLUSIONS Our work supports the inclusion of gpE1/gpE2 in an HCV vaccine in order to maximise the cross-neutralisation of heterogenous HCV isolates. Our data also offers future directions in formulating a cocktail of gpE1/gpE2 antigens from a small selection of HCV genotypes to further enhance cross-neutralisation of global HCV strains and hopefully advance the development of a globally effective HCV vaccine. IMPACT AND IMPLICATIONS An HCV vaccine is urgently required to prevent the high global incidence of HCV infection and disease. Since HCV is a highly heterogeneous virus, it is desirable for a vaccine to elicit antibodies that neutralise the infectivity of most global strains. To this end, we have compared the immunoreactivity and antigenicity of recombinant H77C E1E2 heterodimer with that of H77C E2 alone and show that the former exhibits more cross-neutralising epitopes and demonstrates a broader cross-neutralisation profile in vitro. In addition, our data suggests a way to further broaden cross-neutralisation using a combination of E1E2 antigens derived from a few different HCV clades. Our work is relevant for the development of an effective global HCV vaccine.
Collapse
Affiliation(s)
- Juthika Kundu
- Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Hoa T Le
- Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Logan
- Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Darren Hockman
- Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Abdolamir Landi
- Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Kevin Crawford
- Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Mark Wininger
- Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Janelle Johnson
- Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Joydeb K Kundu
- Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - E Alana Tiffney
- Dept of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Richard A Urbanowicz
- Dept of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jonathan K Ball
- Wolfson Centre for Global Virus Infections, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom; Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Justin R Bailey
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Steven Foung
- Department of Pathology, Stanford University, Palo Alto, California, USA
| | - D Lorne Tyrrell
- Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Houghton
- Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| | - John Lokman Law
- Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Garbuglia AR, Pauciullo S, Zulian V, Del Porto P. Update on Hepatitis C Vaccine: Results and Challenges. Viruses 2024; 16:1337. [PMID: 39205311 PMCID: PMC11359353 DOI: 10.3390/v16081337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Therapy against the Hepatitis C virus (HCV) has significantly improved with the introduction of direct-acting antiviral drugs (DAAs), achieving over 95% sustained virological response (SVR). Despite this, the development of an effective anti-HCV vaccine remains a critical challenge due to the low number of patients treated with DAAs and the occurrence of HCV reinfections in high-risk groups. Current vaccine strategies aim to stimulate either B-cell or T-cell responses. Vaccines based on E1 and E2 proteins can elicit broad cross-neutralizing antibodies against all major HCV genotypes, though with varying efficiencies and without full protection against infection. In humans, the neutralizing antibodies induced by such vaccines mainly target the AR3 region, but their levels are generally insufficient for broad neutralization. Various HCV proteins expressed through different viral vectors have been utilized to elicit T cell immune responses, showing sustained expansion of HCV-specific effector memory T cells and improved proliferation and polyfunctionality of memory T cells over time. However, despite these advancements, the frequency and effectiveness of T-cell responses remain limited.
Collapse
Affiliation(s)
- Anna Rosa Garbuglia
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (S.P.); (V.Z.)
| | - Silvia Pauciullo
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (S.P.); (V.Z.)
| | - Verdiana Zulian
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (S.P.); (V.Z.)
| | - Paola Del Porto
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00100 Rome, Italy;
| |
Collapse
|
4
|
Muhammad AM, Salum GM, Meguid MAE, Fotouh BE, Dawood RM. Bioinformatics analysis of multi-epitope peptide vaccines against Hepatitis C virus: a molecular docking study. J Genet Eng Biotechnol 2023; 21:117. [PMID: 37962693 PMCID: PMC10646107 DOI: 10.1186/s43141-023-00583-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Hepatitis C Virus (HCV) infection is one of the causal agents of liver disease burden. Six multiple antigenic peptides were synthesized including (P315, P412, and P517) plus (P1771, P2121, and P2941) to induce humoral and cellular responses, respectively against HCV infection. AIM This paper aimed to employ computational tools to evaluate the efficacy of each peptide individually and to determine the most effective one for better vaccine development and/or immunotherapy. METHODS VaxiJen web and AllerTOP servers were used for antigenicity and allergenicity prediction, respectively. The ToxinPred web server was used to investigate the peptide toxicity. Each peptide was docked with its corresponding receptors. RESULTS No peptides were expected to be toxic. P315 and P2941 are predicted to have robust antigenic properties, lowest allergenicity, and minimal sOPEP energies. In turn, P315 (derived from gpE1) formed the highest hydrophobic bonds with the BCR and CD81 receptors that will elicit B cell function. P2941 (derived from NS5B) was shown to strongly bind to both CD4 and CD8 receptors that will elicit T cell function. CONCLUSION P315 successfully bound to B cell (BCR and CD81) receptors. Also, P2941 is strongly bound to T cell (CD4 and CD8) receptors.
Collapse
Affiliation(s)
- Ashraf M Muhammad
- Applied Biotechnology Program, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Ghada M Salum
- Department of Microbial Biotechnology, Genetic Engineering Division, National Research Centre, Dokki, P.O. 12622, Giza, Egypt.
| | - Mai Abd El Meguid
- Department of Microbial Biotechnology, Genetic Engineering Division, National Research Centre, Dokki, P.O. 12622, Giza, Egypt
| | - Basma E Fotouh
- Department of Microbial Biotechnology, Genetic Engineering Division, National Research Centre, Dokki, P.O. 12622, Giza, Egypt
| | - Reham M Dawood
- Department of Microbial Biotechnology, Genetic Engineering Division, National Research Centre, Dokki, P.O. 12622, Giza, Egypt
| |
Collapse
|
5
|
Toth EA, Andrianov AK, Fuerst TR. Prospects for developing an Hepatitis C virus E1E2-based nanoparticle vaccine. Rev Med Virol 2023; 33:e2474. [PMID: 37565536 PMCID: PMC10626635 DOI: 10.1002/rmv.2474] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
Globally, more than 58 million people are chronically infected with Hepatitis C virus (HCV) with 1.5 million new infections occurring each year. An effective vaccine for HCV is therefore a major unmet medical and public health need. Since HCV rapidly accumulates mutations, vaccines must elicit the production of broadly neutralising antibodies (bnAbs) in a reproducible fashion. Decades of research have generated a number of HCV vaccine candidates. Based on the available data and research through clinical development, a vaccine antigen based on the E1E2 glycoprotein complex appears to be the best choice, but robust induction of humoral and cellular responses leading to virus neutralisation has not yet been achieved. One issue that has arisen in developing an HCV vaccine (and many other vaccines as well) is the platform used for antigen delivery. The majority of viral vaccine trials have employed subunit vaccines. However, subunit vaccines often have limited immunogenicity, as seen for HCV, and thus multiple formats must be examined in order to elicit a robust anti-HCV immune response. Nanoparticle vaccines are gaining prominence in the field due to their ability to facilitate a controlled multivalent presentation and trafficking to lymph nodes, where they can interact with both arms of the immune system. This review discusses the potential for development of a nanoparticle-based HCV E1E2 vaccine, with an emphasis on the potential benefits of such an approach along with the major challenges facing the incorporation of E1E2 into nanoparticulate delivery systems and how those challenges can be addressed.
Collapse
Affiliation(s)
- Eric A. Toth
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Alexander K. Andrianov
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Thomas R. Fuerst
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
6
|
Liang TJ, Law JLM, Pietschmann T, Ray SC, Bukh J, Bull R, Chung RT, Tyrrell DL, Houghton M, Rice CM. Challenge Inoculum for Hepatitis C Virus Controlled Human Infection Model. Clin Infect Dis 2023; 77:S257-S261. [PMID: 37579208 PMCID: PMC10681659 DOI: 10.1093/cid/ciad336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Indexed: 08/16/2023] Open
Abstract
For any controlled human infection model (CHIM), a safe, standardized, and biologically relevant challenge inoculum is necessary. For hepatitis C virus (HCV) CHIM, we propose that human-derived high-titer inocula of several viral genotypes with extensive virologic, serologic, and molecular characterizations should be the most appropriate approach. These inocula should first be tested in human volunteers in a step-wise manner to ensure safety, reproducibility, and curability prior to using them for testing the efficacy of candidate vaccines.
Collapse
Affiliation(s)
- T Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - John L M Law
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Thomas Pietschmann
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Stuart C Ray
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital; Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rowena Bull
- Liver Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Raymond T Chung
- School of Biomedical Sciences and The Kirby Institute, Medicine and Health, University of New South Wales, Sydney, Australia
| | - D Lorne Tyrrell
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Michael Houghton
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, USA
| |
Collapse
|
7
|
Buonaguro L, Cavalluzzo B, Mauriello A, Ragone C, Tornesello AL, Buonaguro FM, Tornesello ML, Tagliamonte M. Microorganisms-derived antigens for preventive anti-cancer vaccines. Mol Aspects Med 2023; 92:101192. [PMID: 37295175 DOI: 10.1016/j.mam.2023.101192] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Cancer prevention is one of the aim with the highest priority in order to reduce the burden of cancer diagnosis and treatment on individuals as well as on healthcare systems. To this aim, vaccines represent the most efficient primary cancer prevention strategy. Indeed, anti-cancer immunological memory elicited by preventive vaccines might promptly expand and prevent tumor from progressing. Antigens derived from microorganisms (MoAs), represent the obvious target for developing highly effective preventive vaccines for virus-induced cancers. In this respect, the drastic reduction in cancer incidence following HBV and HPV preventive vaccines are the paradigmatic example of such evidence. More recently, experimental evidences suggest that MoAs may represent a "natural" anti-cancer preventive vaccination or can be exploited for developing vaccines to prevent cancers presenting highly homologous tumor-associated antigens (TAAs) (e.g. molecular mimicry). The present review describes the different preventive anti-cancer vaccines based on antigens derived from pathogens at the different stages of development.
Collapse
Affiliation(s)
- Luigi Buonaguro
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Beatrice Cavalluzzo
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Angela Mauriello
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Concetta Ragone
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Anna Lucia Tornesello
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Franco M Buonaguro
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Maria Tagliamonte
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy.
| |
Collapse
|
8
|
Gomez-Escobar E, Roingeard P, Beaumont E. Current Hepatitis C Vaccine Candidates Based on the Induction of Neutralizing Antibodies. Viruses 2023; 15:1151. [PMID: 37243237 PMCID: PMC10220683 DOI: 10.3390/v15051151] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The introduction of direct-acting antivirals (DAAs) has revolutionized hepatitis C treatment. Short courses of treatment with these drugs are highly beneficial to patients, eliminating hepatitis C virus (HCV) without adverse effects. However, this outstanding success is tempered by the continuing difficulty of eradicating the virus worldwide. Thus, access to an effective vaccine against HCV is strongly needed to reduce the burden of the disease and contribute to the elimination of viral hepatitis. The recent failure of a T-cell vaccine based on the use of viral vectors expressing the HCV non-structural protein sequences to prevent chronic hepatitis C in drug users has pointed out that the induction of neutralizing antibodies (NAbs) will be essential in future vaccine candidates. To induce NAbs, vaccines must contain the main target of this type of antibody, the HCV envelope glycoproteins (E1 and E2). In this review, we summarize the structural regions in E1 and E2 proteins that are targeted by NAbs and how these proteins are presented in the vaccine candidates currently under development.
Collapse
Affiliation(s)
| | - Philippe Roingeard
- Inserm U1259 MAVIVH, Université de Tours and CHRU de Tours, 37000 Tours, France;
| | - Elodie Beaumont
- Inserm U1259 MAVIVH, Université de Tours and CHRU de Tours, 37000 Tours, France;
| |
Collapse
|
9
|
Diakite M, Shaw-Saliba K, Lau CY. Malignancy and viral infections in Sub-Saharan Africa: A review. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2023; 3:1103737. [PMID: 37476029 PMCID: PMC10358275 DOI: 10.3389/fviro.2023.1103737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
The burden of malignancy related to viral infection is increasing in Sub-Saharan Africa (SSA). In 2018, approximately 2 million new cancer cases worldwide were attributable to infection. Prevention or treatment of these infections could reduce cancer cases by 23% in less developed regions and about 7% in developed regions. Contemporaneous increases in longevity and changes in lifestyle have contributed to the cancer burden in SSA. African hospitals are reporting more cases of cancer related to infection (e.g., cervical cancer in women and stomach and liver cancer in men). SSA populations also have elevated underlying prevalence of viral infections compared to other regions. Of 10 infectious agents identified as carcinogenic by the International Agency for Research on Cancer, six are viruses: hepatitis B and C viruses (HBV and HCV, respectively), Epstein-Barr virus (EBV), high-risk types of human papillomavirus (HPV), Human T-cell lymphotropic virus type 1 (HTLV-1), and Kaposi's sarcoma herpesvirus (KSHV, also known as human herpesvirus type 8, HHV-8). Human immunodeficiency virus type 1 (HIV) also facilitates oncogenesis. EBV is associated with lymphomas and nasopharyngeal carcinoma; HBV and HCV are associated with hepatocellular carcinoma; KSHV causes Kaposi's sarcoma; HTLV-1 causes T-cell leukemia and lymphoma; HPV causes carcinoma of the oropharynx and anogenital squamous cell cancer. HIV-1, for which SSA has the greatest global burden, has been linked to increasing risk of malignancy through immunologic dysregulation and clonal hematopoiesis. Public health approaches to prevent infection, such as vaccination, safer injection techniques, screening of blood products, antimicrobial treatments and safer sexual practices could reduce the burden of cancer in Africa. In SSA, inequalities in access to cancer screening and treatment are exacerbated by the perception of cancer as taboo. National level cancer registries, new screening strategies for detection of viral infection and public health messaging should be prioritized in SSA's battle against malignancy. In this review, we discuss the impact of carcinogenic viruses in SSA with a focus on regional epidemiology.
Collapse
Affiliation(s)
- Mahamadou Diakite
- University Clinical Research Center, University of Sciences, Techniques, and Technologies, Bamako, Mali
| | - Kathryn Shaw-Saliba
- Collaborative Clinical Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Chuen-Yen Lau
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
10
|
Alzua GP, Pihl AF, Offersgaard A, Duarte Hernandez CR, Duan Z, Feng S, Fahnøe U, Sølund C, Weis N, Law M, Prentoe JC, Christensen JP, Bukh J, Gottwein JM. Inactivated genotype 1a, 2a and 3a HCV vaccine candidates induced broadly neutralising antibodies in mice. Gut 2023; 72:560-572. [PMID: 35918103 PMCID: PMC9933178 DOI: 10.1136/gutjnl-2021-326323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 07/13/2022] [Indexed: 01/21/2023]
Abstract
OBJECTIVE A prophylactic vaccine is needed to control the HCV epidemic, with genotypes 1-3 causing >80% of worldwide infections. Vaccine development is hampered by HCV heterogeneity, viral escape including protection of conserved neutralising epitopes and suboptimal efficacy of HCV cell culture systems. We developed cell culture-based inactivated genotype 1-3 HCV vaccine candidates to present natively folded envelope proteins to elicit neutralising antibodies. DESIGN High-yield genotype 1a, 2a and 3a HCV were developed by serial passage of TNcc, J6cc and DBN3acc in Huh7.5 cells and engineering of acquired mutations detected by next-generation sequencing. Neutralising epitope exposure was determined in cell-based neutralisation assays using human monoclonal antibodies AR3A and AR4A, and polyclonal antibody C211. BALB/c mice were immunised with processed and inactivated genotype 1a, 2a or 3a viruses using AddaVax, a homologue of the licenced adjuvant MF-59. Purified mouse and patient serum IgG were assayed for neutralisation capacity; mouse IgG and immune-sera were assayed for E1/E2 binding. RESULTS Compared with the original viruses, high-yield viruses had up to ~1000 fold increased infectivity titres (peak titres: 6-7 log10 focus-forming units (FFU)/mL) and up to ~2470 fold increased exposure of conserved neutralising epitopes. Vaccine-induced IgG broadly neutralised genotype 1-6 HCV (EC50: 30-193 µg/mL; mean 71 µg/mL), compared favourably with IgG from chronically infected patients, and bound genotype 1-3 E1/E2; immune-sera endpoint titres reached up to 32 000. CONCLUSION High-yield genotype 1-3 HCV could be developed as basis for inactivated vaccine candidates inducing broadly neutralising antibodies in mice supporting further preclinical development.
Collapse
Affiliation(s)
- Garazi Pena Alzua
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Hvidovre, Denmark and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Finne Pihl
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Hvidovre, Denmark and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna Offersgaard
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Hvidovre, Denmark and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carlos Rene Duarte Hernandez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Hvidovre, Denmark and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zhe Duan
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Hvidovre, Denmark and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shan Feng
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Hvidovre, Denmark and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Hvidovre, Denmark and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina Sølund
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Hvidovre, Denmark and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Hvidovre, Denmark
| | - Nina Weis
- Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Hvidovre, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Jannick C Prentoe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Hvidovre, Denmark and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jan Pravsgaard Christensen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Hvidovre, Denmark and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Judith Margarete Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Hvidovre, Denmark and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Elbahrawy A, Atalla H, Alboraie M, Alwassief A, Madian A, El Fayoumie M, Tabll AA, Aly HH. Recent Advances in Protective Vaccines against Hepatitis Viruses: A Narrative Review. Viruses 2023; 15:214. [PMID: 36680254 PMCID: PMC9862019 DOI: 10.3390/v15010214] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/03/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023] Open
Abstract
Vaccination has been confirmed to be the safest and, sometimes, the only tool of defense against threats from infectious diseases. The successful history of vaccination is evident in the control of serious viral infections, such as smallpox and polio. Viruses that infect human livers are known as hepatitis viruses and are classified into five major types from A to E, alphabetically. Although infection with hepatitis A virus (HAV) is known to be self-resolving after rest and symptomatic treatment, there were 7134 deaths from HAV worldwide in 2016. In 2019, hepatitis B virus (HBV) and hepatitis C virus (HCV) resulted in an estimated 820,000 and 290,000 deaths, respectively. Hepatitis delta virus (HDV) is a satellite virus that depends on HBV for producing its infectious particles in order to spread. The combination of HDV and HBV infection is considered the most severe form of chronic viral hepatitis. Hepatitis E virus (HEV) is another orally transmitted virus, common in low- and middle-income countries. In 2015, it caused 44,000 deaths worldwide. Safe and effective vaccines are already available to prevent hepatitis A and B. Here, we review the recent advances in protective vaccines against the five major hepatitis viruses.
Collapse
Affiliation(s)
- Ashraf Elbahrawy
- Gastroenterology and Hepatology Unit, Department of Internal Medicine, Al-Azhar University, Cairo 11884, Egypt
| | - Hassan Atalla
- Gastroenterology and Hepatology Unit, Department of Internal Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed Alboraie
- Gastroenterology and Hepatology Unit, Department of Internal Medicine, Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed Alwassief
- Gastroenterology and Hepatology Unit, Department of Internal Medicine, Al-Azhar University, Cairo 11884, Egypt
- Gastroenterology Unit, Department of Internal Medicine, Sultan Qaboos University Hospital, P.O. Box 50, Muscat 123, Oman
| | - Ali Madian
- Department of Internal Medicine, Faculty of Medicine, Al-Azhar University, Assiut 71524, Egypt
| | - Mohammed El Fayoumie
- Gastroenterology and Hepatology Unit, Department of Internal Medicine, Al-Azhar University, Cairo 11884, Egypt
| | - Ashraf A. Tabll
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Center, Giza 12622, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo 11517, Egypt
| | - Hussein H. Aly
- Department of Virology II, National Institute of Infectious Diseases, Toyama1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
| |
Collapse
|
12
|
Babaeimarzangou SS, Zaker H, Soleimannezhadbari E, Gamchi NS, Kazeminia M, Tarighi S, Seyedian H, Tsatsakis A, Spandidos DA, Margina D. Vaccine development for zoonotic viral diseases caused by positive‑sense single‑stranded RNA viruses belonging to the Coronaviridae and Togaviridae families (Review). Exp Ther Med 2022; 25:42. [PMID: 36569444 PMCID: PMC9768462 DOI: 10.3892/etm.2022.11741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/10/2022] [Indexed: 12/02/2022] Open
Abstract
Outbreaks of zoonotic viral diseases pose a severe threat to public health and economies worldwide, with this currently being more prominent than it previously was human history. These emergency zoonotic diseases that originated and transmitted from vertebrates to humans have been estimated to account for approximately one billion cases of illness and have caused millions of deaths worldwide annually. The recent emergence of severe acute respiratory syndrome coronavirus-2 (coronavirus disease 2019) is an excellent example of the unpredictable public health threat causing a pandemic. The present review summarizes the literature data regarding the main vaccine developments in human clinical phase I, II and III trials against the zoonotic positive-sense single-stranded RNA viruses belonging to the Coronavirus and Alphavirus genera, including severe acute respiratory syndrome, Middle east respiratory syndrome, Venezuelan equine encephalitis virus, Semliki Forest virus, Ross River virus, Chikungunya virus and O'nyong-nyong virus. That there are neither vaccines nor effective antiviral drugs available against most of these viruses is undeniable. Therefore, new explosive outbreaks of these zoonotic viruses may surely be expected. The present comprehensive review provides an update on the status of vaccine development in different clinical trials against these viruses, as well as an overview of the present results of these trials.
Collapse
Affiliation(s)
- Seyed Sajjad Babaeimarzangou
- Division of Poultry Health and Diseases, Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia 5756151818, Iran
| | - Himasadat Zaker
- Histology and Microscopic Analysis Division, RASTA Specialized Research Institute (RSRI), West Azerbaijan Science and Technology Park (WASTP), Urmia 5756115322, Iran
| | | | - Naeimeh Shamsi Gamchi
- Histology and Microscopic Analysis Division, RASTA Specialized Research Institute (RSRI), West Azerbaijan Science and Technology Park (WASTP), Urmia 5756115322, Iran
| | - Masoud Kazeminia
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417935840, Iran
| | - Shima Tarighi
- Veterinary Office of West Azerbaijan Province, Urmia 5717617695, Iran
| | - Homayon Seyedian
- Faculty of Veterinary Medicine, Urmia University, Urmia 5756151818, Iran
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Department of Medicine, University of Crete, 71307 Heraklion, Greece,Correspondence to: Professor Denisa Margina, Department of Biochemistry, Faculty of Pharmacy, ‘Carol Davila’ University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Denisa Margina
- Department of Biochemistry, Faculty of Pharmacy, ‘Carol Davila’ University of Medicine and Pharmacy, 020956 Bucharest, Romania,Correspondence to: Professor Denisa Margina, Department of Biochemistry, Faculty of Pharmacy, ‘Carol Davila’ University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| |
Collapse
|
13
|
Donnison T, McGregor J, Chinnakannan S, Hutchings C, Center RJ, Poumbourios P, Klenerman P, Drummer HE, Barnes E. A pan-genotype hepatitis C virus viral vector vaccine generates T cells and neutralizing antibodies in mice. Hepatology 2022; 76:1190-1202. [PMID: 35313015 PMCID: PMC9790311 DOI: 10.1002/hep.32470] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS A prophylactic vaccine targeting multiple HCV genotypes (gt) is urgently required to meet World Health Organization elimination targets. Neutralizing antibodies (nAbs) and CD4+ and CD8+ T cells are associated with spontaneous clearance of HCV, and each may contribute to protective immunity. However, current vaccine candidates generate either nAbs or T cells targeting genetically variable epitopes and have failed to show efficacy in human trials. We have previously shown that a simian adenovirus vector (ChAdOx1) encoding conserved sequences across gt1-6 (ChAd-Gt1-6), and separately gt-1a E2 protein with variable regions deleted (E2Δ123HMW ), generates pan-genotypic T cells and nAbs, respectively. We now aim to develop a vaccine to generate both viral-specific B- and T-cell responses concurrently. APPROACH AND RESULTS We show that vaccinating with ChAd-Gt1-6 and E2Δ123HMW sequentially in mice generates T-cell and antibody (Ab) responses comparable to either vaccine given alone. We encoded E2Δ123 in ChAdOx1 (ChAd-E2Δ123) and show that this, given with an E2Δ123HMW protein boost, induces greater CD81-E2 inhibitory and HCV-pseudoparticle nAb titers compared to the E2Δ123HMW prime boost. We developed bivalent viral vector vaccines (ChAdOx1 and modified vaccinia Ankara [MVA]) encoding both Gt1-6 and E2Δ123 immunogens (Gt1-6-E2Δ123) generating polyfunctional CD4+ and CD8+ T cells and nAb titers in prime/boost strategies. This approach generated nAb responses comparable to monovalent E2Δ123 ChAd/MVA vaccines and superior to three doses of recombinant E2Δ123HMW protein, while also generating high-magnitude T-cell responses. CONCLUSIONS These data are an important step forward for the development of a pan-genotype HCV vaccine to elicit T cells and nAbs for future assessment in humans.
Collapse
Affiliation(s)
- Timothy Donnison
- Nuffield Department of MedicinePeter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| | - Joey McGregor
- Burnet InstituteMelbourneVictoriaAustralia
- Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneParkvilleVictoriaAustralia
| | - Senthil Chinnakannan
- Nuffield Department of MedicinePeter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| | - Claire Hutchings
- Nuffield Department of MedicinePeter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| | - Rob J. Center
- Burnet InstituteMelbourneVictoriaAustralia
- Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneParkvilleVictoriaAustralia
| | - Pantelis Poumbourios
- Burnet InstituteMelbourneVictoriaAustralia
- Department of MicrobiologyMonash UniversityClaytonVictoriaAustralia
| | - Paul Klenerman
- Nuffield Department of MedicinePeter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| | - Heidi E. Drummer
- Burnet InstituteMelbourneVictoriaAustralia
- Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneParkvilleVictoriaAustralia
- Department of MicrobiologyMonash UniversityClaytonVictoriaAustralia
| | - Eleanor Barnes
- Nuffield Department of MedicinePeter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
- Nuffield Department of MedicineJenner InstituteUniversity of OxfordOxfordUK
| |
Collapse
|
14
|
Barnes E, Cooke GS, Lauer GM, Chung RT. Implementation of a controlled human infection model for evaluation of HCV vaccine candidates. Hepatology 2022; 77:1757-1772. [PMID: 35736236 DOI: 10.1002/hep.32632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/08/2022]
Abstract
Hepatitis C virus (HCV) remains a major global health concern. Directly acting antiviral (DAA) drugs have transformed the treatment of HCV. However, it has become clear that, without an effective HCV vaccine, it will not be possible to meet the World Health Organization targets of HCV viral elimination. Promising new vaccine technologies that generate high magnitude antiviral T and B cell immune responses and significant new funding have recently become available, stimulating the HCV vaccine pipeline. In the absence of an immune competent animal model for HCV, the major block in evaluating new HCV vaccine candidates will be the assessment of vaccine efficacy in humans. The development of a controlled human infection model (CHIM) for HCV could overcome this block, enabling the head-to-head assessment of vaccine candidates. The availability of highly effective DAA means that a CHIM for HCV is possible for the first time. In this review, we highlight the challenges and issues with currently available strategies to assess HCV vaccine efficacy including HCV "at-risk" cohorts and animal models. We describe the development of CHIM in other infections that are increasingly utilized by trialists and explore the ethical and safety concerns specific for an HCV CHIM. Finally, we propose an HCV CHIM study design including the selection of volunteers, the development of an infectious inoculum, the evaluation of host immune and viral parameters, and the definition of study end points for use in an HCV CHIM. Importantly, the study design (including number of volunteers required, cost, duration of study, and risk to volunteers) varies significantly depending on the proposed mechanism of action (sterilizing/rapid viral clearance vs. delayed viral clearance) of the vaccine under evaluation. We conclude that an HCV CHIM is now realistic, that safety and ethical concerns can be addressed with the right study design, and that, without an HCV CHIM, it is difficult to envisage how the development of an HCV vaccine will be possible.
Collapse
Affiliation(s)
- Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, Oxford, UK
| | - Graham S Cooke
- Department of Infectious Disease, Imperial College London, Oxford, UK
| | - Georg M Lauer
- Liver Center, GI Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Raymond T Chung
- Liver Center, GI Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Zhao Q, He K, Zhang X, Xu M, Zhang X, Li H. Production and immunogenicity of different prophylactic vaccines for hepatitis C virus (Review). Exp Ther Med 2022; 24:474. [PMID: 35761816 PMCID: PMC9214603 DOI: 10.3892/etm.2022.11401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a global health challenge, and prophylactic vaccines are the most effective way to eliminate the infection. To date, numerous forms of preventive vaccines have entered the clinical trial stage, including the virus-like particle (VLP) vaccine, recombinant subunit vaccine, peptide vaccine and nucleic acid vaccine. The rational design makes it easier to obtain specific vaccine structures with a broad spectrum and strong immunogenicity. Different vaccine antigens can evoke different immune responses, including humoral and T-cell immune responses, and can be produced using different expression systems, such as bacteria, yeast, mammals, plants, insects or parasites. Intracellular and insoluble production and a narrow immune spectrum are two difficulties that limit the application of vaccines. The present study summarizes the immunogenicity of different preventive vaccines, evaluates the characteristics of different expression systems used for vaccine production, and analyzes the strategies to enhance the secretion and immune spectrum of vaccine proteins.
Collapse
Affiliation(s)
- Qianqian Zhao
- Microbiology Department, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Kun He
- Microbiology Department, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Xiuhua Zhang
- Key Laboratory of Biological Drugs, Shandong Academy of Pharmaceutical Science, Jinan, Shandong 250101, P.R. China
| | - Mingjie Xu
- Microbiology Department, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Xiuping Zhang
- Microbiology Department, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Huanjie Li
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
16
|
Pihl AF, Feng S, Offersgaard A, Alzua GP, Augestad EH, Mathiesen CK, Jensen TB, Krarup H, Law M, Prentoe J, Christensen JP, Bukh J, Gottwein JM. Inactivated whole hepatitis C virus vaccine employing a licensed adjuvant elicits cross-genotype neutralizing antibodies in mice. J Hepatol 2022; 76:1051-1061. [PMID: 34990750 DOI: 10.1016/j.jhep.2021.12.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/26/2021] [Accepted: 12/22/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS A prophylactic vaccine is required to eliminate HCV as a global public health threat. We developed whole virus inactivated HCV vaccine candidates employing a licensed adjuvant. Further, we investigated the effects of HCV envelope protein modifications (to increase neutralization epitope exposure) on immunogenicity. METHODS Whole virus vaccine antigen was produced in Huh7.5 hepatoma cells, processed using a multistep protocol and formulated with adjuvant (MF-59 analogue AddaVax or aluminium hydroxide). We investigated the capacity of IgG purified from the serum of immunized BALB/c mice to neutralize genotype 1-6 HCV (by virus neutralization assays) and to bind homologous envelope proteins (by ELISA). Viruses used for immunizations were (i) HCV5aHi with strain SA13 envelope proteins and modification of an O-linked glycosylation site in E2 (T385P), (ii) HCV5aHi(T385) with reversion of T385P to T385, featuring the original E2 sequence determined in vivo and (iii) HCV5aHi(ΔHVR1) with deletion of HVR1. For these viruses, epitope exposure was investigated using human monoclonal (AR3A and AR4A) and polyclonal (C211 and H06) antibodies in neutralization assays. RESULTS Processed HCV5aHi formulated with AddaVax induced antibodies that efficiently bound homologous envelope proteins and broadly neutralized cultured genotype 1-6 HCV, with half maximal inhibitory concentrations of between 14 and 192 μg/ml (mean of 36 μg/ml against the homologous virus). Vaccination with aluminium hydroxide was less immunogenic. Compared to HCV5aHi(T385) with the original E2 sequence, HCV5aHi with a modified glycosylation site and HCV5aHi(ΔHVR1) without HVR1 showed increased neutralization epitope exposure but similar immunogenicity. CONCLUSION Using an adjuvant suitable for human use, we developed inactivated whole HCV vaccine candidates that induced broadly neutralizing antibodies, which warrant investigation in further pre-clinical studies. LAY SUMMARY A vaccine against hepatitis C virus (HCV) is needed to prevent the estimated 2 million new infections and 400,000 deaths caused by this virus each year. We developed inactivated whole HCV vaccine candidates using adjuvants licensed for human use, which, following immunization of mice, induced antibodies that efficiently neutralized all HCV genotypes with recognized epidemiological importance. HCV variants with modified envelope proteins exhibited similar immunogenicity as the virus with the original envelope proteins.
Collapse
Affiliation(s)
- Anne Finne Pihl
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, and Department of Immunology and Microbiolgy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Shan Feng
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, and Department of Immunology and Microbiolgy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Anna Offersgaard
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, and Department of Immunology and Microbiolgy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Garazi Peña Alzua
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, and Department of Immunology and Microbiolgy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Elias Honerød Augestad
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, and Department of Immunology and Microbiolgy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Christian Kjaerulff Mathiesen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, and Department of Immunology and Microbiolgy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Tanja Bertelsen Jensen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, and Department of Immunology and Microbiolgy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Henrik Krarup
- Department of Molecular Diagnostics, Aalborg University Hospital and Clinical Institute, Aalborg University, Aalborg, Denmark
| | - Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States
| | - Jannick Prentoe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, and Department of Immunology and Microbiolgy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jan Pravsgaard Christensen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, and Department of Immunology and Microbiolgy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Judith Margarete Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, and Department of Immunology and Microbiolgy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
17
|
Wang R, Suzuki S, Guest JD, Heller B, Almeda M, Andrianov AK, Marin A, Mariuzza RA, Keck ZY, Foung SKH, Yunus AS, Pierce BG, Toth EA, Ploss A, Fuerst TR. Induction of broadly neutralizing antibodies using a secreted form of the hepatitis C virus E1E2 heterodimer as a vaccine candidate. Proc Natl Acad Sci U S A 2022; 119:e2112008119. [PMID: 35263223 PMCID: PMC8931252 DOI: 10.1073/pnas.2112008119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/19/2022] [Indexed: 11/26/2022] Open
Abstract
SignificanceHepatitis C virus chronically infects approximately 1% of the world's population, making an effective vaccine for hepatitis C virus a major unmet public health need. The membrane-associated E1E2 envelope glycoprotein has been used in clinical studies as a vaccine candidate. However, limited neutralization breadth and difficulty in producing large amounts of homogeneous membrane-associated E1E2 have hampered efforts to develop an E1E2-based vaccine. Our previous work described the design and biochemical validation of a native-like soluble secreted form of E1E2 (sE1E2). Here, we describe the immunogenic characterization of the sE1E2 complex. sE1E2 elicited broadly neutralizing antibodies in immunized mice, with increased neutralization breadth relative to the membrane-associated E1E2, thereby validating this platform as a promising model system for vaccine development.
Collapse
Affiliation(s)
- Ruixue Wang
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Saori Suzuki
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| | - Johnathan D. Guest
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Brigitte Heller
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| | - Maricar Almeda
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| | - Alexander K. Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Roy A. Mariuzza
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Zhen-Yong Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Steven K. H. Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Abdul S. Yunus
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Brian G. Pierce
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Eric A. Toth
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| | - Thomas R. Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| |
Collapse
|
18
|
Weber T, Potthoff J, Bizu S, Labuhn M, Dold L, Schoofs T, Horning M, Ercanoglu MS, Kreer C, Gieselmann L, Vanshylla K, Langhans B, Janicki H, Ströh LJ, Knops E, Nierhoff D, Spengler U, Kaiser R, Bjorkman PJ, Krey T, Bankwitz D, Pfeifer N, Pietschmann T, Flyak AI, Klein F. Analysis of antibodies from HCV elite neutralizers identifies genetic determinants of broad neutralization. Immunity 2022; 55:341-354.e7. [PMID: 34990590 PMCID: PMC10089621 DOI: 10.1016/j.immuni.2021.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/21/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022]
Abstract
The high genetic diversity of hepatitis C virus (HCV) complicates effective vaccine development. We screened a cohort of 435 HCV-infected individuals and found that 2%-5% demonstrated outstanding HCV-neutralizing activity. From four of these patients, we isolated 310 HCV antibodies, including neutralizing antibodies with exceptional breadth and potency. High neutralizing activity was enabled by the use of the VH1-69 heavy-chain gene segment, somatic mutations within CDRH1, and CDRH2 hydrophobicity. Structural and mutational analyses revealed an important role for mutations replacing the serines at positions 30 and 31, as well as the presence of neutral and hydrophobic residues at the tip of the CDRH3. Based on these characteristics, we computationally created a de novo antibody with a fully synthetic VH1-69 heavy chain that efficiently neutralized multiple HCV genotypes. Our findings provide a deep understanding of the generation of broadly HCV-neutralizing antibodies that can guide the design of effective vaccine candidates.
Collapse
Affiliation(s)
- Timm Weber
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Julian Potthoff
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Sven Bizu
- Methods in Medical Informatics, Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany
| | - Maurice Labuhn
- Twincore, Centre for Experimental and Clinical Infection Research, Institute of Experimental Virology, 30625 Hannover, Germany
| | - Leona Dold
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Department of Internal Medicine I, University Hospital of Bonn, 53127 Bonn, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Till Schoofs
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Marcel Horning
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Meryem S Ercanoglu
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Christoph Kreer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Lutz Gieselmann
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Kanika Vanshylla
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Bettina Langhans
- Department of Internal Medicine I, University Hospital of Bonn, 53127 Bonn, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Hanna Janicki
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Luisa J Ströh
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
| | - Elena Knops
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Dirk Nierhoff
- Department of Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Ulrich Spengler
- Department of Internal Medicine I, University Hospital of Bonn, 53127 Bonn, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Rolf Kaiser
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany; Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Thomas Krey
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany; Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Lübeck, 23562 Luebeck, Germany; Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Riems, 23562 Luebeck, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - Dorothea Bankwitz
- Twincore, Centre for Experimental and Clinical Infection Research, Institute of Experimental Virology, 30625 Hannover, Germany
| | - Nico Pfeifer
- Methods in Medical Informatics, Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany
| | - Thomas Pietschmann
- Twincore, Centre for Experimental and Clinical Infection Research, Institute of Experimental Virology, 30625 Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 30625 Hannover, Germany
| | - Andrew I Flyak
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany; Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
19
|
Bankwitz D, Krey T, Pietschmann T. [Development approaches for vaccines against hepatitis C virus infections]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2022; 65:183-191. [PMID: 35015104 PMCID: PMC8749110 DOI: 10.1007/s00103-021-03477-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/07/2021] [Indexed: 11/04/2022]
Abstract
Mehr als 10 Jahre nach der Zulassung der ersten direkt wirkenden antiviralen Wirkstoffe zur Behandlung der Hepatitis C bleibt die Inzidenz der Hepatitis-C-Virus-(HCV-)Infektion ungebrochen hoch. In manchen Ländern stecken sich mehr Menschen neu mit dem Virus an, als Patienten durch eine erfolgreiche Therapie geheilt werden. Die Entwicklung eines prophylaktischen Impfstoffes könnte die Transmission des Virus unterbinden und dadurch einen wesentlichen Beitrag zur Kontrolle dieser weltweit verbreiteten Infektion leisten. In diesem Artikel werden die besonderen Herausforderungen und die aktuellen Ansätze der HCV-Impfstoffentwicklung dargestellt. HCV ist ein hochgradig diverses und wandlungsfähiges Virus, das zumeist dem Immunsystem entkommt und chronische Infektionen etabliert. Andererseits heilt die HCV-Infektion bei bis zu einem Drittel der exponierten Individuen aus, sodass eine schützende Immunität erreichbar ist. Zahlreiche Untersuchungen zu den Determinanten einer schützenden Immunität gegen HCV zeichnen ein immer kompletteres Bild davon, welche Ziele ein Impfstoff erreichen muss. Sehr wahrscheinlich werden sowohl starke neutralisierende Antikörper als auch wirkungsvolle zytotoxische T‑Zellen gebraucht, um sicher vor einer chronischen Infektion zu schützen. Die Schlüsselfrage ist, welche Ansätze besonders breit wirksame Antikörper und T‑Zellen heranreifen lassen. Dies wird erforderlich sein, um vor der großen Fülle unterschiedlicher HCV-Varianten zu schützen. Die jüngsten Erfolge von mRNA-Impfstoffen öffnen neue Türen auch für die HCV-Impfstoffforschung. Kombiniert mit einem tieferen Verständnis der Struktur und Funktion der viralen Hüllproteine, der Identifizierung kreuzprotektiver Antikörper- und T‑Zellepitope sowie der Nutzung standardisierter Verfahren zur Quantifizierung der Wirksamkeit von Impfkandidaten ergeben sich neue Perspektiven für die Entwicklung eines Impfstoffes.
Collapse
Affiliation(s)
- Dorothea Bankwitz
- Twincore Zentrum für Experimentelle und Klinische Infektionsforschung, Institut für Experimentelle Virologie, Feodor-Lynen-Str. 7, 30625, Hannover, Deutschland
| | - Thomas Krey
- Medizinische Hochschule Hannover, RESIST Exzellenzcluster EXC2155, Hannover, Deutschland.,Zentrum für Strukturbiologie und Zellbiologie in der Medizin, Institut für Biochemie, Universität Lübeck, Lübeck, Deutschland.,Deutsches Zentrum für Infektionsforschung (DZIF), Partnerstandort Hamburg-Lübeck-Borstel-Riems, Braunschweig, Deutschland.,Institut für Virologie, Medizinische Hochschule Hannover, Hannover, Deutschland
| | - Thomas Pietschmann
- Twincore Zentrum für Experimentelle und Klinische Infektionsforschung, Institut für Experimentelle Virologie, Feodor-Lynen-Str. 7, 30625, Hannover, Deutschland. .,Medizinische Hochschule Hannover, RESIST Exzellenzcluster EXC2155, Hannover, Deutschland. .,Deutsches Zentrum für Infektionsforschung (DZIF), Partnerstandort Hannover-Braunschweig, Braunschweig, Deutschland.
| |
Collapse
|
20
|
Manne V, Ryan J, Wong J, Vengayil G, Basit SA, Gish RG. Hepatitis C Vaccination: Where We Are and Where We Need to Be. Pathogens 2021; 10:pathogens10121619. [PMID: 34959574 PMCID: PMC8705661 DOI: 10.3390/pathogens10121619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
The hepatitis C virus (HCV) is a common cause of chronic liver disease and liver cancer worldwide. Despite advances in curative therapies for HCV, the incidence of new infections is not decreasing at the expected rate to hit the World Health Organization (WHO) target for the elimination of HCV by 2030. In fact, there are still more new cases of infection in the United States and worldwide than are being cured. The reasons for the rise in new cases include poor access to care and the opioid epidemic. The clinical burden of HCV requires a multimodal approach to eradicating the infection. Vaccination would be an excellent tool to prevent incidence of new infections; however, the genetic diversity of HCV and its ability to generate quasispecies within an infected host make creating a broadly reactive vaccine difficult. Multiple vaccine candidates have been identified, but to date, there has not been a target that has led to a broadly reactive vaccine, though several of the candidates are promising. Additionally, the virus is very difficult to culture and testing candidates in humans or chimpanzees is ethically challenging. Despite the multiple barriers to creating a vaccine, vaccination still represents an important tool in the fight against HCV.
Collapse
Affiliation(s)
- Vignan Manne
- HCA Healthcare Graduate Medical Education, Las Vegas, NV 89148, USA; (V.M.); (J.W.); (G.V.)
| | - John Ryan
- Comprehensive Digestive Institute of Nevada, Las Vegas, NV 89148, USA; (J.R.); (S.A.B.)
| | - Jonathan Wong
- HCA Healthcare Graduate Medical Education, Las Vegas, NV 89148, USA; (V.M.); (J.W.); (G.V.)
| | - Gayatri Vengayil
- HCA Healthcare Graduate Medical Education, Las Vegas, NV 89148, USA; (V.M.); (J.W.); (G.V.)
| | - Syed Abdul Basit
- Comprehensive Digestive Institute of Nevada, Las Vegas, NV 89148, USA; (J.R.); (S.A.B.)
| | - Robert G. Gish
- Liver Transplant Clinic, Loma Linda University, Loma Linda, CA 92350, USA
- Correspondence: ; Tel.: +1-866-873-8877
| |
Collapse
|
21
|
Echeverría N, Comas V, Aldunate F, Perbolianachis P, Moreno P, Cristina J. In the era of rapid mRNA-based vaccines: Why is there no effective hepatitis C virus vaccine yet? World J Hepatol 2021; 13:1234-1268. [PMID: 34786164 PMCID: PMC8568586 DOI: 10.4254/wjh.v13.i10.1234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/14/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is responsible for no less than 71 million people chronically infected and is one of the most frequent indications for liver transplantation worldwide. Despite direct-acting antiviral therapies fuel optimism in controlling HCV infections, there are several obstacles regarding treatment accessibility and reinfection continues to remain a possibility. Indeed, the majority of new HCV infections in developed countries occur in people who inject drugs and are more plausible to get reinfected. To achieve global epidemic control of this virus the development of an effective prophylactic or therapeutic vaccine becomes a must. The coronavirus disease 19 (COVID-19) pandemic led to auspicious vaccine development against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus, which has renewed interest on fighting HCV epidemic with vaccination. The aim of this review is to highlight the current situation of HCV vaccine candidates designed to prevent and/or to reduce HCV infectious cases and their complications. We will emphasize on some of the crossroads encountered during vaccine development against this insidious virus, together with some key aspects of HCV immunology which have, so far, hampered the progress in this area. The main focus will be on nucleic acid-based as well as recombinant viral vector-based vaccine candidates as the most novel vaccine approaches, some of which have been recently and successfully employed for SARS-CoV-2 vaccines. Finally, some ideas will be presented on which methods to explore for the design of live-attenuated vaccines against HCV.
Collapse
Affiliation(s)
- Natalia Echeverría
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Victoria Comas
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Fabián Aldunate
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Paula Perbolianachis
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Pilar Moreno
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Juan Cristina
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay.
| |
Collapse
|
22
|
Challenges and Prospects of Plant-Derived Oral Vaccines against Hepatitis B and C Viruses. PLANTS 2021; 10:plants10102037. [PMID: 34685844 PMCID: PMC8537828 DOI: 10.3390/plants10102037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022]
Abstract
Hepatitis B and C viruses chronically affect approximately 3.5% of the global population, causing more than 800,000 deaths yearly due to severe liver pathogenesis. Current HBV vaccines have significantly contributed to the reduction of chronic HBV infections, supporting the notion that virus eradication is a feasible public health objective in the near future. In contrast to HBV, a prophylactic vaccine against HCV infection is not available yet; however, intense research efforts within the last decade have significantly advanced the field and several vaccine candidates are shortlisted for clinical trials. A successful vaccine against an infectious disease of global importance must not only be efficient and safe, but also easy to produce, distribute, administer, and economically affordable to ensure appropriate coverage. Some of these requirements could be fulfilled by oral vaccines that could complement traditional immunization strategies. In this review, we discuss the potential of edible plant-based oral vaccines in assisting the worldwide fight against hepatitis B and C infections. We highlight the latest research efforts to reveal the potential of oral vaccines, discuss novel antigen designs and delivery strategies, as well as the limitations and controversies of oral administration that remain to be addressed to make this approach successful.
Collapse
|
23
|
Hartlage AS, Kapoor A. Hepatitis C Virus Vaccine Research: Time to Put Up or Shut Up. Viruses 2021; 13:1596. [PMID: 34452460 PMCID: PMC8402855 DOI: 10.3390/v13081596] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/27/2021] [Accepted: 07/31/2021] [Indexed: 12/16/2022] Open
Abstract
Unless urgently needed to prevent a pandemic, the development of a viral vaccine should follow a rigorous scientific approach. Each vaccine candidate should be designed considering the in-depth knowledge of protective immunity, followed by preclinical studies to assess immunogenicity and safety, and lastly, the evaluation of selected vaccines in human clinical trials. The recently concluded first phase II clinical trial of a human hepatitis C virus (HCV) vaccine followed this approach. Still, despite promising preclinical results, it failed to protect against chronic infection, raising grave concerns about our understanding of protective immunity. This setback, combined with the lack of HCV animal models and availability of new highly effective antivirals, has fueled ongoing discussions of using a controlled human infection model (CHIM) to test new HCV vaccine candidates. Before taking on such an approach, however, we must carefully weigh all the ethical and health consequences of human infection in the absence of a complete understanding of HCV immunity and pathogenesis. We know that there are significant gaps in our knowledge of adaptive immunity necessary to prevent chronic HCV infection. This review discusses our current understanding of HCV immunity and the critical gaps that should be filled before embarking upon new HCV vaccine trials. We discuss the importance of T cells, neutralizing antibodies, and HCV genetic diversity. We address if and how the animal HCV-like viruses can be used for conceptualizing effective HCV vaccines and what we have learned so far from these HCV surrogates. Finally, we propose a logical but narrow path forward for HCV vaccine development.
Collapse
Affiliation(s)
- Alex S. Hartlage
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Medical Scientist Training Program, College of Medicine and Public Health, The Ohio State University, Columbus, OH 43205, USA
| | - Amit Kapoor
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
24
|
Where to Next? Research Directions after the First Hepatitis C Vaccine Efficacy Trial. Viruses 2021; 13:v13071351. [PMID: 34372558 PMCID: PMC8310243 DOI: 10.3390/v13071351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/03/2021] [Accepted: 07/08/2021] [Indexed: 11/17/2022] Open
Abstract
Thirty years after its discovery, the hepatitis C virus (HCV) remains a leading cause of liver disease worldwide. Given that many countries continue to experience high rates of transmission despite the availability of potent antiviral therapies, an effective vaccine is seen as critical for the elimination of HCV. The recent failure of the first vaccine efficacy trial for the prevention of chronic HCV confirmed suspicions that this virus will be a challenging vaccine target. Here, we examine the published data from this first efficacy trial along with the earlier clinical and pre-clinical studies of the vaccine candidate and then discuss three key research directions expected to be important in ongoing and future HCV vaccine development. These include the following: 1. design of novel immunogens that generate immune responses to genetically diverse HCV genotypes and subtypes, 2. strategies to elicit broadly neutralizing antibodies against envelope glycoproteins in addition to cytotoxic and helper T cell responses, and 3. consideration of the unique immunological status of individuals most at risk for HCV infection, including those who inject drugs, in vaccine platform development and early immunogenicity trials.
Collapse
|
25
|
Structural and Biophysical Characterization of the HCV E1E2 Heterodimer for Vaccine Development. Viruses 2021; 13:v13061027. [PMID: 34072451 PMCID: PMC8227786 DOI: 10.3390/v13061027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
An effective vaccine for the hepatitis C virus (HCV) is a major unmet medical and public health need, and it requires an antigen that elicits immune responses to multiple key conserved epitopes. Decades of research have generated a number of vaccine candidates; based on these data and research through clinical development, a vaccine antigen based on the E1E2 glycoprotein complex appears to be the best choice. One bottleneck in the development of an E1E2-based vaccine is that the antigen is challenging to produce in large quantities and at high levels of purity and antigenic/functional integrity. This review describes the production and characterization of E1E2-based vaccine antigens, both membrane-associated and a novel secreted form of E1E2, with a particular emphasis on the major challenges facing the field and how those challenges can be addressed.
Collapse
|
26
|
Andrianov AK, Fuerst TR. Immunopotentiating and Delivery Systems for HCV Vaccines. Viruses 2021; 13:v13060981. [PMID: 34070543 PMCID: PMC8227888 DOI: 10.3390/v13060981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
Development of preventive vaccines against hepatitis C virus (HCV) remains one of the main strategies in achieving global elimination of the disease. The effort is focused on the quest for vaccines capable of inducing protective cross-neutralizing humoral and cellular immune responses, which in turn dictate the need for rationally designed cross-genotype vaccine antigens and potent immunoadjuvants systems. This review provides an assessment of the current state of knowledge on immunopotentiating compounds and vaccine delivery systems capable of enhancing HCV antigen-specific immune responses, while focusing on the synergy and interplay of two modalities. Structural, physico-chemical, and biophysical features of these systems are discussed in conjunction with the analysis of their in vivo performance. Extreme genetic diversity of HCV-a well-known hurdle in the development of an HCV vaccine, may also present a challenge in a search for an effective immunoadjuvant, as the effort necessitates systematic and comparative screening of rationally designed antigenic constructs. The progress may be accelerated if the preference is given to well-defined molecular immunoadjuvants with greater formulation flexibility and adaptability, including those capable of spontaneous self-assembly behavior, while maintaining their robust immunopotentiating and delivery capabilities.
Collapse
Affiliation(s)
- Alexander K. Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA;
- Correspondence:
| | - Thomas R. Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA;
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
27
|
From Structural Studies to HCV Vaccine Design. Viruses 2021; 13:v13050833. [PMID: 34064532 PMCID: PMC8147963 DOI: 10.3390/v13050833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a serious and growing public health problem despite recent developments of antiviral therapeutics. To achieve global elimination of HCV, an effective cross-genotype vaccine is needed. The failure of previous vaccination trials to elicit an effective cross-reactive immune response demands better vaccine antigens to induce a potent cross-neutralizing response to improve vaccine efficacy. HCV E1 and E2 envelope (Env) glycoproteins are the main targets for neutralizing antibodies (nAbs), which aid in HCV clearance and protection. Therefore, a molecular-level understanding of the nAb responses against HCV is imperative for the rational design of cross-genotype vaccine antigens. Here we summarize the recent advances in structural studies of HCV Env and Env-nAb complexes and how they improve our understanding of immune recognition of HCV. We review the structural data defining HCV neutralization epitopes and conformational plasticity of the Env proteins, and the knowledge applicable to rational vaccine design.
Collapse
|
28
|
To Include or Occlude: Rational Engineering of HCV Vaccines for Humoral Immunity. Viruses 2021; 13:v13050805. [PMID: 33946211 PMCID: PMC8146105 DOI: 10.3390/v13050805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/16/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Direct-acting antiviral agents have proven highly effective at treating existing hepatitis C infections but despite their availability most countries will not reach the World Health Organization targets for elimination of HCV by 2030. A prophylactic vaccine remains a high priority. Whilst early vaccines focused largely on generating T cell immunity, attention is now aimed at vaccines that generate humoral immunity, either alone or in combination with T cell-based vaccines. High-resolution structures of hepatitis C viral glycoproteins and their interaction with monoclonal antibodies isolated from both cleared and chronically infected people, together with advances in vaccine technologies, provide new avenues for vaccine development.
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW The WHO has set ambitious targets for hepatitis C virus (HCV) elimination by 2030. In this review, we explore the possibility of HCV micro-elimination in HIV-positive (+) MSM, discussing strategies for reducing acute HCV incidence and the likely interventions required to meet these targets. RECENT FINDINGS With wider availability of directly acting antivirals (DAAs) in recent years, reductions in acute HCV incidence have been reported in some cohorts of HIV+ MSM. Recent evidence demonstrates that treatment in early infection is well tolerated, cost effective and may reduce the risk of onward transmission. Modelling studies suggest that to reduce incidence, a combination approach including behavioural interventions and access to early treatment, targeting both HIV+ and negative high-risk groups, will be required. HCV vaccine trials have not yet demonstrated efficacy in human studies, however phase one and two studies are ongoing. SUMMARY Some progress towards the WHO HCV elimination targets has been reported. Achieving sustained HCV elimination is likely to require a combination approach including early access to DAAs in acute infection and reinfection, validated and reproducible behavioural interventions and an efficacious HCV vaccine.
Collapse
|
30
|
Abstract
Antibody responses in hepatitis C virus (HCV) have been a rather mysterious research topic for many investigators working in the field. Chronic HCV infection is often associated with dysregulation of immune functions particularly in B cells, leading to abnormal lymphoproliferation or the production of autoantibodies that exacerbate inflammation and extrahepatic diseases. When considering the antiviral function of antibody, it was difficult to endorse its role in HCV protection, whereas T-cell response has been shown unequivocally critical for natural recovery. Recent breakthroughs in the study of HCV and antigen-specific antibody responses provide important insights into viral vulnerability to antibodies and the immunogenetic and structural properties of the neutralizing antibodies. The new knowledge reinvigorates HCV vaccine research by illuminating a new path for the rational design of vaccine antigens to elicit broadly neutralizing antibodies for protection.
Collapse
Affiliation(s)
- Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California 92109, USA
| |
Collapse
|
31
|
Page K, Melia MT, Veenhuis RT, Winter M, Rousseau KE, Massaccesi G, Osburn WO, Forman M, Thomas E, Thornton K, Wagner K, Vassilev V, Lin L, Lum PJ, Giudice LC, Stein E, Asher A, Chang S, Gorman R, Ghany MG, Liang TJ, Wierzbicki MR, Scarselli E, Nicosia A, Folgori A, Capone S, Cox AL. Randomized Trial of a Vaccine Regimen to Prevent Chronic HCV Infection. N Engl J Med 2021; 384:541-549. [PMID: 33567193 PMCID: PMC8367093 DOI: 10.1056/nejmoa2023345] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND A safe and effective vaccine to prevent chronic hepatitis C virus (HCV) infection is a critical component of efforts to eliminate the disease. METHODS In this phase 1-2 randomized, double-blind, placebo-controlled trial, we evaluated a recombinant chimpanzee adenovirus 3 vector priming vaccination followed by a recombinant modified vaccinia Ankara boost; both vaccines encode HCV nonstructural proteins. Adults who were considered to be at risk for HCV infection on the basis of a history of recent injection drug use were randomly assigned (in a 1:1 ratio) to receive vaccine or placebo on days 0 and 56. Vaccine-related serious adverse events, severe local or systemic adverse events, and laboratory adverse events were the primary safety end points. The primary efficacy end point was chronic HCV infection, defined as persistent viremia for 6 months. RESULTS A total of 548 participants underwent randomization, with 274 assigned to each group. There was no significant difference in the incidence of chronic HCV infection between the groups. In the per-protocol population, chronic HCV infection developed in 14 participants in each group (hazard ratio [vaccine vs. placebo], 1.53; 95% confidence interval [CI], 0.66 to 3.55; vaccine efficacy, -53%; 95% CI, -255 to 34). In the modified intention-to-treat population, chronic HCV infection developed in 19 participants in the vaccine group and 17 in placebo group (hazard ratio, 1.66; 95% CI, 0.79 to 3.50; vaccine efficacy, -66%; 95% CI, -250 to 21). The geometric mean peak HCV RNA level after infection differed between the vaccine group and the placebo group (152.51×103 IU per milliliter and 1804.93×103 IU per milliliter, respectively). T-cell responses to HCV were detected in 78% of the participants in the vaccine group. The percentages of participants with serious adverse events were similar in the two groups. CONCLUSIONS In this trial, the HCV vaccine regimen did not cause serious adverse events, produced HCV-specific T-cell responses, and lowered the peak HCV RNA level, but it did not prevent chronic HCV infection. (Funded by the National Institute of Allergy and Infectious Diseases; ClinicalTrials.gov number, NCT01436357.).
Collapse
Affiliation(s)
- Kimberly Page
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Michael T Melia
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Rebecca T Veenhuis
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Matthew Winter
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Kimberly E Rousseau
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Guido Massaccesi
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - William O Osburn
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Michael Forman
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Elaine Thomas
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Karla Thornton
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Katherine Wagner
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Ventzislav Vassilev
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Lan Lin
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Paula J Lum
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Linda C Giudice
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Ellen Stein
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Alice Asher
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Soju Chang
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Richard Gorman
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Marc G Ghany
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - T Jake Liang
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Michael R Wierzbicki
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Elisa Scarselli
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Alfredo Nicosia
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Antonella Folgori
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Stefania Capone
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Andrea L Cox
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| |
Collapse
|
32
|
Keyhole Limpet Hemocyanin-Conjugated Peptides from Hepatitis C Virus Glycoproteins Elicit Neutralizing Antibodies in BALB/c Mice. J Immunol Res 2021; 2021:3108157. [PMID: 33532506 PMCID: PMC7834783 DOI: 10.1155/2021/3108157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/18/2020] [Accepted: 01/05/2021] [Indexed: 12/22/2022] Open
Abstract
Currently, no vaccine to prevent hepatitis C virus (HCV) infection is available. A major challenge in developing an HCV vaccine is the high diversity of HCV sequences. The purpose of immunization with viral glycoproteins is to induce a potent and long-lasting cellular and humoral immune response. However, this strategy only achieves limited protection, and antigen selection plays a crucial role in vaccine design. In this study, we investigated the humoral immune responses induced by intraperitoneal injection of keyhole limpet hemocyanin conjugated with 4 highly conserved peptides, including amino acids [aa]317-325 from E1 and aa418-429, aa502-518, and aa685-693 from E2, or 3 peptides from hypervariable region 1 (HVR1) of E2, including the N terminus of HVR1 (N-HVR1, aa384-396), C terminus of HVR1 (C-HVR1, aa397-410), and HVR1 in BALB/c mice. The neutralizing activity against HCV genotypes 1-6 was assessed using the cell culture HCV (HCVcc) system. The results showed that the 4 conserved peptides efficiently induced antibodies with potent neutralizing activity against 3 or 4 genotypes. Antibodies induced by aa685-693 conferred potent protection (>50%) against genotypes 2, 4, and 5. Peptide N-HVR1 elicited antibodies with the most potent neutralization activities against 3 HCV genotypes: TNcc(1a), S52(3a), and ED43(4a). These findings suggested that peptides within HCV glycoproteins could serve as potent immunogens for vaccine design and development.
Collapse
|
33
|
Belz TF, Olson ME, Giang E, Law M, Janda KD. Evaluation of a Series of Lipidated Tucaresol Adjuvants in a Hepatitis C Virus Vaccine Model. ACS Med Chem Lett 2020; 11:2428-2432. [PMID: 33335664 DOI: 10.1021/acsmedchemlett.0c00413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/23/2020] [Indexed: 01/02/2023] Open
Abstract
Hepatitis C virus (HCV) infections represent a global health challenge; however, developing a vaccine for treatment of HCV infection has remained difficult as heterogeneous HCV contains distinct genotypes, and each genotype contains various subtypes and different envelope glycoproteins. Currently, there is no effective preventive vaccine for achieving global control over HCV. In our efforts to improve upon current HCV vaccines we designed a synthetically accessible adjuvant platform, wherein we synthesized 11 novel lipidated tucaresol analogues to assess their immunological potential. Using a tucaresol-based adjuvant approach, truncated lipid-variants together with an engineered E1E2 antigen construct, namely E2ΔTM3, elicited antibody (Ab) responses that were significantly higher than tucaresol. In sum, antibody end-point titer values largely corroborated HCV neutralization data with a simplified lipidated tucaresol variant affording the highest end point titer and % neutralization. This study lays the groundwork for additional permutations in tucaresol adjuvant design, including the examination of other proteins in vaccine development.
Collapse
Affiliation(s)
- Tyson F. Belz
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Margaret E. Olson
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- College of Pharmacy, Roosevelt University, 1400 North Roosevelt Boulevard, Schaumburg, Illinois 60173, United States
| | - Erick Giang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Kim D. Janda
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
34
|
Mosa AI, AbouHaidar MG, Urbanowicz RA, Tavis JE, Ball JK, Feld JJ. Role of HVR1 sequence similarity in the cross-genotypic neutralization of HCV. Virol J 2020; 17:140. [PMID: 32948191 PMCID: PMC7499410 DOI: 10.1186/s12985-020-01408-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Despite available treatments, a prophylactic HCV vaccine is needed to achieve elimination targets. HCV vaccine development has faltered largely because the extreme diversity of the virus limits the protective breadth of vaccine elicited antibodies. It is believed that the principle neutralizing epitope in natural infection, HVR1, which is the most variable epitope in HCV, mediates humoral immune escape. So far, efforts to circumvent HVR1 interference in the induction and function of conserved targeting Ab have failed. Efforts to understand factors contributing to cross-neutralization of HVR1 variants have also been limited. Here, following mouse immunizations with two patient-derived HVR1 peptides, we observe cross-genotype neutralization of variants differing at 15/21 positions. Surprisingly, sequence similarity was not associated with cross-neutralization. It appeared neutralization sensitivity was an intrinsic feature of each variant, rather than emergent from the immunogen specific Ab response. These findings provide novel insight into HVR1-mediated immune evasion, with important implications for HCV vaccine design.
Collapse
Affiliation(s)
- Alexander I Mosa
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.
| | - Mounir G AbouHaidar
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Richard A Urbanowicz
- Wolfson Centre for Global Virus Infections, University of Nottingham, Nottingham, UK
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - John E Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, USA
| | - Jonathan K Ball
- Wolfson Centre for Global Virus Infections, University of Nottingham, Nottingham, UK
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Jordan J Feld
- Toronto Centre for Liver Disease, Toronto General Hospital, Sandra Rotman Centre for Global Health, University of Toronto, Toronto, Canada
| |
Collapse
|
35
|
Ströh LJ, Krey T. HCV Glycoprotein Structure and Implications for B-Cell Vaccine Development. Int J Mol Sci 2020; 21:ijms21186781. [PMID: 32947858 PMCID: PMC7555785 DOI: 10.3390/ijms21186781] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the approval of highly efficient direct-acting antivirals in the last decade Hepatitis C virus (HCV) remains a global health burden and the development of a vaccine would constitute an important step towards the control of HCV. The high genetic variability of the viral glycoproteins E1 and E2, which carry the main neutralizing determinants, together with their intrinsic structural flexibility, the high level of glycosylation that shields conserved neutralization epitopes and immune evasion using decoy epitopes renders the design of an efficient vaccine challenging. Recent structural and functional analyses have highlighted the role of the CD81 receptor binding site on E2, which overlaps with those neutralization epitopes within E2 that have been structurally characterized to date. This CD81 binding site consists of three distinct segments including “epitope I”, “epitope II” and the “CD81 binding loop”. In this review we summarize the structural features of the HCV glycoproteins that have been derived from X-ray structures of neutralizing and non-neutralizing antibody fragments complexed with either recombinant E2 or epitope-derived linear peptides. We focus on the current understanding how neutralizing antibodies interact with their cognate antigen, the structural features of the respective neutralization epitopes targeted by nAbs and discuss the implications for informed vaccine design.
Collapse
Affiliation(s)
- Luisa J. Ströh
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany;
| | - Thomas Krey
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany;
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Luebeck, 23562 Luebeck, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 30625 Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Riems, 23562 Luebeck, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, 30625 Hannover, Germany
- Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany
- Correspondence: ; Tel.: +49-(0)451–3101-3101
| |
Collapse
|
36
|
Kemming J, Thimme R, Neumann-Haefelin C. Adaptive Immune Response against Hepatitis C Virus. Int J Mol Sci 2020; 21:ijms21165644. [PMID: 32781731 PMCID: PMC7460648 DOI: 10.3390/ijms21165644] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022] Open
Abstract
A functional adaptive immune response is the major determinant for clearance of hepatitis C virus (HCV) infection. However, in the majority of patients, this response fails and persistent infection evolves. Here, we dissect the HCV-specific key players of adaptive immunity, namely B cells and T cells, and describe factors that affect infection outcome. Once chronic infection is established, continuous exposure to HCV antigens affects functionality, phenotype, transcriptional program, metabolism, and the epigenetics of the adaptive immune cells. In addition, viral escape mutations contribute to the failure of adaptive antiviral immunity. Direct-acting antivirals (DAA) can mediate HCV clearance in almost all patients with chronic HCV infection, however, defects in adaptive immune cell populations remain, only limited functional memory is obtained and reinfection of cured individuals is possible. Thus, to avoid potential reinfection and achieve global elimination of HCV infections, a prophylactic vaccine is needed. Recent vaccine trials could induce HCV-specific immunity but failed to protect from persistent infection. Thus, lessons from natural protection from persistent infection, DAA-mediated cure, and non-protective vaccination trials might lead the way to successful vaccination strategies in the future.
Collapse
Affiliation(s)
- Janine Kemming
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79102 Freiburg im Breisgau, Germany; (J.K.); (R.T.)
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg im Breisgau, Germany
| | - Robert Thimme
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79102 Freiburg im Breisgau, Germany; (J.K.); (R.T.)
| | - Christoph Neumann-Haefelin
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79102 Freiburg im Breisgau, Germany; (J.K.); (R.T.)
- Correspondence: ; Tel.: +49-761-270-32800
| |
Collapse
|
37
|
Hepatitis C virus vaccine design: focus on the humoral immune response. J Biomed Sci 2020; 27:78. [PMID: 32631318 PMCID: PMC7338099 DOI: 10.1186/s12929-020-00669-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the recent development of safe and highly effective direct-acting antivirals, hepatitis C virus (HCV) infection remains a significant health problem. In 2016, the World Health Organization set out to reduce the rate of new HCV infections by 90% by 2030. Still, global control of the virus does not seem to be achievable in the absence of an effective vaccine. Current approaches to the development of a vaccine against HCV include the production of recombinant proteins, synthetic peptides, DNA vaccines, virus-like particles, and viral vectors expressing various antigens. In this review, we focus on the development of vaccines targeting the humoral immune response against HCV based on the cumulative evidence supporting the important role of neutralizing antibodies in protection against HCV infection. The main targets of HCV-specific neutralizing antibodies are the glycoproteins E1 and E2. Recent advances in the knowledge of HCV glycoprotein structure and their epitopes, as well as the possibility of getting detailed information on the human antibody repertoire generated by the infection, will allow rational structure-based antigen design to target specific germline antibodies. Although obtaining a vaccine capable of inducing sterilizing immunity will be a difficult task, a vaccine that prevents chronic hepatitis C infections, a more realistic goal in the short term, would have a considerable health impact.
Collapse
|
38
|
Czarnota A, Offersgaard A, Pihl AF, Prentoe J, Bukh J, Gottwein JM, Bieńkowska-Szewczyk K, Grzyb K. Specific Antibodies Induced by Immunization with Hepatitis B Virus-Like Particles Carrying Hepatitis C Virus Envelope Glycoprotein 2 Epitopes Show Differential Neutralization Efficiency. Vaccines (Basel) 2020; 8:vaccines8020294. [PMID: 32532076 PMCID: PMC7350033 DOI: 10.3390/vaccines8020294] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/30/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) infection with associated chronic liver diseases is a major health problem worldwide. Here, we designed hepatitis B virus (HBV) small surface antigen (sHBsAg) virus-like particles (VLPs) presenting different epitopes derived from the HCV E2 glycoprotein (residues 412-425, 434-446, 502-520, and 523-535 of isolate H77C). Epitopes were selected based on their amino acid sequence conservation and were previously reported as targets of HCV neutralizing antibodies. Chimeric VLPs obtained in the Leishmania tarentolae expression system, in combination with the adjuvant Addavax, were used to immunize mice. Although all VLPs induced strong humoral responses, only antibodies directed against HCV 412-425 and 523-535 epitopes were able to react with the native E1E2 glycoprotein complexes of different HCV genotypes in ELISA. Neutralization assays against genotype 1-6 cell culture infectious HCV (HCVcc), revealed that only VLPs carrying the 412-425 epitope induced efficient HCV cross-neutralizing antibodies, but with isolate specific variations in efficacy that could not necessarily be explained by differences in epitope sequences. In contrast, antibodies targeting 434-446, 502-520, and 523-535 epitopes were not neutralizing HCVcc, highlighting the importance of conformational antibodies for efficient virus neutralization. Thus, 412-425 remains the most promising linear E2 epitope for further bivalent, rationally designed vaccine research.
Collapse
Affiliation(s)
- Anna Czarnota
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk, 80-309 Gdańsk, Poland; (A.C.); (K.B.-S.)
| | - Anna Offersgaard
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark; (A.O.); (A.F.P.); (J.P.); (J.B.); (J.M.G.)
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anne Finne Pihl
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark; (A.O.); (A.F.P.); (J.P.); (J.B.); (J.M.G.)
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jannick Prentoe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark; (A.O.); (A.F.P.); (J.P.); (J.B.); (J.M.G.)
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark; (A.O.); (A.F.P.); (J.P.); (J.B.); (J.M.G.)
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Judith Margarete Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark; (A.O.); (A.F.P.); (J.P.); (J.B.); (J.M.G.)
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Krystyna Bieńkowska-Szewczyk
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk, 80-309 Gdańsk, Poland; (A.C.); (K.B.-S.)
| | - Katarzyna Grzyb
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk, 80-309 Gdańsk, Poland; (A.C.); (K.B.-S.)
- Correspondence:
| |
Collapse
|
39
|
Abstract
INTRODUCTION The recent availability of highly effective hepatitis C medications, with a cure rate approaching 100%, has created a wide range of questions and uncertainties. AREAS COVERED The most recent data around hepatitis C virus (HCV) elimination will be reviewed. In addition, the impact of HCV cure or sustained virologic response (SVR) on the risk for hepatocellular carcinoma (HCC) development will be discussed. Although the terms 'SVR' and 'cure' are used interchangeably, there are little data to support that they are actually the same. In this review, we will shed some light on the status of HCV vaccine development, obstacles, and published experience. Finally, in the face of decreasing HCV patients needing transplantation, and increasing available organs from donors infected with HCV, the question is that, is it possible to transplant an organ infected with HCV to a patient who is not infected? The pros and cons of transplanting HCV-positive organs to HCV-negative recipients will be discussed. EXPERT OPINION Although the new advances in HCV treatment have solved many problems, it created several new issues which the medical community has to deal with and which will likely remain in the near future.
Collapse
Affiliation(s)
- Omar Massoud
- Division of Gastroenterology and Hepatology, University of Alabama at Birmingham , Birmingham, AL, USA
| |
Collapse
|
40
|
Dash S, Aydin Y, Widmer KE, Nayak L. Hepatocellular Carcinoma Mechanisms Associated with Chronic HCV Infection and the Impact of Direct-Acting Antiviral Treatment. J Hepatocell Carcinoma 2020; 7:45-76. [PMID: 32346535 PMCID: PMC7167284 DOI: 10.2147/jhc.s221187] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 03/06/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) infection is the major risk factor for liver cirrhosis and hepatocellular carcinoma (HCC). The mechanisms of HCC initiation, growth, and metastasis appear to be highly complex due to the decade-long interactions between the virus, immune system, and overlapping bystander effects of host metabolic liver disease. The lack of a readily accessible animal model system for HCV is a significant obstacle to understand the mechanisms of viral carcinogenesis. Traditionally, the primary prevention strategy of HCC has been to eliminate infection by antiviral therapy. The success of virus elimination by antiviral treatment is determined by the SVR when the HCV is no longer detectable in serum. Interferon-alpha (IFN-α) and its analogs, pegylated IFN-α (PEG-IFN-α) alone with ribavirin (RBV), have been the primary antiviral treatment of HCV for many years with a low cure rate. The cloning and sequencing of HCV have allowed the development of cell culture models, which accelerated antiviral drug discovery. It resulted in the selection of highly effective direct-acting antiviral (DAA)-based combination therapy that now offers incredible success in curing HCV infection in more than 95% of all patients, including those with cirrhosis. However, several emerging recent publications claim that patients who have liver cirrhosis at the time of DAAs treatment face the risk of HCC occurrence and recurrence after viral cure. This remains a substantial challenge while addressing the long-term benefit of antiviral medicine. The host-related mechanisms that drive the risk of HCC in the absence of the virus are unknown. This review describes the multifaceted mechanisms that create a tumorigenic environment during chronic HCV infection. In addition to the potential oncogenic programming that drives HCC after viral clearance by DAAs, the current status of a biomarker development for early prediction of cirrhosis regression and HCC detection post viral treatment is discussed. Since DAAs treatment does not provide full protection against reinfection or viral transmission to other individuals, the recent studies for a vaccine development are also reviewed.
Collapse
Affiliation(s)
- Srikanta Dash
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA70112, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA70119, USA
- Department of Medicine, Division of Gastroenterology, Tulane University Health Sciences Center, New Orleans, LA70112, USA
| | - Yucel Aydin
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA70112, USA
| | - Kyle E Widmer
- Southeast Louisiana Veterans Health Care System, New Orleans, LA70119, USA
| | - Leela Nayak
- Southeast Louisiana Veterans Health Care System, New Orleans, LA70119, USA
| |
Collapse
|
41
|
Atcheson E, Li W, Bliss CM, Chinnakannan S, Heim K, Sharpe H, Hutchings C, Dietrich I, Nguyen D, Kapoor A, Jarvis MA, Klenerman P, Barnes E, Simmonds P. Use of an Outbred Rat Hepacivirus Challenge Model for Design and Evaluation of Efficacy of Different Immunization Strategies for Hepatitis C Virus. Hepatology 2020; 71:794-807. [PMID: 31400152 PMCID: PMC7154631 DOI: 10.1002/hep.30894] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/05/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS The lack of immunocompetent small animal models for hepatitis C virus (HCV) has greatly hindered the development of effective vaccines. Using rodent hepacivirus (RHV), a homolog of HCV that shares many characteristics of HCV infection, we report the development and application of an RHV outbred rat model for HCV vaccine development. APPROACH AND RESULTS Simian adenovirus (ChAdOx1) encoding a genetic immune enhancer (truncated shark class II invariant chain) fused to the nonstructural (NS) proteins NS3-NS5B from RHV (ChAd-NS) was used to vaccinate Sprague-Dawley rats, resulting in high levels of cluster of differentiation 8-positive (CD8+ ) T-cell responses. Following RHV challenge (using 10 or 100 times the minimum infectious dose), 42% of vaccinated rats cleared infection within 6-8 weeks, while all mock vaccinated controls became infected with high-level viremia postchallenge. A single, 7-fold higher dose of ChAd-NS increased efficacy to 67%. Boosting with ChAd-NS or with a plasmid encoding the same NS3-NS5B antigens increased efficacy to 100% and 83%, respectively. A ChAdOx1 vector encoding structural antigens (ChAd-S) was also constructed. ChAd-S alone showed no efficacy. Strikingly, when combined with ChAd-NS, ChAD-S produced 83% efficacy. Protection was associated with a strong CD8+ interferon gamma-positive recall response against NS4. Next-generation sequencing of a putative RHV escape mutant in a vaccinated rat identified mutations in both identified immunodominant CD8+ T-cell epitopes. CONCLUSIONS A simian adenovirus vector vaccine strategy is effective at inducing complete protective immunity in the rat RHV model. The RHV Sprague-Dawley rat challenge model enables comparative testing of vaccine platforms and antigens and identification of correlates of protection and thereby provides a small animal experimental framework to guide the development of an effective vaccine for HCV in humans.
Collapse
Affiliation(s)
- Erwan Atcheson
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| | - Wenqin Li
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| | - Carly M. Bliss
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| | | | - Kathrin Heim
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| | - Hannah Sharpe
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| | - Claire Hutchings
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| | - Isabelle Dietrich
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| | - Dung Nguyen
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| | - Amit Kapoor
- Centre for Vaccines and ImmunityThe Research Institute at Nationwide Children’s HospitalColumbusOH
| | | | - Paul Klenerman
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| | - Peter Simmonds
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| |
Collapse
|
42
|
Chen F, Nagy K, Chavez D, Willis S, McBride R, Giang E, Honda A, Bukh J, Ordoukhanian P, Zhu J, Frey S, Lanford R, Law M. Antibody Responses to Immunization With HCV Envelope Glycoproteins as a Baseline for B-Cell-Based Vaccine Development. Gastroenterology 2020; 158:1058-1071.e6. [PMID: 31809725 PMCID: PMC7371413 DOI: 10.1053/j.gastro.2019.11.282] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS We investigated antibody responses to hepatitis C virus (HCV) antigens E1 and E2 and the relevance of animal models for vaccine development. We compared antibody responses to vaccination with recombinant E1E2 complex in healthy volunteers, non-human primates (NHPs), and mice. METHODS We analyzed 519 serum samples from participants in a phase 1 vaccine trial (ClinicalTrials.gov identifier NCT00500747) and compared them with serum or plasma samples from C57BL/6J mice (n = 28) and rhesus macaques (n = 4) immunized with the same HCV E1E2 antigen. Blood samples were collected at different time points and analyzed for antibody binding, neutralizing activity, and epitope specificity. Monoclonal antibodies from the immunized NHPs were isolated from single plasmablasts and memory B cells, and their immunogenetic properties were characterized. RESULTS Antibody responses of the volunteers, NHPs, and mice to the non-neutralizing epitopes on the E1 N-terminus and E2 hypervariable region 1 did not differ significantly. Antibodies from volunteers and NHPs that neutralized heterologous strains of HCV primarily interacted with epitopes in the antigen region 3. However, the neutralizing antibodies were not produced in sufficient levels for broad neutralization of diverse HCV isolates. Broadly neutralizing antibodies similar to the human VH1-69 class antibody specific for antigen region 3 were produced in the immunized NHPs. CONCLUSIONS In an analysis of vaccinated volunteers, NHPs, and mice, we found that recombinant E1E2 vaccine antigen induces high-antibody titers that are insufficient to neutralize diverse HCV isolates. Antibodies from volunteers and NHPs bind to the same neutralizing epitopes for virus neutralization. NHPs can therefore be used as a preclinical model to develop HCV vaccines. These findings also provide useful baseline values for development of vaccines designed to induce production of neutralizing antibodies.
Collapse
Affiliation(s)
- Fang Chen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Kenna Nagy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Deborah Chavez
- Southwest National Primate Research Center at Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Shelby Willis
- NGS and Microarray Research Cores, The Scripps Research Institute, La Jolla, California, USA
| | - Ryan McBride
- NGS and Microarray Research Cores, The Scripps Research Institute, La Jolla, California, USA
| | - Erick Giang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Andrew Honda
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Phillip Ordoukhanian
- NGS and Microarray Research Cores, The Scripps Research Institute, La Jolla, California, USA
| | - Jiang Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Sharon Frey
- Saint Louis University Center for Vaccine Development, St. Louis, Missouri, USA
| | - Robert Lanford
- Southwest National Primate Research Center at Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California.
| |
Collapse
|
43
|
Duncan JD, Urbanowicz RA, Tarr AW, Ball JK. Hepatitis C Virus Vaccine: Challenges and Prospects. Vaccines (Basel) 2020; 8:vaccines8010090. [PMID: 32079254 PMCID: PMC7157504 DOI: 10.3390/vaccines8010090] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/25/2020] [Accepted: 02/04/2020] [Indexed: 02/07/2023] Open
Abstract
The hepatitis C virus (HCV) causes both acute and chronic infection and continues to be a global problem despite advances in antiviral therapeutics. Current treatments fail to prevent reinfection and remain expensive, limiting their use to developed countries, and the asymptomatic nature of acute infection can result in individuals not receiving treatment and unknowingly spreading HCV. A prophylactic vaccine is therefore needed to control this virus. Thirty years since the discovery of HCV, there have been major gains in understanding the molecular biology and elucidating the immunological mechanisms that underpin spontaneous viral clearance, aiding rational vaccine design. This review discusses the challenges facing HCV vaccine design and the most recent and promising candidates being investigated.
Collapse
Affiliation(s)
- Joshua D. Duncan
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK; (R.A.U.); (A.W.T.); (J.K.B.)
- NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- Correspondence:
| | - Richard A. Urbanowicz
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK; (R.A.U.); (A.W.T.); (J.K.B.)
- NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Alexander W. Tarr
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK; (R.A.U.); (A.W.T.); (J.K.B.)
- NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Jonathan K. Ball
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK; (R.A.U.); (A.W.T.); (J.K.B.)
- NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
44
|
Cox AL. Challenges and Promise of a Hepatitis C Virus Vaccine. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036947. [PMID: 31548228 DOI: 10.1101/cshperspect.a036947] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An estimated 1.5-2 million new hepatitis C virus (HCV) infections occur globally each year. Critical to the World Health Organization's (WHO) HCV elimination strategy is an 80% reduction in incidence of HCV infections by 2030. However, even among high-income countries, few are on target to achieve the WHO's incident infection-reduction goal. A preventative vaccine could have a major impact in achieving incidence-reduction targets globally. However, barriers to HCV vaccine development are significant and include at-risk populations that are often marginalized: viral diversity, limited options for testing HCV vaccines, and an incomplete understanding of protective immune responses. In part because of those factors, testing of only one vaccine strategy has been completed in at-risk individuals as of 2019. Despite challenges, immunity against HCV protects against chronic infection in some repeated HCV exposures and an effective HCV vaccine could prevent transmission regardless of risk factors. Ultimately, prophylactic vaccines will likely be necessary to achieve global HCV elimination.
Collapse
Affiliation(s)
- Andrea L Cox
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University, Baltimore, Maryland 21205, USA
| |
Collapse
|
45
|
Akache B, Deschatelets L, Harrison BA, Dudani R, Stark FC, Jia Y, Landi A, Law JLM, Logan M, Hockman D, Kundu J, Tyrrell DL, Krishnan L, Houghton M, McCluskie MJ. Effect of Different Adjuvants on the Longevity and Strength of Humoral and Cellular Immune Responses to the HCV Envelope Glycoproteins. Vaccines (Basel) 2019; 7:vaccines7040204. [PMID: 31816920 PMCID: PMC6963754 DOI: 10.3390/vaccines7040204] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 12/24/2022] Open
Abstract
Infection by Hepatitis C virus (HCV) can lead to liver cirrhosis/hepatocellular carcinoma and remains a major cause of serious disease morbidity and mortality worldwide. However, current treatment regimens remain inaccessible to most patients, particularly in developing countries, and, therefore, the development of a novel vaccine capable of protecting subjects from chronic infection by HCV could greatly reduce the rates of HCV infection, subsequent liver pathogenesis, and in some cases death. Herein, we evaluated two different semi-synthetic archaeosome formulations as an adjuvant to the E1/E2 HCV envelope protein in a murine model and compared antigen-specific humoral (levels of anti-E1/E2 IgG and HCV pseudoparticle neutralization) and cellular responses (numbers of antigen-specific cytokine-producing T cells) to those generated with adjuvant formulations composed of mimetics of commercial adjuvants including a squalene oil-in-water emulsion, aluminum hydroxide/monophosphoryl lipid A (MPLA) and liposome/MPLA/QS-21. In addition, we measured the longevity of these responses, tracking humoral, and cellular responses up to 6 months following vaccination. Overall, we show that the strength and longevity of anti-HCV responses can be influenced by adjuvant selection. In particular, a simple admixed sulfated S-lactosylarchaeol (SLA) archaeosome formulation generated strong levels of HCV neutralizing antibodies and polyfunctional antigen-specific CD4 T cells producing multiple cytokines such as IFN-γ, TNF-α, and IL-2. While liposome/MPLA/QS-21 as adjuvant generated superior cellular responses, the SLA E1/E2 admixed formulation was superior or equivalent to the other tested formulations in all immune parameters tested.
Collapse
Affiliation(s)
- Bassel Akache
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Rd, Ottawa, ON K1T 0H1, Canada; (B.A.); (L.D.); (B.A.H.); (R.D.); (F.C.S.); (Y.J.); (L.K.)
| | - Lise Deschatelets
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Rd, Ottawa, ON K1T 0H1, Canada; (B.A.); (L.D.); (B.A.H.); (R.D.); (F.C.S.); (Y.J.); (L.K.)
| | - Blair A. Harrison
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Rd, Ottawa, ON K1T 0H1, Canada; (B.A.); (L.D.); (B.A.H.); (R.D.); (F.C.S.); (Y.J.); (L.K.)
| | - Renu Dudani
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Rd, Ottawa, ON K1T 0H1, Canada; (B.A.); (L.D.); (B.A.H.); (R.D.); (F.C.S.); (Y.J.); (L.K.)
| | - Felicity C. Stark
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Rd, Ottawa, ON K1T 0H1, Canada; (B.A.); (L.D.); (B.A.H.); (R.D.); (F.C.S.); (Y.J.); (L.K.)
| | - Yimei Jia
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Rd, Ottawa, ON K1T 0H1, Canada; (B.A.); (L.D.); (B.A.H.); (R.D.); (F.C.S.); (Y.J.); (L.K.)
| | - Amir Landi
- Li Ka Shing Institute of Virology, Department of Medical Microbiology & Immunology, University of Alberta, 6-010 Katz Group-Rexall Centre for Health Research, Edmonton, AB T6G 2E1, Canada; (A.L.); (J.L.M.L.); (M.L.); (D.H.); (J.K.); (D.L.T.); (M.H.)
| | - John L. M. Law
- Li Ka Shing Institute of Virology, Department of Medical Microbiology & Immunology, University of Alberta, 6-010 Katz Group-Rexall Centre for Health Research, Edmonton, AB T6G 2E1, Canada; (A.L.); (J.L.M.L.); (M.L.); (D.H.); (J.K.); (D.L.T.); (M.H.)
| | - Michael Logan
- Li Ka Shing Institute of Virology, Department of Medical Microbiology & Immunology, University of Alberta, 6-010 Katz Group-Rexall Centre for Health Research, Edmonton, AB T6G 2E1, Canada; (A.L.); (J.L.M.L.); (M.L.); (D.H.); (J.K.); (D.L.T.); (M.H.)
| | - Darren Hockman
- Li Ka Shing Institute of Virology, Department of Medical Microbiology & Immunology, University of Alberta, 6-010 Katz Group-Rexall Centre for Health Research, Edmonton, AB T6G 2E1, Canada; (A.L.); (J.L.M.L.); (M.L.); (D.H.); (J.K.); (D.L.T.); (M.H.)
| | - Juthika Kundu
- Li Ka Shing Institute of Virology, Department of Medical Microbiology & Immunology, University of Alberta, 6-010 Katz Group-Rexall Centre for Health Research, Edmonton, AB T6G 2E1, Canada; (A.L.); (J.L.M.L.); (M.L.); (D.H.); (J.K.); (D.L.T.); (M.H.)
| | - D. Lorne Tyrrell
- Li Ka Shing Institute of Virology, Department of Medical Microbiology & Immunology, University of Alberta, 6-010 Katz Group-Rexall Centre for Health Research, Edmonton, AB T6G 2E1, Canada; (A.L.); (J.L.M.L.); (M.L.); (D.H.); (J.K.); (D.L.T.); (M.H.)
| | - Lakshmi Krishnan
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Rd, Ottawa, ON K1T 0H1, Canada; (B.A.); (L.D.); (B.A.H.); (R.D.); (F.C.S.); (Y.J.); (L.K.)
| | - Michael Houghton
- Li Ka Shing Institute of Virology, Department of Medical Microbiology & Immunology, University of Alberta, 6-010 Katz Group-Rexall Centre for Health Research, Edmonton, AB T6G 2E1, Canada; (A.L.); (J.L.M.L.); (M.L.); (D.H.); (J.K.); (D.L.T.); (M.H.)
| | - Michael J. McCluskie
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Rd, Ottawa, ON K1T 0H1, Canada; (B.A.); (L.D.); (B.A.H.); (R.D.); (F.C.S.); (Y.J.); (L.K.)
- Correspondence:
| |
Collapse
|
46
|
Abstract
Evidence for the existence of another hepatitis-causing pathogen, other than the known hepatitis A and B viruses, emerged in the mid-1970s. A frustrating search of 15 years was ended by the identification of the hepatitis C virus in 1989 using a recombinant DNA immunoscreening method. This discovery quickly led to blood tests that eliminated posttransfusion hepatitis C and could show the partial efficacy of type 1 interferon-based therapies. Subsequent knowledge of the viral replication cycle then led to the development of effective direct-acting antivirals targeting its serine protease, polymerase, and nonstructural protein 5A that resulted in the approval of orally available drug combinations that can cure patients within a few months with few side effects. Meanwhile, vaccine strategies have been shown to be feasible, and they are still required to effectively control this global epidemic.
Collapse
Affiliation(s)
- Michael Houghton
- Li Ka Shing Applied Virology Institute, Department of Medical Microbiology & Immunology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
47
|
Wrensch F, Ligat G, Heydmann L, Schuster C, Zeisel MB, Pessaux P, Habersetzer F, King BJ, Tarr AW, Ball JK, Winkler M, Pöhlmann S, Keck ZY, Foung SK, Baumert TF. Interferon-Induced Transmembrane Proteins Mediate Viral Evasion in Acute and Chronic Hepatitis C Virus Infection. Hepatology 2019; 70:1506-1520. [PMID: 31062385 PMCID: PMC6819197 DOI: 10.1002/hep.30699] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/30/2019] [Indexed: 02/07/2023]
Abstract
Although adaptive immune responses against hepatitis C virus (HCV) infection have been studied in great detail, the role of innate immunity in protection against HCV infection and immune evasion is only partially understood. Interferon-induced transmembrane proteins (IFITMs) are innate effector proteins restricting host cell entry of many enveloped viruses, including HCV. However, the clinical impact of IFITMs on HCV immune escape remains to be determined. Here, we show that IFITMs promote viral escape from the neutralizing antibody (nAb) response in clinical cohorts of HCV-infected patients. Using pseudoparticles bearing HCV envelope proteins from acutely infected patients, we show that HCV variants isolated preseroconversion are more sensitive to the antiviral activity of IFITMs than variants from patients isolated during chronic infection postseroconversion. Furthermore, HCV variants escaping nAb responses during liver transplantation exhibited a significantly higher resistance to IFITMs than variants that were eliminated posttransplantation. Gain-of-function and mechanistic studies revealed that IFITMs markedly enhance the antiviral activity of nAbs and suggest a cooperative effect of human monoclonal antibodies and IFITMs for antibody-mediated neutralization driving the selection pressure in viral evasion. Perturbation studies with the IFITM antagonist amphotericin B revealed that modulation of membrane properties by IFITM proteins is responsible for the IFITM-mediated blockade of viral entry and enhancement of antibody-mediated neutralization. Conclusion: Our results indicate IFITM proteins as drivers of viral immune escape and antibody-mediated HCV neutralization in acute and chronic HCV infection. These findings are of clinical relevance for the design of urgently needed HCV B-cell vaccines and might help to increase the efficacy of future vaccine candidates.
Collapse
Affiliation(s)
- Florian Wrensch
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France
| | - Gaëtan Ligat
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France
| | - Laura Heydmann
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France
| | - Catherine Schuster
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France
| | - Mirjam B. Zeisel
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France,Inserm U1052, CNRS UMR 5286, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL), 69373 Lyon, France
| | - Patrick Pessaux
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| | - François Habersetzer
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| | - Barnabas J. King
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK,NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
| | - Alexander W. Tarr
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK,NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
| | - Jonathan K. Ball
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK,NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
| | - Michael Winkler
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, 37077 Göttingen, Germany,Faculty of Biology and Psychology, University of Göttingen, 37073 Göttingen, Germany
| | - Zhen-yong Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Steven K.H. Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Thomas F. Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France,Institut Universitaire de France, 75231 Paris, France
| |
Collapse
|
48
|
A Recombinant Hepatitis C Virus Genotype 1a E1/E2 Envelope Glycoprotein Vaccine Elicits Antibodies That Differentially Neutralize Closely Related 2a Strains through Interactions of the N-Terminal Hypervariable Region 1 of E2 with Scavenger Receptor B1. J Virol 2019; 93:JVI.00810-19. [PMID: 31462563 PMCID: PMC6819942 DOI: 10.1128/jvi.00810-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/15/2019] [Indexed: 12/17/2022] Open
Abstract
A vaccine is still urgently needed to overcome the hepatitis C virus (HCV) epidemic. It is estimated that 1.75 million new HCV infections occur each year, many of which will go undiagnosed and untreated. Untreated HCV can lead to continued spread of the disease, progressive liver fibrosis, cirrhosis, and eventually, end-stage liver disease and/or hepatocellular carcinoma (HCC). Previously, our 1a E1/E2 glycoprotein vaccine was shown to elicit broadly cross-neutralizing antibodies; however, there remains variation in the effectiveness of these antibodies against different HCV genotypes. In this study, we investigated determinants of differential neutralization sensitivity between two highly related genotype 2a isolates, J6 and JFH-1. Our data indicate that the HVR1 region determines neutralization sensitivity to vaccine antisera through modulation of sensitivity to antibodies and interactions with SR-B1. Our results provide additional insight into optimizing a broadly neutralizing HCV vaccine. The global health burden for hepatitis C virus (HCV) remains high, despite available effective treatments. To eliminate HCV, a prophylactic vaccine is needed. One major challenge in the development of a vaccine is the genetic diversity of the virus, with 7 major genotypes and many subtypes. A global vaccine must be effective against all HCV genotypes. Our previous data showed that the 1a E1/E2 glycoprotein vaccine component elicits broad cross-neutralizing antibodies in humans and animals. However, some variation is seen in the effectiveness of these antibodies to neutralize different HCV genotypes and isolates. Of interest was the differences in neutralizing activity against two closely related isolates of HCV genotype 2a, the J6 and JFH-1 strains. Using site-directed mutagenesis to generate chimeric viruses between the J6 and JFH-1 strains, we found that variant amino acids within the core E2 glycoprotein domain of these two HCV genotype 2a viruses do not influence isolate-specific neutralization. Further analysis revealed that the N-terminal hypervariable region 1 (HVR1) of the E2 protein determines the sensitivity of isolate-specific neutralization, and the HVR1 of the resistant J6 strain binds scavenger receptor class-B type-1 (SR-B1), while the sensitive JFH-1 strain does not. Our data provide new information on mechanisms of isolate-specific neutralization to facilitate the optimization of a much-needed HCV vaccine. IMPORTANCE A vaccine is still urgently needed to overcome the hepatitis C virus (HCV) epidemic. It is estimated that 1.75 million new HCV infections occur each year, many of which will go undiagnosed and untreated. Untreated HCV can lead to continued spread of the disease, progressive liver fibrosis, cirrhosis, and eventually, end-stage liver disease and/or hepatocellular carcinoma (HCC). Previously, our 1a E1/E2 glycoprotein vaccine was shown to elicit broadly cross-neutralizing antibodies; however, there remains variation in the effectiveness of these antibodies against different HCV genotypes. In this study, we investigated determinants of differential neutralization sensitivity between two highly related genotype 2a isolates, J6 and JFH-1. Our data indicate that the HVR1 region determines neutralization sensitivity to vaccine antisera through modulation of sensitivity to antibodies and interactions with SR-B1. Our results provide additional insight into optimizing a broadly neutralizing HCV vaccine.
Collapse
|
49
|
Virus-Like Particle Systems for Vaccine Development against Viruses in the Flaviviridae Family. Vaccines (Basel) 2019; 7:vaccines7040123. [PMID: 31547131 PMCID: PMC6963367 DOI: 10.3390/vaccines7040123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/07/2019] [Accepted: 09/13/2019] [Indexed: 01/07/2023] Open
Abstract
Viruses in the Flaviviridae family are important human and animal pathogens that impose serious threats to global public health. This family of viruses includes emerging and re-emerging viruses, most of which are transmitted by infected mosquito or tick bites. Currently, there is no protective vaccine or effective antiviral treatment against the majority of these viruses, and due to their growing spread, several strategies have been employed to manufacture prophylactic vaccines against these infectious agents including virus-like particle (VLP) subunit vaccines. VLPs are genomeless viral particles that resemble authentic viruses and contain critical repetitive conformational structures on their surface that can trigger the induction of both humoral and cellular responses, making them safe and ideal vaccine candidates against these viruses. In this review, we focus on the potential of the VLP platform in the current vaccine development against the medically important viruses in the Flaviviridae family.
Collapse
|
50
|
Wrensch F, Keck ZY, Foung SKH, Baumert TF. Learning from a clinical cohort for HCV vaccine development. J Hepatol 2019; 71:9-11. [PMID: 30992137 PMCID: PMC7613475 DOI: 10.1016/j.jhep.2019.03.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 03/29/2019] [Accepted: 03/29/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Florian Wrensch
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Zhen-Yong Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Steven K H Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France; Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France; Institut Universitaire de France, 75231 Paris, France.
| |
Collapse
|