1
|
Sharma S, Kapoor S, Ansari A, Tyagi AK. The general transcription factors (GTFs) of RNA polymerase II and their roles in plant development and stress responses. Crit Rev Biochem Mol Biol 2024:1-43. [PMID: 39361782 DOI: 10.1080/10409238.2024.2408562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/03/2024] [Accepted: 09/21/2024] [Indexed: 10/05/2024]
Abstract
In eukaryotes, general transcription factors (GTFs) enable recruitment of RNA polymerase II (RNA Pol II) to core promoters to facilitate initiation of transcription. Extensive research in mammals and yeast has unveiled their significance in basal transcription as well as in diverse biological processes. Unlike mammals and yeast, plant GTFs exhibit remarkable degree of variability and flexibility. This is because plant GTFs and GTF subunits are often encoded by multigene families, introducing complexity to transcriptional regulation at both cellular and biological levels. This review provides insights into the general transcription mechanism, GTF composition, and their cellular functions. It further highlights the involvement of RNA Pol II-related GTFs in plant development and stress responses. Studies reveal that GTFs act as important regulators of gene expression in specific developmental processes and help equip plants with resilience against adverse environmental conditions. Their functions may be direct or mediated through their cofactor nature. The versatility of GTFs in controlling gene expression, and thereby influencing specific traits, adds to the intricate complexity inherent in the plant system.
Collapse
Affiliation(s)
- Shivam Sharma
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Sanjay Kapoor
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Athar Ansari
- Department of Biological Science, Wayne State University, Detroit, MI, USA
| | - Akhilesh Kumar Tyagi
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| |
Collapse
|
2
|
Düster R, Anand K, Binder SC, Schmitz M, Gatterdam K, Fisher RP, Geyer M. Structural basis of Cdk7 activation by dual T-loop phosphorylation. Nat Commun 2024; 15:6597. [PMID: 39097586 PMCID: PMC11297931 DOI: 10.1038/s41467-024-50891-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024] Open
Abstract
Cyclin-dependent kinase 7 (Cdk7) is required in cell-cycle and transcriptional regulation owing to its function as both a CDK-activating kinase (CAK) and part of transcription factor TFIIH. Cdk7 forms active complexes by associating with Cyclin H and Mat1, and is regulated by two phosphorylations in the activation segment (T loop): the canonical activating modification at T170 and another at S164. Here we report the crystal structure of the human Cdk7/Cyclin H/Mat1 complex containing both T-loop phosphorylations. Whereas pT170 coordinates basic residues conserved in other CDKs, pS164 nucleates an arginine network unique to the ternary Cdk7 complex, involving all three subunits. We identify differential dependencies of kinase activity and substrate recognition on the individual phosphorylations. CAK function is unaffected by T-loop phosphorylation, whereas activity towards non-CDK substrates is increased several-fold by T170 phosphorylation. Moreover, dual T-loop phosphorylation stimulates multisite phosphorylation of the RNA polymerase II (RNAPII) carboxy-terminal domain (CTD) and SPT5 carboxy-terminal repeat (CTR) region. In human cells, Cdk7 activation is a two-step process wherein S164 phosphorylation precedes, and may prime, T170 phosphorylation. Thus, dual T-loop phosphorylation can regulate Cdk7 through multiple mechanisms, with pS164 supporting tripartite complex formation and possibly influencing processivity, while pT170 enhances activity towards key transcriptional substrates.
Collapse
Affiliation(s)
- Robert Düster
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kanchan Anand
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Sophie C Binder
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Maximilian Schmitz
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Karl Gatterdam
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Robert P Fisher
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
3
|
Düster R, Anand K, Binder SC, Schmitz M, Gatterdam K, Fisher RP, Geyer M. Structural basis of Cdk7 activation by dual T-loop phosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580246. [PMID: 38405971 PMCID: PMC10888979 DOI: 10.1101/2024.02.14.580246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Cyclin-dependent kinase 7 (Cdk7) occupies a central position in cell-cycle and transcriptional regulation owing to its function as both a CDK-activating kinase (CAK) and part of the general transcription factor TFIIH. Cdk7 forms an active complex upon association with Cyclin H and Mat1, and its catalytic activity is regulated by two phosphorylations in the activation segment (T loop): the canonical activating modification at T170 and another at S164. Here we report the crystal structure of the fully activated human Cdk7/Cyclin H/Mat1 complex containing both T-loop phosphorylations. Whereas pT170 coordinates a set of basic residues conserved in other CDKs, pS164 nucleates an arginine network involving all three subunits that is unique to the ternary Cdk7 complex. We identify differential dependencies of kinase activity and substrate recognition on individual phosphorylations within the Cdk7 T loop. The CAK function of Cdk7 is not affected by T-loop phosphorylation, whereas activity towards non-CDK substrates is increased several-fold by phosphorylation at T170. Moreover, dual T-loop phosphorylation at both T170 and S164 stimulates multi-site phosphorylation of transcriptional substrates-the RNA polymerase II (RNAPII) carboxy-terminal domain (CTD) and the SPT5 carboxy-terminal repeat (CTR) region. In human cells, Cdk7-regulatory phosphorylation is a two-step process in which phosphorylation of S164 precedes, and may prime, T170 phosphorylation. Thus, dual T-loop phosphorylation can regulate Cdk7 through multiple mechanisms, with pS164 supporting tripartite complex formation and possibly influencing Cdk7 processivity, while the canonical pT170 enhances kinase activity towards critical substrates involved in transcription.
Collapse
Affiliation(s)
- Robert Düster
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kanchan Anand
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Sophie C. Binder
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Maximilian Schmitz
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Karl Gatterdam
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Robert P. Fisher
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
4
|
Compe E, Pangou E, Le May N, Elly C, Braun C, Hwang JH, Coin F, Sumara I, Choi KW, Egly JM. Phosphorylation of XPD drives its mitotic role independently of its DNA repair and transcription functions. SCIENCE ADVANCES 2022; 8:eabp9457. [PMID: 35977011 PMCID: PMC9385140 DOI: 10.1126/sciadv.abp9457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The helicase XPD is known as a key subunit of the DNA repair/transcription factor TFIIH. However, here, we report that XPD, independently to other TFIIH subunits, can localize with the motor kinesin Eg5 to mitotic spindles and the midbodies of human cells. The XPD/Eg5 partnership is promoted upon phosphorylation of Eg5/T926 by the kinase CDK1, and conversely, it is reduced once Eg5/S1033 is phosphorylated by NEK6, a mitotic kinase that also targets XPD at T425. The phosphorylation of XPD does not affect its DNA repair and transcription functions, but it is required for Eg5 localization, checkpoint activation, and chromosome segregation in mitosis. In XPD-mutated cells derived from a patient with xeroderma pigmentosum, the phosphomimetic form XPD/T425D or even the nonphosphorylatable form Eg5/S1033A specifically restores mitotic chromosome segregation errors. These results thus highlight the phospho-dependent mitotic function of XPD and reveal how mitotic defects might contribute to XPD-related disorders.
Collapse
Affiliation(s)
- Emmanuel Compe
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Expression et Réparation du Génome, Equipe labellisée Ligue contre le Cancer, CNRS/INSERM/Université de Strasbourg, BP 163, Illkirch Cedex, C. U., 67404 Strasbourg, France
| | - Evanthia Pangou
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Cycle Cellulaire et Signalisation de l’Ubiquitine, CNRS/INSERM/Université de Strasbourg, BP 163, Illkirch Cedex, C. U., 67404, Strasbourg, France
| | - Nicolas Le May
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Expression et Réparation du Génome, Equipe labellisée Ligue contre le Cancer, CNRS/INSERM/Université de Strasbourg, BP 163, Illkirch Cedex, C. U., 67404 Strasbourg, France
| | - Clémence Elly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Expression et Réparation du Génome, Equipe labellisée Ligue contre le Cancer, CNRS/INSERM/Université de Strasbourg, BP 163, Illkirch Cedex, C. U., 67404 Strasbourg, France
| | - Cathy Braun
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Expression et Réparation du Génome, Equipe labellisée Ligue contre le Cancer, CNRS/INSERM/Université de Strasbourg, BP 163, Illkirch Cedex, C. U., 67404 Strasbourg, France
| | - Ji-Hyun Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Frédéric Coin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Expression et Réparation du Génome, Equipe labellisée Ligue contre le Cancer, CNRS/INSERM/Université de Strasbourg, BP 163, Illkirch Cedex, C. U., 67404 Strasbourg, France
| | - Izabela Sumara
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Cycle Cellulaire et Signalisation de l’Ubiquitine, CNRS/INSERM/Université de Strasbourg, BP 163, Illkirch Cedex, C. U., 67404, Strasbourg, France
| | - Kwang-Wook Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Jean-Marc Egly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Expression et Réparation du Génome, Equipe labellisée Ligue contre le Cancer, CNRS/INSERM/Université de Strasbourg, BP 163, Illkirch Cedex, C. U., 67404 Strasbourg, France
- College of Medicine, National Taiwan Institute, Taipei 10051, Taiwan
| |
Collapse
|
5
|
Lerner LK, Moreno NC, Rocha CRR, Munford V, Santos V, Soltys DT, Garcia CCM, Sarasin A, Menck CFM. XPD/ERCC2 mutations interfere in cellular responses to oxidative stress. Mutagenesis 2020; 34:341-354. [PMID: 31348825 DOI: 10.1093/mutage/gez020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 07/10/2019] [Indexed: 01/28/2023] Open
Abstract
Nucleotide excision repair (NER) is a conserved, flexible mechanism responsible for the removal of bulky, helix-distorting DNA lesions, like ultraviolet damage or cisplatin adducts, but its role in the repair of lesions generated by oxidative stress is still not clear. The helicase XPD/ERCC2, one of the two helicases of the transcription complex IIH, together with XPB, participates both in NER and in RNA pol II-driven transcription. In this work, we investigated the responses of distinct XPD-mutated cell lines to the oxidative stress generated by photoactivated methylene blue (MB) and KBrO3 treatments. The studied cells are derived from patients with XPD mutations but expressing different clinical phenotypes, including xeroderma pigmentosum (XP), XP and Cockayne syndrome (XP-D/CS) and trichothiodystrophy (TTD). We show by different approaches that all XPD-mutated cell lines tested were sensitive to oxidative stress, with those from TTD patients being the most sensitive. Host cell reactivation (HCR) assays showed that XP-D/CS and TTD cells have severely impaired repair capacity of oxidised lesions in plasmid DNA, and alkaline comet assays demonstrated the induction of significantly higher amounts of DNA strand breaks after treatment with photoactivated MB in these cells compared to wild-type cells. All XPD-mutated cells presented strong S/G2 arrest and persistent γ-H2AX staining after photoactivated MB treatment. Taken together, these results indicate that XPD participates in the repair of lesions induced by the redox process, and that XPD mutations lead to differences in the response to oxidatively induced damage.
Collapse
Affiliation(s)
- Leticia K Lerner
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Natália C Moreno
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Clarissa R R Rocha
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Veridiana Munford
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Valquíria Santos
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Daniela T Soltys
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Camila C M Garcia
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Alain Sarasin
- CNRS-UMR8200, Institut Gustave Roussy, Université Paris-Sud, Villejuif, France
| | - Carlos F M Menck
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
6
|
Clavijo RI, Arora H, Gibbs E, Cohen S, Griswold A, Bakircioglu E, Bademci G, Tekin M, Ramasamy R. Whole Exome Sequencing of a Consanguineous Turkish Family Identifies a Mutation in GTF2H3 in Brothers With Spermatogenic Failure. Urology 2018; 120:86-89. [DOI: 10.1016/j.urology.2018.06.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/09/2018] [Accepted: 06/18/2018] [Indexed: 12/30/2022]
|
7
|
Xu H, Bai X, Yu S, Liu Q, Pestell RG, Wu K. MAT1 correlates with molecular subtypes and predicts poor survival in breast cancer. Chin J Cancer Res 2018; 30:351-363. [PMID: 30046229 DOI: 10.21147/j.issn.1000-9604.2018.03.07] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Objective Menage a trois 1 (MAT1) is a targeting subunit of cyclin-dependent kinase-activating kinase and general transcription factor IIH kinase, which modulates cell cycle, transcription and DNA repair. Its dysregulation is responsible for diseases including cancers. To further explore the role of MAT1 in breast cancer, we investigated the pathways in which MAT1 might be involved, the association between MAT1 and molecular subtypes, and the role of MAT1 in clinical outcomes of breast cancer patients. Methods We conducted immunohistochemistry staining on tissue microarray and immunofluorescence staining on sections of MAT1 stable breast cancer cells. Also, we performed Kyoto Encyclopedia of Genes and Genomes pathway analysis, correlation analysis and prognosis analysis on public databases. Results MAT1 was involved in multiple pathways including normal physiology signaling and disease-related signaling. Furthermore, MAT1 positively correlated with the protein status of estrogen receptor and progesterone receptor, and was enriched in luminal-type and human epidermal growth factor receptor 2-enriched breast cancer in comparison with basal-like subtype at both mRNA and protein levels. Correlation analysis revealed significant association between MAT1 mRNA amount and epithelial markers, mesenchymal markers, cancer stem cell markers, apoptosis markers, transcription markers and oncogenes. Consistently, the results of immunofluorescence stain indicated that MAT1 overexpression enhanced the protein abundance of epidermal growth factor receptor, vimentin, sex determining region Y-box 2 and sine oculis homeobox homolog 1. Importantly, Kaplan-Meier Plotter analysis reflected that MAT1 could serve as a prognostic biomarker predicting worse relapse-free survival and metastasis-free survival. Conclusions MAT1 is correlated with molecular subtypes and is associated with unfavorable prognosis for breast cancer patients.
Collapse
Affiliation(s)
- Hanxiao Xu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xianguang Bai
- Medical School of Pingdingshan University, Pingdingshan 467000, China
| | - Shengnan Yu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qian Liu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Richard G Pestell
- Pennsylvania Center for Cancer and Regenerative Medicine, Wynnewood, PA 19096, USA
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
8
|
Song YZ, Duan MN, Zhang YY, Shi WY, Xia CC, Dong LH. ERCC2 polymorphisms and radiation-induced adverse effects on normal tissue: systematic review with meta-analysis and trial sequential analysis. Radiat Oncol 2015; 10:247. [PMID: 26627042 PMCID: PMC4665885 DOI: 10.1186/s13014-015-0558-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 11/25/2015] [Indexed: 12/11/2022] Open
Abstract
Background The relationship between ERCC2 polymorphisms and the risk of radiotoxicity remains inconclusive. The aim of our study is to systematically evaluate the association between ERCC2 polymorphisms and the risk of radiotoxicity. Methods Publications were identified through a search of the PubMed and Web of Science databases up to August 15, 2015. The pooled odds ratios (ORs) with corresponding 95 % confidence intervals (CIs) were calculated to evaluate the association between ERCC2 polymorphisms and radiotoxicity. Trial sequential analysis (TSA) and power calculation were performed to evaluate the type 1 and type 2 errors. Results Eleven studies involving 2584 patients were ultimately included in this meta-analysis. Conventional meta-analysis identified a significant association between ERCC2 rs13181 polymorphism and radiotoxicity (OR = 0.71, 95 % CI: 0.55-0.93, P = 0.01), but this association failed to get the confirmation of TSA. Conclusions The minor allele of rs13181 polymorphism may confer a protect effect against radiotoxicity. To confirm this correlation at the level of OR = 0.71, an overall information size of approximate 2800 patients were needed. Electronic supplementary material The online version of this article (doi:10.1186/s13014-015-0558-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu-Zhe Song
- Department of Radiation Oncology, the First Hospital of Jilin University, 71 Xinmin Avenue, Changchun, Jilin, China.
| | - Mei-Na Duan
- Department of Respiratory Medicine, the First Hospital of Jilin University, Changchun, Jilin, China.
| | - Yu-Yu Zhang
- Department of Radiation Oncology, the First Hospital of Jilin University, 71 Xinmin Avenue, Changchun, Jilin, China.
| | - Wei-Yan Shi
- Department of Radiation Oncology, the First Hospital of Jilin University, 71 Xinmin Avenue, Changchun, Jilin, China.
| | - Cheng-Cheng Xia
- Department of Radiation Oncology, the First Hospital of Jilin University, 71 Xinmin Avenue, Changchun, Jilin, China.
| | - Li-Hua Dong
- Department of Radiation Oncology, the First Hospital of Jilin University, 71 Xinmin Avenue, Changchun, Jilin, China.
| |
Collapse
|
9
|
Liu J, Fang H, Chi Z, Wu Z, Wei D, Mo D, Niu K, Balajee AS, Hei TK, Nie L, Zhao Y. XPD localizes in mitochondria and protects the mitochondrial genome from oxidative DNA damage. Nucleic Acids Res 2015; 43:5476-88. [PMID: 25969448 PMCID: PMC4477675 DOI: 10.1093/nar/gkv472] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 04/28/2015] [Indexed: 01/12/2023] Open
Abstract
Xeroderma pigmentosum group D (XPD/ERCC2) encodes an ATP-dependent helicase that plays essential roles in both transcription and nucleotide excision repair of nuclear DNA, however, whether or not XPD exerts similar functions in mitochondria remains elusive. In this study, we provide the first evidence that XPD is localized in the inner membrane of mitochondria, and cells under oxidative stress showed an enhanced recruitment of XPD into mitochondrial compartment. Furthermore, mitochondrial reactive oxygen species production and levels of oxidative stress-induced mitochondrial DNA (mtDNA) common deletion were significantly elevated, whereas capacity for oxidative damage repair of mtDNA was markedly reduced in both XPD-suppressed human osteosarcoma (U2OS) cells and XPD-deficient human fibroblasts. Immunoprecipitation-mass spectrometry analysis was used to identify interacting factor(s) with XPD and TUFM, a mitochondrial Tu translation elongation factor was detected to be physically interacted with XPD. Similar to the findings in XPD-deficient cells, mitochondrial common deletion and oxidative damage repair capacity in U2OS cells were found to be significantly altered after TUFM knock-down. Our findings clearly demonstrate that XPD plays crucial role(s) in protecting mitochondrial genome stability by facilitating an efficient repair of oxidative DNA damage in mitochondria.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongbo Fang
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenfen Chi
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zan Wu
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Wei
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China Hebei North University, Zhangjiakou 075000, China
| | - Dongliang Mo
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaifeng Niu
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Adayabalam S Balajee
- REAC/TS, Oak Ridge Associated Universities, Oak Ridge Institute of Science and Engineering, Oak Ridge, TN 37830, USA
| | - Tom K Hei
- Center for Radiological Research, Department of Radiation Oncology, Columbia University Medical Center, New York, NY 10032, USA
| | - Linghu Nie
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongliang Zhao
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
10
|
Singh A, Compe E, Le May N, Egly JM. TFIIH subunit alterations causing xeroderma pigmentosum and trichothiodystrophy specifically disturb several steps during transcription. Am J Hum Genet 2015; 96:194-207. [PMID: 25620205 DOI: 10.1016/j.ajhg.2014.12.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/10/2014] [Indexed: 01/28/2023] Open
Abstract
Mutations in genes encoding the ERCC3 (XPB), ERCC2 (XPD), and GTF2H5 (p8 or TTD-A) subunits of the transcription and DNA-repair factor TFIIH lead to three autosomal-recessive disorders: xeroderma pigmentosum (XP), XP associated with Cockayne syndrome (XP/CS), and trichothiodystrophy (TTD). Although these diseases were originally associated with defects in DNA repair, transcription deficiencies might be also implicated. By using retinoic acid receptor beta isoform 2 (RARB2) as a model in several cells bearing mutations in genes encoding TFIIH subunits, we observed that (1) the recruitment of the TFIIH complex was altered at the activated RARB2 promoter, (2) TFIIH participated in the recruitment of nucleotide excision repair (NER) factors during transcription in a manner different from that observed during NER, and (3) the different TFIIH variants disturbed transcription by having distinct consequences on post-translational modifications of histones, DNA-break induction, DNA demethylation, and gene-loop formation. The transition from heterochromatin to euchromatin was disrupted depending on the variant, illustrating the fact that TFIIH, by contributing to NER factor recruitment, orchestrates chromatin remodeling. The subtle transcriptional differences found between various TFIIH variants thus participate in the phenotypic variability observed among XP, XP/CS, and TTD individuals.
Collapse
Affiliation(s)
- Amita Singh
- Genome Expression and Repair Team, Labellisée Ligue contre le Cancer 2014, Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, INSERM, Université de Strasbourg, BP 163, 67404 Illkirch Cedex, CU Strasbourg, France
| | - Emanuel Compe
- Genome Expression and Repair Team, Labellisée Ligue contre le Cancer 2014, Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, INSERM, Université de Strasbourg, BP 163, 67404 Illkirch Cedex, CU Strasbourg, France
| | - Nicolas Le May
- Genome Expression and Repair Team, Labellisée Ligue contre le Cancer 2014, Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, INSERM, Université de Strasbourg, BP 163, 67404 Illkirch Cedex, CU Strasbourg, France.
| | - Jean-Marc Egly
- Genome Expression and Repair Team, Labellisée Ligue contre le Cancer 2014, Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, INSERM, Université de Strasbourg, BP 163, 67404 Illkirch Cedex, CU Strasbourg, France.
| |
Collapse
|
11
|
Lou S, Liu G, Shimada H, Yang X, He Q, Wu L. The lost intrinsic fragmentation of MAT1 protein during granulopoiesis promotes the growth and metastasis of leukemic myeloblasts. Stem Cells 2014; 31:1942-53. [PMID: 23765726 DOI: 10.1002/stem.1444] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/17/2013] [Accepted: 05/02/2013] [Indexed: 01/15/2023]
Abstract
MAT1, an assembly factor and targeting subunit of both cyclin-dependent kinase-activating kinase (CAK) and general transcription factor IIH (TFIIH) kinase, regulates cell cycle and transcription. Previous studies show that expression of intact MAT1 protein is associated with expansion of human hematopoietic stem cells (HSC), whereas intrinsically programmed or retinoic acid (RA)-induced MAT1 fragmentation accompanies granulocytic differentiation of HSC or leukemic myeloblasts. Here we determined that, in humanized mouse microenvironment, MAT1 overexpression resisted intrinsic MAT1 fragmentation to sustain hematopoietic CD34+ cell expansion while preventing granulopoiesis. Conversely, we mimicked MAT1 fragmentation in vitro and in a mouse model by overexpressing a fragmented 81-aa MAT1 polypeptide (pM9) that retains the domain for assembling CAK but cannot affix CAK to TFIIH-core. Our results showed that pM9 formed ΔCAK by competing with MAT1 for CAK assembly to mimic MAT1 fragmentation-depletion of CAK. This resulting ΔCAK acted as a dominant negative to inhibit the growth and metastasis of different leukemic myeloblasts, with or without RA resistance, by concurrently suppressing CAK and TFIIH kinase activities to inhibit cell cycle and gene transcription. These findings suggest that the intrinsically programmed MAT1 expression and fragmentation regulate granulopoiesis by inversely coordinating CAK and TFIIH activities, whereas pM9 shares a mechanistic resemblance with MAT1 fragmentation in suppressing myeloid leukemogenesis.
Collapse
Affiliation(s)
- Siyue Lou
- Department of Pathology, Children's Hospital Los Angeles, The Saban Research Institute, Los Angeles, California, USA
| | | | | | | | | | | |
Collapse
|
12
|
XPD Gene rs13181 Polymorphism and DNA Damage in Human Lymphocytes. Biochem Genet 2012; 50:860-70. [DOI: 10.1007/s10528-012-9526-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 03/08/2012] [Indexed: 11/25/2022]
|
13
|
Global phosphoproteome profiling reveals unanticipated networks responsive to cisplatin treatment of embryonic stem cells. Mol Cell Biol 2011; 31:4964-77. [PMID: 22006019 DOI: 10.1128/mcb.05258-11] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cellular responses to DNA-damaging agents involve the activation of various DNA damage signaling and transduction pathways. Using quantitative and high-resolution tandem mass spectrometry, we determined global changes in protein level and phosphorylation site profiles following treatment of SILAC (stable isotope labeling by amino acids in cell culture)-labeled murine embryonic stem cells with the anticancer drug cisplatin. Network and pathway analyses indicated that processes related to the DNA damage response and cytoskeleton organization were significantly affected. Although the ATM (ataxia telangiectasia mutated) and ATR (ATM and Rad3-related) consensus sequence (S/T-Q motif) was significantly overrepresented among hyperphosphorylated peptides, about half of the >2-fold-upregulated phosphorylation sites based on the consensus sequence were not direct substrates of ATM and ATR. Eleven protein kinases mainly belonging to the mitogen-activated protein kinase (MAPK) family were identified as being regulated in their kinase domain activation loop. The biological importance of three of these kinases (cyclin-dependent kinase 7 [CDK7], Plk1, and KPCD1) in the protection against cisplatin-induced cytotoxicity was demonstrated by small interfering RNA (siRNA)-mediated knockdown. Our results indicate that the cellular response to cisplatin involves a variety of kinases and phosphatases not only acting in the nucleus but also regulating cytoplasmic targets, resulting in extensive cytoskeletal rearrangements. Integration of transcriptomic and proteomic data revealed a poor correlation between changes in the relative levels of transcripts and their corresponding proteins, but a large overlap in affected pathways at the levels of mRNA, protein, and phosphoprotein. This study provides an integrated view of pathways activated by genotoxic stress and deciphers kinases that play a pivotal role in regulating cellular processes other than the DNA damage response.
Collapse
|
14
|
Diderich K, Alanazi M, Hoeijmakers JHJ. Premature aging and cancer in nucleotide excision repair-disorders. DNA Repair (Amst) 2011; 10:772-80. [PMID: 21680258 DOI: 10.1016/j.dnarep.2011.04.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
During the past decades, the major impact of DNA damage on cancer as 'disease of the genes' has become abundantly apparent. In addition to cancer, recent years have also uncovered a very strong association of DNA damage with many features of (premature) aging. The notion that DNA repair systems protect not only against cancer but also equally against to fast aging has become evident from a systematic, integral analysis of a variety of mouse mutants carrying defects in e.g. transcription-coupled repair with or without an additional impairment of global genome nucleotide excision repair and the corresponding segmental premature aging syndromes in human. A striking correlation between the degree of the DNA repair deficiency and the acceleration of specific progeroid symptoms has been discovered for those repair systems that primarily protect from the cytotoxic and cytostatic effects of DNA damage. These observations are explained from the perspective of nucleotide excision repair mouse mutant and human syndromes. However, similar principles likely apply to other DNA repair pathways including interstrand crosslink repair and double strand break repair and genome maintenance systems in general, supporting the notion that DNA damage constitutes an important intermediate in the process of aging.
Collapse
Affiliation(s)
- K Diderich
- MGC Department of Genetics, CBG Cancer Genomics Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | |
Collapse
|
15
|
Abstract
Despite detailed knowledge on the genetic network and biochemical properties of most of the nucleotide excision repair (NER) proteins, cell biological analysis has only recently made it possible to investigate the temporal and spatial organization of NER. In contrast to several other DNA damage response mechanisms that occur in specific subnuclear structures, NER is not confined to nuclear foci, which has severely hampered the analysis of its arrangement in time and space. In this review the recently developed tools to study the dynamic molecular transactions between the NER factors and the chromatin template are summarized. First, different procedures to inflict DNA damage in a part of the cell nucleus are discussed. In addition, technologies to measure protein dynamics of NER factors tagged with the green fluorescent protein (GFP) will be reviewed. Most of the dynamic parameters of GFP-tagged NER factors are deduced from different variants of 'fluorescence recovery after photobleaching' (FRAP) experiments and FRAP analysis procedures will be briefly evaluated. The combination of local damage induction, genetic tagging of repair factors with GFP and microscopy innovations have provided the basis for the determination of NER kinetics within living mammalian cells. These new cell biological approaches have disclosed a highly dynamic arrangement of NER factors that assemble in an orderly fashion on damaged DNA. The spatio-temporal analysis tools developed for the study of NER and the kinetic model derived from these studies can serve as a paradigm for the understanding of other chromatin-associated processes.
Collapse
Affiliation(s)
- Wim Vermeulen
- Department of Genetics, Erasmus University Medical Center, GE Rotterdam, The Netherlands.
| |
Collapse
|
16
|
Ito S, Tan LJ, Andoh D, Narita T, Seki M, Hirano Y, Narita K, Kuraoka I, Hiraoka Y, Tanaka K. MMXD, a TFIIH-independent XPD-MMS19 protein complex involved in chromosome segregation. Mol Cell 2010; 39:632-40. [PMID: 20797633 DOI: 10.1016/j.molcel.2010.07.029] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 02/18/2010] [Accepted: 07/16/2010] [Indexed: 12/11/2022]
Abstract
Xeroderma pigmentosum group D (XPD) protein is one of the subunits of TFIIH that is required for nucleotide excision repair and transcription. We found a XPD protein complex containing MMS19 that was assumed to be a regulator of TFIIH. However, the MMS19-XPD complex did not contain any other subunits of TFIIH. Instead, it included FAM96B (now designated MIP18), Ciao1, and ANT2. MMS19, MIP18, and XPD localized to the mitotic spindle during mitosis. The siRNA-mediated knockdown of MMS19, MIP18, or XPD led to improper chromosome segregation and the accumulation of nuclei with abnormal shapes. In addition, the frequency of abnormal mitosis and nuclei was increased in XP-D and XP-D/CS patients' cells. These results indicate that the MMS19-XPD protein complex, now designated MMXD (MMS19-MIP18-XPD), is required for proper chromosome segregation, an abnormality of which could contribute to the pathogenesis in some cases of XP-D and XP-D/CS.
Collapse
Affiliation(s)
- Shinsuke Ito
- Human Cell Biology Group, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Dissociation of CAK from core TFIIH reveals a functional link between XP-G/CS and the TFIIH disassembly state. PLoS One 2010; 5:e11007. [PMID: 20543986 PMCID: PMC2882387 DOI: 10.1371/journal.pone.0011007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Accepted: 05/14/2010] [Indexed: 11/25/2022] Open
Abstract
Transcription factor II H (TFIIH) is comprised of core TFIIH and Cdk-activating kinase (CAK) complexes. Here, we investigated the molecular and cellular manifestation of the TFIIH compositional changes by XPG truncation mutations. We showed that both core TFIIH and CAK are rapidly recruited to damage sites in repair-proficient cells. Chromatin immunoprecipitation against TFIIH and CAK components revealed a physical engagement of CAK in nucleotide excision repair (NER). While XPD recruitment to DNA damage was normal, CAK was not recruited in severe XP-G and XP-G/CS cells, indicating that the associations of CAK and XPD to core TFIIH are differentially affected. A CAK inhibition approach showed that CAK activity is not required for assembling pre-incision machinery in vivo or for removing genomic photolesions. Instead, CAK is involved in Ser5-phosphorylation and UV-induced degradation of RNA polymerase II. The CAK inhibition impaired transcription from undamaged and UV-damaged reporter, and partially decreased transcription of p53-dependent genes. The overall results demonstrated that a) XP-G/CS mutations affect the disassembly state of TFIIH resulting in the dissociation of CAK, but not XPD from core TFIIH, and b) CAK activity is not essential for global genomic repair but involved in general transcription and damage-induced RNA polymerase II degradation.
Collapse
|
18
|
Attene-Ramos MS, Nava GM, Muellner MG, Wagner ED, Plewa MJ, Gaskins HR. DNA damage and toxicogenomic analyses of hydrogen sulfide in human intestinal epithelial FHs 74 Int cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:304-14. [PMID: 20120018 DOI: 10.1002/em.20546] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Hydrogen sulfide (H(2)S), a metabolic end product of sulfate-reducing bacteria, represents a genotoxic insult to the colonic epithelium, which may also be linked with chronic disorders such as ulcerative colitis and colorectal cancer. This study defined the early (30 min) and late (4 hr) response of nontransformed human intestinal epithelial cells (FHs 74 Int) to H(2)S. The genotoxicity of H(2)S was measured using the single-cell gel electrophoresis (comet) assay. Changes in gene expression were analyzed after exposure to a genotoxic, but not cytotoxic, concentration of H(2)S (500 muM H(2)S) using pathway-specific quantitative RT-PCR gene arrays. H(2)S was genotoxic in a concentration range from 250 to 2,000 microM, which is similar to concentrations found in the large intestine. Significant changes in gene expression were predominantly observed at 4 hr, with the greatest responses by PTGS2 (COX-2; 7.92-fold upregulated) and WNT2 (7.08-fold downregulated). COX-2 was the only gene upregulated at both 30 min and 4 hr. Overall, the study demonstrates that H(2)S modulates the expression of genes involved in cell-cycle progression and triggers both inflammatory and DNA repair responses. This study confirms the genotoxic properties of H(2)S in nontransformed human intestinal epithelial cells and identifies functional pathways by which this bacterial metabolite may perturb cellular homeostasis and contribute to the onset of chronic intestinal disorders.
Collapse
Affiliation(s)
- Matias S Attene-Ramos
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | |
Collapse
|
19
|
Faherty CS, Merrell DS, Semino-Mora C, Dubois A, Ramaswamy AV, Maurelli AT. Microarray analysis of Shigella flexneri-infected epithelial cells identifies host factors important for apoptosis inhibition. BMC Genomics 2010; 11:272. [PMID: 20429941 PMCID: PMC2996966 DOI: 10.1186/1471-2164-11-272] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 04/29/2010] [Indexed: 01/05/2023] Open
Abstract
Background Shigella flexneri inhibits apoptosis in infected epithelial cells. In order to understand the pro-survival effects induced by the bacteria, we utilized apoptosis-specific microarrays to analyze the changes in eukaryotic gene expression in both infected and uninfected cells in the presence and absence of staurosporine, a chemical inducer of the intrinsic pathway of apoptosis. The goal of this research was to identify host factors that contribute to apoptosis inhibition in infected cells. Results The microarray analysis revealed distinct expression profiles in uninfected and infected cells, and these changes were altered in the presence of staurosporine. These profiles allowed us to make comparisons between the treatment groups. Compared to uninfected cells, Shigella-infected epithelial cells, both in the presence and absence of staurosporine, showed significant induced expression of JUN, several members of the inhibitor of apoptosis gene family, nuclear factor κB and related genes, genes involving tumor protein 53 and the retinoblastoma protein, and surprisingly, genes important for the inhibition of the extrinsic pathway of apoptosis. We confirmed the microarray results for a selection of genes using in situ hybridization analysis. Conclusion Infection of epithelial cells with S. flexneri induces a pro-survival state in the cell that results in apoptosis inhibition in the presence and absence of staurosporine. The bacteria may target these host factors directly while some induced genes may represent downstream effects due to the presence of the bacteria. Our results indicate that the bacteria block apoptosis at multiple checkpoints along both pathways so that even if a cell fails to prevent apoptosis at an early step, Shigella will block apoptosis at the level of caspase-3. Apoptosis inhibition is most likely vital to the survival of the bacteria in vivo. Future characterization of these host factors is required to fully understand how S. flexneri inhibits apoptosis in epithelial cells.
Collapse
Affiliation(s)
- Christina S Faherty
- Department of Microbiology and Immunology, F, Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | | | | | | | | | | |
Collapse
|
20
|
Polosak J, Roszkowska-Gancarz M, Kurylowicz A, Owczarz M, Dobosz P, Mossakowska M, Szybinska A, Puzianowska-Kuznicka M. Decreased expression and the Lys751Gln polymorphism of the XPD gene are associated with extreme longevity. Biogerontology 2009; 11:287-97. [PMID: 19707883 DOI: 10.1007/s10522-009-9246-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 08/13/2009] [Indexed: 01/07/2023]
Abstract
Aging is associated with progressing genomic instability. The XPD gene encodes a DNA helicase involved in nucleotide excision repair and in transcription. We analyzed the common XPD polymorphisms that were previously shown to affect protein's DNA repair efficiency and to increase the risk of developing various cancers. Analysis was performed in 149 centenarians (mean age 101.1 years old) and in 413 young subjects (mean age 27.1 years old). We showed that the distribution of the Lys751Gln genotypes differed significantly between these groups (P = 0.017). In centenarians, the homozygous genotypes AA and CC were found less frequently than in young controls (29 vs. 36%, OR = 0.71, and 14 vs. 20%, OR = 0.652, respectively). The Arg156Arg and Asp312Asn were not significantly associated with extreme longevity. Analysis of the XPD mRNA level in blood mononuclear cells of people divided into three age groups (mean ages 28.7, 65.8 and 92.7 years old) showed that extreme longevity is associated with the decrease of the mean level of the specific mRNA; the differences between young or middle-aged vs. extremely old group were significant (P < 0.0001, P < 0.0001, respectively). In addition, the methylation pattern of the XPD promoter was analyzed in 30 people divided into three age groups (29.5, 65.9, and 101.4 years old). We showed that overall methylation of the XPD promoter is a rare event; however, aging is associated with the increase of methylation level upstream of the transcription start site. In summary, we showed for the first time that both the XPD polymorphic variants and the decreased level of its expression might be associated with aging.
Collapse
Affiliation(s)
- Jacek Polosak
- Department of Biochemistry and Molecular Biology, Medical Center of Postgraduate Education, Warsaw, Poland
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Gentile A, Ditt RF, Dias FO, Da Silva MJ, Dornelas MC, Menossi M. Characterization of ScMat1, a putative TFIIH subunit from sugarcane. PLANT CELL REPORTS 2009; 28:663-672. [PMID: 19148648 DOI: 10.1007/s00299-008-0663-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2008] [Revised: 11/27/2008] [Accepted: 12/09/2008] [Indexed: 05/27/2023]
Abstract
The general transcription factor TFIIH is a multiprotein complex with different enzymatic activities such as helicase, protein kinase and DNA repair. MAT1 (ménage à trois 1) is one of the TFIIH subunits that has kinase activity and it is the third subunit of the cyclin-dependent kinase (CDK)-activating kinase (CAK), CDK7- cyclin H. The main objective of this work was to characterize ScMAT1, a sugarcane gene encoding a MAT1 homolog. Northern blots and in situ hybridization results showed that ScMAT1 was expressed in sugarcane mature leaf, leaf roll and inflorescence, and it was not differentially expressed in any of the other tissues analyzed such us bud and roots. In addition, ScMAT1 was not differentially expressed during different stress conditions and treatment with hormones. In situ hybridization analyses also showed that ScMAT1 was expressed in different cell types during leaf development. In order to identify proteins that interact with ScMAT1, a yeast two hybrid assay with ScMAT1 as bait was used to screen a sugarcane leaf cDNA library. The screening of yeast two hybrids yielded 14 positive clones. One of them is a cytochrome p450 family protein involved in oxidative degradation of toxic compounds. Other clones isolated are also related to plant responses to stress. To determine the subcellular localization of ScMAT1, a ScMAT1-GFP fusion was assayed in onion epidermal cell and the fluorescence was localized to the nucleus, in agreement with the putative role of ScMAT1 as a basal transcription factor.
Collapse
Affiliation(s)
- Agustina Gentile
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
22
|
Esnault C, Ghavi-Helm Y, Brun S, Soutourina J, Van Berkum N, Boschiero C, Holstege F, Werner M. Mediator-dependent recruitment of TFIIH modules in preinitiation complex. Mol Cell 2008; 31:337-46. [PMID: 18691966 DOI: 10.1016/j.molcel.2008.06.021] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 02/10/2008] [Accepted: 06/01/2008] [Indexed: 11/18/2022]
Abstract
In vitro, without Mediator, the association of general transcription factors (GTF) and RNA polymerase II (Pol II) in preinitiation complexes (PIC) occurs in an orderly fashion. In this work, we explore the in vivo function of Mediator in GTF recruitment to PIC. A direct interaction between Med11 Mediator head subunit and Rad3 TFIIH subunit was identified. We explored the significance of this interaction and those of Med11 with head module subunits Med17 and Med22 and found that impairing these interactions could differentially affect the recruitment of TFIIH, TFIIE, and Pol II in the PIC. A med11 mutation that altered promoter occupancy by the TFIIK kinase module of TFIIH genome-wide also reduced Pol II CTD serine 5 phosphorylation. We conclude that the Mediator head module plays a critical role in TFIIH and TFIIE recruitment to the PIC. We identify steps in PIC formation that suggest a branched assembly pathway.
Collapse
|
23
|
Wolski SC, Kuper J, Hänzelmann P, Truglio JJ, Croteau DL, Van Houten B, Kisker C. Crystal structure of the FeS cluster-containing nucleotide excision repair helicase XPD. PLoS Biol 2008; 6:e149. [PMID: 18578568 PMCID: PMC2435149 DOI: 10.1371/journal.pbio.0060149] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 05/07/2008] [Indexed: 11/17/2022] Open
Abstract
DNA damage recognition by the nucleotide excision repair pathway requires an initial step identifying helical distortions in the DNA and a proofreading step verifying the presence of a lesion. This proofreading step is accomplished in eukaryotes by the TFIIH complex. The critical damage recognition component of TFIIH is the XPD protein, a DNA helicase that unwinds DNA and identifies the damage. Here, we describe the crystal structure of an archaeal XPD protein with high sequence identity to the human XPD protein that reveals how the structural helicase framework is combined with additional elements for strand separation and DNA scanning. Two RecA-like helicase domains are complemented by a 4Fe4S cluster domain, which has been implicated in damage recognition, and an α-helical domain. The first helicase domain together with the helical and 4Fe4S-cluster–containing domains form a central hole with a diameter sufficient in size to allow passage of a single stranded DNA. Based on our results, we suggest a model of how DNA is bound to the XPD protein, and can rationalize several of the mutations in the human XPD gene that lead to one of three severe diseases, xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. Preserving the structural integrity of DNA, and hence the genetic information stored in this molecule, is essential for cellular survival. It is estimated that the DNA in each human cell acquires about 104 lesions per day. Consequently, efficient DNA repair mechanisms have evolved to protect the genome. One of these DNA repair mechanisms, nucleotide excision repair (NER), is present in all organisms and is unique in its ability to repair a broad range of damage. In humans, NER is the major repair mechanism protecting DNA from damage induced by ultraviolet light. Defects in the genes and proteins responsible for NER can lead to one of three severe diseases: xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. The XPD protein is one of the key components of a ten-protein complex and is essential to initiate NER. In particular, the XPD protein verifies the presence of damage to the DNA and thereby allows DNA repair to proceed. We have solved the 3-dimensional structure of the XPD protein, and show how XPD has assembled several domains to form a donut-shaped molecule, which is able to separate two DNA strands and scan the DNA for damage. The structure also helps to explain why some of the mutations that have been identified in humans are associated with disease. The structure of the DNA repair protein XPD provides insights into how the protein binds and recognizes damaged DNA and how mutations inXPD disrupt its function and lead to disease.
Collapse
Affiliation(s)
- Stefanie C Wolski
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Offman J, Jina N, Theron T, Pallas J, Hubank M, Lehmann A. Transcriptional changes in trichothiodystrophy cells. DNA Repair (Amst) 2008; 7:1364-71. [DOI: 10.1016/j.dnarep.2008.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 05/05/2008] [Indexed: 01/04/2023]
|
25
|
Luo P, Wang A, Payne KJ, Peng H, Wang JG, Parrish YK, Rogerio JW, Triche TJ, He Q, Wu L. Intrinsic Retinoic Acid Receptor α-Cyclin-Dependent Kinase-Activating Kinase Signaling Involves Coordination of the Restricted Proliferation and Granulocytic Differentiation of Human Hematopoietic Stem Cells. Stem Cells 2007; 25:2628-37. [PMID: 17628022 DOI: 10.1634/stemcells.2007-0264] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Little is known about the mechanisms by which retinoic acid receptor alpha (RAR alpha) mediates the effects of retinoic acid (RA) to coordinate granulocytic proliferation/differentiation (P/D) transition. Cyclin-dependent kinase-activating kinase (CAK) complex, whose activity in phosphorylation of RAR alpha is determined by its targeting subunit ménage à trois 1 (MAT1), regulates G(1) exit, a cell cycle stage when cells commonly commit to proliferation or to differentiation. We previously found that in myeloid leukemia cells, the lack of RA-induced RAR alpha-CAK dissociation and MAT1 degradation suppresses cell differentiation by inhibiting CAK-dependent G(1) exit and sustaining CAK hyperphosphorylation of RAR alpha. This contrasts with our recent findings about the P/D transition in normal primitive hematopoietic cells, where MAT1 degradation proceeds intrinsically together with granulocytic development, in accord with dynamic expression of aldehyde dehydrogenases (ALDHs) 1A1 and 1B1, which catalyze RA synthesis. Blocking ALDH activity inhibits MAT1 degradation and granulocytic differentiation, whereas loss of RAR alpha phosphorylation by CAK induces RA-target gene expression and granulocytic differentiation. These studies suggest that the subversion of RAR alpha-CAK signaling during normal granulopoiesis is crucial to myeloid leukemogenesis and challenges the current paradigm that RA induces cell differentiation solely by transactivating target genes. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Peihua Luo
- Department of Pathology, Childrens Hospital Los Angeles Saban Research Institute, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
DNA helicases are molecular motors that catalyse the unwinding of energetically unstable structures into single strands and have therefore an essential role in nearly all metabolism transactions. Defects in helicase function can result in human syndromes in which predisposition to cancer and genomic instability are common features. So far different helicase genes have been found associated in 8 such disorders. RecQ helicases are a family of conserved enzymes required for maintaining the genome integrity that function as suppressors of inappropriate recombination. Mutations in RecQ4, BLM and WRN give rise to various disorders: Bloom syndrome, Rothmund-Thomson syndrome, and Werner syndrome characterized by genomic instability and increased cancer susceptibility. The DNA helicase BRIP1/BACH1 is involved in double-strand break repair and is defective in Fanconi anemia complementation group J. Mutations in XPD and XPB genes can result in xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy, three genetic disorders with different clinical features but with association of transcription and NER defects. This review summarizes our current knowledge on the diverse biological functions of these helicases and the molecular basis of the associated diseases.
Collapse
Affiliation(s)
- Muriel Uhring
- Institut de génétique et de biologie moléculaire et cellulaire, UMR 7104 CNRS/Inserm/ULP, 1, rue Laurent-Fries, BP 10142, 67404 Illkirch Cedex, France
| | | |
Collapse
|
27
|
Ito S, Kuraoka I, Chymkowitch P, Compe E, Takedachi A, Ishigami C, Coin F, Egly JM, Tanaka K. XPG stabilizes TFIIH, allowing transactivation of nuclear receptors: implications for Cockayne syndrome in XP-G/CS patients. Mol Cell 2007; 26:231-43. [PMID: 17466625 DOI: 10.1016/j.molcel.2007.03.013] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 12/25/2006] [Accepted: 03/05/2007] [Indexed: 11/26/2022]
Abstract
Mutations in the human XPG gene give rise to an inherited photosensitive disorder, xeroderma pigmentosum (XP) associated with Cockayne syndrome (XP-G/CS). The clinical features of CS in XP-G/CS patients are difficult to explain on the basis of a defect in nucleotide excision repair (NER). We found that XPG forms a stable complex with TFIIH, which is active in transcription and NER. Mutations in XPG found in XP-G/CS patient cells that prevent the association with TFIIH also resulted in the dissociation of CAK and XPD from the core TFIIH. As a consequence, the phosphorylation and transactivation of nuclear receptors were disturbed in XP-G/CS as well as xpg(-/-) MEF cells and could be restored by expression of wild-type XPG. These results provide an insight into the role of XPG in the stabilization of TFIIH and the regulation of gene expression and provide an explanation of some of the clinical features of XP-G/CS.
Collapse
Affiliation(s)
- Shinsuke Ito
- Laboratories for Organismal Biosystems, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Larochelle S, Merrick KA, Terret ME, Wohlbold L, Barboza NM, Zhang C, Shokat KM, Jallepalli PV, Fisher RP. Requirements for Cdk7 in the assembly of Cdk1/cyclin B and activation of Cdk2 revealed by chemical genetics in human cells. Mol Cell 2007; 25:839-50. [PMID: 17386261 PMCID: PMC1858677 DOI: 10.1016/j.molcel.2007.02.003] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 01/16/2007] [Accepted: 02/06/2007] [Indexed: 11/18/2022]
Abstract
Cell division is controlled by cyclin-dependent kinases (CDKs). In metazoans, S phase onset coincides with activation of Cdk2, whereas Cdk1 triggers mitosis. Both Cdk1 and -2 require cyclin binding and T loop phosphorylation for full activity. The only known CDK-activating kinase (CAK) in metazoans is Cdk7, which is also part of the transcription machinery. To test the requirements for Cdk7 in vivo, we replaced wild-type Cdk7 with a version sensitive to bulky ATP analogs in human cancer cells. Selective inhibition of Cdk7 in G1 prevents activation (but not formation) of Cdk2/cyclin complexes and delays S phase. Inhibiting Cdk7 in G2 blocks entry to mitosis and disrupts Cdk1/cyclin B complex assembly, indicating that the two steps of Cdk1 activation-cyclin binding and T loop phosphorylation-are mutually dependent. Therefore, by combining chemical genetics and homologous gene replacement in somatic cells, we reveal different modes of CDK activation by Cdk7 at two distinct execution points in the cell cycle.
Collapse
Affiliation(s)
- Stéphane Larochelle
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021
| | - Karl A. Merrick
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021
- Programs in Biochemistry, Cell and Molecular Biology, Cornell University Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10021
| | - Marie-Emilie Terret
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021
| | - Lara Wohlbold
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021
| | - Nora M. Barboza
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021
| | - Chao Zhang
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143
| | - Kevan M. Shokat
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143
| | - Prasad V. Jallepalli
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021
| | - Robert P. Fisher
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021
- Correspondence:
| |
Collapse
|
29
|
Kang BG, Shin JH, Yi JK, Kang HC, Lee JJ, Heo HS, Chae JH, Shin I, Kim CG. Corepressor MMTR/DMAP1 is involved in both histone deacetylase 1- and TFIIH-mediated transcriptional repression. Mol Cell Biol 2007; 27:3578-88. [PMID: 17371848 PMCID: PMC1899998 DOI: 10.1128/mcb.01808-06] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A transcription corepressor, MAT1-mediated transcriptional repressor (MMTR), was found in mouse embryonic stem cell lines. MMTR orthologs (DMAP1) are found in a wide variety of life forms from yeasts to humans. MMTR down-regulation in differentiating mouse embryonic stem cells in vitro resulted in activation of many unrelated genes, suggesting its role as a general transcriptional repressor. In luciferase reporter assays, the transcriptional repression activity resided at amino acids 221 to 468. Histone deacetylase 1 (HDAC1) interacts with MMTR both in vitro and in vivo and also interacts with MMTR in the nucleus. Interestingly, MMTR activity was only partially rescued by competition with dominant-negative HDAC1(H141A) or by treatment with an HDAC inhibitor, trichostatin A (TSA). To identify the protein responsible for HDAC1-independent MMTR activity, we performed a yeast two-hybrid screen with the full-length MMTR coding sequence as bait and found MAT1. MAT1 is an assembly/targeting factor for cyclin-dependent kinase-activating kinase which constitutes a subcomplex of TFIIH. The coiled-coil domain in the middle of MAT1 was confirmed to interact with the C-terminal half of MMTR, and the MMTR-mediated transcriptional repression activity was completely restored by MAT1 in the presence of TSA. Moreover, intact MMTR was required to inhibit phosphorylation of the C-terminal domain in the RNA polymerase II largest subunit by TFIIH kinase in vitro. Taken together, these data strongly suggest that MMTR is part of the basic cellular machinery for a wide range of transcriptional regulation via interaction with TFIIH and HDAC.
Collapse
Affiliation(s)
- Bong Gu Kang
- Department of Life Science, College of Natural Sciences, Hanyang University, Haengdang 17, Sungdong-gu, Seoul 133-791, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wang JG, Barsky LW, Davicioni E, Weinberg KI, Triche TJ, Zhang XK, Wu L. Retinoic acid induces leukemia cell G1arrest and transition into differentiation by inhibiting cyclin‐dependent kinase‐activating kinase binding and phosphorylation of PML/RAR. FASEB J 2006; 20:2142-4. [PMID: 16935935 DOI: 10.1096/fj.06-5900fje] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Acute promyelocytic leukemia (APL) cells express promyelocytic leukemia/retinoic acid receptor alpha (PML/RARalpha) fusion protein, which leads to the blocking of APL cell differentiation. Treatment of APL with all-trans-retinoic acid (ATRA) induces disease remission by in vivo differentiation of APL cells. Differentiation requires cell cycle exit; yet how ATRA couples cell cycle exit to differentiation of APL remains largely unknown. We previously found that ATRA-induced cell differentiation accompanies ubiquitination-proteolysis of ménage à trois 1 (MAT1), an assembly factor and targeting subunit of cyclin-dependent kinase (CDK)-activating kinase (CAK) that regulates G1 exit. We report here that CAK binds to and phosphorylates PML/RARalpha in actively proliferating APL cells. In response to ATRA, PML/RARalpha is dissociated from CAK, leading to MAT1 degradation, G1 arrest, and decreased CAK phosphorylation of PML/RARalpha. CAK phosphorylation of PML/RARalpha is inhibited when MAT1 levels are reduced. Both MAT1 degradation and PML/RARalpha hypophosphorylation occur in ATRA-induced G1-arresting cells undergoing differentiation but not in the synchronized G1 cells that do not differentiate. These findings reveal a novel ATRA signaling on APL cell differentiation, in which ATRA coordinates G1 arrest and transition into differentiation by inducing MAT1 degradation and PML/RARalpha hypophosphorylation through disrupting PML/RARalpha binding and phosphorylation by CAK.
Collapse
Affiliation(s)
- Jian-guang Wang
- Department of Pathology, Childrens Hospital Los Angeles Saban Research Institute, Los Angeles, California 90027, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Fisher RP. Secrets of a double agent: CDK7 in cell-cycle control and transcription. J Cell Sci 2006; 118:5171-80. [PMID: 16280550 DOI: 10.1242/jcs.02718] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In metazoans, cyclin-dependent kinase 7 (CDK7) has essential roles in both the cell-division cycle and transcription, as a CDK-activating kinase (CAK) and as a component of the general transcription factor TFIIH, respectively. Controversy over its double duty has been resolved, but questions remain. First, how does CDK7 achieve the dual substrate specificity necessary to perform both roles? Second, is there a deeper connection implied by the dichotomy of CDK7 function, for example similar mechanisms controlling cell division and gene expression, and/or actual coordination of the two processes? Enzymological studies have revealed solutions to the unusual substrate recognition problem, and there is evidence that the distinct functions of CDK7 can be regulated independently. Finally, despite divergence in their wiring, the CAK-CDK networks of budding yeast, fission yeast and metazoans all link transcriptional regulation with operation of the cell-cycle machinery. This connection might help to ensure that mRNAs encoding effectors of cell division are expressed at the right time in the cycle.
Collapse
Affiliation(s)
- Robert P Fisher
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA.
| |
Collapse
|
32
|
Castaño E, Flores RD, Zapata LCR. An easy approach for the purification of native TFIIH. ACTA ACUST UNITED AC 2005; 62:207-13. [PMID: 15733580 DOI: 10.1016/j.jbbm.2004.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 11/03/2004] [Accepted: 11/25/2004] [Indexed: 11/16/2022]
Abstract
Transcriptional regulation depends on the appropriate set of positive and negative regulating signals in order to provide the correct gene expression. In vitro studies in eukaryotic gene expression over the last few years have provided a wealth of information about new factors involved in the regulation of genes. However, the dissection of this mechanism requires the addition of well-characterized general transcription factors; with the exception of TFIID and TFIIH, all others can easily be expressed in a recombinant form. Here we provide a simple methodology to obtain partially purified transcriptionally active TFIIH free from other general transcription factors and active in transcription.
Collapse
Affiliation(s)
- Enrique Castaño
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, CP 97200, Mérida, Yucatán, México.
| | | | | |
Collapse
|
33
|
Neumann AS, Sturgis EM, Wei Q. Nucleotide excision repair as a marker for susceptibility to tobacco-related cancers: a review of molecular epidemiological studies. Mol Carcinog 2005; 42:65-92. [PMID: 15682379 DOI: 10.1002/mc.20069] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
DNA repair is a complicated biological process consisting of several distinct pathways that play a central role in maintaining genomic stability. Research on DNA repair and cancer risk is a vital, emerging field that recently has seen rapid advances facilitated by the completion of the Human Genome Project. In this review, we described phenotypic and genotypic markers of nucleotide excision repair (NER) that have been used in molecular epidemiology studies. We summarized the population-based studies to date that have examined the association between DNA repair capacity phenotype and genetic polymorphisms of the NER genes and risk of tobacco-related cancers, including cancers of the lung, head and neck, prostate, bladder, breast, and esophagus. We also included studies of melanoma and nonmelanoma skin cancers because individuals with defective NER, such as patients with xeroderma pigmentosum (XP) are highly susceptible to ultraviolet light (UV)-induced melanoma and nonmelanoma skin cancers. The published data provide emerging evidence that DNA repair capacity may contribute to genetic susceptibility to cancers in the general population. However, many of the studies are limited in terms of the size of the study populations. Furthermore, all published findings are still considered preliminary, the assays used in the studies have yet to be validated, and the results need to be confirmed. Large and well-designed population-based studies are warranted to assess gene-gene and gene-environment interactions and to ultimately determine, which biomarkers of DNA repair capacity are useful for screening high-risk populations for primary prevention and early detection of tobacco-related cancers.
Collapse
Affiliation(s)
- Ana S Neumann
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | | | | |
Collapse
|
34
|
Reardon JT, Sancar A. Nucleotide Excision Repair. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 79:183-235. [PMID: 16096029 DOI: 10.1016/s0079-6603(04)79004-2] [Citation(s) in RCA: 224] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Joyce T Reardon
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
35
|
Shimotohno A, Umeda-Hara C, Bisova K, Uchimiya H, Umeda M. The plant-specific kinase CDKF;1 is involved in activating phosphorylation of cyclin-dependent kinase-activating kinases in Arabidopsis. THE PLANT CELL 2004; 16:2954-66. [PMID: 15486101 PMCID: PMC527191 DOI: 10.1105/tpc.104.025601] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cyclin-dependent kinases (CDKs) play essential roles in coordinate control of cell cycle progression. Activation of CDKs requires interaction with specific cyclin partners and phosphorylation of their T-loops by CDK-activating kinases (CAKs). The Arabidopsis thaliana genome encodes four potential CAKs. CAK2At (CDKD;3) and CAK4At (CDKD;2) are closely related to the vertebrate CAK, CDK7/p40MO15; they interact with cyclin H and phosphorylate CDKs, as well as the C-terminal domain (CTD) of the largest subunit of RNA polymerase II. CAK1At (CDKF;1) shows cyclin H-independent CDK-kinase activity and can activate a heterologous CAK, Mcs6, in fission yeast. In Arabidopsis, CAK1At is a subunit of a protein complex of 130 kD, which phosphorylates the T-loop of CAK2At and CAK4At and activates the CTD-kinase activity of CAK4At in vitro and in root protoplasts. These results suggest that CAK1At is a novel CAK-activating kinase that modulates the activity of CAK2At and CAK4At, thereby controlling CDK activities and basal transcription in Arabidopsis.
Collapse
Affiliation(s)
- Akie Shimotohno
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | |
Collapse
|
36
|
Le May N, Dubaele S, Proietti De Santis L, Billecocq A, Bouloy M, Egly JM. TFIIH Transcription Factor, a Target for the Rift Valley Hemorrhagic Fever Virus. Cell 2004; 116:541-50. [PMID: 14980221 DOI: 10.1016/s0092-8674(04)00132-1] [Citation(s) in RCA: 235] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2003] [Revised: 01/06/2004] [Accepted: 01/09/2004] [Indexed: 11/30/2022]
Abstract
The Rift Valley fever virus (RVFV) is the causative agent of fatal hemorrhagic fever in humans and acute hepatitis in ruminants. We found that infection by RVFV leads to a rapid and drastic suppression of host cellular RNA synthesis that parallels a decrease of the TFIIH transcription factor cellular concentration. Using yeast two hybrid system, recombinant technology, and confocal microscopy, we further demonstrated that the nonstructural viral NSs protein interacts with the p44 component of TFIIH to form nuclear filamentous structures that also contain XPB subunit of TFIIH. By competing with XPD, the natural partner of p44 within TFIIH, and sequestering p44 and XPB subunits, NSs prevents the assembly of TFIIH subunits, thus destabilizing the normal host cell life. These observations shed light on the mechanism utilized by RVFV to evade the host response.
Collapse
Affiliation(s)
- Nicolas Le May
- Unité de Génétique Moléculaire des Bunyaviridés, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, Cedex 15, France
| | | | | | | | | | | |
Collapse
|
37
|
Bernstein H, Payne CM, Kunke K, Crowley-Weber CL, Waltmire CN, Dvorakova K, Holubec H, Bernstein C, Vaillancourt RR, Raynes DA, Guerriero V, Garewal H. A proteomic study of resistance to deoxycholate-induced apoptosis. Carcinogenesis 2004; 25:681-92. [PMID: 14729586 DOI: 10.1093/carcin/bgh072] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The development of apoptosis resistance appears to be an important factor in colon carcinogenesis. To gain an understanding of the molecular pathways altered during the development of apoptosis resistance, we selected three cell lines for resistance to induction of apoptosis by deoxycholate, an important etiologic agent in colon cancer. We then evaluated gene expression levels for 825 proteins in these resistant lines, compared with a parallel control line not subject to selection. Eighty-two proteins were identified as either over-expressed or under-expressed in at least two of the resistant lines, compared with the control. Thirty-five of the 82 proteins (43%) proved to have a known role in apoptosis. Of these 35 proteins, 21 were over-expressed and 14 were under-expressed. Of those that were over-expressed 18 of 21 (86%) are anti-apoptotic in some circumstances, of those that were under-expressed 11 of 14 (79%) are pro-apoptotic in some circumstances. This finding suggests that apoptosis resistance during selection among cultured cells, and possibly in the colon during progression to cancer, may arise by constitutive over-expression of multiple anti-apoptotic proteins and under-expression of multiple pro-apoptotic proteins. The major functional groups in which altered expression levels were found are post-translational modification (19 proteins), cell structure (cytoskeleton, microtubule, actin, etc.) (17 proteins), regulatory processes (11 proteins) and DNA repair and cell cycle checkpoint mechanisms (10 proteins). Our findings, overall, bear on mechanisms by which apoptosis resistance arises during progression to colon cancer and suggest potential targets for cancer treatment. In addition, assays of normal-appearing mucosa of colon cancer patients, for over- or under-expression of genes found to be altered in our resistant cell lines, may allow identification of early biomarkers of colon cancer risk.
Collapse
Affiliation(s)
- Harris Bernstein
- Department of Microbiology and Immunology, Arizona Cancer Center, Tucson, AZ 85724, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ohkawa K, Ishida H, Nakanishi F, Hosui A, Ueda K, Takehara T, Hori M, Hayashi N. Hepatitis C virus core functions as a suppressor of cyclin-dependent kinase-activating kinase and impairs cell cycle progression. J Biol Chem 2004; 279:11719-26. [PMID: 14711830 DOI: 10.1074/jbc.m308560200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We investigated how the hepatitis C virus (HCV) core protein affects the cell cycle profile and cell cycle-related molecules by using the HCV core-expressing stable transfectant. Analysis of the cell cycle profile showed that HCV core impaired G(1) to S transition. The E2F-mediated transcription, phosphorylation of the retinoblastoma protein, and cyclin-dependent kinase (CDK) 4 and CDK2 activities were suppressed in HCV core-expressing cells. The expression levels of G(1) phase-related CDKs/cyclins and various CDK inhibitors were not substantially affected by expression of HCV core. When influences of HCV core on CDK-activating kinase (CAK) were examined, the expression levels of the CAK components, CDK7, cyclin H, and MAT1, were not affected. However, formation of the ternary CAK complex, CAK activity, and the CDK2 level with activating phosphorylation were inhibited by expression of the HCV core. The direct effect of HCV core on CAK was further assessed in the cell-free system by adding the in vitro translated HCV core protein to the anti-CDK7 immunoprecipitate from the cell. The results showed that HCV core led to dissociation of MAT1 from the CAK complex and suppressed the CAK activity. Furthermore, the binding assay revealed that the HCV core was directed against CDK7. Their interaction occurred mainly in the nucleus by the immunostaining. In conclusion, the HCV core protein interacts with CAK and functions as an extrinsic suppressor of CAK. This may be the molecular basis of HCV core-mediated suppression of cell cycle progression. Our findings suggest a novel mechanism concerning HCV core-mediated alteration in the cell cycle machinery.
Collapse
Affiliation(s)
- Kazuyoshi Ohkawa
- Department of Molecular Therapeutics, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Talukder AH, Mishra SK, Mandal M, Balasenthil S, Mehta S, Sahin AA, Barnes CJ, Kumar R. MTA1 interacts with MAT1, a cyclin-dependent kinase-activating kinase complex ring finger factor, and regulates estrogen receptor transactivation functions. J Biol Chem 2003; 278:11676-85. [PMID: 12527756 DOI: 10.1074/jbc.m209570200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcriptional activity of estrogen receptor-alpha is controlled by coregulators. MTA1 (metastasis-associated protein 1) represses estrogen receptor-alpha-driven transcription by recruiting histone deacetylases (HDACs) to the estrogen response element containing target gene chromatin in breast cancer cells. Using a yeast two-hybrid screen with the MTA1 C-terminal domain as bait, we identified MAT1 (ménage á trois 1) as an MTA1-binding protein. MAT1 is an assembly/targeting factor for cyclin-dependent kinase-activating kinase (CAK), which has been shown to functionally interact with general transcriptional factor TFIIH, a known inducer of ER transactivation. We show that estrogen signaling promotes nuclear translocation of MAT1 and that MTA1 interacts with MAT1 both in vitro and in vivo. MAT1 binds to the C-terminal 389-441 amino acids GATA domain and N-terminal 1-164 amino acids bromo-domain of MTA1, whereas MTA1 binds to the N-terminal ring finger domain of the MAT1. In addition, MAT1 interacts with the activation function 2 domain of ER and colocalizes with ER in activated cells. MTA1 deregulation in breast cancer cells led to its interactions with the CAK complex components, ER, and HDAC2. Accordingly, MTA1 inhibited CAK stimulation of ER transactivation that was partially relieved by HDAC inhibitor trichostatin A, suggesting that MTA1 might inhibit CAK-induced transactivation function of ER by recruiting HDAC. Furthermore, MTA1 overexpression inhibited the ability of CAK complex to phosphorylate ER. Together, these findings identified MAT1 as a target of MTA1 and provided new evidence to suggest that the transactivation functions of ER might be influenced by the regulatory interactions between CAK and MTA1 in breast cancer cells.
Collapse
Affiliation(s)
- Amjad H Talukder
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Wang J, Barsky LW, Shum CH, Jong A, Weinberg KI, Collins SJ, Triche TJ, Wu L. Retinoid-induced G1 arrest and differentiation activation are associated with a switch to cyclin-dependent kinase-activating kinase hypophosphorylation of retinoic acid receptor alpha. J Biol Chem 2002; 277:43369-76. [PMID: 12213824 DOI: 10.1074/jbc.m206792200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cell cycle G(1) exit is a critical stage where cells commonly commit to proliferate or to differentiate, but the biochemical events that regulate the proliferation/differentiation (P/D) transition at G(1) exit are presently unclear. We previously showed that MAT1 (ménage à trois 1), an assembly factor and targeting subunit of the cyclin-dependent kinase (CDK)-activating kinase (CAK), modulates CAK activities to regulate G(1) exit. Here we find that the retinoid-induced G(1) arrest and differentiation activation of cultured human leukemic cells are associated with a switch to CAK hypophosphorylation of retinoic acid receptor alpha (RARalpha) from CAK hyperphosphorylation of RARalpha. The switch to CAK hypophosphorylation of RARalpha is accompanied by decreased MAT1 expression and MAT1 fragmentation that occurs in the differentiating cells through the all-trans-retinoic acid (ATRA)-mediated proteasome degradation pathway. Because HL60R cells that harbor a truncated ligand-dependent AF-2 domain of RARalpha do not demonstrate any changes in MAT1 levels or CAK phosphorylation of RARalpha following ATRA stimuli, these biochemical changes appear to be mediated directly through RARalpha. These studies indicate that significant changes in MAT1 levels and CAK activities on RARalpha phosphorylation accompany the ATRA-induced G(1) arrest and differentiation activation, which provide new insights to explore the inversely coordinated P/D transition at G(1) exit.
Collapse
Affiliation(s)
- Jiwei Wang
- Department of Pathology, Division of Research Immunology/Bone Marrow Transplant, Childrens Hospital Los Angeles Research Institute, Los Angeles, California 90027, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Keriel A, Stary A, Sarasin A, Rochette-Egly C, Egly JM. XPD mutations prevent TFIIH-dependent transactivation by nuclear receptors and phosphorylation of RARalpha. Cell 2002; 109:125-35. [PMID: 11955452 DOI: 10.1016/s0092-8674(02)00692-x] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inherited mutations in the XPD subunit of the general transcription/repair factor TFIIH yield the rare genetic disorder Xeroderma pigmentosum (XP), the phenotypes of which cannot be explained solely on the basis of a DNA repair defect. In cells derived from XP-D patients, we observed a reduction of the ligand-dependent transactivation mediated by several nuclear receptors (RARalpha, ERalpha, and AR). We demonstrate that the XPD mutation alters cdk7 function in RARalpha phosphorylation. Transactivation is restored upon overexpression of either the wild-type XPD or the RARalphaS77E (a mutation which mimics phosphorylated RARalpha). Thus, we demonstrate that the cdk7 kinase of TFIIH phosphorylates the nuclear receptor, then allowing ligand-dependent control of the activation of the hormone-responsive genes.
Collapse
Affiliation(s)
- Anne Keriel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP 163, 67404 Illkirch Cedex, C. U., Strasbourg, France
| | | | | | | | | |
Collapse
|
42
|
Jawhari A, Uhring M, Crucifix C, Fribourg S, Schultz P, Poterszman A, Egly JM, Moras D. Expression of FLAG fusion proteins in insect cells: application to the multi-subunit transcription/DNA repair factor TFIIH. Protein Expr Purif 2002; 24:513-23. [PMID: 11922769 DOI: 10.1006/prep.2001.1597] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The multi-subunit transcription/DNA repair factor TFIIH was used as a model system to show that the expression of FLAG fusion proteins in insect cells constitutes a versatile tool for both structural and functional investigations. In the present study, we have constructed recombinant baculoviruses expressing the four core TFIIH subunits fused at their N-terminus to the FLAG peptide. Using these recombinant viruses we have established protocols based on anti-FLAG immunoaffinity chromatography that allow the systematic analysis of pairwise interaction within multiprotein complexes and have developed a double tag strategy (FLAG and hexahistidine tags) for the identification and purification of stable TFIIH subcomplexes. A simple purification procedure was developed that leads to the isolation of recombinant TFIIH containing the full set of subunits. The purified recombinant TFIIH was shown to be active in a transcription assay and to be structurally homologous to the endogenous complex by electron microscopy and image analysis.
Collapse
Affiliation(s)
- Anass Jawhari
- Institut de Génétique et de Biologie Cellulaire et Moléculaire, 67404 Illkirch Cedex, C.U. de Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Oelgeschläger T. Regulation of RNA polymerase II activity by CTD phosphorylation and cell cycle control. J Cell Physiol 2002; 190:160-9. [PMID: 11807820 DOI: 10.1002/jcp.10058] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The carboxyl-terminal domain (CTD) of the largest subunit of mammalian RNA polymerase II (RNAP II) consists of 52 repeats of a consensus heptapeptide and is subject to phosphorylation and dephosphorylation events during each round of transcription. RNAP II activity is regulated during the cell cycle and cell cycle-dependend changes in RNAP II activity correlate well with CTD phosphorylation. In addition, global changes in the CTD phosphorylation status are observed in response to mitogenic or cytostatic signals such as growth factors, mitogens and DNA-damaging agents. Several CTD kinases are members of the cyclin-dependent kinase (CDK) superfamily and associate with transcription initiation complexes. Other CTD kinases implicated in cell cycle regulation include the mitogen-activated protein kinases ERK-1/2 and the c-Abl tyrosine kinase. These observations suggest that reversible RNAP II CTD phosphorylation may play a key role in linking cell cycle regulatory events to coordinated changes in transcription.
Collapse
Affiliation(s)
- Thomas Oelgeschläger
- Eukaryotic Gene Regulation Laboratory, Marie Curie Research Institute, The Chart, Oxted, Surrey, United Kingdom.
| |
Collapse
|
44
|
Zhou M, Nekhai S, Bharucha DC, Kumar A, Ge H, Price DH, Egly JM, Brady JN. TFIIH inhibits CDK9 phosphorylation during human immunodeficiency virus type 1 transcription. J Biol Chem 2001; 276:44633-40. [PMID: 11572868 DOI: 10.1074/jbc.m107466200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tat stimulates human immunodeficiency virus, type 1 (HIV-1), transcription elongation by recruitment of the human transcription elongation factor P-TEFb, consisting of CDK9 and cyclin T1, to the TAR RNA structure. It has been demonstrated further that CDK9 phosphorylation is required for high affinity binding of Tat/P-TEFb to the TAR RNA structure and that the state of P-TEFb phosphorylation may regulate Tat transactivation. We now demonstrate that CDK9 phosphorylation is uniquely regulated in the HIV-1 preinitiation and elongation complexes. The presence of TFIIH in the HIV-1 preinitiation complex inhibits CDK9 phosphorylation. As TFIIH is released from the elongation complex between +14 and +36, CDK9 phosphorylation is observed. In contrast to the activity in the "soluble" complex, phosphorylation of CDK9 is increased by the presence of Tat in the transcription complexes. Consistent with these observations, we have demonstrated that purified TFIIH directly inhibits CDK9 autophosphorylation. By using recombinant TFIIH subcomplexes, our results suggest that the XPB subunit of TFIIH is responsible for this inhibition of CDK9 phosphorylation. Interestingly, our results further suggest that the phosphorylated form of CDK9 is the active kinase for RNA polymerase II carboxyl-terminal domain phosphorylation.
Collapse
Affiliation(s)
- M Zhou
- Virus Tumor Biology Section, Basic Research Laboratory, Division of Basic Sciences, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Sandrock B, Egly JM. A yeast four-hybrid system identifies Cdk-activating kinase as a regulator of the XPD helicase, a subunit of transcription factor IIH. J Biol Chem 2001; 276:35328-33. [PMID: 11445587 DOI: 10.1074/jbc.m105570200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To understand the role of the various components of TFIIH, a DNA repair/transcription factor, a yeast four-hybrid system was designed. When the ternary Cdk-activating kinase (CAK) complex composed of Cdk7, cyclin H, and MAT1 was used as bait, the xeroderma pigmentosum (XP) D helicase of transcription factor IIH (TFIIH), among other proteins, was identified as an interacting partner. Deletion mutant analyses demonstrated that the coiled-coil and the hydrophobic domains of MAT1 interlink the CAK complex directly with the N-terminal domain of XPD. Using immunoprecipitates from cells coinfected with baculoviruses, we further validated the bridging function of XPD, which anchors CAK to the core TFIIH. In addition we show that upon interaction with MAT1, CAK inhibits the helicase activity of XPD. This inhibition is overcome upon binding to p44, a subunit of the core TFIIH. It is not surprising that under these conditions some XPD mutations affect interactions not only with p44, but also with MAT1, thus preventing either the CAK inhibitory function within CAK.XPD and/or the role of CAK within TFIIH and, consequently, explaining the variety of the XP phenotypes.
Collapse
Affiliation(s)
- B Sandrock
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université Louis Pasteur, B. P. 163, 67404 Illkirch Cedex, France
| | | |
Collapse
|
46
|
Fukuda A, Yamauchi J, Wu SY, Chiang CM, Muramatsu M, Hisatake K. Reconstitution of recombinant TFIIH that can mediate activator-dependent transcription. Genes Cells 2001; 6:707-19. [PMID: 11532030 DOI: 10.1046/j.1365-2443.2001.00456.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND TFIIH is one of the general transcription factors required for accurate transcription of protein-coding genes by RNA polymerase II. TFIIH has helicase and kinase activities, plays a role in promoter opening and promoter escape, and is also implicated in efficient activator-dependent transcription. RESULTS We have established a reconstitution system of recombinant TFIIH using a three-virus baculovirus expression system. The recombinant TFIIH was active in CTD kinase and DNA helicase assays, and showed both basal and activator-dependent transcriptional activities that were indistinguishable from those of HeLa cell-derived TFIIH. Further analyses using recombinant TFIIH confirmed a critical role of TFIIH in activator-dependent transcription. The dose response of TFIIH in activator-dependent transcription suggested that mere recruitment of TFIIH is not sufficient for transcriptional activation. The sensitivity of activator-dependent transcription to nonhydrolysable ATP analogues indicated the importance of the enzymatic activities of TFIIH in transcriptional activation. CONCLUSIONS Our results raise a possibility that transcriptional activation by GAL4-VP16 requires enzymatic activities. Recombinant TFIIH reconstituted from this baculovirus system should be useful for analysis of the mechanisms of activation by GAL4-VP16.
Collapse
Affiliation(s)
- A Fukuda
- Department of Biochemistry, Saitama Medical School, 38 Morohongo, Moroyama, Iruma-gun, Saitama 350-0495, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Larochelle S, Chen J, Knights R, Pandur J, Morcillo P, Erdjument-Bromage H, Tempst P, Suter B, Fisher RP. T-loop phosphorylation stabilizes the CDK7-cyclin H-MAT1 complex in vivo and regulates its CTD kinase activity. EMBO J 2001; 20:3749-59. [PMID: 11447116 PMCID: PMC125544 DOI: 10.1093/emboj/20.14.3749] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cyclin-dependent kinase (CDK)7-cyclin H, the CDK-activating kinase (CAK) and TFIIH-associated kinase in metazoans can be activated in vitro through T-loop phosphorylation or binding to the RING finger protein MAT1. Although the two mechanisms can operate independently, we show that in a physiological setting, MAT1 binding and T-loop phosphorylation cooperate to stabilize the CAK complex of Drosophila. CDK7 forms a stable complex with cyclin H and MAT1 in vivo only when phosphorylated on either one of two residues (Ser164 or Thr170) in its T-loop. Mutation of both phosphorylation sites causes temperature-dependent dissociation of CDK7 complexes and lethality. Furthermore, phosphorylation of Thr170 greatly stimulates the activity of the CDK7- cyclin H-MAT1 complex towards the C-terminal domain of RNA polymerase II without significantly affecting activity towards CDK2. Remarkably, the substrate-specific increase in activity caused by T-loop phosphorylation is due entirely to accelerated enzyme turnover. Thus phosphorylation on Thr170 could provide a mechanism to augment CTD phosphorylation by TFIIH-associated CDK7, and thereby regulate transcription.
Collapse
Affiliation(s)
- Stéphane Larochelle
- Cell Biology Program and Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA and Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, PQ, Canada H3A 1B1 Corresponding author e-mail:
| | - Jian Chen
- Cell Biology Program and Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA and Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, PQ, Canada H3A 1B1 Corresponding author e-mail:
| | - Ronald Knights
- Cell Biology Program and Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA and Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, PQ, Canada H3A 1B1 Corresponding author e-mail:
| | - Judit Pandur
- Cell Biology Program and Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA and Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, PQ, Canada H3A 1B1 Corresponding author e-mail:
| | - Patrick Morcillo
- Cell Biology Program and Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA and Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, PQ, Canada H3A 1B1 Corresponding author e-mail:
| | - Hediye Erdjument-Bromage
- Cell Biology Program and Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA and Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, PQ, Canada H3A 1B1 Corresponding author e-mail:
| | - Paul Tempst
- Cell Biology Program and Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA and Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, PQ, Canada H3A 1B1 Corresponding author e-mail:
| | - Beat Suter
- Cell Biology Program and Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA and Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, PQ, Canada H3A 1B1 Corresponding author e-mail:
| | - Robert P. Fisher
- Cell Biology Program and Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA and Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, PQ, Canada H3A 1B1 Corresponding author e-mail:
| |
Collapse
|
48
|
Araújo SJ, Nigg EA, Wood RD. Strong functional interactions of TFIIH with XPC and XPG in human DNA nucleotide excision repair, without a preassembled repairosome. Mol Cell Biol 2001; 21:2281-91. [PMID: 11259578 PMCID: PMC86862 DOI: 10.1128/mcb.21.7.2281-2291.2001] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In mammalian cells, the core factors involved in the damage recognition and incision steps of DNA nucleotide excision repair are XPA, TFIIH complex, XPC-HR23B, replication protein A (RPA), XPG, and ERCC1-XPF. Many interactions between these components have been detected, using different physical methods, in human cells and for the homologous factors in Saccharomyces cerevisiae. Several human nucleotide excision repair (NER) complexes, including a high-molecular-mass repairosome complex, have been proposed. However, there have been no measurements of activity of any mammalian NER protein complex isolated under native conditions. In order to assess relative strengths of interactions between NER factors, we captured TFIIH from cell extracts with an anti-cdk7 antibody, retaining TFIIH in active form attached to magnetic beads. Coimmunoprecipitation of other NER proteins was then monitored functionally in a reconstituted repair system with purified proteins. We found that all detectable TFIIH in gently prepared human cell extracts was present in the intact nine-subunit form. There was no evidence for a repair complex that contained all of the NER components. At low ionic strength TFIIH could associate with functional amounts of each NER factor except RPA. At physiological ionic strength, TFIIH associated with significant amounts of XPC-HR23B and XPG but not other repair factors. The strongest interaction was between TFIIH and XPC-HR23B, indicating a coupled role of these proteins in early steps of repair. A panel of antibodies was used to estimate that there are on the order of 10(5) molecules of each core NER factor per HeLa cell.
Collapse
Affiliation(s)
- S J Araújo
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | | | | |
Collapse
|
49
|
Santagati F, Botta E, Stefanini M, Pedrini AM. Different dynamics in nuclear entry of subunits of the repair/transcription factor TFIIH. Nucleic Acids Res 2001; 29:1574-81. [PMID: 11266560 PMCID: PMC31283 DOI: 10.1093/nar/29.7.1574] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We report here the different ways in which four subunits of the basal transcription/repair factor TFIIH (XPB, XPD, p62 and p44) and the damage recognition XPC repair protein can enter the nucleus. We examined their nuclear localization by transiently expressing the gene products tagged with the enhanced green fluorescent protein (EGFP) in transfected 3T3 cells. In agreement with the identification of more than one putative nuclear localization signal (NLS) in their protein sequences, XPB, XPC, p62 and p44 chimeras were rapidly sorted to the nucleus. In contrast, the XPD-EGFP chimeras appeared mainly localized in the cytoplasm, with a minor fraction of transfectants showing the EGFP-based fluorescence also in the nucleus. The ability of the XPD chimeras to enter the nucleus was confirmed by western blotting on fractionated cell extracts and by functional complementation of the repair defect in the UV5 rodent cells, mutated in the XPD homologous gene. By deletion mutagenesis, we were unable to identify any sequence specific for nuclear localization. In particular, deletion of the putative NLS failed to affect subcellular localization and, conversely, the C-terminal part of XPD containing the putative NLS showed no specific nuclear accumulation. These findings suggest that the nuclear entry of XPD depends on its complexation with other proteins in the cytoplasm, possibly other components of the TFIIH complex.
Collapse
Affiliation(s)
- F Santagati
- Istituto di Genetica Biochimica ed Evoluzionistica del CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | | | | | | |
Collapse
|
50
|
Gervais V, Busso D, Wasielewski E, Poterszman A, Egly JM, Thierry JC, Kieffer B. Solution structure of the N-terminal domain of the human TFIIH MAT1 subunit: new insights into the RING finger family. J Biol Chem 2001; 276:7457-64. [PMID: 11056162 DOI: 10.1074/jbc.m007963200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human MAT1 protein belongs to the cyclin-dependent kinase-activating kinase complex, which is functionally associated to the transcription/DNA repair factor TFIIH. The N-terminal region of MAT1 consists of a C3HC4 RING finger, which contributes to optimal TFIIH transcriptional activities. We report here the solution structure of the human MAT1 RING finger domain (Met(1)-Asp(65)) as determined by (1)H NMR spectroscopy. The MAT1 RING finger domain presents the expected betaalphabetabeta topology with two interleaved zinc-binding sites conserved among the RING family. However, the presence of an additional helical segment in the N-terminal part of the domain and a conserved hydrophobic central beta strand are the defining features of this new structure and more generally of the MAT1 RING finger subfamily. Comparison of electrostatic surfaces of RING finger structures shows that the RING finger domain of MAT1 presents a remarkable positively charged surface. The functional implications of these MAT1 RING finger features are discussed.
Collapse
Affiliation(s)
- V Gervais
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université Louis Pasteur, 67400 Illkirch-Cedex, France
| | | | | | | | | | | | | |
Collapse
|