1
|
Sánchez-Lozada LG, Madero M, Mazzali M, Feig DI, Nakagawa T, Lanaspa MA, Kanbay M, Kuwabara M, Rodriguez-Iturbe B, Johnson RJ. Sugar, salt, immunity and the cause of primary hypertension. Clin Kidney J 2023; 16:1239-1248. [PMID: 37529651 PMCID: PMC10387395 DOI: 10.1093/ckj/sfad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 08/03/2023] Open
Abstract
Despite its discovery more than 150 years ago, the cause of primary hypertension remains unknown. Most studies suggest that hypertension involves genetic, congenital or acquired risk factors that result in a relative inability of the kidney to excrete salt (sodium chloride) in the kidneys. Here we review recent studies that suggest there may be two phases, with an initial phase driven by renal vasoconstriction that causes low-grade ischemia to the kidney, followed by the infiltration of immune cells that leads to a local autoimmune reaction that maintains the renal vasoconstriction. Evidence suggests that multiple mechanisms could trigger the initial renal vasoconstriction, but one way may involve fructose that is provided in the diet (such as from table sugar or high fructose corn syrup) or produced endogenously. The fructose metabolism increases intracellular uric acid, which recruits NADPH oxidase to the mitochondria while inhibiting AMP-activated protein kinase. A drop in intracellular ATP level occurs, triggering a survival response. Leptin levels rise, triggering activation of the sympathetic central nervous system, while vasopressin levels rise, causing vasoconstriction in its own right and stimulating aldosterone production via the vasopressin 1b receptor. Low-grade renal injury and autoimmune-mediated inflammation occur. High-salt diets can amplify this process by raising osmolality and triggering more fructose production. Thus, primary hypertension may result from the overactivation of a survival response triggered by fructose metabolism. Restricting salt and sugar and hydrating with ample water may be helpful in the prevention of primary hypertension.
Collapse
Affiliation(s)
- Laura G Sánchez-Lozada
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología “Ignacio Chavez”, Mexico City, Mexico
| | - Magdalena Madero
- Division of Nephrology, Department of Medicine, Instituto Nacional de Cardiología “Ignacio Chavez”, Mexico City, Mexico
| | - Marilda Mazzali
- Division of Nephrology, University of Campinas, São Paulo, Brazil
| | - Daniel I Feig
- Division of Pediatric Nephrology, University of Alabama, Birmingham, AL, USA
| | | | - Miguel A Lanaspa
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Mehmet Kanbay
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | | | - Bernardo Rodriguez-Iturbe
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City
| | - Richard J Johnson
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| |
Collapse
|
2
|
Johnson RJ, Lee SMK, Sánchez-Lozada LG, Kanbay M, Bansal A, Tolan DR, Bjornstad P, Lanaspa MA, Maesaka J. Fructose: A New Variable to Consider in SIADH and the Hyponatremia Associated With Long-Distance Running? Am J Kidney Dis 2023; 82:105-112. [PMID: 36940740 PMCID: PMC10330032 DOI: 10.1053/j.ajkd.2023.01.443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/01/2023] [Indexed: 03/23/2023]
Abstract
Fructose has recently been proposed to stimulate vasopressin secretion in humans. Fructose-induced vasopressin secretion is not only postulated to result from ingestion of fructose-containing drinks but may also occur from endogenous fructose production via activation of the polyol pathway. This raises the question of whether fructose might be involved in some cases of vasopressin-induced hyponatremia, especially in situations where the cause is not fully known such as in the syndrome of inappropriate secretion of diuretic hormone (SIADH) and exercise-associated hyponatremia, which has been observed in marathon runners. Here we discuss the new science of fructose and vasopressin, and how it may play a role in some of these conditions, as well as in the complications associated with rapid treatment (such as the osmotic demyelination syndrome). Studies to test the role of fructose could provide new pathophysiologic insights as well as novel potential treatment strategies for these common conditions.
Collapse
Affiliation(s)
- Richard J Johnson
- Division of Renal Diseases and Hypertension, Anschutz Medical Campus, University of Colorado, Aurora, Colorado.
| | | | | | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, School of Medicine, Koc University, Istanbul, Turkey
| | - Anip Bansal
- Division of Renal Diseases and Hypertension, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - Dean R Tolan
- Biology Department, Boston University, Boston Massachusetts
| | - Petter Bjornstad
- Division of Renal Diseases and Hypertension, Anschutz Medical Campus, University of Colorado, Aurora, Colorado; Section of Endocrinology, Department of Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - Miguel A Lanaspa
- Division of Renal Diseases and Hypertension, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - John Maesaka
- Department of Medicine and Division of Nephrology and Hypertension, NYU Langone Hospitals, Mineola, New York
| |
Collapse
|
3
|
Johnson RJ, Tolan DR, Bredesen D, Nagel M, Sánchez-Lozada LG, Fini M, Burtis S, Lanaspa MA, Perlmutter D. Could Alzheimer's disease be a maladaptation of an evolutionary survival pathway mediated by intracerebral fructose and uric acid metabolism? Am J Clin Nutr 2023; 117:455-466. [PMID: 36774227 PMCID: PMC10196606 DOI: 10.1016/j.ajcnut.2023.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
An important aspect of survival is to assure enough food, water, and oxygen. Here, we describe a recently discovered response that favors survival in times of scarcity, and it is initiated by either ingestion or production of fructose. Unlike glucose, which is a source for immediate energy needs, fructose metabolism results in an orchestrated response to encourage food and water intake, reduce resting metabolism, stimulate fat and glycogen accumulation, and induce insulin resistance as a means to reduce metabolism and preserve glucose supply for the brain. How this survival mechanism affects brain metabolism, which in a resting human amounts to 20% of the overall energy demand, is only beginning to be understood. Here, we review and extend a previous hypothesis that this survival mechanism has a major role in the development of Alzheimer's disease and may account for many of the early features, including cerebral glucose hypometabolism, mitochondrial dysfunction, and neuroinflammation. We propose that the pathway can be engaged in multiple ways, including diets high in sugar, high glycemic carbohydrates, and salt. In summary, we propose that Alzheimer's disease may be the consequence of a maladaptation to an evolutionary-based survival pathway and what had served to enhance survival acutely becomes injurious when engaged for extensive periods. Although more studies are needed on the role of fructose metabolism and its metabolite, uric acid, in Alzheimer's disease, we suggest that both dietary and pharmacologic trials to reduce fructose exposure or block fructose metabolism should be performed to determine whether there is potential benefit in the prevention, management, or treatment of this disease.
Collapse
Affiliation(s)
- Richard J Johnson
- Department of Medicine, Rocky Mountain VA Medical Center, Aurora, CO, USA; Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA.
| | - Dean R Tolan
- Biology Department, Boston University, Boston, MA, USA
| | - Dale Bredesen
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Maria Nagel
- Department of Neurology, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Laura G Sánchez-Lozada
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, Mexico City, Mexico
| | - Mehdi Fini
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | | | - Miguel A Lanaspa
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | | |
Collapse
|
4
|
Role of high-salt diet in non-alcoholic fatty liver disease: a mini-review of the evidence. Eur J Clin Nutr 2022; 76:1053-1059. [PMID: 34773093 DOI: 10.1038/s41430-021-01044-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/11/2021] [Accepted: 10/22/2021] [Indexed: 11/08/2022]
Abstract
With the rising incidence of both obesity and diabetes, non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide. However, lifestyle intervention remains to be an effective approach for NAFLD due to lack of therapeutic medication. Recently, salt, an essential micronutrient free of calories, has raised a global concern owing to its wide-range healthy relevance. Accumulated evidence has suggested that a long-term high-salt diet (HSD) independently increases the risk of NAFLD. In the past decades, a number of studies have been reported regarding the mechanism of much investigation concerning HSD-induced NAFLD. Here, we review the updates in epidemiology and molecular mechanism of HSD-induced NAFLD and provide a novel insight into the role of HSD in the regulation of lipid metabolism.
Collapse
|
5
|
Seale AP, Malintha GHT, Celino-Brady FT, Head T, Belcaid M, Yamaguchi Y, Lerner DT, Baltzegar DA, Borski RJ, Stoytcheva ZR, Breves JP. Transcriptional regulation of prolactin in a euryhaline teleost: Characterisation of gene promoters through in silico and transcriptome analyses. J Neuroendocrinol 2020; 32:e12905. [PMID: 32996203 PMCID: PMC8612711 DOI: 10.1111/jne.12905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 07/31/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022]
Abstract
The sensitivity of prolactin (Prl) cells of the Mozambique tilapia (Oreochromis mossambicus) pituitary to variations in extracellular osmolality enables investigations into how osmoreception underlies patterns of hormone secretion. Through the actions of their main secretory products, Prl cells play a key role in supporting hydromineral balance of fishes by controlling the major osmoregulatory organs (ie, gill, intestine and kidney). The release of Prl from isolated cells of the rostral pars distalis (RPD) occurs in direct response to physiologically relevant reductions in extracellular osmolality. Although the particular signal transduction pathways that link osmotic conditions to Prl secretion have been identified, the processes that underlie hyposmotic induction of prl gene expression remain unknown. In this short review, we describe two distinct tilapia gene loci that encode Prl177 and Prl188 . From our in silico analyses of prl177 and prl188 promoter regions (approximately 1000 bp) and a transcriptome analysis of RPDs from fresh water (FW)- and seawater (SW)-acclimated tilapia, we propose a working model for how multiple transcription factors link osmoreceptive processes with adaptive patterns of prl177 and prl188 gene expression. We confirmed via RNA-sequencing and a quantitative polymerase chain reaction that multiple transcription factors emerging as predicted regulators of prl gene expression are expressed in the RPD of tilapia. In particular, gene transcripts encoding pou1f1, stat3, creb3l1, pbxip1a and stat1a were highly expressed; creb3l1, pbxip1a and stat1a were elevated in fish acclimated to SW vs FW. Combined, our in silico and transcriptome analyses set a path for resolving how adaptive patterns of Prl secretion are achieved via the integration of osmoreceptive processes with the control of prl gene transcription.
Collapse
Affiliation(s)
- Andre P. Seale
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai’i at Mānoa, Honolulu, HI, USA
| | | | - Fritzie T. Celino-Brady
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai’i at Mānoa, Honolulu, HI, USA
| | - Tony Head
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai’i at Mānoa, Honolulu, HI, USA
| | - Mahdi Belcaid
- Hawai’i Institute of Marine Biology, University of Hawai’i at Mānoa, Kaneohe, HI, USA
| | - Yoko Yamaguchi
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan
| | - Darren T. Lerner
- University of Hawai’i Sea Grant College Program, University of Hawai’i at Mānoa, Honolulu, HI, USA
| | - David A. Baltzegar
- Genomic Sciences Laboratory, Office of Research and Innovation, North Carolina State University, Raleigh, NC, USA
| | - Russell J. Borski
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Zoia R. Stoytcheva
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai’i at Mānoa, Honolulu, HI, USA
| | - Jason P. Breves
- Department of Biology, Skidmore College, Saratoga Springs, NY, USA
| |
Collapse
|
6
|
Sanchez-Lozada LG, Andres-Hernando A, Garcia-Arroyo FE, Cicerchi C, Li N, Kuwabara M, Roncal-Jimenez CA, Johnson RJ, Lanaspa MA. Uric acid activates aldose reductase and the polyol pathway for endogenous fructose and fat production causing development of fatty liver in rats. J Biol Chem 2019; 294:4272-4281. [PMID: 30651350 DOI: 10.1074/jbc.ra118.006158] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/10/2019] [Indexed: 12/18/2022] Open
Abstract
Dietary, fructose-containing sugars have been strongly associated with the development of nonalcoholic fatty liver disease (NAFLD). Recent studies suggest that fructose also can be produced via the polyol pathway in the liver, where it may induce hepatic fat accumulation. Moreover, fructose metabolism yields uric acid, which is highly associated with NAFLD. Here, using biochemical assays, reporter gene expression, and confocal fluorescence microscopy, we investigated whether uric acid regulates aldose reductase, a key enzyme in the polyol pathway. We evaluated whether soluble uric acid regulates aldose reductase expression both in cultured hepatocytes (HepG2 cells) and in the liver of hyperuricemic rats and whether this stimulation is associated with endogenous fructose production and fat accumulation. Uric acid dose-dependently stimulated aldose reductase expression in the HepG2 cells, and this stimulation was associated with endogenous fructose production and triglyceride accumulation. This stimulatory mechanism was mediated by uric acid-induced oxidative stress and stimulation of the transcription factor nuclear factor of activated T cells 5 (NFAT5). Uric acid also amplified the effects of elevated glucose levels to stimulate hepatocyte triglyceride accumulation. Hyperuricemic rats exhibited elevated hepatic aldose reductase expression, endogenous fructose accumulation, and fat buildup that was significantly reduced by co-administration of the xanthine oxidase inhibitor allopurinol. These results suggest that uric acid generated during fructose metabolism may act as a positive feedback mechanism that stimulates endogenous fructose production by stimulating aldose reductase in the polyol pathway. Our findings suggest an amplifying mechanism whereby soft drinks rich in glucose and fructose can induce NAFLD.
Collapse
Affiliation(s)
- Laura G Sanchez-Lozada
- From the Laboratory of Renal Physiopathology, Instituto Nacional de Cardiología Ignacio Chavez, CP 14080 Mexico City, Mexico and
| | - Ana Andres-Hernando
- the Division of Renal Diseases and Hypertension, School of Medicine, University of Colorado, Aurora, Colorado 80045
| | - Fernando E Garcia-Arroyo
- From the Laboratory of Renal Physiopathology, Instituto Nacional de Cardiología Ignacio Chavez, CP 14080 Mexico City, Mexico and
| | - Christina Cicerchi
- the Division of Renal Diseases and Hypertension, School of Medicine, University of Colorado, Aurora, Colorado 80045
| | - Nanxing Li
- the Division of Renal Diseases and Hypertension, School of Medicine, University of Colorado, Aurora, Colorado 80045
| | - Masanari Kuwabara
- the Division of Renal Diseases and Hypertension, School of Medicine, University of Colorado, Aurora, Colorado 80045
| | - Carlos A Roncal-Jimenez
- the Division of Renal Diseases and Hypertension, School of Medicine, University of Colorado, Aurora, Colorado 80045
| | - Richard J Johnson
- the Division of Renal Diseases and Hypertension, School of Medicine, University of Colorado, Aurora, Colorado 80045
| | - Miguel A Lanaspa
- the Division of Renal Diseases and Hypertension, School of Medicine, University of Colorado, Aurora, Colorado 80045
| |
Collapse
|
7
|
Wang X, Kültz D. Osmolality/salinity-responsive enhancers (OSREs) control induction of osmoprotective genes in euryhaline fish. Proc Natl Acad Sci U S A 2017; 114:E2729-E2738. [PMID: 28289196 PMCID: PMC5380061 DOI: 10.1073/pnas.1614712114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Fish respond to salinity stress by transcriptional induction of many genes, but the mechanism of their osmotic regulation is unknown. We developed a reporter assay using cells derived from the brain of the tilapia Oreochromis mossambicus (OmB cells) to identify osmolality/salinity-responsive enhancers (OSREs) in the genes of Omossambicus Genomic DNA comprising the regulatory regions of two strongly salinity-induced genes, inositol monophosphatase 1 (IMPA1.1) and myo-inositol phosphate synthase (MIPS), was isolated and analyzed with dual luciferase enhancer trap reporter assays. We identified five sequences (two in IMPA1.1 and three in MIPS) that share a common consensus element (DDKGGAAWWDWWYDNRB), which we named "OSRE1." Additional OSREs that were less effective in conferring salinity-induced trans-activation and do not match the OSRE1 consensus also were identified in both MIPS and IMPA1.1 Although OSRE1 shares homology with the mammalian osmotic-response element/tonicity-responsive enhancer (ORE/TonE) enhancer, the latter is insufficient to confer osmotic induction in fish. Like other enhancers, OSRE1 trans-activates genes independent of orientation. We conclude that OSRE1 is a cis-regulatory element (CRE) that enhances the hyperosmotic induction of osmoregulated genes in fish. Our study also shows that tailored reporter assays developed for OmB cells facilitate the identification of CREs in fish genomes. Knowledge of the OSRE1 motif allows affinity-purification of the corresponding transcription factor and computational approaches for enhancer screening of fish genomes. Moreover, our study enables targeted inactivation of OSRE1 enhancers, a method superior to gene knockout for functional characterization because it confines impairment of gene function to a specific context (salinity stress) and eliminates pitfalls of constitutive gene knockouts (embryonic lethality, developmental compensation).
Collapse
Affiliation(s)
- Xiaodan Wang
- Biochemical Evolution Laboratory, Department of Animal Science, University of California, Davis, CA, 95616
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Dietmar Kültz
- Biochemical Evolution Laboratory, Department of Animal Science, University of California, Davis, CA, 95616;
| |
Collapse
|
8
|
Bringmann A, Hollborn M, Kohen L, Wiedemann P. Intake of dietary salt and drinking water: Implications for the development of age-related macular degeneration. Mol Vis 2016; 22:1437-1454. [PMID: 28031693 PMCID: PMC5178186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 12/20/2016] [Indexed: 10/26/2022] Open
Abstract
PURPOSE Systemic hypertension is a risk factor of age-related retinal diseases such as diabetic retinopathy and age-related macular degeneration. High intake of dietary salt and low intake of water increase extracellular osmolality resulting in hypertension, in particular in salt-sensitive individuals. This review summarizes the present knowledge regarding the impact of salt and water intake on the regulation of blood pressure, retinal function, and the development of age-related retinal diseases. METHODS A literature search of the Medline database and a summary of recent studies that used human RPE cells. RESULTS The salt sensitivity of the blood pressure and plasma osmolality increase with age, and body water deficits are common in older individuals. High plasma osmolality has adverse effects in the retina. In RPE cells, high osmolality induces expression and secretion of angiogenic factors, such as vascular endothelial growth factor (VEGF), placental growth factor, and basic fibroblast growth factor, and expression of aquaporin-5, a water channel implicated in transepithelial water transport. The transcriptional activities of hypoxia-inducible factor-1 (HIF-1) and nuclear factor of activated T cell 5 (NFAT5) are critical for the production of VEGF in response to salt-induced osmotic stress. Salt-induced osmotic stress also induces priming of the NLRP3 inflammasome and activates inflammatory enzymes in RPE cells. CONCLUSIONS Raised plasma osmolality may aggravate age-related retinal diseases by stimulation of local inflammation and angiogenic factor production in the RPE. Alterations in salt and water consumption, and of minerals that stimulate renal salt excretion, may offer nutritional approaches to prevent age-related retinal disorders, in particular in salt-sensitive individuals and individuals who show signs of body dehydration.
Collapse
Affiliation(s)
- Andreas Bringmann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany
| | - Margrit Hollborn
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany
| | - Leon Kohen
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany,Helios Klinikum Aue, Aue, Germany
| | - Peter Wiedemann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany
| |
Collapse
|
9
|
Roncal-Jimenez CA, Milagres T, Andres-Hernando A, Kuwabara M, Jensen T, Song Z, Bjornstad P, Garcia GE, Sato Y, Sanchez-Lozada LG, Lanaspa MA, Johnson RJ. Effects of exogenous desmopressin on a model of heat stress nephropathy in mice. Am J Physiol Renal Physiol 2016; 312:F418-F426. [PMID: 28003190 PMCID: PMC5374310 DOI: 10.1152/ajprenal.00495.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/06/2016] [Accepted: 12/09/2016] [Indexed: 11/22/2022] Open
Abstract
Recurrent heat stress and dehydration have recently been shown experimentally to cause chronic kidney disease (CKD). One potential mediator may be vasopressin, acting via the type 2 vasopressin receptor (V2 receptor). We tested the hypothesis that desmopressin accelerates CKD in mice subjected to heat stress and recurrent dehydration. Recurrent exposure to heat with limited water availability was performed in male mice over a 5-wk period, with one group receiving desmopressin two times daily and the other group receiving vehicle. Two additional control groups were not exposed to heat or dehydration and received vehicle or desmopressin. The effects of the treatment on renal injury were assessed. Heat stress and recurrent dehydration induced functional changes (albuminuria, elevated urinary neutrophil gelatinase-associated protein), glomerular changes (mesangiolysis, matrix expansion), and tubulointerstitial changes (fibrosis, inflammation). Desmopressin also induced albuminuria, glomerular changes, and tubulointerstitial fibrosis in normal animals and also exacerbated injury in mice with heat stress nephropathy. Both heat stress and/or desmopressin were also associated with activation of the polyol pathway in the renal cortex, likely due to increased interstitial osmolarity. Our studies document both glomerular and tubulointerstitial injury and inflammation in heat stress nephropathy and may be clinically relevant to the pathogenesis of Mesoamerican nephropathy. Our data also suggest that vasopressin may play a role in the pathogenesis of the renal injury of heat stress nephropathy, likely via a V2 receptor-dependent pathway.
Collapse
Affiliation(s)
| | - Tamara Milagres
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado
| | - Ana Andres-Hernando
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado
| | - Masanari Kuwabara
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado
| | - Thomas Jensen
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado.,Division of Endocrinology, Metabolism, and Diabetes, University of Colorado, Aurora, Colorado
| | - Zhilin Song
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado.,Division of Endocrinology, Metabolism, and Diabetes, University of Colorado, Aurora, Colorado
| | - Petter Bjornstad
- Division of Pediatric Endocrinology, University of Colorado, Aurora, Colorado; and
| | - Gabriela E Garcia
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado
| | - Yuka Sato
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado
| | | | - Miguel A Lanaspa
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado;
| |
Collapse
|
10
|
Winges A, Garcia TB, Prager P, Wiedemann P, Kohen L, Bringmann A, Hollborn M. Osmotic expression of aldose reductase in retinal pigment epithelial cells: involvement of NFAT5. Graefes Arch Clin Exp Ophthalmol 2016; 254:2387-2400. [PMID: 27628063 DOI: 10.1007/s00417-016-3492-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/22/2016] [Accepted: 08/29/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Diabetic retinopathy is associated with osmotic stress resulting from hyperglycemia and intracellular sorbitol accumulation. Systemic hypertension is a risk factor of diabetic retinopathy. High intake of dietary salt increases extracellular osmolarity resulting in systemic hypertension. We determined the effects of extracellular hyperosmolarity, chemical hypoxia, and oxidative stress on the gene expression of enzymes involved in sorbitol production and conversion in cultured human retinal pigment epithelial (RPE) cells. METHODS Alterations in the expression of aldose reductase (AR) and sorbitol dehydrogenase (SDH) genes were examined with real-time RT-PCR. Protein levels were determined with Western blot analysis. Nuclear factor of activated T cell 5 (NFAT5) was knocked down with siRNA. RESULTS AR gene expression in RPE cells was increased by high (25 mM) extracellular glucose, CoCl2 (150 μM)-induced chemical hypoxia, H2O2 (20 μM)-induced oxidative stress, and extracellular hyperosmolarity induced by addition of NaCl or sucrose. Extracellular hyperosmolarity (but not hypoxia) also increased AR protein level. SDH gene expression was increased by hypoxia and oxidative stress, but not extracellular hyperosmolarity. Hyperosmolarity and hypoxia did not alter the SDH protein level. The hyperosmotic AR gene expression was dependent on activation of metalloproteinases, autocrine/paracrine TGF-β signaling, activation of p38 MAPK, ERK1/2, and PI3K signal transduction pathways, and the transcriptional activity of NFAT5. Knockdown of NAFT5 or inhibition of AR decreased the cell viability under hyperosmotic (but not hypoxic) conditions and aggravated the hyperosmotic inhibition of cell proliferation. CONCLUSIONS The data suggest that sorbitol accumulation in RPE cells occurs under hyperosmotic, but not hypoxic and oxidative stress conditions. NFAT5- and AR-mediated sorbitol accumulation may protect RPE cells under conditions of osmotic stress.
Collapse
Affiliation(s)
- Anica Winges
- Department of Ophthalmology and Eye Hospital, Faculty of Medicine, University of Leipzig, Liebigstrasse 10-14, D-04103, Leipzig, Germany
| | - Tarcyane Barata Garcia
- Department of Ophthalmology and Eye Hospital, Faculty of Medicine, University of Leipzig, Liebigstrasse 10-14, D-04103, Leipzig, Germany
| | - Philipp Prager
- Department of Ophthalmology and Eye Hospital, Faculty of Medicine, University of Leipzig, Liebigstrasse 10-14, D-04103, Leipzig, Germany
| | - Peter Wiedemann
- Department of Ophthalmology and Eye Hospital, Faculty of Medicine, University of Leipzig, Liebigstrasse 10-14, D-04103, Leipzig, Germany
| | - Leon Kohen
- Department of Ophthalmology and Eye Hospital, Faculty of Medicine, University of Leipzig, Liebigstrasse 10-14, D-04103, Leipzig, Germany
- Helios Klinikum Aue, Aue, Germany
| | - Andreas Bringmann
- Department of Ophthalmology and Eye Hospital, Faculty of Medicine, University of Leipzig, Liebigstrasse 10-14, D-04103, Leipzig, Germany
| | - Margrit Hollborn
- Department of Ophthalmology and Eye Hospital, Faculty of Medicine, University of Leipzig, Liebigstrasse 10-14, D-04103, Leipzig, Germany.
| |
Collapse
|
11
|
Wang Y, Luk AOY, Ng MCY, Pang CCP, Lam V, Lee SC, Lam DSC, Choy KW, Ma RCW, So WY, Chan JCN. Additive effect of aldose reductase Z-4 microsatellite polymorphism and glycaemic control on cataract development in type 2 diabetes. J Diabetes Complications 2014; 28:147-51. [PMID: 24360973 DOI: 10.1016/j.jdiacomp.2013.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/22/2013] [Accepted: 10/25/2013] [Indexed: 11/23/2022]
Abstract
AIMS To examine the additive effect of the z-4 microsatellite polymorphism of aldose reductase gene (ALR2) and glycaemic control on risk of cataract in a prospective cohort of Chinese type 2 diabetic patients. METHODS The (CA)n microsatellite polymorphism of ALR2 was determined using PCR followed by capillary gel electrophoresis. Cataract was defined by presence of lens opacity on direct ophthalmoscopy or history of cataract surgery. A non-linear curve approach was used to identify the threshold of glycated hemoglobin (HbA1c) at which the odds ratio (OR) for cataract started to increase. The association of z-4 allele with cataract, above and below this threshold, was assessed using multiple logistic regression analysis. RESULTS Of the 5823 patients analyzed, 28.1% had cataracts. After adjusting for conventional risk factors and using non-z-4 carriers with HbA1c<8.0% as referent group (n = 3173), the OR (95% confidence intervals) for cataract was highest in z-4 carriers with HbA1c ≥ 8.0% [1.43 (1.05-1.96), n = 244], compared to non-z-4 carriers with HbA1c ≥ 8.0 [1.27 (1.10-1.47), n = 1836] and z-4 carriers with HbA1c<8.0%[1.01 (0.77-1.29), n = 420, P(trend) < 0.001]. This additive association remained significant after additional adjustments for drug use (P(trend) = 0.002) and renal function (P(trend) = 0.01). CONCLUSIONS In type 2 diabetic patients with suboptimal glycaemic control, the z-4 allele of ALR2 (CA)n polymorphism was independently associated with increased susceptibility to cataracts.
Collapse
Affiliation(s)
- Ying Wang
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, China.
| | - Andrea O Y Luk
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Maggie C Y Ng
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, China; Center for Diabetes Research, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Calvin C P Pang
- Department of Ophthalmology and Visual Science, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Vincent Lam
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Shao C Lee
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Dennis S C Lam
- Department of Ophthalmology and Visual Science, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Kwong Wai Choy
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Ronald C W Ma
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Wing-Yee So
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Juliana C N Chan
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| |
Collapse
|
12
|
Fructokinase activity mediates dehydration-induced renal injury. Kidney Int 2013; 86:294-302. [PMID: 24336030 PMCID: PMC4120672 DOI: 10.1038/ki.2013.492] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 08/20/2013] [Accepted: 10/03/2013] [Indexed: 12/28/2022]
Abstract
The epidemic of chronic kidney disease in Nicaragua (Mesoamerican nephropathy) has been linked with recurrent dehydration. Here we tested whether recurrent dehydration may cause renal injury by activation of the polyol pathway, resulting in the generation of endogenous fructose in the kidney that might subsequently induce renal injury via metabolism by fructokinase. Wild-type and fructokinase-deficient mice were subjected to recurrent heat-induced dehydration. One group of each genotype was provided water throughout the day and the other group was hydrated at night, after the dehydration. Both groups received the same total hydration in 24 h. Wild-type mice that received delayed hydration developed renal injury, with elevated serum creatinine, increased urinary NGAL, proximal tubular injury, and renal inflammation and fibrosis. This was associated with activation of the polyol pathway, with increased renal cortical sorbitol and fructose levels. Fructokinase-knockout mice with delayed hydration were protected from renal injury. Thus, recurrent dehydration can induce renal injury via a fructokinase-dependent mechanism, likely from the generation of endogenous fructose via the polyol pathway. Access to sufficient water during the dehydration period can protect mice from developing renal injury. These studies provide a potential mechanism for Mesoamerican nephropathy.
Collapse
|
13
|
Kang ES, Hwang JS, Ham SA, Park MH, Kim GH, Paek KS, Yoo T, Lee WJ, Kang KR, Lee JH, Choi YJ, Seo HG. 15-Deoxy-Δ12,14-prostaglandin J2prevents oxidative injury by upregulating the expression of aldose reductase in vascular smooth muscle cells. Free Radic Res 2013; 48:218-29. [DOI: 10.3109/10715762.2013.860224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Ueno M, Shen WJ, Patel S, Greenberg AS, Azhar S, Kraemer FB. Fat-specific protein 27 modulates nuclear factor of activated T cells 5 and the cellular response to stress. J Lipid Res 2012; 54:734-743. [PMID: 23233732 DOI: 10.1194/jlr.m033365] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fat-specific protein 27 (FSP27), a member of the cell death-inducing DNA fragmentation factor α-like effector (Cide) family, is highly expressed in adipose tissues and is a lipid droplet (LD)-associated protein that induces the accumulation of LDs. Using a yeast two-hybrid system to examine potential interactions of FSP27 with other proteins, a direct interaction with the N-terminal region of nuclear factor of activated T cells 5 (NFAT5) was identified. NFAT5 is a transcription factor that induces osmoprotective and inflammatory genes after its translocation to the nucleus. The interaction between FSP27 and NFAT5 was confirmed by bimolecular fluorescence complementation and coimmunoprecipitation. Using immunocytochemistry, NFAT5 is detected in the cytoplasm and in the nucleus under isotonic conditions; however, overexpression of FSP27 inhibited the hypertonic-induced nuclear translocation of NFAT5. Consistent with the suppression of NFAT5 nuclear translocation, in cells transfected with a reporter construct containing the NFAT5 response element from the monocyte chemoattractant protein 1 (MCP1) promoter, FSP27 overexpression repressed hypertonic-induced luciferase activity and the expression of NFAT5 target genes. Knockdown of FSP27 in differentiated 3T3-L1 adipocytes increased the NFAT5-mediated rise in MCP1. These results suggest that FSP27 not only modulates LD homeostasis but also modulates the response to osmotic stress via a physical interaction with NFAT5 at the LD surface.
Collapse
Affiliation(s)
- Masami Ueno
- Veterans Administration Palo Alto Health Care System, Palo Alto, CA, USA
| | | | | | | | | | | |
Collapse
|
15
|
The polyol pathway in the bovine oviduct. Mol Reprod Dev 2012; 79:603-12. [DOI: 10.1002/mrd.22067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Accepted: 06/24/2012] [Indexed: 11/07/2022]
|
16
|
Osmolarity and glucose differentially regulate aldose reductase activity in cultured mouse podocytes. EXPERIMENTAL DIABETES RESEARCH 2011; 2011:278963. [PMID: 22253613 PMCID: PMC3255165 DOI: 10.1155/2011/278963] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/05/2011] [Accepted: 09/23/2011] [Indexed: 12/04/2022]
Abstract
Podocyte injury is associated with progression of many renal diseases, including diabetic nephropathy. In this study we examined whether aldose reductase (AR), the enzyme implicated in diabetic complications in different tissues, is modulated by high glucose and osmolarity in podocyte cells. AR mRNA, protein expression, and activity were measured in mouse podocytes cultured in both normal and high glucose and osmolarity for 6 hours to 5 days. Hyperosmolarity acutely stimulated AR expression and activity, with subsequent increase of AR expression but decrease of activity. High glucose also elevated AR protein level; however, this was not accompanied by respective enzyme activation. Furthermore, high glucose appeared to counteract the osmolarity-dependent activation of AR. In conclusion, in podocytes AR is modulated by high glucose and increased osmolarity in a different manner. Posttranslational events may affect AR activity independent of enzyme protein amount. Activation of AR in podocytes may be implicated in diabetic podocytopathy.
Collapse
|
17
|
Neuhofer W. Role of NFAT5 in inflammatory disorders associated with osmotic stress. Curr Genomics 2011; 11:584-90. [PMID: 21629436 PMCID: PMC3078683 DOI: 10.2174/138920210793360961] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 10/05/2010] [Accepted: 10/11/2010] [Indexed: 12/25/2022] Open
Abstract
Nuclear factor of activated T cells 5 (NFAT5) is the most recently described member of the Rel family of transcription factors, including NF-κB and NFAT1-4, which play central roles in inducible gene expression during the immune response. NFAT5 was initially described to drive osmoprotective gene expression in renal medullary cells, which are routinely faced by high extracellular osmolalities. Recent data however indicate profound biological importance of the mammalian osmotic stress response in view of NFAT5 dependent gene regulation in non-renal tissues. In mononuclear cells and epithelial cells, NFAT5 stimulates the expression of various pro-inflammatory cytokines during elevated ambient tonicity. Accordingly, compared to plasma, the interstitial tonicity of lymphoid organs like spleen and thymus and that of liver is substantially hypertonic under physiological conditions. In addition, anisotonic disorders (hypernatremia, diabetes mellitus, dehydration) entail systemic hyperosmolality, and, in inflammatory disorders, the skin, intestine, and cornea are sites of local hyperosmolality. This article summarizes the current knowledge regarding systemic and local osmotic stress in anisotonic and inflammatory disorders in view of NFAT5 activation and regulation, and NFAT5 dependent cytokine production.
Collapse
Affiliation(s)
- Wolfgang Neuhofer
- Departments of Nephrology and Physiology, Inner City Campus, University of Munich, Munich, Germany
| |
Collapse
|
18
|
Hoffmann EK, Lambert IH, Pedersen SF. Physiology of cell volume regulation in vertebrates. Physiol Rev 2009; 89:193-277. [PMID: 19126758 DOI: 10.1152/physrev.00037.2007] [Citation(s) in RCA: 1044] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The ability to control cell volume is pivotal for cell function. Cell volume perturbation elicits a wide array of signaling events, leading to protective (e.g., cytoskeletal rearrangement) and adaptive (e.g., altered expression of osmolyte transporters and heat shock proteins) measures and, in most cases, activation of volume regulatory osmolyte transport. After acute swelling, cell volume is regulated by the process of regulatory volume decrease (RVD), which involves the activation of KCl cotransport and of channels mediating K(+), Cl(-), and taurine efflux. Conversely, after acute shrinkage, cell volume is regulated by the process of regulatory volume increase (RVI), which is mediated primarily by Na(+)/H(+) exchange, Na(+)-K(+)-2Cl(-) cotransport, and Na(+) channels. Here, we review in detail the current knowledge regarding the molecular identity of these transport pathways and their regulation by, e.g., membrane deformation, ionic strength, Ca(2+), protein kinases and phosphatases, cytoskeletal elements, GTP binding proteins, lipid mediators, and reactive oxygen species, upon changes in cell volume. We also discuss the nature of the upstream elements in volume sensing in vertebrate organisms. Importantly, cell volume impacts on a wide array of physiological processes, including transepithelial transport; cell migration, proliferation, and death; and changes in cell volume function as specific signals regulating these processes. A discussion of this issue concludes the review.
Collapse
Affiliation(s)
- Else K Hoffmann
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
19
|
Kang ES, Woo IS, Kim HJ, Eun SY, Paek KS, Kim HJ, Chang KC, Lee JH, Lee HT, Kim JH, Nishinaka T, Yabe-Nishimura C, Seo HG. Up-regulation of aldose reductase expression mediated by phosphatidylinositol 3-kinase/Akt and Nrf2 is involved in the protective effect of curcumin against oxidative damage. Free Radic Biol Med 2007; 43:535-45. [PMID: 17640564 DOI: 10.1016/j.freeradbiomed.2007.05.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 04/16/2007] [Accepted: 05/05/2007] [Indexed: 12/21/2022]
Abstract
Up-regulation of aldose reductase (AR) by reactive oxygen species (ROS) and aldehyde derivatives has been observed in vascular smooth muscle cells. However, the pathophysiological consequences of the induction of AR in vascular tissues are not fully elucidated. Herein we report that an herb-derived polyphenolic compound, curcumin, elicited a dose- and time-dependent increase in AR expression. Inhibition of phosphatidylinositol 3-kinase (PI3K) and p38 mitogen-activated protein kinase (MAPK) significantly suppressed the curcumin-augmented mRNA levels and promoter activity of the AR gene. Luciferase reporter assays indicated that an osmotic response element in the promoter was essential for the responsiveness to curcumin. Curcumin accelerated the nuclear translocation of nuclear factor-erythroid 2-related factor 2 (Nrf2), and overexpression of Nrf2, but not the dominant negative Nrf2, enhanced the promoter activity of the AR gene. Cells preincubated with curcumin demonstrated resistance to ROS-induced apoptotic death. These effects were significantly attenuated in the presence of AR inhibitors or small interfering RNAs, indicating a protective role for AR against ROS-induced cell damage. Taken together, the activation of PI3K and p38 MAPK by curcumin augmented the expression of the AR gene via Nrf2, and increased AR activity may be an important cellular response against oxidative stress.
Collapse
MESH Headings
- Aldehyde Reductase/biosynthesis
- Aldehyde Reductase/drug effects
- Aldehyde Reductase/genetics
- Animals
- Antioxidants/pharmacology
- Apoptosis/drug effects
- Blotting, Northern
- Blotting, Western
- Cells, Cultured
- Curcumin/pharmacology
- Dose-Response Relationship, Drug
- Gene Expression/drug effects
- Gene Expression Regulation, Enzymologic/drug effects
- In Situ Nick-End Labeling
- Microscopy, Confocal
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Mutagenesis, Site-Directed
- NF-E2-Related Factor 2/metabolism
- Oncogene Protein v-akt/metabolism
- Oxidative Stress/drug effects
- Oxidative Stress/physiology
- Phosphatidylinositol 3-Kinases/drug effects
- Phosphatidylinositol 3-Kinases/metabolism
- Promoter Regions, Genetic
- RNA, Messenger/analysis
- RNA, Small Interfering
- Rats
- Reactive Oxygen Species/metabolism
- Up-Regulation
- p38 Mitogen-Activated Protein Kinases/drug effects
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Eun Sil Kang
- Department of Pharmacology, Gyeongsang Institute of Health Science, College of Medicine, Gyeongsang National University, 92 Chilam-Dong, Jinju 660-751, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Neuhofer W, Steinert D, Fraek ML, Beck FX. Prostaglandin E2 stimulates expression of osmoprotective genes in MDCK cells and promotes survival under hypertonic conditions. J Physiol 2007; 583:287-97. [PMID: 17556390 PMCID: PMC2277232 DOI: 10.1113/jphysiol.2007.135178] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The cells of the renal medulla produce large amounts of prostaglandin E2 (PGE2) via cyclooxygenases (COX)-1 and -2. PGE2 is well known to play a critical role in salt and water balance and maintenance of medullary blood flow. Since renal medullary PGE2 production increases in antidiuresis, and since COX inhibition is associated with damage to the renal medulla during water deprivation, PGE2 may promote the adaptation of renal papillary cells to high interstitial solute concentrations. To address this question, MDCK cells were exposed to a gradual tonicity increase in the presence or absence of 20 microM PGE2 prior to analysis of (i) cell survival, (ii) expression of osmoprotective genes (AR, BGT1, SMIT, HSP70 and COX-2), (iii) subcellular TonEBP/NFAT5 abundance, (iv) TonEBP/NFAT5 transcriptional activity and (v) aldose reductase promoter activity. Cell survival and apoptotic indices after raising the medium tonicity improved markedly in the presence of PGE2. PGE2 significantly increased tonicity-mediated up-regulation of AR, SMIT and HSP70 mRNAs. However, neither nuclear abundance nor TonEBP/NFAT5-driven reporter activity were elevated by PGE2, but aldose reductase promoter activity was significantly increased by PGE2. Interestingly, tonicity-induced COX-2 expression and activity was also stimulated by PGE2, suggesting the existence of a positive feedback loop. These results demonstrate that the major medullary prostanoid, PGE2, stimulates the expression of osmoprotective genes and favours the adaptation of medullary cells to increasing interstitial tonicities, an effect that is not explained directly by the presence of TonEs in the promoter region of the respective target genes. These findings may be relevant in the pathophysiology of medullary damage associated with analgesic drugs.
Collapse
|
21
|
Watarai A, Nakashima E, Hamada Y, Watanabe G, Naruse K, Miwa K, Kobayashi Y, Kamiya H, Nakae M, Hamajima N, Sekido Y, Niwa T, Oiso Y, Nakamura J. Aldose reductase gene is associated with diabetic macroangiopathy in Japanese Type 2 diabetic patients. Diabet Med 2006; 23:894-9. [PMID: 16911628 PMCID: PMC1619898 DOI: 10.1111/j.1464-5491.2006.01946.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS The aldose reductase (AR) gene, a rate-limiting enzyme of the polyol pathway, has been investigated as a candidate gene in determining susceptibility to diabetic microangiopathy. However, the association of the AR gene with diabetic macroangiopathy has not been investigated. Therefore, the present study was conducted to determine whether genetic variations of AR may determine susceptibility to diabetic macroangiopathy. METHODS There were 378 Type 2 diabetic patients enrolled in this study. A single nucleotide polymorphism in the promoter region (C-106T) was genotyped and the AR protein content of erythrocytes measured by ELISA. RESULTS There were no significant differences in genotypic or allelic distribution in patients with or without ischaemic heart diseases, but there was a significant increase in the frequency of the CT + TT genotype and T allele in patients with stroke (P = 0.019 and P = 0.012). The erythrocyte AR protein content was increased in patients with the CT and TT genotype compared with those with the CC genotype. After adjustment for age, duration of diabetes, body mass index, systolic blood pressure, HbA1c, and serum creatinine, triglycerides, and total cholesterol in multivariate logistic-regression models, the association between this AR genotype and stroke remained significant. CONCLUSIONS Our results suggest that the CT or TT genotype of the AR gene might be a genetic marker of susceptibility to stroke in Type 2 diabetic patients. This observation might contribute to the development of strategies for the prevention of stroke in Type 2 diabetic patients.
Collapse
Affiliation(s)
- A Watarai
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Padda R, Wamsley-Davis A, Gustin MC, Ross R, Yu C, Sheikh-Hamad D. MEKK3-mediated signaling to p38 kinase and TonE in hypertonically stressed kidney cells. Am J Physiol Renal Physiol 2006; 291:F874-81. [PMID: 16684924 DOI: 10.1152/ajprenal.00377.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades contain a trio of kinases, MAPK kinase kinase (MKKK) --> MAPK kinase (MKK) --> MAPK, that mediate a variety of cellular responses to different signals including hypertonicity. The signaling response to hypertonicity is conserved across evolution from yeast to mammals in that it involves activation of p38/SAPK. However, very little is known about which upstream protein kinases mediate activation of p38 by hypertonicity in mammals. The MKKKs, MEKK3 and MEKK4, are upstream regulators of p38 in many cells. To investigate these signaling proteins as potential activators of p38 in the hypertonicity response, we generated stably transfected MDCK cells that express activated versions of MEKK3 or MEKK4, utilized RNA interference to deplete MEKK3, and employed pharmacological inhibition of p38 kinase. MEKK3-transfected cells demonstrated increased betaine transporter (BGT1) mRNA levels and upregulated tonicity enhancer (TonE)-driven luciferase activity under isotonic (basal) and hypertonic conditions compared with empty vector-transfected controls; small-interference RNA-mediated depletion of MEKK3 downregulated the activity of p38 kinase and decreased the expression of BGT1 mRNA. p38 Kinase inhibition abolished the effects of MEKK3 activation on BGT1 induction. In contrast, the response to hypertonicity in MEKK4-kA-transfected cells was similar to that observed in empty vector-transfected controls. Our data are consistent with the existence of an input from MEKK3 -->--> p38 kinase -->--> TonE.
Collapse
Affiliation(s)
- Ranjit Padda
- Renal Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
The countercurrent system in the medulla of the mammalian kidney provides the basis for the production of urine of widely varying osmolalities, but necessarily entails extreme conditions for medullary cells, i.e., high concentrations of solutes (mainly NaCl and urea) in antidiuresis, massive changes in extracellular solute concentrations during the transitions from antidiuresis to diuresis and vice versa, and low oxygen tension. The strategies used by medullary cells to survive in this hostile milieu include accumulation of organic osmolytes and heat shock proteins, the extensive use of the glycolysis for energy production, and a well-orchestrated network of signaling pathways coordinating medullary circulation and tubular work.
Collapse
Affiliation(s)
- Wolfgang Neuhofer
- Department of Physiology, University of Munich, D-80336 Munich, Germany.
| | | |
Collapse
|
24
|
Abstract
During the epididymal transit, male gametes acquire new surface proteins necessary for their fertilizing ability. We have previously shown that membranous vesicles, called epididymosomes, interact with sperm surface within the epididymal fluid allowing transfer of some proteins to different subcellular compartments of spermatozoa. We previously showed that one of the major proteins associated with epididymosomes was an aldose reductase (gene: AKR1B5) and confirmed that aldose reductase is located in the epithelial cells bordering the intraluminal compartment of the epididymis. The present study shows that cytosolic aldose reductase activity was maximal in the proximal and middle segments of the epididymis and decreased in the distal epididymis. Western and Northern blot analysis confirmed the distribution pattern of aldose reductase and of the encoding mRNA. The optimal pH of epididymal aldose reductase was 6.0-6.5 when glucose was used as a substrate; this corresponds to the pH of the intraluminal epididymal fluid. In order to evaluate the possible involvement of sorbitol in sperm physiology, Western blot of tissue homogenates were probed with an anti-sorbitol dehydrogenase antibody. The amount of enzyme immunodetected was higher in the proximal and distal segments of the epididymis when compared to the amount detectable in the middle segment of the epididymis. Sorbitol dehydrogenase activity as well as the level of the encoding mRNA showed the same pattern of distribution. Furthermore, immunohistological studies using the anti-sorbitol dehydrogenase revealed that this enzyme was synthesized by the epididymal epithelial cells bordering the intraluminal compartment. Knowing the importance of sorbitol and fructose in sperm metabolism, we hypothesized that the polyol pathway is involved in the modulation of sperm motility within the epididymis.
Collapse
Affiliation(s)
- Gilles Frenette
- Centre de Recherche en Biologie de la Reproduction and Département d'Obstétrique-Gynécologie, Faculté de Médecine, Université Laval, Canada
| | | | | |
Collapse
|
25
|
Makiishi T, Araki SI, Koya D, Maeda S, Kashiwagi A, Haneda M. C-106T polymorphism of AKR1B1 is associated with diabetic nephropathy and erythrocyte aldose reductase content in Japanese subjects with type 2 diabetes mellitus. Am J Kidney Dis 2003; 42:943-51. [PMID: 14582038 DOI: 10.1016/j.ajkd.2003.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND The C-106T polymorphism of AKR1B1, which encodes aldose reductase (AR), was reported to be associated with diabetic nephropathy (DN). However, this association in Japanese patients with type 2 diabetes mellitus and its potential role as a clinical marker remain unclear. METHODS The C-106T polymorphism was genotyped in 228 cases (microalbuminuria or overt proteinuria) and 220 controls (normoalbuminuria with diabetes duration > or =10 years) for a case-control comparison, and the association with erythrocyte AR content was investigated. In addition, a new C-11G polymorphism in the promoter region of AKR1B1 was genotyped. RESULTS The distribution of genotypes of the C-106T polymorphism in cases was significantly different from that in controls (P = 0.031). Carriers of the TT genotype at the C-106T polymorphism were more frequent in cases than controls, with an odds ratio of 4.7 (95% confidence interval, 1.3 to 17). Erythrocyte AR content was significantly elevated in TT carriers in comparison to non-TT carriers (13.1 +/- 1.2 versus 10.2 +/- 1.2 ng/mg hemoglobin [Hb]; P < 0.001) and in cases in comparison to controls (10.6 +/- 1.3 versus 10.1 +/- 1.2 ng/mg Hb; P = 0.041). However, distribution of genotypes of the C-11G polymorphism and estimated frequencies of haplotypes defined by these 2 polymorphisms did not differ between cases and controls. CONCLUSION The TT genotype of the C-106T polymorphism of AKR1B1 increases the risk for DN in Japanese subjects with type 2 diabetes mellitus, which could be linked in part to greater expression of AR.
Collapse
Affiliation(s)
- Tetsuya Makiishi
- Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Yang B, Millward A, Demaine A. Functional differences between the susceptibility Z-2/C-106 and protective Z+2/T-106 promoter region polymorphisms of the aldose reductase gene may account for the association with diabetic microvascular complications. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1639:1-7. [PMID: 12943962 DOI: 10.1016/s0925-4439(03)00095-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Studies have shown that polymorphisms located at positions -106 and approximately -2100 base pairs (5'ALR2) in the regulatory region of the aldose reductase gene are associated with susceptibility to microvascular complications in patients with diabetes. The aim was to investigate the functional roles of these susceptibility alleles using an in vitro gene reporter assay. Susceptibility, neutral and protective 5'ALR2/-106 alleles were transfected into HepG2 cells and exposed to excess D-glucose (D-glucose at final concentrations 14 or 28 mmol/l). Transcriptional activities were determined using a dual luciferase reporter gene assay. The "susceptibility alleles" Z-2 with C-106 had the highest transcriptional activity when compared with the "protective" combination of Z+2 with C-106 alleles (58.7+/-9.9 vs. 10.1+/-0.7; P<0.0001). Those constructs with either the Z or Z-2 in combination with the C-106 allele had significantly higher transcriptional activities when compared to those with the T-106 allele (Z/C-106, 37.4+/-5.4 vs. Z/T-106 7.7+/-1.6, P<0.003; Z-2/C-106, 58.7+/-9.9 vs. Z-2/T-106 10.9+/-0.6, P<0.0001). These results demonstrate that the Z-2/C-106 haplotype is associated with elevated transcriptional activity of the aldose reductase gene. This in turn may explain the role of these polymorphisms in the susceptibility to diabetic microvascular complications.
Collapse
Affiliation(s)
- B Yang
- Molecular Medicine Research Group, Peninsula Medical School, Plymouth, UK
| | | | | |
Collapse
|
27
|
Trama J, Go WY, Ho SN. The osmoprotective function of the NFAT5 transcription factor in T cell development and activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:5477-88. [PMID: 12421923 DOI: 10.4049/jimmunol.169.10.5477] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The NFAT5/TonEBP transcription factor, a recently identified rel/NF-kappaB family member, activates transcription of osmocompensatory genes in response to extracellular hyperosmotic stress. However, the function of NFAT5 under isosmotic conditions present in vivo remains unknown. Here we demonstrate that NFAT5 is necessary for optimal T cell development in vivo and allows for optimal cell growth ex vivo under conditions associated with osmotic stress. Transgenic mice expressing an inhibitory form of NFAT5 in developing and mature T cells exhibited a 30% reduction in thymic cellularity evenly distributed among thymic subsets, consistent with the uniform expression and nuclear localization of NFAT5 in each subset. This was associated with a 25% reduction in peripheral CD4(+) T cells and a 50% reduction in CD8(+) T cells. While transgenic T cells exhibited no impairment in cell growth or cytokine production under normal culture conditions, impaired cell growth was observed under both hyperosmotic conditions and isosmotic conditions associated with osmotic stress. Transgenic thymocytes also demonstrated increased sensitivity to osmotic stress. Consistent with this, the system A amino acid transporter gene ATA2 exhibited NFAT5 dependence under hypertonic conditions but not in response to amino acid deprivation. Expression of the TNF-alpha gene, a putative NFAT5 target, was not altered in transgenic T cells. These results not only demonstrate an osmoprotective function for NFAT5 in primary cells but also show that NFAT5 is necessary for optimal thymic development in vivo, suggesting that developing thymocytes within the thymic microenvironment are subject to an osmotic stress that is effectively countered by NFAT5-dependent responses.
Collapse
Affiliation(s)
- Jason Trama
- Department of Pathology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
28
|
Hasuike Y, Nakanishi T, Otaki Y, Nanami M, Tanimoto T, Taniguchi N, Takamitsu Y. Plasma 3-deoxyglucosone elevation in chronic renal failure is associated with increased aldose reductase in erythrocytes. Am J Kidney Dis 2002; 40:464-71. [PMID: 12200796 DOI: 10.1053/ajkd.2002.34884] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Serum concentrations of 3-deoxyglucosone (3DG), a highly reactive dicarbonyl compound, are elevated in uremic patients. Aldose reductase (AR) is an enzyme involved in both the detoxification of 3DG and producing precursors of 3DG. METHODS We examined the relationship between plasma 3DG and erythrocyte AR content in uremic patients. Patients were divided into three groups: (1) progressive renal disease without hemodialysis (HD; chronic renal failure [CRF] group), (2) patients without diabetes mellitus (DM) treated with maintenance HD (HD group), and (3) patients with DM treated with maintenance HD (DM-HD group). High-performance liquid chromatography was used to measure 3DG, and erythrocyte AR was measured by means of enzyme-linked immunosorbent assay. RESULTS Both 3DG and erythrocyte AR levels were significantly greater in the CRF, HD, and DM-HD groups than in healthy controls. These results did not change after HD sessions in the HD or DM-HD groups. Serum creatinine levels correlated with 3DG and erythrocyte AR levels in the control and CRF groups (3DG: r = 0.67; P < 0.001; erythrocyte AR: r = 0.71; P < 0.001). Both erythrocyte AR and 3DG levels then increased as renal function declined. A positive correlation was seen between 3DG and erythrocyte AR levels in all groups (r = 0.65; P < 0.001), and also between plasma osmolality and erythrocyte AR level (r = 0.46; P < 0.001). CONCLUSION Both erythrocyte AR and 3DG levels are increased in uremic patients, and these increases could possibly contribute to the development of uremic symptoms.
Collapse
Affiliation(s)
- Yukiko Hasuike
- Department of Internal Medicine, Division of Kidney and Dialysis, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Ferraris JD, GarcÍa-Pérez A. Osmotically Responsive Genes: The Mammalian Osmotic Response Element (ORE)1. ACTA ACUST UNITED AC 2001. [DOI: 10.1668/0003-1569(2001)041[0734:orgtmo]2.0.co;2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
|
31
|
van der Houven van Oordt W, Diaz-Meco MT, Lozano J, Krainer AR, Moscat J, Cáceres JF. The MKK(3/6)-p38-signaling cascade alters the subcellular distribution of hnRNP A1 and modulates alternative splicing regulation. J Cell Biol 2000; 149:307-16. [PMID: 10769024 PMCID: PMC2175157 DOI: 10.1083/jcb.149.2.307] [Citation(s) in RCA: 279] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/1999] [Accepted: 03/10/2000] [Indexed: 11/22/2022] Open
Abstract
Individual members of the serine-arginine (SR) and heterogeneous nuclear ribonucleoprotein (hnRNP) A/B families of proteins have antagonistic effects in regulating alternative splicing. Although hnRNP A1 accumulates predominantly in the nucleus, it shuttles continuously between the nucleus and the cytoplasm. Some but not all SR proteins also undergo nucleo-cytoplasmic shuttling, which is affected by phosphorylation of their serine/arginine (RS)-rich domain. The signaling mechanisms that control the subcellular localization of these proteins are unknown. We show that exposure of NIH-3T3 and SV-40 transformed green monkey kidney (COS) cells to stress stimuli such as osmotic shock or UVC irradiation, but not to mitogenic activators such as PDGF or EGF, results in a marked cytoplasmic accumulation of hnRNP A1, concomitant with an increase in its phosphorylation. These effects are mediated by the MKK(3/6)-p38 pathway, and moreover, p38 activation is necessary and sufficient for the induction of hnRNP A1 cytoplasmic accumulation. The stress-induced increase in the cytoplasmic levels of hnRNP A/B proteins and the concomitant decrease in their nuclear abundance are paralleled by changes in the alternative splicing pattern of an adenovirus E1A pre-mRNA splicing reporter. These results suggest the intriguing possibility that signaling mechanisms regulate pre-mRNA splicing in vivo by influencing the subcellular distribution of splicing factors.
Collapse
Affiliation(s)
| | - María T. Diaz-Meco
- Laboratorio GlaxoWellcome-CSIC de Biología Molecular y Celular, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | - José Lozano
- Laboratorio GlaxoWellcome-CSIC de Biología Molecular y Celular, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | - Adrian R. Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724-2208
| | - Jorge Moscat
- Laboratorio GlaxoWellcome-CSIC de Biología Molecular y Celular, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | - Javier F. Cáceres
- MRC Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU, Scotland, United Kingdom
| |
Collapse
|
32
|
Takeuchi K, Toyohara H, Sakaguchi M. A hyperosmotic stress-induced mRNA of carp cell encodes Na(+)- and Cl(-)-dependent high affinity taurine transporter. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1464:219-30. [PMID: 10727609 DOI: 10.1016/s0005-2736(00)00158-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A cDNA clone encoding a Na(+)- and Cl(-)-dependent high affinity taurine transporter was isolated from a common carp cell line, Epithelioma papulosum cyprini (EPC), as a hyperosmotic stress-inducible gene by RNA arbitrarily primed PCR. The clone contained a 2.5-kb cDNA fragment including an open reading frame of 1878 bp encoding a protein of 625 amino acids. The deduced amino acid sequence of carp taurine transporter shows 78-80% identity to those of cloned mammalian taurine transporters. The functional characteristics of the cloned transporter were analyzed by expression in COS-7 cells. Transfection with the cDNA induced Na(+)- and Cl(-)-dependent taurine transport activity with an apparent K(m) of 56 microM. The Na(+)/Cl(-)hepatopancreas. Taurine transporter mRNA level increased up to 7.5-fold on raising the ambient osmolality from 300 to 450 mosmol/kgH(2)O. These data suggest the significant role of taurine as an osmolyte in carp cells.
Collapse
Affiliation(s)
- K Takeuchi
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo, Kyoto, Japan
| | | | | |
Collapse
|
33
|
Osmotic regulation of DNA activity and the cell cycle. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1568-1254(00)80014-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
34
|
|
35
|
Fujisawa T, Ikegami H, Kawaguchi Y, Yamato E, Nakagawa Y, Shen GQ, Fukuda M, Ogihara T. Length rather than a specific allele of dinucleotide repeat in the 5' upstream region of the aldose reductase gene is associated with diabetic retinopathy. Diabet Med 1999; 16:1044-7. [PMID: 10656235 DOI: 10.1046/j.1464-5491.1999.00192.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To assess the possible contribution of a genetic factor to diabetic retinopathy. METHODS (CA)n repeat length was investigated in the 5' upstream region of the gene coding for aldose reductase (AR), which is a key enzyme of the polyol pathway and plays a role in hyperglycaemia-induced tissue damage, in Japanese patients with Type 2 DM. RESULTS The dinucleotide repeat length was significantly associated with proliferative diabetic retinopathy (PDR) (P= 0.029, Mann-Whitney U-test); i.e. shorter alleles were more prevalent in the PDR group than in the control group. CONCLUSIONS (CA)n repeat length, rather than a specific allele, in the 5' upstream region of the AR gene is associated with diabetic retinopathy. These data suggest that the AR locus plays a role in genetic susceptibility to diabetic retinopathy and that dinucleotide repeats in genomic DNA may be related to disease predisposition.
Collapse
Affiliation(s)
- T Fujisawa
- Department of Geriatric Medicine, Osaka University Medical School, Suita, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
O'connor T, Ireland LS, Harrison DJ, Hayes JD. Major differences exist in the function and tissue-specific expression of human aflatoxin B1 aldehyde reductase and the principal human aldo-keto reductase AKR1 family members. Biochem J 1999; 343 Pt 2:487-504. [PMID: 10510318 PMCID: PMC1220579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Complementary DNA clones encoding human aflatoxin B(1) aldehyde reductase (AKR7A2), aldehyde reductase (AKR1A1), aldose reductase (AKR1B1), dihydrodiol dehydrogenase 1 (AKR1C1) and chlordecone reductase (AKR1C4) have been expressed in Escherichia coli. These members of the aldo-keto reductase (AKR) superfamily have been purified from E. coli as recombinant proteins. The recently identified AKR7A2 was shown to differ from the AKR1 isoenzymes in being able to catalyse the reduction of 2-carboxybenzaldehyde. Also, AKR7A2 was found to exhibit a narrow substrate specificity, with activity being restricted to succinic semialdehyde (SSA), 2-nitrobenzaldehyde, pyridine-2-aldehyde, isatin, 1,2-naphthoquinone (1,2-NQ) and 9,10-phenanthrenequinone. In contrast, AKR1A1 reduces a broad spectrum of carbonyl-containing compounds, displaying highest specific activity for SSA, 4-carboxybenzaldehyde, 4-nitrobenzaldehyde, pyridine-3-aldehyde, pyridine-4-aldehyde, 4-hydroxynonenal, phenylglyoxal, methylglyoxal, 2,3-hexanedione, 1, 2-NQ, 16-ketoestrone and d-glucuronic acid. Comparison between the kinetic properties of AKR7A2 and AKR1A1 showed that both recombinant enzymes exhibited roughly similar k(cat)/K(m) values for SSA, 1,2-NQ and 16-ketoestrone. Many of the compounds which are substrates for AKR1A1 also serve as substrates for AKR1B1, though the latter enzyme was shown to display a specific activity significantly less than that of AKR1A1 for most of the aromatic and aliphatic aldehydes studied. Neither AKR1C1 nor AKR1C4 was found to possess high reductase activity towards aliphatic aldehydes, aromatic aldehydes, aldoses or dicarbonyls. However, unlike AKR1A1 and AKR1B1, both AKR1C1 and AKR1C4 were able to catalyse the oxidation of 1-acenaphthenol and, in addition, AKR1C4 could oxidize di- and tri-hydroxylated bile acids. Specific antibodies raised against AKR7A2, AKR1A1, AKR1B1, AKR1C1 and AKR1C4 have been used to show the presence of all of the reductases in human hepatic cytosol; the levels of AKR1B1 and AKR1C1 were markedly elevated in livers with alcohol-associated injury, and indeed AKR1B1 was only detectable in livers with evidence of alcoholic liver disease. Western blotting of extracts from brain, heart, kidney, liver, lung, prostate, skeletal muscle, small intestine, spleen and testis showed that AKR7A2 is present in all of the organs examined, and AKR1B1 is similarly widely distributed in human tissues. These experiments revealed however, that the expression of AKR1A1 is restricted primarily to brain, kidney, liver and small intestine. The AKR1C family members proved not to be as widely expressed as the other reductases, with AKR1C1 being observed in only kidney, liver and testis, and AKR1C4 being found in liver alone. As human kidney is a rich source of AKR, the isoenzymes in this organ have been studied further. Anion-exchange chromatography of human renal cytosol on Q-Sepharose allowed resolution of AKR1A1, AKR1B1, AKR1C1 and AKR7A2, as identified by substrate specificity and Western blotting. Immunohistochemistry of human kidney demonstrated that AKR7A2 is expressed in a similar fashion to the AKR1 family members in proximal and distal convoluted renal tubules. Furthermore, both AKR7A2 and AKR1 members were expressed in renal carcinoma cells, suggesting that these groups of isoenzymes may be engaged in related physiological functions.
Collapse
Affiliation(s)
- T O'connor
- Biomedical Research Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, U.K
| | | | | | | |
Collapse
|
37
|
Hung CF, Penning TM. Members of the nuclear factor 1 transcription factor family regulate rat 3alpha-hydroxysteroid/dihydrodiol dehydrogenase (3alpha-HSD/DD AKR1C9) gene expression: a member of the aldo-keto reductase superfamily. Mol Endocrinol 1999; 13:1704-17. [PMID: 10517672 DOI: 10.1210/mend.13.10.0363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Rat 3alpha-hydroxysteroid/dihydrodiol dehydrogenase (3alpha-HSD/DD; AKR1C9), a member of the aldo-keto reductase (AKR) superfamily, inactivates nearly all steroid hormones by converting 5alpha- and 5beta-dihydrosteroids to their respective 3alpha,5alpha- and 3alpha,5beta-tetrahydrosteroids and protects against circulating steroid hormone excess. It is highly expressed in rat liver comprising 0.5-1.0% of the soluble protein. Previously, we identified a powerful distal enhancer resident at about -4.0 kb to -2.0 kb in the 5'-flanking region of the 3alpha-HSD/DD gene. We now report the functional dissection of this enhancer. Transfection of nested deletions of the 5'-end of the gene promoter linked to chloramphenicol acetyltransferase (CAT) into HepG2 cells located the enhancer activity between (-4673 to -4179 bp). Further internal and 5'-end deletion mutants revealed that a 73-bp fragment (from -4351 to -4279 bp) contained a major enhancer element. This fragment spanned two imperfect direct repeats GTGGAAAAACCCAGGAA and GTGGAAAAAACCCAGGAA and contained three direct repeats of GGAAAAA. This fragment also contained three potential half-nuclear factor 1 (NF1) sites (TGGA-NNNNNGCCA) and a putative CCAAT-enhancer binding protein (C/EBP) binding site. The 73-bp fragment enhanced CAT activity from the basal 3alpha-HSD/DD gene promoter. Recombinant C/EBPalpha and C/EBPbeta did not bind to this fragment. Electrophoretic mobility shift assays showed that HepG2 and rat liver nuclear extracts bound to this 73-bp fragment. The 73-bp protein complex was competed out by a NF1 oligonucleotide and was supershifted by an NF1 antibody. When the 73-bp fragment was fused to an alpha1-globin promoter-CAT construct and cotransfected with CCAAT transcription factor 1 (CTF1)/NF1 into Drosophila Schneider SL2 insect cells (which lack NF1-like proteins) trans-activation of CAT activity was observed. These results indicate that members of the NF1 transcription factor family regulate high constitutive expression of the rat 3alpha-HSD/DD gene that is responsible for steroid hormone inactivation. The potential role of NF1 in regulating other AKR genes that have protective roles is discussed.
Collapse
Affiliation(s)
- C F Hung
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia 19104-6084, USA
| | | |
Collapse
|
38
|
Nadkarni V, Gabbay KH, Bohren KM, Sheikh-Hamad D. Osmotic response element enhancer activity. Regulation through p38 kinase and mitogen-activated extracellular signal-regulated kinase kinase. J Biol Chem 1999; 274:20185-90. [PMID: 10400634 DOI: 10.1074/jbc.274.29.20185] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Hypertonicity induces a group of genes that are responsible for the intracellular accumulation of protective organic osmolytes such as sorbitol and betaine. Two representative genes are the aldose reductase enzyme (AR, EC 1.1.1.21), which is responsible for the conversion of glucose to sorbitol, and the betaine transporter (BGT1), which mediates Na+-coupled betaine uptake in response to osmotic stress. We recently reported that the induction of BGT1 mRNA in the renal epithelial Madin-Darby canine kidney cell line is inhibited by SB203580, a specific p38 kinase inhibitor. In these studies we report that the hypertonic induction of aldose reductase mRNA in HepG2 cells as well as the osmotic response element (ORE)-driven reporter gene expression in transfected HepG2 cells are both inhibited by SB203580, suggesting that p38 kinase mediates the activation and/or binding of the transcription factor(s) to the ORE. Electrophoretic gel mobility shift assays with cell extracts prepared from SB203580-treated, hypertonically stressed HepG2 cells further show that the binding of trans-acting factors to the ORE is prevented and is thus also dependent on the activity of p38 kinase. Similarly, treatment of hypertonically stressed cells with PD098059, a mitogen-activated extracellular regulated kinase kinase (MEK1) inhibitor, results in inhibition of the hypertonic induction of aldose reductase mRNA, ORE-driven reporter gene expression, and the binding of trans-acting factors to the ORE. ORE-driven reporter gene expression was not affected by p38 kinase inhibition or MEK1 inhibition in cells incubated in iso-osmotic media. These data indicate that p38 kinase and MEK1 are involved in the regulation of the hyperosmotic stress response.
Collapse
Affiliation(s)
- V Nadkarni
- Harry B. and Aileen Gordon Diabetes Research Laboratory, Molecular Diabetes and Metabolism Section, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
39
|
Aragno M, Tamagno E, Gatto V, Brignardello E, Parola S, Danni O, Boccuzzi G. Dehydroepiandrosterone protects tissues of streptozotocin-treated rats against oxidative stress. Free Radic Biol Med 1999; 26:1467-74. [PMID: 10401610 DOI: 10.1016/s0891-5849(99)00012-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Chronic hyperglycemia in diabetes determines the overproduction of free radicals, and evidence is increasing that these contribute to the development of diabetic complications. It has recently been reported that dehydroepiandrosterone possesses antioxidant properties; this study evaluates whether, administered daily for three weeks per os, it may provide antioxidant protection in tissues of rats with streptozotocin-induced diabetes. Lipid peroxidation was evaluated on liver, brain and kidney homogenates from diabetic animals, measuring both steady-state concentrations of thiobarbituric acid reactive substances and fluorescent chromolipids. Hyperglycemic rats had higher thiobarbituric acid reactive substances formation and fluorescent chromolipids levels than controls. Dehydroepiandrosterone-treatment (4 mg/day for 3 weeks) protected tissues against lipid peroxidation: liver, kidney and brain homogenates from dehydroepiandrosterone-treated animals showed a significant decrease of both thiobarbituric acid reactive substances and fluorescent chromolipids formation. The effect of dehydroepiandrosterone on the cellular antioxidant defenses was also investigated, as impaired antioxidant enzyme activities were considered proof of oxygen-dependent toxicity. In kidney and liver homogenates, dehydroepiandrosterone treatment restored to near-control values the cytosolic level of reduced glutathione, as well as the enzymatic activities of superoxide-dismutase, glutathione-peroxidase, catalase. In the brain, only an increase of catalase activity was evident (p < .05), which reverted with dehydroepiandrosterone treatment. The results demonstrate that DHEA treatment clearly reduces oxidative stress products in the tissues of streptozotocin-treated rats.
Collapse
Affiliation(s)
- M Aragno
- Department of Experimental Medicine and Oncology, University of Turin, Italy
| | | | | | | | | | | | | |
Collapse
|
40
|
Rittner HL, Hafner V, Klimiuk PA, Szweda LI, Goronzy JJ, Weyand CM. Aldose reductase functions as a detoxification system for lipid peroxidation products in vasculitis. J Clin Invest 1999; 103:1007-13. [PMID: 10194473 PMCID: PMC408253 DOI: 10.1172/jci4711] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Giant cell arteritis (GCA) is a systemic vasculitis preferentially affecting large and medium-sized arteries. Inflammatory infiltrates in the arterial wall induce luminal occlusion with subsequent ischemia and degradation of the elastic membranes, allowing aneurysm formation. To identify pathways relevant to the disease process, differential display-PCR was used. The enzyme aldose reductase (AR), which is implicated in the regulation of tissue osmolarity, was found to be upregulated in the arteritic lesions. Upregulated AR expression was limited to areas of tissue destruction in inflamed arteries, where it was detected in T cells, macrophages, and smooth muscle cells. The production of AR was highly correlated with the presence of 4-hydroxynonenal (HNE), a toxic aldehyde and downstream product of lipid peroxidation. In vitro exposure of mononuclear cells to HNE was sufficient to induce AR production. The in vivo relationship of AR and HNE was explored by treating human GCA temporal artery-severe combined immunodeficiency (SCID) mouse chimeras with the AR inhibitors Sorbinil and Zopolrestat. Inhibition of AR increased HNE adducts twofold and the number of apoptotic cells in the arterial wall threefold. These data demonstrate that AR has a tissue-protective function by preventing damage from lipid peroxidation. We propose that AR is an oxidative defense mechanism able to neutralize the toxic effects of lipid peroxidation and has a role in limiting the arterial wall injury mediated by reactive oxygen species.
Collapse
Affiliation(s)
- H L Rittner
- Department of Medicine, Division of Rheumatology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
41
|
Jenq W, Cooper DR, Bittle P, Ramirez G. Aquaporin-1 expression in proximal tubule epithelial cells of human kidney is regulated by hyperosmolarity and contrast agents. Biochem Biophys Res Commun 1999; 256:240-8. [PMID: 10066454 DOI: 10.1006/bbrc.1999.0306] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Primary cells of renal proximal tubule epithelium (S1 segment) of human kidney (HRPTE cells) up-regulate aquaporin-1 (AQP-1) expression in response to hyperosmolarity. NaCl and D(+)-raffinose increased (2-2.5 fold) AQP-1 expression when medium osmolarity was 400 and 500 mOsm/kg.H2O. Urea did not have this effect. Unlike our previous findings with mIMCD-3 cells, vasopressin (10(-8)M) did not affect AQP-1 expression in HRPTE cells in isosmolar or NaCl-enriched hyperosmolar conditions. Furthermore, HRPTE cells increased (3-4 fold) AQP-1 expression when exposed to hyperosmolar Reno-60 and Hypaque-76 (diatrizoates, ionic) contrast agents at 400 and 500 mOsm/kg.H2O. Isosmolar (290 mOsm/kg H2O) Visipaque (iodixanol, non-ionic) at 10% (v/v) concentrations also increased AQP-1 expression, and 25% v/v of Visipaque rendered morphological alterations of HRPTE cells and a 3-fold increase in AQP-1 expression after 24h exposure. Finally, semi-quantitative RT-PCR of HRPTE cells subjected to various isosmolar or hyperosmolar conditions demonstrated up-regulation of AQP-1 mRNA and protein levels. Our results suggest AQP-1 up-regulation in HRPTE cells exposed to environmental stresses such as hyperosmolarity and high doses of isosmolar contrast agents.
Collapse
Affiliation(s)
- W Jenq
- James A. Haley VA Medical Center, University of South Florida, Tampa, Florida, 33612, USA.
| | | | | | | |
Collapse
|
42
|
Ferraris JD, Williams CK, Ohtaka A, García-Pérez A. Functional consensus for mammalian osmotic response elements. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:C667-73. [PMID: 10069994 DOI: 10.1152/ajpcell.1999.276.3.c667] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The molecular mechanisms underlying adaptation to hyperosmotic stress through the accumulation of organic osmolytes are largely unknown. Yet, among organisms, this is an almost universal phenomenon. In mammals, the cells of the renal medulla are uniquely exposed to high and variable salt concentrations; in response, renal cells accumulate the osmolyte sorbitol through increased transcription of the aldose reductase (AR) gene. In cloning the rabbit AR gene, we found the first evidence of an osmotic response region in a eukaryotic gene. More recently, we functionally defined a minimal essential osmotic response element (ORE) having the sequence CGGAAAATCAC(C) (bp -1105 to -1094). In the present study, we systematically replaced each base with every other possible nucleotide and tested the resulting sequences individually in reporter gene constructs. Additionally, we categorized hyperosmotic response by electrophoretic mobility shift assays of a 17-bp sequence (-1108 to -1092) containing the native ORE as a probe against which the test constructs would compete for binding. In this manner, binding activity was assessed for the full range of osmotic responses obtained. Thus we have arrived at a functional consensus for the mammalian ORE, NGGAAAWDHMC(N). This finding should accelerate the discovery of genes previously unrecognized as being osmotically regulated.
Collapse
Affiliation(s)
- J D Ferraris
- Osmotic Regulation Section, Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1603, USA.
| | | | | | | |
Collapse
|
43
|
Aida K, Tawata M, Ikegishi Y, Onaya T. Induction of rat aldose reductase gene transcription is mediated through the cis-element, osmotic response element (ORE): increased synthesis and/or activation by phosphorylation of ORE-binding protein is a key step. Endocrinology 1999; 140:609-17. [PMID: 9927284 DOI: 10.1210/endo.140.2.6515] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We isolated the rat aldose reductase gene and examined the 5'-flanking sequence for the presence of transcription regulatory element responsive to hyperosmolarity. Deletion of aldose reductase gene up to -1047 bp abolished the transcriptional activation in response to osmotic stimuli in transient transfection experiments. A 17-bp sequence [rat osmotic response element (rORE)], which is located in bp -1073/-1057 and contains the TGGAAAATCAC sequence, confers osmotic response on a heterologous promoter. Electrophoretic mobility shift assays using the 17-bp fragment demonstrated that distinct DNA-protein complexes (I and II) were formed predominantly with nuclear extracts from the cells exposed to hyperosmolarity. When the nuclear extracts were preincubated with calf intestinal alkaline phosphatase or protein phosphatase 1, formation of complexes I and II was reduced to the control level. However, incubation with protein tyrosine phosphatase and addition of antiphosphotyrosine antibody had no effect on the complexes. When the nuclear extracts were preincubated with diamide to oxidize the thiols, complexes I and II were not affected. Pretreatment of the cells with cycloheximide abolished the complexes. All of these data indicate that activation by phosphorylation and/or increased synthesis of rORE-binding protein(s) are the key steps in induction of transcription of the rat aldose reductase gene by hyperosmolarity. Furthermore, we showed that glucose was more effective than NaCl in induction of aldose reductase both in transient transfection experiments and by Northern blot analysis. The results suggest the presence of a glucose-specific mechanism of induction in addition to that by NaCl.
Collapse
Affiliation(s)
- K Aida
- Third Department of Internal Medicine, Yamanashi Medical University, Tamaho, Japan
| | | | | | | |
Collapse
|
44
|
Abstract
1. Cells of the mammalian renal medulla are routinely subjected to an enormously elevated and labile ambient osmolality as a consequence of the renal concentrating mechanism. The present review focuses on the most recent advances in hyperosmotic solute-mediated signal transduction and regulation of gene transcription in cells of the kidney medulla. 2. On the basis of osmolality alone, NaCl and urea are the principal renal medullary solutes. 3. Urea, which is membrane permeant, activates transcription of immediate-early genes via an extracellular signal-regulated kinase (ERK)/Elk-1-dependent pathway. Urea also activates multiple effectors characteristic of a receptor tyrosine kinase-like signalling cascade. 4. In contrast, the functionally impermeant solute NaCl activates transcription of tonicity responsive genes (principally genes encoding proteins essential for osmolyte uptake or synthesis) via a unique consensus element contained within their 5' flanking sequences. 5. An activity exhibiting tonicity inducible sequence-specific interaction with this DNA element has been identified. 6. Hypertonicity, like thermal stress, activates transcription of genes encoding heat shock proteins. The relationship between signalling events leading to tonicity mediated and heat shock-mediated gene transcription remains to be established.
Collapse
Affiliation(s)
- D M Cohen
- Division of Nephrology, Oregon Health Sciences University, Portland, USA.
| |
Collapse
|
45
|
Yorek MA, Dunlap JA, Lowe WL. Osmotic regulation of the Na+/myo-inositol cotransporter and postinduction normalization. Kidney Int 1999; 55:215-24. [PMID: 9893130 DOI: 10.1046/j.1523-1755.1999.00235.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND In renal cells, hyperosmolarity has been shown to induce the accumulation of myo-inositol, via the Na+/myo-inositol cotransporter (SMIT). Previously we showed that SMIT mRNA in the kidney is localized in the medullary thick ascending limb of Henle (TALH). Here we used renal cells derived from the rabbit outer medullary TALH to examine the regulation of myo-inositol transport by hyperosmolarity. In addition, using both cultured renal and endothelial cells, we examined the normalization of SMIT activity and mRNA levels following induction by hyperosmolarity. METHODS TALH cells were exposed to isotonic or hyperosmotic medium, and then SMIT mRNA levels and myo-inositol accumulation were determined. To examine postinduction normalization, cultured endothelial and renal cells were first exposed to hyperosmotic medium and then to isotonic medium containing actinomycin D or cycloheximide. Afterwards, SMIT mRNA levels and myo-inositol accumulation were determined. RESULTS Hyperosmolarity increased SMIT mRNA levels and myo-inositol accumulation in TALH cells. The hyperosmolarity-induced increase in myo-inositol uptake by TALH cells was characterized by an increase in the Vmax for the high-affinity myo-inositol transport system, with no change in the Km. This increase was blocked by actinomycin D or cycloheximide. Examination of postinduction normalization showed that returning hyperosmotic-treated cells to isotonic medium caused a rapid reversion of SMIT mRNA levels, followed by a return of myo-inositol accumulation to basal values. However, the addition of cycloheximide or actinomycin D partially to totally prevented the reversal in SMIT mRNA levels and activity. CONCLUSIONS These results suggest that RNA and protein synthesis is required for the hyperosmotic induction of SMIT mRNA levels and myo-inositol accumulation by TALH cells. Furthermore, normalization of SMIT mRNA levels and myo-inositol accumulation following hyperosmotic induction requires RNA transcription and protein synthesis.
Collapse
Affiliation(s)
- M A Yorek
- Department of Internal Medicine, Diabetes Endocrinology Research Center, and Veterans Affairs Medical Center, University of Iowa, Iowa City, Iowa, USA. myorek@ucva,gov
| | | | | |
Collapse
|
46
|
Wright AR, Rees SA. Cardiac cell volume: crystal clear or murky waters? A comparison with other cell types. Pharmacol Ther 1998; 80:89-121. [PMID: 9804055 DOI: 10.1016/s0163-7258(98)00025-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The osmolarity of bodily fluids is strictly controlled so that most cells do not experience changes in osmotic pressure under normal conditions, but osmotic changes can occur in pathological states such as ischemia, septic shock, and diabetic coma. The primary effect of a change in osmolarity is to acutely alter cell volume. If the osmolarity around a cell is decreased, the cell swells, and if increased, it shrinks. In order to tolerate changes in osmolarity, cells have evolved volume regulatory mechanisms activated by osmotic challenge to normalise cell volume and maintain normal function. In the heart, osmotic stress is encountered during a period of myocardial ischemia when metabolites such as lactate accumulate intracellularly and to a certain degree extracellularly, and cause cell swelling. This swelling may be exacerbated further on reperfusion when the hyperosmotic extracellular milieu is replaced by normosmotic blood. In this review, we describe the theory and mechanisms of volume regulation, and draw on findings in extracardiac tissues, such as kidney, whose responses to osmotic change are well characterised. We then describe cell volume regulation in the heart, with particular emphasis on the effect of myocardial ischemia. Finally, we describe the consequences of osmotic cell swelling for the cell and for the heart, and discuss the implications for antiarrhythmic drug efficacy. Using computer modelling, we have summated the changes induced by cell swelling, and predict that swelling will shorten the action potential. This finding indicates that cell swelling is an important component of the response to ischemia, a component modulating the excitability of the heart.
Collapse
Affiliation(s)
- A R Wright
- University Laboratory of Physiology, University of Oxford, UK
| | | |
Collapse
|
47
|
Vieira LL. pH and volume homeostasis in trypanosomatids: current views and perspectives. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1376:221-41. [PMID: 9748588 DOI: 10.1016/s0304-4157(98)00007-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- L L Vieira
- Department of Cell Biology, Institute of Experimental Biology, Faculty of Science, Universidad Central de Venezuela, Caracas 47069, Venezuela
| |
Collapse
|
48
|
Claeyssens S, Banine F, Rouet P, Lavoinne A, Salier JP. Down-regulation of negative acute-phase response genes by hypotonic stress in HepG2 hepatoma cells. FEBS Lett 1998; 433:15-8. [PMID: 9738923 DOI: 10.1016/s0014-5793(98)00868-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An increased hepatocellular hydration state (HS) that can be induced by hypotonic stress or a high glutamine uptake modulates the transcription of given genes in liver. This could be important in the acute phase (AP) of a systemic inflammation where both HS and glutamine uptake transiently increase in liver. In HepG2 hepatoma cells cultured in conditions of hypotonic stress or a high extracellular glutamine availability, a specifically decreased expression of two human mRNAs, namely those of alphal-microglobulin/bikunin precursor (AMBP) and alpha2-HS-glycoprotein, that are also down-regulated in liver by AP, could be seen. A functional analysis of the AMBP promoter indicated that this hypotonic stress-induced down-regulation takes place at a transcriptional level. In these experiments, the mRNA level and transcription of the glyceraldehyde-3-phosphate dehydrogenase gene that are known to be unmodified in AP did not exhibit any change. Given that hypotonic stress also upregulates the transcription of a liver gene that is also upregulated in AP [Meisse et al. (1998) FEBS Lett. 422, 3463481, the AP-associated increase in hepatocellular HS now appears to participate in the transcriptional control of both sets of genes that are up- or down-regulated in AP.
Collapse
Affiliation(s)
- S Claeyssens
- Groupe de Biochimie et Physiopathologie Digestive et Nutritionnelle, Institut Fédératif de Recherches Multidisciplinaires sur les Peptides No. 23, Faculté de Médecine-Pharmacie, Rouen, France
| | | | | | | | | |
Collapse
|
49
|
Shah VO, Scavini M, Nikolic J, Sun Y, Vai S, Griffith JK, Dorin RI, Stidley C, Yacoub M, Vander Jagt DL, Eaton RP, Zager PG. Z-2 microsatellite allele is linked to increased expression of the aldose reductase gene in diabetic nephropathy. J Clin Endocrinol Metab 1998; 83:2886-91. [PMID: 9709964 DOI: 10.1210/jcem.83.8.5028] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Epidemiological studies support the hypothesis that genetic factors modulate the risk for diabetic nephropathy (DN). Aldose reductase (ALDR1), the rate-limiting enzyme in the polyol pathway, is a potential candidate gene. The present study explores the hypothesis that polymorphisms of the (A-C)n dinucleotide repeat sequence, located 2.1 kb upstream of the transcription start site, modulate ALDR1 gene expression and the risk for DN. We conducted studies at two different institutions, the University of New Mexico Health Sciences Center (UNMHSC), and the Istituto Scientifico H San Raffaele (HSR). There were four groups of volunteers at UNMHSC: group I, normal subjects; group II, patients with insulin-dependent diabetes mellitus (IDDM) without DN; group III, IDDM with DN; and group IV, nondiabetics with kidney disease. At HSR we studied volunteers in groups I, II, and III. ALDR1 genotype was assessed by PCR and fluorescent sequencing of the (A-C)n repeat locus, and ALDR1 messenger ribonucleic acid (mRNA) was measured by ribonuclease protection assay in peripheral blood mononuclear cells. At UNMHSC we identified 10 alleles ranging from Z-10 to Z+8. The prevalence of the Z-2 allele among IDDM patients was increased in those with DN. Sixty percent of group III and 22% of group II were homozygous for Z-2. Moreover, 90% and 67% of groups III and II, respectively, had 1 or more copy of Z-2. In contrast, among nondiabetics, 19% of group IV and 3% of group I were homozygous for Z-2, and 69% and 32%, respectively, had 1 copy or more of Z-2. Among diabetics, homozygosity for the Z-2 allele was associated with renal disease [odds ratio (OR), 5.25; 95% confidence interval, 1.71-17.98; P = 0.005]. ALDR1 mRNA levels were higher in patients with DN (group III; 0.113 +/- 0.050) than in group I (0.068 +/- 0.025), group II (0.042 +/- 0.020), or group IV (0.015 +/- 0.011; P < 0.01). Among diabetics, ALDR1 mRNA levels were higher in Z-2 homozygotes (0.098 +/- 0.06) and Z-2 heterozygotes (0.080 +/- 0.04) than in patients with no Z-2 allele (0.043 +/- 0.02; P < 0.05). In contrast, among nondiabetics, ALDR1 mRNA levels in Z-2 homozygotes (0.034 +/- 0.04) and Z-2 heterozygotes (0.038 +/- 0.03) were similar to levels in patients without a Z-2 allele (0.047 +/- 0.03; P = NS). At HSR we identified eight alleles ranging from Z- 12 to Z+2. The prevalence of the Z-2 allele was higher in group III than in group II. In group III, 43% of the patients were homozygous for Z-2, and 81% had one copy or more of the Z-2 allele. In contrast, in group II, 4% were homozygous for Z-2, and 36% had one copy or more of the Z-2 allele. IDDM patients homozygous for Z-2 had an increased risk for DN compared with those lacking the Z-2 allele (OR, 18; 95% confidence interval, 2-159). IDDM patients who had one copy or more of Z-2 had increased risk (OR, 7.5; 95% confidence interval, 1.9-29.4) for DN compared with those without the Z-2 allele. These results support our hypothesis that environmental-genetic interactions modulate the risk for DN. Specifically, the Z 2 allele, in the presence of diabetes and/or hyperglycemia, is associated with increased ALDR1 expression. This interaction may explain the observed association between the Z-2 allele and DN.
Collapse
Affiliation(s)
- V O Shah
- Department of Biochemistry, University of New Mexico Health Sciences Center, Albuquerque 87131, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Kinetic studies on the aldose reductase protein (AR2) have shown that it does not behave as a classical enzyme in relation to ring aldose sugars. These results have been confirmed by X-ray crystallography studies, which have pinpointed binding sites for pharmacological "aklose reductase inhibitors" (ARIs). As with non-enzymic glycation reactions, there is probably a free-radical element involved derived from monosaccharide autoxidation. In the case of AR2, there is free radical oxidation of NADPH by autoxidising monosaccharides, enhanced in the presence of the NADPH-binding protein. Whatever the behaviour of AR2, many studies have showed that sorbitol production is not an initiating aetiological factor in the development of diabetic complications in humans. Vitamin E (alpha-tocopherol), other antioxidants and high fat diets can delay or prevent cataract in diabetic animals even though sorbitol and fructose levels are not modified; vitamin C acts as an AR1 in humans. Protein post-translational modification by glyc-oxidation or other events is probably the key factor in the aetiology of diabetic complications. There is now no need to invoke AR2 in xylitol biosynthesis. Xylitol can be produced in the lens from glucose, via a pathway involving the enzymes myo-inositol-oxygen oxidoreductase, D-glucuronate reductase. L-gulonate NAD(+)-3-oxidoreductase and L-iditol-NAD(+)-5-oxidoreductase, all of which have recently been found in bovine and rat lens. This chapter investigates the molecular events underlying AR2 and its binding and kinetics. Induction of the protein by osmotic response elements is discussed, with detailed analysis of recent in vitro and in vivo experiments on numerous ARIs. These have a number of actions in the cell which are not specific, and which do not involve them binding to AR2. These include peroxy-radical scavenging and recently discovered effects of metal ion chelation. In controlled experiments, it has been found that incubation of rat lens homogenate with glucose and the copper chelator o-phenanthroline abolishes production of sorbitol. Taken together, these results suggest AR2 is a vestigial NADPH-binding protein, perhaps similar in function to a number of non-mammalian crystallins which have been recruited into the lens. There is mounting evidence for the binding of reactive aldehyde moieties to the protein, and the involvement of AR2 either as a 'housekeeping' protein, or in a free-radial-mediated 'catalytic' role. Interfering with the NADPH binding and flux levels--possibly involving free radicals and metal ions--has a deleterious effect. We have yet to determine whether aldose reductase is the black sheep of the aldehyde reductase family, or whether it is a skeleton in the cupboard, waiting to be clothed in the flesh of new revelations in the interactions between proteins, metal ions and redox metabolites.
Collapse
Affiliation(s)
- M J Crabbe
- Wolfson Laboratory, Division of Cell and Molecular Biology, School of Animal and Microbial Sciences, University of Reading, Whiteknights, Berks, UK.
| | | |
Collapse
|