1
|
Tang W, Wang Y, Cheng J, Yao J, Yao YY, Zhou Q, Guan SH. CSF sAPPα and sAPPβ levels in Alzheimer's Disease and Multiple Other Neurodegenerative Diseases: A Network Meta-Analysis. Neuromolecular Med 2019; 22:45-55. [PMID: 31414383 DOI: 10.1007/s12017-019-08561-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 07/31/2019] [Indexed: 12/31/2022]
Abstract
The soluble amyloid protein procurer α (sAPPα) and β (sAPPβ) have been postulated as promising new cerebrospinal fluid (CSF) biomarkers for Alzheimer's disease (AD) and multiple other neurodegenerative diseases, but have failed to meet expectations with their often discordant and even contradictory findings to date. The aim of the study was to systematically explore this issue. Cochrane Library, PubMed, and CNKI were systematically searched without language or date restrictions. This network meta-analysis followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and also adhered to the Meta-analysis Of Observational Studies in Epidemiology (MOOSE) guidelines. Twenty studies, comprising ten groups, were eligible and included. Overall, 19 eligible studies with 1634 patients contributed to the analysis of CSF sAPPα levels and 16 eligible studies with 1684 patients contributed to the analysis of CSF sAPPβ levels. CSF sAPPβ levels are significantly higher in AD than in corticobasal syndrome (CBS) and progressive supranuclear palsy (PSP); higher in Control than in Depression, CBS and PSP; higher in Parkinson's disease dementia (PDD) than in CBS and PSP; higher in mild cognitive impairment progressed to AD dementia during the follow-up period (pMCI) than in Depression and PSP; higher in stable mild cognitive impairment (sMCI) than in Depression. With regard to CSF sAPPα levels, there were no significant difference among groups. However, surprisingly, the resultant rankings graphically showed that pMCI populations have the highest levels of CSF sAPPα and sAPPβ. Furthermore, it seemed there was a positive correlation between CSF sAPPα and sAPPβ levels. The measurement of CSF sAPPα and sAPPβ levels may provide an alternative method for the diagnosis of early-stage AD, pMCI, which is conducive to preventive therapy.
Collapse
Affiliation(s)
- Wei Tang
- Department of Laboratory Medicine, The Second Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, China
| | - Yan Wang
- Department of General Surgery, The Second Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, China
| | - Juan Cheng
- Department of Laboratory Medicine, The Second Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, China
| | - Jie Yao
- Department of Laboratory Medicine, The Second Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, China
| | - Yu-You Yao
- Department of Clinical Laboratory Medicine, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Qiang Zhou
- Department of Laboratory Medicine, The Second Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, China
| | - Shi-He Guan
- Department of Laboratory Medicine, The Second Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, China.
| |
Collapse
|
2
|
Lopez-Font I, Boix CP, Zetterberg H, Blennow K, Sáez-Valero J. Alterations in the Balance of Amyloid-β Protein Precursor Species in the Cerebrospinal Fluid of Alzheimer's Disease Patients. J Alzheimers Dis 2018; 57:1281-1291. [PMID: 28372336 DOI: 10.3233/jad-161275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We recently demonstrated that soluble forms of the amyloid-β protein precursor (sAβPP) assemble into multimeric complexes in cerebrospinal fluid (CSF), which contributes to the underestimation of specific sAβPP species when assessed by ELISA. To circumvent this issue, we analyzed by SDS-PAGE large fragments of sAβPP and their variants in the CSF from Alzheimer's disease (AD; n = 20) and control (n = 20) subjects, probing with specific antibodies against particular domains. Similar levels of sAβPPα and sAβPPβ protein were found in CSF samples from AD and controls, yet there appeared to be a shift in the balance of the soluble full-length AβPP (sAβPPf) species in AD samples, with a decrease in the proportion of the lower (∼100 kDa) band relative to the upper (∼120 kDa) band. Similar differences were observed in the contribution of the major KPI-immunoreactive AβPP species. CSF samples also displayed differences in the correlations of AβPP species with classical AD biomarkers, particularly with respect to the Aβ42 peptide. The differences reveal alterations that probably reflect pathophysiological changes in the brain.
Collapse
Affiliation(s)
- Inmaculada Lopez-Font
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Claudia P Boix
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Inst. of Neuroscience and Physiology, University of Gothenburg, Mölndal Campus, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Inst. of Neuroscience and Physiology, University of Gothenburg, Mölndal Campus, Sweden
| | - Javier Sáez-Valero
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| |
Collapse
|
3
|
Podvin S, Bundey R, Toneff T, Ziegler M, Hook V. Profiles of secreted neuropeptides and catecholamines illustrate similarities and differences in response to stimulation by distinct secretagogues. Mol Cell Neurosci 2015; 68:177-85. [PMID: 26092702 DOI: 10.1016/j.mcn.2015.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 05/12/2015] [Accepted: 06/01/2015] [Indexed: 12/20/2022] Open
Abstract
The goal of this study was to define profiles of secreted neuropeptide and catecholamine neurotransmitters that undergo co-release from sympathoadrenal chromaffin cells upon stimulation by distinct secretagogues. Chromaffin cells of the adrenal medulla participate in the dynamic responses to stress, especially that of 'fight and flight', and, thus, analyses of the co-release of multiple neurotransmitters is necessary to gain knowledge of how the stress response regulates cell-cell communication among physiological systems. Results of this study demonstrated that six different secretagogues stimulated the co-release of the neuropeptides Met-enkephalin, galanin, NPY, and VIP with the catecholamines dopamine, norepinephrine, and epinephrine. Importantly, the quantitative profiles of the secreted neurotransmitters showed similarities and differences upon stimulation by the different secretagogues evaluated, composed of KCl depolarization, nicotine, carbachol, PACAP, bradykinin, and histamine. The rank-orders of the secreted profiles of the neurotransmitters were generally similar among these secretagogues, but differences in the secreted amounts of each neurotransmitter occurred with different secretagogues. Epinephrine among the catecholamines showed the highest level of secretion. (Met)enkephalin showed the largest levels of secretion compared to the other neuropeptides examined. Levels of secreted catecholamines were greater than that of the neuropeptides. These data support the hypothesis that profiles of secreted neuropeptide and catecholamine neurotransmitters show similarities and differences upon stimulation by distinct secretagogues. These results illustrate the co-release of concerted neurotransmitter profiles that participate in the stress response of the sympathoadrenal nervous system.
Collapse
Affiliation(s)
- Sonia Podvin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Univ. of Calif.-San Diego, La Jolla, CA 92093, United States
| | - Richard Bundey
- Dept. of Medicine, Univ. of Calif.-San Diego, La Jolla, CA 92093, United States
| | - Thomas Toneff
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Univ. of Calif.-San Diego, La Jolla, CA 92093, United States
| | - Michael Ziegler
- Dept. of Medicine, Univ. of Calif.-San Diego, La Jolla, CA 92093, United States
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Univ. of Calif.-San Diego, La Jolla, CA 92093, United States; Dept. of Neuroscience and Dept. of Pharmacology, School of Medicine, Univ. of Calif.-San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
4
|
Lopez-Font I, Cuchillo-Ibañez I, Sogorb-Esteve A, García-Ayllón MS, Sáez-Valero J. Transmembrane Amyloid-Related Proteins in CSF as Potential Biomarkers for Alzheimer's Disease. Front Neurol 2015; 6:125. [PMID: 26082753 PMCID: PMC4451586 DOI: 10.3389/fneur.2015.00125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/17/2015] [Indexed: 02/04/2023] Open
Abstract
In the continuing search for new cerebrospinal fluid (CSF) biomarkers for Alzheimer’s disease (AD), reasonable candidates are the secretase enzymes involved in the processing of the amyloid precursor protein (APP), as well as the large proteolytic cleavage fragments sAPPα and sAPPβ. The enzymatic activities of some of these secretases, such as BACE1 and TACE, have been investigated as potential AD biomarkers, and it has been assumed that these activities present in human CSF result from the soluble truncated forms of the membrane-bound enzymes. However, we and others recently identified soluble forms of BACE1 and APP in CSF containing the intracellular domains, as well as the multi-pass transmembrane presenilin-1 (PS1) and other subunits of γ-secretase. We also review recent findings that suggest that most of these soluble transmembrane proteins could display self-association properties based on hydrophobic and/or ionic interactions leading to the formation of heteromeric complexes. The oligomerization state of these potential new biomarkers needs to be taken into consideration for assessing their real potential as CSF biomarkers for AD by adequate molecular tools.
Collapse
Affiliation(s)
- Inmaculada Lopez-Font
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC , Sant Joan d'Alacant , Spain ; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Sant Joan d'Alacant , Spain
| | - Inmaculada Cuchillo-Ibañez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC , Sant Joan d'Alacant , Spain ; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Sant Joan d'Alacant , Spain
| | - Aitana Sogorb-Esteve
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC , Sant Joan d'Alacant , Spain ; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Sant Joan d'Alacant , Spain
| | - María-Salud García-Ayllón
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC , Sant Joan d'Alacant , Spain ; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Sant Joan d'Alacant , Spain ; Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche , Elche , Spain
| | - Javier Sáez-Valero
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC , Sant Joan d'Alacant , Spain ; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Sant Joan d'Alacant , Spain
| |
Collapse
|
5
|
Planque SA, Nishiyama Y, Sonoda S, Lin Y, Taguchi H, Hara M, Kolodziej S, Mitsuda Y, Gonzalez V, Sait HBR, Fukuchi KI, Massey RJ, Friedland RP, O'Nuallain B, Sigurdsson EM, Paul S. Specific amyloid β clearance by a catalytic antibody construct. J Biol Chem 2015; 290:10229-41. [PMID: 25724648 DOI: 10.1074/jbc.m115.641738] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Indexed: 11/06/2022] Open
Abstract
Classical immunization methods do not generate catalytic antibodies (catabodies), but recent findings suggest that the innate antibody repertoire is a rich catabody source. We describe the specificity and amyloid β (Aβ)-clearing effect of a catabody construct engineered from innate immunity principles. The catabody recognized the Aβ C terminus noncovalently and hydrolyzed Aβ rapidly, with no reactivity to the Aβ precursor protein, transthyretin amyloid aggregates, or irrelevant proteins containing the catabody-sensitive Aβ dipeptide unit. The catabody dissolved preformed Aβ aggregates and inhibited Aβ aggregation more potently than an Aβ-binding IgG. Intravenous catabody treatment reduced brain Aβ deposits in a mouse Alzheimer disease model without inducing microgliosis or microhemorrhages. Specific Aβ hydrolysis appears to be an innate immune function that could be applied for therapeutic Aβ removal.
Collapse
Affiliation(s)
- Stephanie A Planque
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Yasuhiro Nishiyama
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Sari Sonoda
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Yan Lin
- the Departments of Neuroscience, Physiology, and Psychiatry, New York University School of Medicine, New York, New York 10016
| | - Hiroaki Taguchi
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Mariko Hara
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Steven Kolodziej
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Yukie Mitsuda
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Veronica Gonzalez
- the Departments of Neuroscience, Physiology, and Psychiatry, New York University School of Medicine, New York, New York 10016
| | - Hameetha B R Sait
- the Departments of Neuroscience, Physiology, and Psychiatry, New York University School of Medicine, New York, New York 10016
| | - Ken-ichiro Fukuchi
- the Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, Illinois 61605
| | | | - Robert P Friedland
- the Department of Neurology, University of Louisville School of Medicine, Louisville, Kentucky 40202, and
| | - Brian O'Nuallain
- the Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Einar M Sigurdsson
- the Departments of Neuroscience, Physiology, and Psychiatry, New York University School of Medicine, New York, New York 10016,
| | - Sudhir Paul
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030,
| |
Collapse
|
6
|
Cuchillo-Ibañez I, Lopez-Font I, Boix-Amorós A, Brinkmalm G, Blennow K, Molinuevo JL, Sáez-Valero J. Heteromers of amyloid precursor protein in cerebrospinal fluid. Mol Neurodegener 2015; 10:2. [PMID: 25573162 PMCID: PMC4298044 DOI: 10.1186/1750-1326-10-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/27/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Soluble fragments of the amyloid precursor protein (APP) generated by α- and β-secretases, sAPPα and sAPPβ, have been postulated as promising new cerebrospinal fluid (CSF) biomarkers for the clinical diagnosis of Alzheimer's disease (AD). However, the capacity of these soluble proteins to assemble has not been explored and could be relevant. Our aim is to characterize possible sAPP oligomers that could contribute to the quantification of sAPPα and sAPPβ in CSF by ELISA, as well as to characterize the possible presence of soluble full-length APP (sAPPf). RESULTS We employed co-immunoprecipitation, native polyacrylamide gel electrophoresis and ultracentrifugation in sucrose density gradients to characterize sAPP oligomers in CSF. We have characterized the presence of sAPPf in CSF from NDC and AD subjects and demonstrated that all forms, including sAPPα and sAPPβ, are capable of assembling into heteromers, which differ from brain APP membrane-dimers. We measured sAPPf, sAPPα and sAPPβ by ELISA in CSF samples from AD (n = 13) and non-disease subjects (NDC, n = 13) before and after immunoprecipitation with antibodies against the C-terminal APP or against sAPPβ. We demonstrated that these sAPP heteromers participate in the quantification of sAPPα and sAPPβ by ELISA. Immunoprecipitation with a C-terminal antibody to remove sAPPf reduced by ~30% the determinations of sAPPα and sAPPβ by ELISA, whereas immunoprecipitation with an APPβ antibody reduced by ~80% the determination of sAPPf and sAPPα. CONCLUSIONS The presence of sAPPf and sAPP heteromers should be taken into consideration when exploring the levels of sAPPα and sAPPβ as potential CSF biomarkers.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Javier Sáez-Valero
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Av, Ramón y Cajal s/n, Sant Joan d'Alacant, Spain.
| |
Collapse
|
7
|
Chen M, Nguyen HT. Our "energy-Ca(2+) signaling deficits" hypothesis and its explanatory potential for key features of Alzheimer's disease. Front Aging Neurosci 2014; 6:329. [PMID: 25489296 PMCID: PMC4253736 DOI: 10.3389/fnagi.2014.00329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/10/2014] [Indexed: 12/15/2022] Open
Abstract
Sporadic Alzheimer's disease (sAD) has not been explained by any current theories, so new hypotheses are urgently needed. We proposed that "energy and Ca(2+) signaling deficits" are perhaps the earliest modifiable defects in brain aging underlying memory decline and tau deposits (by means of inactivating Ca(2+)-dependent protease calpain). Consistent with this hypothesis, we now notice that at least eight other known calpain substrates have also been reported to accumulate in aging and AD. Thus, protein accumulation or aggregation is not a "pathogenic" event, but occurs naturally and selectively to a peculiar family of proteins, and is best explained by calpain inactivation. Why are only calpain substrates accumulated and how can they stay for decades in the brain without being attacked by many other non-specific proteases there? We believe that these long-lasting puzzles can be explained by calpain's unique properties, especially its unusual specificity and exclusivity in substrate recognition, which can protect the substrates from other proteases' attacks after calpain inactivation. Interestingly, our model, in essence, may also explain tau phosphorylation and the formation of amyloid plaques. Our studies suggest that α-secretase is an energy-/Ca(2+)-dual dependent protease and is also the primary determinant for Aβ levels. Therefore, β- and γ-secretases can only play secondary roles and, by biological laws, they are unlikely to be "positively identified". This study thus raises serious questions for policymakers and researchers and these questions may help explain why sAD can remain an enigma today.
Collapse
Affiliation(s)
- Ming Chen
- Aging Research Laboratory, Research and Development Service, Bay Pines Veterans Affairs Healthcare System Bay Pines, FL, USA ; Department of Molecular Pharmacology and Physiology, University of South Florida Tampa, FL, USA
| | - Huey T Nguyen
- Aging Research Laboratory, Research and Development Service, Bay Pines Veterans Affairs Healthcare System Bay Pines, FL, USA
| |
Collapse
|
8
|
Cynis H, Funkelstein L, Toneff T, Mosier C, Ziegler M, Koch B, Demuth HU, Hook V. Pyroglutamate-amyloid-β and glutaminyl cyclase are colocalized with amyloid-β in secretory vesicles and undergo activity-dependent, regulated secretion. NEURODEGENER DIS 2014; 14:85-97. [PMID: 24943989 DOI: 10.1159/000358430] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 01/07/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND AIMS N-truncated pyroglutamate (pGlu)-amyloid-β [Aβ(3-40/42)] peptides are key components that promote Aβ peptide accumulation, leading to neurodegeneration and memory loss in Alzheimer's disease. Because Aβ deposition in the brain occurs in an activity-dependent manner, it is important to define the subcellular organelle for pGlu-Aβ(3-40/42) production by glutaminyl cyclase (QC) and their colocalization with full-length Aβ(1-40/42) peptides for activity-dependent, regulated secretion. Therefore, the objective of this study was to investigate the hypothesis that pGlu-Aβ and QC are colocalized with Aβ in dense-core secretory vesicles (DCSV) for activity-dependent secretion with neurotransmitters. METHODS Purified DCSV were assessed for pGlu-Aβ(3-40/42), Aβ(1-40/42), QC, and neurotransmitter secretion. Neuron-like chromaffin cells were analyzed for cosecretion of pGlu-Aβ, QC, Aβ, and neuropeptides. The cells were treated with a QC inhibitor, and pGlu-Aβ production was measured. Human neuroblastoma cells were also examined for pGlu-Aβ and QC secretion. RESULTS Isolated DCSV contain pGlu-Aβ(3-40/42), QC, and Aβ(1-40/42) with neuropeptide and catecholamine neurotransmitters. Cellular pGlu-Aβ and QC undergo activity-dependent cosecretion with Aβ and enkephalin and galanin neurotransmitters. The QC inhibitor decreased the level of secreted pGlu-Aβ. The human neuroblastoma cells displayed regulated secretion of pGlu-Aβ that was colocalized with QC. CONCLUSIONS pGlu-Aβ and QC are present with Aβ in DCSV and undergo activity-dependent, regulated cosecretion with neurotransmitters.
Collapse
|
9
|
Toneff T, Funkelstein L, Mosier C, Abagyan A, Ziegler M, Hook V. Beta-amyloid peptides undergo regulated co-secretion with neuropeptide and catecholamine neurotransmitters. Peptides 2013; 46:126-35. [PMID: 23747840 PMCID: PMC3842158 DOI: 10.1016/j.peptides.2013.04.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 04/25/2013] [Accepted: 04/27/2013] [Indexed: 01/03/2023]
Abstract
Beta-amyloid (Aβ) peptides are secreted from neurons, resulting in extracellular accumulation of Aβ and neurodegeneration of Alzheimer's disease. Because neuronal secretion is fundamental for the release of neurotransmitters, this study assessed the hypothesis that Aβ undergoes co-release with neurotransmitters. Model neuronal-like chromaffin cells were investigated, and results illustrate regulated, co-secretion of Aβ(1-40) and Aβ(1-42) with peptide neurotransmitters (galanin, enkephalin, and NPY) and catecholamine neurotransmitters (dopamine, norepinephrine, and epinephrine). Regulated secretion from chromaffin cells was stimulated by KCl depolarization and nicotine. Forskolin, stimulating cAMP, also induced co-secretion of Aβ peptides with peptide and catecholamine neurotransmitters. These data suggested the co-localization of Aβ with neurotransmitters in dense core secretory vesicles (DCSV) that store and secrete such chemical messengers. Indeed, Aβ was demonstrated to be present in DCSV with neuropeptide and catecholamine transmitters. Furthermore, the DCSV organelle contains APP and its processing proteases, β- and γ-secretases, that are necessary for production of Aβ. Thus, Aβ can be generated in neurotransmitter-containing DCSV. Human IMR32 neuroblastoma cells also displayed regulated secretion of Aβ(1-40) and Aβ(1-42) with the galanin neurotransmitter. These findings illustrate that Aβ peptides are present in neurotransmitter-containing DCSV, and undergo co-secretion with neuropeptide and catecholamine neurotransmitters that regulate brain functions.
Collapse
Affiliation(s)
- Thomas Toneff
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, United States
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, United States
- Department and Pharmacology, University of California, San Diego, La Jolla, CA 92093, United States
| | - Lydiane Funkelstein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, United States
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, United States
- Department and Pharmacology, University of California, San Diego, La Jolla, CA 92093, United States
| | - Charles Mosier
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, United States
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, United States
- Department and Pharmacology, University of California, San Diego, La Jolla, CA 92093, United States
| | - Armen Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, United States
| | - Michael Ziegler
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, United States
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, United States
- Department and Pharmacology, University of California, San Diego, La Jolla, CA 92093, United States
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, United States
- Corresponding author at: Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive MC0744, La Jolla, CA 92093-0744, United States. Tel.: +1 858 822 6682; fax: +1 858 822 6681. (V. Hook)
| |
Collapse
|
10
|
Charfi C, Levros LC, Edouard E, Rassart E. Characterization and identification of PARM-1 as a new potential oncogene. Mol Cancer 2013; 12:84. [PMID: 23902727 PMCID: PMC3750824 DOI: 10.1186/1476-4598-12-84] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 07/25/2013] [Indexed: 11/21/2022] Open
Abstract
Background The Graffi murine retrovirus is a powerful tool to find leukemia associated oncogenes. Using DNA microarrays, we recently identified several genes specifically deregulated in T- and B-leukemias induced by this virus. Results In the present study, probsets associated with T-CD8+ leukemias were analyzed and we validated the expression profile of the Parm-1 gene. PARM-1 is a member of the mucin family. We showed that human PARM-1 is an intact secreted protein accumulating predominantly, such as murine PARM-1, at the Golgi and in the early and late endosomes. PARM-1 colocalization with α-tubulin suggests that its trafficking within the cell involves the microtubule cytoskeleton. Also, the protein co-localizes with caveolin-1 which probably mediates its internalization. Transient transfection of both mouse and human Parm-1 cDNAs conferred anchorage- and serum-independent growth and enhanced cell proliferation. Moreover, deletion mutants of human PARM-1 without either extracellular or cytoplasmic portions seem to retain the ability to induce anchorage-independent growth of NIH/3T3 cells. In addition, PARM-1 increases ERK1/2, but more importantly AKT and STAT3 phosphorylation. Conclusions Our results strongly suggest the oncogenic potential of PARM-1.
Collapse
Affiliation(s)
- Cyndia Charfi
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Centre BioMed, Université du Québec à Montréal, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C-3P8, Canada
| | | | | | | |
Collapse
|
11
|
de Diego AMG, Lorrio S, Calvo-Gallardo E, García AG. Smaller quantal size and faster kinetics of single exocytotic events in chromaffin cells from the APP/PS1 mouse model of Alzheimer's disease. Biochem Biophys Res Commun 2012; 428:482-6. [PMID: 23123627 DOI: 10.1016/j.bbrc.2012.10.082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 10/22/2012] [Indexed: 10/27/2022]
Abstract
The kinetics of single-amperometric exocytotic events has been measured in chromaffin cells of C57 mice and in an APP/PS1 mouse model of Alzheimer's disease (AD). K(+) depolarisation causes a burst of spikes that indicate the quantal release of the single-vesicle content of catecholamine. The kinetic analysis of 278 spikes from 10 control cells and 520 spikes from 18 APP/PS1 cells shows the following features of the latter compared with the former: (i) 45% lower t(1/2); (ii) 60% smaller quantal size; (iii) 50% lower decay time. Spike feet also showed 60% smaller quantal size. Immunofluorescence and thioflavin staining showed no amyloid beta (Aβ) burden in adrenal medulla slices of APP/PS1 mice that however exhibited dense Aβ plaques in the cortex and hippocampus. Furthermore, acetylcholinesterase staining of adrenal medulla indicated no apparent differences in the innervation by splanchnic cholinergic nerve terminals of chromaffin cells from control and APP/PS1 mice. This is the first report identifying subtle differences in the last steps of exocytosis that could be an indication of synaptic dysfunction of the secretory machinery not linked to Aβ burden in AD.
Collapse
Affiliation(s)
- Antonio M G de Diego
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.
| | | | | | | |
Collapse
|
12
|
Scerri C, Stewart CA, Balfour DJK, Breen KC. Nicotine modifies in vivo and in vitro rat hippocampal amyloid precursor protein processing in young but not old rats. Neurosci Lett 2012; 514:22-6. [PMID: 22381398 DOI: 10.1016/j.neulet.2012.02.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 02/08/2012] [Accepted: 02/13/2012] [Indexed: 11/30/2022]
Abstract
Previous studies have shown that administration of nicotine modifies the expression and secretion of amyloid precursor protein (APP) in various cell lines. The present study investigated the extent to which chronic subcutaneous nicotine administration influences APP levels and processing in cerebral cortex, striatum and hippocampus of young and old rat brains. The results showed that constant nicotine infusion (0.25 or 4.00mg/kg/day) increased the levels of particulate APP (APPp) but not secreted APP (APPs) in the hippocampus of young rats in vivo. This response to nicotine was not observed in the striatum or cerebral cortex of young rats or in any of the brain regions examined in old animals. Subsequent in vitro analysis demonstrated that nicotine enhanced the release of APPs from hippocampal slice preparations and that this increase was attenuated by mecamylamine, a non-selective nicotinic acetylcholine receptor (nAChR) antagonist. The in vitro effect of nicotine on APPs was age-related, being only detected from hippocampal slices derived from the young but not the older animals. These results suggest that nicotine modulates APP expression and secretion in the hippocampus and that the responses observed to the drug are age-dependent being only detected in younger rats.
Collapse
Affiliation(s)
- Charles Scerri
- Division of Neuroscience, Medical Research Institute, University of Dundee, Ninewells Hospital & Medical School, Dundee DD1 9SY, UK.
| | | | | | | |
Collapse
|
13
|
Cellular Mechanisms for the Biogenesis and Transport of Synaptic and Dense-Core Vesicles. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 299:27-115. [DOI: 10.1016/b978-0-12-394310-1.00002-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Mehta M, Adem A, Kahlon MS, Sabbagh MN. The nicotinic acetylcholine receptor: smoking and Alzheimer's disease revisited. Front Biosci (Elite Ed) 2012; 4:169-80. [PMID: 22201862 PMCID: PMC5502782 DOI: 10.2741/367] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epidemiological studies regarding Alzheimer's disease (AD) in smokers currently suggest inconsistent results. The clinicopathological findings also vary as to how AD pathology is affected by smoking behavior. Even though clinicopathological, functional, and epidemiological studies in humans do not present a consistent picture, much of the in vitro data implies that nicotine has neuroprotective effects when used in neurodegenerative disorder models. Current studies of the effects of nicotine and nicotinic agonists on cognitive function in both the non-demented and those with AD are not convincing. More data is needed to determine whether repetitive activation of nAChR with intermittent or acute exposure to nicotine, acute activation of nAChR, or long-lasting inactivation of nAChR secondary to chronic nicotine exposure will have a therapeutic effect and/or explain the beneficial effects of those types of drugs. Other studies show multifaceted connections between nicotine, nicotinic agonists, smoking, and nAChRs implicated in AD etiology. Although many controversies still exist, ongoing studies are revealing how nicotinic receptor changes and functions may be significant to the neurochemical, pathological, and clinical changes that appear in AD.
Collapse
Affiliation(s)
- Mona Mehta
- Banner Sun Health Research Institute, Sun City, AZ
| | - Abdu Adem
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Al Ain, United Arab Emirates 3. Arizona Neurological Institute, Sun City, AZ
| | | | | |
Collapse
|
15
|
Hook V, Funkelstein L, Wegrzyn J, Bark S, Kindy M, Hook G. Cysteine Cathepsins in the secretory vesicle produce active peptides: Cathepsin L generates peptide neurotransmitters and cathepsin B produces beta-amyloid of Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:89-104. [PMID: 21925292 DOI: 10.1016/j.bbapap.2011.08.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Revised: 08/26/2011] [Accepted: 08/29/2011] [Indexed: 12/01/2022]
Abstract
Recent new findings indicate significant biological roles of cysteine cathepsin proteases in secretory vesicles for production of biologically active peptides. Notably, cathepsin L in secretory vesicles functions as a key protease for proteolytic processing of proneuropeptides (and prohormones) into active neuropeptides that are released to mediate cell-cell communication in the nervous system for neurotransmission. Moreover, cathepsin B in secretory vesicles has been recently identified as a β-secretase for production of neurotoxic β- amyloid (Aβ) peptides that accumulate in Alzheimer's disease (AD), participating as a notable factor in the severe memory loss in AD. These secretory vesicle functions of cathepsins L and B for production of biologically active peptides contrast with the well-known role of cathepsin proteases in lysosomes for the degradation of proteins to result in their inactivation. The unique secretory vesicle proteome indicates proteins of distinct functional categories that provide the intravesicular environment for support of cysteine cathepsin functions. Features of the secretory vesicle protein systems insure optimized intravesicular conditions that support the proteolytic activity of cathepsins. These new findings of recently discovered biological roles of cathepsins L and B indicate their significance in human health and disease. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
Collapse
Affiliation(s)
- Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Dept. of Neurosciences, Univ. of Calif., San Diego, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Hook V, Hook G, Kindy M. Pharmacogenetic features of cathepsin B inhibitors that improve memory deficit and reduce beta-amyloid related to Alzheimer's disease. Biol Chem 2010; 391:861-72. [PMID: 20536395 PMCID: PMC4309269 DOI: 10.1515/bc.2010.110] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Beta-amyloid (Abeta) in the brain is a major factor involved in Alzheimer's disease (AD) that results in severe memory deficit. Our recent studies demonstrate pharmacogenetic differences in the effects of inhibitors of cathepsin B to improve memory and reduce Abeta in different mouse models of AD. The inhibitors improve memory and reduce brain Abeta in mice expressing the wild-type (WT) beta-secretase site of human APP, expressed in most AD patients. However, these inhibitors have no effect in mice expressing the rare Swedish (Swe) mutant amyloid precursor protein (APP). Knockout of the cathepsin B decreased brain Abeta in mice expressing WT APP, validating cathepsin B as the target. The specificity of cathepsin B to cleave the WT beta-secretase site, but not the Swe mutant site, of APP for Abeta production explains the distinct inhibitor responses in the different AD mouse models. In contrast to cathepsin B, the BACE1 beta-secretase prefers to cleave the Swe mutant site. Discussion of BACE1 data in the field indicate that they do not preclude cathepsin B as also being a beta-secretase. Cathepsin B and BACE1 could participate jointly as beta-secretases. Significantly, the majority of AD patients express WT APP and, therefore, inhibitors of cathepsin B represent candidate drugs for AD.
Collapse
Affiliation(s)
- Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| | | | | |
Collapse
|
17
|
Jacobsen LK, Picciotto MR, Heath CJ, Mencl WE, Gelernter J. Allelic variation of calsyntenin 2 (CLSTN2) modulates the impact of developmental tobacco smoke exposure on mnemonic processing in adolescents. Biol Psychiatry 2009; 65:671-9. [PMID: 19058786 PMCID: PMC2864130 DOI: 10.1016/j.biopsych.2008.10.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 10/17/2008] [Accepted: 10/21/2008] [Indexed: 11/29/2022]
Abstract
BACKGROUND Exposure to nicotine in tobacco smoke during development has been linked to subsequent deficits in attention and memory. The present study tested for evidence that genetic variation may contribute to individual differences in vulnerability to the effects of developmental exposure to tobacco smoke on memory and medial temporal lobe function in adolescents. METHODS Verbal and visuospatial memory were assessed and functional magnetic resonance imaging (fMRI) data were acquired in 101 adolescents systematically characterized for prenatal and adolescent exposure to tobacco smoke, while they performed an encoding and recognition memory task. The impact of allelic variation at loci within CLSTN2 (encoding synaptic protein calsyntenin 2) and KIBRA, shown previously to modulate early and delayed recall of words, on the dependent measures was examined. RESULTS KIBRA genotype did not exert significant main or interacting effects with prenatal or adolescent exposure to tobacco smoke on verbal or visuospatial memory. Previous observations of a beneficial effect of the CLSTN2 C allele on verbal recall were replicated. Adolescent exposure to tobacco smoke reversed this beneficial effect and was associated with increased activation of parahippocampal gyrus during early and delayed recognition in CLTSN2 C allele carriers. While the CLSTN2 C allele conferred enhanced functional connectivity between brain regions subserving accurate verbal recognition, adolescent exposure to tobacco smoke reversed this effect. CONCLUSIONS These findings extend previous work demonstrating that calsyntenins play an essential role in learning and indicate that this role is modulated both by CLSTN2 genotype and, during adolescent development, by exposure to tobacco smoke.
Collapse
Affiliation(s)
- Leslie K Jacobsen
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06320, USA.
| | | | | | | | | |
Collapse
|
18
|
Nicotinic receptor agonists and antagonists increase sAPPα secretion and decrease Aβ levels in vitro. Neurochem Int 2009; 54:237-44. [DOI: 10.1016/j.neuint.2008.12.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 11/19/2008] [Accepted: 12/02/2008] [Indexed: 02/01/2023]
|
19
|
Hook V, Schechter I, Demuth HU, Hook G. Alternative pathways for production of beta-amyloid peptides of Alzheimer's disease. Biol Chem 2008; 389:993-1006. [PMID: 18979625 DOI: 10.1515/bc.2008.124] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This highlight article describes three Alzheimer's disease (AD) studies presented at the 5th General Meeting of the International Proteolysis Society that address enzymatic mechanisms for producing neurotoxic beta-amyloid (Abeta) peptides. One group described the poor kinetics of BACE 1 for cleaving the wild-type (WT) beta-secretase site of APP found in most AD patients. They showed that cathepsin D displays BACE 1-like specificity and cathepsin D is 280-fold more abundant in human brain than BACE 1. Nevertheless, as BACE 1 and cathepsin D show poor activity towards the WT beta-secretase site, they suggested continuing the search for additional beta-secretase(s). The second group reported cathepsin B as an alternative beta-secretase possessing excellent kinetic efficiency and specificity for the WT beta-secretase site. Significantly, inhibitors of cathepsin B improved memory, with reduced amyloid plaques and decreased Abeta(40/42) in brains of AD animal models expressing amyloid precursor protein containing the WT beta-secretase site. The third group addressed isoaspartate and pyroglutamate (pGlu) posttranslational modifications of Abeta. Results showed that cathepsin B, but not BACE 1, efficiently cleaves the WT beta-secretase isoaspartate site. Furthermore, cyclization of N-terminal Glu by glutaminyl cyclase generates highly amyloidogenic pGluAbeta(3-40/42). These presentations suggest cathepsin B and glutaminyl cyclase as potential new AD therapeutic targets.
Collapse
Affiliation(s)
- Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093, USA.
| | | | | | | |
Collapse
|
20
|
Hook V, Schechter I, Demuth HU, Hook G. Alternative pathways for production of β-amyloid peptides of Alzheimer's disease. Biol Chem 2008. [DOI: 10.1515/bc.2008.124_bchm.just-accepted] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Sabri O, Kendziorra K, Wolf H, Gertz HJ, Brust P. Acetylcholine receptors in dementia and mild cognitive impairment. Eur J Nucl Med Mol Imaging 2008; 35 Suppl 1:S30-45. [PMID: 18228017 DOI: 10.1007/s00259-007-0701-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE To clarify whether changes in the cholinergic transmission occur early in the course of Alzheimer's disease (AD), we carried out positron emission tomography (PET) with the radioligand 2-[(18)F]F-A-85380, which is supposed to be specific for alpha4beta2 nicotinic acetylcholine receptors (nAChRs). METHOD We included patients with moderate to severe AD and patients with amnestic mild cognitive impairment (MCI), presumed to present preclinical AD. RESULTS Both patients with AD and MCI showed significant reductions in alpha4beta2 nAChRs in brain regions typically affected by AD pathology. These findings indicate that a reduction in alpha4beta2 nAChRs occurs during early symptomatic stages of AD. The alpha4beta2 nAChR availability in these regions correlated with the severity of cognitive impairment, indicating a stage sensitivity of the alpha4beta2 nAChR status. CONCLUSION Together, our results provide evidence for the potential of 2-[(18)]F-A-85380 nAChR PET in the diagnosis of patients at risk for AD. Because of the extraordinary long acquisition time with 2-[(18)F]F-A-85380, we developed the new alpha4beta2 nAChR-specific radioligands (+)- and (-)-[(18)F]norchloro-fluoro-homoepibatidine (NCFHEB) and evaluated them preclinically. (-)-[(18)F]NCFHEB shows twofold higher brain uptake and significantly shorter acquisition times. Therefore, (-)-[(18)F]NCFHEB should be a suitable radioligand for larger clinical investigations.
Collapse
Affiliation(s)
- Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Stephanstrasse 11, Leipzig, Germany.
| | | | | | | | | |
Collapse
|
22
|
García-Ayllón MS, Silveyra MX, Sáez-Valero J. Association between acetylcholinesterase and beta-amyloid peptide in Alzheimer's cerebrospinal fluid. Chem Biol Interact 2008; 175:209-15. [PMID: 18554581 DOI: 10.1016/j.cbi.2008.04.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Accepted: 04/27/2008] [Indexed: 11/17/2022]
Abstract
The altered expression of acetylcholinesterase (AChE) in the brains of patients with Alzheimer's disease (AD) has raised much interest of late. Despite an overall decrease in the AD brain, the activity of AChE increases around beta-amyloid plaques and indeed, the beta-amyloid peptide (Abeta) can influence AChE levels. Such evidence stimulated our interest in the possibility that the levels of AChE and amyloid might vary together in AD. We previously found that the different AChE forms present in both the brain and in the cerebrospinal fluid (CSF) of AD patients varied in conjunction with abnormal glycosylation. Thus, the alterations in glycosylation are correlated with the accumulation of a minor subspecies of AChE monomers. We also recently analysed whether long-term exposure to the cholinesterase inhibitor (ChE-I) donepezil influences the AChE species found in AD CSF. The marked increase in CSF-AChE activity in AD patients following long-term treatment with donepezil was not paralleled by a rise in this subset of light variants. Hence, the correlation with the levels of CSF-Abeta is unique to these AChE species in patients receiving such treatment. The aim of this report is to review the links between AChE and beta-amyloid, and to discuss the significance of the responses of the distinct AChE species to ChE-I during the treatment of AD.
Collapse
Affiliation(s)
- María-Salud García-Ayllón
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, Spain
| | | | | |
Collapse
|
23
|
Silveyra MX, Evin G, Montenegro MF, Vidal CJ, Martínez S, Culvenor JG, Sáez-Valero J. Presenilin 1 interacts with acetylcholinesterase and alters its enzymatic activity and glycosylation. Mol Cell Biol 2008; 28:2908-19. [PMID: 18299393 PMCID: PMC2293086 DOI: 10.1128/mcb.02065-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 01/18/2008] [Accepted: 02/14/2008] [Indexed: 01/14/2023] Open
Abstract
Presenilin 1 (PS1) plays a critical role in the gamma-secretase processing of the amyloid precursor protein to generate the beta-amyloid peptide, which accumulates in plaques in the pathogenesis of Alzheimer's disease (AD). Mutations in PS1 cause early onset AD, and proteins that interact with PS1 are of major functional importance. We report here the coimmunoprecipitation of PS1 and acetylcholinesterase (AChE), an enzyme associated with amyloid plaques. Binding occurs through PS1 N-terminal fragment independent of the peripheral binding site of AChE. Subcellular colocalization of PS1 and AChE in cultured cells and coexpression patterns of PS1 and AChE in brain sections from controls and subjects with sporadic or familial AD indicated that PS1 and AChE are located in the same intracellular compartments, including the perinuclear compartments. A PS1-A246E pathogenic mutation expressed in transgenic mice leads to decreased AChE activity and alteration of AChE glycosylation and the peripheral binding site, which may reflect a shift in protein conformation and disturbed AChE maturation. In both the transgenic mice and humans, mutant PS1 impairs coimmunoprecipitation with AChE. The results indicate that PS1 can interact with AChE and influence its expression, supporting the notion of cholinergic-amyloid interrelationships.
Collapse
Affiliation(s)
- María-Ximena Silveyra
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Crta. Alicante-Valencia Km.87, Sant Joan d'Alacant E-03550, Spain.
| | | | | | | | | | | | | |
Collapse
|
24
|
Aztiria E, Cataudella T, Spampinato S, Leanza G. Septal grafts restore cognitive abilities and amyloid precursor protein metabolism. Neurobiol Aging 2008; 30:1614-25. [PMID: 18258336 DOI: 10.1016/j.neurobiolaging.2007.12.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 12/12/2007] [Accepted: 12/19/2007] [Indexed: 12/25/2022]
Abstract
Cortical cholinergic loss and amyloidogenic processing of the beta-amyloid precursor protein (APP), may functionally interact in Alzheimer's disease. However, it is still unknown whether biological restoration of regulatory cholinergic inputs affects APP metabolism in vivo. Rats immunolesioned with 192 IgG-saporin exhibited severe acquisition deficits in place navigation that were paralleled by a dramatic loss of terminal cholinergic innervation and by marked changes in the regional expression of APP-like immunoreactivity. Moreover, in these animals, we observed a drastic reduction of soluble APP (sAPP) and a concomitant increase of the unsoluble, membrane-bound fraction (mAPP). Notably, at about 6 months post-surgery, lesioned animals implanted with reinnervating cholinergic-rich septal tissue grafts exhibited fairly normal spatial navigation abilities, as well as cortical and hippocampal APP levels that were restored up to normal or near-normal values. APP levels correlated significantly with lesion- or graft-induced changes in cholinergic innervation density, and both these measures correlated with performance in the spatial navigation task. Thus, integrity of ascending cholinergic inputs may be required to prevent amyloidogenic processing of APP in vivo and to modulate cognitive performance.
Collapse
Affiliation(s)
- Eugenio Aztiria
- B.R.A.I.N. Centre for Neuroscience, Department of Physiology and Pathology, University of Trieste, Via Fleming 22, 34127 Trieste, Italy
| | | | | | | |
Collapse
|
25
|
Vingtdeux V, Hamdane M, Loyens A, Gelé P, Drobeck H, Bégard S, Galas MC, Delacourte A, Beauvillain JC, Buée L, Sergeant N. Alkalizing drugs induce accumulation of amyloid precursor protein by-products in luminal vesicles of multivesicular bodies. J Biol Chem 2007; 282:18197-18205. [PMID: 17468104 DOI: 10.1074/jbc.m609475200] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amyloid precursor protein (APP) metabolism is central to the pathogenesis of Alzheimer disease. We showed recently that the amyloid intracellular domain (AICD), which is released by gamma-secretase cleavage of APP C-terminal fragments (CTFs), is strongly increased in cells treated with alkalizing drugs (Vingtdeux, V., Hamdane, M., Bégard, S., Loyens, A., Delacourte, A., Beauvillain, J.-C., Buée, L., Marambaud, P., and Sergeant, N. (2007) Neurobiol. Dis. 25, 686-696). Herein, we aimed to determine the cell compartment in which AICD accumulates. We show that APP-CTFs and AICD are present in multivesicular structures. Multivesicular bodies contain intraluminal vesicles (known as exosomes) when released in the extracellular space. We demonstrate that APP, APP-CTFs, and AICD are integrated and secreted within exosomes in differentiated neuroblastoma and primary neuronal culture cells. Together with recent data showing that amyloid-beta is also found in exosomes, our data show that multivesicular bodies are essential organelles for APP metabolism and that all APP metabolites can be secreted in the extracellular space.
Collapse
Affiliation(s)
- Valérie Vingtdeux
- INSERM, U837, Neurodegenerative Disorders and Neuronal Death, Centre de Recherches Jean-Pierre Aubert, Université Lille 2, Place de Verdun, F-59045 Lille, France; Facultéde Médecine, Institut de Médecine Prédictive et de Recherche Thérapeutique, Centre de Recherches Jean-Pierre Aubert, Université Lille 2, Place de Verdun, F-59045 Lille, France
| | - Malika Hamdane
- INSERM, U837, Neurodegenerative Disorders and Neuronal Death, Centre de Recherches Jean-Pierre Aubert, Université Lille 2, Place de Verdun, F-59045 Lille, France; Facultéde Médecine, Institut de Médecine Prédictive et de Recherche Thérapeutique, Centre de Recherches Jean-Pierre Aubert, Université Lille 2, Place de Verdun, F-59045 Lille, France
| | - Anne Loyens
- INSERM, U837, Neurodegenerative Disorders and Neuronal Death, Centre de Recherches Jean-Pierre Aubert, Université Lille 2, Place de Verdun, F-59045 Lille, France; Facultéde Médecine, Institut de Médecine Prédictive et de Recherche Thérapeutique, Centre de Recherches Jean-Pierre Aubert, Université Lille 2, Place de Verdun, F-59045 Lille, France
| | - Patrick Gelé
- INSERM, U837, Neurodegenerative Disorders and Neuronal Death, Centre de Recherches Jean-Pierre Aubert, Université Lille 2, Place de Verdun, F-59045 Lille, France; Facultéde Médecine, Institut de Médecine Prédictive et de Recherche Thérapeutique, Centre de Recherches Jean-Pierre Aubert, Université Lille 2, Place de Verdun, F-59045 Lille, France
| | - Hervé Drobeck
- CNRS, UMR 8161, "Lille Institute of Biology," University of Lille 1, Pasteur Institute of Lille, 1, rue du Professeur Calmette, F-59021 Lille Cedex, France
| | - Séverine Bégard
- INSERM, U837, Neurodegenerative Disorders and Neuronal Death, Centre de Recherches Jean-Pierre Aubert, Université Lille 2, Place de Verdun, F-59045 Lille, France; Facultéde Médecine, Institut de Médecine Prédictive et de Recherche Thérapeutique, Centre de Recherches Jean-Pierre Aubert, Université Lille 2, Place de Verdun, F-59045 Lille, France
| | - Marie-Christine Galas
- INSERM, U837, Neurodegenerative Disorders and Neuronal Death, Centre de Recherches Jean-Pierre Aubert, Université Lille 2, Place de Verdun, F-59045 Lille, France; Facultéde Médecine, Institut de Médecine Prédictive et de Recherche Thérapeutique, Centre de Recherches Jean-Pierre Aubert, Université Lille 2, Place de Verdun, F-59045 Lille, France
| | - André Delacourte
- INSERM, U837, Neurodegenerative Disorders and Neuronal Death, Centre de Recherches Jean-Pierre Aubert, Université Lille 2, Place de Verdun, F-59045 Lille, France; Facultéde Médecine, Institut de Médecine Prédictive et de Recherche Thérapeutique, Centre de Recherches Jean-Pierre Aubert, Université Lille 2, Place de Verdun, F-59045 Lille, France
| | - Jean-Claude Beauvillain
- INSERM, U837, Neurodegenerative Disorders and Neuronal Death, Centre de Recherches Jean-Pierre Aubert, Université Lille 2, Place de Verdun, F-59045 Lille, France; Facultéde Médecine, Institut de Médecine Prédictive et de Recherche Thérapeutique, Centre de Recherches Jean-Pierre Aubert, Université Lille 2, Place de Verdun, F-59045 Lille, France
| | - Luc Buée
- INSERM, U837, Neurodegenerative Disorders and Neuronal Death, Centre de Recherches Jean-Pierre Aubert, Université Lille 2, Place de Verdun, F-59045 Lille, France; Facultéde Médecine, Institut de Médecine Prédictive et de Recherche Thérapeutique, Centre de Recherches Jean-Pierre Aubert, Université Lille 2, Place de Verdun, F-59045 Lille, France
| | - Nicolas Sergeant
- INSERM, U837, Neurodegenerative Disorders and Neuronal Death, Centre de Recherches Jean-Pierre Aubert, Université Lille 2, Place de Verdun, F-59045 Lille, France; Facultéde Médecine, Institut de Médecine Prédictive et de Recherche Thérapeutique, Centre de Recherches Jean-Pierre Aubert, Université Lille 2, Place de Verdun, F-59045 Lille, France.
| |
Collapse
|
26
|
Hook VYH. Unique neuronal functions of cathepsin L and cathepsin B in secretory vesicles: biosynthesis of peptides in neurotransmission and neurodegenerative disease. Biol Chem 2006; 387:1429-39. [PMID: 17081116 DOI: 10.1515/bc.2006.179] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Proteases are required for the production of peptide neurotransmitters and toxic peptides in neurodegenerative diseases. Unique roles of the cysteine proteases cathepsin L and cathepsin B in secretory vesicles for the production of biologically active peptides have been demonstrated in recent studies. Secretory vesicle cathepsin L participates in the proteolytic conversion of proenkephalin into the active enkephalin, an opioid peptide neurotransmitter that mediates pain relief. Moreover, recent findings provide evidence that cathepsin B in regulated secretory vesicles participates in the production of toxic beta-amyloid peptides that are known to accumulate extracellularly in Alzheimer's disease brains. The neurobiological functions of cathepsins L and B demonstrate that these secretory vesicle cysteine proteases produce biologically active peptides. These results demonstrate newly identified roles for cathepsins L and B in neurosecretory vesicles in the production of biologically active peptides.
Collapse
Affiliation(s)
- Vivian Y H Hook
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, School of Medicine, University of California at San Diego, La Jolla, 92093-0744, USA.
| |
Collapse
|
27
|
Lenzken SC, Lanni C, Govoni S, Lucchelli A, Schettini G, Racchi M. Nicotinic component of galantamine in the regulation of amyloid precursor protein processing. Chem Biol Interact 2006; 165:138-45. [PMID: 17196952 DOI: 10.1016/j.cbi.2006.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 11/23/2006] [Accepted: 11/24/2006] [Indexed: 12/30/2022]
Abstract
Current therapies for Alzheimer's disease treatment rely mainly on acetylcholinesterase inhibitors, improving central cholinergic neurotransmission. Among these molecules, galantamine (GAL) has an interesting pharmacological profile as it is both a reversible acetylcholinesterase inhibitor and an allosteric potentiator of nicotinic cholinergic receptors. We investigated the effect of GAL on the metabolism of the amyloid precursor protein (APP) in differentiated SH-SY5Y neuroblastoma cells. The rationale was based on the suggestion that cholinergic activity may also be involved in the regulation of APP metabolism. We studied the acute effect on APP metabolism measuring the secretion of sAPPalpha in the conditioned medium of cells. Following 2h treatment, GAL 10microM promoted a strong increase in the release of sAPPalpha, the maximal effect approaching on average three-fold baseline value. The compound appeared to increase the release of sAPPalpha, with a mechanism dependent upon an indirect cholinergic stimulation. The effect of GAL was prevented by pre-treatment with alpha-bungarotoxin (40nM) but not low (nanomolar) atropine concentrations, suggesting the specific involvement of nicotinic cholinergic receptors.
Collapse
Affiliation(s)
- Silvia C Lenzken
- Department of Experimental and Applied Pharmacology, Centre of Excellence in Applied Biology, University of Pavia, Viale Taramelli 14, CAP 27100 Pavia, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Schliebs R, Arendt T. The significance of the cholinergic system in the brain during aging and in Alzheimer's disease. J Neural Transm (Vienna) 2006; 113:1625-44. [PMID: 17039298 DOI: 10.1007/s00702-006-0579-2] [Citation(s) in RCA: 379] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Accepted: 09/27/2006] [Indexed: 12/11/2022]
Abstract
Acetylcholine is widely distributed in the nervous system and has been implicated to play a critical role in cerebral cortical development, cortical activity, controlling cerebral blood flow and sleep-wake cycle as well as in modulating cognitive performances and learning and memory processes. Cholinergic neurons of the basal forebrain complex have been described to undergo moderate degenerative changes during aging, resulting in cholinergic hypofunction that has been related to the progressing memory deficits with aging. Basal forebrain cholinergic cell loss is also a consistent feature of Alzheimer's disease, which has been suggested to cause, at least partly, the cognitive deficits observed, and has led to the formulation of the cholinergic hypotheses of geriatric memory dysfunction. Impaired cortical cholinergic neurotransmission may also contribute to beta-amyloid plaque pathology and increase phosphorylation of tau protein the main component of neurofibrillar tangles in Alzheimer's disease. Understanding the molecular mechanisms underlying the interrelationship between cortical cholinergic dysfunction, beta-amyloid formation and deposition, and tau pathology in Alzheimer's disease, would allow to derive potential treatment strategies to pharmacologically intervene in the disease-causing signaling cascade.
Collapse
Affiliation(s)
- R Schliebs
- Department of Neurochemistry, Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany.
| | | |
Collapse
|
29
|
Hook VYH. Protease pathways in peptide neurotransmission and neurodegenerative diseases. Cell Mol Neurobiol 2006; 26:449-69. [PMID: 16724274 DOI: 10.1007/s10571-006-9047-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Accepted: 03/03/2006] [Indexed: 02/01/2023]
Abstract
1. Recent research demonstrates the critical importance of neuroproteases for the production of peptide neurotransmitters, and for the production of toxic peptides in major neurodegenerative diseases that include Alzheimer's (AD) and Huntington's diseases. This review describes the strategies utilized to identify the appropriate proteases responsible for producing active peptides for neurotransmission, with application of such approaches for defining protease mechanisms in neurodegenerative diseases. 2. Integration of multidisciplinary approaches in neurobiology, biochemistry, chemistry, proteomics, molecular biology, and genetics has been utilized for neuroprotease studies. These investigations have identified secretory vesicle cathepsin L for the production of the enkephalin opioid peptide neurotransmitter and other neuropeptides. Furthermore, new results using these strategies have identified secretory vesicle cathepsin B for the production of beta-amyloid (Abeta) in the major regulated secretory pathway that provides activity-dependent secretion of Abeta peptides, which accumulate in AD. 3. CNS neuroproteases that participate in peptide neurotransmission and in neurodegenerative diseases represent new candidate drug targets that may be explored in future research for the development of novel therapeutic agents for neurological conditions.
Collapse
Affiliation(s)
- Vivian Y H Hook
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive MC 0744, La Jolla, CA 92093-0324, USA.
| |
Collapse
|
30
|
Gutala R, Wang J, Hwang YY, Haq R, Li MD. Nicotine modulates expression of amyloid precursor protein and amyloid precursor-like protein 2 in mouse brain and in SH-SY5Y neuroblastoma cells. Brain Res 2006; 1093:12-9. [PMID: 16707114 DOI: 10.1016/j.brainres.2006.03.100] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 03/13/2006] [Accepted: 03/22/2006] [Indexed: 12/22/2022]
Abstract
Epidemiological studies indicate that tobacco smoking can be protective against neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). The objective of the present study was to examine the changes in gene expression induced by chronic oral nicotine administration (100 mug/ml in 2% saccharin for 14 days), with special emphasis on amyloid precursor protein (APP) and its homologue, amyloid precursor-like protein 2 (APLP2), in different brain regions of C57BL/6 mice using a pathway-focused microarray. Our results revealed that nicotine stimulated mRNA expression of APP in the amygdala (64%; P = 0.003) and hippocampus (32%; P = 0.034) and of APLP2 in the amygdala (39%; P = 0.002). These results were verified by quantitative real-time RT-PCR except that expression of APLP2 was also significantly upregulated by nicotine in the hippocampus. In addition, in vitro nicotine treatment of SH-SY5Y neuroblastoma cells resulted in a significant increase in expression of APP protein, soluble APP, and APLP2, whereas co-treatment with mecamylamine (an antagonist of nicotinic acetylcholine receptors) attenuated the stimulating effect of nicotine on APP and APLP2 expression. These findings suggest that nicotine treatment facilitates the increase in the expression of mRNA and protein of the APP and APLP2 genes in rat brain and SH-SY5Y neuroblastoma cells.
Collapse
Affiliation(s)
- Ramana Gutala
- Department of Psychiatric Medicine, Section of Neurobiology, University of Virginia, 1670 Discovery Drive, Suite 110, Charlottesville, VA 22911, USA
| | | | | | | | | |
Collapse
|
31
|
Schliebs R. Basal forebrain cholinergic dysfunction in Alzheimer's disease--interrelationship with beta-amyloid, inflammation and neurotrophin signaling. Neurochem Res 2006; 30:895-908. [PMID: 16187224 DOI: 10.1007/s11064-005-6962-9] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2005] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease, the most common neurodegenerative disorder of senile dementia, is characterized by two major morpho-pathological hallmarks. Deposition of extracellular neuritic, beta-amyloid peptide-containing plaques (senile plaques) in cerebral cortical regions of Alzheimer patients is accompanied by the presence of intracellular neurofibrillary tangles in cerebral pyramidal neurons. Basal forebrain cholinergic dysfunction is also a consistent feature of Alzheimer's disease, which has been suggested to cause, at least partly, the cognitive deficits observed in patients with Alzheimer's disease. Impaired cortical cholinergic neurotransmission may also contribute to beta-amyloid plaque pathology in Alzheimer's disease by affecting expression and processing of the beta-amyloid precursor protein (APP). Vice versa, low level of soluble beta-amyloid has been observed to inhibit cholinergic synaptic function. Deposition of beta-amyloid plaques in Alzheimer's disease is also accompanied by a significant plaque-associated glial up-regulation of interleukin-1, which has been attributed to affect expression and metabolism of APP and to interfere with cholinergic transmission. Understanding the molecular mechanisms underlying the interrelationship between cortical cholinergic dysfunction, beta-amyloid formation and deposition, as well as local inflammatory upregulation, would allow to derive potential treatment strategies to pharmacologically intervene in the disease-causing signaling cascade.
Collapse
Affiliation(s)
- Reinhard Schliebs
- Paul Flechsig Institute for Brain Research, Department of Neurochemistry, University of Leipzig, Jahnallee 59, D-04109 Leipzig, Germany.
| |
Collapse
|
32
|
Collin RWJ, van den Hurk WH, Martens GJM. Biosynthesis and differential processing of two pools of amyloid-β precursor protein in a physiologically inducible neuroendocrine cell. J Neurochem 2005; 94:1015-24. [PMID: 16092943 DOI: 10.1111/j.1471-4159.2005.03243.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The amyloid-beta precursor protein (APP) is linked to Alzheimer's disease through its pathological proteolytic processing in the secretory pathway. Nevertheless, surprisingly little is known about the biosynthesis of endogenous APP. We therefore decided to investigate the intracellular fate of newly synthesized APP in a physiologically inducible neuroendocrine cell, the Xenopus intermediate pituitary melanotrope cell. We found that the level of both APP mRNA and protein was about threefold induced in the activated cells of black-adapted animals. Intriguingly, two pools of APP were found, only one of which was up-regulated. This induced pool became readily N- and subsequently O-glycosylated and was eventually proteolytically processed by an alpha-secretase-like cleavage event resulting in a secreted N-terminal and a cell-associated C-terminal APP fragment. Conversely, only the other (non-induced, non-glycosylated and uncleaved) pool became phosphorylated. Thus, we report on the biosynthesis of APP in a physiological context and illuminate the occurrence of two pools of APP, one of which is linked to neuroendocrine cell activation.
Collapse
Affiliation(s)
- Rob W J Collin
- Department of Molecular Animal Physiology, Nijmegen Center for Molecular Life Sciences and Institute for Neuroscience, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | | |
Collapse
|
33
|
Hook VYH, Reisine TD. Cysteine proteases are the major ?-secretase in the regulated secretory pathway that provides most of the ?-amyloid in Alzheimer's disease: Role of BACE 1 in the constitutive secretory pathway. J Neurosci Res 2003; 74:393-405. [PMID: 14598316 DOI: 10.1002/jnr.10784] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This article focuses on beta-amyloid (Abeta) peptide production and secretion in the regulated secretory pathway and how this process relates to accumulation of toxic Abeta in Alzheimer's disease. New findings are presented demonstrating that most of the Abeta is produced and secreted, in an activity-dependent manner, through the regulated secretory pathway in neurons. Only a minor portion of cellular Abeta is secreted via the basal, constitutive secretory pathway. Therefore, regulated secretory vesicles contain the primary beta-secretases that are responsible for producing the majority of secreted Abeta. Investigation of beta-secretase activity in regulated secretory vesicles of neuronal chromaffin cells demonstrated that cysteine proteases account for the majority of the beta-secretase activity. BACE 1 is present in regulated secretory vesicles but provides only a small percentage of the beta-secretase activity. Moreover, the cysteine protease activities prefer to cleave the wild-type beta-secretase site, which is relevant to the majority of AD cases. In contrast, BACE 1 prefers to cleave the Swedish mutant beta-secretase site that is expressed in a minor percentage of the AD population. These new findings lead to a unifying hypothesis in which cysteine proteases are the major beta-secretases for the production of Abeta in the major regulated secretory pathway and BACE 1 is the beta-secretase responsible for Abeta production in the minor constitutive secretory pathway. These results indicate that inhibition of multiple proteases may be needed to decrease Abeta production as a therapeutic strategy for Alzheimer's disease.
Collapse
|
34
|
Tezapsidis N, Merz PA, Merz G, Hong H. Microtubular interactions of presenilin direct kinesis of Abeta peptide and its precursors. FASEB J 2003; 17:1322-4. [PMID: 12738804 DOI: 10.1096/fj.02-0980fje] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In our previous study we demonstrated that presenilin 1 (PS1) interacts with cytoplasmic linker protein 170/Restin (CLIP-170/Restin). Herein we show that disruption of the interaction of these proteins within neuronal cell-lines (SY5Y and N2a) can be accomplished by the transfection of vectors that drive the expression of peptide fragments corresponding to their binding domains (BDPs). Interestingly, the disruption of the PS1/CLIP-170 complex is associated with both decreased secretion of endogenous Abeta and decreased uptake of exogenous Abeta from the medium. BDP-expressing cells were also more resistant to surges of Abeta secretion induced by thapsigargin and ionomycin (that elevate intracellular calcium concentrations) and mutations in PS1 linked to familial Alzheimer's disease. Uptake of Abeta by SY5Y cells was amplified when preincubated with ApoE and was mediated through lipoprotein receptor-related protein (LRP). BDP-expressing cells or cells treated with PS1 anti-sense oligonucleotides were less capable of taking up Abeta from the medium compared with controls, indicating that the PS1/CLIP-170 interaction is involved and that PS1 cannot be substituted. In this study, we also mapped the minimum binding domains (mBDPs) of PS1 and CLIP-70 to regions corresponding to the N-terminal end of the large cytoplasmic loop of PS1 and the metal binding motif-containing C-terminal end of CLIP-170. Further, our data obtained from experiments involving in vitro taxol-polymerization of tubulin and confocal immunofluorescence suggest that PS1, via CLIP-170, may serve as an anchor to the microtubules for specific subcellular fractions containing amyloidogenic fragments. Interestingly, Notch is absent from this population of microtubule binding subcellular fractions and its cleavage was unaffected in cells transfected with the PS1-based BDP. This raises the possibility that the interaction of PS1 with CLIP-170 could provide the conceptual basis for anti-amyloidogenic therapeutic strategies with improved specificity. However, this approach may be hampered by a low efficiency, because it may also block Abeta clearance from the interstitial space of the CNS.
Collapse
Affiliation(s)
- Nikolaos Tezapsidis
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Pathology, College of Physicians and Surgeons, Columbia University, P&S 15-408, 630 W. 168th St., New York, NY 10032, USA.
| | | | | | | |
Collapse
|
35
|
Abstract
Activation of neuronal nicotinic acetylcholine receptors (nAChRs) has been shown to maintain cognitive function following aging or the development of dementia. Nicotine and nicotinic agonists have been shown to improve cognitive function in aged or impaired subjects. Smoking has also been shown in some epidemiological studies to be protective against the development of neurodegenerative diseases. This is supported by animal studies that have shown nicotine to be neuroprotective both in vivo and in vitro. Treatment with nicotinic agonists may therefore be useful in both slowing the progression of neurodegenerative illnesses, and improving function in patients with the disease. While increased nicotinic function has been shown to be beneficial, loss of cholinergic markers is often seen in patients with dementia, suggesting that decreased cholinergic function could contribute to both the cognitive deficits, and perhaps the neuronal degeneration, associated with dementia. In this article we will review the literature on each of these areas. We will also present hypotheses that might address the mechanisms underlying the ability of nAChR function to protect against neurodegeneration or improve cognition, two potentially distinct actions of nicotine.
Collapse
Affiliation(s)
- Marina R Picciotto
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, Connecticut 06508, USA.
| | | |
Collapse
|
36
|
Gonos ES, Agrafiotis D, Dontas AS, Efthimiopoulos S, Galaris D, Karamanos NK, Kletsas D, Kolettas E, Panayotou G, Pratsinis H, Sekeri-Pataryas KE, Simoes D, Sourlingas TG, Stathakos D, Stratigos AJ, Tavernarakis N, Trougakos IP, Tsiganos CP, Vynios DH. Ageing research in Greece. Exp Gerontol 2002; 37:735-47. [PMID: 12175474 DOI: 10.1016/s0531-5565(02)00017-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ageing research in Greece is well established. Research groups located in universities, research institutes or public hospitals are studying various and complementary aspects of ageing. These research activities include (a) functional analysis of Clusterin/Apolipoprotein J, studies in healthy centenarians and work on protein degradation and the role of proteasome during senescence at the National Hellenic Research Foundation; (b) regulation of cell proliferation and tissue formation, a nationwide study of determinants and markers of successful ageing in Greek centenarians and studies of histone gene expression and acetylation at the National Center for Scientific Research, Demokritos; (c) work on amyloid precursor protein and Presenilin 1 at the University of Athens; (d) oxidative stress-induced DNA damage and the role of oncogenes in senescence at the University of Ioannina; (e) studies in the connective tissue at the University of Patras; (f) proteomic studies at the Biomedical Sciences Research Center Alexander Fleming; (g) work on Caenorhabditis elegans at the Foundation for Research and Technology; (h) the role of ultraviolet radiation in skin ageing at Andreas Sygros Hospital; (i) follow-up studies in healthy elderly at the Athens Home for the Aged; and (j) socio-cultural aspects of ageing at the National School of Public Health. These research activities are well recognized by the international scientific community as it is evident by the group's very good publication records as well as by their direct funding from both European Union and USA. This article summarizes these research activities and discuss future directions and efforts towards the further development of the ageing field in Greece.
Collapse
Affiliation(s)
- E S Gonos
- Laboratory of Molecular and Cellular Ageing, Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, 11635 Athens, Greece.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hook VYH, Toneff T, Aaron W, Yasothornsrikul S, Bundey R, Reisine T. Beta-amyloid peptide in regulated secretory vesicles of chromaffin cells: evidence for multiple cysteine proteolytic activities in distinct pathways for beta-secretase activity in chromaffin vesicles. J Neurochem 2002; 81:237-56. [PMID: 12064471 DOI: 10.1046/j.1471-4159.2002.00794.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A key factor in Alzheimer's disease (AD) is the beta-secretase activity that is required for the production of beta-amyloid (Abeta) peptide from its amyloid precursor protein (APP) precursor. In this study, the majority of Abeta secretion from neuronal chromaffin cells was found to occur via the regulated secretory pathway, compared with the constitutive secretory pathway; therefore, beta-secretase activity in the regulated secretory pathway was examined for the production and secretion of Abeta in chromaffin cells obtained from in vivo adrenal medullary tissue. The presence of Abeta(1-40) in APP-containing chromaffin vesicles, which represent regulated secretory vesicles, was demonstrated by radioimmunoassay (RIA) and reverse-phase high-performance liquid chromatography. These vesicles also contain Abeta(1-42), measured by RIA. Significantly, regulated secretion of Abeta(1-40) from chromaffin cells represented the majority of secreted Abeta (> 95% of total secreted Abeta), compared with low levels of constitutively secreted Abeta(1-40). These results indicate the importance of Abeta production and secretion in the regulated secretory pathway as a major source of extracellular Abeta. Beta-secretase activity in isolated chromaffin vesicles was detected with the substrate Z-Val-Lys-Met-/MCA (methylcoumarinamide) that contains the beta-secretase cleavage site. Optimum beta-secretase activity in these vesicles required reducing conditions and acidic pH (pH 5-6), consistent with the in vivo intravesicular environment. Evidence for cysteine protease activity was shown by E64c inhibition of Z-Val-Lys-Met-MCA-cleaving activity, and E64c inhibition of Abeta(1-40) production in isolated chromaffin vesicles. Chromatography resolved the beta-secretase activity into two distinct proteolytic pathways consisting of: (i) direct cleavage of the beta-secretase site at Met-/Asp by two cysteine proteolytic activities represented by peaks Il-A and Il-B, and (ii) an aminopeptidase-dependent pathway represented by peak I cysteine protease activity that cleaves between Lys-/Met, followed by Met-aminopeptidase that would generate the beta-secretase cleavage site. Treatment of chromaffin cells in primary culture with the cysteine protease inhibitor E64d reduced the production of the beta-secretase product, a 12-14 kDa C-terminal APP fragment. In addition, BACE 1 and BACE 2 were detected in chromaffin vesicles; BACE 1 represented a small fraction of total beta-secretase activity in these vesicles. These results illustrate that multiple cysteine proteases, in combination with BACE 1, contribute to beta-secretase activity in the regulated secretory pathway. These results complement earlier findings for BACE 1 as beta3-secretase for Abeta production in the constitutive secretory pathway that provides basal secretion of Abeta into conditioned media. These findings suggest that drug inhibition of several proteases may be required for reducing Abeta levels as a potential therapeutic approach for AD.
Collapse
Affiliation(s)
- Vivian Y H Hook
- Buck Institute for Age Research, Novato, California 94945, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Hamilton SE, Nathanson NM. The M1 receptor is required for muscarinic activation of mitogen-activated protein (MAP) kinase in murine cerebral cortical neurons. J Biol Chem 2001; 276:15850-3. [PMID: 11278934 DOI: 10.1074/jbc.m011563200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Muscarinic acetylcholine receptors (mAChR) in the central nervous system are involved in learning and memory, epileptic seizures, and processing the amyloid precursor protein. The M(1) receptor is the predominant mAChR subtype in the cortex and hippocampus. Although the five mAChR fall into two broad functional groups, all five subtypes, when expressed in recombinant systems, can activate the mitogen-activated protein kinase (MAPK) pathway. The MAPK pathway has been implicated in learning and memory, amyloid protein processing, and neuronal plasticity. We used M(1) knock-out mice to determine the role of this receptor subtype in signal transduction in the mouse forebrain. In primary cortical cultures from mice lacking the M(1) mAChR, agonist-stimulated phosphoinositide hydrolysis was reduced by more than 60% compared with cultures from wild type mice. Although muscarinic agonists induced robust activation of MAPK in cortical cultures from wild type mice, mAChR-mediated activation of MAPK was virtually absent in cultures from M(1)-deficient mice. These results indicate that the M(1) mAChR is the major subtype that mediates activation of phospholipase C and MAPK in mouse forebrain.
Collapse
Affiliation(s)
- S E Hamilton
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195-7750, USA
| | | |
Collapse
|
39
|
Yan X, Xiao R, Dou Y, Wang S, Qiao Z, Qiao J. Carbachol blocks beta-amyloid fragment 31-35-induced apoptosis in cultured cortical neurons. Brain Res Bull 2000; 51:465-70. [PMID: 10758335 DOI: 10.1016/s0361-9230(99)00255-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We reported previously that many neurodegenerative changes characteristic of apoptosis could be induced by a short fragment of beta-amyloid protein, A(beta31-35), in cultured newborn mice cortical neurons, and that these changes were accompanied with alterations in expression of some genes. This study was designed to examine whether the apoptotic processes and related gene modulations in this model could be affected by coadministration of carbachol by electrophoretic analysis for DNA ladder formation and by RT-PCR assays for genomic modulation. The results showed that (1) simultaneous incubation with carbachol dose- and time-dependently blocked the specific DNA ladder formation induced by exposure to A(beta31-35) and (2) the A(beta31-35)-induced downregulation of bcl-2 and upregulations of bax, p53, and c-fos genes were reversed or ameliorated by the coadministration of carbachol. It is proposed that A(beta31-35)-induced apoptosis can be prevented by carbachol through mechanisms that modulate the expression of related genes.
Collapse
Affiliation(s)
- X Yan
- Department of Neurobiology, Shanxi Medical University, Taiyuan, China
| | | | | | | | | | | |
Collapse
|
40
|
Hellström-Lindahl E. Modulation of beta-amyloid precursor protein processing and tau phosphorylation by acetylcholine receptors. Eur J Pharmacol 2000; 393:255-63. [PMID: 10771022 DOI: 10.1016/s0014-2999(00)00028-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurofibrillary lesions and senile plaques that are composed mainly of hyperphosphorylated tau protein and the amyloid-beta peptide derived from the amyloid precursor protein, respectively, are classical hallmarks of Alzheimer's disease. A number of studies strongly suggests that amyloid-beta formation and amyloid depositions are linked to the pathogenesis of Alzheimer's disease. Recent findings suggest that very low concentrations of the amyloid-beta can inhibit various cholinergic neurotransmitter functions independently of apparent neurotoxicity. Many factors have been shown to influence the processing of amyloid precursor protein, including activation of muscarinic and nicotinic receptors. This review focus on some recent studies concerning the regulation of amyloid precursor protein processing and modulation of tau phosphorylation by acetylcholine receptor stimulation and how cholinergic deficits and amyloid-beta might be related to one another.
Collapse
Affiliation(s)
- E Hellström-Lindahl
- Department of Clinical Neuroscience, Occupational Therapy and Elderly Care Research, Division of Molecular Neuropharmacology, Karolinska Institutet, Huddinge University Hospital, Sweden.
| |
Collapse
|
41
|
Nicotine enhances the biosynthesis and secretion of transthyretin from the choroid plexus in rats: implications for beta-amyloid formation. J Neurosci 2000. [PMID: 10662821 DOI: 10.1523/jneurosci.20-04-01318.2000] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Epidemiological studies indicated that cigarette smoking protects against the development of several neurodegenerative disorders, including Alzheimer's disease (AD). However, the molecular mechanism(s) underlying this is poorly understood. To gain insight into these protective effects, we used differential display PCR (DD-PCR) to amplify RNA from various brain regions of rats self-administering (SA) nicotine compared with yoked-saline controls. We found that the transthyretin (TTR) gene, whose product has been shown to bind to amyloid beta (Abeta) protein and prevent Abeta aggregation, was more abundantly expressed ( approximately 1.5- to 2.0-fold) in the brainstem and hippocampus (areas containing choroid plexus) of nicotine SA rats. Subsequently, quantitative reverse transcription-PCR analysis confirmed these DD-PCR findings and demonstrated that nicotine increased TTR mRNA levels in these regions in a time- and dose-dependent manner. Significantly higher TTR protein concentrations were also detected in the ventricular CSF of nicotine-treated rats. In contrast, no differences either in plasma TTR or in CSF and plasma retinol-binding protein were detected. Immunohistochemical analysis showed that immunoreactive TTR was 41.5% lower in the choroid plexus of nicotine-treated rats compared with the saline controls. On the basis of these data, we speculate that the protective effects of nicotine on the development of AD may be attributable, in part, to the increased biosynthesis and secretion of TTR from the choroid plexus. These findings also point toward new approaches that may take advantage of the potentially novel therapeutic effects of nicotinic agonists in patients with AD.
Collapse
|
42
|
Li MD, Kane JK, Matta SG, Blaner WS, Sharp BM. Nicotine enhances the biosynthesis and secretion of transthyretin from the choroid plexus in rats: implications for beta-amyloid formation. J Neurosci 2000; 20:1318-23. [PMID: 10662821 PMCID: PMC6772385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/1999] [Revised: 11/23/1999] [Accepted: 11/29/1999] [Indexed: 02/15/2023] Open
Abstract
Epidemiological studies indicated that cigarette smoking protects against the development of several neurodegenerative disorders, including Alzheimer's disease (AD). However, the molecular mechanism(s) underlying this is poorly understood. To gain insight into these protective effects, we used differential display PCR (DD-PCR) to amplify RNA from various brain regions of rats self-administering (SA) nicotine compared with yoked-saline controls. We found that the transthyretin (TTR) gene, whose product has been shown to bind to amyloid beta (Abeta) protein and prevent Abeta aggregation, was more abundantly expressed ( approximately 1.5- to 2.0-fold) in the brainstem and hippocampus (areas containing choroid plexus) of nicotine SA rats. Subsequently, quantitative reverse transcription-PCR analysis confirmed these DD-PCR findings and demonstrated that nicotine increased TTR mRNA levels in these regions in a time- and dose-dependent manner. Significantly higher TTR protein concentrations were also detected in the ventricular CSF of nicotine-treated rats. In contrast, no differences either in plasma TTR or in CSF and plasma retinol-binding protein were detected. Immunohistochemical analysis showed that immunoreactive TTR was 41.5% lower in the choroid plexus of nicotine-treated rats compared with the saline controls. On the basis of these data, we speculate that the protective effects of nicotine on the development of AD may be attributable, in part, to the increased biosynthesis and secretion of TTR from the choroid plexus. These findings also point toward new approaches that may take advantage of the potentially novel therapeutic effects of nicotinic agonists in patients with AD.
Collapse
Affiliation(s)
- M D Li
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, Tennessee 38163, USA.
| | | | | | | | | |
Collapse
|
43
|
Huang W, Hu S, Pang D, Wang Z, Cheng J. Monitoring the secretion from single cells with temporal and spatial resolution. ACTA ACUST UNITED AC 2000. [DOI: 10.1007/bf02909756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
LeBlanc AC, Goodyer CG. Role of endoplasmic reticulum, endosomal-lysosomal compartments, and microtubules in amyloid precursor protein metabolism of human neurons. J Neurochem 1999; 72:1832-42. [PMID: 10217259 DOI: 10.1046/j.1471-4159.1999.0721832.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A wide interest in amyloid precursor protein (APP) metabolism stems from the fact that increased amounts of amyloid beta peptide (Abeta), arising through proteolytic processing of APP, likely play a significant role in Alzheimer's disease. As Alzheimer's disease pathology is limited almost exclusively to the human species, we established human primary neuron cultures to address the possibility of distinctive APP processing in human CNS neurons. In the present study, we investigate the role of organelles and protein trafficking in APP metabolism. Using brefeldin A, we failed to detect APP processing into Abeta in the endoplasmic reticulum. Monensin and the lysomotropic agents, NH4Cl and chloroquine, revealed a bypass pH-dependent secretory pathway in a compartment between the endoplasmic reticulum and the medial Golgi, resulting in the secretion of full-length APP. Colchicine treatment resulting in the loss of neurites inhibited processing of APP through the secretory, but not the endosomal-lysosomal, pathway of APP metabolism. The serine protease inhibitor, leupeptin, indicates a role for lysosomes in APP, Abeta, and APP C-terminal fragment turnover. These results demonstrate that the regulation of APP metabolism in human neurons differs considerably from those reported in rodent CNS primary neuron cultures or continuously dividing cell types.
Collapse
Affiliation(s)
- A C LeBlanc
- Department of Neurology and Neurosurgery, McGill University, and Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Mortimer B. Davis Jewish General Hospital, Montréal, Québec, Canada
| | | |
Collapse
|
45
|
Figueiredo-Pereira ME, Efthimiopoulos S, Tezapsidis N, Buku A, Ghiso J, Mehta P, Robakis NK. Distinct secretases, a cysteine protease and a serine protease, generate the C termini of amyloid beta-proteins Abeta1-40 and Abeta1-42, respectively. J Neurochem 1999; 72:1417-22. [PMID: 10098844 DOI: 10.1046/j.1471-4159.1999.721417.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The carboxy-terminal ends of the 40- and 42-amino acids amyloid beta-protein (Abeta) may be generated by the action of at least two different proteases termed gamma(40)- and gamma(42)-secretase, respectively. To examine the cleavage specificity of the two proteases, we treated amyloid precursor protein (APP)-transfected cell cultures with several dipeptidyl aldehydes including N-benzyloxycarbonyl-Leu-leucinal (Z-LL-CHO) and the newly synthesized N-benzyloxycarbonyl-Val-leucinal (Z-VL-CHO). All dipeptidyl aldehydes tested inhibited production of both Abeta1-40 and Abeta1-42. Changes in the P1 and P2 residues of these aldehydes, however, indicated that the amino acids occupying these positions are important for the efficient inhibition of gamma-secretases. Peptidyl aldehydes inhibit both cysteine and serine proteases, suggesting that the two gamma-secretases belong to one of these mechanistic classes. To differentiate between the two classes of proteases, we treated our cultures with the specific cysteine protease inhibitor E-64d. This agent inhibited production of secreted Abeta1-40, with a concomitant accumulation of its cellular precursor indicating that gamma(40)-secretase is a cysteine protease. In contrast, this treatment increased production of secreted Abeta1-42. No inhibition of Abeta production was observed with the potent calpain inhibitor I (acetyl-Leu-Leu-norleucinal), suggesting that calpain is not involved. Together, these results indicate that gamma(40)-secretase is a cysteine protease distinct from calpain, whereas gamma(42)-secretase may be a serine protease. In addition, the two secretases may compete for the same substrate. Dipeptidyl aldehyde treatment of cultures transfected with APP carrying the Swedish mutation resulted in the accumulation of the beta-secretase C-terminal APP fragment and a decrease of the alpha-secretase C-terminal APP fragment, indicating that this mutation shifts APP cleavage from the alpha-secretase site to the beta-secretase site.
Collapse
|
46
|
Prostaglandin E2 stimulates amyloid precursor protein gene expression: inhibition by immunosuppressants. J Neurosci 1999. [PMID: 9920657 DOI: 10.1523/jneurosci.19-03-00940.1999] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Amyloid plaques that accumulate in the brains of patients with Alzheimer's disease (AD) are primarily composed of aggregates of amyloid peptides that are derived from the amyloid precursor protein (APP). Overexpression of APP in cell cultures increases the formation of amyloidogenic peptides and causes neurodegeneration and cognitive dysfunction in transgenic mice. We now report that activation of prostaglandin E2 (PGE2) receptors increases cAMP formation and stimulates overexpression of APP mRNA and holoprotein in primary cultures of cortical astrocytes. Levels of glial fibrillary acidic protein were also increased by PGE2 treatment, suggesting that these cultured astrocytes resemble reactive astrocytes found in vivo. The stimulation by PGE2 of APP synthesis was mimicked or blocked by activators or inhibitors, respectively, of protein kinase A. Actinomycin D or cycloheximide also inhibited the increase in APP holoprotein stimulated by PGE2. Treatment of astrocytes with 8-Bromo-cAMP or forskolin for 24 hr also stimulated APP overexpression in cultured astrocytes. The immunosuppressants cyclosporin A and FK-506 inhibited the increase in APP mRNA and holoprotein levels caused by PGE2 or by other treatments that elevated cellular cAMP levels; the inhibitory effect of FK-506 but not of cyclosporin A was attenuated by rapamycin. These results suggest that prostaglandins produced by brain injury or inflammation can activate APP transcription in astrocytes and that immunosuppressants may be used to prevent APP overexpression and possibly the pathophysiological processes underlying AD.
Collapse
|
47
|
Lee RK, Knapp S, Wurtman RJ. Prostaglandin E2 stimulates amyloid precursor protein gene expression: inhibition by immunosuppressants. J Neurosci 1999; 19:940-7. [PMID: 9920657 PMCID: PMC6782137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
Amyloid plaques that accumulate in the brains of patients with Alzheimer's disease (AD) are primarily composed of aggregates of amyloid peptides that are derived from the amyloid precursor protein (APP). Overexpression of APP in cell cultures increases the formation of amyloidogenic peptides and causes neurodegeneration and cognitive dysfunction in transgenic mice. We now report that activation of prostaglandin E2 (PGE2) receptors increases cAMP formation and stimulates overexpression of APP mRNA and holoprotein in primary cultures of cortical astrocytes. Levels of glial fibrillary acidic protein were also increased by PGE2 treatment, suggesting that these cultured astrocytes resemble reactive astrocytes found in vivo. The stimulation by PGE2 of APP synthesis was mimicked or blocked by activators or inhibitors, respectively, of protein kinase A. Actinomycin D or cycloheximide also inhibited the increase in APP holoprotein stimulated by PGE2. Treatment of astrocytes with 8-Bromo-cAMP or forskolin for 24 hr also stimulated APP overexpression in cultured astrocytes. The immunosuppressants cyclosporin A and FK-506 inhibited the increase in APP mRNA and holoprotein levels caused by PGE2 or by other treatments that elevated cellular cAMP levels; the inhibitory effect of FK-506 but not of cyclosporin A was attenuated by rapamycin. These results suggest that prostaglandins produced by brain injury or inflammation can activate APP transcription in astrocytes and that immunosuppressants may be used to prevent APP overexpression and possibly the pathophysiological processes underlying AD.
Collapse
Affiliation(s)
- R K Lee
- Division of Health Sciences and Technology, Massachusetts Institute of Technology-Harvard University, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
48
|
Hook VY, Sei C, Yasothornsrikul S, Toneff T, Kang YH, Efthimiopoulos S, Robakis NK, Van Nostrand W. The kunitz protease inhibitor form of the amyloid precursor protein (KPI/APP) inhibits the proneuropeptide processing enzyme prohormone thiol protease (PTP). Colocalization of KPI/APP and PTP in secretory vesicles. J Biol Chem 1999; 274:3165-72. [PMID: 9915856 DOI: 10.1074/jbc.274.5.3165] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteolytic processing of proenkephalin and proneuropeptides is required for the production of active neurotransmitters and peptide hormones. Variations in the extent of proenkephalin processing in vivo suggest involvement of endogenous protease inhibitors. This study demonstrates that "protease nexin 2 (PN2)," the secreted form of the kunitz protease inhibitor (KPI) of the amyloid precursor protein (APP), potently inhibited the proenkephalin processing enzyme known as prohormone thiol protease (PTP), with a Ki,app of 400 nM. Moreover, PTP and PN2 formed SDS-stable complexes that are typical of kunitz protease inhibitor interactions with target proteases. In vivo, KPI/APP (120 kDa), as well as a truncated form of KPI/APP that resembles PN2 in apparent molecular mass (110 kDa), were colocalized with PTP and (Met)enkephalin in secretory vesicles of adrenal medulla (chromaffin granules). KPI/APP (110-120 kDa) was also detected in pituitary secretory vesicles that contain PTP. In chromaffin cells, calcium-dependent secretion of KPI/APP with PTP and (Met)enkephalin demonstrated the colocalization of these components in functional secretory vesicles. These results suggest a role for KPI/APP inhibition of PTP in regulated secretory vesicles. In addition, these results are the first to identify an endogenous protease target of KPI/APP, which is developmentally regulated in aging and Alzheimer's disease.
Collapse
Affiliation(s)
- V Y Hook
- Department of Medicine and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0822, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Singh IN, Sorrentino G, Sitar DS, Kanfer JN. (-)Nicotine inhibits the activations of phospholipases A2 and D by amyloid beta peptide. Brain Res 1998; 800:275-81. [PMID: 9685679 DOI: 10.1016/s0006-8993(98)00532-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
It has been established that amyloid beta peptide (AbetaP) activates phospholipase A2, phospholipase C and phospholipase D of LA-N-2 cells and other cell types. Nicotine in addition to being a cholinergic agonist, may be neuroprotective. We have investigated the ability of (-)nicotine to blunt the phospholipase activations by AbetaP in LA-N-2 cells. (-)Nicotine inhibits the AbetaP activation of phospholipase A2, with an IC50 of 76 microM and of phospholipase D with an IC50 of 252 microM. (-)Nicotine did not blunt the AbetaP activation of phospholipase C. These inhibitions of AbetaP activations were not observed with (+)nicotine or cotinine. The (-)nicotine inhibition of AbetaP activation of these two phospholipases was unaffected by hexamethonium and D-tubocurarine. There was no inhibition of the phospholipase A2 activity present in homogenates of LA-N-2 cells. Exposure of LA-N-2 cells to (-)nicotine for 2 h resulted in the blockade of phospholipase A2 activation by kainate and AbetaP but did not affect the ability of quisqualate and AbetaP to activate phospholipase D. These data suggest that if the nicotine inhibition of AbetaP activations is receptor occupancy mediated then it is by an atypical receptor type.
Collapse
Affiliation(s)
- I N Singh
- Department of Biochemistry and Molecular Biology, University of Manitoba, 770 Bannatyne Avenue, Winnipeg, MB, Canada
| | | | | | | |
Collapse
|
50
|
Song W, Lahiri DK. Melatonin alters the metabolism of the beta-amyloid precursor protein in the neuroendocrine cell line PC12. J Mol Neurosci 1997; 9:75-92. [PMID: 9407389 DOI: 10.1007/bf02736852] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The deposition of amyloid plaques in brain parenchyma is one of the major pathological hallmarks of Alzheimer's disease (AD). The amyloid in senile plaques is composed of the amyloid beta-peptide (A beta) of 39-43 amino acid residues derived from a larger beta-amyloid precursor protein (beta APP). Soluble derivatives of beta APP (sAPP) lacking the cytoplasmic tail, transmembrane domain, and a small portion of the extracellular domain are generated proteolytically by "secretases." Using cell cultures, the authors analyzed the level of sAPP in neuroblastoma and pheochromocytoma (PC12) cells by immunoblotting samples from conditioned media and cell lysates. Normal levels of secretion of sAPP into conditioned media were severely inhibited by treating cells with melatonin (3-4 mM). The inhibitory effect of melatonin on the secretion of sAPP can be reversed. When the cells that were pretreated with melatonin for 10 h were washed, the normal level of secretion of sAPP was restored. Northern blot analyses indicated that the treatment of PC12 cells with melatonin resulted in a significant decrease in the level of mRNA encoding beta APP, beta-actin, and glyceraldehyde-3-phosphate dehydrogenase, and that the treatment of a human neuroblastoma cell line with melatonin resulted in no change in levels of these messages. The secretion of sAPP into the conditioned medium was substantially reduced in the differentiated cells similar to reductions observed in melatonin-treated undifferentiated PC12 cells. Melatonin was found to potentiate the nerve growth factor-mediated differentiation in PC12 cells at 24 h. Taken together, these data suggest that melatonin regulates the metabolism of beta APP and other housekeeping genes in a cell-type specific manner, and that melatonin accelerates the early process of neuronal differentiation.
Collapse
Affiliation(s)
- W Song
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis 46202, USA
| | | |
Collapse
|