1
|
Li S, Xu R, Yao Y, Rousseau D. ATAD3 is a limiting factor in mitochondrial biogenesis and adipogenesis of white adipocyte-like 3T3-L1 cells. Cell Biol Int 2024; 48:1473-1489. [PMID: 38923254 DOI: 10.1002/cbin.12206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
ATAD3 is a vital ATPase of the inner mitochondrial membrane of pluri-cellular eukaryotes, with largely unknown functions but early required for organism development as necessary for mitochondrial biogenesis. ATAD3 knock-down in C. elegans inhibits at first the development of adipocyte-like intestinal tissue so we used mouse adipocyte model 3T3-L1 cells to analyze ATAD3 functions during adipogenesis and lipogenesis in a mammalian model. ATAD3 function was studied by stable and transient modulation of ATAD3 expression in adipogenesis- induced 3T3-L1 cells using Knock-Down and overexpression strategies, exploring different steps of adipocyte differentiation and lipogenesis. We show that (i) an increase in ATAD3 is preceding differentiation-induced mitochondrial biogenesis; (ii) downregulation of ATAD3 inhibits adipogenesis, lipogenesis, and impedes overexpression of many mitochondrial proteins; (iii) ATAD3 re-expression rescues the phenotype of ATAD3 KD, and (iv) differentiation and lipogenesis are accelerated by ATAD3 overexpression, but inhibited by expression of a dominant-negative mutant. We further show that the ATAD3 KD phenotype is not due to altered insulin signal but involves a limitation of mitochondrial biogenesis linked to Drp1. These results demonstrate that ATAD3 is limiting for in vitro mitochondrial biogenesis and adipogenesis/lipogenesis and therefore that ATAD3 mutation/over- or under-expression could be involved in adipogenic and lipogenic pathologies.
Collapse
Affiliation(s)
- Shuijie Li
- Department of Biology, University Grenoble Alpes, Grenoble, France
| | - Rui Xu
- Institute of Biochemistry and Cell Biology of Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Yao Yao
- Institute of Biochemistry and Cell Biology of Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Denis Rousseau
- Department of Biology, University Grenoble Alpes, Grenoble, France
- Laboratoire des Matériaux et du Génie Physique-Interfaces entre Matériaux et Matière Biologique -Institut National Polytechnique-Centre National de la Recherche Scientifique - Unité Mixte de Recherche, Grenoble, France
| |
Collapse
|
2
|
Zhang Y, Zhai Y, Wei X, Yang X, Deng C, Li Q, Wang W, Hao R. Effects of grape seed procyanidins on the lipid metabolism of growing-finishing pigs based on transcriptomics and metabolomics analyses. Meat Sci 2024; 213:109504. [PMID: 38555738 DOI: 10.1016/j.meatsci.2024.109504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
This study investigated how lipid metabolism in the longissimus thoracis is influenced by the diet supplemented with grape seed procyanidins (GSPs) in growing-finishing pigs. Forty-eight crossbred pigs were randomly assigned to four groups, each receiving a basal diet, or basal diet added with 150, 200, and 250 mg/kg GSPs. Transcriptomics and metabolomics were employed to explore differential gene and metabolite regulation. The expression of key lipid metabolism-related genes was tested via qRT-PCR, and the lipid and fatty acid composition of the longissimus thoracis were determined. Dietary GSPs at different concentrations upregulated lipoprotein lipase (LPL), which is involved in lipolysis, and significantly increased the mRNA expression levels of carnitine palmitoyltransferase-1B (CPT1B) and cluster of differentiation 36 (CD36), implicated in transmembrane transport of fatty acids. Dietary supplementation of GSPs at 200 or 250 mg/kg markedly reduced total cholesterol and triglyceride content in longissimus thoracis. Dietary GSPs significantly decreased the contents of low-density lipoprotein cholesterol and saturated fatty acids, while increasing unsaturated fatty acids. In conclusion, GSPs may regulate lipid metabolism, reducing cholesterol level, and improving fatty acid composition in the longissimus thoracis of growing-finishing pigs. Our findings provide evidence for the beneficial effects of GSPs as pig feed additives for improving lipid composition.
Collapse
Affiliation(s)
- Yue Zhang
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Yan Zhai
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Xinxin Wei
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Xu Yang
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Chao Deng
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Qinghong Li
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Weiwei Wang
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Ruirong Hao
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China; Key Laboratory of Farm Animal Genetic Resources Exploration and Breeding of Shanxi Province, Taigu 030801, China.
| |
Collapse
|
3
|
Engin A. Nonalcoholic Fatty Liver Disease and Staging of Hepatic Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:539-574. [PMID: 39287864 DOI: 10.1007/978-3-031-63657-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is in parallel with the obesity epidemic, and it is the most common cause of liver diseases. The patients with severe insulin-resistant diabetes having high body mass index (BMI), high-grade adipose tissue insulin resistance, and high hepatocellular triacylglycerols (triglycerides; TAG) content develop hepatic fibrosis within a 5-year follow-up. Insulin resistance with the deficiency of insulin receptor substrate-2 (IRS-2)-associated phosphatidylinositol 3-kinase (PI3K) activity causes an increase in intracellular fatty acid-derived metabolites such as diacylglycerol (DAG), fatty acyl CoA, or ceramides. Lipotoxicity-related mechanism of NAFLD could be explained still best by the "double-hit" hypothesis. Insulin resistance is the major mechanism in the development and progression of NAFLD/nonalcoholic steatohepatitis (NASH). Metabolic oxidative stress, autophagy, and inflammation induce NASH progression. In the "first hit" the hepatic concentrations of diacylglycerol increase with an increase in saturated liver fat content in human NAFLD. Activities of mitochondrial respiratory chain complexes are decreased in the liver tissue of patients with NASH. Hepatocyte lipoapoptosis is a critical feature of NASH. In the "second hit," reduced glutathione levels due to oxidative stress lead to the overactivation of c-Jun N-terminal kinase (JNK)/c-Jun signaling that induces cell death in the steatotic liver. Accumulation of toxic levels of reactive oxygen species (ROS) is caused at least by two ineffectual cyclical pathways. First is the endoplasmic reticulum (ER) oxidoreductin (Ero1)-protein disulfide isomerase oxidation cycle through the downstream of the inner membrane mitochondrial oxidative metabolism and the second is the Kelch like-ECH-associated protein 1 (Keap1)-nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathways. In clinical practice, on ultrasonographic examination, the elevation of transaminases, γ-glutamyltransferase, and the aspartate transaminase to platelet ratio index indicates NAFLD. Fibrosis-4 index, NAFLD fibrosis score, and cytokeratin18 are used for grading steatosis, staging fibrosis, and discriminating the NASH from simple steatosis, respectively. In addition to ultrasonography, "controlled attenuation parameter," "magnetic resonance imaging proton-density fat fraction," "ultrasound-based elastography," "magnetic resonance elastography," "acoustic radiation force impulse elastography imaging," "two-dimensional shear-wave elastography with supersonic imagine," and "vibration-controlled transient elastography" are recommended as combined tests with serum markers in the clinical evaluation of NAFLD. However, to confirm the diagnosis of NAFLD, a liver biopsy is the gold standard. Insulin resistance-associated hyperinsulinemia directly accelerates fibrogenesis during NAFLD development. Although hepatocyte lipoapoptosis is a key driving force of fibrosis progression, hepatic stellate cells and extracellular matrix cells are major fibrogenic effectors. Thereby, these are pharmacological targets of therapies in developing hepatic fibrosis. Nonpharmacological management of NAFLD mainly consists of two alternatives: lifestyle modification and metabolic surgery. Many pharmacological agents that are thought to be effective in the treatment of NAFLD have been tried, but due to lack of ability to attenuate NAFLD, or adverse effects during the phase trials, the vast majority could not be licensed.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
4
|
Liao S, Gollowitzer A, Börmel L, Maier C, Gottschalk L, Werz O, Wallert M, Koeberle A, Lorkowski S. α-Tocopherol-13'-Carboxychromanol Induces Cell Cycle Arrest and Cell Death by Inhibiting the SREBP1-SCD1 Axis and Causing Imbalance in Lipid Desaturation. Int J Mol Sci 2023; 24:ijms24119229. [PMID: 37298183 DOI: 10.3390/ijms24119229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
α-Tocopherol-13'-carboxychromanol (α-T-13'-COOH) is an endogenously formed bioactive α-tocopherol metabolite that limits inflammation and has been proposed to exert lipid metabolism-regulatory, pro-apoptotic, and anti-tumoral properties at micromolar concentrations. The mechanisms underlying these cell stress-associated responses are, however, poorly understood. Here, we show that the induction of G0/G1 cell cycle arrest and apoptosis in macrophages triggered by α-T-13'-COOH is associated with the suppressed proteolytic activation of the lipid anabolic transcription factor sterol regulatory element-binding protein (SREBP)1 and with decreased cellular levels of stearoyl-CoA desaturase (SCD)1. In turn, the fatty acid composition of neutral lipids and phospholipids shifts from monounsaturated to saturated fatty acids, and the concentration of the stress-preventive, pro-survival lipokine 1,2-dioleoyl-sn-glycero-3-phospho-(1'-myo-inositol) [PI(18:1/18:1)] decreases. The selective inhibition of SCD1 mimics the pro-apoptotic and anti-proliferative activity of α-T-13'-COOH, and the provision of the SCD1 product oleic acid (C18:1) prevents α-T-13'-COOH-induced apoptosis. We conclude that micromolar concentrations of α-T-13'-COOH trigger cell death and likely also cell cycle arrest by suppressing the SREBP1-SCD1 axis and depleting cells of monounsaturated fatty acids and PI(18:1/18:1).
Collapse
Affiliation(s)
- Sijia Liao
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany
| | - André Gollowitzer
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Lisa Börmel
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany
| | - Charlotte Maier
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Luisa Gottschalk
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Maria Wallert
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany
| | - Andreas Koeberle
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Stefan Lorkowski
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany
| |
Collapse
|
5
|
Osipovich AB, Dudek KD, Trinh LT, Kim LH, Shrestha S, Cartailler JP, Magnuson MA. ZFP92, a KRAB domain zinc finger protein enriched in pancreatic islets, binds to B1/Alu SINE transposable elements and regulates retroelements and genes. PLoS Genet 2023; 19:e1010729. [PMID: 37155670 PMCID: PMC10166502 DOI: 10.1371/journal.pgen.1010729] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/02/2023] [Indexed: 05/10/2023] Open
Abstract
Repressive KRAB domain-containing zinc-finger proteins (KRAB-ZFPs) are abundant in mammalian genomes and contribute both to the silencing of transposable elements (TEs) and to the regulation of developmental stage- and cell type-specific gene expression. Here we describe studies of zinc finger protein 92 (Zfp92), an X-linked KRAB-ZFP that is highly expressed in pancreatic islets of adult mice, by analyzing global Zfp92 knockout (KO) mice. Physiological, transcriptomic and genome-wide chromatin binding studies indicate that the principal function of ZFP92 in mice is to bind to and suppress the activity of B1/Alu type of SINE elements and modulate the activity of surrounding genomic entities. Deletion of Zfp92 leads to changes in expression of select LINE and LTR retroelements and genes located in the vicinity of ZFP92-bound chromatin. The absence of Zfp92 leads to altered expression of specific genes in islets, adipose and muscle that result in modest sex-specific alterations in blood glucose homeostasis, body mass and fat accumulation. In islets, Zfp92 influences blood glucose concentration in postnatal mice via transcriptional effects on Mafb, whereas in adipose and muscle, it regulates Acacb, a rate-limiting enzyme in fatty acid metabolism. In the absence of Zfp92, a novel TE-Capn11 fusion transcript is overexpressed in islets and several other tissues due to de-repression of an IAPez TE adjacent to ZFP92-bound SINE elements in intron 3 of the Capn11 gene. Together, these studies show that ZFP92 functions both to repress specific TEs and to regulate the transcription of specific genes in discrete tissues.
Collapse
Affiliation(s)
- Anna B. Osipovich
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Karrie D. Dudek
- Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Linh T. Trinh
- Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Lily H. Kim
- College of Arts and Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Shristi Shrestha
- Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jean-Philippe Cartailler
- Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Mark A. Magnuson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
6
|
Valvo V, Iesato A, Kavanagh TR, Priolo C, Zsengeller Z, Pontecorvi A, Stillman IE, Burke SD, Liu X, Nucera C. Fine-Tuning Lipid Metabolism by Targeting Mitochondria-Associated Acetyl-CoA-Carboxylase 2 in BRAFV600E Papillary Thyroid Carcinoma. Thyroid 2021; 31:1335-1358. [PMID: 33107403 PMCID: PMC8558082 DOI: 10.1089/thy.2020.0311] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background: BRAFV600E acts as an ATP-dependent cytosolic kinase. BRAFV600E inhibitors are widely available, but resistance to them is widely reported in the clinic. Lipid metabolism (fatty acids) is fundamental for energy and to control cell stress. Whether and how BRAFV600E impacts lipid metabolism regulation in papillary thyroid carcinoma (PTC) is still unknown. Acetyl-CoA carboxylase (ACC) is a rate-limiting enzyme for de novo lipid synthesis and inhibition of fatty acid oxidation (FAO). ACC1 and ACC2 genes encode distinct isoforms of ACC. The aim of our study was to determine the relationship between BRAFV600E and ACC in PTC. Methods: We performed RNA-seq and DNA copy number analyses in PTC and normal thyroid (NT) in The Cancer Genome Atlas samples. Validations were performed by using assays on PTC-derived cell lines of differing BRAF status and a xenograft mouse model derived from a heterozygous BRAFWT/V600E PTC-derived cell line with knockdown (sh) of ACC1 or ACC2. Results:ACC2 mRNA expression was significantly downregulated in BRAFV600E-PTC vs. BRAFWT-PTC or NT clinical samples. ACC2 protein levels were downregulated in BRAFV600E-PTC cell lines vs. the BRAFWT/WT PTC cell line. Vemurafenib increased ACC2 (and to a lesser extent ACC1) mRNA levels in PTC-derived cell lines in a BRAFV600E allelic dose-dependent manner. BRAFV600E inhibition increased de novo lipid synthesis rates, and decreased FAO due to oxygen consumption rate (OCR), and extracellular acidification rate (ECAR), after addition of palmitate. Only shACC2 significantly increased OCR rates due to FAO, while it decreased ECAR in BRAFV600E PTC-derived cells vs. controls. BRAFV600E inhibition synergized with shACC2 to increase intracellular reactive oxygen species production, leading to increased cell proliferation and, ultimately, vemurafenib resistance. Mice implanted with a BRAFWT/V600E PTC-derived cell line with shACC2 showed significantly increased tumor growth after vemurafenib treatment, while vehicle-treated controls, or shGFP control cells treated with vemurafenib showed stable tumor growth. Conclusions: These findings suggest a potential link between BRAFV600E and lipid metabolism regulation in PTC. BRAFV600E downregulates ACC2 levels, which deregulates de novo lipid synthesis, FAO due to OCR, and ECAR rates. ShACC2 may contribute to vemurafenib resistance and increased tumor growth. ACC2 rescue may represent a novel molecular strategy for overcoming resistance to BRAFV600E inhibitors in refractory PTC.
Collapse
Affiliation(s)
- Veronica Valvo
- Laboratory of Human Thyroid Cancers Preclinical and Translational Research, Division of Experimental Pathology, Department of Pathology, Cancer Research Institute (CRI), Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Asumi Iesato
- Laboratory of Human Thyroid Cancers Preclinical and Translational Research, Division of Experimental Pathology, Department of Pathology, Cancer Research Institute (CRI), Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Taylor R. Kavanagh
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Carmen Priolo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Alfredo Pontecorvi
- Department of Medicine, Agostino Gemelli Medical School, UCSC, Rome, Italy
| | - Isaac E. Stillman
- Department of Pathology; Harvard Medical School, Boston, Massachusetts, USA
| | - Suzanne D. Burke
- Department of Medicine; Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaowen Liu
- Department of Emergency Medicine; Harvard Medical School, Boston, Massachusetts, USA
| | - Carmelo Nucera
- Laboratory of Human Thyroid Cancers Preclinical and Translational Research, Division of Experimental Pathology, Department of Pathology, Cancer Research Institute (CRI), Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Center for Vascular Biology Research (CVBR); Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Address correspondence to: Carmelo Nucera, MD, PhD, Laboratory of Human Thyroid Cancers Preclinical and Translational Research, Division of Experimental Pathology, Department of Pathology, Cancer Research Institute (CRI) Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Office: RN270K, 99 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
7
|
Melatonin prevents doxorubicin-induced cardiotoxicity through suppression of AMPKα2-dependent mitochondrial damage. Exp Mol Med 2020; 52:2055-2068. [PMID: 33339952 PMCID: PMC8080573 DOI: 10.1038/s12276-020-00541-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/09/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022] Open
Abstract
The clinical application of doxorubicin, one of the most effective anticancer drugs, has been limited due to its adverse effects, including cardiotoxicity. One of the hallmarks of doxorubicin-induced cytotoxicity is mitochondrial dysfunction. Despite intensive research over recent decades, there are no effective approaches for alleviating doxorubicin-induced cytotoxicity. Melatonin, a natural hormone that is primarily secreted by the pineal gland, is emerging as a promising adjuvant that protects against doxorubicin-induced cytotoxicity owing to its pharmaceutical effect of preserving mitochondrial integrity. However, the underlying mechanisms are far from completely understood. Here, we provide novel evidence that treatment of H9c2 cardiomyoblasts with doxorubicin strongly induced AMP-activated protein kinase α2 (AMPKα2), which translocated to mitochondria and interfered with their function and integrity, ultimately leading to cellular apoptosis. These phenomena were significantly blocked by melatonin treatment. The levels of AMPKα2 in murine hearts were tightly associated with cardiotoxicity in the context of doxorubicin and melatonin treatment. Therefore, our study suggests that the maintenance of mitochondrial integrity is a key factor in reducing doxorubicin-induced cytotoxicity and indicates that AMPKα2 may serve as a novel target in the design of cytoprotective combination therapies that include doxorubicin. The hormone melatonin reduces heart damage caused by a commonly used chemotherapeutic agent, opening the way towards safer cancer treatment. Doxorubicin is a potent killer of tumor cells, but also has toxic effects on cardiac muscle cells, where it severely damages the mitochondria. Melatonin is best known as a regulator of circadian rhythms, but Joohun Ha and colleagues at Kyung Hee University in Seoul, South Korea, have determined that it can also counteract doxorubicin toxicity. Working with cultured heart cells, the researchers showed that doxorubicin stimulates production of a signaling protein called AMPKα2. This protein subsequently enters the mitochondria and disrupts their structural integrity, leading to cell death. However, adding melatonin to treatment with doxorubicin prevents induction of AMPKα2, thereby increasing heart cell survival.
Collapse
|
8
|
Fatty acid synthesis and cancer: Aberrant expression of the ACACA and ACACB genes increases the risk for cancer. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
9
|
Kluck GEG, Wendt CHC, Imperio GED, Araujo MFC, Atella TC, da Rocha I, Miranda KR, Atella GC. Plasmodium Infection Induces Dyslipidemia and a Hepatic Lipogenic State in the Host through the Inhibition of the AMPK-ACC Pathway. Sci Rep 2019; 9:14695. [PMID: 31604978 PMCID: PMC6789167 DOI: 10.1038/s41598-019-51193-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/12/2019] [Indexed: 12/18/2022] Open
Abstract
Malaria is a major parasitic disease of humans and is a health public problem that affects more than 100 countries. In 2017, it caused nearly half a million deaths out of 219 million infections. Malaria is caused by the protozoan parasites of the genus Plasmodium and is transmitted by female mosquitoes of the genus Anopheles. Once in the bloodstream, Plasmodium merozoites invade erythrocytes and proliferate until the cells lyses and release new parasites that invade other erythrocytes. Remarkably, they can manipulate the vertebrate host's lipid metabolism pathways, since they cannot synthesize lipid classes that are essential for their development and replication. In this study, we show that mice infected with Plasmodium chabaudi present a completely different plasma profile from control mice, with marked hyperproteinemia, hypertriglyceridemia, hypoglycemia, and hypocholesterolemia. In addition, white adipose and hepatic tissue and analyses from infected animals revealed the accumulation of triacylglycerol in both tissues and free fatty acids and free cholesterol in the liver. Hepatic mRNA and protein expression of key enzymes and transcription factors involved in lipid metabolism were also altered by P. chabaudi infection, leading to a lipogenic state. The enzyme 5' AMP-activated protein kinase (AMPK), a master regulator of cell energetic metabolism, was also modulated by the parasite, which reduced AMPK phosphorylation levels upon infection. Pretreatment with metformin for 21 days followed by infection with P. chabaudi was effective in preventing infection of mice and also lowered the hepatic accumulation of lipids while activating AMPK. Together, these results provide new and important information on the specific molecular mechanisms induced by the malaria parasite to regulate hepatic lipid metabolism in order to facilitate its development, proliferation, and lifespan in its vertebrate host.
Collapse
Affiliation(s)
- George Eduardo Gabriel Kluck
- Laboratory of Lipid and Lipoproteins Biochemistry, Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Camila Hübner Costabile Wendt
- Laboratory of Cellular Ultrastructure Hertha Meyer, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Guinever Eustaquio do Imperio
- Laboratory of Translational Endocrinology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Fernanda Carvalho Araujo
- Laboratory of Lipid and Lipoproteins Biochemistry, Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tainá Correa Atella
- Laboratory of Comparative Neurobiology and Development, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabella da Rocha
- Laboratory of Lipid and Lipoproteins Biochemistry, Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kildare Rocha Miranda
- Laboratory of Translational Endocrinology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Georgia Correa Atella
- Laboratory of Lipid and Lipoproteins Biochemistry, Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
10
|
Xing K, Wang K, Ao H, Chen S, Tan Z, Wang Y, Xitong Z, Yang T, Zhang F, Liu Y, Ni H, Sheng X, Qi X, Wang X, Guo Y, Wang C. Comparative adipose transcriptome analysis digs out genes related to fat deposition in two pig breeds. Sci Rep 2019; 9:12925. [PMID: 31501489 PMCID: PMC6733950 DOI: 10.1038/s41598-019-49548-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 08/22/2019] [Indexed: 12/13/2022] Open
Abstract
Fatness traits are important in pigs because of their implications for fattening efficiency, meat quality, reproductive performance and immunity. Songliao black pigs and Landrace pigs show important differences in production and meat quality traits, including fatness and muscle growth. Therefore, we used a high-throughput massively parallel RNA-seq approach to identify genes differentially expressed in backfat tissue between these two breeds (six pigs in each). An average of 37.87 million reads were obtained from the 12 samples. After statistical analysis of gene expression data by edgeR, a total of 877 differentially expressed genes were detected between the two pig breeds, 205 with higher expression and 672 with lower expression in Songliao pigs. Candidate genes (LCN2, CES3, DGKB, OLR1, LEP, PGM1, PCK1, ACACB, FADS1, FADS2, MOGAT2, SREBF1, PPARGC1B) with known effects on fatness traits were included among the DEGs. A total of 1071 lncRNAs were identified, and 85 of these lncRNAs were differentially expressed, including 53 up-regulated and 32 down-regulated lncRNAs, respectively. The differentially expressed genes and lncRNAs involved in glucagon signaling pathway, glycolysis/gluconeogenesis, insulin signaling pathway, MAPK signaling pathway and so on. Integrated analysis potential trans-regulating or cis-regulating relation between DEGs and DE lncRNAs, suggested lncRNA MSTRG.2479.1 might regulate the expressed level of VLDLR affecting porcine fat metabolism. These results provide a number of candidate genes and lncRNAs potentially involved in porcine fat deposition and provide a basis for future research on the molecular mechanisms underlying in fat deposition.
Collapse
Affiliation(s)
- Kai Xing
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Kejun Wang
- College of animal science and veterinary medicine, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Hong Ao
- State Key Laboratory for Animal Nutrition, Key Laboratory for Domestic Animal Genetic Resources and Breeding of the Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shaokang Chen
- Beijing General Station of Animal Husbandry, Beijing, 100125, China
| | - Zhen Tan
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yuan Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhao Xitong
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ting Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Fengxia Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yibing Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hemin Ni
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xihui Sheng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiaolong Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Yong Guo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| | - Chuduan Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
11
|
León-Del-Río A. Biotin in metabolism, gene expression, and human disease. J Inherit Metab Dis 2019; 42:647-654. [PMID: 30746739 DOI: 10.1002/jimd.12073] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/05/2019] [Indexed: 12/16/2022]
Abstract
Biotin is a water-soluble vitamin that belongs to the vitamin B complex and which is an essential nutrient of all living organisms from bacteria to man. In eukaryotic cells biotin functions as a prosthetic group of enzymes, collectively known as biotin-dependent carboxylases that catalyze key reactions in gluconeogenesis, fatty acid synthesis, and amino acid catabolism. Enzyme-bound biotin acts as a vector to transfer a carboxyl group between donor and acceptor molecules during carboxylation reactions. In recent years, evidence has mounted that biotin also regulates gene expression through a mechanism beyond its role as a prosthetic group of carboxylases. These activities may offer a mechanistic background to a developing literature on the action of biotin in neurological disorders. This review summarizes the role of biotin in activating carboxylases and proposed mechanisms associated with a role in gene expression and in ameliorating neurological disease.
Collapse
Affiliation(s)
- Alfonso León-Del-Río
- Programa de Investigación en Cáncer de Mama and Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
12
|
Bowman CE, Wolfgang MJ. Role of the malonyl-CoA synthetase ACSF3 in mitochondrial metabolism. Adv Biol Regul 2019; 71:34-40. [PMID: 30201289 PMCID: PMC6347522 DOI: 10.1016/j.jbior.2018.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 12/26/2022]
Abstract
Malonyl-CoA is a central metabolite in fatty acid biochemistry. It is the rate-determining intermediate in fatty acid synthesis but is also an allosteric inhibitor of the rate-setting step in mitochondrial long-chain fatty acid oxidation. While these canonical cytoplasmic roles of malonyl-CoA have been well described, malonyl-CoA can also be generated within the mitochondrial matrix by an alternative pathway: the ATP-dependent ligation of malonate to Coenzyme A by the malonyl-CoA synthetase ACSF3. Malonate, a competitive inhibitor of succinate dehydrogenase of the TCA cycle, is a potent inhibitor of mitochondrial respiration. A major role for ACSF3 is to provide a metabolic pathway for the clearance of malonate by the generation of malonyl-CoA, which can then be decarboxylated to acetyl-CoA by malonyl-CoA decarboxylase. Additionally, ACSF3-derived malonyl-CoA can be used to malonylate lysine residues on proteins within the matrix of mitochondria, possibly adding another regulatory layer to post-translational control of mitochondrial metabolism. The discovery of ACSF3-mediated generation of malonyl-CoA defines a new mitochondrial metabolic pathway and raises new questions about how the metabolic fates of this multifunctional metabolite intersect with mitochondrial metabolism.
Collapse
Affiliation(s)
- Caitlyn E Bowman
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Michael J Wolfgang
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
13
|
Lado-Abeal J, Martinez-Sánchez N, Cocho JA, Martín-Pastor M, Castro-Piedras I, Couce-Pico ML, Saha AK, López M. Lipopolysaccharide (LPS)-induced septic shock causes profound changes in myocardial energy metabolites in pigs. Metabolomics 2018; 14:131. [PMID: 30830414 DOI: 10.1007/s11306-018-1433-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/21/2018] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Energy deficiency is a cause for myocardial dysfunction during septic shock. In rodents, septic shock decreases the oxidation of long-chain fatty acids and glucose in the myocardium causing energy deficiency. However, the effect of septic shock on myocardial energy metabolites in large animals and human is unknown. OBJECTIVES Investigate the effects of septic shock on myocardial energy metabolites in domestic pigs. METHODS Seventeen female pigs divided into control and lipopolysaccharide (LPS)-induced septic shock groups. Myocardial metabolites were analyzed ex vivo by 1H nuclear magnetic resonance spectroscopy and liquid chromatography-tandem mass spectrometry. Gene and protein expression analysis were analyzed by real-time PCR and western blot. RESULTS Septic shock was associated with an increase in myocardial levels of short- and medium-chain acylcarnitines, lactate, alanine, and pyruvate dehydrogenase kinase 4 gene expression. COX-2 and prostaglandin E4 receptor gene expression also increased in the septic myocardium, although the only elevated eicosanoid in the septic animals was thromboxane B2. Myocardial levels of niacin, taurine, glutamate, glutamine, and glutathione were higher, and hypoxanthine levels lower in septic pigs than controls. CONCLUSIONS In pigs, septic shock induced by LPS caused myocardial changes directed to decrease the oxidation of medium- and short-chain fatty acid without an effect on long-chain fatty acid oxidation. The increase in myocardial levels of lactate, alanine, and pyruvate dehydrogenase kinase 4 gene expression suggest that septic shock decreases pyruvate dehydrogenase complex activity and glucose oxidation. Homeostasis of niacin, taurine, glutamate, glutamine, glutathione, hypoxanthine and thromboxane B2 is also affected in the septic myocardium.
Collapse
Affiliation(s)
- Joaquin Lado-Abeal
- Division of Endocrinology, Department of Internal Medicine, Texas Tech University Health Sciences Center-School of Medicine, Lubbock, TX, USA.
- Unidade de Enfermedades Tiroideas e Metabolicas (UETeM), Department of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain.
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine Truman Medical Centers, University of Missouri-Kansas City School of Medicine, 2301 Holmes Street, Kansas City, MO, 64108, USA.
| | - Noelia Martinez-Sánchez
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Jose Angel Cocho
- Unidad de Diagnóstico y Tratamiento de las Enfermedades Metabólicas, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Martín-Pastor
- Unidade de Resonancia Magnética (RIAIDT), Edif, CACTUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Isabel Castro-Piedras
- Division of Endocrinology, Department of Internal Medicine, Texas Tech University Health Sciences Center-School of Medicine, Lubbock, TX, USA
| | - M Luz Couce-Pico
- Unidad de Diagnóstico y Tratamiento de las Enfermedades Metabólicas, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Asish K Saha
- Division of Endocrinology, Diabetes and Nutrition, Boston University Medical Center, Boston, MA, USA
| | - Miguel López
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
| |
Collapse
|
14
|
Takagi H, Ikehara T, Kashiwagi Y, Hashimoto K, Nanchi I, Shimazaki A, Nambu H, Yukioka H. ACC2 Deletion Enhances IMCL Reduction Along With Acetyl-CoA Metabolism and Improves Insulin Sensitivity in Male Mice. Endocrinology 2018; 159:3007-3019. [PMID: 29931154 DOI: 10.1210/en.2018-00338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/15/2018] [Indexed: 12/13/2022]
Abstract
Intramyocellular lipid (IMCL) accumulation in skeletal muscle greatly contributes to lipid-induced insulin resistance. Because acetyl-coenzyme A (CoA) carboxylase (ACC) 2 negatively modulates mitochondrial fatty acid oxidation (FAO) in skeletal muscle, ACC2 inhibition is expected to reduce IMCL via elevation of FAO and to attenuate insulin resistance. However, the concept of substrate competition suggests that enhanced FAO results in reduced glucose use because of an excessive acetyl-CoA pool in mitochondria. To identify how ACC2-regulated FAO affects IMCL accumulation and glucose metabolism, we generated ACC2 knockout (ACC2-/-) mice and investigated skeletal muscle metabolites associated with fatty acid and glucose metabolism, as well as whole-body glucose metabolism. ACC2-/- mice displayed higher capacity of glucose disposal at the whole-body levels. In skeletal muscle, ACC2-/- mice exhibited enhanced acylcarnitine formation and reduced IMCL levels without alteration in glycolytic intermediate levels. Notably, these changes were accompanied by decreased acetyl-CoA content and enhanced mitochondrial pathways related to acetyl-CoA metabolism, such as the acetylcarnitine production and tricarboxylic acid cycle. Furthermore, ACC2-/- mice exhibited lower levels of IMCL and acetyl-CoA even under HFD conditions and showed protection against HFD-induced insulin resistance. Our findings suggest that ACC2 deletion leads to IMCL reduction without suppressing glucose use via an elevation in acetyl-CoA metabolism even under HFD conditions and offer new mechanistic insight into the therapeutic potential of ACC2 inhibition on insulin resistance.
Collapse
Affiliation(s)
- Hiroyuki Takagi
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Tatsuya Ikehara
- Biomarker Research and Development Department, Shionogi & Co., Ltd., Osaka, Japan
| | - Yuto Kashiwagi
- Biomarker Research and Development Department, Shionogi & Co., Ltd., Osaka, Japan
| | - Kumi Hashimoto
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Isamu Nanchi
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Atsuyuki Shimazaki
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Hirohide Nambu
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Hideo Yukioka
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| |
Collapse
|
15
|
Tracey TJ, Steyn FJ, Wolvetang EJ, Ngo ST. Neuronal Lipid Metabolism: Multiple Pathways Driving Functional Outcomes in Health and Disease. Front Mol Neurosci 2018; 11:10. [PMID: 29410613 PMCID: PMC5787076 DOI: 10.3389/fnmol.2018.00010] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 01/08/2018] [Indexed: 12/12/2022] Open
Abstract
Lipids are a fundamental class of organic molecules implicated in a wide range of biological processes related to their structural diversity, and based on this can be broadly classified into five categories; fatty acids, triacylglycerols (TAGs), phospholipids, sterol lipids and sphingolipids. Different lipid classes play major roles in neuronal cell populations; they can be used as energy substrates, act as building blocks for cellular structural machinery, serve as bioactive molecules, or a combination of each. In amyotrophic lateral sclerosis (ALS), dysfunctions in lipid metabolism and function have been identified as potential drivers of pathogenesis. In particular, aberrant lipid metabolism is proposed to underlie denervation of neuromuscular junctions, mitochondrial dysfunction, excitotoxicity, impaired neuronal transport, cytoskeletal defects, inflammation and reduced neurotransmitter release. Here we review current knowledge of the roles of lipid metabolism and function in the CNS and discuss how modulating these pathways may offer novel therapeutic options for treating ALS.
Collapse
Affiliation(s)
- Timothy J Tracey
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Frederik J Steyn
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | - Ernst J Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Shyuan T Ngo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
16
|
Tanaka Y, Kume S, Maeda S, Osawa N, Takeda N, Chin-Kanasaki M, Isshiki K, Ugi S, Oshima I, Uzu T, Maegawa H, Araki SI. Overexpression of acetyl CoA carboxylase β exacerbates podocyte injury in the kidney of streptozotocin-induced diabetic mice. Biochem Biophys Res Commun 2017; 495:1115-1121. [PMID: 29175208 DOI: 10.1016/j.bbrc.2017.11.145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 10/18/2022]
Abstract
A single nucleotide polymorphism (SNP) within the acetyl CoA carboxylase (ACC) β gene (ACACB), rs2268388, has been shown to be associated with susceptibility to development of proteinuria in patients with type 2 diabetes. To investigate the biological roles of ACCβ in the pathogenesis of diabetic nephropathy, we examined the effects of overexpression of ACACB using podocyte-specific ACACB-transgenic mice or ACACB-overexpressing murine podocytes. Podocyte-specific ACACB-transgenic mice or littermate mice were treated with streptozotocin (STZ) to induce diabetes, and 12 weeks after induction of diabetes, we examined the expression of podocyte markers to evaluate the degree of podocyte injury in these mice. We also examined the effects of ACCβ on podocyte injury in ACACB- or LacZ-overexpressing murine podocytes. Podocyte-specific ACACB overexpression did not cause visible podocyte injury in non-diabetic mice. In STZ-induced diabetic mice, ACACB-transgenic mice showed a significant increase in urinary albumin excretion, accompanied by decreased synaptopodin expression and podocin mislocalization in podocytes, compared with wild-type mice. In cultured murine podocytes, overexpression of ACACB significantly decreased synaptopodin expression and reorganized stress fibers under high glucose conditions, but not in normal glucose conditions. The decrease of synaptopodin expression and reorganized stress fibers observed in ACACB overexpressing cells cultured under high glucose conditions was reversed by a treatment of 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR), activator of AMP-activated protein kinase (AMPK). The excess of ACCβ might contribute to exacerbation of podocyte injury in the kidney of an animal model for diabetes mellitus, and the AMPK/ACCβ pathway may be a novel therapeutic target for the prevention of diabetes-related podocyte injury.
Collapse
Affiliation(s)
- Yuki Tanaka
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Shinji Kume
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan.
| | - Shiro Maeda
- Laboratory for Endocrinology and Metabolism, RIKEN Center for Genomic Medicine, Yokohama, Japan; Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan; Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus, Nishihara, Japan
| | - Norihisa Osawa
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Naoko Takeda
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | | | - Keiji Isshiki
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Satoshi Ugi
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Itsuki Oshima
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Osaka, Japan
| | - Takashi Uzu
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Hiroshi Maegawa
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Shin-Ichi Araki
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan.
| |
Collapse
|
17
|
León-Del-Río A, Valadez-Graham V, Gravel RA. Holocarboxylase Synthetase: A Moonlighting Transcriptional Coregulator of Gene Expression and a Cytosolic Regulator of Biotin Utilization. Annu Rev Nutr 2017; 37:207-223. [DOI: 10.1146/annurev-nutr-042617-104653] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alfonso León-Del-Río
- Programa de Investigación de Cáncer de Mama y Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de Mexico 04500, México
| | - Viviana Valadez-Graham
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62250, México
| | - Roy A. Gravel
- Department of Biochemistry & Molecular Biology, the University of Calgary and the Alberta Children's Hospital Research Institute for Child and Maternal Health, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
18
|
Engin A. Non-Alcoholic Fatty Liver Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:443-467. [DOI: 10.1007/978-3-319-48382-5_19] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Biotin augments acetyl CoA carboxylase 2 gene expression in the hypothalamus, leading to the suppression of food intake in mice. Biochem Biophys Res Commun 2016; 476:134-9. [DOI: 10.1016/j.bbrc.2016.04.152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 04/27/2016] [Indexed: 01/19/2023]
|
20
|
Kaulage M, Maji B, Bhat J, Iwasaki Y, Chatterjee S, Bhattacharya S, Muniyappa K. Discovery and Structural Characterization of G-quadruplex DNA in Human Acetyl-CoA Carboxylase Gene Promoters: Its Role in Transcriptional Regulation and as a Therapeutic Target for Human Disease. J Med Chem 2016; 59:5035-50. [PMID: 27058681 DOI: 10.1021/acs.jmedchem.6b00453] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Accumulating evidence suggests that G-quadruplexes play vital roles in gene expression, DNA replication, and recombination. Three distinct promoters (PI, PII, and PIII) regulate human acetyl-CoA carboxylase 1 (ACC1) gene expression. In this study, we asked whether the G-rich sequences within the human ACC1 (PI and PII) promoters can form G-quadruplex structures and regulate normal DNA transactions. Using multiple complementary methods, we show that G-rich sequences of PI and PII promoters form intramolecular G-quadruplex structures and then establish unambiguously the topologies of these structures. Importantly, G-quadruplex formation in ACC1 gene promoter region blocks DNA replication and suppresses transcription, and this effect was further augmented by G-quadruplex stabilizing ligands. Altogether, these results are consistent with the notion that G-quadruplex structures exist within the human ACC1 gene promoter region, whose activity can be suppressed by G-quadruplex stabilizing ligands, thereby revealing a novel regulatory mechanism of ACC1 gene expression and as a possible therapeutic target.
Collapse
Affiliation(s)
| | | | - Jyotsna Bhat
- Department of Biophysics, Bose Institute , Kolkata 700054, India
| | - Yasumasa Iwasaki
- Department of Endocrinology, Metabolism, and Nephrology, Kochi Medical School, Kochi University , Nankoku 780-8520, Japan
| | | | | | | |
Collapse
|
21
|
Richards L, Li M, van Esch B, Garssen J, Folkerts G. The effects of short-chain fatty acids on the cardiovascular system. PHARMANUTRITION 2016. [DOI: 10.1016/j.phanu.2016.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Inhibition of gene expression of carnitine palmitoyltransferase I and heart fatty acid binding protein in cyclophosphamide and ifosfamide-induced acute cardiotoxic rat models. Cardiovasc Toxicol 2015; 14:232-42. [PMID: 24469765 DOI: 10.1007/s12012-014-9247-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This study investigated whether cyclophosphamide (CP) and ifosfamide (IFO) therapy alters the expression of the key genes engaged in long-chain fatty acid (LCFA) oxidation outside rat heart mitochondria, and if so, whether these alterations should be viewed as a mechanism during CP- and IFO-induced cardiotoxicity. Adult male Wistar albino rats were assigned to one of the six treatment groups: Rats in group 1 (control) and group 2 (L-carnitine) were injected intraperitoneal (i.p.) with normal saline and L-carnitine (200 mg/kg/day), respectively, for 10 successive days. Animals in group 3 (CP group) were injected i.p. with normal saline for 5 days before and 5 days after a single dose of CP (200 mg/kg, i.p.). Rats in group 4 (IFO group) received normal saline for 5 successive days followed by IFO (50 mg/kg/day, i.p.) for 5 successive days. Rats in group 5 (CP-carnitine supplemented) were given the same doses of L-carnitine as group 2 for 5 days before and 5 days after a single dose of CP as group 3. Rats in group 6 (IFO-carnitine supplemented) were given the same doses of L-carnitine as group 2 for 5 days before and 5 days concomitant with IFO as group 4. Immediately, after the last dose of the treatment protocol, blood samples were withdrawn and animals were killed for biochemical, histopathological and gene expression studies. Treatment with CP and IFO significantly decreased expression of heart fatty acid binding protein (H-FABP) and carnitine palmitoyltransferase I (CPT I) genes in cardiac tissues. Moreover, CP but not IFO significantly increased acetyl-CoA carboxylase2 mRNA expression. Conversely, IFO but not CP significantly decreased mRNA expression of malonyl-CoA decarboxylase. Both CP and IFO significantly increased serum lactate dehydrogenase, creatine kinase isoenzyme MB and malonyl-CoA content and histopathological lesions in cardiac tissues. Interestingly, carnitine supplementation completely reversed all the biochemical, histopathological and gene expression changes induced by CP and IFO to the control values, except CPT I mRNA, and protein expression remained inhibited by IFO. Data from the current study suggest, for the first time, that (1) CP and IFO therapy is associated with the inhibition of the expression of H-FABP and CPT I genes in cardiac tissues with the consequent inhibition of mitochondrial transport and oxidation of LCFA. (2) The progressive increase in cardiotoxicity enzymatic indices and the decrease in H-FABP and CPT I expression may point to the possible contribution of these genes to CP- and IFO-induced cardiotoxicity.
Collapse
|
23
|
Cordonier EL, Adjam R, Teixeira DC, Onur S, Zbasnik R, Read PE, Döring F, Schlegel VL, Zempleni J. Resveratrol compounds inhibit human holocarboxylase synthetase and cause a lean phenotype in Drosophila melanogaster. J Nutr Biochem 2015; 26:1379-84. [PMID: 26303405 DOI: 10.1016/j.jnutbio.2015.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/22/2015] [Accepted: 07/08/2015] [Indexed: 02/06/2023]
Abstract
Holocarboxylase synthetase (HLCS) is the sole protein-biotin ligase in the human proteome. HLCS has key regulatory functions in intermediary metabolism, including fatty acid metabolism, and in gene repression through epigenetic mechanisms. The objective of this study was to identify food-borne inhibitors of HLCS that alter HLCS-dependent pathways in metabolism and gene regulation. When libraries of extracts from natural products and chemically pure compounds were screened for HLCS inhibitor activity, resveratrol compounds in grape materials caused an HLCS inhibition of >98% in vitro. The potency of these compounds was piceatannol>resveratrol>piceid. Grape-borne compounds other than resveratrol metabolites also contributed toward HLCS inhibition, e.g., p-coumaric acid and cyanidin chloride. HLCS inhibitors had meaningful effects on body fat mass. When Drosophila melanogaster brummer mutants, which are genetically predisposed to storing excess amounts of lipids, were fed diets enriched with grape leaf extracts and piceid, body fat mass decreased by more than 30% in males and females. However, Drosophila responded to inhibitor treatment with an increase in the expression of HLCS, which elicited an increase in the abundance of biotinylated carboxylases in vivo. We conclude that mechanisms other than inhibition of HLCS cause body fat loss in flies. We propose that the primary candidate is the inhibition of the insulin receptor/Akt signaling pathway.
Collapse
Affiliation(s)
- Elizabeth L Cordonier
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316 Ruth Leverton Hall, Lincoln, NE 68583-0806, USA
| | - Riem Adjam
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316 Ruth Leverton Hall, Lincoln, NE 68583-0806, USA
| | - Daniel Camara Teixeira
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316 Ruth Leverton Hall, Lincoln, NE 68583-0806, USA
| | - Simone Onur
- Abteilung Molekulare Prävention, Institut für Humanernährung und Lebensmittelkunde, Universität Kiel, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany
| | - Richard Zbasnik
- Department of Food Science and Technology, University of Nebraska-Lincoln, 326 Filley Hall, Lincoln, NE 68583-0806, USA
| | - Paul E Read
- Department of Agronomy, University of Nebraska-Lincoln, 377 Plant Science Hall, Lincoln, NE 68583-0724, USA
| | - Frank Döring
- Abteilung Molekulare Prävention, Institut für Humanernährung und Lebensmittelkunde, Universität Kiel, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany
| | - Vicki L Schlegel
- Department of Food Science and Technology, University of Nebraska-Lincoln, 326 Filley Hall, Lincoln, NE 68583-0806, USA
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316 Ruth Leverton Hall, Lincoln, NE 68583-0806, USA.
| |
Collapse
|
24
|
Labrie M, Lalonde S, Najyb O, Thiery M, Daneault C, Des Rosiers C, Rassart E, Mounier C. Apolipoprotein D Transgenic Mice Develop Hepatic Steatosis through Activation of PPARγ and Fatty Acid Uptake. PLoS One 2015; 10:e0130230. [PMID: 26083030 PMCID: PMC4470830 DOI: 10.1371/journal.pone.0130230] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 05/18/2015] [Indexed: 12/27/2022] Open
Abstract
Transgenic mice (Tg) overexpressing human apolipoprotein D (H-apoD) in the brain are resistant to neurodegeneration. Despite the use of a neuron-specific promoter to generate the Tg mice, they expressed significant levels of H-apoD in both plasma and liver and they slowly develop hepatic steatosis and insulin resistance. We show here that hepatic PPARγ expression in Tg mice is increased by 2-fold compared to wild type (WT) mice. Consequently, PPARγ target genes Plin2 and Cide A/C are overexpressed, leading to increased lipid droplets formation. Expression of the fatty acid transporter CD36, another PPARgamma target, is also increased in Tg mice associated with elevated fatty acid uptake as measured in primary hepatocytes. Elevated expression of AMPK in the liver of Tg leads to phosphorylation of acetyl CoA carboxylase, indicating a decreased activity of the enzyme. Fatty acid synthase expression is also induced but the hepatic lipogenesis measured in vivo is not significantly different between WT and Tg mice. In addition, expression of carnitine palmitoyl transferase 1, the rate-limiting enzyme of beta-oxidation, is slightly upregulated. Finally, we show that overexpressing H-apoD in HepG2 cells in presence of arachidonic acid (AA), the main apoD ligand, increases the transcriptional activity of PPARγ. Supporting the role of apoD in AA transport, we observed enrichment in hepatic AA and a decrease in plasmatic AA concentration. Taken together, our results demonstrate that the hepatic steatosis observed in apoD Tg mice is a consequence of increased PPARγ transcriptional activity by AA leading to increased fatty acid uptake by the liver.
Collapse
Affiliation(s)
- Marilyne Labrie
- Centre de recherche BioMed, Département des Sciences Biologiques, Université du Québec, Montréal, Québec, H3C 3P8, Canada
| | - Simon Lalonde
- Centre de recherche BioMed, Département des Sciences Biologiques, Université du Québec, Montréal, Québec, H3C 3P8, Canada
| | - Ouafa Najyb
- Centre de recherche BioMed, Département des Sciences Biologiques, Université du Québec, Montréal, Québec, H3C 3P8, Canada
| | - Maxime Thiery
- Centre de recherche BioMed, Département des Sciences Biologiques, Université du Québec, Montréal, Québec, H3C 3P8, Canada
| | - Caroline Daneault
- Montreal Heart Institute Research Center, Montreal, Quebec, H1T 1C8,Canada
| | - Chrisitne Des Rosiers
- Department of Nutrition, Université de Montréal, Montréal, Québec, H3C 3J7,Canada
- Montreal Heart Institute Research Center, Montreal, Quebec, H1T 1C8,Canada
| | - Eric Rassart
- Centre de recherche BioMed, Département des Sciences Biologiques, Université du Québec, Montréal, Québec, H3C 3P8, Canada
| | - Catherine Mounier
- Centre de recherche BioMed, Département des Sciences Biologiques, Université du Québec, Montréal, Québec, H3C 3P8, Canada
- * E-mail:
| |
Collapse
|
25
|
Guo R, Xu X, Babcock SA, Zhang Y, Ren J. Aldehyde dedydrogenase-2 plays a beneficial role in ameliorating chronic alcohol-induced hepatic steatosis and inflammation through regulation of autophagy. J Hepatol 2015; 62:647-56. [PMID: 25457208 PMCID: PMC4336638 DOI: 10.1016/j.jhep.2014.10.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/08/2014] [Accepted: 10/08/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Mitochondrial aldehyde dehydrogenase (ALDH2) plays a critical role in the detoxification of the ethanol metabolite acetaldehyde. This study was designed to examine the impact of global ALDH2 overexpression on alcohol-induced hepatic steatosis. METHODS Wild type Friend virus B (FVB) and ALDH2 transgenic mice were placed on a 4% alcohol or control diet for 12 weeks. Serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), bilirubin and cholesterol, hepatic triglyceride, steatosis, fat metabolism-related proteins, pro-inflammatory cytokines, glutathione (GSH), oxidized glutathione (GSSG), autophagy and autophagy signalling were examined. The role of autophagy was evaluated in alcohol dehydrogenase 1 (ADH1)-transfected human hepatocellular liver carcinoma cells (VA-13) treated with or without the autophagy inducer rapamycin and lysosomal inhibitors. RESULTS Chronic alcohol intake led to elevated AST-, ALT-levels, bilirubin, AST/ALT ratio, cholesterol, hepatic triglycerides and hepatic fat deposition as evidenced by H&E and Oil Red O staining. Hepatic fat deposition was associated with disturbed levels of fat metabolism-related proteins (fatty acid synthase, SCD1), upregulated interleukin-6, TNF-α, cyclooxygenase, oxidative stress, and loss of autophagy, effects which were attenuated or ablated by the ALDH2 transgene. Moreover, ethanol (100 mM) and acetaldehyde (100 and 500 μM) increased levels of IL-6 and IFN-γ, and suppressed autophagy in VA-13 cells, effects which were markedly alleviated by rapamycin. In addition, lysosomal inhibitors mimicked ethanol-induced p62 accumulation with little additive effect with ethanol. Ethanol significantly suppressed LC3 conversion in the presence of lysosomal inhibitors. CONCLUSIONS In summary, our results revealed that ALDH2 plays a beneficial role in ameliorating chronic alcohol intake-induced hepatic steatosis and inflammation through regulation of autophagy.
Collapse
Affiliation(s)
- Rui Guo
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, USA
| | - Xihui Xu
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, USA
| | - Sara A Babcock
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, USA
| | - Yingmei Zhang
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, USA; Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, USA; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
26
|
Human acetyl-CoA carboxylase 2 expressed in silkworm Bombyx mori exhibits posttranslational biotinylation and phosphorylation. Appl Microbiol Biotechnol 2014; 98:8201-9. [PMID: 24740690 PMCID: PMC4163189 DOI: 10.1007/s00253-014-5715-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 03/23/2014] [Indexed: 12/26/2022]
Abstract
Biotin-dependent human acetyl-CoA carboxylases (ACCs) are integral in homeostatic lipid metabolism. By securing posttranslational biotinylation, ACCs perform coordinated catalytic functions allosterically regulated by phosphorylation/dephosphorylation and citrate. The production of authentic recombinant ACCs is heeded to provide a reliable tool for molecular studies and drug discovery. Here, we examined whether the human ACC2 (hACC2), an isoform of ACC produced using the silkworm BmNPV bacmid system, is equipped with proper posttranslational modifications to carry out catalytic functions as the silkworm harbors an inherent posttranslational modification machinery. Purified hACC2 possessed genuine biotinylation capacity probed by biotin-specific streptavidin and biotin antibodies. In addition, phosphorylated hACC2 displayed limited catalytic activity whereas dephosphorylated hACC2 revealed an enhanced enzymatic activity. Moreover, hACC2 polymerization, analyzed by native page gel analysis and atomic force microscopy imaging, was allosterically regulated by citrate and the phosphorylation/dephosphorylation modulated citrate-induced hACC2 polymerization process. Thus, the silkworm BmNPV bacmid system provides a reliable eukaryotic protein production platform for structural and functional analysis and therapeutic drug discovery applications implementing suitable posttranslational biotinylation and phosphorylation.
Collapse
|
27
|
Zempleni J, Liu D, Camara DT, Cordonier EL. Novel roles of holocarboxylase synthetase in gene regulation and intermediary metabolism. Nutr Rev 2014; 72:369-76. [PMID: 24684412 DOI: 10.1111/nure.12103] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The role of holocarboxylase synthetase (HLCS) in catalyzing the covalent binding of biotin to the five biotin-dependent carboxylases in humans is well established, as are the essential roles of these carboxylases in the metabolism of fatty acids, the catabolism of leucine, and gluconeogenesis. This review examines recent discoveries regarding the roles of HLCS in assembling a multiprotein gene repression complex in chromatin. In addition, emerging evidence suggests that the number of biotinylated proteins is far larger than previously assumed and includes members of the heat-shock superfamily of proteins and proteins coded by the ENO1 gene. Evidence is presented linking biotinylation of heat-shock proteins HSP60 and HSP72 with redox biology and immune function, respectively, and biotinylation of the two ENO1 gene products MBP-1 and ENO1 with tumor suppression and glycolysis, respectively.
Collapse
Affiliation(s)
- Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | | | | | | |
Collapse
|
28
|
Lee J, Walsh MC, Hoehn KL, James DE, Wherry EJ, Choi Y. Regulator of fatty acid metabolism, acetyl coenzyme a carboxylase 1, controls T cell immunity. THE JOURNAL OF IMMUNOLOGY 2014; 192:3190-9. [PMID: 24567531 DOI: 10.4049/jimmunol.1302985] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fatty acids (FAs) are essential constituents of cell membranes, signaling molecules, and bioenergetic substrates. Because CD8(+) T cells undergo both functional and metabolic changes during activation and differentiation, dynamic changes in FA metabolism also occur. However, the contributions of de novo lipogenesis to acquisition and maintenance of CD8(+) T cell function are unclear. In this article, we demonstrate the role of FA synthesis in CD8(+) T cell immunity. T cell-specific deletion of acetyl coenzyme A carboxylase 1 (ACC1), an enzyme that catalyzes conversion of acetyl coenzyme A to malonyl coenzyme A, a carbon donor for long-chain FA synthesis, resulted in impaired peripheral persistence and homeostatic proliferation of CD8(+) T cells in naive mice. Loss of ACC1 did not compromise effector CD8(+) T cell differentiation upon listeria infection but did result in a severe defect in Ag-specific CD8(+) T cell accumulation because of increased death of proliferating cells. Furthermore, in vitro mitogenic stimulation demonstrated that defective blasting and survival of ACC1-deficient CD8(+) T cells could be rescued by provision of exogenous FA. These results suggest an essential role for ACC1-mediated de novo lipogenesis as a regulator of CD8(+) T cell expansion, and may provide insights for therapeutic targets for interventions in autoimmune diseases, cancer, and chronic infections.
Collapse
Affiliation(s)
- JangEun Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | | | | | | | | | | |
Collapse
|
29
|
Abu-Elheiga L, Wu H, Gu Z, Bressler R, Wakil SJ. Acetyl-CoA carboxylase 2-/- mutant mice are protected against fatty liver under high-fat, high-carbohydrate dietary and de novo lipogenic conditions. J Biol Chem 2012; 287:12578-88. [PMID: 22362781 DOI: 10.1074/jbc.m111.309559] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Hepatic fat accumulation resulting from increased de novo fatty acid synthesis leads to hepatic steatosis and hepatic insulin resistance. We have shown previously that acetyl-CoA carboxylase 2 (Acc2(-/-)) mutant mice, when fed a high-fat (HF) or high-fat, high-carbohydrate (HFHC) diet, are protected against diet-induced obesity and maintained whole body and hepatic insulin sensitivity. To determine the effect of an ACC2 deletion on hepatic fat metabolism, we studied the regulation of the enzymes involved in the lipogenic pathway under Western HFHC dietary and de novo lipogenic conditions. After completing the HFHC regimen, Acc2(-/-) mutant mice were found to have lower body weight, smaller epididymal fat pads, lower blood levels of nonesterified fatty acids and triglycerides, and higher hepatic cholesterol than wild-type mice. Significant up-regulation of lipogenic enzymes and an elevation in hepatic peroxisome proliferator-activated receptor-γ (PPAR-γ) protein were found in Acc2(-/-) mutant mice under de novo lipogenic conditions. The increase in lipogenic enzyme levels was accompanied by up-regulation of the transcription factors, sterol regulatory element-binding proteins 1 and 2, and carbohydrate response element-binding protein. In contrast, hepatic levels of the PPAR-γ and PPAR-α proteins were significantly lower in the Acc2(-/-) mutant mice fed an HFHC diet. When compared with wild-type mice fed the same diet, Acc2(-/-) mutant mice exhibited a similar level of AKT but with a significant increase in pAKT. Hence, deleting ACC2 ameliorates the metabolic syndrome and protects against fatty liver despite increased de novo lipogenesis and dietary conditions known to induce obesity and diabetes.
Collapse
Affiliation(s)
- Lutfi Abu-Elheiga
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
30
|
Laliotis GP, Bizelis I, Rogdakis E. Comparative Approach of the de novo Fatty Acid Synthesis (Lipogenesis) between Ruminant and Non Ruminant Mammalian Species: From Biochemical Level to the Main Regulatory Lipogenic Genes. Curr Genomics 2011; 11:168-83. [PMID: 21037855 PMCID: PMC2878982 DOI: 10.2174/138920210791110960] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 01/03/2010] [Accepted: 01/10/2010] [Indexed: 11/24/2022] Open
Abstract
Over the second half of 20th century much research on lipogenesis has been conducted, especially focused on increasing the production efficiency and improving the quality of animal derived products. However, many diferences are observed in the physiology of lipogenesis between species. Recently, many studies have also elucidated the involvement of numerous genes in this procedure, highlighting diferences not only at physiology but also at the molecular level. The main scope of this review is to point out the major differences between ruminant and non ruminant species, that are observed in key regulatory genes involved in lipogenesis. Human is used as a central reference and according to the findinggs, main differences are analysed. These findings could serve not only as basis for understanding the main physiology of lipogenesis and further basic research, but also as a basis for any animal scientist to develop new concepts and methods for use in improving animal production and modern genetic improvement.
Collapse
Affiliation(s)
- G P Laliotis
- Department of Animal Science, Laboratory of Animal Breeding and Husbandry, Agricultural University of Athens, Iera Odos 75,118 55 Athens, Greece
| | | | | |
Collapse
|
31
|
Lee AK, Kyriakou T, Weston AJ, O'Dell SD. Functional Single-Nucleotide Polymorphism in Acetyl-CoA Carboxylase ACACB Gene Promoter. DNA Cell Biol 2010; 29:703-12. [DOI: 10.1089/dna.2010.1078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alex K. Lee
- Nutritional Sciences Division, King's College London, London, United Kingdom
| | - Theodosios Kyriakou
- Nutritional Sciences Division, King's College London, London, United Kingdom
| | - Andrew J. Weston
- NIHR Biomedical Research Centre for Mental Health, King's College London Proteomics Facility, Institute of Psychiatry, London, United Kingdom
| | - Sandra D. O'Dell
- Nutritional Sciences Division, King's College London, London, United Kingdom
| |
Collapse
|
32
|
Fogarty MP, Xiao R, Prokunina-Olsson L, Scott LJ, Mohlke KL. Allelic expression imbalance at high-density lipoprotein cholesterol locus MMAB-MVK. Hum Mol Genet 2010; 19:1921-9. [PMID: 20159775 DOI: 10.1093/hmg/ddq067] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified numerous loci associated with various complex traits for which the underlying susceptibility gene(s) remain unknown. In a GWAS for high-density lipoprotein-cholesterol (HDL-C) level, one strongly associated locus contains at least two biologically compelling candidates, methylmalonic aciduria cblB type (MMAB) and mevalonate kinase (MVK). To detect evidence of cis-acting regulation at this locus, we measured relative allelic expression of transcribed SNPs in five genes using human hepatocyte samples heterozygous for the transcribed SNP. If an HDL-C-associated SNP allele differentially regulates mRNA level in cis, samples heterozygous both for a transcribed SNP and an HDL-C-associated SNP should display allelic expression imbalance (AEI) of the transcribed SNP. We designed statistical tests to detect AEI in a comprehensive set of linkage disequilibrium (LD) scenarios between the transcribed SNP and an HDL-C-associated SNP (rs7298565) in phase unknown samples. We observed significant AEI of 22% in MMAB (P = 1.4 x 10(-13), transcribed SNP rs11067231), and the allele associated with lower HDL-C level was associated with greater MMAB transcript level. The same rs7298565 allele was also associated with higher MMAB mRNA level (P = 0.0081) and higher MMAB protein level (P = 0.0020). In contrast, MVK, UBE3B, KCTD10 and ACACB did not show significant AEI (P > or = 0.05). These data suggest MMAB is the most likely gene influencing HDL-C levels at this locus and demonstrate that measuring AEI at loci containing more than one candidate gene can prioritize genes for functional studies.
Collapse
Affiliation(s)
- Marie P Fogarty
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
33
|
Peng Y, Lei T, Yuan J, Chen X, Long Q, Zhang J, Lei P, Feng B, Yang Z. Arachidonic acid induces acetyl-CoA carboxylase 1 expression via activation of CREB1. Endocrine 2009; 36:491-7. [PMID: 19842072 DOI: 10.1007/s12020-009-9241-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 09/18/2009] [Indexed: 11/28/2022]
Abstract
Acetyl-CoA carboxylase (ACC; EC 6.4.1.2) is the major enzyme of fatty acid synthesis and oxidation in response to dietary changes. In animals, there are two major isoforms of ACCs, ACC1 and ACC2, which are encoded by different genes and display distinct tissue and cellular distribution. We examined the effect of high concentration of arachidonic acid (AA) on the expression of ACC1 mRNA in HepG2 hepatoma cells cultured in the absence of insulin. After 12 h of treatment, AA was found to significantly up-regulate ACC1 mRNA level as well as that of cAMP regulatory element binding protein 1 (CREB1), implying the possible interactions between ACC1 and CREB1. In support of the hypothesis, several potential CREB1 binding sites were identified within the PII promoter of ACC1. Further experiments demonstrated that transient over-expression of CREB1 in HepG2 cells activates ACC1 PII promoter and induces the production of triacylglycerol in response to AA, indicating that the effect of AA on ACC1 is possibly regulated via CREB1.
Collapse
Affiliation(s)
- Yin Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Tao R, Ye F, He Y, Tian J, Liu G, Ji T, Su Y. Improvement of high-fat-diet-induced metabolic syndrome by a compound from Balanophora polyandra Griff in mice. Eur J Pharmacol 2009; 616:328-33. [PMID: 19540228 DOI: 10.1016/j.ejphar.2009.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 05/25/2009] [Accepted: 06/08/2009] [Indexed: 01/22/2023]
Abstract
This study was to explore the effects of a compound (BPG) from Balanophora polyandra Griff on metabolic syndrome in mice. The animal models, developed obesity, dyslipidemia and insulin resistance, were induced by high-fat-diet in C57BL/6 mice, and were treated orally with 100 mg/kg/day BPG and 15 mg/kg/day rosiglitazone, respectively. The age-matched C57BL/6 mice fed with standard chow were used as normal control. The blood glucose, the value of serum triglyceride and the content of triglyceride in the skeletal muscle were determined by biochemical methods. The protein expression was evaluated by western blot. BPG administration decreased body weight gain, adiposity index, serum triglyceride levels, and triglyceride accumulation in skeletal muscle significantly. At the same time, BPG administration also exhibited extensive effects on insulin resistance by improving oral glucose tolerance test, insulin tolerance test and glucose infusion rate in hyperinsulinemic-euglycemic clamp test. Furthermore, in skeletal muscle, BPG reversed the defect expression of IRbeta, IRS-1 and PTP1B, and also decreased the expression of ACCbeta and increased the expression of p-AMPK in the high-fat-diet-induced mice. All the results suggest that BPG improves metabolic syndrome may by the enhancement of insulin sensitivity and fatty acid oxidation.
Collapse
Affiliation(s)
- Rongya Tao
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Naukkarinen J, Nilsson E, Koistinen HA, Söderlund S, Lyssenko V, Vaag A, Poulsen P, Groop L, Taskinen MR, Peltonen L. Functional variant disrupts insulin induction of USF1: mechanism for USF1-associated dyslipidemias. ACTA ACUST UNITED AC 2009; 2:522-9. [PMID: 20031629 DOI: 10.1161/circgenetics.108.840421] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The upstream transcription factor 1 (USF1) gene is associated with familial combined hyperlipidemia, the most common genetic dyslipidemia in humans, as well as with various dyslipidemic changes in numerous other studies. Typical of complex disease-associated genes, neither the explicit mutations have been described nor the functional consequences for risk allele carriers been reported at the cellular or tissue level. METHODS AND RESULTS In this study, we aimed at describing the molecular mechanism through which the strongest associating intronic single-nucleotide polymorphism variant in USF1 is involved in the development of dyslipidemia. The effects of the risk variant on gene expression were studied in 2 relevant human tissues, fat and muscle. Global transcript profiles of 47 fat biopsies ascertained for carriership of the risk allele were tested for differential expression of known USF1 target genes as well as for broader effects on the transcript profile. Allelic imbalance of USF1 in fat was assessed using a quantitative sequencing approach. The possible allele-specific effect of insulin on the expression of USF1 was studied in 118 muscle biopsies before and after a euglycemic hyperinsulinemic clamp. The risk allele of single-nucleotide polymorphism rs2073658 seems to eradicate the inductive effect of insulin on the expression of USF1 in muscle and fat. The expression of numerous target genes is in turn perturbed in adipose tissue. CONCLUSIONS In risk allele carriers, a defective response of USF1 to insulin results in the suboptimal response of relevant target genes that contributes to the enhanced risk of developing dyslipidemia and coronary heart disease.
Collapse
Affiliation(s)
- Jussi Naukkarinen
- Institute for Molecular Medicine Finland (FIMM), National Institute for Health and Welfare, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
AMP-activated protein kinase (AMPK) has emerged as a key regulator of skeletal muscle fat metabolism. Because abnormalities in skeletal muscle metabolism contribute to a variety of clinical diseases and disorders, understanding AMPK's role in the muscle is important. It was originally shown to stimulate fatty acid (FA) oxidation decades ago, and since then much research has been accomplished describing this role. In this brief review, we summarize much of these data, particularly in relation to changes in FA oxidation that occur during skeletal muscle exercise. Potential roles for AMPK exist in regulating FA transport into the mitochondria via interactions with acetyl-CoA carboxylase, malonyl-CoA decarboxylase, and perhaps FA transporter/CD36 (FAT/CD36). Likewise, AMPK may regulate transport of FAs into the cell through FAT/CD36. AMPK may also regulate capacity for FA oxidation by phosphorylation of transcription factors such as CREB or coactivators such as PGC-1alpha.
Collapse
Affiliation(s)
- D M Thomson
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | | |
Collapse
|
37
|
Madauss KP, Burkhart WA, Consler TG, Cowan DJ, Gottschalk WK, Miller AB, Short SA, Tran TB, Williams SP. The human ACC2 CT-domain C-terminus is required for full functionality and has a novel twist. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2009; 65:449-61. [PMID: 19390150 PMCID: PMC2725780 DOI: 10.1107/s0907444909008014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 03/04/2009] [Indexed: 02/08/2023]
Abstract
Inhibition of acetyl-CoA carboxylase (ACC) may prevent lipid-induced insulin resistance and type 2 diabetes, making the enzyme an attractive pharmaceutical target. Although the enzyme is highly conserved amongst animals, only the yeast enzyme structure is available for rational drug design. The use of biophysical assays has permitted the identification of a specific C-terminal truncation of the 826-residue human ACC2 carboxyl transferase (CT) domain that is both functionally competent to bind inhibitors and crystallizes in their presence. This C-terminal truncation led to the determination of the human ACC2 CT domain-CP-640186 complex crystal structure, which revealed distinctions from the yeast-enzyme complex. The human ACC2 CT-domain C-terminus is comprised of three intertwined alpha-helices that extend outwards from the enzyme on the opposite side to the ligand-binding site. Differences in the observed inhibitor conformation between the yeast and human structures are caused by differing residues in the binding pocket.
Collapse
Affiliation(s)
- Kevin P. Madauss
- Department of Computational and Structural Chemistry, GlaxoSmithKline Inc., Five Moore Drive, Research Triangle Park, NC 27709, USA
| | - William A. Burkhart
- Department of Biochemical Reagents and Assay Development, GlaxoSmithKline Inc., Five Moore Drive, Research Triangle Park, NC 27709, USA
| | - Thomas G. Consler
- Department of Biochemical Reagents and Assay Development, GlaxoSmithKline Inc., Five Moore Drive, Research Triangle Park, NC 27709, USA
| | - David J. Cowan
- Department of Chemistry in the Center for Excellence in Metabolic Pathways Drug Discovery, GlaxoSmithKline Inc., Five Moore Drive, Research Triangle Park, NC 27709, USA
| | - William K. Gottschalk
- Institute for Genome Sciences and Policy and Department of Medicine, Division of Neurology, Duke University, Durham, NC 27708, USA
| | - Aaron B. Miller
- Department of Computational and Structural Chemistry, GlaxoSmithKline Inc., Five Moore Drive, Research Triangle Park, NC 27709, USA
| | - Steven A. Short
- Department of Biochemical Reagents and Assay Development, GlaxoSmithKline Inc., Five Moore Drive, Research Triangle Park, NC 27709, USA
| | - Thuy B. Tran
- Department of Physiology, UNC School of Medicine, University of North Carolina, Chapel Hill, NC 27515, USA
| | - Shawn P. Williams
- Department of Computational and Structural Chemistry, GlaxoSmithKline Inc., Five Moore Drive, Research Triangle Park, NC 27709, USA
| |
Collapse
|
38
|
Castle JC, Hara Y, Raymond CK, Garrett-Engele P, Ohwaki K, Kan Z, Kusunoki J, Johnson JM. ACC2 is expressed at high levels in human white adipose and has an isoform with a novel N-terminus [corrected]. PLoS One 2009; 4:e4369. [PMID: 19190759 PMCID: PMC2629817 DOI: 10.1371/journal.pone.0004369] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 12/12/2008] [Indexed: 11/18/2022] Open
Abstract
Acetyl-CoA carboxylases ACC1 and ACC2 catalyze the carboxylation of acetyl-CoA to malonyl-CoA, regulating fatty-acid synthesis and oxidation, and are potential targets for treatment of metabolic syndrome. Expression of ACC1 in rodent lipogenic tissues and ACC2 in rodent oxidative tissues, coupled with the predicted localization of ACC2 to the mitochondrial membrane, have suggested separate functional roles for ACC1 in lipogenesis and ACC2 in fatty acid oxidation. We find, however, that human adipose tissue, unlike rodent adipose, expresses more ACC2 mRNA relative to the oxidative tissues muscle and heart. Human adipose, along with human liver, expresses more ACC2 than ACC1. Using RT-PCR, real-time PCR, and immunoprecipitation we report a novel isoform of ACC2 (ACC2.v2) that is expressed at significant levels in human adipose. The protein generated by this isoform has enzymatic activity, is endogenously expressed in adipose, and lacks the N-terminal sequence. Both ACC2 isoforms are capable of de novo lipogenesis, suggesting that ACC2, in addition to ACC1, may play a role in lipogenesis. The results demonstrate a significant difference in ACC expression between human and rodents, which may introduce difficulties for the use of rodent models for development of ACC inhibitors.
Collapse
Affiliation(s)
- John C. Castle
- Rosetta Inpharmatics LLC, Seattle, Washington, United States of America
- * E-mail: (JCC); (JMJ)
| | - Yoshikazu Hara
- Metabolic Disorder Research, Tsukuba Research Institute, Banyu Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | | | | | - Kenji Ohwaki
- Metabolic Disorder Research, Tsukuba Research Institute, Banyu Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Zhengyan Kan
- Rosetta Inpharmatics LLC, Seattle, Washington, United States of America
| | - Jun Kusunoki
- Metabolic Disorder Research, Tsukuba Research Institute, Banyu Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Jason M. Johnson
- Rosetta Inpharmatics LLC, Seattle, Washington, United States of America
- * E-mail: (JCC); (JMJ)
| |
Collapse
|
39
|
Shen QW, Gerrard DE, Du M. Compound C, an inhibitor of AMP-activated protein kinase, inhibits glycolysis in mouse longissimus dorsi postmortem. Meat Sci 2008; 78:323-30. [DOI: 10.1016/j.meatsci.2007.06.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 06/24/2007] [Accepted: 06/26/2007] [Indexed: 02/07/2023]
|
40
|
Thomson DM, Brown JD, Fillmore N, Condon BM, Kim HJ, Barrow JR, Winder WW. LKB1 and the regulation of malonyl-CoA and fatty acid oxidation in muscle. Am J Physiol Endocrinol Metab 2007; 293:E1572-9. [PMID: 17925454 DOI: 10.1152/ajpendo.00371.2007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
5'-AMP-activated protein kinase (AMPK), by way of its inhibition of acetyl-CoA carboxylase (ACC), plays an important role in regulating malonyl-CoA levels and the rate of fatty acid oxidation in skeletal and cardiac muscle. In these tissues, LKB1 is the major AMPK kinase and is therefore critical for AMPK activation. The purpose of this study was to determine how the lack of muscle LKB1 would affect malonyl-CoA levels and/or fatty-acid oxidation. Comparing wild-type (WT) and skeletal/cardiac muscle-specific LKB1 knockout (KO) mice, we found that the 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR)-stimulated decrease in malonyl-CoA levels in WT heart and quadriceps muscles was entirely dependent on the presence of LKB1, as was the AICAR-induced increase in fatty-acid oxidation in EDL muscles in vitro, since these responses were not observed in KO mice. Likewise, the decrease in malonyl-CoA levels after muscle contraction was attenuated in KO gastrocnemius muscles, suggesting that LKB1 plays an important role in promoting the inhibition of ACC, likely by activation of AMPK. However, since ACC phosphorylation still increased and malonyl-CoA levels decreased in KO muscles (albeit not to the levels observed in WT mice), whereas AMPK phosphorylation was entirely unresponsive, LKB1/AMPK signaling cannot be considered the sole mechanism for inhibiting ACC during and after muscle activity. Regardless, our results suggest that LKB1 is an important regulator of malonyl-CoA levels and fatty acid oxidation in skeletal muscle.
Collapse
Affiliation(s)
- D M Thomson
- Dept. of Physiology and Developmental Biology, Brigham Young Univ., Provo, UT 84602, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Conde E, Suarez-Gauthier A, García-García E, Lopez-Rios F, Lopez-Encuentra A, García-Lujan R, Morente M, Sanchez-Verde L, Sanchez-Cespedes M. Specific pattern of LKB1 and phospho-acetyl-CoA carboxylase protein immunostaining in human normal tissues and lung carcinomas. Hum Pathol 2007; 38:1351-60. [PMID: 17521700 DOI: 10.1016/j.humpath.2007.01.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 11/03/2006] [Accepted: 01/23/2007] [Indexed: 12/11/2022]
Abstract
The LKB1 tumor suppressor gene codes for a serine/threonine protein kinase, and among its substrates is the adenosine monophosphate-dependent protein kinase, a sensor of intracellular energy levels. LKB1 is genetically inactivated in several types of tumors, especially lung adenocarcinomas. Here we used immunohistochemistry to evaluate the levels of LKB1 and the phosphorylated form of the acetyl-CoA carboxylase (ACC) protein in a variety of human adult normal tissues and in 159 lung carcinomas. The enzyme ACC becomes inactive upon phosphorylation by adenosine monophosphate-dependent protein kinase. Our analysis in normal tissues revealed strong LKB1 immunostaining in most epithelia, in the seminiferous tubules of the testis, in myocytes from skeletal muscle, and in glia cells. In contrast to the cytosolic location of LKB1 found in most tissues, glia cells carried mainly nuclear LKB1. Some epithelial cells showed apical accumulation of LKB1, supporting its role in cell polarity. Regarding phospho-ACC (p-ACC), strong immunostaining was observed in myocytes from the skeletal muscle and heart, and in Leydig cells of the testis. In lung tumors, LKB1 immunostaining was absent, moderate, and high in 20%, 61%, and 19% of the tumors, respectively, whereas p-ACC immunostaining was found to be absent/low, moderate, and high in 35%, 34%, and 31% of the tumors, respectively. High levels of LKB1 and p-ACC immunostaining predominated in lung adenocarcinomas compared with squamous cell carcinomas. Finally, high p-ACC was an independent marker for prediction of better survival in lung adenocarcinoma patients. Median overall survival was longer in patients with p-ACC-positive than those with p-ACC-negative tumors (96 versus 44 months, P = .04). In conclusion, our observations provide complete information about the pattern and levels of LKB1 and p-ACC immunostaining in normal tissues and in lung tumors, and highlight the special relevance of abnormalities of the LKB1 pathway in lung adenocarcinoma.
Collapse
Affiliation(s)
- Esther Conde
- Lung Cancer Group, Pathology Programme, Spanish National Cancer Centre (CNIO), 28029 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ghanassia E, Brun JF, Mercier J, Raynaud E. Oxidative mechanisms at rest and during exercise. Clin Chim Acta 2007; 383:1-20. [PMID: 17544388 DOI: 10.1016/j.cca.2007.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Revised: 03/27/2007] [Accepted: 04/04/2007] [Indexed: 12/17/2022]
Abstract
Carbohydrates (CHO) and lipids provide the amount of energy required for physical and chemical reactions inside the human body. The various constraints the body has to resolve explain the use of these two substrates, catabolized via distinct pathways to one common final reaction. In the classic model, three main organs/tissues for substrate fluxes (liver, adipose tissue and skeletal muscle) and one organ regulating main reactions by adaptation of hormonal secretions (endocrine pancreas) are described. From this point of view, the only interactions between CHO and lipid metabolisms are mediated by glycaemic changes via insulin/glucagon ratio (IGR). However, according to recent advances, this concept seems to have a limited validity as it does take into account neither the many other interactions between CHO and lipid metabolism that are likely to occur in addition to the coarse control by IGR, nor the long-term regulation of energy balance, whose description began with the discovery of leptin. Moreover, it does not include the effects of energy expenditure. Therefore, this review focuses on three topics: (i) describe interactions between CHO and lipid metabolism at the level of each tissue and organ implied, via hormonal signaling as well as direct action of nutrients, (ii) integrate fluxes of substrates and signals between those tissues at rest in a global view of the metabolism taking into account short-term and long-term regulating factors and (iii) describe separately, to avoid confusion or extrapolation, the short-term and long-term influence of exercise on these regulation loops.
Collapse
|
43
|
Steinberg GR, Macaulay SL, Febbraio MA, Kemp BE. AMP-activated protein kinase--the fat controller of the energy railroad. Can J Physiol Pharmacol 2007; 84:655-65. [PMID: 16998529 DOI: 10.1139/y06-005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
AMP-activated protein kinase plays an important role in the regulation of lipid metabolism in response to metabolic stress and energy demand. It is also under endocrine control. AMPK acts at multiple steps and has a central role controlling fatty acid, triglyceride, and cholesterol synthesis, as well as the oxidation of fatty acids through direct phosphorylation effects and the control of gene transcription. As such, it can be considered to be the fat controller of the energy railroad. It is thought that AMPK may be a major mediator of the health benefits of exercise in mitigating the development of obesity and age-onset diseases.
Collapse
|
44
|
Allard MF, Parsons HL, Saeedi R, Wambolt RB, Brownsey R. AMPK and metabolic adaptation by the heart to pressure overload. Am J Physiol Heart Circ Physiol 2007; 292:H140-8. [PMID: 16920812 DOI: 10.1152/ajpheart.00424.2006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Accelerated glycolysis in hypertrophied hearts may be a compensatory response to reduced energy production from long-chain fatty acid oxidation with 5′-AMP-activated protein kinase (AMPK) functioning as a cellular signal. Therefore, we tested the hypothesis that enhanced fatty acid oxidation improves energy status and normalizes AMPK activity and glycolysis in hypertrophied hearts. Glycolysis, fatty acid oxidation, AMPK activity, and energy status were measured in isolated working hypertrophied and control hearts from aortic-constricted and sham-operated male Sprague-Dawley rats. Hearts from halothane (3–4%)-anesthetized rats were perfused with KH solution containing either palmitate, a long-chain fatty acid, or palmitate plus octanoate, a medium-chain fatty acid whose oxidation is not impaired in hypertrophied hearts. Compared with control, fatty acid oxidation was lower in hypertrophied hearts perfused with palmitate, whereas it increased to similar values in both groups with octanoate plus palmitate. Glycolysis was accelerated in palmitate-perfused hypertrophied hearts and was normalized in hypertrophied hearts by the addition of octanoate. AMPK activity was increased three- to sixfold with palmitate alone and was reduced to control values by octanoate plus palmitate. Myocardial energy status improved with the addition of octanoate but did not differ between groups. Our findings, particularly the correspondence between glycolysis and AMPK activity, provide support for the view that activation of AMPK is responsible, in part, for the acceleration of glycolysis in cardiac hypertrophy. Additionally, they indicate myocardial AMPK is activated by energy state-independent mechanisms in response to pressure overload, demonstrating AMPK is more than a sensor of the heart's energy status.
Collapse
Affiliation(s)
- Michael F Allard
- James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, Rm 166, St. Paul's Hospital, 1081 Burrard St., Vancouver, BC, Canada.
| | | | | | | | | |
Collapse
|
45
|
Xu X, Weitzberg M, Keyes RF, Li Q, Wang R, Wang X, Zhang X, Frevert EU, Camp HS, Beutel BA, Sham HL, Gu YG. The synthesis and structure-activity relationship studies of selective acetyl-CoA carboxylase inhibitors containing 4-(thiazol-5-yl)but-3-yn-2-amino motif: polar region modifications. Bioorg Med Chem Lett 2006; 17:1803-7. [PMID: 17234407 DOI: 10.1016/j.bmcl.2006.12.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 12/13/2006] [Accepted: 12/13/2006] [Indexed: 10/23/2022]
Abstract
The structure-activity relationship study focused on the polar region of the HTS hit A-80040 (1) producing several series of potent and selective ACC2 inhibitors. The SAR suggests a compact lipophilic pocket that does not tolerate polar and ionic groups. Replacement of the hydroxyurea group with isoxazoles improves ACC2 selectivity while maintaining potency. Variations at the propargylic site of 11a reduce ACC2 potency.
Collapse
Affiliation(s)
- Xiangdong Xu
- Metabolic Disease Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, IL 60064, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kristie J, Toth JG, Silverstrim C, Pickett W, Landro JA. A High-throughput two-phase partition assay to measure the activity of lipid-metabolizing enzymes. Anal Biochem 2006; 358:266-72. [PMID: 16962554 DOI: 10.1016/j.ab.2006.07.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 07/26/2006] [Accepted: 07/27/2006] [Indexed: 11/26/2022]
Abstract
A new method to measure the activity of lipid-metabolizing enzymes is described. Subsequent to an enzymatic reaction, a two-phase system (organic/aqueous) is established by the addition of a phase partition scintillation fluid (PPSF). The PPSF serves as a scintillation fluid, a phase partition agent, and a carrier/separator of an organic-soluble radiolabeled reaction substrate or product. Applying an empirically derived set of conditions typically enhances the separation of substrate from product whereby one species is effectively solubilized in the PPSF. In situ partitioning of the radionuclide-containing organic/lipid phase from the aqueous phase occurs within individual wells of 96-well or 384-well density PPSF-resistant microtiter plates without the requirement for multiple organic solvent extractions and aspirations, making this method applicable to high-throughput screening. The utility of this method for both kinetic characterization and high-throughput screening is demonstrated with acetyl-CoA carboxylase and fatty acid synthase.
Collapse
Affiliation(s)
- James Kristie
- Bayer Healthcare, Pharmaceuticals Corp., 400 Morgan Lane, West Haven, CT 06516, USA
| | | | | | | | | |
Collapse
|
47
|
A homogeneous scintillation proximity assay for acetyl coenzyme A carboxylase coupled to fatty acid synthase. Anal Biochem 2006; 358:257-65. [PMID: 16996019 DOI: 10.1016/j.ab.2006.07.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 07/26/2006] [Accepted: 07/27/2006] [Indexed: 11/28/2022]
Abstract
We have devised a rapid and sensitive homogeneous assay for acetyl CoA carboxylase (ACC) in a scintillation proximity assay format suitable for high-throughput screening. In this assay, ACC is coupled to fatty acid synthase (FAS). Malonyl CoA, the product of the ACC reaction, and acetyl CoA serve as substrates for FAS to synthesize palmitic acid. When [(3)H]acetyl CoA is used in the ACC/FAS coupled system, [(3)H]palmitic acid, the final product, is readily detected by scintillation proximity in a FlashPlate or Image FlashPlate coated with phospholipid. The [(3)H]palmitic acid binds to the coated phospholipid through hydrophobic interaction which brings it into close proximity of the scintillant on the FlashPlate or the Image FlashPlate, yielding photons that are read in a TopCount or LeadSeeker, respectively. The current assay consists of simple reagent addition, incubation, and detection of signal. The signal is approximately 30-fold over the background and the Z' value is approximately 0.80, suggesting that this assay is robust and highly reproducible. To our knowledge this ACC/FAS coupled scintillation proximity assay is the only assay format that is compatible with high-throughput screening for systematic search of inhibitors against mammalian ACC.
Collapse
|
48
|
Cheng D, Chu CH, Chen L, Feder JN, Mintier GA, Wu Y, Cook JW, Harpel MR, Locke GA, An Y, Tamura JK. Expression, purification, and characterization of human and rat acetyl coenzyme A carboxylase (ACC) isozymes. Protein Expr Purif 2006; 51:11-21. [PMID: 16854592 DOI: 10.1016/j.pep.2006.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 06/06/2006] [Accepted: 06/07/2006] [Indexed: 11/19/2022]
Abstract
Acetyl coenzyme A (acetyl-CoA) carboxylase isozyme 1 (ACC1) and acetyl-CoA carboxylase isozyme 2 (ACC2) are critical for de novo fatty acid synthesis and for the regulation of beta-oxidation. Emerging evidence indicates that one or both isozymes might be therapeutic targets for the treatment of obesity, type 2 diabetes, and dyslipidemia. One of the major obstacles in the field is the lack of readily-available source of recombinant human ACC enzymes to support systematic drug discovery efforts. Here, we describe an efficient and optimal protocol for expressing and isolating recombinant mammalian ACCs with high yield and purity. The resultant human ACC2, human ACC1, and rat ACC2 possess high specific activities, are properly biotinylated, and exhibit kinetic parameters very similar to the native ACC enzymes. We believe that the current study paves a road to a systematic approach for drug design revolving around the ACC inhibition mechanism.
Collapse
Affiliation(s)
- Dong Cheng
- Department of Obesity and Metabolic Research, Pharmaceutical Research Institute, Bristol-Myers Squibb Company, PO Box 5400, Princeton, NJ 08543-5400, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Harwood HJ. Treating the metabolic syndrome: acetyl-CoA carboxylase inhibition. Expert Opin Ther Targets 2006; 9:267-81. [PMID: 15934915 DOI: 10.1517/14728222.9.2.267] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Metabolic syndrome is defined as a clustering of cardiovascular risk factors (abdominal obesity, hyperinsulinaemia, atherogenic dislipidaemia, hypertension, hypercoagulability) that together increase the risk of developing coronary heart disease and Type-2 diabetes. Inhibition of acetyl-CoA carboxylase (ACC), with its resultant inhibition of fatty acid synthesis and stimulation of fatty acid oxidation, has the potential to favourably affect, in a concerted manner, a multitude of cardiovascular risk factors associated with metabolic syndrome. Studies in ACC2 knockout mice and in experimental animals treated with isozyme-nonselective ACC inhibitors have demonstrated the potential for treating metabolic syndrome through this modality. A variety of structurally diverse, mechanistically distinct classes of ACC inhibitors have been disclosed in the scientific and patent literature. Isozyme-nonselective ACC inhibitors may provide the optimal therapeutic potential for beneficially affecting metabolic syndrome. However, demonstration of the full potential of isozyme-selective inhibitors, once identified, should reveal advantages and liabilities associated with single isozyme inhibition. Whereas demonstrating clinical efficacy of an ACC inhibitor should be straightforward, the heterogeneity of the patient population and absence of established guidelines regarding approval end points for agents simultaneously affecting multiple aspects of metabolic syndrome will pose developmental challenges for initial market entries.
Collapse
Affiliation(s)
- H James Harwood
- Department of Cardiovascular and Metabolic Diseases, Pfizer Global Research and Development, Groton Laboratories, Pfizer Inc., MS# 820-3190, Eastern Point Road, Groton, CT 06340, USA.
| |
Collapse
|
50
|
Mao J, DeMayo FJ, Li H, Abu-Elheiga L, Gu Z, Shaikenov TE, Kordari P, Chirala SS, Heird WC, Wakil SJ. Liver-specific deletion of acetyl-CoA carboxylase 1 reduces hepatic triglyceride accumulation without affecting glucose homeostasis. Proc Natl Acad Sci U S A 2006; 103:8552-7. [PMID: 16717184 PMCID: PMC1570106 DOI: 10.1073/pnas.0603115103] [Citation(s) in RCA: 222] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In animals, liver and white adipose are the main sites for the de novo fatty acid synthesis. Deletion of fatty acid synthase or acetyl-CoA carboxylase (ACC) 1 in mice resulted in embryonic lethality, indicating that the de novo fatty acid synthesis is essential for embryonic development. To understand the importance of de novo fatty acid synthesis and the role of ACC1-produced malonyl-CoA in adult mouse tissues, we generated liver-specific ACC1 knockout (LACC1KO) mice. LACC1KO mice have no obvious health problem under normal feeding conditions. Total ACC activity and malonyl-CoA levels were approximately 70-75% lower in liver of LACC1KO mice compared with that of the WT mice. In addition, the livers of LACC1KO mice accumulated 40-70% less triglycerides. Unexpectedly, when fed fat-free diet for 10 days, there was significant up-regulation of PPARgamma and several enzymes in the lipogenic pathway in the liver of LACC1KO mice compared with the WT mice. Despite the significant up-regulation of the lipogenic enzymes, including a >2-fold increase in fatty acid synthase mRNA, protein, and activity, there was significant decrease in the de novo fatty acid synthesis and triglyceride accumulation in the liver. However, there were no significant changes in blood glucose and fasting ketone body levels. Hence, reducing cytosolic malonyl-CoA and, therefore, the de novo fatty acid synthesis in the liver, does not affect fatty acid oxidation and glucose homeostasis under lipogenic conditions.
Collapse
Affiliation(s)
- Jianqiang Mao
- *The Verna and Marrs McLean Department of Biochemistry and Molecular Biology and Departments of
| | | | | | - Lutfi Abu-Elheiga
- *The Verna and Marrs McLean Department of Biochemistry and Molecular Biology and Departments of
| | - Ziwei Gu
- *The Verna and Marrs McLean Department of Biochemistry and Molecular Biology and Departments of
| | - Tattym E. Shaikenov
- *The Verna and Marrs McLean Department of Biochemistry and Molecular Biology and Departments of
| | - Parichher Kordari
- *The Verna and Marrs McLean Department of Biochemistry and Molecular Biology and Departments of
| | - Subrahmanyam S. Chirala
- *The Verna and Marrs McLean Department of Biochemistry and Molecular Biology and Departments of
| | - William C. Heird
- Pediatrics-Nutrition, Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030
| | - Salih J. Wakil
- *The Verna and Marrs McLean Department of Biochemistry and Molecular Biology and Departments of
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|