1
|
Carroll SH, Schafer S, Dalessandro E, Ho TV, Chai Y, Liao EC. Neural crest and periderm-specific requirements of Irf6 during neural tube and craniofacial development. Dev Biol 2025; 522:106-115. [PMID: 40113028 DOI: 10.1016/j.ydbio.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 11/27/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
IRF6 is a key genetic determinant of cleft lip and palate. The ability to interrogate post-embryonic requirements of Irf6 has been hindered, as global Irf6 ablation in the mouse causes neonatal lethality. Prior work analyzing Irf6 in mice defined its role in the embryonic surface epithelium and periderm, where it regulates cell proliferation and differentiation. Several reports have also described Irf6 expression in other cell types, such as muscle, and neuroectoderm. However, analysis of a functional role in non-epithelial cells has been incomplete due to the severity and lethality of the Irf6 knockout model and the paucity of work with a conditional Irf6 allele. Here we describe the generation and characterization of a new Irf6 floxed mouse model and analysis of Irf6 ablation in periderm and neural crest lineages. This work found that loss of Irf6 in periderm recapitulates a mild Irf6 null phenotype, suggesting that Irf6-mediated signaling in periderm plays a crucial role in regulating embryonic development. Further, conditional ablation of Irf6 in neural crest cells resulted in an anterior neural tube defect of variable penetrance. The generation of this conditional Irf6 allele allows for new insights into craniofacial development and new exploration into the post-natal role of Irf6.
Collapse
Affiliation(s)
- Shannon H Carroll
- Center for Craniofacial Innovation, Children's Hospital of Philadelphia Research Institute, Children's Hospital of Philadelphia, PA, 19104, USA
| | - Sogand Schafer
- Center for Craniofacial Innovation, Children's Hospital of Philadelphia Research Institute, Children's Hospital of Philadelphia, PA, 19104, USA
| | - Eileen Dalessandro
- Center for Craniofacial Innovation, Children's Hospital of Philadelphia Research Institute, Children's Hospital of Philadelphia, PA, 19104, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | - Eric C Liao
- Center for Craniofacial Innovation, Children's Hospital of Philadelphia Research Institute, Children's Hospital of Philadelphia, PA, 19104, USA; Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, PA, 19104, USA; Shriners Hospital for Children, Tampa, FL, 33607, USA.
| |
Collapse
|
2
|
Chakraborty S, Wenzlitschke N, Anderson MJ, Eraso A, Baudic M, Thompson JJ, Evans AA, Shatford-Adams LM, Chari R, Awasthi P, Dale RK, Lewandoski M, Petros TJ, Rocha PP. Deletion of a single CTCF motif at the boundary of a chromatin domain with three FGF genes disrupts gene expression and embryonic development. Dev Cell 2025:S1534-5807(25)00064-4. [PMID: 40015278 DOI: 10.1016/j.devcel.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/08/2024] [Accepted: 02/04/2025] [Indexed: 03/01/2025]
Abstract
Chromatin domains delimited by CTCF can restrict the range of enhancer action. However, disruption of some domain boundaries results in mild gene dysregulation and phenotypes. We tested whether perturbing a domain with multiple developmental regulators would lead to more severe outcomes. We chose a domain with three FGF ligand genes-Fgf3, Fgf4, and Fgf15-that control different murine developmental processes. Heterozygous deletion of a 23.9-kb boundary defined by four CTCF sites led to ectopic interactions of the FGF genes with enhancers active in the brain and induced FGF expression. This caused orofacial clefts, encephalocele, and fully penetrant perinatal lethality. Loss of the single CTCF motif oriented toward the enhancers-but not the three toward the FGF genes-recapitulated these phenotypes. Our works shows that small sequence variants at particular domain boundaries can have a surprisingly outsized effect and must be considered as potential sources of gene dysregulation in development and disease.
Collapse
Affiliation(s)
- Shreeta Chakraborty
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nina Wenzlitschke
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew J Anderson
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Ariel Eraso
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Manon Baudic
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joyce J Thompson
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alicia A Evans
- Bioinformatics and Scientific Programming Core, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lilly M Shatford-Adams
- Bioinformatics and Scientific Programming Core, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Raj Chari
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Parirokh Awasthi
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark Lewandoski
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Timothy J Petros
- Unit on Cellular and Molecular Neurodevelopment, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pedro P Rocha
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Houghtaling S, Gombart SK, Ho TH, Huang G, Beier DR. A conditional smoothened (smo) allele on an inbred C57BL/6J genetic background has a hypomorphic smo mutant phenotype. Dev Biol 2025; 518:71-76. [PMID: 39603584 PMCID: PMC11728190 DOI: 10.1016/j.ydbio.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024]
Abstract
We have introduced the floxed allele of Smoothened (Smo) carried by the mouse line Smotm2Amc into the C57BL/6J strain by serial backcross. Recapitulation of the Smo null phenotype was confirmed by deleting the allele using E2a-cre and intercrossing heterozygous Smo ± mice. No homozygous mutant embryos were identified at E9.5, suggesting the null phenotype is at least as severe as that observed on a mixed genetic background. While healthy and fertile homozygous floxed mice were regularly obtained after intercrosses, their numbers at weaning were reduced relative to Mendelian expectation, suggesting the unrecombined allele is itself hypomorphic. This hypothesis is supported by characterization of transcription of the floxed allele, which revealed that its expression was variably reduced relative to wild-type Smo.
Collapse
Affiliation(s)
- Scott Houghtaling
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, USA
| | - Sean K Gombart
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, USA
| | - Tzu-Hua Ho
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, USA
| | - Grace Huang
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, USA
| | - David R Beier
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, USA; Department of Pediatrics, Division of Genetic Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
4
|
Lainšček D, Forstnerič V, Miroševič Š. CTNNB1 syndrome mouse models. Mamm Genome 2025:10.1007/s00335-025-10105-3. [PMID: 39833474 DOI: 10.1007/s00335-025-10105-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
CTNNB1 syndrome is a rare neurodevelopmental disorder, affecting children worldwide with a prevalence of 2.6-3.2 per 100,000 births and often misdiagnosed as cerebral palsy. De novo loss-of-function mutations in the Ctnnb1 gene result in dysfunction of the β-catenin protein, disrupting the canonical Wnt signaling pathway, which plays a key role in cell proliferation, differentiation, and tissue homeostasis. Additionally, these mutations impair the formation of cell junctions, adversely affecting tissue architecture. Motor and speech deficits, cognitive impairment, cardiovascular and visual problems are just some of the key symptoms that occur in CTNNB1 syndrome patients. There is currently no effective treatment option available for patients with CTNNB1 syndrome, with support largely focused on the management of symptoms and physiotherapy, yet recently some therapeutic approaches are being developed. Animal testing is still crucial in the process of new drug development, and mouse models are particularly important. These models provide researchers with new understanding of the disease mechanisms and are invaluable for testing the efficacy and safety of potential treatments. The development of various mouse models with β-catenin loss- and gain-of-function mutations successfully replicates key features of intellectual disability, autism-like behaviors, motor deficits, and more. These models provide a valuable platform for studying disease mechanisms and offer a powerful tool for testing the therapeutic potential and effectiveness of new drug candidates, paving the way for future clinical trials.
Collapse
Affiliation(s)
- Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, 1000, Slovenia.
- Centre for Technologies of Gene and Cell Therapy, Ljubljana, 1000, Slovenia.
- EN-FIST Centre of Excellence, Ljubljana, 1000, Slovenia.
| | - Vida Forstnerič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, 1000, Slovenia.
| | - Špela Miroševič
- The Gene Therapy Research Institute, CTNNB1 Foundation, Ljubljana, 1000, Slovenia.
- Department of Family Medicine, Faculty of Medicine Ljubljana, University of Ljubljana, Ljubljana, 1000, Slovenia.
| |
Collapse
|
5
|
Zhu TY, Hu P, Mi YH, Zhang JL, Xu AN, Gao MT, Zhang YY, Shen SB, Yang GM, Pan Y. Telomerase reverse transcriptase gene knock-in unleashes enhanced longevity and accelerated damage repair in mice. Aging Cell 2024:e14445. [PMID: 39660787 DOI: 10.1111/acel.14445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/24/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
While previous research has demonstrated the therapeutic efficacy of telomerase reverse transcriptase (TERT) overexpression using adeno-associated virus and cytomegalovirus vectors to combat aging, the broader implications of TERT germline gene editing on the mammalian genome, proteomic composition, phenotypes, lifespan extension, and damage repair remain largely unexplored. In this study, we elucidate the functional properties of transgenic mice carrying the Tert transgene, guided by precise gene targeting into the Rosa26 locus via embryonic stem (ES) cells under the control of the elongation factor 1α (EF1α) promoter. The Tert knock-in (TertKI) mice harboring the EF1α-Tert gene displayed elevated telomerase activity, elongated telomeres, and extended lifespan, with no spontaneous genotoxicity or carcinogenicity. The TertKI mice showed also enhanced wound healing, characterized by significantly increased expression of Fgf7, Vegf, and collagen. Additionally, TertKI mice exhibited robust resistance to the progression of colitis induced by dextran sodium sulfate (DSS), accompanied by reduced expression of disease-deteriorating genes. These findings foreshadow the potential of TertKI as an extraordinary rejuvenation force, promising not only longevity but also rejuvenation in skin and intestinal aging.
Collapse
Affiliation(s)
- Tian-Yi Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Po Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yu-Hui Mi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jun-Li Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - An-Na Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ming-Tong Gao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ying-Ying Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - San-Bing Shen
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Guang-Ming Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yang Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Tsitsikov EN, Phan KP, Liu Y, Tsytsykova AV, Paterno R, Sherry DM, Johnson AC, Dunn IF. Spontaneous mutation in 2310061I04Rik results in reduced expression of mitochondrial genes and impaired brain myelination. PLoS One 2024; 19:e0290487. [PMID: 39631040 PMCID: PMC11617004 DOI: 10.1371/journal.pone.0290487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/10/2024] [Indexed: 12/07/2024] Open
Abstract
Here, we describe a spontaneous mouse mutant with a deletion in a predicted gene 2310061I04Rik (Rik) of unknown function located on chromosome 17. A 59 base pair long deletion occurred in the first intron of the Rik gene and disrupted its expression. Riknull mice were born healthy and appeared anatomically normal up to two weeks of age. After that, these mice showed inhibited growth, ataxic gait, and died shortly after postnatal day 24 (P24). Transcriptome analysis at P14 and P23 revealed significantly reduced expression of mitochondrial genes in Riknull brains compared to wild type controls including mt-Nd4, mt-Cytb, mt-Nd2, mt-Co1, mt-Atp6, and others. Similarly, genes specific for myelinating oligodendrocytes also showed reduced expression in P23 Riknull brains compared to controls. Histological examination of anterior thalamic nuclei demonstrated decreased myelination of anteroventral nuclei but not of anterodorsal nuclei in P23 Riknull mice. Myelination of the anterior commissure was also impaired and displayed extensive vacuolation. Consistently with these findings, immunohistochemistry showed reduced expression of Opalin, a glycoprotein expressed in differentiated oligodendrocytes. Taken together, these results suggest that RIK is important for oligodendrocyte maturation and myelination in the developing brain.
Collapse
Affiliation(s)
- Erdyni N. Tsitsikov
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Khanh P. Phan
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Neuroscience Ph.D. Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Yufeng Liu
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Alla V. Tsytsykova
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Rosalia Paterno
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Neuroscience Ph.D. Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - David M. Sherry
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Neuroscience Ph.D. Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Anthony C. Johnson
- Neuroscience Ph.D. Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Ian F. Dunn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Neuroscience Ph.D. Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| |
Collapse
|
7
|
Pan X, Fang C, Shen C, Li X, Xie L, Li L, Huang S, Yan X, Zhu X. Directional ciliary beats across epithelia require Ccdc57-mediated coupling between axonemal orientation and basal body polarity. Nat Commun 2024; 15:10249. [PMID: 39592607 PMCID: PMC11599927 DOI: 10.1038/s41467-024-54766-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
Motile cilia unify their axonemal orientations (AOs), or beat directions, across epithelia to drive liquid flows. This planar polarity results from cytoskeleton-driven swiveling of basal foot (BF), a basal body (BB) appendage coincident with the AO, in response to regulatory cues. How and when the BF-AO relationship is established, however, are unaddressed. Here, we show that the BF-AO coupling occurs during rotational polarizations of BBs and requires Ccdc57. Ccdc57 localizes on BBs as a rotationally-asymmetric punctum, which polarizes away from the BF in BBs having achieved the rotational polarity to probably fix the BF-AO relationship. Consistently, Ccdc57-deficient ependymal multicilia lack the BF-AO coupling and display directional beats at only single cell level. Ccdc57 -/- tracheal multicilia also fail to fully align their BFs. Furthermore, Ccdc57 -/- mice manifest severe hydrocephalus, due to impaired cerebrospinal fluid flow, and high mortality. These findings unravel mechanisms governing the planar polarity of epithelial motile cilia.
Collapse
Affiliation(s)
- Xinwen Pan
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chuyu Fang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chuan Shen
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xixia Li
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lele Xie
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Luan Li
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shan Huang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiumin Yan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xueliang Zhu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
8
|
Kreeger LJ, Honnuraiah S, Maeker S, Shea S, Fishell G, Goodrich LV. An Anatomical and Physiological Basis for Flexible Coincidence Detection in the Auditory System. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582808. [PMID: 38464181 PMCID: PMC10925315 DOI: 10.1101/2024.02.29.582808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Animals navigate the auditory world by recognizing complex sounds, from the rustle of a predator to the call of a potential mate. This ability depends in part on the octopus cells of the auditory brainstem, which respond to multiple frequencies that change over time, as occurs in natural stimuli. Unlike the average neuron, which integrates inputs over time on the order of tens of milliseconds, octopus cells must detect momentary coincidence of excitatory inputs from the cochlea during an ongoing sound on both the millisecond and submillisecond time scale. Here, we show that octopus cells receive inhibitory inputs on their dendrites that enhance opportunities for coincidence detection in the cell body, thereby allowing for responses both to rapid onsets at the beginning of a sound and to frequency modulations during the sound. This mechanism is crucial for the fundamental process of integrating the synchronized frequencies of natural auditory signals over time.
Collapse
Affiliation(s)
- Lauren J Kreeger
- Harvard Medical School, Department of Neurobiology, Boston, MA 02115, USA
| | - Suraj Honnuraiah
- Harvard Medical School, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sydney Maeker
- Harvard Medical School, Department of Neurobiology, Boston, MA 02115, USA
| | - Siobhan Shea
- Harvard Medical School, Department of Neurobiology, Boston, MA 02115, USA
| | - Gord Fishell
- Harvard Medical School, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lisa V Goodrich
- Harvard Medical School, Department of Neurobiology, Boston, MA 02115, USA
| |
Collapse
|
9
|
Miyaki T, Homma N, Kawasaki Y, Kishi M, Yamaguchi J, Kakuta S, Shindo T, Sugiura M, Oliva Trejo JA, Kaneda H, Omotehara T, Takechi M, Negishi-Koga T, Ishijima M, Aoto K, Iseki S, Kitamura K, Muto S, Amagasa M, Hotchi S, Ogura K, Shibata S, Sakai T, Suzuki Y, Ichimura K. Ultrastructural analysis of whole glomeruli using array tomography. J Cell Sci 2024; 137:jcs262154. [PMID: 39171439 DOI: 10.1242/jcs.262154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024] Open
Abstract
The renal glomerulus produces primary urine from blood plasma by ultrafiltration. The ultrastructure of the glomerulus is closely related to filtration function and disease development. The ultrastructure of glomeruli has mainly been evaluated using transmission electron microscopy; however, the volume that can be observed using transmission electron microscopy is extremely limited relative to the total volume of the glomerulus. Consequently, observing structures that exist in only one location in each glomerulus, such as the vascular pole, and evaluating low-density or localized lesions are challenging tasks. Array tomography (AT) is a technique used to analyze the ultrastructure of tissues and cells via scanning electron microscopy of serial sections. In this study, we present an AT workflow that is optimized for observing complete serial sections of the whole glomerulus, and we share several analytical examples that use the optimized AT workflow, demonstrating the usefulness of this approach. Overall, this AT workflow can be a powerful tool for structural and pathological evaluation of the glomerulus. This workflow is also expected to provide new insights into the ultrastructure of the glomerulus and its constituent cells.
Collapse
Affiliation(s)
- Takayuki Miyaki
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Nozomi Homma
- Department of Nephrology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Yuto Kawasaki
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Mami Kishi
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Junji Yamaguchi
- Laboratory of Morphology and Image Analysis, Research Core Facilities , Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Soichiro Kakuta
- Laboratory of Morphology and Image Analysis, Research Core Facilities , Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Tomoko Shindo
- Electron Microscope Laboratory, Keio University School of Medicine, Tokyo 160-0016, Japan
| | - Makoto Sugiura
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Juan Alejandro Oliva Trejo
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Hisako Kaneda
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Takuya Omotehara
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Masaki Takechi
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Takako Negishi-Koga
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Community Medicine and Research for Bone and Joint Diseases, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Muneaki Ishijima
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Community Medicine and Research for Bone and Joint Diseases, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Kazushi Aoto
- Central Laboratory, Graduate School of Biomedical and Health Sciences , Hiroshima University, Hiroshima 734-8551, Japan
| | - Sachiko Iseki
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences , Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Kosuke Kitamura
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Satoru Muto
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Mao Amagasa
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Shiori Hotchi
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Kanako Ogura
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Shinsuke Shibata
- Electron Microscope Laboratory, Keio University School of Medicine, Tokyo 160-0016, Japan
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences , Niigata University, Niigata City 951-8510, Japan
| | - Tatsuo Sakai
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Koichiro Ichimura
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Laboratory of Morphology and Image Analysis, Research Core Facilities , Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
10
|
Lan Y, Wu Z, Liu H, Jiang R. Lineage-specific requirements of Alx4 function in craniofacial and hair development. Dev Dyn 2024; 253:940-948. [PMID: 38481039 PMCID: PMC11393181 DOI: 10.1002/dvdy.705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Disruption of ALX4 causes autosomal dominant parietal foramina and autosomal recessive frontonasal dysplasia with alopecia, but the mechanisms involving ALX4 in craniofacial and other developmental processes are not well understood. Although mice carrying distinct mutations in Alx4 have been previously reported, the perinatal lethality of homozygous mutants together with dynamic patterns of Alx4 expression in multiple tissues have hindered systematic elucidation of the cellular and molecular mechanisms involving Alx4 in organogenesis and disease pathogenesis. RESULTS We report generation of Alx4f/f conditional mice and show that tissue-specific Cre-mediated inactivation of Alx4 in cranial neural crest and limb bud mesenchyme, respectively, recapitulated craniofacial and limb developmental defects as found in Alx4-null mice but without affecting postnatal survival. While Alx4-null mice that survive postnatally exhibited dorsal alopecia, mice lacking Alx4 function in the neural crest lineage exhibited a highly restricted region of hair loss over the anterior skull whereas mice lacking Alx4 in the cranial mesoderm lineage exhibited normal hair development, suggesting that Alx4 plays partly redundant roles in multiple cell lineages during hair follicle development. CONCLUSION The Alx4f/f mice provide a valuable resource for systematic investigation of cell type- and stage-specific function of ALX family transcription factors in development and disease.
Collapse
Affiliation(s)
- Yu Lan
- Division of Plastic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Departments of Pediatrics and Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Zhaoming Wu
- Division of Plastic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Current address: Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR
| | - Han Liu
- Division of Plastic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Rulang Jiang
- Division of Plastic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Departments of Pediatrics and Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
11
|
Alexander JM, Vazquez-Ramirez L, Lin C, Antonoudiou P, Maguire J, Wagner F, Jacob MH. Inhibition of GSK3α,β rescues cognitive phenotypes in a preclinical mouse model of CTNNB1 syndrome. EMBO Mol Med 2024; 16:2109-2131. [PMID: 39103699 PMCID: PMC11393422 DOI: 10.1038/s44321-024-00110-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024] Open
Abstract
CTNNB1 syndrome is a rare monogenetic disorder caused by CTNNB1 de novo pathogenic heterozygous loss-of-function variants that result in cognitive and motor disabilities. Treatment is currently lacking; our study addresses this critical need. CTNNB1 encodes β-catenin which is essential for normal brain function via its dual roles in cadherin-based synaptic adhesion complexes and canonical Wnt signal transduction. We have generated a Ctnnb1 germline heterozygous mouse line that displays cognitive and motor deficits, resembling key features of CTNNB1 syndrome in humans. Compared with wild-type littermates, Ctnnb1 heterozygous mice also exhibit decreases in brain β-catenin, β-catenin association with N-cadherin, Wnt target gene expression, and Na/K ATPases, key regulators of changes in ion gradients during high activity. Consistently, hippocampal neuron functional properties and excitability are altered. Most important, we identify a highly selective inhibitor of glycogen synthase kinase (GSK)3α,β that significantly normalizes the phenotypes to closely meet wild-type littermate levels. Our data provide new insights into brain molecular and functional changes, and the first evidence for an efficacious treatment with therapeutic potential for individuals with CTNNB1 syndrome.
Collapse
Affiliation(s)
- Jonathan M Alexander
- Tufts University School of Biomedical Sciences, Department of Neuroscience, Boston, MA, 02111, USA
| | - Leeanne Vazquez-Ramirez
- Tufts University School of Biomedical Sciences, Department of Neuroscience, Boston, MA, 02111, USA
| | - Crystal Lin
- Tufts University School of Biomedical Sciences, Department of Neuroscience, Boston, MA, 02111, USA
| | - Pantelis Antonoudiou
- Tufts University School of Biomedical Sciences, Department of Neuroscience, Boston, MA, 02111, USA
| | - Jamie Maguire
- Tufts University School of Biomedical Sciences, Department of Neuroscience, Boston, MA, 02111, USA
| | - Florence Wagner
- The Broad Institute of MIT and Harvard, Center for the Development of Therapeutics, Cambridge, MA, 02142, USA
- Photys Therapeutics, Waltham, MA, USA
| | - Michele H Jacob
- Tufts University School of Biomedical Sciences, Department of Neuroscience, Boston, MA, 02111, USA.
| |
Collapse
|
12
|
Painter C, Sankaranarayanan NV, Nagarajan B, Mandel Clausen T, West AM, Setiawan NJ, Park J, Porell RN, Bartels PL, Sandoval DR, Vasquez GJ, Chute JP, Godula K, Vander Kooi CW, Gordts PL, Corbett KD, Termini CM, Desai UR, Esko JD. Alteration of Neuropilin-1 and Heparan Sulfate Interaction Impairs Murine B16 Tumor Growth. ACS Chem Biol 2024; 19:1820-1835. [PMID: 39099090 PMCID: PMC11334110 DOI: 10.1021/acschembio.4c00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Neuropilin-1 acts as a coreceptor with vascular endothelial growth factor receptors to facilitate binding of its ligand, vascular endothelial growth factor. Neuropilin-1 also binds to heparan sulfate, but the functional significance of this interaction has not been established. A combinatorial library screening using heparin oligosaccharides followed by molecular dynamics simulations of a heparin tetradecasaccharide suggested a highly conserved binding site composed of amino acid residues extending across the b1 and b2 domains of murine neuropilin-1. Mutagenesis studies established the importance of arginine513 and lysine514 for binding of heparin to a recombinant form of Nrp1 composed of the a1, a2, b1, and b2 domains. Recombinant Nrp1 protein bearing R513A,K514A mutations showed a significant loss of heparin-binding, heparin-induced dimerization, and heparin-dependent thermal stabilization. Isothermal calorimetry experiments suggested a 1:2 complex of heparin tetradecasaccharide:Nrp1. To study the impact of altered heparin binding in vivo, a mutant allele of Nrp1 bearing the R513A,K514A mutations was created in mice (Nrp1D) and crossbred to Nrp1+/- mice to examine the impact of altered heparan sulfate binding. Analysis of tumor formation showed variable effects on tumor growth in Nrp1D/D mice, resulting in a frank reduction in tumor growth in Nrp1D/- mice. Expression of mutant Nrp1D protein was normal in tissues, suggesting that the reduction in tumor growth was due to the altered binding of heparin/heparan sulfate to neuropilin-1. These findings suggest that the interaction of neuropilin-1 with heparan sulfate modulates its stability and its role in tumor formation and growth.
Collapse
Affiliation(s)
- Chelsea
D. Painter
- Department
of Cellular and Molecular Medicine, University
of California, San Diego, La Jolla, California 92093, United States
- Glycobiology
Research and Training Center, University
of California, San Diego, La Jolla, California 92093, United States
| | - Nehru Viji Sankaranarayanan
- Department
of Medicinal Chemistry, Virginia Commonwealth
University, Richmond, Virginia 23298, United States
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Balaji Nagarajan
- Department
of Medicinal Chemistry, Virginia Commonwealth
University, Richmond, Virginia 23298, United States
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Thomas Mandel Clausen
- Department
of Cellular and Molecular Medicine, University
of California, San Diego, La Jolla, California 92093, United States
- Glycobiology
Research and Training Center, University
of California, San Diego, La Jolla, California 92093, United States
| | - Alan M.V. West
- Department
of Cellular and Molecular Medicine, University
of California, San Diego, La Jolla, California 92093, United States
| | - Nicollette J. Setiawan
- Translational
Science and Therapeutics Division, Fred
Hutchinson Cancer Center, Seattle, Washington 98109, United States
| | - Jeeyoung Park
- Department
of Cellular and Molecular Medicine, University
of California, San Diego, La Jolla, California 92093, United States
| | - Ryan N. Porell
- Glycobiology
Research and Training Center, University
of California, San Diego, La Jolla, California 92093, United States
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Phillip L. Bartels
- Glycobiology
Research and Training Center, University
of California, San Diego, La Jolla, California 92093, United States
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Daniel R. Sandoval
- Department
of Cellular and Molecular Medicine, University
of California, San Diego, La Jolla, California 92093, United States
- Glycobiology
Research and Training Center, University
of California, San Diego, La Jolla, California 92093, United States
| | - Gabriel J. Vasquez
- Department
of Cellular and Molecular Medicine, University
of California, San Diego, La Jolla, California 92093, United States
| | - John P. Chute
- Samuel
Oschin Cancer Center, Cedars Sinai Medical
Center, Los Angeles, California 90048, United States
- Division
of Hematology & Cellular Therapy, Cedars
Sinai Medical Center, Los Angeles, California 90048, United States
- Regenerative
Medicine Institute, Cedars Sinai Medical
Center, Los Angeles, California 90048, United States
| | - Kamil Godula
- Glycobiology
Research and Training Center, University
of California, San Diego, La Jolla, California 92093, United States
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Craig W. Vander Kooi
- Department
of Biochemistry and Molecular Biology, University
of Florida, Gainesville, Florida 32610, United
States
| | - Philip L.S.M. Gordts
- Glycobiology
Research and Training Center, University
of California, San Diego, La Jolla, California 92093, United States
- Department
of Medicine, University of California, San
Diego, La Jolla, California 92093, United States
| | - Kevin D. Corbett
- Department
of Cellular and Molecular Medicine, University
of California, San Diego, La Jolla, California 92093, United States
- Department
of Molecular Biology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Christina M. Termini
- Translational
Science and Therapeutics Division, Fred
Hutchinson Cancer Center, Seattle, Washington 98109, United States
| | - Umesh R. Desai
- Department
of Medicinal Chemistry, Virginia Commonwealth
University, Richmond, Virginia 23298, United States
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Jeffrey D. Esko
- Department
of Cellular and Molecular Medicine, University
of California, San Diego, La Jolla, California 92093, United States
- Glycobiology
Research and Training Center, University
of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
13
|
Chakraborty S, Wenzlitschke N, Anderson MJ, Eraso A, Baudic M, Thompson JJ, Evans AA, Shatford-Adams LM, Chari R, Awasthi P, Dale RK, Lewandoski M, Petros TJ, Rocha PP. Structural perturbation of chromatin domains with multiple developmental regulators can severely impact gene regulation and development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.03.606480. [PMID: 39372737 PMCID: PMC11451586 DOI: 10.1101/2024.08.03.606480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Chromatin domain boundaries delimited by CTCF motifs can restrict the range of enhancer action. However, disruption of domain structure often results in mild gene dysregulation and thus predicting the impact of boundary rearrangements on animal development remains challenging. Here, we tested whether structural perturbation of a chromatin domain with multiple developmental regulators can result in more acute gene dysregulation and severe developmental phenotypes. We targeted clusters of CTCF motifs in a domain of the mouse genome containing three FGF ligand genes-Fgf3, Fgf4, and Fgf15-that regulate several developmental processes. Deletion of the 23.9kb cluster that defines the centromeric boundary of this domain resulted in ectopic interactions of the FGF genes with enhancers located across the deleted boundary that are active in the developing brain. This caused strong induction of FGF expression and perinatal lethality with encephalocele and orofacial cleft phenotypes. Heterozygous boundary deletion was sufficient to cause these fully penetrant phenotypes, and strikingly, loss of a single CTCF motif within the cluster also recapitulated ectopic FGF expression and caused encephalocele. However, such phenotypic sensitivity to perturbation of domain structure did not extend to all CTCF clusters of this domain, nor to all developmental processes controlled by these three FGF genes-for example, the ability to undergo lineage specification in the blastocyst and pre-implantation development were not affected. By tracing the impact of different chromosomal rearrangements throughout mouse development, we start to uncover the determinants of phenotypic robustness and sensitivity to perturbation of chromatin boundaries. Our data show how small sequence variants at certain domain boundaries can have a surprisingly outsized effect and must be considered as potential sources of gene dysregulation during development and disease.
Collapse
Affiliation(s)
- Shreeta Chakraborty
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nina Wenzlitschke
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew J. Anderson
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 20892 USA
| | - Ariel Eraso
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Manon Baudic
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joyce J. Thompson
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alicia A. Evans
- Bioinformatics and Scientific Programming Core, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lilly M. Shatford-Adams
- Bioinformatics and Scientific Programming Core, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Raj Chari
- Laboratory Animal Sciences Program, Frederick National Lab for Cancer Research, Frederick, MD, 21702, USA
| | - Parirokh Awasthi
- Laboratory Animal Sciences Program, Frederick National Lab for Cancer Research, Frederick, MD, 21702, USA
| | - Ryan K. Dale
- Bioinformatics and Scientific Programming Core, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark Lewandoski
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 20892 USA
| | - Timothy J. Petros
- Unit on Cellular and Molecular Neurodevelopment, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pedro P. Rocha
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- National C ancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
14
|
Bisen S, Verma SK, Mukhopadhyay CS, Singh NK. A neutrophil elastase-generated mature form of IL-33 is a potent regulator of endothelial cell activation and proliferative retinopathy. Exp Mol Med 2024; 56:1703-1716. [PMID: 39085349 PMCID: PMC11372157 DOI: 10.1038/s12276-024-01279-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 08/02/2024] Open
Abstract
Human interleukin-33 (IL-33) is a 270 amino acid protein that belongs to the IL-1 cytokine family and plays an important role in various inflammatory disorders. Neutrophil proteases (Cathepsin G and Elastase) and mast cell proteases (tryptase and chymase) regulate the activity of IL-33 by processing full-length IL-33 into its mature form. There is little evidence on the role of these mature forms of IL-33 in retinal endothelial cell signaling and pathological retinal angiogenesis. Here, we cloned, expressed, and purified the various mature forms of human IL-33 and then evaluated the effects of IL-3395-270, IL-3399-270, IL-33109-270, and IL-33112-270 on angiogenesis in human retinal microvascular endothelial cells (HRMVECs). We observed that IL-3395-270, IL-3399-270, IL-33109-270, and IL-33112-270 significantly induced HRMVEC migration, tube formation and sprouting angiogenesis. However, only IL-3399-270 could induce HRMVEC proliferation. We used a murine model of oxygen-induced retinopathy (OIR) to assess the role of these mature forms of IL-33 in pathological retinal neovascularization. Our 3'-mRNA sequencing and signaling studies indicated that IL-3399-270 and IL-33109-270 were more potent at inducing endothelial cell activation and angiogenesis than the other mature forms. We found that genetic deletion of IL-33 significantly reduced OIR-induced retinal neovascularization in the mouse retina and that intraperitoneal administration of mature forms of IL-33, mainly IL-3399-270 and IL-33109-270, significantly restored ischemia-induced angiogenic sprouting and tuft formation in the hypoxic retinas of IL-33-/- mice. Thus, our study results suggest that blockade or inhibition of IL-33 cleavage by neutrophil proteases could help mitigate pathological angiogenesis in proliferative retinopathies.
Collapse
Affiliation(s)
- Shivantika Bisen
- Integrative Biosciences Center, Wayne State University, Detroit, MI, 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, 48202, USA
| | - Shailendra Kumar Verma
- Integrative Biosciences Center, Wayne State University, Detroit, MI, 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, 48202, USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, San Diego, CA, 92037, USA
| | - Chandra Sekhar Mukhopadhyay
- Department of Bioinformatics, School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - Nikhlesh K Singh
- Integrative Biosciences Center, Wayne State University, Detroit, MI, 48202, USA.
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
15
|
Crombie EM, Korecki AJ, Cleverley K, Adair BA, Cunningham TJ, Lee WC, Lengyell TC, Maduro C, Mo V, Slade LM, Zouhair I, Fisher EMC, Simpson EM. Taf1 knockout is lethal in embryonic male mice and heterozygous females show weight and movement disorders. Dis Model Mech 2024; 17:dmm050741. [PMID: 38804708 PMCID: PMC11261634 DOI: 10.1242/dmm.050741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
The TATA box-binding protein-associated factor 1 (TAF1) is a ubiquitously expressed protein and the largest subunit of the basal transcription factor TFIID, which plays a key role in initiation of RNA polymerase II-dependent transcription. TAF1 missense variants in human males cause X-linked intellectual disability, a neurodevelopmental disorder, and TAF1 is dysregulated in X-linked dystonia-parkinsonism, a neurodegenerative disorder. However, this field has lacked a genetic mouse model of TAF1 disease to explore its mechanism in mammals and treatments. Here, we generated and validated a conditional cre-lox allele and the first ubiquitous Taf1 knockout mouse. We discovered that Taf1 deletion in male mice was embryonically lethal, which may explain why no null variants have been identified in humans. In the brains of Taf1 heterozygous female mice, no differences were found in gross structure, overall expression and protein localisation, suggesting extreme skewed X inactivation towards the non-mutant chromosome. Nevertheless, these female mice exhibited a significant increase in weight, weight with age, and reduced movement, suggesting that a small subset of neurons was negatively impacted by Taf1 loss. Finally, this new mouse model may be a future platform for the development of TAF1 disease therapeutics.
Collapse
Affiliation(s)
- Elisa M. Crombie
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Andrea J. Korecki
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Karen Cleverley
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Bethany A. Adair
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver V6T 1Z3, Canada
| | | | - Weaverly Colleen Lee
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Tess C. Lengyell
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Cheryl Maduro
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Victor Mo
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Liam M. Slade
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Ines Zouhair
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Elizabeth M. C. Fisher
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Elizabeth M. Simpson
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver V6T 1Z3, Canada
| |
Collapse
|
16
|
Chen X, Li Y, Xu J, Cui Y, Wu Q, Yin H, Li Y, Gao C, Jiang L, Wang H, Wen Z, Yao Z, Wu Z. Styxl2 regulates de novo sarcomere assembly by binding to non-muscle myosin IIs and promoting their degradation. eLife 2024; 12:RP87434. [PMID: 38829202 PMCID: PMC11147509 DOI: 10.7554/elife.87434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Styxl2, a poorly characterized pseudophosphatase, was identified as a transcriptional target of the Jak1-Stat1 pathway during myoblast differentiation in culture. Styxl2 is specifically expressed in vertebrate striated muscles. By gene knockdown in zebrafish or genetic knockout in mice, we found that Styxl2 plays an essential role in maintaining sarcomere integrity in developing muscles. To further reveal the functions of Styxl2 in adult muscles, we generated two inducible knockout mouse models: one with Styxl2 being deleted in mature myofibers to assess its role in sarcomere maintenance, and the other in adult muscle satellite cells (MuSCs) to assess its role in de novo sarcomere assembly. We find that Styxl2 is not required for sarcomere maintenance but functions in de novo sarcomere assembly during injury-induced muscle regeneration. Mechanistically, Styxl2 interacts with non-muscle myosin IIs, enhances their ubiquitination, and targets them for autophagy-dependent degradation. Without Styxl2, the degradation of non-muscle myosin IIs is delayed, which leads to defective sarcomere assembly and force generation. Thus, Styxl2 promotes de novo sarcomere assembly by interacting with non-muscle myosin IIs and facilitating their autophagic degradation.
Collapse
Affiliation(s)
- Xianwei Chen
- Division of Life Science, Hong Kong University of Science & TechnologyHong KongChina
| | - Yanfeng Li
- Division of Life Science, Hong Kong University of Science & TechnologyHong KongChina
| | - Jin Xu
- Division of Life Science, Hong Kong University of Science & TechnologyHong KongChina
| | - Yong Cui
- School of Life Sciences, Chinese University of Hong KongHong KongChina
| | - Qian Wu
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic UniversityHong KongChina
| | - Haidi Yin
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic UniversityHong KongChina
| | - Yuying Li
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong KongHong KongChina
| | - Chuan Gao
- Division of Life Science, Hong Kong University of Science & TechnologyHong KongChina
| | - Liwen Jiang
- School of Life Sciences, Chinese University of Hong KongHong KongChina
| | - Huating Wang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong KongHong KongChina
| | - Zilong Wen
- Division of Life Science, Hong Kong University of Science & TechnologyHong KongChina
| | - Zhongping Yao
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic UniversityHong KongChina
| | - Zhenguo Wu
- Division of Life Science, Hong Kong University of Science & TechnologyHong KongChina
| |
Collapse
|
17
|
Zhu X, Chen X, Cao Y, Liu C, Hu G, Ganesan S, Veres TZ, Fang D, Liu S, Chung H, Germain RN, Schwartzberg PL, Zhao K, Zhu J. Optimal CXCR5 Expression during Tfh Maturation Involves the Bhlhe40-Pou2af1 Axis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594397. [PMID: 38903096 PMCID: PMC11188140 DOI: 10.1101/2024.05.16.594397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The pair of transcription factors Bcl6-Blimp1 is well-known for follicular T helper (Tfh) cell fate determination, however, the mechanism(s) for Bcl6-independent regulation of CXCR5 during Tfh migration into germinal center (GC) is still unclear. In this study, we uncovered another pair of transcription factors, Bhlhe40-Pou2af1, that regulates CXCR5 expression. Pou2af1 was specifically expressed in Tfh cells whereas Bhlhe40 expression was found high in non-Tfh cells. Pou2af1 promoted Tfh formation and migration into GC by upregulating CXCR5 but not Bcl6, while Bhlhe40 repressed this process by inhibiting Pou2af1 expression. RNA-Seq analysis of antigen-specific Tfh cells generated in vivo confirmed the role of Bhlhe40-Pou2af1 axis in regulating optimal CXCR5 expression. Thus, the regulation of CXCR5 expression and migration of Tfh cells into GC involves a transcriptional regulatory circuit consisting of Bhlhe40 and Pou2af1, which operates independent of the Bcl6-Blimp1 circuit that determines the Tfh cell fate.
Collapse
|
18
|
Vong KI, Lee S, Au KS, Crowley TB, Capra V, Martino J, Haller M, Araújo C, Machado HR, George R, Gerding B, James KN, Stanley V, Jiang N, Alu K, Meave N, Nidhiry AS, Jiwani F, Tang I, Nisal A, Jhamb I, Patel A, Patel A, McEvoy-Venneri J, Barrows C, Shen C, Ha YJ, Howarth R, Strain M, Ashley-Koch AE, Azam M, Mumtaz S, Bot GM, Finnell RH, Kibar Z, Marwan AI, Melikishvili G, Meltzer HS, Mutchinick OM, Stevenson DA, Mroczkowski HJ, Ostrander B, Schindewolf E, Moldenhauer J, Zackai EH, Emanuel BS, Garcia-Minaur S, Nowakowska BA, Stevenson RE, Zaki MS, Northrup H, McNamara HK, Aldinger KA, Phelps IG, Deng M, Glass IA, Morrow B, McDonald-McGinn DM, Sanna-Cherchi S, Lamb DJ, Gleeson JG. Risk of meningomyelocele mediated by the common 22q11.2 deletion. Science 2024; 384:584-590. [PMID: 38696583 PMCID: PMC11849314 DOI: 10.1126/science.adl1624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/27/2024] [Indexed: 05/04/2024]
Abstract
Meningomyelocele is one of the most severe forms of neural tube defects (NTDs) and the most frequent structural birth defect of the central nervous system. We assembled the Spina Bifida Sequencing Consortium to identify causes. Exome and genome sequencing of 715 parent-offspring trios identified six patients with chromosomal 22q11.2 deletions, suggesting a 23-fold increased risk compared with the general population. Furthermore, analysis of a separate 22q11.2 deletion cohort suggested a 12- to 15-fold increased NTD risk of meningomyelocele. The loss of Crkl, one of several neural tube-expressed genes within the minimal deletion interval, was sufficient to replicate NTDs in mice, where both penetrance and expressivity were exacerbated by maternal folate deficiency. Thus, the common 22q11.2 deletion confers substantial meningomyelocele risk, which is partially alleviated by folate supplementation.
Collapse
Affiliation(s)
- Keng Ioi Vong
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Sangmoon Lee
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Kit Sing Au
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth) and Children’s Memorial Hermann Hospital, Houston, TX 77030, USA
| | - T. Blaine Crowley
- 22q and You Center, Division of Human Genetics, Children’s Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Valeria Capra
- Genomics and Clinical Genetics Unit, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Jeremiah Martino
- Division of Nephrology, Department of Medicine, Columbia University, NY 10027, USA
| | - Meade Haller
- Center for Reproductive Medicine, Department of Molecular and Cellular Biology and Scott Department of Urology, Baylor College of Medicine, TX 77030, USA
| | - Camila Araújo
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, Brazil
| | - Hélio R. Machado
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, Brazil
| | - Renee George
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Bryn Gerding
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Kiely N. James
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Valentina Stanley
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Nan Jiang
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Kameron Alu
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Naomi Meave
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Anna S. Nidhiry
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Fiza Jiwani
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Isaac Tang
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Ashna Nisal
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Ishani Jhamb
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Arzoo Patel
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Aakash Patel
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Jennifer McEvoy-Venneri
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Chelsea Barrows
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Celina Shen
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Yoo-Jin Ha
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Robyn Howarth
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Madison Strain
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Matloob Azam
- Pediatrics and Child Neurology, Wah Medical College, Wah Cantt, Punjab 47000, Pakistan
| | - Sara Mumtaz
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Punjab 46000, Pakistan
| | - Gyang Markus Bot
- Neurosurgery Division, Department of Surgery, Jos University Teaching Hospital, Jos 930105, Nigeria
| | - Richard H. Finnell
- Center for Precision Environmental Health, Departments of Molecular and Human Genetics, Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zoha Kibar
- Department of Neurosciences, University of Montreal and CHU Sainte Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Ahmed I. Marwan
- Division of Pediatric Surgery, University of Colorado School of Medicine, Children’s Hospital of Colorado, Colorado Fetal Care Center, Aurora, CO 80045, USA
| | - Gia Melikishvili
- Department of Pediatrics, MediClubGeorgia Medical Center, Tbilisi 0160, Georgia
| | - Hal S. Meltzer
- Department of Neurosurgery, University of California San Diego, Rady Children’s Hospital, San Diego, CA 92123, USA
| | - Osvaldo M. Mutchinick
- Department of Genetics, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, 14080 Mexico City, Mexico
| | - David A. Stevenson
- Division of Medical Genetics, Stanford University, Palo Alto, CA 94305, USA
| | - Henry J. Mroczkowski
- Division of Medical Genetics, University of Tennessee Health Science Campus, Memphis, TN 38163, USA
| | - Betsy Ostrander
- Division of Pediatric Neurology, Primary Children’s Hospital, University of Utah, Salt Lake City, UT 84113, USA
| | - Erica Schindewolf
- Center for Fetal Diagnosis and Treatment, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Julie Moldenhauer
- Center for Fetal Diagnosis and Treatment, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Elaine H. Zackai
- 22q and You Center, Division of Human Genetics, Children’s Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Beverly S. Emanuel
- 22q and You Center, Division of Human Genetics, Children’s Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sixto Garcia-Minaur
- Clinical Genetics Section, Institute of Medical and Molecular Genetics, University Hospital La Paz, 28046 Madrid, Spain
| | - Beata A. Nowakowska
- Department of Medical Genetics, Institute of Mother and Child, Kasprzaka, 01-211 Warsaw, Poland
| | - Roger E. Stevenson
- JC Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Maha S. Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo 12311, Egypt
| | - Hope Northrup
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth) and Children’s Memorial Hermann Hospital, Houston, TX 77030, USA
| | - Hanna K. McNamara
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Kimberly A. Aldinger
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Departments of Pediatrics, University of Washington, Seattle, WA 98105, USA
- Department of Neurology, University of Washington, Seattle, WA 98105, USA
| | - Ian G. Phelps
- Departments of Pediatrics, University of Washington, Seattle, WA 98105, USA
| | - Mei Deng
- Departments of Pediatrics, University of Washington, Seattle, WA 98105, USA
| | - Ian A. Glass
- Departments of Pediatrics, University of Washington, Seattle, WA 98105, USA
| | | | - Bernice Morrow
- Division of Translational Genetics, Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Donna M. McDonald-McGinn
- 22q and You Center, Division of Human Genetics, Children’s Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Human Biology and Medical Genetics, Sapienza University, 00185-Rome RM, Italy
| | - Simone Sanna-Cherchi
- Division of Nephrology, Department of Medicine, Columbia University, NY 10027, USA
| | - Dolores J. Lamb
- Center for Reproductive Medicine, Department of Molecular and Cellular Biology and Scott Department of Urology, Baylor College of Medicine, TX 77030, USA
- Department of Urology, Center for Reproductive Genomics, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Joseph G. Gleeson
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| |
Collapse
|
19
|
Xie S, Xie X, Tang J, Luo B, Chen J, Wen Q, Zhou J, Chen G. Cerebral furin deficiency causes hydrocephalus in mice. Genes Dis 2024; 11:101009. [PMID: 38292192 PMCID: PMC10825277 DOI: 10.1016/j.gendis.2023.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/20/2023] [Accepted: 04/29/2023] [Indexed: 02/01/2024] Open
Abstract
Furin is a pro-protein convertase that moves between the trans-Golgi network and cell surface in the secretory pathway. We have previously reported that cerebral overexpression of furin promotes cognitive functions in mice. Here, by generating the brain-specific furin conditional knockout (cKO) mice, we investigated the role of furin in brain development. We found that furin deficiency caused early death and growth retardation. Magnetic resonance imaging showed severe hydrocephalus. In the brain of furin cKO mice, impaired ciliogenesis and the derangement of microtubule structures appeared along with the down-regulated expression of RAB28, a ciliary vesicle protein. In line with the widespread neuronal loss, ependymal cell layers were damaged. Further proteomics analysis revealed that cell adhesion molecules including astrocyte-enriched ITGB8 and BCAR1 were altered in furin cKO mice; and astrocyte overgrowth was accompanied by the reduced expression of SOX9, indicating a disrupted differentiation into ependymal cells. Together, whereas alteration of RAB28 expression correlated with the role of vesicle trafficking in ciliogenesis, dysfunctional astrocytes might be involved in ependymal damage contributing to hydrocephalus in furin cKO mice. The structural and molecular alterations provided a clue for further studying the potential mechanisms of furin.
Collapse
Affiliation(s)
- Shiqi Xie
- Nursing College, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoyong Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Jing Tang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Biao Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Jian Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Qixin Wen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Jianrong Zhou
- Nursing College, Chongqing Medical University, Chongqing 400016, China
| | - Guojun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| |
Collapse
|
20
|
Park SJ, Wang IH, Lee N, Jiang HC, Uemura T, Futai K, Kim D, Macosko E, Greer P. Combinatorial expression of neurexin genes regulates glomerular targeting by olfactory sensory neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587570. [PMID: 38617205 PMCID: PMC11014570 DOI: 10.1101/2024.04.01.587570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Precise connectivity between specific neurons is essential for the formation of the complex neural circuitry necessary for executing intricate motor behaviors and higher cognitive functions. While trans -interactions between synaptic membrane proteins have emerged as crucial elements in orchestrating the assembly of these neural circuits, the synaptic surface proteins involved in neuronal wiring remain largely unknown. Here, using unbiased single-cell transcriptomic and mouse genetic approaches, we uncover that the neurexin family of genes enables olfactory sensory neuron (OSNs) axons to form appropriate synaptic connections with their mitral and tufted (M/T) cell synaptic partners, within the mammalian olfactory system. Neurexin isoforms are differentially expressed within distinct populations of OSNs, resulting in unique pattern of neurexin expression that is specific to each OSN type, and synergistically cooperate to regulate axonal innervation, guiding OSN axons to their designated glomeruli. This process is facilitated through the interactions of neurexins with their postsynaptic partners, including neuroligins, which have distinct expression patterns in M/T cells. Our findings suggest a novel mechanism underpinning the precise assembly of olfactory neural circuits, driven by the trans -interaction between neurexins and their ligands.
Collapse
|
21
|
Feng X, Molteni H, Gregory M, Lanza J, Polsani N, Gupta I, Wyetzner R, Hawkins MB, Holmes G, Hopyan S, Harris MP, Atit RP. Apical expansion of calvarial osteoblasts and suture patency is dependent on fibronectin cues. Development 2024; 151:dev202371. [PMID: 38602508 PMCID: PMC11165720 DOI: 10.1242/dev.202371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/06/2024] [Indexed: 04/12/2024]
Abstract
The skull roof, or calvaria, is comprised of interlocking plates of bones that encase the brain. Separating these bones are fibrous sutures that permit growth. Currently, we do not understand the instructions for directional growth of the calvaria, a process which is error-prone and can lead to skeletal deficiencies or premature suture fusion (craniosynostosis, CS). Here, we identify graded expression of fibronectin (FN1) in the mouse embryonic cranial mesenchyme (CM) that precedes the apical expansion of calvaria. Conditional deletion of Fn1 or Wasl leads to diminished frontal bone expansion by altering cell shape and focal actin enrichment, respectively, suggesting defective migration of calvarial progenitors. Interestingly, Fn1 mutants have premature fusion of coronal sutures. Consistently, syndromic forms of CS in humans exhibit dysregulated FN1 expression, and we also find FN1 expression altered in a mouse CS model of Apert syndrome. These data support a model of FN1 as a directional substrate for calvarial osteoblast migration that may be a common mechanism underlying many cranial disorders of disparate genetic etiologies.
Collapse
Affiliation(s)
- Xiaotian Feng
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Helen Molteni
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Megan Gregory
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jennifer Lanza
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nikaya Polsani
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Isha Gupta
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Rachel Wyetzner
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - M. Brent Hawkins
- Department of Genetics, Harvard Medical School, Department of Orthopedics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Greg Holmes
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sevan Hopyan
- Department of Developmental Biology, Hospital for Sick Kids, Toronto ON, M5G 0A4, Canada
| | - Matthew P. Harris
- Department of Genetics, Harvard Medical School, Department of Orthopedics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Radhika P. Atit
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Genome Sciences and Genetics, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
22
|
Conti BA, Ruiz PD, Broton C, Blobel NJ, Kottemann MC, Sridhar S, Lach FP, Wiley TF, Sasi NK, Carroll T, Smogorzewska A. RTF2 controls replication repriming and ribonucleotide excision at the replisome. Nat Commun 2024; 15:1943. [PMID: 38431617 PMCID: PMC10908796 DOI: 10.1038/s41467-024-45947-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
DNA replication through a challenging genomic landscape is coordinated by the replisome, which must adjust to local conditions to provide appropriate replication speed and respond to lesions that hinder its progression. We have previously shown that proteasome shuttle proteins, DNA Damage Inducible 1 and 2 (DDI1/2), regulate Replication Termination Factor 2 (RTF2) levels at stalled replisomes, allowing fork stabilization and restart. Here, we show that during unperturbed replication, RTF2 regulates replisome localization of RNase H2, a heterotrimeric enzyme that removes RNA from RNA-DNA heteroduplexes. RTF2, like RNase H2, is essential for mammalian development and maintains normal replication speed. However, persistent RTF2 and RNase H2 at stalled replication forks prevent efficient replication restart, which is dependent on PRIM1, the primase component of DNA polymerase α-primase. Our data show a fundamental need for RTF2-dependent regulation of replication-coupled ribonucleotide removal and reveal the existence of PRIM1-mediated direct replication restart in mammalian cells.
Collapse
Affiliation(s)
- Brooke A Conti
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY, 10065, USA
| | - Penelope D Ruiz
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY, 10065, USA
| | - Cayla Broton
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY, 10065, USA
| | - Nicolas J Blobel
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY, 10065, USA
| | - Molly C Kottemann
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY, 10065, USA
| | - Sunandini Sridhar
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY, 10065, USA
| | - Francis P Lach
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY, 10065, USA
| | - Tom F Wiley
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY, 10065, USA
| | - Nanda K Sasi
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY, 10065, USA
| | - Thomas Carroll
- Bioinformatics, The Rockefeller University, New York, NY, 10065, USA
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY, 10065, USA.
| |
Collapse
|
23
|
Tasnim A, Alkislar I, Hakim R, Turecek J, Abdelaziz A, Orefice LL, Ginty DD. The developmental timing of spinal touch processing alterations predicts behavioral changes in genetic mouse models of autism spectrum disorders. Nat Neurosci 2024; 27:484-496. [PMID: 38233682 PMCID: PMC10917678 DOI: 10.1038/s41593-023-01552-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024]
Abstract
Altered somatosensory reactivity is frequently observed among individuals with autism spectrum disorders (ASDs). Here, we report that although multiple mouse models of ASD exhibit aberrant somatosensory behaviors in adulthood, some models exhibit altered tactile reactivity as early as embryonic development, whereas in others, altered reactivity emerges later in life. Additionally, tactile overreactivity during neonatal development is associated with anxiety-like behaviors and social behavior deficits in adulthood, whereas tactile overreactivity that emerges later in life is not. The locus of circuit disruption dictates the timing of aberrant tactile behaviors, as altered feedback or presynaptic inhibition of peripheral mechanosensory neurons leads to abnormal tactile reactivity during neonatal development, whereas disruptions in feedforward inhibition in the spinal cord lead to touch reactivity alterations that manifest later in life. Thus, the developmental timing of aberrant touch processing can predict the manifestation of ASD-associated behaviors in mouse models, and differential timing of sensory disturbance onset may contribute to phenotypic diversity across individuals with ASD.
Collapse
Affiliation(s)
- Aniqa Tasnim
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Ilayda Alkislar
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Richard Hakim
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Josef Turecek
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Amira Abdelaziz
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Lauren L Orefice
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - David D Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Guo Y, Xiang P, Sun X, Liu W, Zhou J, Yin B, Hou L, Qiang B, Li H, Shu P, Peng X. Docking protein 6 (DOK6) selectively docks the neurotrophic signaling transduction to restrain peripheral neuropathy. Signal Transduct Target Ther 2024; 9:32. [PMID: 38351062 PMCID: PMC10864363 DOI: 10.1038/s41392-024-01742-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 12/12/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
The appropriate and specific response of nerve cells to various external cues is essential for the establishment and maintenance of neural circuits, and this process requires the proper recruitment of adaptor molecules to selectively activate downstream pathways. Here, we identified that DOK6, a member of the Dok (downstream of tyrosine kinases) family, is required for the maintenance of peripheral axons, and that loss of Dok6 can cause typical peripheral neuropathy symptoms in mice, manifested as impaired sensory, abnormal posture, paw deformities, blocked nerve conduction, and dysmyelination. Furthermore, Dok6 is highly expressed in peripheral neurons but not in Schwann cells, and genetic deletion of Dok6 in peripheral neurons led to typical peripheral myelin outfolding, axon destruction, and hindered retrograde axonal transport. Specifically, DOK6 acts as an adaptor protein for selectivity-mediated neurotrophic signal transduction and retrograde transport for TrkC and Ret but not for TrkA and TrkB. DOK6 interacts with certain proteins in the trafficking machinery and controls their phosphorylation, including MAP1B, Tau and Dynein for axonal transport, and specifically activates the downstream ERK1/2 kinase pathway to maintain axonal survival and homeostasis. This finding provides new clues to potential insights into the pathogenesis and treatment of hereditary peripheral neuropathies and other degenerative diseases.
Collapse
Affiliation(s)
- Yan Guo
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Pan Xiang
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xiaojiao Sun
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Wei Liu
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jiafeng Zhou
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Bin Yin
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, 100005, China
| | - Lin Hou
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, 100005, China
| | - Boqin Qiang
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, 100005, China
| | - Huiliang Li
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK
| | - Pengcheng Shu
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
- State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, 100005, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| | - Xiaozhong Peng
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, 100005, China.
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
25
|
Bandarabadi M, Li S, Aeschlimann L, Colombo G, Tzanoulinou S, Tafti M, Becchetti A, Boutrel B, Vassalli A. Inactivation of hypocretin receptor-2 signaling in dopaminergic neurons induces hyperarousal and enhanced cognition but impaired inhibitory control. Mol Psychiatry 2024; 29:327-341. [PMID: 38123729 PMCID: PMC11116111 DOI: 10.1038/s41380-023-02329-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023]
Abstract
Hypocretin/Orexin (HCRT/OX) and dopamine (DA) are both key effectors of salience processing, reward and stress-related behaviors and motivational states, yet their respective roles and interactions are poorly delineated. We inactivated HCRT-to-DA connectivity by genetic disruption of Hypocretin receptor-1 (Hcrtr1), Hypocretin receptor-2 (Hcrtr2), or both receptors (Hcrtr1&2) in DA neurons and analyzed the consequences on vigilance states, brain oscillations and cognitive performance in freely behaving mice. Unexpectedly, loss of Hcrtr2, but not Hcrtr1 or Hcrtr1&2, induced a dramatic increase in theta (7-11 Hz) electroencephalographic (EEG) activity in both wakefulness and rapid-eye-movement sleep (REMS). DAHcrtr2-deficient mice spent more time in an active (or theta activity-enriched) substate of wakefulness, and exhibited prolonged REMS. Additionally, both wake and REMS displayed enhanced theta-gamma phase-amplitude coupling. The baseline waking EEG of DAHcrtr2-deficient mice exhibited diminished infra-theta, but increased theta power, two hallmarks of EEG hyperarousal, that were however uncoupled from locomotor activity. Upon exposure to novel, either rewarding or stress-inducing environments, DAHcrtr2-deficient mice featured more pronounced waking theta and fast-gamma (52-80 Hz) EEG activity surges compared to littermate controls, further suggesting increased alertness. Cognitive performance was evaluated in an operant conditioning paradigm, which revealed that DAHcrtr2-ablated mice manifest faster task acquisition and higher choice accuracy under increasingly demanding task contingencies. However, the mice concurrently displayed maladaptive patterns of reward-seeking, with behavioral indices of enhanced impulsivity and compulsivity. None of the EEG changes observed in DAHcrtr2-deficient mice were seen in DAHcrtr1-ablated mice, which tended to show opposite EEG phenotypes. Our findings establish a clear genetically-defined link between monosynaptic HCRT-to-DA neurotransmission and theta oscillations, with a differential and novel role of HCRTR2 in theta-gamma cross-frequency coupling, attentional processes, and executive functions, relevant to disorders including narcolepsy, attention-deficit/hyperactivity disorder, and Parkinson's disease.
Collapse
Affiliation(s)
- Mojtaba Bandarabadi
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Sha Li
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Lea Aeschlimann
- Centre for Psychiatric Neuroscience, Department of Psychiatry, The Lausanne University Hospital, Lausanne, Switzerland
| | - Giulia Colombo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | | | - Mehdi Tafti
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Benjamin Boutrel
- Centre for Psychiatric Neuroscience, Department of Psychiatry, The Lausanne University Hospital, Lausanne, Switzerland
| | - Anne Vassalli
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
26
|
Lettieri A, Oleari R, van den Munkhof MH, van Battum EY, Verhagen MG, Tacconi C, Spreafico M, Paganoni AJJ, Azzarelli R, Andre' V, Amoruso F, Palazzolo L, Eberini I, Dunkel L, Howard SR, Fantin A, Pasterkamp RJ, Cariboni A. SEMA6A drives GnRH neuron-dependent puberty onset by tuning median eminence vascular permeability. Nat Commun 2023; 14:8097. [PMID: 38062045 PMCID: PMC10703890 DOI: 10.1038/s41467-023-43820-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Innervation of the hypothalamic median eminence by Gonadotropin-Releasing Hormone (GnRH) neurons is vital to ensure puberty onset and successful reproduction. However, the molecular and cellular mechanisms underlying median eminence development and pubertal timing are incompletely understood. Here we show that Semaphorin-6A is strongly expressed by median eminence-resident oligodendrocytes positioned adjacent to GnRH neuron projections and fenestrated capillaries, and that Semaphorin-6A is required for GnRH neuron innervation and puberty onset. In vitro and in vivo experiments reveal an unexpected function for Semaphorin-6A, via its receptor Plexin-A2, in the control of median eminence vascular permeability to maintain neuroendocrine homeostasis. To support the significance of these findings in humans, we identify patients with delayed puberty carrying a novel pathogenic variant of SEMA6A. In all, our data reveal a role for Semaphorin-6A in regulating GnRH neuron patterning by tuning the median eminence vascular barrier and thereby controlling puberty onset.
Collapse
Affiliation(s)
- Antonella Lettieri
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
- Department of Health Sciences, University of Milan, Via di Rudinì 8, 20142, Milano, Italy
| | - Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - Marleen Hester van den Munkhof
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Eljo Yvette van Battum
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Marieke Geerte Verhagen
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
- VIB-KU Leuven, Center for Brain & Disease Research, Leuven, Belgium
| | - Carlotta Tacconi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Spreafico
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | | | - Roberta Azzarelli
- Wellcome - Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Valentina Andre'
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - Federica Amoruso
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - Luca Palazzolo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - Ivano Eberini
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - Leo Dunkel
- Centre for Endocrinology William Harvey Research Institute Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Sasha Rose Howard
- Centre for Endocrinology William Harvey Research Institute Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- Department of Paediatric Endocrinology, Barts Health NHS Trust, London, E1 1FR, UK
| | - Alessandro Fantin
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy.
| | - Ronald Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy.
| |
Collapse
|
27
|
Li F, Niu B, Liu L, Zhu M, Yang H, Qin B, Peng X, Chen L, Xu C, Zhou X. Characterization of genetic humanized mice with transgenic HLA DP401 or DRA but deficient in endogenous murine MHC class II genes upon Staphylococcus aureus pneumonia. Animal Model Exp Med 2023; 6:585-597. [PMID: 37246733 PMCID: PMC10757210 DOI: 10.1002/ame2.12331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/09/2023] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND Staphylococcus aureus can cause serious infections by secreting many superantigen exotoxins in "carrier" or "pathogenic" states. HLA DQ and HLA DR humanized mice have been used as a small animal model to study the role of two molecules during S. aureus infection. However, the contribution of HLA DP to S. aureus infection is unknown yet. METHODS In this study, we have produced HLA DP401 and HLA DRA0101 humanized mice by microinjection of C57BL/6J zygotes. Neo-floxed IAβ+/- mice were crossbred with Ella-Cre and further crossbred with HLA DP401 or HLA-DRA0101 humanized mice. After several rounds of traditional crossbreeding, we finally obtained HLA DP401-IAβ-/- and HLA DRA-IAβ-/- humanized mice, in which human DP401 or DRA0101 molecule was introduced into IAβ-/- mice deficient in endogenous murine MHC class II molecules. A transnasal infection murine model of S. aureus pneumonia was induced in the humanized mice by administering 2 × 108 CFU of S. aureus Newman dropwise into the nasal cavity. The immune responses and histopathology changes were further assessed in lungs in these infected mice. RESULTS We evaluated the local and systemic effects of S. aureus delivered intranasally in HLA DP401-IAβ-/- and HLA DRA-IAβ-/- transgenic mice. S. aureus Newman infection significantly increased the mRNA level of IL 12p40 in lungs in humanized mice. An increase in IFN-γ and IL-6 protein was observed in HLA DRA-IAβ-/- mice. We observed a declining trend in the percentage of F4/80+ macrophages in lungs in HLA DP401-IAβ-/- mice and a decreasing ratio of CD4+ to CD8+ T cells in lungs in IAβ-/- mice and HLA DP401-IAβ-/- mice. A decreasing ratio of Vβ3+ to Vβ8+ T cells was also found in the lymph node of IAβ-/- mice and HLA DP401-IAβ-/- mice. S. aureus Newman infection resulted in a weaker pathological injury in lungs in IAβ-/- genetic background mice. CONCLUSION These humanized mice will be an invaluable mouse model to resolve the pathological mechanism of S. aureus pneumonia and study what role DP molecule plays in S. aureus infection.
Collapse
Affiliation(s)
- Feng Li
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterShanghaiChina
| | - Bowen Niu
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterShanghaiChina
| | - Lingling Liu
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterShanghaiChina
| | - Mengmin Zhu
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterShanghaiChina
| | - Hua Yang
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterShanghaiChina
| | - Boyin Qin
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterShanghaiChina
| | - Xiuhua Peng
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterShanghaiChina
| | - Lixiang Chen
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterShanghaiChina
| | - Chunhua Xu
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterShanghaiChina
| | - Xiaohui Zhou
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterShanghaiChina
| |
Collapse
|
28
|
Van NT, Zhang K, Wigmore RM, Kennedy AI, DaSilva CR, Huang J, Ambelil M, Villagomez JH, O'Connor GJ, Longman RS, Cao M, Snook AE, Platten M, Kasenty G, Sigal LJ, Prendergast GC, Kim SV. Dietary L-Tryptophan consumption determines the number of colonic regulatory T cells and susceptibility to colitis via GPR15. Nat Commun 2023; 14:7363. [PMID: 37963876 PMCID: PMC10645889 DOI: 10.1038/s41467-023-43211-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 11/03/2023] [Indexed: 11/16/2023] Open
Abstract
Environmental factors are the major contributor to the onset of immunological disorders such as ulcerative colitis. However, their identities remain unclear. Here, we discover that the amount of consumed L-Tryptophan (L-Trp), a ubiquitous dietary component, determines the transcription level of the colonic T cell homing receptor, GPR15, hence affecting the number of colonic FOXP3+ regulatory T (Treg) cells and local immune homeostasis. Ingested L-Trp is converted by host IDO1/2 enzymes, but not by gut microbiota, to compounds that induce GPR15 transcription preferentially in Treg cells via the aryl hydrocarbon receptor. Consequently, two weeks of dietary L-Trp supplementation nearly double the colonic GPR15+ Treg cells via GPR15-mediated homing and substantially reduce the future risk of colitis. In addition, humans consume 3-4 times less L-Trp per kilogram of body weight and have fewer colonic GPR15+ Treg cells than mice. Thus, we uncover a microbiota-independent mechanism linking dietary L-Trp and colonic Treg cells, that may have therapeutic potential.
Collapse
Affiliation(s)
- Nguyen T Van
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, PA, USA
| | - Karen Zhang
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, PA, USA
| | - Rachel M Wigmore
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, PA, USA
| | - Anne I Kennedy
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, PA, USA
| | - Carolina R DaSilva
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, PA, USA
| | - Jialing Huang
- Department of Pathology, Anatomy, & Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Anatomic Pathology, Geisinger Medical Center, Danville, PA, USA
| | - Manju Ambelil
- Department of Pathology, Anatomy, & Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jose H Villagomez
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, PA, USA
| | - Gerald J O'Connor
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, PA, USA
| | - Randy S Longman
- Jill Roberts Center for IBD, Weill Cornell Medicine, New York, NY, USA
| | - Miao Cao
- Department of Pharmacology, Physiology, & Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adam E Snook
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, PA, USA
- Department of Pharmacology, Physiology, & Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael Platten
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Gerard Kasenty
- Department of Genetics and Development, Irving Medical Center, Columbia University, NY, USA
| | - Luis J Sigal
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, PA, USA
| | - George C Prendergast
- Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, PA, USA
- Lankenau Institute of Medical Research, Wynnewood, PA, USA
| | - Sangwon V Kim
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
- Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, PA, USA.
| |
Collapse
|
29
|
Shih YT, Alipio JB, Sahay A. An inhibitory circuit-based enhancer of DYRK1A function reverses Dyrk1a-associated impairment in social recognition. Neuron 2023; 111:3084-3101.e5. [PMID: 37797581 PMCID: PMC10575685 DOI: 10.1016/j.neuron.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/29/2023] [Accepted: 09/07/2023] [Indexed: 10/07/2023]
Abstract
Heterozygous mutations in the dual-specificity tyrosine phosphorylation-regulated kinase 1a (Dyrk1a) gene define a syndromic form of autism spectrum disorder. The synaptic and circuit mechanisms mediating DYRK1A functions in social cognition are unclear. Here, we identify a social experience-sensitive mechanism in hippocampal mossy fiber-parvalbumin interneuron (PV IN) synapses by which DYRK1A recruits feedforward inhibition of CA3 and CA2 to promote social recognition. We employ genetic epistasis logic to identify a cytoskeletal protein, ABLIM3, as a synaptic substrate of DYRK1A. We demonstrate that Ablim3 downregulation in dentate granule cells of adult heterozygous Dyrk1a mice is sufficient to restore PV IN-mediated inhibition of CA3 and CA2 and social recognition. Acute chemogenetic activation of PV INs in CA3/CA2 of adult heterozygous Dyrk1a mice also rescued social recognition. Together, these findings illustrate how targeting DYRK1A synaptic and circuit substrates as "enhancers of DYRK1A function" harbors the potential to reverse Dyrk1a haploinsufficiency-associated circuit and cognition impairments.
Collapse
Affiliation(s)
- Yu-Tzu Shih
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; BROAD Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jason Bondoc Alipio
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; BROAD Institute of Harvard and MIT, Cambridge, MA, USA
| | - Amar Sahay
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; BROAD Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
30
|
Rosenblum JS, Wang H, Nazari MA, Zhuang Z, Pacak K. Pacak-Zhuang syndrome: a model providing new insights into tumor syndromes. Endocr Relat Cancer 2023; 30:e230050. [PMID: 37450881 PMCID: PMC10512798 DOI: 10.1530/erc-23-0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
This article is a summary of the plenary lecture presented by Jared Rosenblum that was awarded the Manger Prize at the Sixth International Symposium on Pheochromocytoma/Paraganglioma held on 19-22 October 2022 in Prague, Czech Republic. Herein, we review our initial identification of a new syndrome of multiple paragangliomas, somatostatinomas, and polycythemia caused by early postzygotic mosaic mutations in EPAS1, encoding hypoxia-inducible factor 2 alpha (HIF-2α), and our continued exploration of new disease phenotypes in this syndrome, including vascular malformations and neural tube defects. Continued recruitment and close monitoring of patients with this syndrome as well as the generation and study of a corresponding disease mouse model as afforded by the pheochromocytoma/paraganglioma translational program at the National Institutes of Health has provided new insights into the natural history of these developmental anomalies and the pathophysiologic role of HIF-2α. Further, these studies have highlighted the importance of the timing of genetic defects in the development of related disease phenotypes. The recent discovery and continued study of this syndrome has not only rapidly evolved our understanding of pheochromocytoma and paraganglioma but also deepened our understanding of other developmental tumor syndromes, heritable syndromes, and sporadic diseases.
Collapse
Affiliation(s)
- Jared S Rosenblum
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Herui Wang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Matthew A Nazari
- Eunice Kennedy Shriver National Institute of Child Health and Development, Bethesda, MD, 20892
| | - Zhengping Zhuang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Karel Pacak
- Eunice Kennedy Shriver National Institute of Child Health and Development, Bethesda, MD, 20892
| |
Collapse
|
31
|
Perelli L, Zhang L, Mangiameli S, Russell AJC, Giannese F, Peng F, Carbone F, Le C, Khan H, Citron F, Soeung M, Lam TNA, Lundgren S, Zhu C, Catania D, Feng N, Gurreri E, Sgambato A, Tortora G, Draetta GF, Tonon G, Futreal A, Giuliani V, Carugo A, Viale A, Heffernan TP, Wang L, Cittaro D, Chen F, Genovese G. Evolutionary fingerprints of EMT in pancreatic cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558231. [PMID: 37786705 PMCID: PMC10541589 DOI: 10.1101/2023.09.18.558231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Mesenchymal plasticity has been extensively described in advanced and metastatic epithelial cancers; however, its functional role in malignant progression, metastatic dissemination and therapy response is controversial. More importantly, the role of epithelial mesenchymal transition (EMT) and cell plasticity in tumor heterogeneity, clonal selection and clonal evolution is poorly understood. Functionally, our work clarifies the contribution of EMT to malignant progression and metastasis in pancreatic cancer. We leveraged ad hoc somatic mosaic genome engineering, lineage tracing and ablation technologies and dynamic genetic reporters to trace and ablate tumor-specific lineages along the phenotypic spectrum of epithelial to mesenchymal plasticity. The experimental evidences clarify the essential contribution of mesenchymal lineages to pancreatic cancer evolution and metastatic dissemination. Spatial genomic analysis combined with single cell transcriptomic and epigenomic profiling of epithelial and mesenchymal lineages reveals that EMT promotes with the emergence of chromosomal instability (CIN). Specifically tumor lineages with mesenchymal features display highly conserved patterns of genomic evolution including complex structural genomic rearrangements and chromotriptic events. Genetic ablation of mesenchymal lineages robustly abolished these mutational processes and evolutionary patterns, as confirmed by cross species analysis of pancreatic and other human epithelial cancers. Mechanistically, we discovered that malignant cells with mesenchymal features display increased chromatin accessibility, particularly in the pericentromeric and centromeric regions, which in turn results in delayed mitosis and catastrophic cell division. Therefore, EMT favors the emergence of high-fitness tumor cells, strongly supporting the concept of a cell-state, lineage-restricted patterns of evolution, where cancer cell sub-clonal speciation is propagated to progenies only through restricted functional compartments. Restraining those evolutionary routes through genetic ablation of clones capable of mesenchymal plasticity and extinction of the derived lineages completely abrogates the malignant potential of one of the most aggressive form of human cancer.
Collapse
|
32
|
Zheng WQ, Zhang JH, Li ZH, Liu X, Zhang Y, Huang S, Li J, Zhou B, Eriani G, Wang ED, Zhou XL. Mammalian mitochondrial translation infidelity leads to oxidative stress-induced cell cycle arrest and cardiomyopathy. Proc Natl Acad Sci U S A 2023; 120:e2309714120. [PMID: 37669377 PMCID: PMC10500172 DOI: 10.1073/pnas.2309714120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/08/2023] [Indexed: 09/07/2023] Open
Abstract
Proofreading (editing) of mischarged tRNAs by cytoplasmic aminoacyl-tRNA synthetases (aaRSs), whose impairment causes neurodegeneration and cardiac diseases, is of high significance for protein homeostasis. However, whether mitochondrial translation needs fidelity and the significance of editing by mitochondrial aaRSs have been unclear. Here, we show that mammalian cells critically depended on the editing of mitochondrial threonyl-tRNA synthetase (mtThrRS, encoded by Tars2), disruption of which accumulated Ser-tRNAThr and generated a large abundance of Thr-to-Ser misincorporated peptides in vivo. Such infidelity impaired mitochondrial translation and oxidative phosphorylation, causing oxidative stress and cell cycle arrest in the G0/G1 phase. Notably, reactive oxygen species (ROS) scavenging by N-acetylcysteine attenuated this abnormal cell proliferation. A mouse model of heart-specific defective mtThrRS editing was established. Increased ROS levels, blocked cardiomyocyte proliferation, contractile dysfunction, dilated cardiomyopathy, and cardiac fibrosis were observed. Our results elucidate that mitochondria critically require a high level of translational accuracy at Thr codons and highlight the cellular dysfunctions and imbalance in tissue homeostasis caused by mitochondrial mistranslation.
Collapse
Affiliation(s)
- Wen-Qiang Zheng
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Jian-Hui Zhang
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
| | - Zi-Han Li
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Xiuxiu Liu
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Yong Zhang
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Shuo Huang
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Jinsong Li
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
| | - Bin Zhou
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
| | - Gilbert Eriani
- Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, Strasbourg67084, France
| | - En-Duo Wang
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Xiao-Long Zhou
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
| |
Collapse
|
33
|
Kim HJ, Shin HR, Yoon H, Park MS, Kim BG, Moon JI, Kim WJ, Park SG, Kim KT, Kim HN, Choi JY, Ryoo HM. Peptidylarginine deiminase 2 plays a key role in osteogenesis by enhancing RUNX2 stability through citrullination. Cell Death Dis 2023; 14:576. [PMID: 37648716 PMCID: PMC10468518 DOI: 10.1038/s41419-023-06101-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Peptidylarginine deiminase (PADI) 2 catalyzes the post-translational conversion of peptidyl-arginine to peptidyl-citrulline in a process called citrullination. However, the precise functions of PADI2 in bone formation and homeostasis remain unknown. In this study, our objective was to elucidate the function and regulatory mechanisms of PADI2 in bone formation employing global and osteoblast-specific Padi2 knockout mice. Our findings demonstrate that Padi2 deficiency leads to the loss of bone mass and results in a cleidocranial dysplasia (CCD) phenotype with delayed calvarial ossification and clavicular hypoplasia, due to impaired osteoblast differentiation. Mechanistically, Padi2 depletion significantly reduces RUNX2 levels, as PADI2-dependent stabilization of RUNX2 protected it from ubiquitin-proteasomal degradation. Furthermore, we discovered that PADI2 binds to RUNX2 and citrullinates it, and identified ten PADI2-induced citrullination sites on RUNX2 through high-resolution LC-MS/MS analysis. Among these ten citrullination sites, the R381 mutation in mouse RUNX2 isoform 1 considerably reduces RUNX2 levels, underscoring the critical role of citrullination at this residue in maintaining RUNX2 protein stability. In conclusion, these results indicate that PADI2 plays a distinct role in bone formation and osteoblast differentiation by safeguarding RUNX2 against proteasomal degradation. In addition, we demonstrate that the loss-of-function of PADI2 is associated with CCD, thereby providing a new target for the treatment of bone diseases.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Hye-Rim Shin
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Heein Yoon
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Min-Sang Park
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Byung-Gyu Kim
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, South Korea
| | - Jae-I Moon
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Woo-Jin Kim
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Seung Gwa Park
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Ki-Tae Kim
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Ha-Neui Kim
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Je-Yong Choi
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, Skeletal Disease Analysis Center, Korea Mouse Phenotyping Center, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea.
| |
Collapse
|
34
|
Tsitsikov EN, Phan KP, Liu Y, Tsytsykova AV, Kinter M, Selland L, Garman L, Griffin C, Dunn IF. TRAF7 is an essential regulator of blood vessel integrity during mouse embryonic and neonatal development. iScience 2023; 26:107474. [PMID: 37583551 PMCID: PMC10424150 DOI: 10.1016/j.isci.2023.107474] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/19/2023] [Accepted: 07/21/2023] [Indexed: 08/17/2023] Open
Abstract
Targeted deletion of TRAF7 revealed that it is a crucial part of shear stress-responsive MEKK3-MEK5-ERK5 signaling pathway induced in endothelial cells by blood flow. Similar to Mekk3-, Mek5- or Erk5-deficient mice, Traf7-deficient embryos died in utero around midgestation due to impaired endothelium integrity. They displayed significantly lower expression of transcription factor Klf2, an essential regulator of vascular hemodynamic forces downstream of the MEKK3-MEK-ERK5 signaling pathway. In addition, deletion of Traf7 in endothelial cells of postnatal mice was associated with severe cerebral hemorrhage. Here, we show that besides MEKK3 and MEK5, TRAF7 associates with a planar cell polarity protein SCRIB. SCRIB binds with an N-terminal region of TRAF7, while MEKK3 associates with the C-terminal WD40 domain. Downregulation of TRAF7 as well as SCRIB inhibited fluid shear stress-induced phosphorylation of ERK5 in cultured endothelial cells. These findings suggest that TRAF7 and SCRIB may comprise an upstream part of the MEKK3-MEK5-ERK5 signaling pathway.
Collapse
Affiliation(s)
- Erdyni N. Tsitsikov
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Khanh P. Phan
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yufeng Liu
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Alla V. Tsytsykova
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Mike Kinter
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Lauren Selland
- Histology, Immunohistochemistry, Microscopy Core-COBRE Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Lori Garman
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Courtney Griffin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Ian F. Dunn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
35
|
Wetzel-Strong SE, Galeffi F, Benavides C, Patrucco M, Bullock JL, Gallione CJ, Lee HK, Marchuk DA. Developmental expression of the Sturge-Weber syndrome-associated genetic mutation in Gnaq: a formal test of Happle's paradominant inheritance hypothesis. Genetics 2023; 224:iyad077. [PMID: 37098137 PMCID: PMC10894004 DOI: 10.1093/genetics/iyad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/21/2023] [Accepted: 04/17/2023] [Indexed: 04/27/2023] Open
Abstract
Sturge-Weber Syndrome (SWS) is a sporadic (non-inherited) syndrome characterized by capillary vascular malformations in the facial skin, leptomeninges, or the choroid. A hallmark feature is the mosaic nature of the phenotype. SWS is caused by a somatic mosaic mutation in the GNAQ gene (p.R183Q), leading to activation of the G protein, Gαq. Decades ago, Rudolf Happle hypothesized SWS as an example of "paradominant inheritance", that is, a "lethal gene (mutation) surviving by mosaicism". He predicted that the "presence of the mutation in the zygote will lead to death of the embryo at an early stage of development". We have created a mouse model for SWS using gene targeting to conditionally express the GNAQ p.R183Q mutation. We have employed two different Cre-drivers to examine the phenotypic effects of expression of this mutation at different levels and stages of development. As predicted by Happle, global, ubiquitous expression of this mutation in the blastocyst stage results in 100% embryonic death. The majority of these developing embryos show vascular defects consistent with the human vascular phenotype. By contrast, global but mosaic expression of the mutation enables a fraction of the embryos to survive, but those that survive to birth and beyond do not exhibit obvious vascular defects. These data validate Happle's paradominant inheritance hypothesis for SWS and suggest the requirement of a tight temporal and developmental window of mutation expression for the generation of the vascular phenotype. Furthermore, these engineered murine alleles provide the template for the development of a mouse model of SWS that acquires the somatic mutation during embryonic development, but permits the embryo to progress to live birth and beyond, so that postnatal phenotypes can also be investigated. These mice could then also be employed in pre-clinical studies of novel therapies.
Collapse
Affiliation(s)
- Sarah E Wetzel-Strong
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Francesca Galeffi
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Christian Benavides
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mary Patrucco
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jessica L Bullock
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Carol J Gallione
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Han Kyu Lee
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Douglas A Marchuk
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
36
|
Zeng H, Liu A. TMEM132A regulates mouse hindgut morphogenesis and caudal development. Development 2023; 150:dev201630. [PMID: 37390294 PMCID: PMC10357036 DOI: 10.1242/dev.201630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Caudal developmental defects, including caudal regression, caudal dysgenesis and sirenomelia, are devastating conditions affecting the skeletal, nervous, digestive, reproductive and excretory systems. Defects in mesodermal migration and blood supply to the caudal region have been identified as possible causes of caudal developmental defects, but neither satisfactorily explains the structural malformations in all three germ layers. Here, we describe caudal developmental defects in transmembrane protein 132a (Tmem132a) mutant mice, including skeletal, posterior neural tube closure, genitourinary tract and hindgut defects. We show that, in Tmem132a mutant embryos, visceral endoderm fails to be excluded from the medial region of early hindgut, leading directly to the loss or malformation of cloaca-derived genitourinary and gastrointestinal structures, and indirectly to the neural tube and kidney/ureter defects. We find that TMEM132A mediates intercellular interaction, and physically interacts with planar cell polarity (PCP) regulators CELSR1 and FZD6. Genetically, Tmem132a regulates neural tube closure synergistically with another PCP regulator Vangl2. In summary, we have identified Tmem132a as a new regulator of PCP, and hindgut malformation as the underlying cause of developmental defects in multiple caudal structures.
Collapse
Affiliation(s)
- Huiqing Zeng
- Department of Biology, Eberly College of Science and Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Aimin Liu
- Department of Biology, Eberly College of Science and Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
37
|
Takata N, Miska JM, Morgan MA, Patel P, Billingham LK, Joshi N, Schipma MJ, Dumar ZJ, Joshi NR, Misharin AV, Embry RB, Fiore L, Gao P, Diebold LP, McElroy GS, Shilatifard A, Chandel NS, Oliver G. Lactate-dependent transcriptional regulation controls mammalian eye morphogenesis. Nat Commun 2023; 14:4129. [PMID: 37452018 PMCID: PMC10349100 DOI: 10.1038/s41467-023-39672-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
Mammalian retinal metabolism favors aerobic glycolysis. However, the role of glycolytic metabolism in retinal morphogenesis remains unknown. We report that aerobic glycolysis is necessary for the early stages of retinal development. Taking advantage of an unbiased approach that combines the use of eye organoids and single-cell RNA sequencing, we identify specific glucose transporters and glycolytic genes in retinal progenitors. Next, we determine that the optic vesicle territory of mouse embryos displays elevated levels of glycolytic activity. At the functional level, we show that removal of Glucose transporter 1 and Lactate dehydrogenase A gene activity from developing retinal progenitors arrests eye morphogenesis. Surprisingly, we uncover that lactate-mediated upregulation of key eye-field transcription factors is controlled by the epigenetic modification of histone H3 acetylation through histone deacetylase activity. Our results identify an unexpected bioenergetic independent role of lactate as a signaling molecule necessary for mammalian eye morphogenesis.
Collapse
Affiliation(s)
- Nozomu Takata
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 E. Superior Street, Chicago, IL, 60611, USA
| | - Jason M Miska
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Marc A Morgan
- Simpson Querrey Institute for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Priyam Patel
- Center for Genetic Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Leah K Billingham
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Neha Joshi
- Center for Genetic Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Matthew J Schipma
- Center for Genetic Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Zachary J Dumar
- Simpson Querrey Institute for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Nikita R Joshi
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Alexander V Misharin
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Ryan B Embry
- Center for Genetic Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Luciano Fiore
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Laboratory of Nanomedicine, National Atomic Energy Commission (CNEA), Av. General Paz 1499, B1650KNA, San Martín, Buenos Aires, Argentina
| | - Peng Gao
- Robert H. Lurie Cancer Center Metabolomics Core, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Lauren P Diebold
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Gregory S McElroy
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Navdeep S Chandel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Guillermo Oliver
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
38
|
Zengel J, Wang YX, Seo JW, Ning K, Hamilton JN, Wu B, Raie M, Holbrook C, Su S, Clements DR, Pillay S, Puschnik AS, Winslow MM, Idoyaga J, Nagamine CM, Sun Y, Mahajan VB, Ferrara KW, Blau HM, Carette JE. Hardwiring tissue-specific AAV transduction in mice through engineered receptor expression. Nat Methods 2023; 20:1070-1081. [PMID: 37291262 PMCID: PMC10333121 DOI: 10.1038/s41592-023-01896-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 04/25/2023] [Indexed: 06/10/2023]
Abstract
The development of transgenic mouse models that express genes of interest in specific cell types has transformed our understanding of basic biology and disease. However, generating these models is time- and resource-intensive. Here we describe a model system, SELective Expression and Controlled Transduction In Vivo (SELECTIV), that enables efficient and specific expression of transgenes by coupling adeno-associated virus (AAV) vectors with Cre-inducible overexpression of the multi-serotype AAV receptor, AAVR. We demonstrate that transgenic AAVR overexpression greatly increases the efficiency of transduction of many diverse cell types, including muscle stem cells, which are normally refractory to AAV transduction. Superior specificity is achieved by combining Cre-mediated AAVR overexpression with whole-body knockout of endogenous Aavr, which is demonstrated in heart cardiomyocytes, liver hepatocytes and cholinergic neurons. The enhanced efficacy and exquisite specificity of SELECTIV has broad utility in development of new mouse model systems and expands the use of AAV for gene delivery in vivo.
Collapse
Affiliation(s)
- James Zengel
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yu Xin Wang
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Center for Genetic Disorders and Aging, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jai Woong Seo
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ke Ning
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA
| | - James N Hamilton
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Bo Wu
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Marina Raie
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Colin Holbrook
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Shiqi Su
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Derek R Clements
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Sirika Pillay
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Andreas S Puschnik
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Juliana Idoyaga
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Claude M Nagamine
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA
- Palo Alto Veterans Administration, Palo Alto, CA, USA
| | - Vinit B Mahajan
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA
- Palo Alto Veterans Administration, Palo Alto, CA, USA
| | - Katherine W Ferrara
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Helen M Blau
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
39
|
Futaki S, Horimoto A, Shimono C, Norioka N, Taniguchi Y, Hamaoka H, Kaneko M, Shigeta M, Abe T, Sekiguchi K, Kondo Y. Visualization of basement membranes by a nidogen-based fluorescent reporter in mice. Matrix Biol Plus 2023; 18:100133. [PMID: 37131404 PMCID: PMC10149278 DOI: 10.1016/j.mbplus.2023.100133] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 05/04/2023] Open
Abstract
Basement membranes (BMs) are thin, sheet-like extracellular structures that cover the basal side of epithelial and endothelial tissues and provide structural and functional support to adjacent cell layers. The molecular structure of BMs is a fine meshwork that incorporates specialized extracellular matrix proteins. Recently, live visualization of BMs in invertebrates demonstrated that their structure is flexible and dynamically rearranged during cell differentiation and organogenesis. However, the BM dynamics in mammalian tissues remain to be elucidated. We developed a mammalian BM imaging probe based on nidogen-1, a major BM-specific protein. Recombinant human nidogen-1 fused with an enhanced green fluorescent protein (Nid1-EGFP) retains its ability to bind to other BM proteins, such as laminin, type IV collagen, and perlecan, in a solid-phase binding assay. When added to the culture medium of embryoid bodies derived from mouse ES cells, recombinant Nid1-EGFP accumulated in the BM zone of embryoid bodies, and BMs were visualized in vitro. For in vivo BM imaging, a knock-in reporter mouse line expressing human nidogen-1 fused to the red fluorescent protein mCherry (R26-CAG-Nid1-mCherry) was generated. R26-CAG-Nid1-mCherry showed fluorescently labeled BMs in early embryos and adult tissues, such as the epidermis, intestine, and skeletal muscles, whereas BM fluorescence was unclear in several other tissues, such as the lung and heart. In the retina, Nid1-mCherry fluorescence visualized the BMs of vascular endothelium and pericytes. In the developing retina, Nid1-mCherry fluorescence labeled the BM of the major central vessels; however, the BM fluorescence were hardly observed in the peripheral growing tips of the vascular network, despite the presence of endothelial BM. Time-lapse observation of the retinal vascular BM after photobleaching revealed gradual recovery of Nid1-mCherry fluorescence, suggesting the turnover of BM components in developing retinal blood vessels. To the best of our knowledge, this is the first demonstration of in vivo BM imaging using a genetically engineered mammalian model. Although R26-CAG-Nid1-mCherry has some limitations as an in vivo BM imaging model, it has potential applications in the study of BM dynamics during mammalian embryogenesis, tissue regeneration, and pathogenesis.
Collapse
Affiliation(s)
- Sugiko Futaki
- Department of Anatomy and Cell Biology, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
- Corresponding author.
| | - Ayano Horimoto
- Laboratory of Matrixome Research and Application, Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Chisei Shimono
- Laboratory of Matrixome Research and Application, Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Naoko Norioka
- Laboratory of Matrixome Research and Application, Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yukimasa Taniguchi
- Laboratory of Matrixome Research and Application, Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hitomi Hamaoka
- Department of Anatomy and Cell Biology, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Mari Kaneko
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Mayo Shigeta
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kiyotoshi Sekiguchi
- Laboratory of Matrixome Research and Application, Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yoichi Kondo
- Department of Anatomy and Cell Biology, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| |
Collapse
|
40
|
Tran HN, Nguyen QH, Jeong JE, Loi DL, Nam YH, Kang TH, Yoon J, Baek K, Jeong Y. The embryonic patterning gene Dbx1 governs the survival of the auditory midbrain via Tcf7l2-Ap2δ transcriptional cascade. Cell Death Differ 2023; 30:1563-1574. [PMID: 37081114 PMCID: PMC10244374 DOI: 10.1038/s41418-023-01165-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
At the top of the midbrain is the inferior colliculus (IC), which functions as the major hub for processing auditory information. Despite the functional significance of neurons in the IC, our understanding of their formation is limited. In this study, we identify the embryonic patterning gene Dbx1 as a key molecular player that governs genetic programs for IC survival. We find that Dbx1 plays a critical role in preventing apoptotic cell death in postnatal IC by transcriptionally repressing c-Jun and pro-apoptotic BH3 only factors. Furthermore, by employing combined approaches, we uncover that Tcf7l2 functions downstream of Dbx1. Loss of Tcf7l2 function causes IC phenotypes with striking similarity to those of Dbx1 mutant mice, which include defective embryonic maturation and postnatal deletion of the IC. Finally, we demonstrate that the Dbx1-Tcf7l2 cascade functions upstream of Ap-2δ, which is essential for IC development and survival. Together, these results unravel a novel molecular mechanism for IC maintenance, which is indispensable for normal brain development.
Collapse
Affiliation(s)
- Hong-Nhung Tran
- Department of Genetics and Biotechnology, College of Life Sciences, Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi, Republic of Korea
| | - Quy-Hoai Nguyen
- Department of Genetics and Biotechnology, College of Life Sciences, Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi, Republic of Korea
| | - Ji-Eun Jeong
- Department of Genetics and Biotechnology, College of Life Sciences, Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi, Republic of Korea
| | - Duc-Linh Loi
- Department of Genetics and Biotechnology, College of Life Sciences, Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi, Republic of Korea
| | - Youn Hee Nam
- Department of Oriental Medicine Biotechnology, Kyung Hee University, Yongin, Gyeonggi, Republic of Korea
| | - Tong Ho Kang
- Department of Oriental Medicine Biotechnology, Kyung Hee University, Yongin, Gyeonggi, Republic of Korea
| | - Jaeseung Yoon
- Department of Genetics and Biotechnology, College of Life Sciences, Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi, Republic of Korea
| | - Kwanghee Baek
- Department of Genetics and Biotechnology, College of Life Sciences, Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi, Republic of Korea
| | - Yongsu Jeong
- Department of Genetics and Biotechnology, College of Life Sciences, Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi, Republic of Korea.
| |
Collapse
|
41
|
Sarkaria SM, Zhou J, Bao S, Zhao W, Fang Y, Que J, Bhagat G, Zhang C, Ding L. Systematic dissection of coordinated stromal remodeling identifies Sox10 + glial cells as a therapeutic target in myelofibrosis. Cell Stem Cell 2023; 30:832-850.e6. [PMID: 37267917 PMCID: PMC10240254 DOI: 10.1016/j.stem.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 10/24/2022] [Accepted: 05/02/2023] [Indexed: 06/04/2023]
Abstract
Remodeling of the tissue niche is often evident in diseases, yet, the stromal alterations and their contribution to pathogenesis are poorly characterized. Bone marrow fibrosis is a maladaptive feature of primary myelofibrosis (PMF). We performed lineage tracing and found that most collagen-expressing myofibroblasts were derived from leptin-receptor-positive (LepR+) mesenchymal cells, whereas a minority were from Gli1-lineage cells. Deletion of Gli1 did not impact PMF. Unbiased single-cell RNA sequencing (scRNA-seq) confirmed that virtually all myofibroblasts originated from LepR-lineage cells, with reduced expression of hematopoietic niche factors and increased expression of fibrogenic factors. Concurrently, endothelial cells upregulated arteriolar-signature genes. Pericytes and Sox10+ glial cells expanded drastically with heightened cell-cell signaling, suggesting important functional roles in PMF. Chemical or genetic ablation of bone marrow glial cells ameliorated fibrosis and improved other pathology in PMF. Thus, PMF involves complex remodeling of the bone marrow microenvironment, and glial cells represent a promising therapeutic target.
Collapse
Affiliation(s)
- Shawn M Sarkaria
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Hematology and Medical Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Junsong Zhou
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Suying Bao
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wenqi Zhao
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yinshan Fang
- Division of Digestive and Liver Diseases, Columbia Center for Human Development, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jianwen Que
- Division of Digestive and Liver Diseases, Columbia Center for Human Development, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Govind Bhagat
- Division of Hematopathology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Chaolin Zhang
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lei Ding
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
42
|
Kaur G, Sharma D, Bisen S, Mukhopadhyay CS, Gurdziel K, Singh NK. Vascular cell-adhesion molecule 1 (VCAM-1) regulates JunB-mediated IL-8/CXCL1 expression and pathological neovascularization. Commun Biol 2023; 6:516. [PMID: 37179352 PMCID: PMC10183029 DOI: 10.1038/s42003-023-04905-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Vascular adhesion molecules play an important role in various immunological disorders, particularly in cancers. However, little is known regarding the role of these adhesion molecules in proliferative retinopathies. We observed that IL-33 regulates VCAM-1 expression in human retinal endothelial cells and that genetic deletion of IL-33 reduces hypoxia-induced VCAM-1 expression and retinal neovascularization in C57BL/6 mice. We found that VCAM-1 via JunB regulates IL-8 promoter activity and expression in human retinal endothelial cells. In addition, our study outlines the regulatory role of VCAM-1-JunB-IL-8 signaling on retinal endothelial cell sprouting and angiogenesis. Our RNA sequencing results show an induced expression of CXCL1 (a murine functional homolog of IL-8) in the hypoxic retina, and intravitreal injection of VCAM-1 siRNA not only decreases hypoxia-induced VCAM-1-JunB-CXCL1 signaling but also reduces OIR-induced sprouting and retinal neovascularization. These findings suggest that VCAM-1-JunB-IL-8 signaling plays a crucial role in retinal neovascularization, and its antagonism might provide an advanced treatment option for proliferative retinopathies.
Collapse
Affiliation(s)
- Geetika Kaur
- Integrative Biosciences Center, Wayne State University, Detroit, MI, 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, 48202, USA
| | - Deepti Sharma
- Integrative Biosciences Center, Wayne State University, Detroit, MI, 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, 48202, USA
| | - Shivantika Bisen
- Integrative Biosciences Center, Wayne State University, Detroit, MI, 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, 48202, USA
| | - Chandra Sekhar Mukhopadhyay
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - Katherine Gurdziel
- Institute of Environmental Health Sciences and Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, 48202, USA
| | - Nikhlesh K Singh
- Integrative Biosciences Center, Wayne State University, Detroit, MI, 48202, USA.
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
43
|
Tasnim A, Alkislar I, Hakim R, Turecek J, Abdelaziz A, Orefice LL, Ginty DD. The developmental timing of spinal touch processing alterations and its relation to ASD-associated behaviors in mouse models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.539589. [PMID: 37214862 PMCID: PMC10197556 DOI: 10.1101/2023.05.09.539589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Altered somatosensory reactivity is frequently observed among individuals with autism spectrum disorders (ASDs). Here, we report that while multiple mouse models of ASD exhibit aberrant somatosensory behaviors in adulthood, some models exhibit altered tactile reactivity as early as embryonic development, while in others, altered reactivity emerges later in life. Additionally, tactile over-reactivity during neonatal development is associated with anxiety-like behaviors and social interaction deficits in adulthood, whereas tactile over-reactivity that emerges later in life is not. The locus of circuit disruption dictates the timing of aberrant tactile behaviors: altered feedback or presynaptic inhibition of peripheral mechanosensory neurons leads to abnormal tactile reactivity during neonatal development, while disruptions in feedforward inhibition in the spinal cord lead to touch reactivity alterations that manifest later in life. Thus, the developmental timing of aberrant touch processing can predict the manifestation of ASD-associated behaviors in mouse models, and differential timing of sensory disturbance onset may contribute to phenotypic diversity across individuals with ASD.
Collapse
|
44
|
Yang B, Liu C, Ju X, Wu B, Wang Z, Dong F, Yu Y, Hou X, Fang M, Gao F, Guo X, Gui Y, Ding Q, Li W. A tissue specific-infection mouse model of SARS-CoV-2. Cell Discov 2023; 9:43. [PMID: 37080957 PMCID: PMC10117269 DOI: 10.1038/s41421-023-00536-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/06/2023] [Indexed: 04/22/2023] Open
Abstract
Animal models play crucial roles in the rapid development of vaccines/drugs for the prevention and therapy of COVID-19, but current models have some deficits when studying the pathogenesis of SARS-CoV-2 on some special tissues or organs. Here, we generated a human ACE2 and SARS-CoV-2 NF/F knockin mouse line that constitutively expresses human ACE2 and specifically expresses SARS-CoV-2 N gene induced by Cre-recombinase. By crossing with Cre transgenic lines allowing for lung-specific and constitutive expression, we generated lung-specific (Sftpc-hACE2-NF/F) and constitutive SARS-CoV-2 N (EIIa-hACE2-NF/F) expressing mice. Upon intranasal infection with a SARS-CoV-2 GFP/ΔN strain which can only replicate in SARS-CoV-2 N expressed cells, we demonstrated that both the Sftpc-hACE2-NF/F and EIIa-hACE2-NF/F mice support viral replication. Consistent with our design, viral replication was limited to the lung tissues in Sftpc-hACE2-NF/F mice, while the EIIa-hACE2-NF/F mice developed infections in multiple tissues. Furthermore, our model supports different SARS-CoV-2 variants infection, and it can be successfully used to evaluate the effects of therapeutic monoclonal antibodies (Ab1F11) and antiviral drugs (Molnupiravir). Finally, to test the effect of SARS-CoV-2 infection on male reproduction, we generated Sertoli cell-specific SARS-CoV-2 N expressed mice by crossing with AMH-Cre transgenic line. We found that SARS-CoV-2 GFP/ΔN strain could infect Sertoli cells, led to spermatogenic defects due to the destruction of blood-testis barrier. Overall, combining with different tissue-specific Cre transgenic lines, the human ACE2 and SARS-CoV-2 NF/F line enables us to evaluate antivirals in vivo and study the pathogenesis of SARS-CoV-2 on some special tissues or organs.
Collapse
Affiliation(s)
- Bo Yang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong, China
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chao Liu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaohui Ju
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Bingbing Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhuangfei Wang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Fucheng Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanying Yu
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Xiaohui Hou
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Min Fang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yaoting Gui
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong, China.
| | - Qiang Ding
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China.
| | - Wei Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
45
|
Farr JN, Saul D, Doolittle ML, Kaur J, Rowsey JL, Vos SJ, Froemming MN, Lagnado AB, Zhu Y, Weivoda M, Ikeno Y, Pignolo RJ, Niedernhofer LJ, Robbins PD, Jurk D, Passos JF, LeBrasseur NK, Tchkonia T, Kirkland JL, Monroe DG, Khosla S. Local senolysis in aged mice only partially replicates the benefits of systemic senolysis. J Clin Invest 2023; 133:e162519. [PMID: 36809340 PMCID: PMC10104901 DOI: 10.1172/jci162519] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Clearance of senescent cells (SnCs) can prevent several age-related pathologies, including bone loss. However, the local versus systemic roles of SnCs in mediating tissue dysfunction remain unclear. Thus, we developed a mouse model (p16-LOX-ATTAC) that allowed for inducible SnC elimination (senolysis) in a cell-specific manner and compared the effects of local versus systemic senolysis during aging using bone as a prototype tissue. Specific removal of Sn osteocytes prevented age-related bone loss at the spine, but not the femur, by improving bone formation without affecting osteoclasts or marrow adipocytes. By contrast, systemic senolysis prevented bone loss at the spine and femur and not only improved bone formation, but also reduced osteoclast and marrow adipocyte numbers. Transplantation of SnCs into the peritoneal cavity of young mice caused bone loss and also induced senescence in distant host osteocytes. Collectively, our findings provide proof-of-concept evidence that local senolysis has health benefits in the context of aging, but, importantly, that local senolysis only partially replicates the benefits of systemic senolysis. Furthermore, we establish that SnCs, through their senescence-associated secretory phenotype (SASP), lead to senescence in distant cells. Therefore, our study indicates that optimizing senolytic drugs may require systemic instead of local SnC targeting to extend healthy aging.
Collapse
Affiliation(s)
- Joshua N. Farr
- Robert and Arlene Kogod Center on Aging
- Division of Endocrinology
- Department of Physiology and Biomedical Engineering, and
| | - Dominik Saul
- Robert and Arlene Kogod Center on Aging
- Division of Endocrinology
| | | | - Japneet Kaur
- Robert and Arlene Kogod Center on Aging
- Division of Endocrinology
| | | | - Stephanie J. Vos
- Robert and Arlene Kogod Center on Aging
- Division of Endocrinology
| | | | - Anthony B. Lagnado
- Robert and Arlene Kogod Center on Aging
- Department of Physiology and Biomedical Engineering, and
| | - Yi Zhu
- Robert and Arlene Kogod Center on Aging
- Department of Physiology and Biomedical Engineering, and
| | - Megan Weivoda
- Department of Hematology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Yuji Ikeno
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Robert J. Pignolo
- Robert and Arlene Kogod Center on Aging
- Department of Physiology and Biomedical Engineering, and
- Department of Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Paul D. Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Diana Jurk
- Robert and Arlene Kogod Center on Aging
- Department of Physiology and Biomedical Engineering, and
| | - João F. Passos
- Robert and Arlene Kogod Center on Aging
- Department of Physiology and Biomedical Engineering, and
| | - Nathan K. LeBrasseur
- Robert and Arlene Kogod Center on Aging
- Department of Physiology and Biomedical Engineering, and
- Department of Physical Medicine and Rehabilitation, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | | | | | - David G. Monroe
- Robert and Arlene Kogod Center on Aging
- Division of Endocrinology
| | - Sundeep Khosla
- Robert and Arlene Kogod Center on Aging
- Division of Endocrinology
- Department of Physiology and Biomedical Engineering, and
| |
Collapse
|
46
|
Zheng D, Mohapatra G, Kern L, He Y, Shmueli MD, Valdés-Mas R, Kolodziejczyk AA, Próchnicki T, Vasconcelos MB, Schorr L, Hertel F, Lee YS, Rufino MC, Ceddaha E, Shimshy S, Hodgetts RJ, Dori-Bachash M, Kleimeyer C, Goldenberg K, Heinemann M, Stettner N, Harmelin A, Shapiro H, Puschhof J, Chen M, Flavell RA, Latz E, Merbl Y, Abdeen SK, Elinav E. Epithelial Nlrp10 inflammasome mediates protection against intestinal autoinflammation. Nat Immunol 2023; 24:585-594. [PMID: 36941399 DOI: 10.1038/s41590-023-01450-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/06/2023] [Indexed: 03/23/2023]
Abstract
Unlike other nucleotide oligomerization domain-like receptors, Nlrp10 lacks a canonical leucine-rich repeat domain, suggesting that it is incapable of signal sensing and inflammasome formation. Here we show that mouse Nlrp10 is expressed in distal colonic intestinal epithelial cells (IECs) and modulated by the intestinal microbiome. In vitro, Nlrp10 forms an Apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC)-dependent, m-3M3FBS-activated, polyinosinic:polycytidylic acid-modulated inflammasome driving interleukin-1β and interleukin-18 secretion. In vivo, Nlrp10 signaling is dispensable during steady state but becomes functional during autoinflammation in antagonizing mucosal damage. Importantly, whole-body or conditional IEC Nlrp10 depletion leads to reduced IEC caspase-1 activation, coupled with enhanced susceptibility to dextran sodium sulfate-induced colitis, mediated by altered inflammatory and healing programs. Collectively, understanding Nlrp10 inflammasome-dependent and independent activity, regulation and possible human relevance might facilitate the development of new innate immune anti-inflammatory interventions.
Collapse
Affiliation(s)
- Danping Zheng
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gayatree Mohapatra
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Lara Kern
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Yiming He
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Merav D Shmueli
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Rafael Valdés-Mas
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | | | - Tomasz Próchnicki
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | | | - Lena Schorr
- Division of Cancer-Microbiome Research, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Franziska Hertel
- Division of Cancer-Microbiome Research, German Cancer Research Center, Heidelberg, Germany
| | - Ye Seul Lee
- Division of Cancer-Microbiome Research, German Cancer Research Center, Heidelberg, Germany
| | | | - Emmanuelle Ceddaha
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Sandy Shimshy
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Ryan James Hodgetts
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Mally Dori-Bachash
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Christian Kleimeyer
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Kim Goldenberg
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Melina Heinemann
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Stettner
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Harmelin
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Hagit Shapiro
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Jens Puschhof
- Division of Cancer-Microbiome Research, German Cancer Research Center, Heidelberg, Germany
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Eicke Latz
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Yifat Merbl
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Suhaib K Abdeen
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
| | - Eran Elinav
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
- Division of Cancer-Microbiome Research, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
47
|
Conti BA, Ruiz PD, Broton C, Blobel NJ, Kottemann MC, Sridhar S, Lach FP, Wiley T, Sasi NK, Carroll T, Smogorzewska A. RTF2 controls replication repriming and ribonucleotide excision at the replisome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532415. [PMID: 36993543 PMCID: PMC10054921 DOI: 10.1101/2023.03.13.532415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Genetic information is duplicated via the highly regulated process of DNA replication. The machinery coordinating this process, the replisome, encounters many challenges, including replication fork-stalling lesions that threaten the accurate and timely transmission of genetic information. Cells have multiple mechanisms to repair or bypass lesions that would otherwise compromise DNA replication1,2. We have previously shown that proteasome shuttle proteins, DNA Damage Inducible 1 and 2 (DDI1/2) function to regulate Replication Termination Factor 2 (RTF2) at the stalled replisome, allowing for replication fork stabilization and restart3. Here we show that RTF2 regulates replisome localization of RNase H2, a heterotrimeric enzyme responsible for removing RNA in the context of RNA-DNA heteroduplexes4-6. We show that during unperturbed DNA replication, RTF2, like RNase H2, is required to maintain normal replication fork speeds. However, persistent RTF2 and RNase H2 at stalled replication forks compromises the replication stress response, preventing efficient replication restart. Such restart is dependent on PRIM1, the primase component of DNA polymerase α-primase. Our data show a fundamental need for regulation of replication-coupled ribonucleotide incorporation during normal replication and the replication stress response that is achieved through RTF2. We also provide evidence for PRIM1 function in direct replication restart following replication stress in mammalian cells.
Collapse
Affiliation(s)
- Brooke A Conti
- Laboratory of Genome Maintenance, The Rockefeller University
| | - Penelope D Ruiz
- Laboratory of Genome Maintenance, The Rockefeller University
| | - Cayla Broton
- Laboratory of Genome Maintenance, The Rockefeller University
| | | | | | | | - Francis P Lach
- Laboratory of Genome Maintenance, The Rockefeller University
| | - Tom Wiley
- Laboratory of Genome Maintenance, The Rockefeller University
| | - Nanda K Sasi
- Laboratory for Cell Biology and Genetics, The Rockefeller University
| | | | | |
Collapse
|
48
|
James BN, Weigel C, Green CD, Brown RDR, Palladino END, Tharakan A, Milstien S, Proia RL, Martin RK, Spiegel S. Neutrophilia in severe asthma is reduced in Ormdl3 overexpressing mice. FASEB J 2023; 37:e22799. [PMID: 36753412 PMCID: PMC9990076 DOI: 10.1096/fj.202201821r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 02/09/2023]
Abstract
Genome-wide association studies have linked the ORM (yeast)-like protein isoform 3 (ORMDL3) to asthma severity. Although ORMDL3 is a member of a family that negatively regulates serine palmitoyltransferase (SPT) and thus biosynthesis of sphingolipids, it is still unclear whether ORMDL3 and altered sphingolipid synthesis are causally related to non-Th2 severe asthma associated with a predominant neutrophil inflammation and high interleukin-17 (IL-17) levels. Here, we examined the effects of ORMDL3 overexpression in a preclinical mouse model of allergic lung inflammation that is predominantly neutrophilic and recapitulates many of the clinical features of severe human asthma. ORMDL3 overexpression reduced lung and circulating levels of dihydrosphingosine, the product of SPT. However, the most prominent effect on sphingolipid levels was reduction of circulating S1P. The LPS/OVA challenge increased markers of Th17 inflammation with a predominant infiltration of neutrophils into the lung. A significant decrease of neutrophil infiltration was observed in the Ormdl3 transgenic mice challenged with LPS/OVA compared to the wild type and concomitant decrease in IL-17, that plays a key role in the pathogenesis of neutrophilic asthma. LPS decreased survival of murine neutrophils, which was prevented by co-treatment with S1P. Moreover, S1P potentiated LPS-induced chemotaxis of neutrophil, suggesting that S1P can regulate neutrophil survival and recruitment following LPS airway inflammation. Our findings reveal a novel connection between ORMDL3 overexpression, circulating levels of S1P, IL-17 and neutrophil recruitment into the lung, and questions the potential involvement of ORMDL3 in the pathology, leading to development of severe neutrophilic asthma.
Collapse
Affiliation(s)
- Briana N. James
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Cynthia Weigel
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Christopher D. Green
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Ryan D. R. Brown
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Elisa N. D. Palladino
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Anuj Tharakan
- Department of Microbiology and ImmunologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Sheldon Milstien
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Richard L. Proia
- Genetics and Biochemistry BranchNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA
| | - Rebecca K. Martin
- Department of Microbiology and ImmunologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| |
Collapse
|
49
|
Lu Z, Chen P, Xu Q, Li B, Jiang S, Jiang L, Zheng X. Constitutive and conditional gene knockout mice for the study of intervertebral disc degeneration: Current status, decision considerations, and future possibilities. JOR Spine 2023; 6:e1242. [PMID: 36994464 PMCID: PMC10041386 DOI: 10.1002/jsp2.1242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
There have been an increasing number of patients with degenerative disc diseases due to the aging population. In light of this, studies on the pathogenesis of intervertebral disc degeneration have become a hot topic, and gene knockout mice have become a valuable tool in this field of research. With the development of science and technology, constitutive gene knockout mice can be constructed using homologous recombination, zinc finger nuclease, transcription activator-like effector nuclease technology and clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9) system, and conditional gene knockout mice can be constructed using the Cre/LoxP system. The gene-edited mice using these techniques have been widely used in the studies on disc degeneration. This paper reviews the development process and principles of these technologies, functions of the edited genes in disc degeneration, advantages, and disadvantages of different methods and possible targets of the specific Cre recombinase in intervertebral discs. Recommendations for the choice of suitable gene-edited model mice are presented. At the same time, possible technological improvements in the future are also discussed.
Collapse
Affiliation(s)
- Ze‐Yu Lu
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Peng‐Bo Chen
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qing‐Yin Xu
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bo Li
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Sheng‐Dan Jiang
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lei‐Sheng Jiang
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xin‐Feng Zheng
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
50
|
Sharma D, Kaur G, Bisen S, Sharma A, Ibrahim AS, Singh NK. IL-33 via PKCμ/PRKD1 Mediated α-Catenin Phosphorylation Regulates Endothelial Cell-Barrier Integrity and Ischemia-Induced Vascular Leakage. Cells 2023; 12:703. [PMID: 36899839 PMCID: PMC10001418 DOI: 10.3390/cells12050703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Angiogenesis, neovascularization, and vascular remodeling are highly dynamic processes, where endothelial cell-cell adhesion within the vessel wall controls a range of physiological processes, such as growth, integrity, and barrier function. The cadherin-catenin adhesion complex is a key contributor to inner blood-retinal barrier (iBRB) integrity and dynamic cell movements. However, the pre-eminent role of cadherins and their associated catenins in iBRB structure and function is not fully understood. Using a murine model of oxygen-induced retinopathy (OIR) and human retinal microvascular endothelial cells (HRMVECs), we try to understand the significance of IL-33 on retinal endothelial barrier disruption, leading to abnormal angiogenesis and enhanced vascular permeability. Using electric cell-substrate impedance sensing (ECIS) analysis and FITC-dextran permeability assay, we observed that IL-33 at a 20 ng/mL concentration induced endothelial-barrier disruption in HRMVECs. The adherens junction (AJs) proteins play a prominent role in the selective diffusion of molecules from the blood to the retina and in maintaining retinal homeostasis. Therefore, we looked for the involvement of adherens junction proteins in IL-33-mediated endothelial dysfunction. We observed that IL-33 induces α-catenin phosphorylation at serine/threonine (Ser/Thr) residues in HRMVECs. Furthermore, mass-spectroscopy (MS) analysis revealed that IL-33 induces the phosphorylation of α-catenin at Thr654 residue in HRMVECs. We also observed that PKCμ/PRKD1-p38 MAPK signaling regulates IL-33-induced α-catenin phosphorylation and retinal endothelial cell-barrier integrity. Our OIR studies revealed that genetic deletion of IL-33 resulted in reduced vascular leakage in the hypoxic retina. We also observed that the genetic deletion of IL-33 reduced OIR-induced PKCμ/PRKD1-p38 MAPK-α-catenin signaling in the hypoxic retina. Therefore, we conclude that IL-33-induced PKCμ/PRKD1-p38 MAPK-α-catenin signaling plays a significant role in endothelial permeability and iBRB integrity.
Collapse
Affiliation(s)
- Deepti Sharma
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Geetika Kaur
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Shivantika Bisen
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Anamika Sharma
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Ahmed S. Ibrahim
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| | - Nikhlesh K. Singh
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| |
Collapse
|