1
|
Zeng Q, Song J, Sun X, Wang D, Liao X, Ding Y, Hu W, Jiao Y, Mai W, Aini W, Wang F, Zhou H, Xie L, Mei Y, Tang Y, Xie Z, Wu H, Liu W, Deng T. A negative feedback loop between TET2 and leptin in adipocyte regulates body weight. Nat Commun 2024; 15:2825. [PMID: 38561362 PMCID: PMC10985112 DOI: 10.1038/s41467-024-46783-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Ten-eleven translocation (TET) 2 is an enzyme that catalyzes DNA demethylation to regulate gene expression by oxidizing 5-methylcytosine to 5-hydroxymethylcytosine, functioning as an essential epigenetic regulator in various biological processes. However, the regulation and function of TET2 in adipocytes during obesity are poorly understood. In this study, we demonstrate that leptin, a key adipokine in mammalian energy homeostasis regulation, suppresses adipocyte TET2 levels via JAK2-STAT3 signaling. Adipocyte Tet2 deficiency protects against high-fat diet-induced weight gain by reducing leptin levels and further improving leptin sensitivity in obese male mice. By interacting with C/EBPα, adipocyte TET2 increases the hydroxymethylcytosine levels of the leptin gene promoter, thereby promoting leptin gene expression. A decrease in adipose TET2 is associated with obesity-related hyperleptinemia in humans. Inhibition of TET2 suppresses the production of leptin in mature human adipocytes. Our findings support the existence of a negative feedback loop between TET2 and leptin in adipocytes and reveal a compensatory mechanism for the body to counteract the metabolic dysfunction caused by obesity.
Collapse
Affiliation(s)
- Qin Zeng
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jianfeng Song
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xiaoxiao Sun
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Dandan Wang
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xiyan Liao
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yujin Ding
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Wanyu Hu
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yayi Jiao
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Wuqian Mai
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Wufuer Aini
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Fanqi Wang
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Hui Zhou
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Limin Xie
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Ying Mei
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yuan Tang
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Wei Liu
- Department of Biliopancreatic Surgery and Bariatric Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Tuo Deng
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Clinical Immunology Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
2
|
Wojciechowicz T, Kolodziejski PA, Billert M, Strowski MZ, Nowak KW, Skrzypski M. The Effects of Neuropeptide B on Proliferation and Differentiation of Porcine White Preadipocytes into Mature Adipocytes. Int J Mol Sci 2023; 24:ijms24076096. [PMID: 37047072 PMCID: PMC10094185 DOI: 10.3390/ijms24076096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Neuropeptide B (NPB) affects energy homeostasis and metabolism by binding and activating NPBWR1 and NPBWR2 in humans and pigs. Recently, we reported that NPB promotes the adipogenesis of rat white and brown preadipocytes as well as 3T3-L1 cells. In the present study, we evaluated the effects of NPB on the proliferation and differentiation of white porcine preadipocytes into mature adipocytes. We identified the presence of NPB, NPBWR1, and NPBWR2 on the mRNA and protein levels in porcine white preadipocytes. During the differentiation process, NPB increased the mRNA expression of PPARγ, C/EBPβ, C/EBPα, PPARγ, and C/EBPβ protein production in porcine preadipocytes. Furthermore, NPB stimulated lipid accumulation in porcine preadipocytes. Moreover, NPB promoted the phosphorylation of the p38 kinase in porcine preadipocytes, but failed to induce ERK1/2 phosphorylation. NPB failed to stimulate the expression of C/EBPβ in the presence of the p38 inhibitor. Taken together, we report that NPB promotes the differentiation of porcine preadipocytes via a p38-dependent mechanism.
Collapse
Affiliation(s)
- Tatiana Wojciechowicz
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland
| | - Paweł A Kolodziejski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland
| | - Maria Billert
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland
| | - Mathias Z Strowski
- Department of Hepatology and Gastroenterology, Charité-University Medicine Berlin, 13353 Berlin, Germany
- Medical Clinic III, 15236 Frankfurt, Germany
| | - Krzysztof W Nowak
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland
| | - Marek Skrzypski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland
| |
Collapse
|
3
|
Villanueva-Carmona T, Cedó L, Madeira A, Ceperuelo-Mallafré V, Rodríguez-Peña MM, Núñez-Roa C, Maymó-Masip E, Repollés-de-Dalmau M, Badia J, Keiran N, Mirasierra M, Pimenta-Lopes C, Sabadell-Basallote J, Bosch R, Caubet L, Escolà-Gil JC, Fernández-Real JM, Vilarrasa N, Ventura F, Vallejo M, Vendrell J, Fernández-Veledo S. SUCNR1 signaling in adipocytes controls energy metabolism by modulating circadian clock and leptin expression. Cell Metab 2023; 35:601-619.e10. [PMID: 36977414 DOI: 10.1016/j.cmet.2023.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/21/2022] [Accepted: 03/03/2023] [Indexed: 03/30/2023]
Abstract
Adipose tissue modulates energy homeostasis by secreting leptin, but little is known about the factors governing leptin production. We show that succinate, long perceived as a mediator of immune response and lipolysis, controls leptin expression via its receptor SUCNR1. Adipocyte-specific deletion of Sucnr1 influences metabolic health according to nutritional status. Adipocyte Sucnr1 deficiency impairs leptin response to feeding, whereas oral succinate mimics nutrient-related leptin dynamics via SUCNR1. SUCNR1 activation controls leptin expression via the circadian clock in an AMPK/JNK-C/EBPα-dependent manner. Although the anti-lipolytic role of SUCNR1 prevails in obesity, its function as a regulator of leptin signaling contributes to the metabolically favorable phenotype in adipocyte-specific Sucnr1 knockout mice under standard dietary conditions. Obesity-associated hyperleptinemia in humans is linked to SUCNR1 overexpression in adipocytes, which emerges as the major predictor of adipose tissue leptin expression. Our study establishes the succinate/SUCNR1 axis as a metabolite-sensing pathway mediating nutrient-related leptin dynamics to control whole-body homeostasis.
Collapse
Affiliation(s)
- Teresa Villanueva-Carmona
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Lídia Cedó
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Ana Madeira
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Victòria Ceperuelo-Mallafré
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; Department of Medicine and Surgery, Universitat Rovira i Virgili (URV), Reus 43201, Spain
| | - M-Mar Rodríguez-Peña
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Catalina Núñez-Roa
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Elsa Maymó-Masip
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Maria Repollés-de-Dalmau
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; Department of Medicine and Surgery, Universitat Rovira i Virgili (URV), Reus 43201, Spain
| | - Joan Badia
- Institut d'Oncologia de la Catalunya Sud, Hospital Universitari Sant Joan de Reus, IISPV, Reus 43204, Spain
| | - Noelia Keiran
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Mercedes Mirasierra
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Madrid 28029, Spain
| | - Carolina Pimenta-Lopes
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Joan Sabadell-Basallote
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Ramón Bosch
- Department of Pathology, Oncological Pathology and Bioinformatics Research Group, Hospital de Tortosa Verge de la Cinta, IISPV, Tortosa 43500, Spain
| | - Laura Caubet
- General and Digestive Surgery Service, Hospital Sant Pau i Santa Tecla, Institut d'Investigació Sanitària Pere Virgili, Tarragona 43003, Spain
| | - Joan Carles Escolà-Gil
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona 08041, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - José-Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), Salt 17190, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CB06/03/010), Instituto de Salud Carlos III, Madrid 28029, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Girona 17004, Spain
| | - Nuria Vilarrasa
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; Department of Endocrinology and Nutrition, Hospital Universitari Bellvitge - IDIBELL, Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Mario Vallejo
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Madrid 28029, Spain
| | - Joan Vendrell
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; Department of Medicine and Surgery, Universitat Rovira i Virgili (URV), Reus 43201, Spain
| | - Sonia Fernández-Veledo
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain.
| |
Collapse
|
4
|
Leptin promoter methylation in female patients with painful multisomatoform disorder and chronic widespread pain. Clin Epigenetics 2022; 14:13. [PMID: 35063029 PMCID: PMC8783406 DOI: 10.1186/s13148-022-01235-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 01/13/2022] [Indexed: 12/18/2022] Open
Abstract
Background Different functional somatic syndromes (FSS), fibromyalgia (FMS) and other unexplained painful conditions share many common clinical traits and are characterized by troubling and functionally disabling somatic symptoms. Chronic pain is most frequently reported and at the center of patients’ level of disease burden. The construct of multisomatoform disorder (MSD) allows to subsume severely impaired patients suffering from FSS, FMS and other unexplained painful conditions to be examined for common underlying processes. Altered leptin levels and a pathological response of the HPA-axis as a result of chronic stress and childhood trauma have been suggested as one of the driving factors of disease development and severity. Previous studies have demonstrated that methylation of the leptin promoter can play a regulatory role in addiction. In this study, we hypothesized that methylation of the leptin promoter is influenced by the degree of childhood traumatization and differs between patients with MSD and controls. A cohort of 151 patients with MSD and 149 matched healthy volunteers were evaluated using clinical and psychometric assessment while methylation level analysis of the leptin promoter was performed using DNA isolated from whole blood. Results In female controls, we found CpG C-167 to be negatively correlated with leptin levels, whereas in female patients CpG C-289, C-255, C-193, C-167 and methylation cluster (C-291 to C-167) at putative bindings sites for transcription factors Sp1 and c/EBPalpha were negatively correlated with leptin levels. Methylation levels were significantly lower in female patients CpG C-289 compared with controls. When looking at female patients with chronic widespread pain methylation levels were significantly lower at CpG C-289, C-255 and methylation cluster (C-291 to C-167). Conclusion Our findings support the hypothesis that epigenetic regulation of leptin plays a role in the regulation of leptin levels in patients with MSD. This effect is more pronounced in patients with chronic widespread pain. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01235-5.
Collapse
|
5
|
Adipocyte Biology from the Perspective of In Vivo Research: Review of Key Transcription Factors. Int J Mol Sci 2021; 23:ijms23010322. [PMID: 35008748 PMCID: PMC8745732 DOI: 10.3390/ijms23010322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022] Open
Abstract
Obesity and type 2 diabetes are both significant contributors to the contemporary pandemic of non-communicable diseases. Both disorders are interconnected and associated with the disruption of normal homeostasis in adipose tissue. Consequently, exploring adipose tissue differentiation and homeostasis is important for the treatment and prevention of metabolic disorders. The aim of this work is to review the consecutive steps in the postnatal development of adipocytes, with a special emphasis on in vivo studies. We gave particular attention to well-known transcription factors that had been thoroughly described in vitro, and showed that the in vivo research of adipogenic differentiation can lead to surprising findings.
Collapse
|
6
|
Tang Y, Zhang W, Sheng T, He X, Xiong X. Overview of the molecular mechanisms contributing to the formation of cancer‑associated adipocytes (Review). Mol Med Rep 2021; 24:768. [PMID: 34490479 PMCID: PMC8430316 DOI: 10.3892/mmr.2021.12408] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/24/2021] [Indexed: 12/30/2022] Open
Abstract
Adipocytes are the main stromal cells in the tumor microenvironment. In addition to serving as energy stores for triglycerides, adipocytes may function as an active endocrine organ. The crosstalk between adipocytes and cancer cells was shown to promote the migration, invasion and proliferation of cancer cells and to cause phenotypic and functional changes in adipocytes. Tumor-derived soluble factors, such as TNF-α, plasminogen activator inhibitor 1, Wnt3a, IL-6, and exosomal microRNAs (miRNA/miRs), including miR-144, miR-126, miR-155, as well as other miRNAs, have been shown to act on adipocytes at the tumor invasion front, resulting in the formation of cancer-associated adipocytes (CAAs) with diminished reduced terminal differentiation markers and a dedifferentiated phenotype. In addition, the number and size of CAA lipid droplets have been found to be significantly reduced compared with those of mature adipocytes, whereas inflammatory cytokines and proteases are overexpressed. The aim of the present review was to summarize the latest findings on the biological changes of CAAs and the potential role of tumor-adipocyte crosstalk in the formation of CAAs, in the hope of providing novel perspectives for breast cancer treatment.
Collapse
Affiliation(s)
- Yunpeng Tang
- Second Clinical Medical School, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wenkai Zhang
- Second Clinical Medical School, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tianqiang Sheng
- Second Clinical Medical School, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xi He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
7
|
Bakshi A, Singh R, Rai U. Trajectory of leptin and leptin receptor in vertebrates: Structure, function and their regulation. Comp Biochem Physiol B Biochem Mol Biol 2021; 257:110652. [PMID: 34343670 DOI: 10.1016/j.cbpb.2021.110652] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/23/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022]
Abstract
The present review provides a comparative insight into structure, function and control of leptin system in fishes, herptiles, birds and mammals. In general, leptin acts as an anorexigenic hormone since its administration results in decrease of food intake in vertebrates. Nonetheless, functional paradox arises in fishes from contradictory observations on level of leptin during fasting and re-feeding. In addition, leptin is shown to modulate metabolic functions in fishes, reptiles, birds and mammals. Leptin also regulates reproductive and immune functions though more studies are warranted in non-mammalian vertebrates. The expression of leptin and its receptor is influenced by numerous factors including sex steroids, stress and stress-induced catecholamines and glucocorticoids though their effect in non-mammalian vertebrates is hard to be generalized due to limited studies.
Collapse
Affiliation(s)
- Amrita Bakshi
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Rajeev Singh
- Satyawati College, University of Delhi, Delhi 110052, India
| | - Umesh Rai
- Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
8
|
Che L, Ren B, Jia Y, Dong Y, Wang Y, Shan J, Wang Y. Feprazone Displays Antiadipogenesis and Antiobesity Capacities in in Vitro 3 T3-L1 Cells and in Vivo Mice. ACS OMEGA 2021; 6:6674-6680. [PMID: 33748580 PMCID: PMC7970497 DOI: 10.1021/acsomega.0c05470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/09/2021] [Indexed: 05/14/2023]
Abstract
BACKGROUND AND PURPOSE Excessive lipid accumulation in adipose tissues and deregulation of adipogenesis-induced obesity affect millions of people worldwide. Feprazone, a nonsteroidal anti-inflammatory drug, has a wide clinical use. However, it is unknown whether Feprazone possesses an antiadipogenic ability. The aim of this study is to investigate whether Feprazone possesses an antiadipogenic ability in 3 T3-L1 cells and an antiobesity capacity in mouse models. METHODS An MTT assay was used to determine the optimized incubation concentrations of Feprazone in 3 T3-L1 cells. The lipid accumulation was evaluated using Oil Red O staining. The concentrations of triglyceride and glycerol release were detected to check the lipolysis during 3 T3-L1 adipogenesis. A quantitative real-time polymerase chain reaction (qRT-PCR) was used to determine the expressions of sterol regulatory element-binding protein-1C (SREBP-1C) and fatty acid binding protein 4 (FABP4) in treated cells. The expressions of peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT/enhancer-binding protein α (C/EBP-α), adipose triglyceride lipase (ATGL), and aquaporin-7 (AQP-7) were detected using qRT-PCR and Western blot analysis. After the high-fat diet (HFD) mice were treated with Feprazone, the pathological state of adipocyte tissues was evaluated using HE staining. The adipocyte size, visceral adipocyte tissue weight, and bodyweights were recorded. RESULTS According to the proliferation result, 30 and 60 μM Feprazone were used as the optimized concentrations of Feprazone. In the in vitro study, lipid accumulation, elevated production of triglycerides, the release of glycerol, upregulated SREBP-1C, FABP4, PPAR-γ, and C/EBP-α and downregulated ATGL and AQP-7 in the 3 T3-L1 adipocytes induced by the adipocyte differentiation cocktail medium were significantly reversed by treatment with Feprazone. In the in vivo experiment, we found that the increased adipocyte size, visceral adipocyte tissue weight, and body weights induced by HFD feeding in mice were significantly suppressed by the administration of Feprazone. CONCLUSION Feprazone might display anti-adipogenic and antiobesity capacities in in vitro 3 T3-L1 cells and in vivo mice.
Collapse
Affiliation(s)
- Liqun Che
- Department
of Endocrinology Ward 3, The Third Affiliated
Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Bo Ren
- Department
of Endocrinology Ward 3, The Third Affiliated
Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Yuanyuan Jia
- Department
of Endocrinology Ward 3, The Third Affiliated
Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Yujia Dong
- Department
of Endocrinology Ward 3, The Third Affiliated
Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Yanbing Wang
- Department
of Endocrinology Ward 3, The Third Affiliated
Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Jie Shan
- Department
of Endocrinology Ward 3, The Third Affiliated
Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Yuchun Wang
- Department
of pharmacology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
- . Tel.: +86-452-2663370
| |
Collapse
|
9
|
Wang Q, Wang R, Feng B, Li S, Mahboob S, Shao C. Cloning and functional analysis of c/ebpα as negative regulator of dmrt1 in Chinese tongue sole (Cynoglossus semilaevis). Gene 2020; 768:145321. [PMID: 33221538 DOI: 10.1016/j.gene.2020.145321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/25/2020] [Accepted: 11/14/2020] [Indexed: 01/11/2023]
Abstract
c/ebpα is a member of the C/EBP family of transcription factors, which are involved in cell growth and differentiation and have a conserved basic leucine zipper (bZIP) domain. However, little is known about its function in sex determination and differentiation. In the present study, c/ebpα was cloned from the gonads of Chinese tongue sole (Cynoglossus semilaevis). The full-length cDNA of c/ebpα was 1583 bp, with a 198-bp 5' UTR, a 446-bp 3' UTR, and a 939-bp open reading frame encoding a 312-amino acid peptide. qRT-PCR revealed that c/ebpα was predominantly expressed in undifferentiated gonads of male C. semilaevis at 30 dpf and 60 dpf and peaked at 60 dpf. Expression levels of c/ebpα in the testis were constantly higher than those in ovaries at all developmental stages. Moreover, a dual-luciferase assay revealed that c/ebpα could negatively regulate the male-determining gene dmrt1 in vitro. These results provide fundamental information indicating that C. semilaevis c/ebpa might be involved in early gonadal differentiation and functions as a negative regulator of dmrt1 by repressing its transcription.
Collapse
Affiliation(s)
- Qian Wang
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Rui Wang
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Bo Feng
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Shuo Li
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Changwei Shao
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| |
Collapse
|
10
|
Hongfang G, Khan R, Raza SHA, Nurgulsim K, Suhail SM, Rahman A, Ahmed I, Ijaz A, Ahmad I, Linsen Z. Transcriptional regulation of adipogenic marker genes for the improvement of intramuscular fat in Qinchuan beef cattle. Anim Biotechnol 2020; 33:776-795. [PMID: 33151113 DOI: 10.1080/10495398.2020.1837847] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The intramuscular fat content plays a crucial role in meat quality traits. Increasing the degree of adipogenesis in beef cattle leads to an increase in the content of intramuscular fat. Adipogenesis a complex biochemical process which is under firm genetic control. Over the last three decades, the Qinchuan beef cattle have been extensively studied for the improvement of meat production and quality traits. In this study, we reviewed the literature regarding adipogenesis and intramuscular fat deposition. Then, we summarized the research conducted on the transcriptional regulation of key adipogenic marker genes, and also reviewed the roles of adipogenic marker genes in adipogenesis of Qinchuan beef cattle. This review will elaborate our understanding regarding transcriptional regulation which is a vital physiological process regulated by a cascade of transcription factors (TFs), key target marker genes, and regulatory proteins. This synergistic action of TFs and target genes ensures the accurate and diverse transmission of the genetic information for the accomplishment of central physiological processes. This information will provide an insight into the transcriptional regulation of the adipogenic marker genes and its role in bovine adipogenesis for the breed improvement programs especially for the trait of intramuscular fat deposition.
Collapse
Affiliation(s)
- Guo Hongfang
- Medical College of Xuchang University, Xuchang City, Henan Province, P. R. China
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China.,Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Kaster Nurgulsim
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Syed Muhammad Suhail
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Abdur Rahman
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Ijaz Ahmed
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Asim Ijaz
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Iftikhar Ahmad
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Zan Linsen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| |
Collapse
|
11
|
Ruddick-Collins LC, Morgan PJ, Johnstone AM. Mealtime: A circadian disruptor and determinant of energy balance? J Neuroendocrinol 2020; 32:e12886. [PMID: 32662577 DOI: 10.1111/jne.12886] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/24/2020] [Accepted: 06/14/2020] [Indexed: 12/21/2022]
Abstract
Circadian rhythms play a critical role in the physiological processes involved in energy metabolism and energy balance (EB). A large array of metabolic processes, including the expression of many energy-regulating endocrine hormones, display temporal rhythms that are driven by both the circadian clock and food intake. Mealtime has been shown to be a compelling zeitgeber in peripheral tissue rhythms. Inconsistent signalling to the periphery, because of mismatched input from the central clock vs time of eating, results in circadian disruption in which central and/or peripheral rhythms are asynchronously time shifted or their amplitudes reduced. A growing body of evidence supports the negative health effects of circadian disruption, with strong evidence in murine models that mealtime-induced circadian disruption results in various metabolic consequences, including energy imbalance and weight gain. Increased weight gain has been reported to occur even without differences in energy intake, indicating an effect of circadian disruption on energy expenditure. However, the translation of these findings to humans is not well established because the ability to undertake rigorously controlled dietary studies that explore the chronic effects on energy regulation is challenging. Establishing the neuroendocrine changes in response to both acute and chronic variations in mealtime, along with observations in populations with routinely abnormal mealtimes, may provide greater insight into underlying mechanisms that influence long-term weight management under different meal patterns. Human studies should explore mechanisms through relevant biomarkers; for example, cortisol, leptin, ghrelin and other energy-regulating neuroendocrine factors. Mistiming between aggregate hormonal signals, or between hormones with their receptors, may cause reduced signalling intensity and hormonal resistance. Understanding how mealtimes may impact on the coordination of endocrine factors is essential for untangling the complex regulation of EB. Here a review is provided on current evidence of the impacts of mealtime on energy metabolism and the underlying neuroendocrine mechanisms, with a specific focus on human research.
Collapse
Affiliation(s)
| | - Peter J Morgan
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | | |
Collapse
|
12
|
Jiang H, Horiuchi Y, Hironao KY, Kitakaze T, Yamashita Y, Ashida H. Prevention effect of quercetin and its glycosides on obesity and hyperglycemia through activating AMPKα in high-fat diet-fed ICR mice. J Clin Biochem Nutr 2020; 67:74-83. [PMID: 32801472 PMCID: PMC7417802 DOI: 10.3164/jcbn.20-47] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023] Open
Abstract
Quercetin and its glycosides possess various health beneficial functions, but comparative study of them on energy metabolism in different tissues are not well studied. In this study, we investigated AMP-activated protein kinase regulated glucose metabolism in the skeletal muscle and lipid metabolism in the white adipose tissue and liver to compare the effectiveness of quercetin and its glycosides, namely isoquercitrin, rutin, and enzymatically modified isoquercitrin, in male ICR mice. The mice were fed a standard or high-fat diet supplemented with 0.1% quercetin and its glycosides for 13 weeks. Quercetin glycosides, but not quercetin, decreased body weight gain and fat accumulation in the mesenteric adipose tissue in high-fat groups. All compounds decreased high-fat diet-increased plasma glucose and insulin levels. Moreover, all compounds significantly increased AMP-activated protein kinase phosphorylation in either standard or high-fat diet-fed mice in all tissues tested. As its downstream events, all compounds induced glucose transporter 4 translocation in the muscle. In the white adipose tissue and liver, all compounds increased lipogenesis while decreased lipolysis. Moreover, all compounds increased browning markers and decreased differentiation markers in adipose tissue. Therefore, quercetin and its glycosides are promising food components for prevention of adiposity and hyperglycemia through modulating AMP-activated protein kinase-driven pathways.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Yuko Horiuchi
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Ken-Yu Hironao
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Tomoya Kitakaze
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Yoko Yamashita
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Hitoshi Ashida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
13
|
Gioldasi S, Karvela A, Rojas-Gil AP, Rodi M, de Lastic AL, Thomas I, Spiliotis BE, Mouzaki A. Metabolic Association between Leptin and the Corticotropin Releasing Hormone. Endocr Metab Immune Disord Drug Targets 2020; 19:458-466. [PMID: 30727936 PMCID: PMC7360915 DOI: 10.2174/1871530319666190206165626] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 10/31/2018] [Accepted: 12/27/2018] [Indexed: 01/29/2023]
Abstract
Objective In healthy individuals, leptin is produced from adipose tissue and is secreted into the circulation to communicate energy balance status to the brain and control fat metabolism. Corticotropin-Releasing Hormone (CRH) is synthesized in the hypothalamus and regulates stress responses. Among the many adipokines and hormones that control fat metabolism, leptin and CRH both curb appetite and inhibit food intake. Despite numerous reports on leptin and CRH properties and function, little has been actually shown about their association in the adipose tissue environment. Methods In this article, we summarized the salient information on leptin and CRH in relation to metabolism. We also investigated the direct effect of recombinant CRH on leptin secretion by primary cultures of human adipocytes isolated from subcutaneous abdominal adipose tissue of 7 healthy children and adolescents, and measured CRH and leptin levels in plasma collected from peripheral blood of 24 healthy children and adolescents to assess whether a correlation exists between CRH and leptin levels in the periphery. Results and Conclusion The available data indicate that CRH exerts a role in the regulation of leptin in human adipocytes. We show that CRH downregulates leptin production by mature adipocytes and that a strong negative correlation exists between CRH and leptin levels in the periphery, and suggest the possible mechanisms of CRH control of leptin. Delineation of CRH control of leptin production by adipocytes may explain unknown pathogenic mechanisms linking stress and metabolism.
Collapse
Affiliation(s)
- Sofia Gioldasi
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Alexia Karvela
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Medical School, University of Patras, Patras, Greece
| | | | - Maria Rodi
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Anne-Lise de Lastic
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Iason Thomas
- Department of Allergy, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Bessie E Spiliotis
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Medical School, University of Patras, Patras, Greece
| | - Athanasia Mouzaki
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
14
|
Ji Y, Elkin K, Yip J, Guan L, Han W, Ding Y. From circadian clocks to non-alcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol 2019; 13:1107-1112. [PMID: 31645151 DOI: 10.1080/17474124.2019.1684899] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: The circadian rhythm is an integral regulator of various endocrine processes in the body, including sleep-wake cycles, hormonal regulation, and metabolism. In addition to metabolic, genetic, and environmental factors, a dysregulated circadian rhythm resulting from lifestyle changes has been implicated in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). An accumulating body of evidence also supports strong association between NAFLD and metabolic disorder, the pathogenesis of which is related to periodic fluctuations in hormonal homeostasis. It is clear that endocrine and circadian rhythms are tightly interconnected. Generally, the circadian rhythm regulates flux patterns of physiological functions. The present review will discuss the modulation of bodily processes by the circadian rhythm with specific attention to the regulation of NAFLD by leptin and related hormones.Areas covered: PubMed/MEDLINE was searched for articles related to concomitant occurrence of NAFLD and T2DM between January 1995 and September 2019. Areas covered included epidemiological, physiology and pathophysiology aspects.Expert opinion: NAFLD and NASH are increasingly prevalent and may be largely mitigated with effective lifestyle modification and, potentially, circadian rhythm stabilization. Improved knowledge of the specific pathogenesis of NAFLD in addition to enhanced diagnostic screening tools and prediction of future disease burden is imperative.
Collapse
Affiliation(s)
- Yu Ji
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, School of Medicine, Wayne State University, Detroit, MI, USA.,Department of Research & Development Center, John D. Dingell VA Medical Center, Detroit, MI, USA
| | - Kenneth Elkin
- Department of Neurosurgery, School of Medicine, Wayne State University, Detroit, MI, USA
| | - James Yip
- Department of Neurosurgery, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Longfei Guan
- Department of Neurosurgery, School of Medicine, Wayne State University, Detroit, MI, USA.,Department of Research & Development Center, John D. Dingell VA Medical Center, Detroit, MI, USA.,China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Wei Han
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, School of Medicine, Wayne State University, Detroit, MI, USA.,Department of Research & Development Center, John D. Dingell VA Medical Center, Detroit, MI, USA
| |
Collapse
|
15
|
Shin SK, Song SE, Oh JU, Hwang M, Cho HW, Bae JH, Im SS, Kim JI, Song DK. Orexin A-induced inhibition of leptin expression and secretion in adipocytes reducing plasma leptin levels and hypothalamic leptin resistance. Pflugers Arch 2019; 471:1407-1418. [PMID: 31667577 DOI: 10.1007/s00424-019-02318-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/04/2019] [Accepted: 10/04/2019] [Indexed: 12/15/2022]
Abstract
Orexin A (OXA) is a neuropeptide associated with plasma insulin and leptin levels involved in body weight and appetite regulation. However, little is known about the effect of OXA on leptin secretion in adipocytes and its physiological roles. Leptin secretion and expression were analysed in 3T3-L1 adipocytes. Plasma leptin, adiponectin and insulin levels were measured by ELISA assay. Phosphorylated signal transducer and activator of transcription 3 (pSTAT3) levels in the hypothalamus were evaluated by western blotting. OXA dose-dependently suppressed leptin secretion from 3T3-L1 adipocytes by inhibiting its gene expression while facilitating adiponectin secretion. The leptin inhibition by OXA was mediated via orexin receptors (OXR1 and OXR2). In addition to the pathway via extracellular signal-regulated kinases, OXA triggered adenylyl cyclase-induced cAMP elevation, which results in protein kinase A-mediated activation of cAMP response element-binding proteins (CREB). Accordingly, CREB inhibition restored the OXA-induced downregulation of leptin gene expression and secretion. Exogenous OXA for 4 weeks decreased fasting plasma leptin levels and increased hypothalamic pSTAT3 levels in high-fat diet-fed mice, regardless of increase in body weight and food intake. These results suggest that high dose of OXA directly inhibits leptin mRNA expression and thus secretion in adipocytes, which may be a peripheral mechanism of OXA for its role in appetite drive during fasting. It may be also critical for lowering basal plasma leptin levels and thus maintaining postprandial hypothalamic leptin sensitivity.
Collapse
Affiliation(s)
- Su-Kyung Shin
- Department of Physiology, Keimyung University School of Medicine, 1095 Dalgubeoldae-Ro, Dalseo-Gu, Daegu, 42601, South Korea
| | - Seung-Eun Song
- Department of Physiology, Keimyung University School of Medicine, 1095 Dalgubeoldae-Ro, Dalseo-Gu, Daegu, 42601, South Korea
| | - Jin Uk Oh
- Department of Physiology, Keimyung University School of Medicine, 1095 Dalgubeoldae-Ro, Dalseo-Gu, Daegu, 42601, South Korea
| | - Meeyul Hwang
- Department of Physiology, Keimyung University School of Medicine, 1095 Dalgubeoldae-Ro, Dalseo-Gu, Daegu, 42601, South Korea
| | - Hyun-Woo Cho
- Department of Physiology, Keimyung University School of Medicine, 1095 Dalgubeoldae-Ro, Dalseo-Gu, Daegu, 42601, South Korea
| | - Jae-Hoon Bae
- Department of Physiology, Keimyung University School of Medicine, 1095 Dalgubeoldae-Ro, Dalseo-Gu, Daegu, 42601, South Korea
| | - Seung-Soon Im
- Department of Physiology, Keimyung University School of Medicine, 1095 Dalgubeoldae-Ro, Dalseo-Gu, Daegu, 42601, South Korea
| | - Jee-In Kim
- Department of Molecular Medicine, Keimyung University School of Medicine, 1095 Dalgubeoldae-Ro, Dalseo-Gu, Daegu, 42601, Korea
| | - Dae-Kyu Song
- Department of Physiology, Keimyung University School of Medicine, 1095 Dalgubeoldae-Ro, Dalseo-Gu, Daegu, 42601, South Korea.
| |
Collapse
|
16
|
Mak IL, Lavery P, Agellon S, Rauch F, Murshed M, Weiler HA. Arachidonic acid exacerbates diet-induced obesity and reduces bone mineral content without impacting bone strength in growing male rats. J Nutr Biochem 2019; 73:108226. [PMID: 31520815 DOI: 10.1016/j.jnutbio.2019.108226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/28/2019] [Accepted: 08/09/2019] [Indexed: 12/30/2022]
Abstract
Long-chain polyunsaturated fatty acids modulate bone mass and adipocyte metabolism. Arachidonic acid (AA, C20:4 n-6) is elevated in obesity and postulated to stimulate bone resorption. This study aimed to determine the effect of AA on bone mass, quality, and adiposity in diet-induced obesity during growth. Male Sprague-Dawley rats (n=42, 4-week) were randomized into groups fed a control diet (CTRL, AIN-93G), high-fat diet (HFD, 35% kcal fat) or HFD + AA (1% w/w diet) for 6 weeks. Body composition, bone mineral density and microarchitecture were measured using dual-energy X-ray absorptiometry and micro-computed tomography. Red blood cell fatty acid profile was measured with gas chromatography. Group differences were evaluated using repeated measures two-way analysis of variance with Tukey-Kramer post hoc testing. Total energy intake did not differ among diet groups. At week 6, HFD + AA had significantly greater body fat % (12%), body weight (6%) and serum leptin concentrations (125%) than CTRL, whereas visceral fat (mass and %, assessed with micro-computed tomography) was increased in both HFD and HFD + AA groups. HFD + AA showed reduced whole body bone mineral content and femur mid-diaphyseal cortical bone cross-sectional area than HFD and CTRL, without impairment in bone strength. Contrarily, HFD + AA had greater femur metaphyseal trabecular vBMD (35%) and bone volume fraction (5%) compared to controls. Inclusion of AA elevated leptin concentrations in male rats. The early manifestations of diet-induced obesity on bone mass were accelerated with AA. Studies of longer duration are needed to clarify the effect of AA on peak bone mass following growth cessation.
Collapse
Affiliation(s)
- Ivy L Mak
- School of Human Nutrition, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC, Canada H9X 3V9
| | - Paula Lavery
- School of Human Nutrition, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC, Canada H9X 3V9
| | - Sherry Agellon
- School of Human Nutrition, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC, Canada H9X 3V9
| | - Frank Rauch
- Shriners' Hospital for Children, 1003 Decarie Boulevard, Montreal, QC, Canada H4A 0A9
| | - Monzur Murshed
- Shriners' Hospital for Children, 1003 Decarie Boulevard, Montreal, QC, Canada H4A 0A9; Faculty of Dentistry, McGill University, 3640 rue University, Montreal, QC, Canada H3A 0C7
| | - Hope A Weiler
- School of Human Nutrition, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC, Canada H9X 3V9.
| |
Collapse
|
17
|
Kim GH, Ju JY, Chung KS, Cheon SY, Gil TY, Cominguez DC, Cha YY, Lee JH, Roh SS, An HJ. Rice Hull Extract (RHE) Suppresses Adiposity in High-Fat Diet-Induced Obese Mice and Inhibits Differentiation of 3T3-L1 Preadipocytes. Nutrients 2019; 11:nu11051162. [PMID: 31137609 PMCID: PMC6566172 DOI: 10.3390/nu11051162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 12/17/2022] Open
Abstract
Obesity is one of major health challenges in the industrial world. Although rice hull has been reported to show various bioactivities, no studies have evaluated its anti-obesity effect. We hope to demonstrate the anti-obesity effect of rice hull extract (RHE) and the underlying mechanism in high-fat diet (HFD)-induced obese mice and 3T3-L1 preadipocytes. Serum lipid profiles were determined by enzymatic methods. Histological analysis of liver and epididymis fat tissues was carried out with hematoxylin and eosin stain. The mRNA expression of adipogenic markers was analyzed with qRT-PCR and western blotting. Oral administration of RHE reduced body weight gain and fat accumulation in HFD-fed mice. RHE also reduced lipid accumulation by inhibiting the mRNA expression of adipogenic-related genes in HFD-fed obese mice and differentiated preadipocytes. The downregulation of adipogenesis by RHE was mediated through the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC). In addition, RHE induced the phosphorylation of c-Jun N-terminal kinases (JNK) and extracellular-signal-regulated kinases (ERK) in liver and epididymis adipose tissues of HFD-fed obese mice. Taken together, these findings indicate that RHE could inhibit the differentiation of adipose cell and prevent HFD-induced obesity, suggesting its potential in the prevention of obesity and metabolic syndrome and related-disorders.
Collapse
Affiliation(s)
- Ga-Hee Kim
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju-si 220702, Korea.
| | - Jae-Yun Ju
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju-si 220702, Korea.
| | - Kyung-Sook Chung
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju-si 220702, Korea.
| | - Se-Yun Cheon
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju-si 220702, Korea.
| | - Tae-Young Gil
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju-si 220702, Korea.
| | - Divina C Cominguez
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju-si 220702, Korea.
| | - Yun-Yeop Cha
- Department of Rehabilitation Medicine of Korean Medicine and Neuropsychiatry, College of Korean Medicine, Sangji University, Wonju-si 220702, Korea.
| | - Jong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dongduk Women's University, Seoul 03084, Korea.
- Department of Herbology, Daegu Haany University, Daegu 42158, Korea.
| | - Seong-Soo Roh
- Department of Herbology, Daegu Haany University, Daegu 42158, Korea.
| | - Hyo-Jin An
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju-si 220702, Korea.
| |
Collapse
|
18
|
Wang T, Yan R, Xu X, Yu H, Wu J, Yang Y, Li W. Effects of leukemia inhibitory factor receptor on the adipogenic differentiation of human bone marrow mesenchymal stem cells. Mol Med Rep 2019; 19:4719-4726. [PMID: 31059010 PMCID: PMC6522817 DOI: 10.3892/mmr.2019.10140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 04/01/2019] [Indexed: 01/21/2023] Open
Abstract
Leukemia inhibitory factor (LIF) modulates various biological processes. Although previous studies have described the effects of LIF on adipocyte differentiation, the role of LIF receptor (LIFR) on adipocyte differentiation remains unclear. Using reverse transcription‑quantitative PCR (RT‑qPCR), LIFR expression was demonstrated to increase during adipogenic differentiation of human bone marrow mesenchymal stem cells (hMSCs), indicating that LIFR may be involved in this process. To further evaluate the association between LIFR and adipogenic differentiation, lentivirus‑mediated LIFR knockdown was performed in hMSCs. Cells were divided into two groups: Negative control group and LIFR‑knockdown group. During the adipogenic differentiation process, intracellular lipid accumulation was assessed with Oil Red O staining at various time points (days 3, 6 and 9). Additionally, the mRNA and protein expression levels of LIF, LIFR and three molecular indicators of adipogenesis, peroxisome proliferator‑activated receptor γ (PPARγ), CCAAT enhancer binding protein α (C/EBPα) and fatty acid binding protein 4 (FABP4/aP2), were assessed by RT‑qPCR and western blotting. The culture supernatant was collected to evaluate the concentration of LIF using ELISA. The present results suggested that LIFR expression progressively increased during adipogenic differentiation of hMSCs. Conversely, LIFR knockdown significantly suppressed this process. Additionally, PPARγ, C/EBPα and aP2 were inhibited following LIFR knockdown. In contrast with LIFR, the expression levels of LIF were significantly decreased after the initiation of adipogenic differentiation. Therefore, the expression levels of LIF and LIFR exhibited opposite trends. Collectively, the present results suggested that LIFR promoted adipogenic differentiation, whereas LIF may negatively regulate this process.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of System Bio‑Medicine of Jiangxi Province, Jiujiang University, Jiujiang, Jiangxi 332000, P.R. China
| | - Ruiqiao Yan
- Clinical Skills Center, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, P.R. China
| | - Xiaoyuan Xu
- Key Laboratory of System Bio‑Medicine of Jiangxi Province, Jiujiang University, Jiujiang, Jiangxi 332000, P.R. China
| | - Huan Yu
- Key Laboratory of System Bio‑Medicine of Jiangxi Province, Jiujiang University, Jiujiang, Jiangxi 332000, P.R. China
| | - Jianfang Wu
- Key Laboratory of System Bio‑Medicine of Jiangxi Province, Jiujiang University, Jiujiang, Jiangxi 332000, P.R. China
| | - Yaofang Yang
- Key Laboratory of System Bio‑Medicine of Jiangxi Province, Jiujiang University, Jiujiang, Jiangxi 332000, P.R. China
| | - Weidong Li
- Key Laboratory of System Bio‑Medicine of Jiangxi Province, Jiujiang University, Jiujiang, Jiangxi 332000, P.R. China
| |
Collapse
|
19
|
Wang X, Khan R, Raza SHA, Li A, Zhang Y, Liang C, Yang W, Wu S, Zan L. Molecular characterization of ABHD5 gene promoter in intramuscular preadipocytes of Qinchuan cattle: Roles of Evi1 and C/EBPα. Gene 2019; 690:38-47. [DOI: 10.1016/j.gene.2018.12.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/13/2018] [Indexed: 01/21/2023]
|
20
|
Curcumin represses adipogenic differentiation of human bone marrow mesenchymal stem cells via inhibiting kruppel-like factor 15 expression. Acta Histochem 2019; 121:253-259. [PMID: 30611528 DOI: 10.1016/j.acthis.2018.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 11/21/2022]
Abstract
Understanding the mechanisms of adipogenic differentiation may lead to the discovery of novel therapeutic targets for obesity. The natural plant polyphenol compound curcumin can improve obesity-associated inflammation and diabetes in obese mice. The role of curcumin in adipogenic differentiation of human bone marrow mesenchymal stem cells (hMSCs) is still unclear. We used hMSCs to investigate the details of the mechanism underlying the adipogenic effects of curcumin. At different time points (i.e., 5 days and 10 days) of hMSC adipocyte differentiation, an accumulation of large lipid droplets was analyzed in Oil Red O-stained cultured cells in two curcumin (5 μM and 10 μM) groups and the control group. The cells were also harvested for the detection of mRNA and protein expressions by quantitative real-time polymerase chain reaction and Western blot analysis. The results showed that curcumin can suppresses adipocyte differentiation in a dose-dependent manner and inhibited the expression of PPARγ, C/EBPα, and FABP4. Importantly, curcumin can also suppress the expression of Kruppel-like factor 15, which may bind to the PPARγ promoter, resulting in downregulation of PPARγ expression to inhibit the adipogenic differentiation of hMSCs.
Collapse
|
21
|
Gao W, Gao Z, Pu S, Dong Y, Xu X, Yang X, Zhang Y, Fang K, Li J, Yu W, Sun N, Hu L, Xu Q, Cheng Z, Gao Y. The Underlying Regulated Mechanisms of Adipose Differentiation and Apoptosis of Breast Cells after Weaning. Curr Protein Pept Sci 2019; 20:696-704. [PMID: 30678617 DOI: 10.2174/1389203720666190124161652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/30/2018] [Accepted: 01/14/2019] [Indexed: 11/22/2022]
Abstract
Numerous experimental studies have demonstrated that a series of remodeling processes occurred in the adipose tissue during the weaning, such as differentiation. Fibroblasts in the breast at weaning stage could re-differentiate into mature adipocytes. Many transcriptional factors were involved in these processes, especially the PPARγ, C/EBP, and SREBP1. There is cell apoptosis participating in the breast tissue degeneration and secretory epithelial cells loss during weaning. In addition, hormones, especially the estrogen and pituitary hormone, play a vital role in the whole reproductive processes. In this review, we mainly focus on the underlying regulated mechanisms of differentiation of adipose tissue and apoptosis of breast cell to provide a specific insight into the physiological changes during weaning.
Collapse
Affiliation(s)
- Weihang Gao
- College of PIWEI institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhao Gao
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Administration of Sports of Guangdong Province, Guangzhou, Guangdong, 510105, China
| | - Shuqi Pu
- College of PIWEI institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yanbin Dong
- College of PIWEI institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiaowen Xu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510405, China
| | - Xingping Yang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Yuan Zhang
- Administration of Sports of Guangdong Province, Guangzhou, Guangdong, 510105, China
| | - Kui Fang
- Administration of Sports of Guangdong Province, Guangzhou, Guangdong, 510105, China
| | - Jie Li
- Administration of Sports of Guangdong Province, Guangzhou, Guangdong, 510105, China
| | - Weijian Yu
- Administration of Sports of Guangdong Province, Guangzhou, Guangdong, 510105, China
| | - Nannan Sun
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510405, China
| | - Ling Hu
- College of PIWEI institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Qin Xu
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhibin Cheng
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunan, 650201, China
| | - Yong Gao
- College of PIWEI institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| |
Collapse
|
22
|
Chlorogenic Acid Functions as a Novel Agonist of PPAR γ2 during the Differentiation of Mouse 3T3-L1 Preadipocytes. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8594767. [PMID: 30627576 PMCID: PMC6304673 DOI: 10.1155/2018/8594767] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023]
Abstract
Rosiglitazone (RG) is a well-known activator of peroxisome proliferator-activated receptor-gamma (PPARγ) and used to treat hyperglycemia and type 2 diabetes; however, its clinical application has been confounded by adverse side effects. Here, we assessed the roles of chlorogenic acid (CGA), a phenolic secondary metabolite found in many fruits and vegetables, on the differentiation and lipolysis of mouse 3T3-L1 preadipocytes. The results showed that CGA promoted differentiation in vitro according to oil red O staining and quantitative polymerase chain reaction assays. As a potential molecular mechanism, CGA downregulated mRNA levels of the adipocyte differentiation-inhibitor gene Pref1 and upregulated those of major adipogenic transcriptional factors (Cebpb and Srebp1). Additionally, CGA upregulated the expression of the differentiation-related transcriptional factor PPARγ2 at both the mRNA and protein levels. However, following CGA intervention, the accumulation of intracellular triacylglycerides following preadipocyte differentiation was significantly lower than that in the RG group. Consistent with this, our data indicated that CGA treatment significantly upregulated the expression of lipogenic pathway-related genes Plin and Srebp1 during the differentiation stage, although the influence of CGA was weaker than that of RG. Notably, CGA upregulated the expression of the lipolysis-related gene Hsl, whereas it did not increase the expression of the lipid synthesis-related gene Dgat1. These results demonstrated that CGA might function as a potential PPARγ agonist similar to RG; however, the impact of CGA on lipolysis in 3T3-L1 preadipocytes differed from that of RG.
Collapse
|
23
|
Role of the Circadian Clock in the Metabolic Syndrome and Nonalcoholic Fatty Liver Disease. Dig Dis Sci 2018; 63:3187-3206. [PMID: 30121811 DOI: 10.1007/s10620-018-5242-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/06/2018] [Indexed: 12/20/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in industrialized nations and is strongly associated with the metabolic syndrome. The prevalence of NAFLD continues to rise along with the epidemic of the metabolic syndrome. Metabolic homeostasis is linked to the circadian clock (rhythm), with multiple signaling pathways in organs regulated by circadian clock genes, and recent studies of circadian clock gene functions suggest that disruption of the circadian rhythm is associated with significant morbidity and mortality, including the metabolic syndrome. In the industrialized world, various human behaviors and activities such as work and eating patterns, jet lag, and sleep deprivation interfere with the circadian rhythm, leading to perturbations in metabolism and development of the metabolic syndrome. In this review, we discuss how disruption of the circadian rhythm is associated with various metabolic conditions that comprise the metabolic syndrome and NAFLD.
Collapse
|
24
|
Marques-Oliveira GH, Silva TM, Lima WG, Valadares HMS, Chaves VE. Insulin as a hormone regulator of the synthesis and release of leptin by white adipose tissue. Peptides 2018; 106:49-58. [PMID: 29953915 DOI: 10.1016/j.peptides.2018.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/20/2018] [Accepted: 06/24/2018] [Indexed: 02/09/2023]
Abstract
Leptin and its receptor are widely distributed in several tissues, mainly in white adipose tissue. The serum leptin is highly correlated with body mass index in rodents and humans, being documented that leptin levels reduces in the fasting state and increase during refeeding, similarly to insulin release by pancreatic islets. Insulin appears to increase leptin mRNA and protein expression and its release by adipocytes. Some studies have suggested that insulin acts through the activation of the transcription factors: sterol regulatory element binding protein 1 (SREBP1), CCAAT enhancer binding protein-α (C/EBP-α) and specificity protein 1 (Sp1). Insulin stimulates the release of preformed and newly synthesized leptin by adipocytes through its signaling cascade. Its effects are blocked by inhibitors of the insulin signaling pathway, as well as by inhibitors of protein synthesis and agents that increase the intracellular cAMP. The literature data suggest that chronic hyperinsulinemia increases serum leptin levels in humans and rodents. In this review, we summarized the most updated knowledge on the effects of insulin on serum leptin levels, presenting the cell mechanisms that control leptin synthesis and release by the white adipose tissue.
Collapse
Affiliation(s)
| | - Thaís Marques Silva
- Laboratory of Physiology, Federal University of São João del-Rei, Divinópolis, Minas Gerais, Brazil
| | - William Gustavo Lima
- Laboratory of Physiology, Federal University of São João del-Rei, Divinópolis, Minas Gerais, Brazil
| | | | - Valéria Ernestânia Chaves
- Laboratory of Physiology, Federal University of São João del-Rei, Divinópolis, Minas Gerais, Brazil.
| |
Collapse
|
25
|
Li X, Yang Y, Yan R, Xu X, Gao L, Mei J, Liu J, Wang X, Zhang J, Wu P, Li W, Zhao Z, Xiong J, Wang T. miR-377-3p regulates adipogenic differentiation of human bone marrow mesenchymal stem cells by regulating LIFR. Mol Cell Biochem 2018; 449:295-303. [DOI: 10.1007/s11010-018-3366-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/17/2018] [Indexed: 11/25/2022]
|
26
|
Abstract
Interactions between the brain and distinct adipose depots have a key role in maintaining energy balance, thereby promoting survival in response to metabolic challenges such as cold exposure and starvation. Recently, there has been renewed interest in the specific central neuronal circuits that regulate adipose depots. Here, we review anatomical, genetic and pharmacological studies on the neural regulation of adipose function, including lipolysis, non-shivering thermogenesis, browning and leptin secretion. In particular, we emphasize the role of leptin-sensitive neurons and the sympathetic nervous system in modulating the activity of brown, white and beige adipose tissues. We provide an overview of advances in the understanding of the heterogeneity of the brain regulation of adipose tissues and offer a perspective on the challenges and paradoxes that the community is facing regarding the actions of leptin on this system.
Collapse
Affiliation(s)
- Alexandre Caron
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Syann Lee
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joel K. Elmquist
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Laurent Gautron
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
27
|
|
28
|
Levine JA, McCrady-Spitzer SK, Bighorse W. Obesity and sexual abuse in American Indians and Alaska Natives. ACTA ACUST UNITED AC 2016; 6. [PMID: 28529823 DOI: 10.4172/2165-7904.1000e119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mainstream American culture frequently minimizes the prevalence and significance of sexual abuse. Unfortunately, this denial of extensive victimization of women is also present in many underserved populations. In June 2007, Amnesty International released its report on sexual abuse in indigenous women, which states that, "One in three Native American or Alaska Native women will be raped at some point in their lives. Most do not seek justice because they know they will be met with inaction or indifference." This report highlighted an infrequently discussed issue namely, very high levels of sexual abuse in Native American and Alaska Native women. The relationship between sexual abuse and obesity has been delineated in several studies; overall about one quarter to one half of women with high levels of obesity have been sexually abused and it has been postulated that weight-gain serves as an adaptive response for many survivors of sexual abuse. It is also well known in Native American and Alaskan Native women that there is a high prevalence of obesity (about 40% greater than the population average) and that this obesity is associated with a many-fold greater risk of diabetes and increased risks of hypertension, cancer and cardiovascular disease. The link between the concomitantly high rates of sexual abuse and obesity in this population may or may not be partial causality but the issue is nonetheless important. If approaches are to succeed in reversing the trend of increasing levels of obesity in Native American and Alaskan Native women, the high prevalence of sexual abuse will need to be specifically and comprehensively addressed.
Collapse
Affiliation(s)
- James A Levine
- Department of Endocrinology, Mayo Clinic, Rochester, MN, USA.,Obesity Solutions, Mayo Clinic Arizona and Arizona State University, Scottsdale, AZ, USA
| | | | | |
Collapse
|
29
|
Kuroda M, Tominaga A, Nakagawa K, Nishiguchi M, Sebe M, Miyatake Y, Kitamura T, Tsutsumi R, Harada N, Nakaya Y, Sakaue H. DNA Methylation Suppresses Leptin Gene in 3T3-L1 Adipocytes. PLoS One 2016; 11:e0160532. [PMID: 27494408 PMCID: PMC4975473 DOI: 10.1371/journal.pone.0160532] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/19/2016] [Indexed: 01/09/2023] Open
Abstract
Leptin is a key regulator of energy intake and expenditure. This peptide hormone is expressed in mouse white adipose tissue, but hardly expressed in 3T3-L1 adipocytes. Using bisulfite sequencing, we found that CpG islands in the leptin promoter are highly methylated in 3T3-L1cells. 5-azacytidine, an inhibitor of DNA methyltransferase, markedly increased leptin expression as pre-adipocytes matured into adipocytes. Remarkably, leptin expression was stimulated by insulin in adipocytes derived from precursor cells exposed to 5-azacytidine, but suppressed by thiazolidinedione and dexamethasone. In contrast, adipocytes derived from untreated precursor cells were unresponsive to both 5-azacytidine and hormonal stimuli, although lipid accumulation was sufficient to boost leptin expression in the absence of demethylation. Taken together, the results suggest that leptin expression in 3T3-L1 cells requires DNA demethylation prior to adipogenesis, transcriptional activation during adipogenesis, and lipid accumulation after adipogenesis.
Collapse
Affiliation(s)
- Masashi Kuroda
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima-city, Tokushima, Japan
- Research Fellow of Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Ayako Tominaga
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima-city, Tokushima, Japan
| | - Kasumi Nakagawa
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima-city, Tokushima, Japan
| | - Misa Nishiguchi
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima-city, Tokushima, Japan
| | - Mayu Sebe
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima-city, Tokushima, Japan
| | - Yumiko Miyatake
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima-city, Tokushima, Japan
| | - Tadahiro Kitamura
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Rie Tsutsumi
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima-city, Tokushima, Japan
| | - Nagakatsu Harada
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima-city, Tokushima, Japan
| | - Yutaka Nakaya
- Cardiovascular Medicine, Shikoku Central Hospital of the Mutual aid Association of Public School Teachers, Shikokuchuo-city, Ehime, Japan
| | - Hiroshi Sakaue
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima-city, Tokushima, Japan
- Diabetes Therapeutics and Research Center, Tokushima University, Tokushima-city, Tokushima, Japan
- * E-mail:
| |
Collapse
|
30
|
Tsompanidis A, Vafiadaki E, Blüher S, Kalozoumi G, Sanoudou D, Mantzoros CS. Ciliary neurotrophic factor upregulates follistatin and Pak1, causes overexpression of muscle differentiation related genes and downregulation of established atrophy mediators in skeletal muscle. Metabolism 2016; 65:915-25. [PMID: 27173470 DOI: 10.1016/j.metabol.2016.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 03/01/2016] [Accepted: 03/09/2016] [Indexed: 10/22/2022]
Abstract
INTRODUCTION The Ciliary Neurotrophic Factor (CNTF) is a pluripotent cytokine with anorexigenic actions in the hypothalamus that improves insulin sensitivity, increases energy expenditure and induces weight loss. Since CNTF also has an established myotrophic role, we sought to examine whether skeletal muscle contributes to the CNTF-induced metabolic improvement and identify the molecular mechanisms mediating these effects. METHODS We used a mouse model of diet-induced obesity, to which high or low CNTF doses were administered for 7days. Whole transcriptome expression levels were analyzed in dissected soleus muscles using microarrays and data were then confirmed using qRT-PCR. RESULTS We demonstrate that CNTF administration significantly downregulates leptin, while it upregulates follistatin and Pak1; a molecule associated with insulin sensitization in skeletal muscle. A significant overexpression of muscle differentiation related genes and downregulation of established atrophy mediators was observed. CONCLUSIONS The overall gene expression changes suggest an indirect, beneficial effect of CNTF on metabolism, energy expenditure and insulin sensitivity, exerted by the pronounced stimulation of muscle growth, with similarities to the described effect of follistatin and the activation of the Akt pathway in skeletal muscle.
Collapse
Affiliation(s)
- Alexandros Tsompanidis
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Elizabeth Vafiadaki
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Susann Blüher
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Georgia Kalozoumi
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Despina Sanoudou
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
31
|
Kim EJ, Kim YK, Kim MK, Kim S, Kim JY, Lee DH, Chung JH. UV-induced inhibition of adipokine production in subcutaneous fat aggravates dermal matrix degradation in human skin. Sci Rep 2016; 6:25616. [PMID: 27161953 PMCID: PMC4861907 DOI: 10.1038/srep25616] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 04/20/2016] [Indexed: 12/18/2022] Open
Abstract
Ultraviolet (UV) exposure to the human skin reduces triglycerides contents and lipid synthesis in the subcutaneous (SC) fat. Because adiponectin and leptin are the most abundant adipokines from the SC fat, we aim to investigate how they interact with UV exposure and skin aging. The expressions of adiponectin and leptin were significantly decreased in SC fat of sun-exposed forearm skin, in comparison with that of sun-protected buttock skin of the same elderly individuals, indicating that chronic UV exposure decreases both adipokines. Acute UV irradiation also decreased the expressions of adiponectin and leptin in SC fat. The expressions of adiponectin receptor 1/2 and leptin receptor were significantly decreased in the dermis as well as in SC fat. Moreover, while exogenous adiponectin and leptin administration prevented UV- and TNF-α induced matrix metalloproteinase (MMP)-1 expression, they also increased UV- and TNF-α induced reduction of type 1 procollagen production. Silencing of adiponectin, leptin or their receptors led to an increased MMP-1 and a decreased type 1 procollagen expression, which was reversed by treatment with recombinant human adiponectin or leptin. In conclusion, UV exposure decreases the expression of adiponectin and leptin, leading to the exacerbation of photoaging by stimulating MMP-1 expression and inhibiting procollagen synthesis.
Collapse
Affiliation(s)
- Eun Ju Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Republic of Korea
| | - Yeon Kyung Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Republic of Korea
| | - Min-Kyoung Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Republic of Korea
| | - Sungsoo Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Republic of Korea
| | - Jin Yong Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Republic of Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Republic of Korea
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Republic of Korea.,Institute on Aging, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
32
|
Jeong YJ, Sohn EH, Jung YH, Yoon WJ, Cho YM, Kim I, Lee SR, Kang SC. Anti-obesity effect of Crinum asiaticum var. japonicum Baker extract in high-fat diet-induced and monogenic obese mice. Biomed Pharmacother 2016; 82:35-43. [PMID: 27470336 DOI: 10.1016/j.biopha.2016.04.067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 04/29/2016] [Accepted: 04/29/2016] [Indexed: 11/26/2022] Open
Abstract
This study determined the anti-obesity effect of Crinum asiaticum var. japonicum Baker extract (CAE) on adipocytes and obese mice. The inhibitory effects of CAE on adipocyte differentiation and adipogenesis were determined using differentiation induction medium in 3T3-L1 cells. To get an insight into underlying molecular actions of CAE, we investigated the changes in the expression levels of genes involved in lipogenesis by CAE treatment using qRT-PCR. CAE strongly suppressed adipocyte differentiation through downregulation of PPARγ, C/EBPα, C/EBP β, and aP2. CAE treatment could also suppress the expression levels of ACC, FAS, LPL and HMGCR gene in 3T3-L1 cells. Male C57BL/6 strain and C57BL/6J-ob/ob strain mice were fed with HFD containing 60% fat and normal diet in the presence or absence of 25, 50, and 100mg/kg CAE for 7 weeks. CAE supplementation could highly suppress the body weight gain and epididymal fat accumulation without changes in food uptake in both obese models. Increases in total cholesterol, LDL-cholesterol and triglyceride were highly suppressed in the presence of CAE. In summary, CAE has an anti-obesity effect and this anti-obesity potential might be associated with downregulation of genes involved in adipocyte differentiation and lipogenesis.
Collapse
Affiliation(s)
- Yong Joon Jeong
- Department of Oriental Medicine Biotechnology, College of Life Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Eun-Hwa Sohn
- Department of Herbal Medicine Resource, Kangwon National University, Samcheok 25949, Republic of Korea
| | - Yong-Hwan Jung
- Jeju Bio-Science Park, Jeju Technopark, Jeju 63241, Republic of Korea
| | - Weon-Jong Yoon
- Jeju Biodiversity Research Institute, Jeju Technopark, Jeju 63608, Republic of Korea
| | - Young Mi Cho
- Department of Oriental Medicine Biotechnology, College of Life Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Inhye Kim
- Department of Oriental Medicine Biotechnology, College of Life Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Sung Ryul Lee
- College of Medicine, Cardiovascular and Metabolic Disease Center and Department of Integrated Biomedical Science, Inje University, Busan 48108, Republic of Korea.
| | - Se Chan Kang
- Department of Oriental Medicine Biotechnology, College of Life Science, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
33
|
Kettner NM, Mayo SA, Hua J, Lee C, Moore DD, Fu L. Circadian Dysfunction Induces Leptin Resistance in Mice. Cell Metab 2015; 22:448-59. [PMID: 26166747 PMCID: PMC4558341 DOI: 10.1016/j.cmet.2015.06.005] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/04/2015] [Accepted: 06/09/2015] [Indexed: 02/06/2023]
Abstract
Circadian disruption is associated with obesity, implicating the central clock in body weight control. Our comprehensive screen of wild-type and three circadian mutant mouse models, with or without chronic jet lag, shows that distinct genetic and physiologic interventions differentially disrupt overall energy homeostasis and Leptin signaling. We found that BMAL1/CLOCK generates circadian rhythm of C/EBPα-mediated leptin transcription in adipose. Per and Cry mutant mice show similar disruption of peripheral clock and deregulation of leptin in fat, but opposite body weight and composition phenotypes that correlate with their distinct patterns of POMC neuron deregulation in the arcuate nucleus. Chronic jet lag is sufficient to disrupt the endogenous adipose clock and also induce central Leptin resistance in wild-type mice. Thus, coupling of the central and peripheral clocks controls Leptin endocrine feedback homeostasis. We propose that Leptin resistance, a hallmark of obesity in humans, plays a key role in circadian dysfunction-induced obesity and metabolic syndromes.
Collapse
Affiliation(s)
- Nicole M Kettner
- Department of Pediatrics/U.S. Department of Agriculture/Agricultural Research Service/Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sara A Mayo
- Department of Pediatrics/U.S. Department of Agriculture/Agricultural Research Service/Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jack Hua
- Department of Pediatrics/U.S. Department of Agriculture/Agricultural Research Service/Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Choogon Lee
- Program in Neuroscience, Florida State University, College of Medicine, Tallahassee, FL 32306, USA
| | - David D Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Loning Fu
- Department of Pediatrics/U.S. Department of Agriculture/Agricultural Research Service/Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
34
|
Lu YH, Dallner OS, Birsoy K, Fayzikhodjaeva G, Friedman JM. Nuclear Factor-Y is an adipogenic factor that regulates leptin gene expression. Mol Metab 2015; 4:392-405. [PMID: 25973387 PMCID: PMC4420997 DOI: 10.1016/j.molmet.2015.02.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/05/2015] [Indexed: 12/22/2022] Open
Abstract
Objective Leptin gene expression is highly correlated with cellular lipid content in adipocytes but the transcriptional mechanisms controlling leptin expression in vivo are poorly understood. In this report, we set out to identify cis- and trans-regulatory elements controlling leptin expression. Methods Leptin-BAC luciferase transgenic mice combining with other computational and molecular techniques were used to identify transcription regulatory elements including a CCAAT-binding protein Nuclear Factor Y (NF-Y). The function of NF-Y in adipocyte was studied in vitro with 3T3-L1 cells and in vivo with adipocyte-specific knockout of NF-Y. Results Using Leptin-BAC luciferase mice, we showed that DNA sequences between −22 kb and +8.8 kb can confer quantitative expression of a leptin reporter. Computational analysis of sequences and gel shift assays identified a 32 bp sequence (chr6: 28993820–2899385) consisting a CCAAT binding site for Nuclear Factor Y (NF-Y) and this was confirmed by a ChIP assay in vivo. A deletion of this 32 bp sequence in the −22 kb to +8.8 kb leptin-luciferase BAC reporter completely abrogates luciferase reporter activity in vivo. RNAi mediated knockdown of NF-Y interfered with adipogenesis in vitro and adipocyte-specific knockout of NF-Y in mice reduced expression of leptin and other fat specific genes in vivo. Further analyses of the fat specific NF-Y knockout revealed that these animals develop a moderately severe lipodystrophy that is remediable with leptin therapy. Conclusions These studies advance our understanding of leptin gene expression and show that NF-Y controls the expression of leptin and other adipocyte genes and identifies a new form of lipodystrophy.
Collapse
Affiliation(s)
- Yi-Hsueh Lu
- Laboratory of Molecular Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Olof Stefan Dallner
- Laboratory of Molecular Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Kivanc Birsoy
- Laboratory of Molecular Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Gulya Fayzikhodjaeva
- Laboratory of Molecular Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA ; Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
35
|
CCAAT/enhancer-binding protein α is a crucial regulator of human fat mass and obesity associated gene transcription and expression. BIOMED RESEARCH INTERNATIONAL 2014; 2014:406909. [PMID: 24877091 PMCID: PMC4022073 DOI: 10.1155/2014/406909] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 04/05/2014] [Indexed: 11/17/2022]
Abstract
Several susceptibility loci have been reported associated with obesity and T2DM in GWAS. Fat mass and obesity associated gene (FTO) is the first gene associated with body mass index (BMI) and risk for diabetes in diverse patient populations. FTO is highly expressed in the brain and pancreas, and is involved in regulating dietary intake and energy expenditure. While much is known about the epigenetic mutations contributing to obesity and T2DM, less is certain with the expression regulation of FTO gene. In this study, a highly conserved canonical C/EBPα binding site was located around position −45~−54 bp relative to the human FTO gene transcriptional start site. Site-directed mutagenesis of the putative C/EBPα binding sites decreased FTO promoter activity. Overexpression and RNAi studies also indicated that C/EBPα was required for the expression of FTO. Chromatin immunoprecipitation (ChIP) experiment was carried out and the result shows direct binding of C/EBPα to the putative binding regions in the FTO promoter. Collectively, our data suggest that C/EBPα may act as a positive regulator binding to FTO promoter and consequently, activates the gene transcription.
Collapse
|
36
|
Suv39h1 mediates AP-2α-dependent inhibition of C/EBPα expression during adipogenesis. Mol Cell Biol 2014; 34:2330-8. [PMID: 24732798 DOI: 10.1128/mcb.00070-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have shown that CCAAT/enhancer-binding protein α (C/EBPα) plays a very important role during adipocyte terminal differentiation and that AP-2α (activator protein 2α) acts as a repressor to delay the expression of C/EBPα. However, the mechanisms by which AP-2α prevents the expression of C/EBPα are not fully understood. Here, we present evidence that Suv39h1, a histone H3 lysine 9 (H3K9)-specific trimethyltransferase, and G9a, a euchromatic methyltransferase, both interact with AP-2α and enhance AP-2α-mediated transcriptional repression of C/EBPα. Interestingly, we discovered that G9a mediates dimethylation of H3K9, thus providing the substrate, which is methylated by Suv39h1, to H3K9me3 on the C/EBPα promoter. The expression level of AP-2α was consistent with enrichment of H3K9me2 and H3K9me3 on the C/EBPα promoter in 3T3-L1 preadipocytes. Knockdown of Suv39h markedly increased C/EBPα expression and promoted adipogenesis. Conversely, ectopic expression of Suv39h1 delayed C/EBPα expression and impaired the accumulation of triglyceride, while simultaneous knockdown of AP-2α or G9a partially rescued this process. These findings indicate that Suv39h1 enhances AP-2α-mediated transcriptional repression of C/EBPα in an epigenetic manner and further inhibits adipocyte differentiation.
Collapse
|
37
|
Abstract
Estrogen sulfotransferase (EST/SULT1E1) is known to catalyze the sulfoconjugation and deactivation of estrogens. The goal of this study is to determine whether and how EST plays a role in human adipogenesis. By using human primary adipose-derived stem cells (ASCs) and whole-fat tissues from the abdominal subcutaneous fat of obese and nonobese subjects, we showed that the expression of EST was low in preadipocytes but increased upon differentiation. Overexpression and knockdown of EST in ASCs promoted and inhibited differentiation, respectively. The proadipogenic activity of EST in humans was opposite to the antiadipogenic effect of the same enzyme in rodents. Mechanistically, EST promoted adipogenesis by deactivating estrogens. The proadipogenic effect of EST can be recapitulated by using an estrogen receptor (ER) antagonist or ERα knockdown. In contrast, activation of ER in ASCs inhibited adipogenesis by decreasing the recruitment of the adipogenic peroxisome proliferator-activated receptor γ (PPARγ) onto its target gene promoters, whereas ER antagonism increased the recruitment of PPARγ to its target gene promoters. Linear regression analysis revealed a positive correlation between the expression of EST and body mass index (BMI), as well as a negative correlation between ERα expression and BMI. We conclude that EST is a proadipogenic factor which may serve as a druggable target to inhibit the turnover and accumulation of adipocytes in obese patients.
Collapse
|
38
|
Hou CC, Feng M, Wang K, Yang XG. Lanthanides inhibit adipogenesis with promotion of cell proliferation in 3T3-L1 preadipocytes. Metallomics 2013; 5:715-22. [PMID: 23612852 DOI: 10.1039/c3mt00020f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lanthanides are widely used in various fields for industrial, agricultural and medical purposes. They have also been used in Chinese agriculture either as fertilizers in plant production or as performance-enhancers in animal nutrition for many years. In view of their possible application for growth enhancing purposes and new medical applications, detailed information on how lanthanides influence physiological processes in biological systems is indispensable. In the present work, the effects of lanthanides (LaCl3, CeCl3 and GdCl3) on cell proliferation and adipogenesis in 3T3-L1 preadipocytes were evaluated. The results demonstrate that lanthanides inhibit adipogenesis in 3T3-L1 preadipocytes, evidenced by decreased triglyceride content and expression of C/EBPα and PPARγ. Simultaneously, the results show that lanthanides can promote cell proliferation during the different stages of differentiation. Firstly, prior to the addition of differentiation inducers (MDI), all the three types of lanthanides resulted in a significant increase of cell growth. Secondly, during the mitotic clonal expansion (MCE) process, GdCl3, as a representative compound, is able to promote cell-cycle entry into the S phase and levels of cell cycle-regulating proteins. Third, at the late stage of the terminal differentiation, on day 8, in the presence of GdCl3, cells exhibited higher levels of G1/S regulatory proteins and proliferating cell nuclear antigen (PCNA). In addition, GdCl3 caused stronger sustained ERK activation during the differentiation process of 3T3-L1 cells. The present study demonstrates that lanthanides may modulate lipid metabolism by inhibition of adipocyte differentiation. The sustained activation of the ERK pathway might be responsible for their inhibition of differentiation and a possible link between their pro-proliferative ability and inhibition of the differentiation process is indicated.
Collapse
Affiliation(s)
- Cong-Cong Hou
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, People's Republic of China
| | | | | | | |
Collapse
|
39
|
He S, Liang XF, Li L, Huang W, Shen D, Tao YX. Gene structure and expression of leptin in Chinese perch. Gen Comp Endocrinol 2013; 194:183-8. [PMID: 24076538 DOI: 10.1016/j.ygcen.2013.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 09/14/2013] [Accepted: 09/16/2013] [Indexed: 11/28/2022]
Abstract
Leptin is an important hormone involved in regulation of food intake, energy expenditure and reproduction in mammals, but its role in acanthomorph fishes remains scant. In the present study, we characterized leptin gene structure and its tissue expression in Chinese perch (Siniperca chuatsi). In contrast to typical leptin gene organization of 3 exons and 2 introns in other vertebrates, Chinese perch leptin gene consisted of 2 exons and 1 intron. This is the first leptin gene characterized in Perciformes, and is also the first leptin gene lacking an intron reported in Perciformes. The unique gene structure, the conservation of both cysteines that form the single disulfide bridge in leptin, and stable clustering in phylogenetic analyses substantiate the unambiguous orthology of mammalian and fish leptins, despite low amino acid identity. Polymorphism of leptin gene was examined in wild and cultivated populations of Chinese perch by direct sequencing of 120 fish. No SNP was found in leptin gene. Leptin mRNA of Chinese perch was highly expressed in liver, and expressed at low levels in brain, visceral adipose tissue, intestine, spleen and muscle.
Collapse
Affiliation(s)
- Shan He
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, 430070 Wuhan, PR China.
| | | | | | | | | | | |
Collapse
|
40
|
Leptin's Pro-Angiogenic Signature in Breast Cancer. Cancers (Basel) 2013; 5:1140-62. [PMID: 24202338 PMCID: PMC3795383 DOI: 10.3390/cancers5031140] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 07/23/2013] [Accepted: 08/30/2013] [Indexed: 12/29/2022] Open
Abstract
Obesity is linked to increased incidence of breast cancer. The precise causes and mechanisms of these morbid relationships are unknown. Contradictory data on leptin angiogenic actions have been published. However, accumulating evidence would suggest that leptin’s pro-angiogenic effects in cancer play an essential role in the disease. Leptin, the main adipokine secreted by adipose tissue, is also abnormally expressed together with its receptor (OB-R) by breast cancer cells. Leptin induces proliferation and angiogenic differentiation of endothelial cells upregulates VEGF/VEGFR2 and transactivates VEGFR2 independent of VEGF. Leptin induces two angiogenic factors: IL-1 and Notch that can increase VEGF expression. Additionally, leptin induces the secretion and synthesis of proteases and adhesion molecules needed for the development of angiogenesis. Leptin’s paracrine actions can further affect stromal cells and tumor associated macrophages, which express OB-R and secrete VEGF and IL-1, respectively. A complex crosstalk between leptin, Notch and IL-1 (NILCO) that induces VEGF/VEGFR2 is found in breast cancer. Leptin actions in tumor angiogenesis could amplify, be redundant and/or compensatory to VEGF signaling. Current failure of breast cancer anti-angiogenic therapies emphasizes the necessity of targeting the contribution of other pro-angiogenic factors in breast cancer. Leptin’s impact on tumor angiogenesis could be a novel target for breast cancer, especially in obese patients. However, more research is needed to establish the importance of leptin in tumor angiogenesis. This review is focused on updated information on how leptin could contribute to tumor angiogenesis.
Collapse
|
41
|
Pathak RR, Grover A, Malaney P, Quarni W, Pandit A, Allen-Gipson D, Davé V. Loss of phosphatase and tensin homolog (PTEN) induces leptin-mediated leptin gene expression: feed-forward loop operating in the lung. J Biol Chem 2013; 288:29821-35. [PMID: 23963458 DOI: 10.1074/jbc.m113.481523] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Elevated levels of systemic and pulmonary leptin are associated with diseases related to lung injury and lung cancer. However, the role of leptin in lung biology and pathology, including the mechanism of leptin gene expression in the pathogenesis of lung diseases, including lung cancer, remains elusive. Here, using conditional deletion of tumor suppressor gene Pten in the lung epithelium in vivo in transgenic mice and human PTEN-null lung epithelial cells, we identify the leptin-driven feed-forward signaling loop in the lung epithelial cells. Leptin-mediated leptin/leptin-receptor gene expression likely amplifies leptin signaling that may contribute to the pathogenesis and severity of lung diseases, resulting in poor clinical outcomes. Loss of Pten in the lung epithelial cells in vivo activated adipokine signaling and induced leptin synthesis as ascertained by genome-wide mRNA profiling and pathway analysis. Leptin gene transcription was mediated by binding of transcription factors NRF-1 and CCAAT/enhancer-binding protein δ (C/EBP) to the proximal promoter regions and STAT3 to the distal promoter regions as revealed by leptin promoter-mutation, chromatin immunoprecipitation, and gain- and loss-of-function studies in lung epithelial cells. Leptin treatment induced expression of the leptin/leptin receptor in the lung epithelial cells via activation of MEK/ERK, PI3K/AKT/mammalian target of rapamycin (mTOR), and JAK2/STAT3 signaling pathways. Expression of constitutively active MEK-1, AKT, and STAT3 proteins increased expression, and treatment with MEK, PI3K, AKT, and mTOR inhibitors decreased LEP expression, indicating that leptin via MAPK/ERK1/2, PI3K/AKT/mTOR, and JAK2/STAT3 pathways, in turn, further induces its own gene expression. Thus, targeted inhibition of the leptin-mediated feed-forward loop provides a novel rationale for pharmacotherapy of disease associated with lung injury and remodeling, including lung cancer.
Collapse
Affiliation(s)
- Ravi Ramesh Pathak
- From the Department of Pathology and Cell Biology, Morsani College of Medicine
| | | | | | | | | | | | | |
Collapse
|
42
|
Bahar B, O’Doherty JV, O’Doherty AM, Sweeney T. Chito-oligosaccharide inhibits the de-methylation of a 'CpG' island within the leptin (LEP) promoter during adipogenesis of 3T3-L1 cells. PLoS One 2013; 8:e60011. [PMID: 23544120 PMCID: PMC3609775 DOI: 10.1371/journal.pone.0060011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/20/2013] [Indexed: 11/29/2022] Open
Abstract
Chito-oligosaccharide (COS) is a natural bioactive compound, which has been shown to suppress lipid metabolic genes and lipid accumulation in differentiating adipocytes. Leptin has been identified as a key regulator of energy homeostasis and is known to be under epigenetic regulation during adipogenesis. Hence, the first objective of this experiment was to compare leptin gene (LEP) expression and leptin secretion during the different stages of adipogenesis and to investigate the effect of COS on these processes. As COS inhibited LEP expression during adipogenesis, the second aim was to investigate the methylation dynamics of a ‘CpG’ island in the proximal region of the LEP promoter during adipogenesis and to determine the effect of COS on this process. Mouse 3T3-L1 cells were stimulated to differentiate in the absence or presence of COS and the levels of leptin mRNA and protein were evaluated on days 0, 2, 4 and 6 post-induction of differentiation (PID). The extent of de-methylation of six CpG sites was evaluated. LEP mRNA transcript and protein could not be detected on either day 0PID or 2PID. In contrast, both were detected on day 4PID (P<0.05) and 6PID (P<0.001) and both were inhibited by COS (P<0.001). Of the six CpG sites analyzed, CpG_52, CpG_62 and CpG_95 became 11.5, 5.0 and 5.0% de-methylated between day 2PID and 6PID, respectively. COS blocked this de-methylation event at CpG_52 (P<0.001), CpG_62 (P<0.01) and CpG_95 (P<0.01) on day 6PID. These data suggest that COS can have an epigenetic effect on differentiating adipocytes, a novel biological function of COS which has potential applications for the manipulation of leptin gene expression, adipogenesis, and conditions within the metabolic syndrome spectrum.
Collapse
Affiliation(s)
- Bojlul Bahar
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - John V. O’Doherty
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Alan M. O’Doherty
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
43
|
Meyer GA, Schenk S, Lieber RL. Role of the cytoskeleton in muscle transcriptional responses to altered use. Physiol Genomics 2013; 45:321-31. [PMID: 23444318 DOI: 10.1152/physiolgenomics.00132.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In this work, the interaction between the loss of a primary component of the skeletal muscle cytoskeleton, desmin, and two common physiological stressors, acute mechanical injury and aging, were investigated at the transcriptional, protein, and whole muscle levels. The transcriptional response of desmin knockout (des(-/-)) plantarflexors to a bout of 50 eccentric contractions (ECCs) showed substantial overlap with the response in wild-type (wt) muscle. However, changes in the expression of genes involved in muscle response to injury were blunted in adult des(-/-) muscle compared with wt (fold change with ECC in des(-/-) and wt, respectively: Mybph, 1.4 and 2.9; Xirp1, 2.2 and 5.7; Csrp3, 1.8 and 4.3), similar to the observed blunted mechanical response (torque drop: des(-/-) 30.3% and wt 55.5%). Interestingly, in the absence of stressors, des(-/-) muscle exhibited elevated expression of many these genes compared with wt. The largest transcriptional changes were observed in the interaction between aging and the absence of desmin, including many genes related to slow fiber pathway (Myh7, Myl3, Atp2a2, and Casq2) and insulin sensitivity (Tlr4, Trib3, Pdk3, and Pdk4). Consistent with these transcriptional changes, adult des(-/-) muscle exhibited a significant fiber type shift from fast to slow isoforms of myosin heavy chain (wt, 5.3% IIa and 71.7% IIb; des(-/-), 8.4% IIa and 61.4% IIb) and a decreased insulin-stimulated glucose uptake (wt, 0.188 μmol/g muscle/20 min; des(-/-), 0.085 μmol/g muscle/20 min). This work points to novel areas of influence of this cytoskeletal protein and directs future work to elucidate its function.
Collapse
Affiliation(s)
- Gretchen A Meyer
- Department of Bioengineering, University of California, San Diego, CA, USA
| | | | | |
Collapse
|
44
|
Role of C/EBPβ-LAP and C/EBPβ-LIP in early adipogenic differentiation of human white adipose-derived progenitors and at later stages in immature adipocytes. Differentiation 2013; 85:20-31. [DOI: 10.1016/j.diff.2012.11.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 09/20/2012] [Accepted: 11/26/2012] [Indexed: 12/20/2022]
|
45
|
Abstract
The adipocyte-derived hormone leptin is a critical regulator of many physiological functions, ranging from satiety to immunity. Surprisingly, very little is known about the transcriptional pathways that regulate adipocyte-specific expression of leptin. In a recent published study, we pursued a strategy integrating BAC transgenic reporter mice, in vitro reporter assays, and chromatin state mapping to locate an adipocyte-specific cis-element upstream of the LEP gene in human fat cells. Quantitative proteomics (stable isotope labeling by amino acids in cell culture, SILAC) with affinity enrichment of protein-DNA complexes identified the transcription factor FOSL2 as a specific binder to the identified region. We confirmed that FOSL2 is an important regulator of LEP gene expression in vitro and in vivo using cell culture models and genetic mouse models. In this commentary, we discuss the transcriptional regulation of LEP gene expression, our strategy to identify an adipocyte-specific cis-regulatory element and the transcription factor(s) responsible for LEP gene expression. We also discuss our data on FOSL2 and leptin levels in physiology and pathophysiology. We speculate on unanswered questions and future directions.
Collapse
|
46
|
Abstract
Excessive caloric intake without a rise in energy expenditure promotes adipocyte hyperplasia and adiposity. The rise in adipocyte number is triggered by signaling factors that induce conversion of mesenchymal stem cells (MSCs) to preadipocytes that differentiate into adipocytes. MSCs, which are recruited from the vascular stroma of adipose tissue, provide an unlimited supply of adipocyte precursors. Members of the BMP and Wnt families are key mediators of stem cell commitment to produce preadipocytes. Following commitment, exposure of growth-arrested preadipocytes to differentiation inducers [insulin-like growth factor 1 (IGF1), glucocorticoid, and cyclic AMP (cAMP)] triggers DNA replication and reentry into the cell cycle (mitotic clonal expansion). Mitotic clonal expansion involves a transcription factor cascade, followed by the expression of adipocyte genes. Critical to these events are phosphorylations of the transcription factor CCATT enhancer-binding protein β (C/EBPβ) by MAP kinase and GSK3β to produce a conformational change that gives rise to DNA-binding activity. "Activated" C/EBPβ then triggers transcription of peroxisome proliferator-activated receptor-γ (PPARγ) and C/EBPα, which in turn coordinately activate genes whose expression produces the adipocyte phenotype.
Collapse
Affiliation(s)
- Qi Qun Tang
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
47
|
Wrann CD, Eguchi J, Bozec A, Xu Z, Mikkelsen T, Gimble J, Nave H, Wagner EF, Ong SE, Rosen ED. FOSL2 promotes leptin gene expression in human and mouse adipocytes. J Clin Invest 2012; 122:1010-21. [PMID: 22326952 DOI: 10.1172/jci58431] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 01/04/2012] [Indexed: 12/16/2022] Open
Abstract
The adipocyte-derived hormone leptin is a critical regulator of many physiological functions, ranging from satiety to immunity. Surprisingly, very little is known about the transcriptional pathways that regulate adipocyte-specific expression of leptin. Here, we report studies in which we pursued a strategy integrating BAC transgenic reporter mice, reporter assays, and chromatin state mapping to locate an adipocyte-specific cis-element upstream of the leptin (LEP) gene in human fat cells. Quantitative proteomics with affinity enrichment of protein-DNA complexes identified the transcription factor FOS-like antigen 2 (FOSL2) as binding specifically to the identified region, a result that was confirmed by ChIP. Knockdown of FOSL2 in human adipocytes decreased LEP expression, and overexpression of Fosl2 increased Lep expression in mouse adipocytes. Moreover, the elevated LEP expression observed in obesity correlated well with increased FOSL2 levels in mice and humans, and adipocyte-specific genetic deletion of Fosl2 in mice reduced Lep expression. Taken together, these data identify FOSL2 as a critical regulator of leptin expression in adipocytes.
Collapse
Affiliation(s)
- Christiane D Wrann
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
[Progress of transcription factor CCAAT enhancer binding protein β]. YI CHUAN = HEREDITAS 2011; 33:198-206. [PMID: 21402526 DOI: 10.3724/sp.j.1005.2011.00198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
CCAAT enhancer binding protein β (C/EBP β) belongs to CCAAT enhancer binding protein (C/EBP) family, which is a subfamily of basic leucine zipper (bZIP) protein family. C/EBP family plays important roles in many processes such as cell differentiation, metabolism, and development. In this paper, the structure, expression regulation, and function of C/EBP β were reviewed.
Collapse
|
49
|
The molecular mechanism of leptin secretion and expression induced by aristolochic acid in kidney fibroblast. PLoS One 2011; 6:e16654. [PMID: 21304902 PMCID: PMC3033396 DOI: 10.1371/journal.pone.0016654] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 01/05/2011] [Indexed: 12/17/2022] Open
Abstract
Background Leptin is a peptide hormone playing pivotal role in regulating food intake and energy expenditure. Growing evidence has suggested the pro-inflammatory and fibrogenic properties of leptin. In addition, patients with renal fibrosis have higher level of plasma leptin, which was due to the increased leptin production. Aristolochic acid (AA) is a botanical toxin characterized to associate with the development of renal fibrosis including tubulointerstitial fibrosis. However, whether leptin is upregulated to participate in AA-induced kidney fibrosis remain completely unknown. Methodology/Principal Findings In this study, leptin expression was increased by sublethal dose of AA in kidney fibroblast NRK49f determined by enzyme-linked immunosorbent assay and Western blot. Data from real-time reverse transcriptase-polymerase chain reaction revealed that leptin was upregulated by AA at transcriptional level. DNA binding activity of CCAAT enhancer binding protein α (C/EBP α), one of the transcription factors for leptin gene, was enhanced in DNA affinity precipitation assay and chromatin immunoprecipitation experiments. Knockdown of C/EBP α expression by small interfering RNA markedly reduced AA-induced leptin expression. Moreover, AA promoted Akt interaction with p-PDK1, and increased phosphorylated activation of Akt. Akt knockdown, and inhibition of Akt signaling by LY294002 and mTOR inhibitor rapamycin reduced leptin expression. Furthermore, treatment of LY294002 or rapamycin significantly suppressed AA-induced C/EBP α DNA-binding activity. These results suggest that Akt and C/EBP α activation were involved in AA-regulated leptin expression. Conclusions/Significance Our findings demonstrate the first that AA could induce secretion and expression of fibrogenic leptin in kidney fibroblasts, which reveal potential involvement of leptin in the progression of kidney fibrosis in aristolochic acid nephropathy.
Collapse
|
50
|
Xu B, Gerin I, Miao H, Vu-Phan D, Johnson CN, Xu R, Chen XW, Cawthorn WP, MacDougald OA, Koenig RJ. Multiple roles for the non-coding RNA SRA in regulation of adipogenesis and insulin sensitivity. PLoS One 2010; 5:e14199. [PMID: 21152033 PMCID: PMC2996286 DOI: 10.1371/journal.pone.0014199] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 11/05/2010] [Indexed: 01/22/2023] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) is a master transcriptional regulator of adipogenesis. Hence, the identification of PPARγ coactivators should help reveal mechanisms controlling gene expression in adipose tissue development and physiology. We show that the non-coding RNA, Steroid receptor RNA Activator (SRA), associates with PPARγ and coactivates PPARγ-dependent reporter gene expression. Overexpression of SRA in ST2 mesenchymal precursor cells promotes their differentiation into adipocytes. Conversely, knockdown of endogenous SRA inhibits 3T3-L1 preadipocyte differentiation. Microarray analysis reveals hundreds of SRA-responsive genes in adipocytes, including genes involved in the cell cycle, and insulin and TNFα signaling pathways. Some functions of SRA may involve mechanisms other than coactivation of PPARγ. SRA in adipocytes increases both glucose uptake and phosphorylation of Akt and FOXO1 in response to insulin. SRA promotes S-phase entry during mitotic clonal expansion, decreases expression of the cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1, and increases phosphorylation of Cdk1/Cdc2. SRA also inhibits the expression of adipocyte-related inflammatory genes and TNFα-induced phosphorylation of c-Jun NH2-terminal kinase. In conclusion, SRA enhances adipogenesis and adipocyte function through multiple pathways.
Collapse
Affiliation(s)
- Bin Xu
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|