1
|
Nchioua R, Kmiec D, Krchlikova V, Mattes S, Noettger S, Bibollet-Ruche F, Russell RM, Sparrer KMJ, Charpentier T, Tardy F, Bosinger SE, Sauter D, Hahn BH, Kirchhoff F. Host ZAP activity correlates with the levels of CpG suppression in primate lentiviruses. Proc Natl Acad Sci U S A 2025; 122:e2419489122. [PMID: 40178887 PMCID: PMC12012506 DOI: 10.1073/pnas.2419489122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Zinc-finger antiviral protein (ZAP) is thought to drive the suppression of CpG dinucleotides in many viruses to mimic the composition of their host genomes. However, in vivo evidence is sparse. Here, we investigated the reasons for unusually high CpG levels in SIVmus and SIVmon from mustached and mona monkeys, descendants of one of the precursors of HIV-1. We show that SIVmus is not resistant to ZAP inhibition. Instead, these Cercopithecus monkey hosts differ from other primate species by a splice site mutation and express the poorly active extralarge XL rather than the highly active L isoform of ZAP. Similarly, higher CpG levels in endogenous prosimian lentiviruses were associated with low activity of the corresponding host lemur ZAPs. In addition, lemur genes also show lower CpG suppression than other primates. Thus, the antiviral activity of ZAP not only affects suppression of CpG dinucleotides in viral transcripts but possibly also host genomes.
Collapse
Affiliation(s)
- Rayhane Nchioua
- Institute of Molecular Virology, Ulm University Medical Center, Ulm89081, Germany
| | - Dorota Kmiec
- Institute of Molecular Virology, Ulm University Medical Center, Ulm89081, Germany
| | - Veronika Krchlikova
- Research group "Mechanisms of innate Antiviral immunity", Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen72076, Germany
| | - Sarah Mattes
- Institute of Molecular Virology, Ulm University Medical Center, Ulm89081, Germany
| | - Sabrina Noettger
- Institute of Molecular Virology, Ulm University Medical Center, Ulm89081, Germany
| | - Frederic Bibollet-Ruche
- Department of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Ronnie M. Russell
- Department of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Konstantin M. J. Sparrer
- Institute of Molecular Virology, Ulm University Medical Center, Ulm89081, Germany
- Neurovirology & Neuroinflammation, German Center for Neurodegenerative Diseases (DZNE), Ulm89081, Germany
| | | | | | - Steven E. Bosinger
- Department of Pathology & Laboratory Medicine, Emory University, Division of Microbiology and Immunology, Emory National Primate Research Center, Atlanta, GA30329
| | - Daniel Sauter
- Research group "Mechanisms of innate Antiviral immunity", Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen72076, Germany
| | - Beatrice H. Hahn
- Department of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm89081, Germany
| |
Collapse
|
2
|
Ali JR, Hedges SB. Land Bridges and Rafting Theories to Explain Terrestrial-Vertebrate Biodiversity on Madagascar. ANNUAL REVIEW OF MARINE SCIENCE 2025; 17:281-299. [PMID: 38876115 DOI: 10.1146/annurev-marine-032223-025654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Madagascar's celebrated land-vertebrate assemblage has long been studied and discussed. How the ancestors of the 30 different lineages arrived on the island, which has existed since 85 Mya and is separated from neighboring Africa by 430 km of water, is a deeply important question. Did the colonizations take place when the landmass formed part of Gondwana, or did they occur later and involve either now-drowned causeways or overwater dispersal (on vegetation rafts or by floating/swimming)? Following a historical review, we appraise the geological-geophysical evidence and the faunal-suite colonization record. Twenty-six of the clades are explained by temporally stochastic overwater dispersals, spanning 69-0 Mya, while two others are considered Gondwanan vicariant relicts. Due to a lack of information, the remaining two groups cannot be evaluated. The findings thus appear to resolve a debate that has rumbled along, with sporadic eruptions, since the mid-1800s.
Collapse
Affiliation(s)
- Jason R Ali
- Museum of Zoology, Senckenberg Dresden, Dresden, Germany;
| | - S Blair Hedges
- Center for Biodiversity, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Orkin JD, Kuderna LFK, Hermosilla-Albala N, Fontsere C, Aylward ML, Janiak MC, Andriaholinirina N, Balaresque P, Blair ME, Fausser JL, Gut IG, Gut M, Hahn MW, Harris RA, Horvath JE, Keyser C, Kitchener AC, Le MD, Lizano E, Merker S, Nadler T, Perry GH, Rabarivola CJ, Rasmussen L, Raveendran M, Roos C, Wu DD, Zaramody A, Zhang G, Zinner D, Pozzi L, Rogers J, Farh KKH, Marques Bonet T. Ecological and anthropogenic effects on the genomic diversity of lemurs in Madagascar. Nat Ecol Evol 2025; 9:42-56. [PMID: 39730835 DOI: 10.1038/s41559-024-02596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/01/2024] [Indexed: 12/29/2024]
Abstract
Ecological variation and anthropogenic landscape modification have had key roles in the diversification and extinction of mammals in Madagascar. Lemurs represent a radiation with more than 100 species, constituting roughly one-fifth of the primate order. Almost all species of lemurs are threatened with extinction, but little is known about their genetic diversity and demographic history. Here, we analyse high-coverage genome-wide resequencing data from 162 unique individuals comprising 50 species of Lemuriformes, including multiple individuals from most species. Genomic diversity varies widely across the infraorder and yet is broadly consistent among individuals within species. We show widespread introgression in multiple genera and generally high levels of genomic diversity likely resulting from allele sharing that occurred during periods of connectivity and fragmentation during climatic shifts. We find distinct patterns of demographic history in lemurs across the ecogeographic regions of Madagascar within the last million years. Within the past 2,000 years, lemurs underwent major declines in effective population size that corresponded to the timing of human population expansion in Madagascar. In multiple regions of the island, we identified chronological trajectories of inbreeding that are consistent across genera and species, suggesting localized effects of human activity. Our results show how the extraordinary diversity of these long-neglected, endangered primates has been influenced by ecological and anthropogenic factors.
Collapse
Affiliation(s)
- Joseph D Orkin
- Département d'anthropologie, Université de Montréal, Montréal, Québec, Canada.
- Département de sciences biologiques, Université de Montréal, Montréal, Québec, Canada.
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| | - Lukas F K Kuderna
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Illumina Artificial Intelligence Laboratory, Illumina Inc, Foster City, CA, USA
| | - Núria Hermosilla-Albala
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Claudia Fontsere
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Megan L Aylward
- Department of Field and Conservation Science, Bristol Zoological Society, Bristol, UK
| | - Mareike C Janiak
- School of Science, Engineering & Environment, University of Salford, Salford, UK
| | - Nicole Andriaholinirina
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga, Mahajanga, Madagascar
| | - Patricia Balaresque
- Centre de Recherche sur la Biodiversité et l'Environnement, CNRS UMR5300, Université Toulouse III, Université de Toulouse, CNRS IRD, Toulouse, France
| | - Mary E Blair
- Center for Biodiversity and Conservation, American Museum of Natural History, New York, NY, USA
| | - Jean-Luc Fausser
- Institut de Médecine Légale, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Ivo Glynne Gut
- Centro Nacional de Analisis Genomico (CNAG), Barcelona, Spain
| | - Marta Gut
- Centro Nacional de Analisis Genomico (CNAG), Barcelona, Spain
| | - Matthew W Hahn
- Department of Biology and Department of Computer Science, Indiana University, Bloomington, IN, USA
| | - R Alan Harris
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Julie E Horvath
- Research & Collections, North Carolina Museum of Natural Sciences, Raleigh, NC, USA
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC, USA
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Christine Keyser
- Institut de Médecine Légale, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Andrew C Kitchener
- Department of Natural Sciences, National Museums Scotland, Edinburgh, UK
- UK and School of Geosciences, University of Edinburgh, Edinburgh, UK
| | - Minh D Le
- Department of Environmental Ecology, Faculty of Environmental Sciences, University of Science and Central Institute for Natural Resources and Environmental Studies, Vietnam National University, Hanoi, Vietnam
| | - Esther Lizano
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Unidad de Paleobiología, ICP-CERCA, Unidad Asociada al CSIC por el IBE UPF-CSIC, Cerdanyola del Vallès, Spain
- Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Cerdanyola del Vallès, Spain
| | - Stefan Merker
- Department of Zoology, State Museum of Natural History Stuttgart, Stuttgart, Germany
| | - Tilo Nadler
- Cuc Phuong Commune, Ninh Binh Province, Vietnam
| | - George H Perry
- Departments of Anthropology and Biology, Pennsylvania State University, University Park, PA, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Clément J Rabarivola
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga, Mahajanga, Madagascar
- Université de l'Itasy, Antananarivo, Madagascar
| | | | - Muthuswamy Raveendran
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Dong Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Alphonse Zaramody
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga, Mahajanga, Madagascar
| | - Guojie Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Center for Evolutionary and Organismal Biology, Zhejiang University School of Medicine, Hangzhou, China
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Department of Primate Cognition, Georg-August-University, Göttingen, Germany
- Leibniz-ScienceCampus Primate Cognition, Göttingen, Germany
| | - Luca Pozzi
- Department of Anthropology, University of Texas San Antonio, San Antonio, TX, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Kyle Kai-How Farh
- Illumina Artificial Intelligence Laboratory, Illumina Inc, Foster City, CA, USA
| | - Tomas Marques Bonet
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
- Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Cerdanyola del Vallès, Spain.
- CNAG-Centre for Genomic Analyses, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA) and Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
4
|
Balboa RF, Bertola LD, Brüniche-Olsen A, Rasmussen MS, Liu X, Besnard G, Salmona J, Santander CG, He S, Zinner D, Pedrono M, Muwanika V, Masembe C, Schubert M, Kuja J, Quinn L, Garcia-Erill G, Stæger FF, Rakotoarivony R, Henrique M, Lin L, Wang X, Heaton MP, Smith TPL, Hanghøj K, Sinding MHS, Atickem A, Chikhi L, Roos C, Gaubert P, Siegismund HR, Moltke I, Albrechtsen A, Heller R. African bushpigs exhibit porous species boundaries and appeared in Madagascar concurrently with human arrival. Nat Commun 2024; 15:172. [PMID: 38172616 PMCID: PMC10764920 DOI: 10.1038/s41467-023-44105-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Several African mammals exhibit a phylogeographic pattern where closely related taxa are split between West/Central and East/Southern Africa, but their evolutionary relationships and histories remain controversial. Bushpigs (Potamochoerus larvatus) and red river hogs (P. porcus) are recognised as separate species due to morphological distinctions, a perceived lack of interbreeding at contact, and putatively old divergence times, but historically, they were considered conspecific. Moreover, the presence of Malagasy bushpigs as the sole large terrestrial mammal shared with the African mainland raises intriguing questions about its origin and arrival in Madagascar. Analyses of 67 whole genomes revealed a genetic continuum between the two species, with putative signatures of historical gene flow, variable FST values, and a recent divergence time (<500,000 years). Thus, our study challenges key arguments for splitting Potamochoerus into two species and suggests their speciation might be incomplete. Our findings also indicate that Malagasy bushpigs diverged from southern African populations and underwent a limited bottleneck 1000-5000 years ago, concurrent with human arrival in Madagascar. These results shed light on the evolutionary history of an iconic and widespread African mammal and provide insight into the longstanding biogeographic puzzle surrounding the bushpig's presence in Madagascar.
Collapse
Affiliation(s)
- Renzo F Balboa
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Laura D Bertola
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Xiaodong Liu
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Guillaume Besnard
- Laboratoire Evolution et Diversité Biologique (EDB), UMR 5174, CNRS, IRD, Université Toulouse Paul Sabatier, 31062, Toulouse, France
| | - Jordi Salmona
- Laboratoire Evolution et Diversité Biologique (EDB), UMR 5174, CNRS, IRD, Université Toulouse Paul Sabatier, 31062, Toulouse, France
| | - Cindy G Santander
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Shixu He
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Dietmar Zinner
- Cognitive Ecology Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077, Göttingen, Germany
- Department of Primate Cognition, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
- Leibniz Science Campus Primate Cognition, 37077, Göttingen, Germany
| | - Miguel Pedrono
- UMR ASTRE, CIRAD, Campus International de Baillarguet, Montpellier, France
| | - Vincent Muwanika
- College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Charles Masembe
- College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Mikkel Schubert
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Josiah Kuja
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Liam Quinn
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | - Long Lin
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xi Wang
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Kristian Hanghøj
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Anagaw Atickem
- Department of Zoological Sciences, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia
| | - Lounès Chikhi
- Laboratoire Evolution et Diversité Biologique (EDB), UMR 5174, CNRS, IRD, Université Toulouse Paul Sabatier, 31062, Toulouse, France
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077, Göttingen, Germany
| | - Philippe Gaubert
- Laboratoire Evolution et Diversité Biologique (EDB), UMR 5174, CNRS, IRD, Université Toulouse Paul Sabatier, 31062, Toulouse, France
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal
| | - Hans R Siegismund
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ida Moltke
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | - Rasmus Heller
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Miarisoa JE, Raveloson H, Randrianambinina B, Couette S. Deciphering the mandibular shape variation in a group of Malagasy primates using Fourier outline analysis. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 182:372-387. [PMID: 37676062 DOI: 10.1002/ajpa.24832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/12/2023] [Accepted: 07/26/2023] [Indexed: 09/08/2023]
Abstract
OBJECTIVES Among living Malagasy primates, the family Lemuridae has previously been recognized as presenting a higher mandibular morphological variation than other families. We conducted a quantitative analysis of mandibular size and shape within the five genera (Lemur, Eulemur, Hapalemur, Prolemur, and Varecia) associated with a set of covariables that could explain this variation. MATERIALS AND METHODS We used Fourier outline analysis on the left hemimandible of 182 specimens covering the Lemuridae family. The influence of the phylogeny but also seven covariables (genus, diet, sex, sexual behavior, mating system, ecoregion, and forest type) on mandibular variation was examined using multivariate statistics and model selection. RESULTS Our results indicate that the high level of morphological variation within the family, associated with a phylogenetic effect and differences in diet, is due to a strong distinction between the genera Prolemur and Hapalemur and the other genera of the family. A second analysis, correcting this strong effect, indicates that mandibular shape variation is influenced not only by the phylogeny and the diet but by a combination of all the covariables. DISCUSSION The analysis of morphological variation is a powerful tool with major applications, both for the estimation of biological diversity and for the understanding of the fundamental parameters of species' ecology. Our work indicates that, if mandibular shape variation is mainly driven by dietary adaptation, other variables describing ecology and habitat should be considered and taken into account for an integrative understanding of species resources and the establishment of conservation measures.
Collapse
Affiliation(s)
- Jeanne Emma Miarisoa
- École Doctorale Ecosystèmes Naturels, (EDEN), University of Mahajanga, Mahajanga, BP, Madagascar
- UMR CNRS/uB/EPHE 6282 Biogéosciences, Dijon, France
- École Pratique des Hautes Etudes, PSL, Paris, France
| | - Herimalala Raveloson
- École Doctorale Ecosystèmes Naturels, (EDEN), University of Mahajanga, Mahajanga, BP, Madagascar
| | | | - Sébastien Couette
- UMR CNRS/uB/EPHE 6282 Biogéosciences, Dijon, France
- École Pratique des Hautes Etudes, PSL, Paris, France
| |
Collapse
|
6
|
Ali JR, Hedges SB. The colonisation of Madagascar by land-bound vertebrates. Biol Rev Camb Philos Soc 2023; 98:1583-1606. [PMID: 37142264 DOI: 10.1111/brv.12966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/06/2023]
Abstract
Despite discussions extending back almost 160 years, the means by which Madagascar's iconic land vertebrates arrived on the island remains the focus of active debate. Three options have been considered: vicariance, range expansion across land bridges, and dispersal over water. The first assumes that a group (clade/lineage) occupied the island when it was connected with the other Gondwana landmasses in the Mesozoic. Causeways to Africa do not exist today, but have been proposed by some researchers for various times in the Cenozoic. Over-water dispersal could be from rafting on floating vegetation (flotsam) or by swimming/drifting. A recent appraisal of the geological data supported the idea of vicariance, but found nothing to justify the notion of past causeways. Here we review the biological evidence for the mechanisms that explain the origins of 28 of Madagascar's land vertebrate clades [two other lineages (the geckos Geckolepis and Paragehyra) could not be included in the analysis due to phylogenetic uncertainties]. The podocnemid turtles and typhlopoid snakes are conspicuous for they appear to have arisen through a deep-time vicariance event. The two options for the remaining 26 (16 reptile, five land-bound-mammal, and five amphibian), which arrived between the latest Cretaceous and the present, are dispersal across land bridges or over water. As these would produce very different temporal influx patterns, we assembled and analysed published arrival times for each of the groups. For all, a 'colonisation interval' was generated that was bracketed by its 'stem-old' and 'crown-young' tree-node ages; in two instances, the ranges were refined using palaeontological data. The synthesis of these intervals for all clades, which we term a colonisation profile, has a distinctive shape that can be compared, statistically, to various models, including those that assume the arrivals were focused in time. The analysis leads us to reject the various land bridge models (which would show temporal concentrations) and instead supports the idea of dispersal over water (temporally random). Therefore, the biological evidence is now in agreement with the geological evidence, as well as the filtered taxonomic composition of the fauna, in supporting over-water dispersal as the mechanism that explains all but two of Madagascar's land-vertebrate groups.
Collapse
Affiliation(s)
- Jason R Ali
- Department of Earth Sciences, University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - S Blair Hedges
- Center for Biodiversity, Temple University, 1925 N 12th Street, Suite 502, Philadelphia, PA, 19122, USA
| |
Collapse
|
7
|
Fichtel C, Kappeler PM. Coevolution of social and communicative complexity in lemurs. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210297. [PMID: 35934963 DOI: 10.1098/rstb.2021.0297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The endemic lemurs of Madagascar (Lemuriformes: Primates) exhibit great social and communicative diversity. Given their independent evolutionary history, lemurs provide an excellent opportunity to identify fundamental principles in the coevolution of social and communicative traits. We conducted comparative phylogenetic analyses to examine patterns of interspecific variation among measures of social complexity and repertoire sizes in the vocal, olfactory and visual modality, while controlling for environmental factors such as habitat and number of sympatric species. We also examined potential trade-offs in signal evolution as well as coevolution between body mass or brain size and communicative complexity. Repertoire sizes in the vocal, olfactory and visual modality correlated positively with group size, but not with environmental factors. Evolutionary changes in social complexity presumably antedated corresponding changes in communicative complexity. There was no trade-off in the evolution of signals in different modalities and neither body mass nor brain size correlated with any repertoire size. Hence, communicative complexity coevolved with social complexity across different modalities, possibly to service social relationships flexibly and effectively in pair- and group-living species. Our analyses shed light on the requirements and adaptive possibilities in the coevolution of core elements of social organization and social structure in a basal primate lineage. This article is part of the theme issue 'Cognition, communication and social bonds in primates'.
Collapse
Affiliation(s)
- Claudia Fichtel
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Göttingen 37077, Germany.,Leibniz-ScienceCampus Primate Cognition, Kellnerweg 4, 37077 Göttingen, Germany.,Department Anthropology/Sociobiology, University of Göttingen, Kellnerweg 6, 37077 Göttingen, Germany
| | - Peter M Kappeler
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Göttingen 37077, Germany.,Leibniz-ScienceCampus Primate Cognition, Kellnerweg 4, 37077 Göttingen, Germany.,Department Anthropology/Sociobiology, University of Göttingen, Kellnerweg 6, 37077 Göttingen, Germany
| |
Collapse
|
8
|
Kaas JH, Qi HX, Stepniewska I. Escaping the nocturnal bottleneck, and the evolution of the dorsal and ventral streams of visual processing in primates. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210293. [PMID: 34957843 PMCID: PMC8710890 DOI: 10.1098/rstb.2021.0293] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Early mammals were small and nocturnal. Their visual systems had regressed and they had poor vision. After the extinction of the dinosaurs 66 mya, some but not all escaped the 'nocturnal bottleneck' by recovering high-acuity vision. By contrast, early primates escaped the bottleneck within the age of dinosaurs by having large forward-facing eyes and acute vision while remaining nocturnal. We propose that these primates differed from other mammals by changing the balance between two sources of visual information to cortex. Thus, cortical processing became less dependent on a relay of information from the superior colliculus (SC) to temporal cortex and more dependent on information distributed from primary visual cortex (V1). In addition, the two major classes of visual information from the retina became highly segregated into magnocellular (M cell) projections from V1 to the primate-specific temporal visual area (MT), and parvocellular-dominated projections to the dorsolateral visual area (DL or V4). The greatly expanded P cell inputs from V1 informed the ventral stream of cortical processing involving temporal and frontal cortex. The M cell pathways from V1 and the SC informed the dorsal stream of cortical processing involving MT, surrounding temporal cortex, and parietal-frontal sensorimotor domains. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.
Collapse
Affiliation(s)
- Jon H. Kaas
- Department of Pshycology, Vanderbilt University, 301 Wilson Hall, 111 21st Ave. S., Nashville, TN 37240, USA
| | - Hui-Xin Qi
- Department of Pshycology, Vanderbilt University, 301 Wilson Hall, 111 21st Ave. S., Nashville, TN 37240, USA
| | - Iwona Stepniewska
- Department of Pshycology, Vanderbilt University, 301 Wilson Hall, 111 21st Ave. S., Nashville, TN 37240, USA
| |
Collapse
|
9
|
Fulwood EL, Shan S, Winchester JM, Kirveslahti H, Ravier R, Kovalsky S, Daubechies I, Boyer DM. Insights from macroevolutionary modelling and ancestral state reconstruction into the radiation and historical dietary ecology of Lemuriformes (Primates, Mammalia). BMC Ecol Evol 2021; 21:60. [PMID: 33882818 PMCID: PMC8061064 DOI: 10.1186/s12862-021-01793-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 04/11/2021] [Indexed: 01/16/2023] Open
Abstract
Background Lemurs once rivalled the diversity of rest of the primate order despite thier confinement to the island of Madagascar. We test the adaptive radiation model of Malagasy lemur diversity using a novel combination of phylogenetic comparative methods and geometric methods for quantifying tooth shape. Results We apply macroevolutionary model fitting approaches and disparity through time analysis to dental topography metrics associated with dietary adaptation, an aspect of mammalian ecology which appears to be closely related to diversification in many clades. Metrics were also reconstructed at internal nodes of the lemur tree and these reconstructions were combined to generate dietary classification probabilities at internal nodes using discriminant function analysis. We used these reconstructions to calculate rates of transition toward folivory per million-year intervals. Finally, lower second molar shape was reconstructed at internal nodes by modelling the change in shape of 3D meshes using squared change parsimony along the branches of the lemur tree. Our analyses of dental topography metrics do not recover an early burst in rates of change or a pattern of early partitioning of subclade disparity. However, rates of change in adaptations for folivory were highest during the Oligocene, an interval of possible forest expansion on the island. Conclusions There was no clear phylogenetic signal of bursts of morphological evolution early in lemur history. Reconstruction of the molar morphologies corresponding to the ancestral nodes of the lemur tree suggest that this may have been driven by a shift toward defended plant resources, however. This suggests a response to the ecological opportunity offered by expanding forests, but not necessarily a classic adaptive radiation initiated by dispersal to Madagascar. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01793-x.
Collapse
Affiliation(s)
- Ethan L Fulwood
- Department of Biomedical Sciences, Kentucky College of Osteopathic Medicine, Pikeville, KY, 41501, USA. .,Department of Evolutionary Anthropology, Duke University, Durham, NC, 27708, USA.
| | - Shan Shan
- Department of Mathematics, Duke University, Durham, NC, 27708, USA
| | - Julia M Winchester
- Department of Evolutionary Anthropology, Duke University, Durham, NC, 27708, USA
| | - Henry Kirveslahti
- Department of Statistical Science, Duke University, Durham, NC, 27708, USA
| | - Robert Ravier
- Department of Mathematics, Duke University, Durham, NC, 27708, USA.,Department of Electrical and Computer Engineering, Duke University, Durham, NC, 27708, USA
| | - Shahar Kovalsky
- Department of Mathematics, Duke University, Durham, NC, 27708, USA
| | - Ingrid Daubechies
- Department of Mathematics, Duke University, Durham, NC, 27708, USA.,Department of Electrical and Computer Engineering, Duke University, Durham, NC, 27708, USA
| | - Doug M Boyer
- Department of Evolutionary Anthropology, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
10
|
Fichtel C, Dinter K, Kappeler PM. The lemur baseline: how lemurs compare to monkeys and apes in the Primate Cognition Test Battery. PeerJ 2020; 8:e10025. [PMID: 33024643 PMCID: PMC7520086 DOI: 10.7717/peerj.10025] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/02/2020] [Indexed: 11/20/2022] Open
Abstract
Primates have relatively larger brains than other mammals even though brain tissue is energetically costly. Comparative studies of variation in cognitive skills allow testing of evolutionary hypotheses addressing socioecological factors driving the evolution of primate brain size. However, data on cognitive abilities for meaningful interspecific comparisons are only available for haplorhine primates (great apes, Old- and New World monkeys) although strepsirrhine primates (lemurs and lorises) serve as the best living models of ancestral primate cognitive skills, linking primates to other mammals. To begin filling this gap, we tested members of three lemur species (Microcebus murinus, Varecia variegata, Lemur catta) with the Primate Cognition Test Battery, a comprehensive set of experiments addressing physical and social cognitive skills that has previously been used in studies of haplorhines. We found no significant differences in cognitive performance among lemur species and, surprisingly, their average performance was not different from that of haplorhines in many aspects. Specifically, lemurs' overall performance was inferior in the physical domain but matched that of haplorhines in the social domain. These results question a clear-cut link between brain size and cognitive skills, suggesting a more domain-specific distribution of cognitive abilities in primates, and indicate more continuity in cognitive abilities across primate lineages than previously thought.
Collapse
Affiliation(s)
- Claudia Fichtel
- Behavioral Ecology & Sociobiology Unit, German Primate Center, Göttingen, Germany
- Leibniz-ScienceCampus Primate Cognition, Göttingen, Germany
| | - Klara Dinter
- Behavioral Ecology & Sociobiology Unit, German Primate Center, Göttingen, Germany
| | - Peter M Kappeler
- Behavioral Ecology & Sociobiology Unit, German Primate Center, Göttingen, Germany
- Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, Georg-August Universität, Göttingen, Germany
| |
Collapse
|
11
|
Schubiger MN, Fichtel C, Burkart JM. Validity of Cognitive Tests for Non-human Animals: Pitfalls and Prospects. Front Psychol 2020; 11:1835. [PMID: 32982822 PMCID: PMC7488350 DOI: 10.3389/fpsyg.2020.01835] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/03/2020] [Indexed: 01/04/2023] Open
Abstract
Comparative psychology assesses cognitive abilities and capacities of non-human animals and humans. Based on performance differences and similarities in various species in cognitive tests, it is inferred how their minds work and reconstructed how cognition might have evolved. Critically, such species comparisons are only valid and meaningful if the tasks truly capture individual and inter-specific variation in cognitive abilities rather than contextual variables that might affect task performance. Unlike in human test psychology, however, cognitive tasks for non-human primates (and most other animals) have been rarely evaluated regarding their measurement validity. We review recent studies that address how non-cognitive factors affect performance in a set of commonly used cognitive tasks, and if cognitive tests truly measure individual variation in cognitive abilities. We find that individual differences in emotional and motivational factors primarily affect performance via attention. Hence, it is crucial to systematically control for attention during cognitive tasks to obtain valid and reliable results. Aspects of test design, however, can also have a substantial effect on cognitive performance. We conclude that non-cognitive factors are a minor source of measurement error if acknowledged and properly controlled for. It is essential, however, to validate and eventually re-design several primate cognition tasks in order to ascertain that they capture the cognitive abilities they were designed to measure. This will provide a more solid base for future cognitive comparisons within primates but also across a wider range of non-human animal species.
Collapse
Affiliation(s)
- Michèle N. Schubiger
- Evolutionary Cognition Group, Department of Anthropology, University of Zurich, Zurich, Switzerland
- World Ape Fund, London, United Kingdom
| | - Claudia Fichtel
- Behavioural Ecology and Sociobiology Unit, German Primate Center, Göttingen, Germany
- Leibniz ScienceCampus “Primate Cognition”, Göttingen, Germany
| | - Judith M. Burkart
- Evolutionary Cognition Group, Department of Anthropology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
De Petrillo F, Rosati AG. Logical inferences from visual and auditory information in ruffed lemurs and sifakas. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Karimi N, Grover CE, Gallagher JP, Wendel JF, Ané C, Baum DA. Reticulate Evolution Helps Explain Apparent Homoplasy in Floral Biology and Pollination in Baobabs (Adansonia; Bombacoideae; Malvaceae). Syst Biol 2019; 69:462-478. [DOI: 10.1093/sysbio/syz073] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 12/17/2022] Open
Abstract
Abstract
Baobabs (Adansonia) are a cohesive group of tropical trees with a disjunct distribution in Australia, Madagascar, and continental Africa, and diverse flowers associated with two pollination modes. We used custom-targeted sequence capture in conjunction with new and existing phylogenetic comparative methods to explore the evolution of floral traits and pollination systems while allowing for reticulate evolution. Our analyses suggest that relationships in Adansonia are confounded by reticulation, with network inference methods supporting at least one reticulation event. The best supported hypothesis involves introgression between Adansonia rubrostipa and core Longitubae, both of which are hawkmoth pollinated with yellow/red flowers, but there is also some support for introgression between the African lineage and Malagasy Brevitubae, which are both mammal-pollinated with white flowers. New comparative methods for phylogenetic networks were developed that allow maximum-likelihood inference of ancestral states and were applied to study the apparent homoplasy in floral biology and pollination mode seen in Adansonia. This analysis supports a role for introgressive hybridization in morphological evolution even in a clade with highly divergent and geographically widespread species. Our new comparative methods for discrete traits on species networks are implemented in the software PhyloNetworks. [Comparative methods; Hyb-Seq; introgression; network inference; population trees; reticulate evolution; species tree inference; targeted sequence capture.]
Collapse
Affiliation(s)
- Nisa Karimi
- Department of Botany, University of Wisconsin – Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, 2200 Osborn Drive, Ames, IA 50011, USA
| | - Joseph P Gallagher
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, 2200 Osborn Drive, Ames, IA 50011, USA
- Department of Biology, University of Massachusetts, 611 North Pleasant Street, Amherst, MA 01003, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, 2200 Osborn Drive, Ames, IA 50011, USA
| | - Cécile Ané
- Department of Botany, University of Wisconsin – Madison, 430 Lincoln Drive, Madison, WI 53706, USA
- Department of Statistics, University of Wisconsin – Madison, 1300 University Ave, WI, 53706, USA
| | - David A Baum
- Department of Botany, University of Wisconsin – Madison, 430 Lincoln Drive, Madison, WI 53706, USA
- Wisconsin Institute for Discovery, 330 N Orchard Street, Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| |
Collapse
|
14
|
Bornbusch SL, Greene LK, McKenney EA, Volkoff SJ, Midani FS, Joseph G, Gerhard WA, Iloghalu U, Granek J, Gunsch CK. A comparative study of gut microbiomes in captive nocturnal strepsirrhines. Am J Primatol 2019; 81:e22986. [PMID: 31081142 DOI: 10.1002/ajp.22986] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 03/23/2019] [Accepted: 04/16/2019] [Indexed: 11/10/2022]
Abstract
Feeding strategy and diet are increasingly recognized for their roles in governing primate gut microbiome (GMB) composition. Whereas feeding strategy reflects evolutionary adaptations to a host's environment, diet is a more proximate measure of food intake. Host phylogeny, which is intertwined with feeding strategy, is an additional, and often confounding factor that shapes GMBs across host lineages. Nocturnal strepsirrhines are an intriguing and underutilized group in which to examine the links between these three factors and GMB composition. Here, we compare GMB composition in four species of captive, nocturnal strepsirrhines with varying feeding strategies and phylogenetic relationships, but nearly identical diets. We use 16S rRNA sequences to determine gut bacterial composition. Despite similar husbandry conditions, including diet, we find that GMB composition varies significantly across host species and is linked to host feeding strategy and phylogeny. The GMBs of the omnivorous and the frugivorous species were significantly more diverse than were those of the insectivorous and exudativorous species. Across all hosts, GMBs were enriched for bacterial taxa associated with the macronutrient resources linked to the host's respective feeding strategy. Ultimately, the reported variation in microbiome composition suggests that the impacts of captivity and concurrent diet do not overshadow patterns of feeding strategy and phylogeny. As our understanding of primate GMBs progresses, populations of captive primates can provide insight into the evolution of host-microbe relationships, as well as inform future captive management protocols that enhance primate health and conservation.
Collapse
Affiliation(s)
- Sally L Bornbusch
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina
| | - Lydia K Greene
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina.,University Program in Ecology, Duke University, Durham, North Carolina
| | - Erin A McKenney
- North Carolina Museum of Natural Sciences, Raleigh, North Carolina
| | - Savannah J Volkoff
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina
| | - Firas S Midani
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina
| | - Gail Joseph
- Department of Energy and Environmental Systems, North Carolina Agricultural and Technical State University, Greensboro, North Carolina
| | - William A Gerhard
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina
| | - Uchenna Iloghalu
- Department of Applied Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, North Carolina
| | - Joshua Granek
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina
| | - Claudia K Gunsch
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina
| |
Collapse
|
15
|
Saraf MP, Balaram P, Pifferi F, Kennedy H, Kaas JH. The sensory thalamus and visual midbrain in mouse lemurs. J Comp Neurol 2019; 527:2599-2611. [PMID: 30927368 DOI: 10.1002/cne.24693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 12/24/2022]
Abstract
Mouse lemurs are the smallest of extant primates and are thought to resemble early primates in many ways. We provide histological descriptions of the major sensory nuclei of the dorsal thalamus and the superior colliculus (SC) of mouse lemurs (Microcebus murinus). The dorsal lateral geniculate nucleus has the six layers typical of strepsirrhine primates, with matching pairs of magnocellular, parvocellular, and koniocellular layers, one of each pair for each eye. Unlike most primates, magnocellular and parvocellular layers exhibit only small differences in cell size. All layers express vesicular glutamate transporter 2 (VGLUT2), reflecting terminations of retinal inputs, and the expression of VGLUT2 is much less dense in the koniocellular layers. Parvalbumin is densely expressed in all layers, while SMI-32 is densely expressed only in the magnocellular layers. The adjoining pulvinar complex has a posterior nucleus with strong VGLUT2 expression, reflecting terminations from the SC. The SC is laminated with dense expression of VGLUT2 in the upper superficial gray layer, reflecting terminations from the retina. The ventral (MGNv), medial, and dorsal divisions of the medial geniculate complex are only moderately differentiated, although patches of dense VGLUT2 expression are found along the outer border of MGNv. The ventroposterior nucleus has darkly stained cells in Nissl stained sections, and narrow septa separating patchy regions of dense VGLUT2 expression that likely represent different body parts. Overall, these structures resemble those in other strepsirrhine primates, although they are smaller, with the sensory nuclei appearing to occupy proportionately more of the dorsal thalamus than in larger primates.
Collapse
Affiliation(s)
- Mansi P Saraf
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| | - Pooja Balaram
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| | - Fabien Pifferi
- MECADEV UMR 7179, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Brunoy, France
| | - Henry Kennedy
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France.,Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Science (CAS), Shanghai, China
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
16
|
Gunnell GF, Boyer DM, Friscia AR, Heritage S, Manthi FK, Miller ER, Sallam HM, Simmons NB, Stevens NJ, Seiffert ER. Fossil lemurs from Egypt and Kenya suggest an African origin for Madagascar's aye-aye. Nat Commun 2018; 9:3193. [PMID: 30131571 PMCID: PMC6104046 DOI: 10.1038/s41467-018-05648-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 07/15/2018] [Indexed: 01/05/2023] Open
Abstract
In 1967 G.G. Simpson described three partial mandibles from early Miocene deposits in Kenya that he interpreted as belonging to a new strepsirrhine primate, Propotto. This interpretation was quickly challenged, with the assertion that Propotto was not a primate, but rather a pteropodid fruit bat. The latter interpretation has not been questioned for almost half a century. Here we re-evaluate the affinities of Propotto, drawing upon diverse lines of evidence to establish that this strange mammal is a strepsirrhine primate as originally suggested by Simpson. Moreover, our phylogenetic analyses support the recognition of Propotto, together with late Eocene Plesiopithecus from Egypt, as African stem chiromyiform lemurs that are exclusively related to the extant aye-aye (Daubentonia) from Madagascar. Our results challenge the long-held view that all lemurs are descended from a single ancient colonization of Madagascar, and present an intriguing alternative scenario in which two lemur lineages dispersed from Africa to Madagascar independently, possibly during the later Cenozoic.
Collapse
Affiliation(s)
- Gregg F Gunnell
- Division of Fossil Primates, Duke Lemur Center, Durham, NC, 27705, USA
| | - Doug M Boyer
- Department of Evolutionary Anthropology, Duke University, Durham, NC, 27705, USA
| | - Anthony R Friscia
- Department of Integrative Biology & Physiology, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| | - Steven Heritage
- Division of Fossil Primates, Duke Lemur Center, Durham, NC, 27705, USA
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Fredrick Kyalo Manthi
- Department of Earth Sciences, National Museums of Kenya, Museum Hill, P.O. Box 40658-00100, Nairobi, 00100, Kenya
| | - Ellen R Miller
- Department of Anthropology, Wake Forest University, Winston-Salem, NC, 27106, USA
| | - Hesham M Sallam
- Mansoura University Vertebrate Paleontology Center (MUVP), Department of Geology, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Nancy B Simmons
- Division of Vertebrate Zoology, Department of Mammalogy, American Museum of Natural History, New York, NY, 10024, USA
| | - Nancy J Stevens
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
- Center for Ecology and Evolutionary Studies, Ohio University, Athens, OH, 45701, USA
| | - Erik R Seiffert
- Department of Integrative Anatomical Sciences, Keck School of Medicine of USC, University of Southern California, 1333 San Pablo Street, BMT 406, Los Angeles, CA, 90033, USA.
- Department of Mammalogy, Natural History Museum of Los Angeles County, Los Angeles, CA, 90007, USA.
| |
Collapse
|
17
|
Saraf MP, Balaram P, Pifferi F, Gămănuţ R, Kennedy H, Kaas JH. Architectonic features and relative locations of primary sensory and related areas of neocortex in mouse lemurs. J Comp Neurol 2018; 527:625-639. [PMID: 29484648 DOI: 10.1002/cne.24419] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/08/2018] [Accepted: 02/08/2018] [Indexed: 12/27/2022]
Abstract
Mouse lemurs are the smallest of the living primates, and are members of the understudied radiation of strepsirrhine lemurs of Madagascar. They are thought to closely resemble the ancestral primates that gave rise to present day primates. Here we have used multiple histological and immunochemical methods to identify and characterize sensory areas of neocortex in four brains of adult lemurs obtained from a licensed breeding colony. We describe the laminar features for the primary visual area (V1), the secondary visual area (V2), the middle temporal visual area (MT) and area prostriata, somatosensory areas S1(3b), 3a, and area 1, the primary motor cortex (M1), and the primary auditory cortex (A1). V1 has "blobs" with "nonblob" surrounds, providing further evidence that this type of modular organization might have evolved early in the primate lineage to be retained in all extant primates. The laminar organization of V1 further supports the view that sublayers of layer 3 of primates have been commonly misidentified as sublayers of layer 4. S1 (area 3b) is proportionately wider than the elongated area observed in anthropoid primates, and has disruptions that may distinguish representations of the hand, face, teeth, and tongue. Primary auditory cortex is located in the upper temporal cortex and may include a rostral area, R, in addition to A1. The resulting architectonic maps of cortical areas in mouse lemurs can usefully guide future studies of cortical connectivity and function.
Collapse
Affiliation(s)
- Mansi P Saraf
- Department of Psychology, Vanderbilt University, Nashville, TN, 37240
| | - Pooja Balaram
- Department of Psychology, Vanderbilt University, Nashville, TN, 37240.,MECADEV UMR 7179, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Brunoy, 91800, France
| | - Fabien Pifferi
- Université de Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, 69500, France
| | - Răzvan Gămănuţ
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Science (CAS) Key Laboratory of Primate Neurobiology, CAS, Shanghai, 200031, China
| | - Henry Kennedy
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Science (CAS) Key Laboratory of Primate Neurobiology, CAS, Shanghai, 200031, China
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, TN, 37240
| |
Collapse
|
18
|
Everson KM, Hildebrandt KBP, Goodman SM, Olson LE. Caught in the act: Incipient speciation across a latitudinal gradient in a semifossorial mammal from Madagascar, the mole tenrec Oryzorictes hova (Tenrecidae). Mol Phylogenet Evol 2018; 126:74-84. [PMID: 29501374 DOI: 10.1016/j.ympev.2018.02.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/02/2018] [Accepted: 02/23/2018] [Indexed: 11/17/2022]
Abstract
Madagascar is one of the world's foremost biodiversity hotspots, yet a large portion of its flora and fauna remains undescribed and the driving forces of in situ diversification are not well understood. Recent studies have identified a widespread, latitudinally structured phylogeographic pattern in Madagascar's humid-forest mammals, amphibians, reptiles, and insects. Several factors may be driving this pattern, namely biogeographic barriers (i.e., rivers or valleys) or past episodes of forest contraction and expansion. In this study, we describe the phylogeographic structure of the small, semifossorial mammal Oryzorictes hova, one of Madagascar's two species of mole tenrec, found throughout Madagascar's eastern humid forest belt, from high-elevation montane forest to low-elevation forests, as well as disturbed habitat such as rice fields. Using one mitochondrial locus, four nuclear loci, and 31 craniomandibular measurements, we identified three distinct populations of O. hova associated with the northern, central, and southern regions of the island. We found little evidence of gene flow among these populations, so we treated each population as a potential species. We validated species limits using two Bayesian methods: BP&P, employing only DNA sequence data, and iBPP using both DNA and morphological data, and we assessed whether these methods are susceptible to producing false positive errors. Molecular and morphological data support the recognition of each of the three populations of O. hova as distinct species, but formal species descriptions will require additional data from type specimens. This study illustrates the importance of using integrative datasets, multiple methodological approaches, and extensive geographic sampling for species delimitation and adds evidence for a widespread phylogeographic pattern in Madagascar's humid forest taxa.
Collapse
Affiliation(s)
- Kathryn M Everson
- University of Alaska Museum, 907 Yukon Drive, Fairbanks, AK 99775, USA.
| | | | - Steven M Goodman
- Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605, USA; Association Vahatra, BP 3972, Antananarivo 101, Madagascar
| | - Link E Olson
- University of Alaska Museum, 907 Yukon Drive, Fairbanks, AK 99775, USA; Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605, USA
| |
Collapse
|
19
|
Rakotonirina H, Kappeler PM, Fichtel C. Evolution of facial color pattern complexity in lemurs. Sci Rep 2017; 7:15181. [PMID: 29123214 PMCID: PMC5680244 DOI: 10.1038/s41598-017-15393-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/24/2017] [Indexed: 11/27/2022] Open
Abstract
Interspecific variation in facial color patterns across New and Old World primates has been linked to species recognition and group size. Because group size has opposite effects on interspecific variation in facial color patterns in these two radiations, a study of the third large primate radiation may shed light on convergences and divergences in this context. We therefore compiled published social and ecological data and analyzed facial photographs of 65 lemur species to categorize variation in hair length, hair and skin coloration as well as color brightness. Phylogenetically controlled analyses revealed that group size and the number of sympatric species did not influence the evolution of facial color complexity in lemurs. Climatic factors, however, influenced facial color complexity, pigmentation and hair length in a few facial regions. Hair length in two facial regions was also correlated with group size and may facilitate individual recognition. Since phylogenetic signals were moderate to high for most models, genetic drift may have also played a role in the evolution of facial color patterns of lemurs. In conclusion, social factors seem to have played only a subordinate role in the evolution of facial color complexity in lemurs, and, more generally, group size appears to have no systematic functional effect on facial color complexity across all primates.
Collapse
Affiliation(s)
| | - Peter M Kappeler
- Behavioral Ecology & Sociobiology Unit, German Primate Center, Göttingen, Germany.,Wissenschaftskolleg zu Berlin, Wallotstr. 19, 14193, Berlin, Germany
| | - Claudia Fichtel
- Behavioral Ecology & Sociobiology Unit, German Primate Center, Göttingen, Germany
| |
Collapse
|
20
|
Harrison SE, Harvey MS, Cooper SJB, Austin AD, Rix MG. Across the Indian Ocean: A remarkable example of trans-oceanic dispersal in an austral mygalomorph spider. PLoS One 2017; 12:e0180139. [PMID: 28767648 PMCID: PMC5540276 DOI: 10.1371/journal.pone.0180139] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/09/2017] [Indexed: 11/17/2022] Open
Abstract
The Migidae are a family of austral trapdoor spiders known to show a highly restricted and disjunct distribution pattern. Here, we aim to investigate the phylogeny and historical biogeography of the group, which was previously thought to be vicariant in origin, and examine the biogeographic origins of the genus Moggridgea using a dated multi-gene phylogeny. Moggridgea specimens were sampled from southern Australia and Africa, and Bertmainus was sampled from Western Australia. Sanger sequencing methods were used to generate a robust six marker molecular dataset consisting of the nuclear genes 18S rRNA, 28S rRNA, ITS rRNA, XPNPEP3 and H3 and the mitochondrial gene COI. Bayesian and Maximum Likelihood methods were used to analyse the dataset, and the key dispersal nodes were dated using BEAST. Based on our data, we demonstrate that Moggridgea rainbowi from Kangaroo Island, Australia is a valid member of the otherwise African genus Moggridgea. Molecular clock dating analyses show that the inter-specific divergence of M. rainbowi from African congeners is between 2.27-16.02 million years ago (Mya). This divergence date significantly post-dates the separation of Africa from Gondwana (95 Mya) and therefore does not support a vicariant origin for Australian Moggridgea. It also pre-dates human colonisation of Kangaroo Island, a result which is further supported by the intra-specific divergence date of 1.10-6.39 Mya between separate populations on Kangaroo Island. These analyses provide strong support for the hypothesis that Moggridgea colonised Australia via long-distance trans-Indian Ocean dispersal, representing the first such documented case in a mygalomorph spider.
Collapse
Affiliation(s)
- Sophie E Harrison
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Mark S Harvey
- Department of Terrestrial Zoology, Western Australian Museum, Welshpool DC, WA, Australia.,School of Biology, The University of Western Australia, Crawley, WA, Australia.,School of Natural Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Steve J B Cooper
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia.,Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, SA, Australia
| | - Andrew D Austin
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Michael G Rix
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia.,Department of Terrestrial Zoology, Western Australian Museum, Welshpool DC, WA, Australia.,Biodiversity and Geosciences Program, Queensland Museum, South Brisbane, QLD, Australia
| |
Collapse
|
21
|
Colman RJ. Non-human primates as a model for aging. Biochim Biophys Acta Mol Basis Dis 2017; 1864:2733-2741. [PMID: 28729086 DOI: 10.1016/j.bbadis.2017.07.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/28/2017] [Accepted: 07/08/2017] [Indexed: 02/07/2023]
Abstract
There has been, and continues to be, a dramatic shift in the human population towards older ages necessitating biomedical research aimed at better understanding the basic biology of aging and age-related diseases and facilitating new and improved therapeutic options. As it is not practical to perform the breadth of this research in humans, animal models are necessary to recapitulate the complexity of the aging environment. The mouse model is most frequently chosen for these endeavors, however, they are frequently not the most appropriate model. Non-human primates, on the other hand, are more closely related to humans and recapitulate the human aging process and development of age-related diseases. Extensive aging research has been performed in the well-characterized rhesus macaque aging model. More recently, the common marmoset, a small non-human primate with a shorter lifespan, has been explored as a potential aging model. This model holds particular promise as an aging disease model in part due to the successful creation of transgenic marmosets. Limitations to the use of non-human primates in aging research exist but can be mitigated somewhat by the existence of available resources supported by the National Institutes of Health. This article is part of a Special Issue entitled: Animal models of aging - edited by "Houtkooper Riekelt".
Collapse
Affiliation(s)
- Ricki J Colman
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Madison, WI 53705, USA; Wisconsin National Primate Research Center, University of Wisconsin, 1220 Capitol Court, Madison, WI 53715, USA.
| |
Collapse
|
22
|
Peichl L, Kaiser A, Rakotondraparany F, Dubielzig RR, Goodman SM, Kappeler PM. Diversity of photoreceptor arrangements in nocturnal, cathemeral and diurnal Malagasy lemurs. J Comp Neurol 2017; 527:13-37. [DOI: 10.1002/cne.24167] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 12/29/2016] [Accepted: 12/30/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Leo Peichl
- Max Planck Institute for Brain Research; Max-von-Laue-Straße 4, 60438 Frankfurt am Main Germany
- Ernst Strüngmann Institute for Neuroscience; Deutschordenstraße 46, 60528 Frankfurt am Main Germany
- Institute of Cellular and Molecular Anatomy, Dr. Senckenbergische Anatomie, Goethe University Frankfurt; Theodor-Stern-Kai 7, 60590 Frankfurt am Main Germany
| | - Alexander Kaiser
- Department Biology II; Ludwig-Maximilians University Munich; Großhaderner Straße 2-4, 82152 Martinsried-Planegg Germany
- Institute of Zoology; University of Veterinary Medicine Hannover; Bünteweg 17, 30559 Hannover Germany
| | - Felix Rakotondraparany
- Département de Zoologie et Biodiversité Animale; Université d’Antananarivo; BP 906, Antananarivo 101 Madagascar
| | - Richard R. Dubielzig
- School of Veterinary Medicine; University of Wisconsin; 2015 Linden Drive Madison Wisconsin 53706
| | - Steven M. Goodman
- The Field Museum of Natural History; 1400 South Lake Shore Drive, Chicago Illinois 60605
- Association Vahatra; BP 3972, Antananarivo 101 Madagascar
| | - Peter M. Kappeler
- Behavioral Ecology and Sociobiology Unit, German Primate Center; Kellnerweg 4, 37077 Göttingen Germany
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology; University Göttingen; Kellnerweg 6, 37077 Göttingen Germany
| |
Collapse
|
23
|
Dausmann KH, Warnecke L. Primate Torpor Expression: Ghost of the Climatic Past. Physiology (Bethesda) 2016; 31:398-408. [DOI: 10.1152/physiol.00050.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Torpor, the controlled depression of virtually all bodily function during scarce periods, was verified in primates under free-ranging conditions less than two decades ago. The large variety of different torpor patterns found both within and among closely related species is particularly remarkable. To help unravel the cause of these variable patterns, our review investigates primate torpor use within an evolutionary framework. First, we provide an overview of heterothermic primate species, focusing on the Malagasy lemurs, and discuss their use of daily torpor or hibernation in relation to habitat type and climatic conditions. Second, we investigate environmental characteristics that may have been involved in shaping the high variability of torpor expression found in lemurs today. Third, we examine potential triggers for torpor use in lemurs. We propose the “torpor refugia hypothesis” to illustrate how disparate primate torpor patterns possibly evolved in response to environmental cues during glacial periods, when animals were restricted to different refuge habitats along riverine corridors. For example, individuals enduring harsher conditions at higher altitudes likely developed seasonal hibernation, whereas those inhabiting lower elevation river catchments might have coped with unfavorable conditions by employing daily torpor. The ultimate stimuli triggering torpor use today likely differ between the different habitats of Madagascar. The broad diversity of torpor patterns in lemurs among closely related species, both within the same and in distinctly different habitat types, provides an ideal base for research into the stimuli for torpor use in endotherms in general. Our hypothesis highlights the importance of considering the environmental conditions under which ecosystems and species evolved when trying to explain physiological adaptations seen today.
Collapse
Affiliation(s)
- Kathrin H. Dausmann
- Zoological Institute, Functional Ecology, University Hamburg, Hamburg, Germany
| | - Lisa Warnecke
- Zoological Institute, Functional Ecology, University Hamburg, Hamburg, Germany
| |
Collapse
|
24
|
Phylogeny and Divergence Times of Lemurs Inferred with Recent and Ancient Fossils in the Tree. Syst Biol 2016; 65:772-91. [DOI: 10.1093/sysbio/syw035] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 03/30/2016] [Indexed: 01/14/2023] Open
|
25
|
Kappeler PM, Fichtel C. Eco-evo-devo of the lemur syndrome: did adaptive behavioral plasticity get canalized in a large primate radiation? Front Zool 2015; 12 Suppl 1:S15. [PMID: 26816515 PMCID: PMC4722368 DOI: 10.1186/1742-9994-12-s1-s15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Comprehensive explanations of behavioral adaptations rarely invoke all levels famously admonished by Niko Tinbergen. The role of developmental processes and plasticity, in particular, has often been neglected. In this paper, we combine ecological, physiological and developmental perspectives in developing a hypothesis to account for the evolution of 'the lemur syndrome', a combination of reduced sexual dimorphism, even adult sex ratios, female dominance and mild genital masculinization characterizing group-living species in two families of Malagasy primates. RESULTS We review the different components of the lemur syndrome and compare it with similar adaptations reported for other mammals. We find support for the assertion that the lemur syndrome represents a unique set of integrated behavioral, demographic and morphological traits. We combine existing hypotheses about underlying adaptive function and proximate causation by adding a potential developmental mechanism linking maternal stress and filial masculinization, and outline an evolutionary scenario for its canalization. CONCLUSIONS We propose a new hypothesis linking ecological, physiological, developmental and evolutionary processes to adumbrate a comprehensive explanation for the evolution of the lemur syndrome, whose assumptions and predictions can guide diverse future research on lemurs. This hypothesis should also encourage students of other behavioral phenomena to consider the potential role of developmental plasticity in evolutionary innovation.
Collapse
Affiliation(s)
- Peter M Kappeler
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
| | - Claudia Fichtel
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
| |
Collapse
|
26
|
Affiliation(s)
- Julia Nowack
- Department of Animal Ecology and Conservation; Biocentre Grindel; University of Hamburg; Martin-Luther-King Platz 3 20146 Hamburg Germany
- Centre for Behavioural and Physiological Ecology, Zoology; University of New England; Armidale NSW 2351 Australia
| | - Kathrin H. Dausmann
- Department of Animal Ecology and Conservation; Biocentre Grindel; University of Hamburg; Martin-Luther-King Platz 3 20146 Hamburg Germany
| |
Collapse
|
27
|
Yoder AD, Chan LM, dos Reis M, Larsen PA, Campbell CR, Rasoloarison R, Barrett M, Roos C, Kappeler P, Bielawski J, Yang Z. Molecular evolutionary characterization of a V1R subfamily unique to strepsirrhine primates. Genome Biol Evol 2014; 6:213-27. [PMID: 24398377 PMCID: PMC3914689 DOI: 10.1093/gbe/evu006] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Vomeronasal receptor genes have frequently been invoked as integral to the establishment and maintenance of species boundaries among mammals due to the elaborate one-to-one correspondence between semiochemical signals and neuronal sensory inputs. Here, we report the most extensive sample of vomeronasal receptor class 1 (V1R) sequences ever generated for a diverse yet phylogenetically coherent group of mammals, the tooth-combed primates (suborder Strepsirrhini). Phylogenetic analysis confirms our intensive sampling from a single V1R subfamily, apparently unique to the strepsirrhine primates. We designate this subfamily as V1Rstrep. The subfamily retains extensive repertoires of gene copies that descend from an ancestral gene duplication that appears to have occurred prior to the diversification of all lemuriform primates excluding the basal genus Daubentonia (the aye-aye). We refer to the descendent clades as V1Rstrep-α and V1Rstrep-β. Comparison of the two clades reveals different amino acid compositions corresponding to the predicted ligand-binding site and thus potentially to altered functional profiles between the two. In agreement with previous studies of the mouse lemur (genus, Microcebus), the majority of V1Rstrep gene copies appear to be intact and under strong positive selection, particularly within transmembrane regions. Finally, despite the surprisingly high number of gene copies identified in this study, it is nonetheless probable that V1R diversity remains underestimated in these nonmodel primates and that complete characterization will be limited until high-coverage assembled genomes are available.
Collapse
|
28
|
Baab KL, Perry JMG, Rohlf FJ, Jungers WL. PHYLOGENETIC, ECOLOGICAL, AND ALLOMETRIC CORRELATES OF CRANIAL SHAPE IN MALAGASY LEMURIFORMS. Evolution 2014; 68:1450-68. [DOI: 10.1111/evo.12361] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 01/06/2014] [Indexed: 11/26/2022]
Affiliation(s)
- Karen L. Baab
- Department of Anthropology; Stony Brook University; Social and Behavioral Sciences Building; 5th Floor Stony Brook New York 11794
- Interdepartmental Program in Anthropological Sciences; Stony Brook University; Stony Brook New York 11794
| | - Jonathan M. G. Perry
- Center for Functional Anatomy and Evolution; The Johns Hopkins University School of Medicine; Baltimore Maryland 21205
| | - F. James Rohlf
- Department of Ecology and Evolution; Stony Brook University; Stony Brook New York 11794
| | - William L. Jungers
- Interdepartmental Program in Anthropological Sciences; Stony Brook University; Stony Brook New York 11794
- Department of Anatomical Sciences; Stony Brook University; Stony Brook New York 11794
| |
Collapse
|
29
|
The ecology of spatial memory in four lemur species. Anim Cogn 2014; 17:947-61. [PMID: 24469310 DOI: 10.1007/s10071-014-0727-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/02/2014] [Accepted: 01/13/2014] [Indexed: 10/25/2022]
Abstract
Evolutionary theories suggest that ecology is a major factor shaping cognition in primates. However, there have been few systematic tests of spatial memory abilities involving multiple primate species. Here, we examine spatial memory skills in four strepsirrhine primates that vary in level of frugivory: ruffed lemurs (Varecia sp.), ring-tailed lemurs (Lemur catta), mongoose lemurs (Eulemur mongoz), and Coquerel's sifakas (Propithecus coquereli). We compare these species across three studies targeting different aspects of spatial memory: recall after a long-delay, learning mechanisms supporting memory and recall of multiple locations in a complex environment. We find that ruffed lemurs, the most frugivorous species, consistently showed more robust spatial memory than the other species across tasks-especially in comparison with sifakas, the most folivorous species. We discuss these results in terms of the importance of considering both ecological and social factors as complementary explanations for the evolution of primate cognitive skills.
Collapse
|
30
|
Affiliation(s)
- K. H. Dausmann
- Department of Animal Ecology and Conservation, Biocentre Grindel; University of Hamburg; Hamburg Germany
| |
Collapse
|
31
|
Marivaux L, Ramdarshan A, Essid EM, Marzougui W, Ammar HK, Lebrun R, Marandat B, Merzeraud G, Tabuce R, Vianey-Liaud M. Djebelemur, a tiny pre-tooth-combed primate from the Eocene of Tunisia: a glimpse into the origin of crown strepsirhines. PLoS One 2013; 8:e80778. [PMID: 24324627 PMCID: PMC3851781 DOI: 10.1371/journal.pone.0080778] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 10/07/2013] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Molecular clock estimates of crown strepsirhine origins generally advocate an ancient antiquity for Malagasy lemuriforms and Afro-Asian lorisiforms, near the onset of the Tertiary but most often extending back to the Late Cretaceous. Despite their inferred early origin, the subsequent evolutionary histories of both groups (except for the Malagasy aye-aye lineage) exhibit a vacuum of lineage diversification during most part of the Eocene, followed by a relative acceleration in diversification from the late Middle Eocene. This early evolutionary stasis was tentatively explained by the possibility of unrecorded lineage extinctions during the early Tertiary. However, this prevailing molecular view regarding the ancient origin and early diversification of crown strepsirhines must be viewed with skepticism due to the new but still scarce paleontological evidence gathered in recent years. METHODOLOGICAL/PRINCIPAL FINDINGS Here, we describe new fossils attributable to Djebelemur martinezi, a≈50 Ma primate from Tunisia (Djebel Chambi). This taxon was originally interpreted as a cercamoniine adapiform based on limited information from its lower dentition. The new fossils provide anatomical evidence demonstrating that Djebelemur was not an adapiform but clearly a distant relative of lemurs, lorises and galagos. Cranial, dental and postcranial remains indicate that this diminutive primate was likely nocturnal, predatory (primarily insectivorous), and engaged in a form of generalized arboreal quadrupedalism with frequent horizontal leaping. Djebelemur did not have an anterior lower dentition as specialized as that characterizing most crown strepsirhines (i.e., tooth-comb), but it clearly exhibited a transformed antemolar pattern representing an early stage of a crown strepsirhine-like adaptation ("pre-tooth-comb"). CONCLUSIONS/SIGNIFICANCE These new fossil data suggest that the differentiation of the tooth-comb must postdate the djebelemurid divergence, a view which hence constrains the timing of crown strepsirhine origins to the Middle Eocene, and then precludes the existence of unrecorded lineage extinctions of tooth-combed primates during the earliest Tertiary.
Collapse
Affiliation(s)
- Laurent Marivaux
- Laboratoire de Paléontologie, Institut des Sciences de l’Évolution de Montpellier (ISE-M, UMR-CNRS 5554), Université Montpellier 2, Montpellier, France
| | - Anusha Ramdarshan
- Laboratoire de Paléontologie, Institut des Sciences de l’Évolution de Montpellier (ISE-M, UMR-CNRS 5554), Université Montpellier 2, Montpellier, France
- Section of Vertebrate Paleontology, Carnegie Museum of Natural History, Pittsburgh, Pennsylvania, United States of America
| | | | | | | | - Renaud Lebrun
- Laboratoire de Paléontologie, Institut des Sciences de l’Évolution de Montpellier (ISE-M, UMR-CNRS 5554), Université Montpellier 2, Montpellier, France
| | - Bernard Marandat
- Laboratoire de Paléontologie, Institut des Sciences de l’Évolution de Montpellier (ISE-M, UMR-CNRS 5554), Université Montpellier 2, Montpellier, France
| | - Gilles Merzeraud
- Géosciences Montpellier (UMR-CNRS 5243), Université Montpellier 2, Montpellier, France
| | - Rodolphe Tabuce
- Laboratoire de Paléontologie, Institut des Sciences de l’Évolution de Montpellier (ISE-M, UMR-CNRS 5554), Université Montpellier 2, Montpellier, France
| | - Monique Vianey-Liaud
- Laboratoire de Paléontologie, Institut des Sciences de l’Évolution de Montpellier (ISE-M, UMR-CNRS 5554), Université Montpellier 2, Montpellier, France
| |
Collapse
|
32
|
Dammhahn M, Kappeler PM. Stable isotope analyses reveal dense trophic species packing and clear niche differentiation in a malagasy primate community. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2013; 153:249-59. [DOI: 10.1002/ajpa.22426] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 10/24/2013] [Indexed: 12/23/2022]
Affiliation(s)
- Melanie Dammhahn
- Abteilung Verhaltensökologie and Soziobiologie; Deutsches Primatenzentrum GmbH (DPZ); Leibniz-Institut für Primatenforschung; Kellnerweg 4 D-37077 Göttingen Germany
| | - Peter M. Kappeler
- Abteilung Verhaltensökologie and Soziobiologie; Deutsches Primatenzentrum GmbH (DPZ); Leibniz-Institut für Primatenforschung; Kellnerweg 4 D-37077 Göttingen Germany
- Abteilung Soziobiologie/Anthropologie; Universität Göttingen; Kellnerweg 6 D-37077 Göttingen Germany
| |
Collapse
|
33
|
Masters J, Silvestro D, Génin F, DelPero M. Seeing the Wood through the Trees: The Current State of Higher Systematics in the Strepsirhini. Folia Primatol (Basel) 2013; 84:201-19. [DOI: 10.1159/000353179] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 05/21/2013] [Indexed: 11/19/2022]
|
34
|
Glady Y, Genty É, Roeder JJ. Brown lemurs (Eulemur fulvus) can master the qualitative version of the reverse-reward contingency. PLoS One 2012; 7:e48378. [PMID: 23118998 PMCID: PMC3485204 DOI: 10.1371/journal.pone.0048378] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 09/25/2012] [Indexed: 11/18/2022] Open
Abstract
Behavioral flexibility that requires behavioral inhibition has important fitness consequences. One task commonly used to assess behavioral inhibition is the reverse-reward task in which the subject is rewarded by the non selected items. Lemurs were tested for their ability to solve the qualitative version of the reverse-reward task with the choice between identical quantities of different food items instead of different quantities of the same food. Two of four subjects mastered the task without a correction procedure and were able to generalize the acquired rule to novel combinations of food. One of the two subjects competent on the quality version of the task could transfer this ability to different quantities of the same food. Our results are compared to lemurs' performances when tested under the quantitative version in a previous study and those of capuchin monkeys tested under a similar paradigm. The whole results suggest that the qualitative version of the reverse-reward task may be easier to master than its quantitative counterpart and that lemurs perform better than capuchin monkeys as they were able to later transfer the learning rule to the quantitative version of the task.
Collapse
|
35
|
The lemur revolution starts now: the genomic coming of age for a non-model organism. Mol Phylogenet Evol 2012; 66:442-52. [PMID: 22982436 DOI: 10.1016/j.ympev.2012.08.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 08/24/2012] [Accepted: 08/27/2012] [Indexed: 12/25/2022]
Abstract
Morris Goodman was a revolutionary. Together with a mere handful of like-minded scientists, Morris established himself as a leader in the molecular phylogenetic revolution of the 1960s. The effects of this revolution are most evident in this journal, which he founded in 1992. Happily for lemur biologists, one of Morris Goodman's primary interests was in reconstructing the phylogeny of the primates, including the tooth-combed Lorisifomes of Africa and Asia, and the Lemuriformes of Madagascar (collectively referred to as the suborder Strepsirrhini). This paper traces the development of molecular phylogenetic and evolutionary genetic trends and methods over the 50-year expanse of Morris Goodman's career, particularly as they apply to our understanding of lemuriform phylogeny, biogeography, and biology. Notably, this perspective reveals that the lemuriform genome is sufficiently rich in phylogenetic signal such that the very earliest molecular phylogenetic studies - many of which were conducted by Goodman himself - have been validated by contemporary studies that have exploited advanced computational methods applied to phylogenomic scale data; studies that were beyond imagining in the earliest days of phylogeny reconstruction. Nonetheless, the frontier still beckons. New technologies for gathering and analyzing genomic data will allow investigators to build upon what can now be considered a nearly-known phylogeny of the Lemuriformes in order to ask innovative questions about the evolutionary mechanisms that generate and maintain the extraordinary breadth and depth of biological diversity within this remarkable clade of primates.
Collapse
|
36
|
Balete DS, Rickart EA, Heaney LR, Alviola PA, Duya MV, Duya MRM, Sosa T, Jansa SA. Archboldomys(Muridae: Murinae) Reconsidered: A New Genus and Three New Species of Shrew Mice from Luzon Island, Philippines. AMERICAN MUSEUM NOVITATES 2012. [DOI: 10.1206/3754.2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
37
|
McLain AT, Meyer TJ, Faulk C, Herke SW, Oldenburg JM, Bourgeois MG, Abshire CF, Roos C, Batzer MA. An alu-based phylogeny of lemurs (infraorder: Lemuriformes). PLoS One 2012; 7:e44035. [PMID: 22937148 PMCID: PMC3429421 DOI: 10.1371/journal.pone.0044035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/31/2012] [Indexed: 11/30/2022] Open
Abstract
LEMURS (INFRAORDER: Lemuriformes) are a radiation of strepsirrhine primates endemic to the island of Madagascar. As of 2012, 101 lemur species, divided among five families, have been described. Genetic and morphological evidence indicates all species are descended from a common ancestor that arrived in Madagascar ∼55-60 million years ago (mya). Phylogenetic relationships in this species-rich infraorder have been the subject of debate. Here we use Alu elements, a family of primate-specific Short INterspersed Elements (SINEs), to construct a phylogeny of infraorder Lemuriformes. Alu elements are particularly useful SINEs for the purpose of phylogeny reconstruction because they are identical by descent and confounding events between loci are easily resolved by sequencing. The genome of the grey mouse lemur (Microcebus murinus) was computationally assayed for synapomorphic Alu elements. Those that were identified as Lemuriformes-specific were analyzed against other available primate genomes for orthologous sequence in which to design primers for PCR (polymerase chain reaction) verification. A primate phylogenetic panel of 24 species, including 22 lemur species from all five families, was examined for the presence/absence of 138 Alu elements via PCR to establish relationships among species. Of these, 111 were phylogenetically informative. A phylogenetic tree was generated based on the results of this analysis. We demonstrate strong support for the monophyly of Lemuriformes to the exclusion of other primates, with Daubentoniidae, the aye-aye, as the basal lineage within the infraorder. Our results also suggest Lepilemuridae as a sister lineage to Cheirogaleidae, and Indriidae as sister to Lemuridae. Among the Cheirogaleidae, we show strong support for Microcebus and Mirza as sister genera, with Cheirogaleus the sister lineage to both. Our results also support the monophyly of the Lemuridae. Within Lemuridae we place Lemur and Hapalemur together to the exclusion of Eulemur and Varecia, with Varecia the sister lineage to the other three genera.
Collapse
Affiliation(s)
- Adam T McLain
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Strijk JS, Noyes RD, Strasberg D, Cruaud C, Gavory F, Chase MW, Abbott RJ, Thébaud C. In and out of Madagascar: dispersal to peripheral islands, insular speciation and diversification of Indian Ocean daisy trees (Psiadia, Asteraceae). PLoS One 2012; 7:e42932. [PMID: 22900068 PMCID: PMC3416790 DOI: 10.1371/journal.pone.0042932] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 07/16/2012] [Indexed: 11/20/2022] Open
Abstract
Madagascar is surrounded by archipelagos varying widely in origin, age and structure. Although small and geologically young, these archipelagos have accumulated disproportionate numbers of unique lineages in comparison to Madagascar, highlighting the role of waif-dispersal and rapid in situ diversification processes in generating endemic biodiversity. We reconstruct the evolutionary and biogeographical history of the genus Psiadia (Asteraceae), a plant genus with near equal numbers of species in Madagascar and surrounding islands. Analyzing patterns and processes of diversification, we explain species accumulation on peripheral islands and aim to offer new insights on the origin and potential causes for diversification in the Madagascar and Indian Ocean Islands biodiversity hotspot. Our results provide support for an African origin of the group, with strong support for non-monophyly. Colonization of the Mascarenes took place by two evolutionary distinct lineages from Madagascar, via two independent dispersal events, each unique for their spatial and temporal properties. Significant shifts in diversification rate followed regional expansion, resulting in co-occurring and phenotypically convergent species on high-elevation volcanic slopes. Like other endemic island lineages, Psiadia have been highly successful in dispersing to and radiating on isolated oceanic islands, typified by high habitat diversity and dynamic ecosystems fuelled by continued geological activity. Results stress the important biogeographical role for Rodrigues in serving as an outlying stepping stone from which regional colonization took place. We discuss how isolated volcanic islands contribute to regional diversity by generating substantial numbers of endemic species on short temporal scales. Factors pertaining to the mode and tempo of archipelago formation and its geographical isolation strongly govern evolutionary pathways available for species diversification, and the potential for successful diversification of dispersed lineages, therefore, appears highly dependent on the timing of arrival, as habitat and resource properties change dramatically over the course of oceanic island evolution.
Collapse
Affiliation(s)
- Joeri S Strijk
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Maille A, Roeder JJ. Inferences about the location of food in lemurs (Eulemur macaco and Eulemur fulvus): a comparison with apes and monkeys. Anim Cogn 2012; 15:1075-83. [PMID: 22806271 DOI: 10.1007/s10071-012-0531-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 06/11/2012] [Accepted: 06/25/2012] [Indexed: 12/01/2022]
Abstract
The ability of black and brown lemurs (Eulemur macaco and Eulemur fulvus) to make inferences about hidden food was tested using the same paradigm as in Call's (J Comp Psycol 118:232-241, 2004) cup task experiment. When provided with either visual or auditory information about the content of two boxes (one empty, one baited), lemurs performed better in the auditory condition than in the visual one. When provided with visual or auditory information only about the empty box, one subject out of four was above chance in the auditory condition, implying inferential reasoning. No subject was successful in the visual condition. This study reveals that (1) lemurs are capable of inferential reasoning by exclusion and (2) lemurs make better use of auditory than visual information. The results are compared with the performances recorded in apes and monkeys under the same paradigm.
Collapse
Affiliation(s)
- A Maille
- Centre National de la Recherche Scientifique, Département Ecologie, Physiologie et Ethologie, Strasbourg, France
| | | |
Collapse
|
40
|
Abstract
We report the discovery and analysis of an endogenous foamy virus (PSFVaye) within the genome of the aye-aye (Daubentonia madagascariensis), a strepsirrhine primate from Madagascar. Phylogenetic analyses indicate that PSFVaye is divergent from all known simian foamy viruses, suggesting an association between foamy viruses and primates since the haplorrhine-strepsirrhine split. The discovery of PSFVaye indicates that primate foamy virus might be more broadly distributed than previously thought.
Collapse
|
41
|
Morphometric analysis of cranial shape in fossil and recent euprimates. ANATOMY RESEARCH INTERNATIONAL 2012; 2012:478903. [PMID: 22611497 PMCID: PMC3352253 DOI: 10.1155/2012/478903] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 02/16/2012] [Indexed: 11/18/2022]
Abstract
Quantitative analysis of morphology allows for identification of subtle evolutionary patterns or convergences in anatomy that can aid ecological reconstructions of extinct taxa. This study explores diversity and convergence in cranial morphology across living and fossil primates using geometric morphometrics. 33 3D landmarks were gathered from 34 genera of euprimates (382 specimens), including the Eocene adapiforms Adapis and Leptadapis and Quaternary lemurs Archaeolemur, Palaeopropithecus, and Megaladapis. Landmark data was treated with Procrustes superimposition to remove all nonshape differences and then subjected to principal components analysis and linear discriminant function analysis. Haplorhines and strepsirrhines were well separated in morphospace along the major components of variation, largely reflecting differences in relative skull length and width and facial depth. Most adapiforms fell within or close to strepsirrhine space, while Quaternary lemurs deviated from extant strepsirrhines, either exploring new regions of morphospace or converging on haplorhines. Fossil taxa significantly increased the area of morphospace occupied by strepsirrhines. However, recent haplorhines showed significantly greater cranial disparity than strepsirrhines, even with the inclusion of the unusual Quaternary lemurs, demonstrating that differences in primate cranial disparity are likely real and not simply an artefact of recent megafaunal extinctions.
Collapse
|
42
|
Kamilar JM, Muldoon KM, Lehman SM, Herrera JP. Testing Bergmann's rule and the resource seasonality hypothesis in Malagasy primates using GIS-based climate data. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2012; 147:401-8. [PMID: 22271559 DOI: 10.1002/ajpa.22002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 11/22/2011] [Indexed: 11/06/2022]
Abstract
We tested four major hypotheses on the ecological aspects of body mass variation in extant Malagasy strepsirrhines: thermoregulation, resource seasonality/scarcity, resource quality, and primary productivity. These biogeographic hypotheses focus on the ecological aspects of body mass variation, largely ignoring the role of phylogeny for explaining body mass variation within lineages. We tested the independent effects of climate and resource-related variables on variation in body mass among Malagasy primates using recently developed comparative methods that account for phylogenetic history and spatial autocorrelation. We extracted data on lemur body mass and climate variables for a total of 43 species from 39 sites. Climatic data were obtained from the WorldClim database, which is based on climate data from weather stations compiled around the world. Using generalized linear models that incorporate parameters to account for phylogenetic and spatial autocorrelation, we found that diet and climate variables were weak predictors of lemur body mass. Moreover, there was a strong phylogenetic effect relative to the effects of space on lemur body mass in all models. Thus, we failed to find support for any of the four hypotheses on patterns of geography and body mass in extant strepsirrhines. Our results indicate that body mass has been conserved since early in the evolutionary history of each genus, while species diversified into different environmental niches. Our findings are in contrast to some previous studies that have suggested resource and climate related effects on body mass, though these studies have examined this question at different taxonomic and/or geographic scales.
Collapse
Affiliation(s)
- Jason M Kamilar
- Department of Anthropology, Yale University, New Haven, CT; Department of Anatomy, Midwestern University, Glendale, AZ, USA.
| | | | | | | |
Collapse
|
43
|
Babb PL, Fernandez-Duque E, Baiduc CA, Gagneux P, Evans S, Schurr TG. mtDNA diversity in azara's owl monkeys (Aotus azarai azarai) of the Argentinean Chaco. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2011; 146:209-24. [DOI: 10.1002/ajpa.21567] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 05/04/2011] [Indexed: 11/05/2022]
|
44
|
Variance-sensitive choice in lemurs: constancy trumps quantity. Anim Cogn 2011; 15:15-25. [PMID: 21670948 DOI: 10.1007/s10071-011-0425-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/23/2011] [Accepted: 05/26/2011] [Indexed: 10/18/2022]
Abstract
Numerous studies have demonstrated that animals' tolerance for risk when foraging can be affected by changes in metabolic state. Specifically, animals on a negative energy budget increase their preferences for risk, while animals on a positive energy budget are typically risk-averse. The malleability of these preferences may be evolutionarily advantageous, and important for maximizing chances of survival during brief periods of energetic stress. However, animals adapted to living in unpredictable conditions are unlikely to benefit from risk-seeking strategies, and instead are expected to reduce energetic demands while maintaining risk-aversion. We measured risk preferences in lemurs, a group of primates restricted to the island of Madagascar. Lemurs have evolved diverse anatomical and behavioral traits for survival in a harsh and unpredictable ecology, and these traits have been explained as forms of anatomical and behavioral risk reduction. We therefore predicted that lemurs would also be risk-averse in a behavioral task that offered subjects a choice between a small certain reward, and an uncertain but potentially large reward. In Experiment 1, the average rewards associated with the constant and variable options were equal and lemurs exhibited high levels of risk-aversion, replicating a phenomenon that has been demonstrated in dozens of taxa. In Experiment 2, we gradually increased the average value of the variable option relative to the constant option. Lemurs' preferences tracked these changes and subjects became more risk-seeking as the risk premium increased. However, many subjects maintained high levels of risk-aversion even when the average payout of the variable option yielded double that of the constant option. These results are consistent with the notion that lemur cognition has evolved to minimize risk in an unpredictable island environment.
Collapse
|
45
|
Weyeneth N, Goodman SM, Appleton B, Wood R, Ruedi M. Wings or winds: inferring bat migration in a stepping-stone archipelago. J Evol Biol 2011; 24:1298-306. [PMID: 21443643 DOI: 10.1111/j.1420-9101.2011.02262.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Eocene ocean currents and prevailing winds correlate with over-water dispersals of terrestrial mammals from Africa to Madagascar. Since the Early Miocene (about 23 Ma), these currents flowed in the reverse direction, from the Indian Ocean towards Africa. The Comoro Islands are equidistant between Africa and Madagascar and support an endemic land vertebrate fauna that shares recent ancestry predominantly with Madagascar. We examined whether gene flow in two Miniopterus bat species endemic to the Comoros and Madagascar correlates with the direction of current winds, using uni- and bi-parentally inherited markers with different evolutionary rates. Coalescence-based analyses of mitochondrial matrilines support a Pleistocene (approximately 180,000 years ago) colonization event from Madagascar west to the Comoros (distance: 300 km) in the predicted direction. However, nuclear microsatellites show that more recent gene flow is restricted to a few individuals flying against the wind, from Grande Comore to Anjouan (distance: 80 km).
Collapse
Affiliation(s)
- N Weyeneth
- Department of Mammalogy and Ornithology, Natural History Museum of Geneva, Route de Malagnou, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
46
|
BOCHKOV ANDREV, KLIMOV PAVELB, WAUTHY GEORGES. Phylogeny and coevolutionary associations of makialgine mites (Acari, Psoroptidae, Makialginae) provide insight into evolutionary history of their hosts, strepsirrhine primates. Zool J Linn Soc 2011. [DOI: 10.1111/j.1096-3642.2010.00666.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Wirta H, Viljanen H, Orsini L, Montreuil O, Hanski I. Three parallel radiations of Canthonini dung beetles in Madagascar. Mol Phylogenet Evol 2010; 57:710-27. [DOI: 10.1016/j.ympev.2010.08.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 06/27/2010] [Accepted: 08/13/2010] [Indexed: 01/26/2023]
|
48
|
Lamoreux JF, Lacher TE. Mammalian endemism, range size and conservation status in the southern temperate zone. DIVERS DISTRIB 2010. [DOI: 10.1111/j.1472-4642.2010.00697.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
49
|
Kamilar JM, Muldoon KM. The climatic niche diversity of malagasy primates: a phylogenetic perspective. PLoS One 2010; 5:e11073. [PMID: 20552016 PMCID: PMC2884016 DOI: 10.1371/journal.pone.0011073] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 05/19/2010] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Numerous researchers have posited that there should be a strong negative relationship between the evolutionary distance among species and their ecological similarity. Alternative evidence suggests that members of adaptive radiations should display no relationship between divergence time and ecological similarity because rapid evolution results in near-simultaneous speciation early in the clade's history. In this paper, we performed the first investigation of ecological diversity in a phylogenetic context using a mammalian adaptive radiation, the Malagasy primates. METHODOLOGY/PRINCIPAL FINDINGS We collected data for 43 extant species including: 1) 1064 species by locality samples, 2) GIS climate data for each sampling locality, and 3) the phylogenetic relationships of the species. We calculated the niche space of each species by summarizing the climatic variation at localities of known occurrence. Climate data from all species occurrences at all sites were entered into a principal components analysis. We calculated the mean value of the first two PCA axes, representing rainfall and temperature diversity, for each species. We calculated the K statistic using the Physig program for Matlab to examine how well the climatic niche space of species was correlated with phylogeny. CONCLUSIONS/SIGNIFICANCE We found that there was little relationship between the phylogenetic distance of Malagasy primates and their rainfall and temperature niche space, i.e., closely related species tend to occupy different climatic niches. Furthermore, several species from different genera converged on a similar climatic niche. These results have important implications for the evolution of ecological diversity, and the long-term survival of these endangered species.
Collapse
Affiliation(s)
- Jason M Kamilar
- Department of Anthropology, Yale University, New Haven, Connecticut, USA.
| | | |
Collapse
|
50
|
African apes as reservoirs of Plasmodium falciparum and the origin and diversification of the Laverania subgenus. Proc Natl Acad Sci U S A 2010; 107:10561-6. [PMID: 20498054 DOI: 10.1073/pnas.1005435107] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigated two mitochondrial genes (cytb and cox1), one plastid gene (tufA), and one nuclear gene (ldh) in blood samples from 12 chimpanzees and two gorillas from Cameroon and one lemur from Madagascar. One gorilla sample is related to Plasmodium falciparum, thus confirming the recently reported presence in gorillas of this parasite. The second gorilla sample is more similar to the recently defined Plasmodium gaboni than to the P. falciparum-Plasmodium reichenowi clade, but distinct from both. Two chimpanzee samples are P. falciparum. A third sample is P. reichenowi and two others are P. gaboni. The other chimpanzee samples are different from those in the ape clade: two are Plasmodium ovale, and one is Plasmodium malariae. That is, we have found three human Plasmodium parasites in chimpanzees. Four chimpanzee samples were mixed: one species was P. reichenowi; the other species was P. gaboni in three samples and P. ovale in the fourth sample. The lemur sample, provisionally named Plasmodium malagasi, is a sister lineage to the large cluster of primate parasites that does not include P. falciparum or ape parasites, suggesting that the falciparum + ape parasite cluster (Laverania clade) may have evolved from a parasite present in hosts not ancestral to the primates. If malignant malaria were eradicated from human populations, chimpanzees, in addition to gorillas, might serve as a reservoir for P. falciparum.
Collapse
|