1
|
Ma ZG, Yuan YP, Fan D, Zhang X, Teng T, Song P, Kong CY, Hu C, Wei WY, Tang QZ. IRX2 regulates angiotensin II-induced cardiac fibrosis by transcriptionally activating EGR1 in male mice. Nat Commun 2023; 14:4967. [PMID: 37587150 PMCID: PMC10432509 DOI: 10.1038/s41467-023-40639-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 08/03/2023] [Indexed: 08/18/2023] Open
Abstract
Cardiac fibrosis is a common feature of chronic heart failure. Iroquois homeobox (IRX) family of transcription factors plays important roles in heart development; however, the role of IRX2 in cardiac fibrosis has not been clarified. Here we report that IRX2 expression is significantly upregulated in the fibrotic hearts. Increased IRX2 expression is mainly derived from cardiac fibroblast (CF) during the angiotensin II (Ang II)-induced fibrotic response. Using two CF-specific Irx2-knockout mouse models, we show that deletion of Irx2 in CFs protect against pathological fibrotic remodelling and improve cardiac function in male mice. In contrast, Irx2 gain of function in CFs exaggerate fibrotic remodelling. Mechanistically, we find that IRX2 directly binds to the promoter of the early growth response factor 1 (EGR1) and subsequently initiates the transcription of several fibrosis-related genes. Our study provides evidence that IRX2 regulates the EGR1 pathway upon Ang II stimulation and drives cardiac fibrosis.
Collapse
Affiliation(s)
- Zhen-Guo Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, PR China
- Cardiovascular Research Institute of Wuhan University, 430060, Wuhan, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, PR China
| | - Yu-Pei Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, PR China
- Cardiovascular Research Institute of Wuhan University, 430060, Wuhan, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, PR China
| | - Di Fan
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, PR China
- Cardiovascular Research Institute of Wuhan University, 430060, Wuhan, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, PR China
| | - Xin Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, PR China
- Cardiovascular Research Institute of Wuhan University, 430060, Wuhan, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, PR China
| | - Teng Teng
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, PR China
- Cardiovascular Research Institute of Wuhan University, 430060, Wuhan, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, PR China
| | - Peng Song
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, PR China
- Cardiovascular Research Institute of Wuhan University, 430060, Wuhan, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, PR China
| | - Chun-Yan Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, PR China
- Cardiovascular Research Institute of Wuhan University, 430060, Wuhan, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, PR China
| | - Can Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, PR China
- Cardiovascular Research Institute of Wuhan University, 430060, Wuhan, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, PR China
| | - Wen-Ying Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, PR China
- Cardiovascular Research Institute of Wuhan University, 430060, Wuhan, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, PR China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, PR China.
- Cardiovascular Research Institute of Wuhan University, 430060, Wuhan, PR China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, PR China.
| |
Collapse
|
2
|
Guo Y, Miao X, Sun X, Li L, Zhou A, Zhu X, Xu Y, Wang Q, Li Z, Fan Z. Zinc finger transcription factor Egf1 promotes non-alcoholic fatty liver disease. JHEP Rep 2023; 5:100724. [PMID: 37234276 PMCID: PMC10206499 DOI: 10.1016/j.jhepr.2023.100724] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/19/2023] [Accepted: 02/22/2023] [Indexed: 05/27/2023] Open
Abstract
Background & Aims Non-alcoholic fatty liver disease (NAFLD) contributes to the global epidemic of metabolic syndrome and is considered a prelude to end-stage liver diseases such as cirrhosis and hepatocellular carcinoma. During NAFLD pathogenesis, hepatic parenchymal cells (hepatocytes) undergo both morphological and functional changes owing to a rewired transcriptome. The underlying mechanism is not entirely clear. In the present study, we investigated the involvement of early growth response 1 (Egr1) in NAFLD. Methods Quantitative PCR, Western blotting, and histochemical staining were used to assess gene expression levels. Chromatin immunoprecipitation was used to evaluate protein binding to DNA. NAFLD was evaluated in leptin receptor-deficient (db/db) mice. Results We report here that Egr1 was upregulated by pro-NAFLD stimuli in vitro and in vivo. Further analysis revealed that serum response factor (SRF) was recruited to the Egr1 promoter and mediated Egr1 transactivation. Importantly, Egr1 depletion markedly mitigated NAFLD in db/db mice. RNA sequencing revealed that Egr1 knockdown in hepatocytes, on the one hand, boosted fatty acid oxidation (FAO) and, on the other hand, suppressed the synthesis of chemoattractants. Mechanistically, Egr1 interacted with peroxisome proliferator-activated receptor α (PPARα) to repress PPARα-dependent transcription of FAO genes by recruiting its co-repressor NGFI-A binding protein 1 (Nab1), which potentially led to promoter deacetylation of FAO genes. Conclusions Our data identify Egr1 as a novel modulator of NAFLD and a potential target for NAFLD intervention. Impact and Implications Non-alcoholic fatty liver disease (NAFLD) precedes cirrhosis and hepatocellular carcinoma. In this paper, we describe a novel mechanism whereby early growth response 1 (Egr1), a transcription factor, contributes to NAFLD pathogenesis by regulating fatty acid oxidation. Our data provide novel insights and translational potential for NAFLD intervention.
Collapse
Affiliation(s)
- Yan Guo
- Institute of Biomedical Research and College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Xiulian Miao
- Institute of Biomedical Research and College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Xinyue Sun
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Luyang Li
- Department of Oral Medicine, Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Anqi Zhou
- Institute of Biomedical Research and College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Xi Zhu
- Department of Infectious Diseases, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, China
| | - Yong Xu
- Institute of Biomedical Research and College of Life Sciences, Liaocheng University, Liaocheng, China
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Qinghua Wang
- Department of Gastroenterology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, China
| | - Zilong Li
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Zhiwen Fan
- Department of Pathology, Affiliated Nanjing Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
3
|
Deng Y, Shi S, Luo J, Zhang Y, Dong H, Wang X, Zhou J, Wei Z, Li J, Xu C, Xu S, Sun Y, Ni B, Wu Y, Yang D, Han C, Tian Y. Regulation of mRNA stability contributes to the function of innate lymphoid cells in various diseases. Front Immunol 2023; 14:1118483. [PMID: 36776864 PMCID: PMC9909350 DOI: 10.3389/fimmu.2023.1118483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Innate lymphoid cells (ILCs) are important subsets of innate immune cells that regulate mucosal immunity. ILCs include natural killer cells, innate lymphoid cells-1 (ILC1s), ILC2s, and ILC3s, which have extremely important roles in the immune system. In this review, we summarize the regulation of mRNA stability mediated through various factors in ILCs (e.g., cytokines, RNA-binding proteins, non-coding RNAs) and their roles in mediating functions in different ILC subsets. In addition, we discuss potential therapeutic targets for diseases such as chronic obstructive pulmonary disease, cancer, and pulmonary fibrosis by regulation of mRNA stability in ILCs, which may provide novel directions for future clinical research.
Collapse
Affiliation(s)
- Yuanyu Deng
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Saiyu Shi
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jie Luo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yiwei Zhang
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hui Dong
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xian Wang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong, China
| | - Jian Zhou
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhiyuan Wei
- The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiahui Li
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chen Xu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shuai Xu
- Department of Stomatology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yi Sun
- The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, China
| | - Bing Ni
- Department of Pathophysiology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Di Yang
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China,*Correspondence: Yi Tian, ; Di Yang, ; Chao Han,
| | - Chao Han
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China,*Correspondence: Yi Tian, ; Di Yang, ; Chao Han,
| | - Yi Tian
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China,*Correspondence: Yi Tian, ; Di Yang, ; Chao Han,
| |
Collapse
|
4
|
Woodson CM, Kehn-Hall K. Examining the role of EGR1 during viral infections. Front Microbiol 2022; 13:1020220. [PMID: 36338037 PMCID: PMC9634628 DOI: 10.3389/fmicb.2022.1020220] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/26/2022] [Indexed: 09/06/2023] Open
Abstract
Early growth response 1 (EGR1) is a multifunctional mammalian transcription factor capable of both enhancing and/or inhibiting gene expression. EGR1 can be activated by a wide array of stimuli such as exposure to growth factors, cytokines, apoptosis, and various cellular stress states including viral infections by both DNA and RNA viruses. Following induction, EGR1 functions as a convergence point for numerous specialized signaling cascades and couples short-term extracellular signals to influence transcriptional regulation of genes required to initiate the appropriate biological response. The role of EGR1 has been extensively studied in both physiological and pathological conditions of the adult nervous system where it is readily expressed in various regions of the brain and is critical for neuronal plasticity and the formation of memories. In addition to its involvement in neuropsychiatric disorders, EGR1 has also been widely examined in the field of cancer where it plays paradoxical roles as a tumor suppressor gene or oncogene. EGR1 is also associated with multiple viral infections such as Venezuelan equine encephalitis virus (VEEV), Kaposi's sarcoma-associated herpesvirus (KSHV), herpes simplex virus 1 (HSV-1), human polyomavirus JC virus (JCV), human immunodeficiency virus (HIV), and Epstein-Barr virus (EBV). In this review, we examine EGR1 and its role(s) during viral infections. First, we provide an overview of EGR1 in terms of its structure, other family members, and a brief overview of its roles in non-viral disease states. We also review upstream regulators of EGR1 and downstream factors impacted by EGR1. Then, we extensively examine EGR1 and its roles, both direct and indirect, in regulating replication of DNA and RNA viruses.
Collapse
Affiliation(s)
- Caitlin M. Woodson
- Department of Biomedical Science and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Kylene Kehn-Hall
- Department of Biomedical Science and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
5
|
Kulkarni R. Early Growth Response Factor 1 in Aging Hematopoietic Stem Cells and Leukemia. Front Cell Dev Biol 2022; 10:925761. [PMID: 35923847 PMCID: PMC9340249 DOI: 10.3389/fcell.2022.925761] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Aging is associated with various hematological disorders and a higher risk of myeloproliferative disorders. An aged hematopoietic system can be characterized by decreased immune function and increased myeloid cell production. Hematopoietic stem cells (HSCs) regulate the production of blood cells throughout life. The self-renewal and regenerative potential of HSCs determine the quality and quantity of the peripheral blood cells. External signals from the microenvironment under different conditions determine the fate of the HSCs to proliferate, self-renew, differentiate, or remain quiescent. HSCs respond impromptu to a vast array of extracellular signaling cascades such as cytokines, growth factors, or nutrients, which are crucial in the regulation of HSCs. Early growth response factor 1 (EGR1) is one of the key transcription factors controlling HSC proliferation and their localization in the bone marrow (BM) niche. Downregulation of Egr1 activates and recruits HSCs for their proliferation and differentiation to produce mature blood cells. Increased expression of Egr1 is implicated in immuno-aging of HSCs. However, dysregulation of Egr1 is associated with hematological malignancies such as acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), and chronic myelogenous leukemia (CML). Here, we summarize the current understanding of the role of EGR1 in the regulation of HSC functionality and the manifestation of leukemia. We also discuss the alternative strategies to rejuvenate the aged HSCs by targeting EGR1 in different settings.
Collapse
|
6
|
Nakatsuka Y, Yaku A, Handa T, Vandenbon A, Hikichi Y, Motomura Y, Sato A, Yoshinaga M, Tanizawa K, Watanabe K, Hirai T, Chin K, Suzuki Y, Uehata T, Mino T, Tsujimura T, Moro K, Takeuchi O. Profibrotic function of pulmonary group 2 innate lymphoid cells is controlled by regnase-1. Eur Respir J 2021; 57:13993003.00018-2020. [PMID: 32978308 DOI: 10.1183/13993003.00018-2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 09/11/2020] [Indexed: 12/23/2022]
Abstract
Regnase-1 is an RNase critical for post-transcriptional control of pulmonary immune homeostasis in mice by degrading immune-related mRNAs. However, little is known about the cell types Regnase-1 controls in the lung, and its relevance to human pulmonary diseases.Regnase-1-dependent changes in lung immune cell types were examined by a competitive bone marrow transfer mouse model, and group 2 innate lymphoid cells (ILC2s) were identified. Then the associations between Regnase-1 in ILC2s and human diseases were investigated by transcriptome analysis and a bleomycin-induced pulmonary fibrosis mouse model. The clinical significance of Regnase-1 in ILC2s was further assessed using patient-derived cells.Regnase-1-deficiency resulted in the spontaneous proliferation and activation of ILC2s in the lung. Intriguingly, genes associated with pulmonary fibrosis were highly upregulated in Regnase-1-deficient ILC2s compared with wild-type, and supplementation of Regnase-1-deficient ILC2s augmented bleomycin-induced pulmonary fibrosis in mice. Regnase-1 suppresses mRNAs encoding transcription factors Gata3 and Egr1, which are potent to regulate fibrosis-associated genes. Clinically, Regnase-1 protein levels in ILC2 negatively correlated with the ILC2 population in bronchoalveolar lavage fluid. Furthermore, idiopathic pulmonary fibrosis (IPF) patients with ILC2s >1500 cells·mL-1 peripheral blood exhibited poorer prognosis than patients with lower numbers, implying the contribution of Regnase-1 in ILC2s for the progression of IPF.Collectively, Regnase-1 was identified as a critical post-transcriptional regulator of the profibrotic function of ILC2s both in mouse and human, suggesting that Regnase-1 may be a novel therapeutic target for IPF.
Collapse
Affiliation(s)
- Yoshinari Nakatsuka
- Dept of Respiratory Care and Sleep Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Dept of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ai Yaku
- Dept of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Dept of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomohiro Handa
- Dept of Advanced Medicine for Respiratory Failure, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Alexis Vandenbon
- Laboratory of Systems Virology, Dept of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yuki Hikichi
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Yasutaka Motomura
- Dept of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ayuko Sato
- Dept of Pathology, Hyogo College of Medicine, Hyogo, Japan
| | - Masanori Yoshinaga
- Dept of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kiminobu Tanizawa
- Dept of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kizuku Watanabe
- Dept of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toyohiro Hirai
- Dept of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuo Chin
- Dept of Respiratory Care and Sleep Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yutaka Suzuki
- Laboratory of Functional Genomics, Dept of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Takuya Uehata
- Dept of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Mino
- Dept of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Kazuyo Moro
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan.,Dept of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Osamu Takeuchi
- Dept of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Baker Frost D, Savchenko A, Ogunleye A, Armstrong M, Feghali-Bostwick C. Elucidating the cellular mechanism for E2-induced dermal fibrosis. Arthritis Res Ther 2021; 23:68. [PMID: 33640015 PMCID: PMC7913437 DOI: 10.1186/s13075-021-02441-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Both TGFβ and estradiol (E2), a form of estrogen, are pro-fibrotic in the skin. In the connective tissue disease, systemic sclerosis (SSc), both TGFβ and E2 are likely pathogenic. Yet the regulation of TGFβ in E2-induced dermal fibrosis remains ill-defined. Elucidating those regulatory mechanisms will improve the understanding of fibrotic disease pathogenesis and set the stage for developing potential therapeutics. Using E2-stimulated primary human dermal fibroblasts in vitro and human skin tissue ex vivo, we identified the important regulatory proteins for TGFβ and investigated the extracellular matrix (ECM) components that are directly stimulated by E2-induced TGFβ signaling. METHODS We used primary human dermal fibroblasts in vitro and human skin tissue ex vivo stimulated with E2 or vehicle (ethanol) to measure TGFβ1 and TGFβ2 levels using quantitative PCR (qPCR). To identify the necessary cell signaling proteins in E2-induced TGFβ1 and TGFβ2 transcription, human dermal fibroblasts were pre-treated with an inhibitor of the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathway, U0126. Finally, human skin tissue ex vivo was pre-treated with SB-431542, a TGFβ receptor inhibitor, and ICI 182,780, an estrogen receptor α (ERα) inhibitor, to establish the effects of TGFβ and ERα signaling on E2-induced collagen 22A1 (Col22A1) transcription. RESULTS We found that expression of TGFβ1, TGFβ2, and Col22A1, a TGFβ-responsive gene, is induced in response to E2 stimulation. Mechanistically, Col22A1 induction was blocked by SB-431542 and ICI 182,780 despite E2 stimulation. Additionally, inhibiting E2-induced ERK/MAPK activation and early growth response 1 (EGR1) transcription prevents the E2-induced increase in TGFβ1 and TGFβ2 transcription and translation. CONCLUSIONS We conclude that E2-induced dermal fibrosis occurs in part through induction of TGFβ1, 2, and Col22A1, which is regulated through EGR1 and the MAPK pathway. Thus, blocking estrogen signaling and/or production may be a novel therapeutic option in pro-fibrotic diseases.
Collapse
Affiliation(s)
- DeAnna Baker Frost
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, USA.
| | - Alisa Savchenko
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, USA
| | - Adeyemi Ogunleye
- Division of Plastic Surgery, University of North Carolina, Chapel Hill, USA
| | - Milton Armstrong
- Department of Surgery, Division of Plastic Surgery, Medical University of South Carolina, Charleston, USA
| | - Carol Feghali-Bostwick
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, USA
| |
Collapse
|
8
|
Li P, Wang QS, Zhai Y, Xiong RP, Chen X, Liu P, Peng Y, Zhao Y, Ning YL, Yang N, Zhou YG. Ski mediates TGF-β1-induced fibrosarcoma cell proliferation and promotes tumor growth. J Cancer 2020; 11:5929-5940. [PMID: 32922535 PMCID: PMC7477421 DOI: 10.7150/jca.46074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/20/2020] [Indexed: 11/05/2022] Open
Abstract
Background: TGF-β1 promotes cell proliferation in only some tumors and exerts bidirectional regulatory effects on the proliferation of fibroblasts. This study intends to explore whether the mechanism is related to increased expression of Ski. Methods: Cell proliferation of the fibrosarcoma cell line L929 was assessed with an ELISA BrdU kit. The mRNA and protein expression levels of the corresponding factors were measured by RT-qPCR, immunohistochemistry or Western blotting in vitro and in vivo. Additionally, c-Ski was knocked down using RNAi. The expression of Ski in human dermatofibrosarcoma protuberans (DFSP) specimens was measured by immunohistochemistry. Results: TGF-β1 promoted the continued proliferation of L929 cells in a dose-dependent manner, with increased c-Ski expression levels. Conversely, inhibition of c-Ski significantly abrogated this unidirectional effect, significantly inhibited the decrease in p21 protein levels and did not affect the increase in p-Smad2/3 levels upon TGF-β1 treatment. Similarly, inhibition of c-Ski significantly abrogated the growth-promoting effect of TGF-β1 on xenograft tumors. Furthermore, we found that high expression of Ski in DFSP was correlated with a low degree of tumor differentiation. Conclusions: Our data reveal that high c-Ski expression is a cause of TGF-β1-promoted proliferation in fibrosarcoma tumor cells and show that inhibiting Ski expression might be effective for treating tumors with high Ski levels.
Collapse
Affiliation(s)
- Ping Li
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Qiu-Shi Wang
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China.,Department of Pathology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Yu Zhai
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Ren-Ping Xiong
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Xing Chen
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Ping Liu
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Yan Peng
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Yan Zhao
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Ya-Lei Ning
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Nan Yang
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Yuan-Guo Zhou
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| |
Collapse
|
9
|
Differential functions of ERK1 and ERK2 in lung metastasis processes in triple-negative breast cancer. Sci Rep 2020; 10:8537. [PMID: 32444778 PMCID: PMC7244517 DOI: 10.1038/s41598-020-65250-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/27/2020] [Indexed: 12/18/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer characterized by metastasis, drug resistance and high rates of recurrence. With a lack or targeted therapies, TNBC is challenging to treat and carries a poor prognosis. Patients with TNBC tumors expressing high levels of ERK2 have a poorer prognosis than those with low ERK2-expressing tumors. The MAPK pathway is often found to be highly activated in TNBC, however the precise functions of the ERK isoforms (ERK1 and ERK2) in cancer progression have not been well defined. We hypothesized that ERK2, but not ERK1, promotes the cancer stem cell (CSC) phenotype and metastasis in TNBC. Stable knockdown clones of the ERK1 and ERK2 isoforms were generated in SUM149 and BT549 TNBC cells using shRNA lentiviral vectors. ERK2 knockdown significantly inhibited anchorage-independent colony formation and mammosphere formation, indicating compromised self-renewal capacity. This effect correlated with a reduction in migration and invasion. SCID-beige mice injected via the tail vein with ERK clones were employed to determine metastatic potential. SUM149 shERK2 cells had a significantly lower lung metastatic burden than control mice or mice injected with SUM149 shERK1 cells. The Affymetrix HGU133plus2 microarray platform was employed to identify gene expression changes in ERK isoform knockdown clones. Comparison of gene expression levels between SUM149 cells with ERK2 or ERK1 knockdown revealed differential and in some cases opposite effects on mRNA expression levels. Those changes associated with ERK2 knockdown predominantly altered regulation of CSCs and metastasis. Our findings indicate that ERK2 promotes metastasis and the CSC phenotype in TNBC.
Collapse
|
10
|
Poiana G, Gioia R, Sineri S, Cardarelli S, Lupo G, Cacci E. Transcriptional regulation of adult neural stem/progenitor cells: tales from the subventricular zone. Neural Regen Res 2020; 15:1773-1783. [PMID: 32246617 PMCID: PMC7513981 DOI: 10.4103/1673-5374.280301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In rodents, well characterized neurogenic niches of the adult brain, such as the subventricular zone of the lateral ventricles and the subgranular zone of the hippocampus, support the maintenance of neural/stem progenitor cells (NSPCs) and the production of new neurons throughout the lifespan. The adult neurogenic process is dependent on the intrinsic gene expression signatures of NSPCs that make them competent for self-renewal and neuronal differentiation. At the same time, it is receptive to regulation by various extracellular signals that allow the modulation of neuronal production and integration into brain circuitries by various physiological stimuli. A drawback of this plasticity is the sensitivity of adult neurogenesis to alterations of the niche environment that can occur due to aging, injury or disease. At the core of the molecular mechanisms regulating neurogenesis, several transcription factors have been identified that maintain NSPC identity and mediate NSPC response to extrinsic cues. Here, we focus on REST, Egr1 and Dbx2 and their roles in adult neurogenesis, especially in the subventricular zone. We review recent work from our and other laboratories implicating these transcription factors in the control of NSPC proliferation and differentiation and in the response of NSPCs to extrinsic influences from the niche. We also discuss how their altered regulation may affect the neurogenic process in the aged and in the diseased brain. Finally, we highlight key open questions that need to be addressed to foster our understanding of the transcriptional mechanisms controlling adult neurogenesis.
Collapse
Affiliation(s)
- Giancarlo Poiana
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Roberta Gioia
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Serena Sineri
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Silvia Cardarelli
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Giuseppe Lupo
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Emanuele Cacci
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
11
|
Hancock MH, Crawford LB, Pham AH, Mitchell J, Struthers HM, Yurochko AD, Caposio P, Nelson JA. Human Cytomegalovirus miRNAs Regulate TGF-β to Mediate Myelosuppression while Maintaining Viral Latency in CD34 + Hematopoietic Progenitor Cells. Cell Host Microbe 2019; 27:104-114.e4. [PMID: 31866424 DOI: 10.1016/j.chom.2019.11.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/25/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
Abstract
Infection with human cytomegalovirus (HCMV) remains a significant cause of morbidity and mortality following hematopoietic stem cell transplant (HSCT) because of various hematologic problems, including myelosuppression. Here, we demonstrate that latently expressed HCMV miR-US5-2 downregulates the transcriptional repressor NGFI-A binding protein (NAB1) to induce myelosuppression of uninfected CD34+ hematopoietic progenitor cells (HPCs) through an increase in TGF-β production. Infection of HPCs with an HCMVΔmiR-US5-2 mutant resulted in decreased TGF-β expression and restoration of myelopoiesis. In contrast, we show that infected HPCs are refractory to TGF-β signaling as another HCMV miRNA, miR-UL22A, downregulates SMAD3, which is required for maintenance of latency. Our data suggest that latently expressed viral miRNAs manipulate stem cell homeostasis by inducing secretion of TGF-β while protecting infected HPCs from TGF-β-mediated effects on viral latency and reactivation. These observations provide a mechanism through which HCMV induces global myelosuppression following HSCT while maintaining lifelong infection in myeloid lineage cells.
Collapse
Affiliation(s)
- Meaghan H Hancock
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Lindsey B Crawford
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Andrew H Pham
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Jennifer Mitchell
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Hillary M Struthers
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Andrew D Yurochko
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | - Patrizia Caposio
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Jay A Nelson
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA.
| |
Collapse
|
12
|
EGR1 regulates angiogenic and osteoclastogenic factors in prostate cancer and promotes metastasis. Oncogene 2019; 38:6241-6255. [PMID: 31312026 PMCID: PMC6715537 DOI: 10.1038/s41388-019-0873-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/18/2019] [Accepted: 04/07/2019] [Indexed: 12/21/2022]
Abstract
Early growth response-1 (EGR1) is a transcription factor correlated with prostate cancer (PC) progression in a variety of contexts. For example, EGR1 levels increase in response to suppressed androgen receptor signaling or loss of the tumor suppressor, PTEN. EGR1 has been shown to regulate genes influencing proliferation, apoptosis, immune cell activation, and matrix degradation, among others. Despite this, the impact of EGR1 on PC metastatic colonization is unclear. We demonstrate using a PC model (DU145/RasB1) of bone and brain metastasis that EGR1 expression regulates angiogenic and osteoclastogenic properties of metastases. We have shown previously that FN14 (TNFRSF12A) and downstream NF-κB signaling is required for metastasis in this model. Here we demonstrate that FN14 ligation also leads to NF-κB-independent, MEK-dependent EGR1 expression. EGR1-depletion in DU145/RasB1 cells reduced both the number and size of metastases but did not affect primary tumor growth. Decreased EGR1 expression led to reduced blood vessel density in brain and bone metastases as well as decreased osteolytic bone lesion area and reduced numbers of osteoclasts at the bone-tumor interface. TWEAK (TNFSF12) induced several EGR1-dependent angiogenic and osteoclastogenic factors (e.g. PDGFA, TGFB1, SPP1, IL6, IL8, and TGFA, among others). Consistent with this, in clinical samples of PC, the level of several genes encoding angiogenic/osteoclastogenic pathway effectors correlated with EGR1 levels. Thus, we show here that EGR1 has a direct effect on prostate cancer metastases. EGR1 regulates angiogenic and osteoclastogenic factors, informing the underlying signaling networks that impact autonomous and microenvironmental mechanisms of cancer metastases.
Collapse
|
13
|
Mahmood N, Rabbani SA. DNA Methylation Readers and Cancer: Mechanistic and Therapeutic Applications. Front Oncol 2019; 9:489. [PMID: 31245293 PMCID: PMC6579900 DOI: 10.3389/fonc.2019.00489] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022] Open
Abstract
DNA methylation is a major epigenetic process that regulates chromatin structure which causes transcriptional activation or repression of genes in a context-dependent manner. In general, DNA methylation takes place when methyl groups are added to the appropriate bases on the genome by the action of "writer" molecules known as DNA methyltransferases. How these methylation marks are read and interpreted into different functionalities represents one of the main mechanisms through which the genes are switched "ON" or "OFF" and typically involves different types of "reader" proteins that can recognize and bind to the methylated regions. A tightly balanced regulation exists between the "writers" and "readers" in order to mediate normal cellular functions. However, alterations in normal methylation pattern is a typical hallmark of cancer which alters the way methylation marks are written, read and interpreted in different disease states. This unique characteristic of DNA methylation "readers" has identified them as attractive therapeutic targets. In this review, we describe the current state of knowledge on the different classes of DNA methylation "readers" identified thus far along with their normal biological functions, describe how they are dysregulated in cancer, and discuss the various anti-cancer therapies that are currently being developed and evaluated for targeting these proteins.
Collapse
Affiliation(s)
- Niaz Mahmood
- Department of Medicine, McGill University Health Centre, Montréal, QC, Canada
| | - Shafaat A Rabbani
- Department of Medicine, McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
14
|
Kim J, Kang SM, Oh SY, Lee HJ, Lee I, Hwang JC, Hong SH. NGFI-A Binding Protein 2 Promotes EGF-Dependent HNSCC Cell Invasion. Cancers (Basel) 2019; 11:cancers11030315. [PMID: 30845713 PMCID: PMC6468740 DOI: 10.3390/cancers11030315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/02/2022] Open
Abstract
NGFI-A binding protein 2 (NAB2) represses the transcriptional activation of early growth response protein-1 (EGR1), a tumor-suppressor. However, Epidermal Growth Factor (EGF) promotes tumor progression even with significant EGR1 upregulation. The molecular mechanism through which NAB2 is involved in cancer is largely unknown. Therefore, we evaluated how the NAB2-mediated suppression of EGR1 facilitates head and neck squamous cell carcinoma (HNSCC) cancer progression, in association with Sp1, which competes with EGR1 as a transcriptional regulator. The effect of NAB2 on EGR1/SP1 binding to the consensus promoter sequences of MMP2 and MMP9 was evaluated by chromatin immunoprecipitation (ChIP) and promoter luciferase assay. The correlation between EGR1-NAB2 expression and metastatic status was investigated using The Cancer Genome Atlas (TCGA) for HNSCC patients. Our data showed that NAB2 knockdown in FaDu and YD-10B HNSCC cells alleviated EGF-dependent increase of Matrigel invasion. In addition, NAB2 upregulation in EGF-treated FaDu cell diminishes EGR1 transcriptional activity, resulting in the upregulation of Sp1-dependent tumor-promoting genes. TCGA data analysis of 483 HNSCC tumors showed that higher levels of both EGR1 and NAB2 mRNA were significantly associated with metastasis, corresponding to in vitro results. Our data suggest that NAB2 upregulation facilitates EGF-mediated cancer cell invasion through the transactivation of Sp1-dependent tumor-promoting genes. These results provide insight into the paradoxical roles of EGF-EGR1 in cancer progression.
Collapse
Affiliation(s)
- Jinkyung Kim
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea.
| | - Sung-Min Kang
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea.
| | - Su Young Oh
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea.
| | - Heon-Jin Lee
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea.
| | - Inhan Lee
- Research Division, MIRCORE, Ann Arbor, MI 48105, USA.
| | | | - Su-Hyung Hong
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea.
| |
Collapse
|
15
|
Li Yim AYF, de Bruyn JR, Duijvis NW, Sharp C, Ferrero E, de Jonge WJ, Wildenberg ME, Mannens MMAM, Buskens CJ, D’Haens GR, Henneman P, te Velde AA. A distinct epigenetic profile distinguishes stenotic from non-inflamed fibroblasts in the ileal mucosa of Crohn's disease patients. PLoS One 2018; 13:e0209656. [PMID: 30589872 PMCID: PMC6307755 DOI: 10.1371/journal.pone.0209656] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 12/10/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The chronic remitting and relapsing intestinal inflammation characteristic of Crohn's disease frequently leads to fibrosis and subsequent stenosis of the inflamed region. Approximately a third of all Crohn's disease patients require resection at some stage in their disease course. As the pathogenesis of Crohn's disease associated fibrosis is largely unknown, a strong necessity exists to better understand the pathophysiology thereof. METHODS In this study, we investigated changes of the DNA methylome and transcriptome of ileum-derived fibroblasts associated to the occurrence of Crohn's disease associated fibrosis. Eighteen samples were included in a DNA methylation array and twenty-one samples were used for RNA sequencing. RESULTS Most differentially methylated regions and differentially expressed genes were observed when comparing stenotic with non-inflamed samples. By contrast, few differences were observed when comparing Crohn's disease with non-Crohn's disease, or inflamed with non-inflamed tissue. Integrative methylation and gene expression analyses revealed dysregulation of genes associated to the PRKACA and E2F1 network, which is involved in cell cycle progression, angiogenesis, epithelial to mesenchymal transition, and bile metabolism. CONCLUSION Our research provides evidence that the methylome and the transcriptome are systematically dysregulated in stenosis-associated fibroblasts.
Collapse
Affiliation(s)
- Andrew Y. F. Li Yim
- Genome Diagnostics Laboratory, Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Epigenetics Discovery Performance Unit, GlaxoSmithKline, Stevenage, United Kingdom
| | - Jessica R. de Bruyn
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Gastroenterology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Nicolette W. Duijvis
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Catriona Sharp
- Epigenetics Discovery Performance Unit, GlaxoSmithKline, Stevenage, United Kingdom
| | - Enrico Ferrero
- Computational Biology, Target Sciences, GlaxoSmithKline, Stevenage, United Kingdom
| | - Wouter J. de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Manon E. Wildenberg
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Marcel M. A. M. Mannens
- Genome Diagnostics Laboratory, Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Christianne J. Buskens
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Geert R. D’Haens
- Department of Gastroenterology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Peter Henneman
- Genome Diagnostics Laboratory, Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Anje A. te Velde
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- * E-mail:
| |
Collapse
|
16
|
Zhang J, Xiang Z, Malaviarachchi PA, Yan Y, Baltz NJ, Emanuel PD, Liu YL. PTEN is indispensable for cells to respond to MAPK inhibitors in myeloid leukemia. Cell Signal 2018; 50:72-79. [PMID: 29964149 DOI: 10.1016/j.cellsig.2018.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/02/2018] [Accepted: 06/06/2018] [Indexed: 12/13/2022]
Abstract
Constitutively activated MAPK and AKT signaling pathways are often found in solid tumors and leukemias. PTEN is one of the tumor suppressors that are frequently found deficient in patients with late-stage cancers or leukemias. In this study we demonstrate that a MAPK inhibitor, PD98059, inhibits both AKT and ERK phosphorylation in a human myeloid leukemia cell line (TF-1), but not in PTEN-deficient leukemia cells (TF-1a). Ectopic expression of wild-type PTEN in myeloid leukemia cells restored cytokine responsiveness at physiological concentrations of GM-CSF (<0.02 ng/mL) and significantly improved cell sensitivity to MAPK inhibitor. We also found that Early Growth Response 1 (EGR1) was constitutively over-expressed in cytokine-independent TF-1a cells, and ectopic expression of PTEN down-regulated EGR1 expression and restored dynamics of EGR1 expression in response to GM-CSF stimulation. Data from primary bone marrow cells from mice with Pten deletion further supports that PTEN is indispensible for myeloid leukemia cells in response to MAPK inhibitors. Finally, We demonstrate that the absence of EGR1 expression dynamics in response to GM-CSF stimulation is one of the mechanisms underlying drug resistance to MAPK inhibitors in leukemia cells with PTEN deficiency. Our data suggest a novel mechanism of PTEN in regulating expression of EGR1 in hematopoietic cells in response to cytokine stimulation. In conclusion, this study demonstrates that PTEN is dispensable for myeloid leukemia cells in response to MAPK inhibitors, and PTEN regulates EGR1 expression and contributes to the cytokine sensitivity in leukemia cells.
Collapse
Affiliation(s)
- Jingliao Zhang
- Winthrop P. Rockefeller Cancer Institute, Division of Hematology, Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, United States; Department of Pediatrics, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences, Tianjin 300020, China
| | - Zhifu Xiang
- Winthrop P. Rockefeller Cancer Institute, Division of Hematology, Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, United States
| | - Priyangi A Malaviarachchi
- Winthrop P. Rockefeller Cancer Institute, Division of Hematology, Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, United States
| | - Yan Yan
- Winthrop P. Rockefeller Cancer Institute, Division of Hematology, Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, United States
| | - Nicholas J Baltz
- Winthrop P. Rockefeller Cancer Institute, Division of Hematology, Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, United States
| | - Peter D Emanuel
- Winthrop P. Rockefeller Cancer Institute, Division of Hematology, Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, United States.
| | - Y Lucy Liu
- Winthrop P. Rockefeller Cancer Institute, Division of Hematology, Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, United States.
| |
Collapse
|
17
|
Oh S, Kim H, Nam K, Shin I. Egr-1 is required for neu/HER2-induced mammary tumors. Cell Signal 2018; 45:102-109. [PMID: 29408223 DOI: 10.1016/j.cellsig.2018.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/11/2018] [Accepted: 02/01/2018] [Indexed: 01/23/2023]
Abstract
Egr-1 is known to function mainly as a tumor suppressor through direct regulation of multiple tumor suppressor genes. To determine the role of Egr-1 in breast tumors in vivo, we used mouse models of breast cancer induced by HER2/neu. We compared neu-overexpressing Egr-1 knockout mice (neu/Egr-1 KO) to neu-overexpressing Egr-1 wild type or heterozygote mice (neu/Egr-1 WT or neu/Egr-1 het) with regard to onset of tumor appearance and number of tumors per mouse. In addition, to examine the role of Egr-1 in vitro, we established neu/Egr-1 WT and KO tumor cell lines derived from breast tumors developed in each mouse. Egr-1 deletion delayed tumor development in vivo and decreased the rate of cell growth in vitro. These results suggest that Egr-1 plays an oncogenic role in HER2/neu-driven mammary tumorigenesis.
Collapse
Affiliation(s)
- Sunhwa Oh
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyungjoo Kim
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
| | - KeeSoo Nam
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Incheol Shin
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea; Natural Science Institute, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
18
|
Ye F. MicroRNA expression and activity in T-cell acute lymphoblastic leukemia. Oncotarget 2017; 9:5445-5458. [PMID: 29435192 PMCID: PMC5797063 DOI: 10.18632/oncotarget.23539] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/01/2017] [Indexed: 12/21/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a lymphoid malignancy caused by the oncogenic transformation of immature T-cell progenitors. Many biologically relevant genetic and epigenetic alterations have been identified as driving factors for this transformation. Recently, microRNAs (miRNAs) have been shown to influence various leukemias, including T-ALL. Aberrant expression of miRNAs can function as either oncogenes or tumor suppressors in T-ALL through the regulation of cell migration, invasion, proliferation, apoptosis, and chemoresistance. This occurs by targeting key signaling pathways or transcriptional factors that play a critical role in T-ALL pathology and progression. Different miRNA expression profiles have been linked to specific genetic subtypes of human T-ALL. Furthermore, miRNAs can also act as independent prognostic factors to predict clinical outcomes for T-ALL patients. In the current review, we will focus on the role of miRNAs in the development and progression of T-ALL.
Collapse
Affiliation(s)
- Fang Ye
- Department of Hematology, Beijing Chuiyangliu Hospital Affiliated to Tsinghua University, Beijing, China
| |
Collapse
|
19
|
Gao X, Xie Z, Wang Z, Cheng K, Liang K, Song Z. Overexpression of miR-191 Predicts Poor Prognosis and Promotes Proliferation and Invasion in Esophageal Squamous Cell Carcinoma. Yonsei Med J 2017; 58:1101-1110. [PMID: 29047233 PMCID: PMC5653474 DOI: 10.3349/ymj.2017.58.6.1101] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Accumulating evidence has shown that dysregulation of microRNA-191 (miR-191) is closely associated with tumorigenesis and progression in a wide range of cancers. This study aimed to explore the potential role of miR-191 in esophageal squamous cell carcinoma (ESCC). MATERIALS AND METHODS miR-191 expression was assessed in 93 ESCC tissue specimens by real-time polymerase chain reaction, and survival analysis was performed via Kaplan-Meier and Cox regression analyses. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide, plate colony-forming, BrdU, and Transwell assays were conducted to observe the effect of miR-191 on ESCC proliferation and invasion. Luciferase reporter and western blot assays were taken to identify target genes of miR-191. RESULTS miR-191 was overexpressed in 93 cases of ESCC, compared with adjacent normal tissues, and miR-191 expression was significantly related to differentiation, depth of invasion, TNM stage, lymph node metastasis, and distant metastasis of tumor. Kaplan-Meier and Cox regression analyses demonstrated that overexpression of miR-191 was an independent and significant predictor of ESCC prognosis. Both gain-of-function and loss-of-function experiments showed that miR-191 promoted ESCC cell proliferation and invasion activities in vitro. Early growth response 1 (EGR1), a tumor suppressor, was predicted as a direct target of miR-191. Luciferase reporter and western blot assays proved that miR-191 reduced EGR1 expression by directly binding its 3' untranslated region. Moreover, EGR1 knockdown by siRNA enhanced ESCC cell growth and invasion. CONCLUSION Our findings provide specific biological roles of miR-191 in ESCC survival and progression. Targeting the novel miR-191/EGR1 axis represents a potential new therapeutic way to block ESCC development.
Collapse
Affiliation(s)
- Xiaotian Gao
- Department of Cardiac Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhanqiang Xie
- Department of Cardiothoracic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhigang Wang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Keluo Cheng
- Department of Cardiothoracic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ke Liang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zeqing Song
- Department of Internal Medicine, Guangdong Medical University Affiliated Longhua Central Hospital, Shenzhen, China.
| |
Collapse
|
20
|
Differentiating Staphylococcus aureus from Escherichia coli mastitis: S. aureus triggers unbalanced immune-dampening and host cell invasion immediately after udder infection. Sci Rep 2017; 7:4811. [PMID: 28684793 PMCID: PMC5500526 DOI: 10.1038/s41598-017-05107-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/23/2017] [Indexed: 02/08/2023] Open
Abstract
The etiology determines quality and extent of the immune response after udder infection (mastitis). Infections with Gram negative bacteria (e.g. Escherichia coli) will quickly elicit strong inflammation of the udder, fully activate its immune defence via pathogen receptor driven activation of IκB/NF-κB signaling. This often eradicates the pathogen. In contrast, Gram-positive bacteria (e.g. Staphylococcus aureus) will slowly elicit a much weaker inflammation and immune response, frequently resulting in chronic infections. However, it was unclear which immune regulatory pathways are specifically triggered by S. aureus causing this partial immune subversion. We therefore compared in first lactating cows the earliest (1–3 h) udder responses against infection with mastitis causing pathogens of either species. Global transcriptome profiling, bioinformatics analysis and experimental validation of key aspects revealed as S. aureus infection specific features the (i) failure to activating IκB/NF-κB signaling; (ii) activation of the wnt/β-catenin cascade resulting in active suppression of NF-κB signaling and (iii) rearrangement of the actin-cytoskeleton through modulating Rho GTPase regulated pathways. This facilitates invasion of pathogens into host cells. Hence, S. aureus mastitis is characterized by eliciting unbalanced immune suppression rather than inflammation and invasion of S. aureus into the epithelial cells of the host causing sustained infection.
Collapse
|
21
|
Mózes MM, Szoleczky P, Rosivall L, Kökény G. Sustained hyperosmolarity increses TGF-ß1 and Egr-1 expression in the rat renal medulla. BMC Nephrol 2017; 18:209. [PMID: 28673338 PMCID: PMC5496335 DOI: 10.1186/s12882-017-0626-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 06/20/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Although TGF-ß and the transcription factor Egr-1 play an important role in both kidney fibrosis and in response to acute changes of renal medullary osmolarity, their role under sustained hypo- or hyperosmolar conditions has not been elucidated. We investigated the effects of chronic hypertonicity and hypotonicity on the renal medullary TGF-ß and Egr-1 expression. METHODS Male adult Sprague Dawley rats (n = 6/group) were treated with 15 mg/day furosemide, or the rats were water restricted to 15 ml/200 g body weight per day. Control rats had free access to water and rodent chow. Kidneys were harvested after 5 days of treament. In cultured inner medullary collecting duct (IMCD) cells, osmolarity was increased from 330 mOsm to 900 mOsm over 6 days. Analyses were performed at 330, 600 and 900 mOsm. RESULTS Urine osmolarity has not changed due to furosemide treatment but increased 2-fold after water restriction (p < 0.05). Gene expression of TGF-ß and Egr-1 increased by 1.9-fold and 7-fold in the hypertonic medulla, respectively (p < 0.05), accompanied by 6-fold and 2-fold increased c-Fos and TIMP-1 expression, respectively (p < 0.05) and positive immunostaining for TGF-ß and Egr-1 (p < 0.05). Similarly, hyperosmolarity led to overexpression of TGF-ß and Egr-1 mRNA in IMCD cells (2.5-fold and 3.5-fold increase from 330 to 900 mOsm, respectively (p < 0.05)) accompanied by significant c-Fos and c-Jun overexpressions (p < 0.01), and increased Col3a1 and Col4a1 mRNA expression. CONCLUSION We conclude that both TGF-ß and Egr-1 are upregulated by sustained hyperosmolarity in the rat renal medulla, and it favors the expression of extracellular matrix components.
Collapse
Affiliation(s)
- Miklós M Mózes
- Institute of Pathophysiology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Petra Szoleczky
- Institute of Pathophysiology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - László Rosivall
- Institute of Pathophysiology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary.,Hungarian Academy of Sciences and Semmelweis University Research Group for Pediatrics and Nephrology, Budapest, Hungary
| | - Gábor Kökény
- Institute of Pathophysiology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary.
| |
Collapse
|
22
|
High glucose alters tendon homeostasis through downregulation of the AMPK/Egr1 pathway. Sci Rep 2017; 7:44199. [PMID: 28266660 PMCID: PMC5339827 DOI: 10.1038/srep44199] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/03/2017] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus (DM) is associated with higher risk of tendinopathy, which reduces tolerance to exercise and functional activities and affects lifestyle and glycemic control. Expression of tendon-related genes and matrix metabolism in tenocytes are essential for maintaining physiological functions of tendon. However, the molecular mechanisms involved in diabetic tendinopathy remain unclear. We hypothesized that high glucose (HG) alters the characteristics of tenocyte. Using in vitro 2-week culture of tenocytes, we found that expression of tendon-related genes, including Egr1, Mkx, TGF-β1, Col1a2, and Bgn, was significantly decreased in HG culture and that higher glucose consumption occurred. Down-regulation of Egr1 by siRNA decreased Scx, Mkx, TGF-β1, Col1a1, Col1a2, and Bgn expression. Blocking AMPK activation with Compound C reduced the expression of Egr1, Scx, TGF-β1, Col1a1, Col1a2, and Bgn in the low glucose condition. In addition, histological examination of tendons from diabetic mice displayed larger interfibrillar space and uneven glycoprotein deposition. Thus, we concluded that high glucose alters tendon homeostasis through downregulation of the AMPK/Egr1 pathway and the expression of downstream tendon-related genes in tenocytes. The findings render a molecular basis of the mechanism of diabetic tendinopathy and may help develop preventive and therapeutic strategies for the pathology.
Collapse
|
23
|
Franklin JL, Amsler MO, Messina JL. Prenylation differentially inhibits insulin-dependent immediate early gene mRNA expression. Biochem Biophys Res Commun 2016; 474:594-598. [PMID: 27086854 DOI: 10.1016/j.bbrc.2016.04.067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 04/13/2016] [Indexed: 12/15/2022]
Abstract
Increased activity of prenyl transferases is observed in pathological states of insulin resistance, diabetes, and obesity. Thus, functional inhibitors of farnesyl transferase (FTase) and geranylgeranyl transferase (GGTase) may be promising therapeutic treatments. We previously identified insulin responsive genes from a rat H4IIE hepatoma cell cDNA library, including β-actin, EGR1, Pip92, c-fos, and Hsp60. In the present study, we investigated whether acute treatment with FTase and GGTase inhibitors would alter insulin responsive gene initiation and/or elongation rates. We observed differential regulation of insulin responsive gene expression, suggesting a differential sensitivity of these genes to one or both of the specific protein prenylation inhibitors.
Collapse
Affiliation(s)
- J Lee Franklin
- University of Alabama at Birmingham, Department of Pathology, Division of Molecular and Cellular Pathology, Birmingham, AL 35294, USA
| | - Maggie O Amsler
- University of Alabama at Birmingham, Department of Biology, Birmingham, AL 35294, USA
| | - Joseph L Messina
- University of Alabama at Birmingham, Department of Pathology, Division of Molecular and Cellular Pathology, Birmingham, AL 35294, USA; Veterans Administration Medical Center, Birmingham, AL 35294, USA.
| |
Collapse
|
24
|
Egr-1 deficiency protects from renal inflammation and fibrosis. J Mol Med (Berl) 2016; 94:933-42. [DOI: 10.1007/s00109-016-1403-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 02/04/2016] [Accepted: 02/29/2016] [Indexed: 10/22/2022]
|
25
|
4EBP1/c-MYC/PUMA and NF-κB/EGR1/BIM pathways underlie cytotoxicity of mTOR dual inhibitors in malignant lymphoid cells. Blood 2016; 127:2711-22. [PMID: 26917778 DOI: 10.1182/blood-2015-02-629485] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 02/13/2016] [Indexed: 12/14/2022] Open
Abstract
The mammalian target of rapamycin (mTOR), a kinase that regulates proliferation and apoptosis, has been extensively evaluated as a therapeutic target in multiple malignancies. Rapamycin analogs, which partially inhibit mTOR complex 1 (mTORC1), exhibit immunosuppressive and limited antitumor activity, but sometimes activate survival pathways through feedback mechanisms involving mTORC2. Thus, attention has turned to agents targeting both mTOR complexes by binding the mTOR active site. Here we show that disruption of either mTOR-containing complex is toxic to acute lymphocytic leukemia (ALL) cells and identify 2 previously unrecognized pathways leading to this cell death. Inhibition of mTORC1-mediated 4EBP1 phosphorylation leads to decreased expression of c-MYC and subsequent upregulation of the proapoptotic BCL2 family member PUMA, whereas inhibition of mTORC2 results in nuclear factor-κB-mediated expression of the Early Growth Response 1 (EGR1) gene, which encodes a transcription factor that binds and transactivates the proapoptotic BCL2L11 locus encoding BIM. Importantly, 1 or both pathways contribute to death of malignant lymphoid cells after treatment with dual mTORC1/mTORC2 inhibitors. Collectively, these observations not only provide new insight into the survival roles of mTOR in lymphoid malignancies, but also identify alterations that potentially modulate the action of mTOR dual inhibitors in ALL.
Collapse
|
26
|
Yuan D, Li K, Zhu K, Yan R, Dang C. Plasma miR-183 predicts recurrence and prognosis in patients with colorectal cancer. Cancer Biol Ther 2015; 16:268-75. [PMID: 25629978 DOI: 10.1080/15384047.2014.1002327] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide. The prognosis for this cancer is poor, and the development of novel biomarkers, particularly non-invasive surrogate biomarkers, is urgently needed. Recent studies have demonstrated that microRNAs (miRNAs) are stably detectable in the blood and can serve as useful biomarkers for various types of cancer. In this study, the miR-183 expression levels were found to be significantly overexpressed in plasma samples from CRC patients compared with controls, and the postoperative plasma miR-183 levels were significantly reduced compared with the preoperative levels. The value of the area under the receiver operating characteristic (ROC) curve obtained for miR-183 was 0.829, which was higher than those for carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9). High plasma miR-183 expression was significantly associated with lymph node metastasis, distant metastasis, higher pTNM stage (III-IV), and tumor recurrence. CRC patients with elevated miR-183 expression in plasma displayed shorter disease-free survival (DFS) and lower overall survival (OS). More importantly, plasma miR-183 was independently correlated with tumor recurrence and a lower OS. Collectively, our results suggested that the elevated miR-183 in the plasma could be a promising biomarker for predicting the risk of tumor recurrence and poor survival in CRC patients.
Collapse
Key Words
- AUC, area under curve
- CA19–9, carbohydrate antigen 19–9
- CEA, carcinoembryonic antigen
- CI, confidence interval
- CRC, colorectal cancer
- DFS, disease-free survival
- HR, hazard ratio
- MiR-183
- MiRNAs, microRNAs
- MicroRNA
- OS, overall survival
- PCR, polymerase chain reaction
- ROC, receiver operating characteristic
- biomarker
- colorectal cancer
- pTNM, pathological tumor-node-metastasis
- plasma
- prognosis
- recurrence
Collapse
Affiliation(s)
- Dawei Yuan
- a Department of Surgical Oncology ; First Affiliated Hospital of Xi'an Jiaotong University ; Xi'an , China
| | | | | | | | | |
Collapse
|
27
|
Crochiere M, Kashyap T, Kalid O, Shechter S, Klebanov B, Senapedis W, Saint-Martin JR, Landesman Y. Deciphering mechanisms of drug sensitivity and resistance to Selective Inhibitor of Nuclear Export (SINE) compounds. BMC Cancer 2015; 15:910. [PMID: 26573568 PMCID: PMC4647283 DOI: 10.1186/s12885-015-1790-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/15/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Exportin 1 (XPO1) is a well-characterized nuclear export protein whose expression is up-regulated in many types of cancers and functions to transport key tumor suppressor proteins (TSPs) from the nucleus. Karyopharm Therapeutics has developed a series of small-molecule Selective Inhibitor of Nuclear Export (SINE) compounds, which have been shown to block XPO1 function both in vitro and in vivo. The drug candidate, selinexor (KPT-330), is currently in Phase-II/IIb clinical trials for treatment of both hematologic and solid tumors. The present study sought to decipher the mechanisms that render cells either sensitive or resistant to treatment with SINE compounds, represented by KPT-185, an early analogue of KPT-330. METHODS Using the human fibrosarcoma HT1080 cell line, resistance to SINE was acquired over a period of 10 months of constant incubation with increasing concentration of KPT-185. Cell viability was assayed by MTT. Immunofluorescence was used to compare nuclear export of TSPs. Fluorescence activated cell sorting (FACS), quantitative polymerase chain reaction (qPCR), and immunoblots were used to measure effects on cell cycle, gene expression, and cell death. RNA from naïve and drug treated parental and resistant cells was analyzed by Affymetrix microarrays. RESULTS Treatment of HT1080 cells with gradually increasing concentrations of SINE resulted in >100 fold decrease in sensitivity to SINE cytotoxicity. Resistant cells displayed prolonged cell cycle, reduced nuclear accumulation of TSPs, and similar changes in protein expression compared to parental cells, however the magnitude of the protein expression changes were more significant in parental cells. Microarray analyses comparing parental to resistant cells indicate that a number of key signaling pathways were altered in resistant cells including expression changes in genes involved in adhesion, apoptosis, and inflammation. While the patterns of changes in transcription following drug treatment are similar in parental and resistant cells, the extent of response was more robust in the parental cells. CONCLUSIONS These results suggest that SINE resistance is conferred by alterations in signaling pathways downstream of XPO1 inhibition. Modulation of these pathways could potentially overcome the resistance to nuclear export inhibitors.
Collapse
Affiliation(s)
- Marsha Crochiere
- Karyopharm Therapeutics Inc., 85 Wells Avenue, Newton, MA 02459, USA.
| | - Trinayan Kashyap
- Karyopharm Therapeutics Inc., 85 Wells Avenue, Newton, MA 02459, USA.
| | - Ori Kalid
- Karyopharm Therapeutics Inc., 85 Wells Avenue, Newton, MA 02459, USA.
| | - Sharon Shechter
- Karyopharm Therapeutics Inc., 85 Wells Avenue, Newton, MA 02459, USA.
| | - Boris Klebanov
- Karyopharm Therapeutics Inc., 85 Wells Avenue, Newton, MA 02459, USA.
| | - William Senapedis
- Karyopharm Therapeutics Inc., 85 Wells Avenue, Newton, MA 02459, USA.
| | | | - Yosef Landesman
- Karyopharm Therapeutics Inc., 85 Wells Avenue, Newton, MA 02459, USA.
| |
Collapse
|
28
|
McNeal AS, Liu K, Nakhate V, Natale CA, Duperret EK, Capell BC, Dentchev T, Berger SL, Herlyn M, Seykora JT, Ridky TW. CDKN2B Loss Promotes Progression from Benign Melanocytic Nevus to Melanoma. Cancer Discov 2015; 5:1072-85. [PMID: 26183406 DOI: 10.1158/2159-8290.cd-15-0196] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 07/09/2015] [Indexed: 12/21/2022]
Abstract
UNLABELLED Deletion of the entire CDKN2B-CDKN2A gene cluster is among the most common genetic events in cancer. The tumor-promoting effects are generally attributed to loss of CDKN2A-encoded p16 and p14ARF tumor suppressors. The degree to which the associated CDKN2B-encoded p15 loss contributes to human tumorigenesis is unclear. Here, we show that CDKN2B is highly upregulated in benign melanocytic nevi, contributes to maintaining nevus melanocytes in a growth-arrested premalignant state, and is commonly lost in melanoma. Using primary melanocytes isolated directly from freshly excised human nevi naturally expressing the common BRAF(V600E)-activating mutation, nevi progressing to melanoma, and normal melanocytes engineered to inducibly express BRAF(V600E), we show that BRAF activation results in reversible, TGFβ-dependent, p15 induction that halts proliferation. Furthermore, we engineer human skin grafts containing nevus-derived melanocytes to establish a new, architecturally faithful, in vivo melanoma model, and demonstrate that p15 loss promotes the transition from benign nevus to melanoma. SIGNIFICANCE Although BRAF(V600E) mutations cause melanocytes to initially proliferate into benign moles, mechanisms responsible for their eventual growth arrest are unknown. Using melanocytes from human moles, we show that BRAF activation leads to a CDKN2B induction that is critical for restraining BRAF oncogenic effects, and when lost, contributes to melanoma.
Collapse
Affiliation(s)
- Andrew S McNeal
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kevin Liu
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Vihang Nakhate
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christopher A Natale
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elizabeth K Duperret
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Brian C Capell
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tzvete Dentchev
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shelley L Berger
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - John T Seykora
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Todd W Ridky
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
29
|
Iron deficiency upregulates Egr1 expression. GENES AND NUTRITION 2015; 10:468. [PMID: 25981695 DOI: 10.1007/s12263-015-0468-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/08/2015] [Indexed: 01/21/2023]
Abstract
Iron-deficient anemia is a prevalent disease among humans. We searched for genes regulated by iron deficiency and its regulated mechanism. cDNA microarrays were performed using Hepa1c1c7 cells treated with 100 μM desferrioxamine (DFO), an iron chelator. Early growth response 1 (Egr1) was upregulated with at least 20-fold increase within 4 h and lasted for 24 h, which was confirmed by qRT-PCR. This activation was not seen by ferric ammonium citrate (FAC). DFO increased the transcriptional activity of Egr1-luc (-604 to +160) and serum response element (SRE)-luc reporters by 2.7-folds. In addition, cycloheximide lowered DFO-induced Egr1 mRNA levels. The upregulation of Egr1 by DFO was accompanied by sustained ERK signals along with phosphorylation of Elk-1. The ERK inhibitor (PD98059) prevented the DFO-induced Egr1 mRNAs. Overexpression of Elk-1 mutant (pElk-1S383A) decreased Egr1 reporter activity. DFO lowered reactive oxygen species (ROS) production and increased caspase 3/7 activity and cell death. DFO-induced iron deficiency upregulates Egr1 in part through transcriptional activation via ERK and Elk-1 signals, which may be important in the regulation of cell death in hepatoma cells. Our study demonstrated that iron depletion controlled the expression of Egr1, which might contribute to decisions about cellular fate in response to iron deficiency.
Collapse
|
30
|
Rodriguez-Corona U, Sobol M, Rodriguez-Zapata LC, Hozak P, Castano E. Fibrillarin from Archaea to human. Biol Cell 2015; 107:159-74. [PMID: 25772805 DOI: 10.1111/boc.201400077] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 03/05/2015] [Indexed: 12/19/2022]
Abstract
Fibrillarin is an essential protein that is well known as a molecular marker of transcriptionally active RNA polymerase I. Fibrillarin methyltransferase activity is the primary known source of methylation for more than 100 methylated sites involved in the first steps of preribosomal processing and required for structural ribosome stability. High expression levels of fibrillarin have been observed in several types of cancer cells, particularly when p53 levels are reduced, because p53 is a direct negative regulator of fibrillarin transcription. Here, we show fibrillarin domain conservation, structure and interacting molecules in different cellular processes as well as with several viral proteins during virus infection.
Collapse
Affiliation(s)
- Ulises Rodriguez-Corona
- Unidad de Bioquímica y Biología molecular de plantas, Centro de Investigación Científica de Yucatán, Colonia Chuburná de Hidalgo, Mérida, Yucatan, Mexico
| | - Margarita Sobol
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague 14220, Czech Republic
| | - Luis Carlos Rodriguez-Zapata
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Colonia Chuburná de Hidalgo, Mérida, Yucatan, Mexico
| | - Pavel Hozak
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague 14220, Czech Republic
| | - Enrique Castano
- Unidad de Bioquímica y Biología molecular de plantas, Centro de Investigación Científica de Yucatán, Colonia Chuburná de Hidalgo, Mérida, Yucatan, Mexico
| |
Collapse
|
31
|
Verduci L, Azzalin G, Gioiosa S, Carissimi C, Laudadio I, Fulci V, Macino G. microRNA-181a enhances cell proliferation in acute lymphoblastic leukemia by targeting EGR1. Leuk Res 2015; 39:479-85. [DOI: 10.1016/j.leukres.2015.01.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 12/19/2014] [Accepted: 01/20/2015] [Indexed: 01/10/2023]
|
32
|
Dhaouadi N, Li JY, Feugier P, Gustin MP, Dab H, Kacem K, Bricca G, Cerutti C. Computational identification of potential transcriptional regulators of TGF-ß1 in human atherosclerotic arteries. Genomics 2014; 103:357-70. [PMID: 24819318 DOI: 10.1016/j.ygeno.2014.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/17/2014] [Accepted: 05/03/2014] [Indexed: 11/17/2022]
Abstract
TGF-ß is protective in atherosclerosis but deleterious in metastatic cancers. Our aim was to determine whether TGF-ß transcriptional regulation is tissue-specific in early atherosclerosis. The computational methods included 5 steps: (i) from microarray data of human atherosclerotic carotid tissue, to identify the 10 best co-expressed genes with TGFB1 (TGFB1 gene cluster), (ii) to choose the 11 proximal promoters, (iii) to predict the TFBS shared by the promoters, (iv) to identify the common TFs co-expressed with the TGFB1 gene cluster, and (v) to compare the common TFs in the early lesions to those identified in advanced atherosclerotic lesions and in various cancers. Our results show that EGR1, SP1 and KLF6 could be responsible for TGFB1 basal expression, KLF6 appearing specific to atherosclerotic lesions. Among the TFs co-expressed with the gene cluster, transcriptional activators (SLC2A4RG, MAZ) and repressors (ZBTB7A, PATZ1, ZNF263) could be involved in the fine-tuning of TGFB1 expression in atherosclerosis.
Collapse
Affiliation(s)
- Nedra Dhaouadi
- EA 4173 Génomique Fonctionnelle de l'Hypertension Artérielle, Université de Lyon, Université Lyon 1, Hôpital Nord-Ouest Villefranche-sur-Saône, 8 avenue Rockefeller, F-69373 Lyon, France; Unité de Physiologie Intégrée, Laboratoire de Pathologies Vasculaires, Université de Carthage, Faculté des Sciences de Bizerte, Bizerte, Tunisia
| | - Jacques-Yuan Li
- EA 4173 Génomique Fonctionnelle de l'Hypertension Artérielle, Université de Lyon, Université Lyon 1, Hôpital Nord-Ouest Villefranche-sur-Saône, 8 avenue Rockefeller, F-69373 Lyon, France
| | - Patrick Feugier
- EA 4173 Génomique Fonctionnelle de l'Hypertension Artérielle, Université de Lyon, Université Lyon 1, Hôpital Nord-Ouest Villefranche-sur-Saône, 8 avenue Rockefeller, F-69373 Lyon, France
| | - Marie-Paule Gustin
- EA 4173 Génomique Fonctionnelle de l'Hypertension Artérielle, Université de Lyon, Université Lyon 1, Hôpital Nord-Ouest Villefranche-sur-Saône, 8 avenue Rockefeller, F-69373 Lyon, France
| | - Houcine Dab
- Unité de Physiologie Intégrée, Laboratoire de Pathologies Vasculaires, Université de Carthage, Faculté des Sciences de Bizerte, Bizerte, Tunisia
| | - Kamel Kacem
- Unité de Physiologie Intégrée, Laboratoire de Pathologies Vasculaires, Université de Carthage, Faculté des Sciences de Bizerte, Bizerte, Tunisia
| | - Giampiero Bricca
- EA 4173 Génomique Fonctionnelle de l'Hypertension Artérielle, Université de Lyon, Université Lyon 1, Hôpital Nord-Ouest Villefranche-sur-Saône, 8 avenue Rockefeller, F-69373 Lyon, France
| | - Catherine Cerutti
- EA 4173 Génomique Fonctionnelle de l'Hypertension Artérielle, Université de Lyon, Université Lyon 1, Hôpital Nord-Ouest Villefranche-sur-Saône, 8 avenue Rockefeller, F-69373 Lyon, France.
| |
Collapse
|
33
|
Kim SJ, Kim JM, Shim SH, Chang HI. Shikonin induces cell cycle arrest in human gastric cancer (AGS) by early growth response 1 (Egr1)-mediated p21 gene expression. JOURNAL OF ETHNOPHARMACOLOGY 2014; 151:1064-1071. [PMID: 24384380 DOI: 10.1016/j.jep.2013.11.055] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/22/2013] [Accepted: 11/29/2013] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lithospermum erythrorhizon, a naphthoquinone compound derived from a shikonin, has long been used as traditional Chinese medicine for treatment of various diseases, including cancer. To evaluate the cytotoxic effects of shikonin on AGS gastric cancer cells via induction of cell cycle arrest. MATERIALS AND METHODS We observed the effects of 12.5-100 ng/mL dosage of shikonin treatment on AGS cancer cell line with the incubation time of 6h. Cytotoxic effects were assessed by measuring the changes in the intracellular ROS, appearance of senescence phenotype, cell cycle progression, CDK and cyclins expression levels upon shikonin treatment. We also examined upon the activation of Egr1-mediated p21 expression, by siRNA transfection, Luciferase assay, and ChIP assay. RESULTS In this study, we found that shikonin inhibits cell proliferation by arresting cell cycle progression at the G2/M phase via modulation of p21 in AGS cells. Also, our results revealed that the p21 gene was transactivated by early growth response1 (Egr1) in response to the shikonin treatment. Transient Egr1 expression enhanced shikonin-induced p21 promoter activity, whereas the suppression of Egr1 expression by small interfering RNA attenuated the ability of shikonin to induce p21 promoter activity. CONCLUSION Our results suggested that the anti-proliferative activity of shikonin was due to its ability to induce cell cycle arrest via Egr1-p21 signaling pathway. Thus, the work stated here validates the traditional use of shikonin in the treatment of cancer.
Collapse
Affiliation(s)
- Sun-Joong Kim
- College of Life Sciences & Biotechnology, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea; Department of Molecular & Cellular Oncology, MD Anderson Cancer Center, 1515 Holcombe Blvd Unit 108, Houston, TX, USA
| | - Jee Min Kim
- College of Life Sciences & Biotechnology, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea
| | - So Hee Shim
- Department of Microbiology, College of Medicine, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea
| | - Hyo Ihl Chang
- College of Life Sciences & Biotechnology, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea.
| |
Collapse
|
34
|
Dietary obesity-induced Egr-1 in adipocytes facilitates energy storage via suppression of FOXC2. Sci Rep 2013; 3:1476. [PMID: 23502673 PMCID: PMC3600596 DOI: 10.1038/srep01476] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 02/28/2013] [Indexed: 01/27/2023] Open
Abstract
The molecular mechanism to regulate energy balance is not completely understood. Here we observed that Egr-1 expression in white adipose tissue (WAT) was highly correlated with dietary-induced obesity and insulin resistance both in mice and humans. Egr-1 null mice were protected from diet-induced obesity and obesity-associated pathologies such as fatty liver, insulin resistance, hyperlipidemia and hyperinsulinemia. This phenotype can be largely explained by the increase of energy expenditure in Egr-1 null mice. Characterization of these mice revealed that the expression of FOXC2 and its target genes were significantly elevated in white adipose tissues, leading to WAT energy expenditure instead of energy storage. Altogether, these studies suggest an important role for Egr-1, which, by repressing FOXC2 expression, promotes energy storage in WAT and favored the development of obesity under high energy intake.
Collapse
|
35
|
Egr-1 is a critical regulator of EGF-receptor-mediated expansion of subventricular zone neural stem cells and progenitors during recovery from hypoxia-hypoglycemia. ASN Neuro 2013; 5:183-93. [PMID: 23763269 PMCID: PMC3786424 DOI: 10.1042/an20120032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We recently established that the EGF-R (epidermal growth factor receptor) (EGF-R) is an essential regulator of the reactive expansion of SVZ (subventricular zone) NPs (neural precursors) that occurs during recovery from hypoxic-ischemic brain injury. The purpose of the current studies was to identify the conditions and the transcription factor (s) responsible for inducing the EGF-R. Here, we show that the increase in EGF-R expression and the more rapid division of the NPs can be recapitulated in in vitro by exposing SVZ NPs to hypoxia and hypoglycemia simultaneously, but not separately. The EGF-R promoter has binding sites for multiple transcription factors that includes the zinc finger transcription factor, Egr-1. We show that Egr-1 expression increases in NPs, but not astrocytes, following hypoxia and hypoglycemia where it accumulates in the nucleus. To determine whether Egr-1 is necessary for EGF-R expression, we used SiRNAs (small interfering RNA) specific for Egr-1 to decrease Egr-1 expression. Knocking-down Egr-1 decreased basal levels of EGF-R and it abolished the stress-induced increase in EGF-R expression. By contrast, HIF-1 accumulation did not contribute to EGF-R expression and FGF-2 only modestly induced EGF-R. These studies establish a new role for Egr-1 in regulating the expression of the mitogenic EGF-R. They also provide new information into mechanisms that promote NP expansion and provide insights into strategies for amplifying the numbers of stem cells for CNS (central nervous system) regeneration.
Collapse
|
36
|
Weng K, Hu H, Xu AG, Khaitovich P, Somel M. Mechanisms of dietary response in mice and primates: a role for EGR1 in regulating the reaction to human-specific nutritional content. PLoS One 2012; 7:e43915. [PMID: 22937124 PMCID: PMC3427207 DOI: 10.1371/journal.pone.0043915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 07/27/2012] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Humans have a widely different diet from other primate species, and are dependent on its high nutritional content. The molecular mechanisms responsible for adaptation to the human diet are currently unknown. Here, we addressed this question by investigating whether the gene expression response observed in mice fed human and chimpanzee diets involves the same regulatory mechanisms as expression differences between humans and chimpanzees. RESULTS Using mouse and primate transcriptomic data, we identified the transcription factor EGR1 (early growth response 1) as a putative regulator of diet-related differential gene expression between human and chimpanzee livers. Specifically, we predict that EGR1 regulates the response to the high caloric content of human diets. However, we also show that close to 90% of the dietary response to the primate diet found in mice, is not observed in primates. This might be explained by changes in tissue-specific gene expression between taxa. CONCLUSION Our results suggest that the gene expression response to the nutritionally rich human diet is partially mediated by the transcription factor EGR1. While this EGR1-driven response is conserved between mice and primates, the bulk of the mouse response to human and chimpanzee dietary differences is not observed in primates. This result highlights the rapid evolution of diet-related expression regulation and underscores potential limitations of mouse models in dietary studies.
Collapse
Affiliation(s)
- Kai Weng
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China
| | - Haiyang Hu
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China
| | - Augix Guohua Xu
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Philipp Khaitovich
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Mehmet Somel
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
| |
Collapse
|
37
|
Fan Q, Barathi VA, Cheng CY, Zhou X, Meguro A, Nakata I, Khor CC, Goh LK, Li YJ, Lim W, Ho CEH, Hawthorne F, Zheng Y, Chua D, Inoko H, Yamashiro K, Ohno-Matsui K, Matsuo K, Matsuda F, Vithana E, Seielstad M, Mizuki N, Beuerman RW, Tai ES, Yoshimura N, Aung T, Young TL, Wong TY, Teo YY, Saw SM. Genetic variants on chromosome 1q41 influence ocular axial length and high myopia. PLoS Genet 2012; 8:e1002753. [PMID: 22685421 PMCID: PMC3369958 DOI: 10.1371/journal.pgen.1002753] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 04/20/2012] [Indexed: 12/14/2022] Open
Abstract
As one of the leading causes of visual impairment and blindness, myopia poses a significant public health burden in Asia. The primary determinant of myopia is an elongated ocular axial length (AL). Here we report a meta-analysis of three genome-wide association studies on AL conducted in 1,860 Chinese adults, 929 Chinese children, and 2,155 Malay adults. We identified a genetic locus on chromosome 1q41 harboring the zinc-finger 11B pseudogene ZC3H11B showing genome-wide significant association with AL variation (rs4373767, β = -0.16 mm per minor allele, P(meta) =2.69 × 10(-10)). The minor C allele of rs4373767 was also observed to significantly associate with decreased susceptibility to high myopia (per-allele odds ratio (OR) =0.75, 95% CI: 0.68-0.84, P(meta) =4.38 × 10(-7)) in 1,118 highly myopic cases and 5,433 controls. ZC3H11B and two neighboring genes SLC30A10 and LYPLAL1 were expressed in the human neural retina, retinal pigment epithelium, and sclera. In an experimental myopia mouse model, we observed significant alterations to gene and protein expression in the retina and sclera of the unilateral induced myopic eyes for the murine genes ZC3H11A, SLC30A10, and LYPLAL1. This supports the likely role of genetic variants at chromosome 1q41 in influencing AL variation and high myopia.
Collapse
Affiliation(s)
- Qiao Fan
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Veluchamy A. Barathi
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, National University of Singapore, Singapore, Singapore
| | - Ching-Yu Cheng
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, National University of Singapore, Singapore, Singapore
| | - Xin Zhou
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Akira Meguro
- Department of Ophthalmology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Isao Nakata
- Department of Ophthalmology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Center for Genomic Medicine and Inserm U.852, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Chiea-Chuen Khor
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology, and Research, Singapore, Singapore
- Centre for Molecular Epidemiology, National University of Singapore, Singapore, Singapore
- Department of Pediatrics, National University of Singapore, Singapore, Singapore
| | - Liang-Kee Goh
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Duke–National University of Singapore Graduate Medical School, Singapore, Singapore
- Department of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Yi-Ju Li
- Department of Biostatistics and Bioinformatics, Duke University Medical School, Durham, North Carolina, United States of America
- Center for Human Genetics, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Wan'e Lim
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Candice E. H. Ho
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Felicia Hawthorne
- Center for Human Genetics, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Yingfeng Zheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Daniel Chua
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Hidetoshi Inoko
- Department of Molecular Life Science, Division of Molecular Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Kenji Yamashiro
- Department of Ophthalmology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kyoko Ohno-Matsui
- Department of Ophthalmology and Visual Science, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keitaro Matsuo
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine and Inserm U.852, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Eranga Vithana
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, National University of Singapore, Singapore, Singapore
| | - Mark Seielstad
- Institute for Human Genetics and Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Nobuhisa Mizuki
- Department of Ophthalmology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Roger W. Beuerman
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, National University of Singapore, Singapore, Singapore
- Duke–National University of Singapore Graduate Medical School, Singapore, Singapore
| | - E.-Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Department of Medicine, National University of Singapore, Singapore, Singapore
| | - Nagahisa Yoshimura
- Department of Ophthalmology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tin Aung
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, National University of Singapore, Singapore, Singapore
| | - Terri L. Young
- Duke–National University of Singapore Graduate Medical School, Singapore, Singapore
- Center for Human Genetics, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Tien-Yin Wong
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, National University of Singapore, Singapore, Singapore
- Centre for Eye Research Australia, University of Melbourne, Melbourne, Australia
| | - Yik-Ying Teo
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology, and Research, Singapore, Singapore
- Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, Singapore
- Department of Statistics and Applied Probability, National University of Singapore, Singapore, Singapore
- * E-mail: (S-MS); (Y-YT)
| | - Seang-Mei Saw
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, National University of Singapore, Singapore, Singapore
- Duke–National University of Singapore Graduate Medical School, Singapore, Singapore
- Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, Singapore
- * E-mail: (S-MS); (Y-YT)
| |
Collapse
|
38
|
Cheng JC, Chang HM, Leung PCK. Egr-1 mediates epidermal growth factor-induced downregulation of E-cadherin expression via Slug in human ovarian cancer cells. Oncogene 2012; 32:1041-9. [PMID: 22508482 DOI: 10.1038/onc.2012.127] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Loss of the cell adhesion protein E-cadherin increases the invasive capability of ovarian cancer cells. We have previously shown that epidermal growth factor (EGF) downregulates E-cadherin and induces ovarian cancer cell invasion through the H(2)O(2)/p38 MAPK-mediated upregulation of the E-cadherin transcriptional repressor Snail. However, the molecular mechanisms underlying the EGF-induced downregulation of E-cadherin are not fully understood. In the current study, we demonstrated that treatment of two ovarian cancer cell lines, SKOV3 and OVCAR5, with EGF induced the expression of the transcription factor Egr-1, and this induction was abolished by small interfering RNA (siRNA)-mediated depletion of the EGF receptor. EGF-induced Egr-1 expression required the activation of the ERK1/2 and PI3K/Akt signaling pathways and was unrelated to EGF-induced H(2)O(2) production and activation of the p38 MAPK pathway. Moreover, depletion of Egr-1 with siRNA abolished the EGF-induced downregulation of E-cadherin and increased cell invasion. Interestingly, siRNA depletion of Egr-1 attenuated the EGF-induced expression of Slug, but not that of Snail. Moreover, chromatin immunoprecipitation (ChIP) analysis showed that Slug is a target gene of Egr-1. These results provide evidence that Egr-1 is a mediator that is involved in the EGF-induced downregulation of E-cadherin and increased cell invasion. Our results also demonstrate that EGF activates two independent signaling pathways, which are the H(2)O(2)/p38 MAPK-mediated upregulation of Snail expression and the Egr-1-mediated upregulation of Slug expression. These two signaling pathways contribute to the EGF-induced downregulation of E-cadherin, which subsequently increases the invasive capability of ovarian cancer cells.
Collapse
Affiliation(s)
- J-C Cheng
- Department of Obstetrics and Gynecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
39
|
|
40
|
Abstract
The 5q- syndrome is a unique subtype of myelodysplastic syndromes typified by a relatively indolent course and responsiveness to lenalidomide. Here, we review the salient biologic features of this disease. Hemizygous deletion of a segment of chromosome 5q is believed to be the disease-initiating event. Recent molecular techniques have isolated the common deleted region and characterized key candidate genes contributing to the disease phenotype. Gene-specific RNA interference strategies revealed that haplo-insufficiency for the RPS14 gene, which encodes a ribosomal protein, is a critical effector of the p53-dependent erythroid hypoplasia and apoptotic loss of erythroid precursors. Disease-specific sensitivity to lenalidomide results from the drug's inhibitory effect on two haplodeficient phosphatases, PP2Acα and CDC25c, which are coregulators of the G(2)/M checkpoint. Hyperphosphorylation of MDM2, as a result of inhibition of PP2A phosphatase activity, stabilizes MDM2, permitting p53 degradation and transition to G(2) arrest and clonal suppression. With the emerging data elucidating the pathogenesis of the 5q- syndrome and the success of clinical trials, a cohesive story connecting the biology and pharmacology associated with this subtype of myelodysplastic syndromes has emerged.
Collapse
Affiliation(s)
- Eric Padron
- Hematologic Malignancy Division, H Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | | | | |
Collapse
|
41
|
Lu Y, Li T, Qureshi HY, Han D, Paudel HK. Early growth response 1 (Egr-1) regulates phosphorylation of microtubule-associated protein tau in mammalian brain. J Biol Chem 2011; 286:20569-81. [PMID: 21489990 DOI: 10.1074/jbc.m111.220962] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the normal brain, tau protein is phosphorylated at a number of proline- and non-proline directed sites, which reduce tau microtubule binding and thus regulate microtubule dynamics. In Alzheimer disease (AD), tau is abnormally hyperphosphorylated, leading to neurofibrillary tangle formation and microtubule disruption, suggesting a loss of regulatory mechanisms controlling tau phosphorylation. Early growth response 1 (Egr-1) is a transcription factor that is significantly up-regulated in AD brain. The pathological significance of this up-regulation is not known. In this study, we found that lentivirus-mediated overexpression of Egr-1 in rat brain hippocampus and primary neurons in culture activates proline-directed kinase Cdk5, inactivates PP1, promotes tau phosphorylation at both proline-directed Ser(396/404) and non-proline-directed Ser(262) sites, and destabilizes microtubules. Furthermore, in Egr-1(-/-) mouse brain, Cdk5 activity was decreased, PP1 activity was increased, and tau phosphorylation was reduced at both proline-directed and non-proline-directed sites. By using nerve growth factor-exposed PC12 cells, we determined that Egr-1 activates Cdk5 to promote phosphorylation of tau and inactivates PP1 via phosphorylation. When Cdk5 was inhibited, tau phosphorylation at both proline- and non-proline directed sites and PP1 phosphorylation were blocked, indicating that Egr-1 acts through Cdk5. By using an in vitro kinase assay and HEK-293 cells transfected with tau, PP1, and Cdk5, we found that Cdk5 phosphorylates Ser(396/404) directly. In addition, by phosphorylating and inactivating PP1, Cdk5 promotes tau phosphorylation at Ser(262) indirectly. Our results indicate that Egr-1 is an in vivo regulator of tau phosphorylation and suggest that in AD brain increased levels of Egr-1 aberrantly activate an Egr-1/Cdk5/PP1 pathway, leading to accumulation of hyperphosphorylated tau, thus destabilizing the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Yifan Lu
- The Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | | | | | | | | |
Collapse
|
42
|
Tang C, Shi X, Wang W, Zhou D, Tu J, Xie X, Ge Q, Xiao PF, Sun X, Lu Z. Global analysis of in vivo EGR1-binding sites in erythroleukemia cell using chromatin immunoprecipitation and massively parallel sequencing. Electrophoresis 2010; 31:2936-43. [PMID: 20690147 DOI: 10.1002/elps.201000094] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Early growth response gene 1 (EGR1) has been implicated in megakaryocyte differentiation induced by phorbol ester. But the molecule mechanism of EGR1 in this process has not been widely investigated. The identification of direct EGR1 target genes in a global scale is critical for our understanding of how EGR1 contributes to this process. In this study, we provide a global survey on the binding location of EGR1 in the K562 cells using chromatin immunoprecipitation and massively parallel sequencing. Over 14 000 highly confident in vivo EGR1 binding sites were identified in phorbol 12-myristate 13-acetate-treated K562 cells. More than 70% of these genomic sites associated with EGR1 binding were located around annotated gene regions. Molecular functional classification of 6138 putative EGR1 target genes showed that the transcription factor class (695 of 6138; 11%) is the largest significantly enriched one. The results showed that a high coverage of the genome and a high positive rate achieve were achieved. This whole genome study on the EGR1 targets may provide a better understanding of the EGR1 regulated genes and the downstream pathway in megakaryocyte differentiation.
Collapse
Affiliation(s)
- Chao Tang
- School of Basic Medical Sciences, Southeast University, Nanjing, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sarver AL, Li L, Subramanian S. MicroRNA miR-183 functions as an oncogene by targeting the transcription factor EGR1 and promoting tumor cell migration. Cancer Res 2010; 70:9570-80. [PMID: 21118966 DOI: 10.1158/0008-5472.can-10-2074] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The transcription factor EGR1 is a tumor suppressor gene that is downregulated in many cancer types. Clinically, loss of EGR1 translates to increased tumor transformation and subsequent patient morbidity and mortality. In synovial sarcoma, the SS18-SSX fusion protein represses EGR1 expression through a direct association with the EGR1 promoter. However, the mechanism through which EGR1 becomes downregulated in other tumor types is unclear. Here, we report that EGR1 is regulated by microRNA (miR)-183 in multiple tumor types including synovial sarcoma, rhabdomyosarcoma (RMS), and colon cancer. Using an integrative network analysis, we identified that miR-183 is significantly overexpressed in these tumor types as well as in corresponding tumor cell lines. Bioinformatic analyses suggested that miR-183 could target EGR1 mRNA and this specific interaction was validated in vitro. miR-183 knockdown in synovial sarcoma, RMS, and colon cancer cell lines revealed deregulation of a miRNA network composed of miR-183-EGR1-PTEN in these tumors. Integrated miRNA- and mRNA-based genomic analyses indicated that miR-183 is an important contributor to cell migration in these tumor types and this result was functionally validated to be occurring via an EGR1-based mechanism. In conclusion, our findings have significant implications in the mechanisms underlying EGR1 regulation in cancers. miR-183 has a potential oncogenic role through the regulation of 2 tumor suppressor genes, EGR1 and PTEN, and the deregulation of this fundamental miRNA regulatory network may be central to many tumor types.
Collapse
Affiliation(s)
- Aaron L Sarver
- Biostatistics and Bioinformatics, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | |
Collapse
|
44
|
Ortega Á, Gil Á, Sánchez-Pozo A. Exogenous nucleosides modulate expression and activity of transcription factors in Caco-2 cells. J Nutr Biochem 2010; 22:595-604. [PMID: 20970311 DOI: 10.1016/j.jnutbio.2010.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 05/02/2010] [Accepted: 05/18/2010] [Indexed: 01/15/2023]
Abstract
Dietary nucleotides (NTs) have an important role in cellular and humoral immunity, intestinal growth, differentiation and recovery from tissue damage. Nucleosides (NSs) are the best-absorbed chemical form of NTs in the intestinal epithelium. The aim of this study was to evaluate the effects of NSs on the activity and expression of multiple transcription factors (TFs) in Caco-2 cells, as a possible molecular mechanism by which NSs modulate gene expression in human intestinal cells. The effects of NS-supplemented media on human Caco-2 cell proliferation, viability, protein and RNA concentration were determined, and the activity and expression profiles of multiple TFs were analyzed by using an array-based technology. Exogenous NSs did not affect Caco-2 cell proliferation or viability but increased the protein content in cytoplasm and nucleus and the nuclear protein/RNA ratio. The addition of NSs to the media increased the expression and activity of the TFs CCAAT displacement protein (CUX1), v-ets avian erythroblastosis virus E26 oncogene homolog 1 (ETS1) and SMAD family member 2. In contrast, NS addition decreased the expression and activity of the general upstream stimulatory factor 1 (USF1), glucocorticoid receptor (NR3C1), NFKB and tumor protein p53. In conclusion, our results suggest that exogenous NSs affect the expression and activity of several TFs involved in cell growth, differentiation, apoptosis, immune response and inflammation.
Collapse
Affiliation(s)
- Ángeles Ortega
- Department of Molecular Biology and Biochemical Engineering, University Pablo de Olavide - Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 41092 Seville, Spain.
| | | | | |
Collapse
|
45
|
Friedle SA, Brautigam VM, Nikodemova M, Wright ML, Watters JJ. The P2X7-Egr pathway regulates nucleotide-dependent inflammatory gene expression in microglia. Glia 2010; 59:1-13. [PMID: 20878769 DOI: 10.1002/glia.21071] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 08/09/2010] [Indexed: 01/14/2023]
Abstract
Microglial hyperactivity contributes to neuronal damage resulting from CNS injury and disease. Therefore, a better understanding of endogenous microglial receptor systems that can be exploited to modulate their inflammatory functions is important if better, neuroprotective therapeutics are to be designed. Previous studies from our lab and others have demonstrated that the P2X7 purinergic receptor agonist BzATP attenuates microglial inflammatory mediator production stimulated by lipopolysaccharide (LPS), suggesting that purinergic receptors may be one such receptor system that can be used for manipulating microglial activation. However, although P2X7 receptor activation is well recognized to regulate processing and release of cytokines, little is known concerning its role in regulating the transcription of inflammatory genes, nor the molecular mechanisms underlying these transcriptional effects. In the present studies, we identify that the transcription factors early growth response (Egr)-1, -2 and -3 are downstream signaling targets of P2X7 receptors in microglia, and that their activation is sensitive to MEK and p38 mitogen-activated protein kinase (MAPK) inhibitors. Moreover, using RNAi, we demonstrate that Egr factors and P2X7 receptors are necessary for BzATP-mediated attenuation of iNOS, and stimulation of TNF-α and IL-6 gene expression. BzATP also attenuates neuronal death induced by LPS conditioned medium, and P2X7 receptors are required for this effect. These studies are the first to identify Egr factors as regulators of inflammatory gene expression following P2X7 receptor activation, and suggest that P2X7 receptors may utilize the MAPK-Egr pathway to exert differential effects on microglial inflammatory activities which are beneficial to neuron survival.
Collapse
Affiliation(s)
- S A Friedle
- Program in Cellular and Molecular Biology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
46
|
Global Egr1-miRNAs binding analysis in PMA-induced K562 cells using ChIP-Seq. J Biomed Biotechnol 2010; 2010. [PMID: 20811575 PMCID: PMC2929687 DOI: 10.1155/2010/867517] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 05/17/2010] [Accepted: 06/28/2010] [Indexed: 12/01/2022] Open
Abstract
Although much is known about microRNAs' regulation in gene expression and their contributions in cell fate, to date, globally lineage-(cell-) specific identification of the binding events between a transcription factor and its targeting microRNA genes is still waiting for elucidation. In this paper, we performed a ChIP-Seq experiment to find the targeting microRNA genes of a transcription factor, Egr1, in human erythroleukemia cell line K562. We found Egr1 binding sites near the promoters of 124 distinct microRNA genes, accounting for about 42% of the miRNAs which have high-confidence predicted promoters (294). We also found EGR1 bind to another 63 pre-miRNAs. We chose 12 of the 187 microRNAs with Egr1 binding sites to perform ChIP-PCR assays and the positive binding signal from ChIP-PCR confirmed the ChIP-Seq results. Our experiments provide the first global binding profile between Egr1 and its targeting microRNA genes in PMA-treated K562 cells, which may facilitate the understanding of pathways controlling microRNA biology in this specific cell line.
Collapse
|
47
|
EGR1 reactivation by histone deacetylase inhibitors promotes synovial sarcoma cell death through the PTEN tumor suppressor. Oncogene 2010; 29:4352-61. [PMID: 20514024 DOI: 10.1038/onc.2010.204] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Synovial sarcoma is a high-grade soft tissue malignancy, for which current cytotoxic chemotherapies provide limited benefit. Although histone deacetylase (HDAC) inhibitors are known to suppress synovial sarcoma in vitro and in vivo, the exact mechanism is not clear. In this study, we report a central role of the transcription factor, early growth response-1 (EGR1), in the regulation of HDAC inhibitor-induced apoptotic cell death in synovial sarcoma. The SS18-SSX oncoprotein, characteristic of synovial sarcoma, maintains EGR1 expression at low levels, whereas it is significantly increased after HDAC inhibitor treatment. On the contrary, EGR1 knockdown leads to a decrease in HDAC inhibitor-induced apoptosis. Moreover, we find that under these conditions phosphatase and tensin homolog deleted in chromosome 10 (PTEN) is upregulated and this occurs through direct binding of EGR1 to an element upstream of the PTEN promoter. Using a combination of gain- and loss-of-function approaches, we show that EGR1 modulation of PTEN contributes to HDAC inhibitor-induced apoptosis in synovial sarcoma. Finally, restoration of EGR1 or PTEN expression is sufficient to induce synovial sarcoma cell death. Taken together, our findings indicate that SS18-SSX-mediated attenuation of an EGR1-PTEN network regulates synovial sarcoma cell survival, and that HDAC inhibitor-mediated apoptosis operates at least in part through reactivation of this pathway.
Collapse
|
48
|
Kuo YS, Tang YB, Lu TY, Wu HC, Lin CT. IGFBP-6 plays a role as an oncosuppressor gene in NPC pathogenesis through regulating EGR-1 expression. J Pathol 2010; 222:299-309. [DOI: 10.1002/path.2735] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
49
|
Hecker RM, Amstutz RA, Wachtel M, Walter D, Niggli FK, Schäfer BW. p21 Downregulation is an important component of PAX3/FKHR oncogenicity and its reactivation by HDAC inhibitors enhances combination treatment. Oncogene 2010; 29:3942-52. [DOI: 10.1038/onc.2010.145] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Wang Y, Xue Y, Chen S, Wu Y, Pan J, Zhang J, Shen J. A novel t(5;11)(q31;p15) involving the NUP98 gene on 11p15 is associated with a loss of the EGR1 gene on 5q31 in a patient with acute myeloid leukemia. ACTA ACUST UNITED AC 2010; 199:9-14. [PMID: 20417862 DOI: 10.1016/j.cancergencyto.2010.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Revised: 01/07/2010] [Accepted: 01/12/2010] [Indexed: 11/26/2022]
Abstract
To date, at least 25 translocations involving the NUP98 gene and different partner genes have been reported in the literature. Here, we describe a novel reciprocal t(5;11)(q31;p15) involving NUP98, as revealed by conventional karyotypic analysis using R-banding technique and fluorescence in situ hybridization (FISH) using a BAC RP11-120E20 probe and whole chromosome paint probes for chromosomes 5 and 11 in a 77-year-old woman who was diagnosed as having de novo acute myeloid leukemia. The patient received two courses of intensive combined chemotherapy but did not reach complete remission. She eventually died from the progressive disease, surviving for only 1 month after diagnosis. FISH analysis using WCP5 together with BAC RP11-878F9 or RP11-155N22 demonstrated that the breakpoint of chromosome 5 is located on 5q31. In addition, the EGR1 gene was unexpectedly found to be lost in the FISH study using EGR1 (red)/D5S23, D5S721 (green) dual-color probe. We supposed that the fusion gene created by t(5;11)(q31;p15) consisting of the NUP98 and its partner gene, as well as the loss of the EGR1 gene, may play a cooperative role in leukemogenesis. The partner gene of NUP98 in t(5;11)(q31;p15) is unclear at this time. Further molecular study is required to identify this partner gene in our patient.
Collapse
Affiliation(s)
- Yong Wang
- The First Affiliated Hospital of Soochow University, Jiangsu Institutes of Hematology, Suzhou, PR China
| | | | | | | | | | | | | |
Collapse
|