1
|
Ochiai E, Takahashi Y, Inokuchi S, Sumiya A, Hasegawa M. cDNA Display Selection of Interacting Peptide Ligands of the Guanylate Cyclase C Receptor. J Pept Sci 2025; 31:e3663. [PMID: 39658807 DOI: 10.1002/psc.3663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024]
Abstract
Guanylate cyclase C (GC-C), a receptor expressed on the apical membrane of intestinal mucosal cells, is activated by heat-stable enterotoxin (STa) produced by enterotoxigenic Escherichia coli, as well as the endogenous ligands guanylin and uroguanylin. In this study, novel peptides that interact with GC-C were generated using the cDNA display method, and their binding affinity and biological activity were evaluated. While the linear peptide library did not yield peptides with sufficient affinity for GC-C, three cyclic peptides (GCC-P1, GCC-P2, and GCC-P3), each containing two cysteine residues within a 15-residue sequence, were obtained from a cyclic peptide library containing nine-residue random sequences. GC-P2 exhibited significant binding affinity in Biacore assays, although the affinity was lower than those reported for known ligands. Notably, GCC-P2 and GCC-P3 demonstrated enhanced cGMP activity when used in combination with linaclotide. However, the agonist activity of these peptides was minimal, indicating that further modifications may be necessary to develop them for clinical applications. This study successfully extracted consensus sequences of peptide motifs that bind to GC-C from a highly diverse nine-residue random sequence library, which provides fundamental insights for the discovery and optimization of novel GC-C ligands.
Collapse
Affiliation(s)
- Eri Ochiai
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Yuki Takahashi
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Shota Inokuchi
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Akie Sumiya
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Makoto Hasegawa
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| |
Collapse
|
2
|
Baybutt TR, Entezari AA, Caspi A, Staudt RE, Carlson RD, Waldman SA, Snook AE. CD8α Structural Domains Enhance GUCY2C CAR-T Cell Efficacy. Cancer Biol Ther 2024; 25:2398801. [PMID: 39315411 PMCID: PMC11423665 DOI: 10.1080/15384047.2024.2398801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
Despite success in treating some hematological malignancies, CAR-T cells have not yet produced similar outcomes in solid tumors due, in part, to the tumor microenvironment, poor persistence, and a paucity of suitable target antigens. Importantly, the impact of the CAR components on these challenges remains focused on the intracellular signaling and antigen-binding domains. In contrast, the flexible hinge and transmembrane domains have been commoditized and are the least studied components of the CAR. Here, we compared the hinge and transmembrane domains derived from either the CD8ɑ or CD28 molecule in identical GUCY2C-targeted third-generation designs for colorectal cancer. While these structural domains do not contribute to differences in antigen-independent contexts, such as CAR expression and differentiation and exhaustion phenotypes, the CD8ɑ structural domain CAR has a greater affinity for GUCY2C. This results in increased production of inflammatory cytokines and granzyme B, improved cytolytic effector function with low antigen-expressing tumor cells, and robust anti-tumor efficacy in vivo compared with the CD28 structural domain CAR. This suggests that CD8α structural domains should be considered in the design of all CARs for the generation of high-affinity CARs and optimally effective CAR-T cells in solid tumor immunotherapy.
Collapse
Affiliation(s)
- Trevor R. Baybutt
- Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ariana A. Entezari
- Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adi Caspi
- Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ross E. Staudt
- Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Robert D. Carlson
- Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Scott A. Waldman
- Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Comprehensive Cancer Center, Jefferson Health, Philadelphia, PA, USA
| | - Adam E. Snook
- Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Comprehensive Cancer Center, Jefferson Health, Philadelphia, PA, USA
- Department of Microbiology & Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
3
|
Qi C, Liu D, Liu C, Wei X, Ma M, Lu X, Tao M, Zhang C, Wang X, He T, Li J, Dai F, Ding Y, Shen L. Antigen-independent activation is critical for the durable antitumor effect of GUCY2C-targeted CAR-T cells. J Immunother Cancer 2024; 12:e009960. [PMID: 39366753 PMCID: PMC11459315 DOI: 10.1136/jitc-2024-009960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T cells face many obstacles in solid tumor therapy, including heterogeneous antigen expression and inefficient T cell persistence. Guanylyl cyclase C (GUCY2C) has been identified as a suitable tumor antigen for targeted therapy due to its intestinal-restricted expression pattern in normal tissues and steady overexpression in gastrointestinal tumors, especially colorectal cancer. An antigen-sensitive and long-lasting CAR-T cell targeting GUCY2C was investigated in this study. METHODS Using constructed tumor cell lines with various GUCY2C expression densities, we screened out an antigen-sensitive single chain variable fragment (scFv) that enabled CAR-T cells to efficiently eradicate the GUCY2C lowly expressed tumor cells. CAR-T cells with different compositions of the hinge, transmembrane and costimulatory domains were also constructed for selection of the long-lasting CAR-T format with durable antitumor efficacy in vitro and in tumor-bearing mice. The underlying mechanism was further investigated based on mutation of the hinge and transmembrane domains. RESULTS We found that the composition of the antigen-sensitive scFv, CD8α hinge, CD8α transmembrane, and CD28 costimulatory domains boosted CAR-T cells to rapidly kill tumors, maintain high expansion capacity, and long-term efficacy in various colorectal cancer models. The durable antitumor function was attributed to the optimal CAR tonic signaling that conferred CAR-T cells with autonomous activation, proliferation, survival and cytokine release in the absence of antigen stimulation. The tonic signaling was associated with the length and the cysteine residues in the CD8α hinge and transmembrane domains. CONCLUSIONS This study demonstrated a potent GUCY2C-targeted CAR-T cell for gastrointestinal tumor therapy and highlights the importance of adequate tonic signaling for effective CAR-T cell therapy against solid tumors.
Collapse
Affiliation(s)
- Changsong Qi
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Early Drug Development Centre, Peking University Cancer Hospital, Beijing, China
| | - Dongqun Liu
- Beijing Imunopharm Technology Co Ltd, Beijing, China
| | - Chang Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Early Drug Development Centre, Peking University Cancer Hospital, Beijing, China
| | - Xiaofei Wei
- Beijing Imunopharm Technology Co Ltd, Beijing, China
| | - Mingyang Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital, Beijing, China
| | - Xinan Lu
- Beijing Imunopharm Technology Co Ltd, Beijing, China
| | - Min Tao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital, Beijing, China
| | - Cheng Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital, Beijing, China
| | - Xicheng Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital, Beijing, China
| | - Ting He
- Beijing Imunopharm Technology Co Ltd, Beijing, China
| | - Jian Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital, Beijing, China
| | - Fei Dai
- Beijing Imunopharm Technology Co Ltd, Beijing, China
| | - Yanping Ding
- Beijing Imunopharm Technology Co Ltd, Beijing, China
| | - Lin Shen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital, Beijing, China
| |
Collapse
|
4
|
Hao JL, Li XY, Liu YT, Lang JX, Liu DJ, Zhang CD. Antibody-drug conjugates in gastric cancer: from molecular landscape to clinical strategies. Gastric Cancer 2024; 27:887-906. [PMID: 38963593 DOI: 10.1007/s10120-024-01529-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Antibody-drug conjugates (ADCs) represent a crucial component of targeted therapies in gastric cancer, potentially altering traditional treatment paradigms. Many ADCs have entered rigorous clinical trials based on biological theories and preclinical experiments. Modality trials have also been conducted in combination with monoclonal antibody therapies, chemotherapies, immunotherapies, and other treatments to enhance the efficacy of drug coordination effects. However, ADCs exhibit limitations in treating gastric cancer, including resistance triggered by their structure or other factors. Ongoing intensive researches and preclinical experiments are yielding improvements, while enhancements in drug development processes and concomitant diagnostics during the therapeutic period actively boost ADC efficacy. The optimal treatment strategy for gastric cancer patients is continually evolving. This review summarizes the clinical progress of ADCs in treating gastric cancer, analyzes the mechanisms of ADC combination therapies, discusses resistance patterns, and offers a promising outlook for future applications in ADC drug development and companion diagnostics.
Collapse
Affiliation(s)
- Jia-Lin Hao
- Central Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Xin-Yun Li
- Clinical Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Yu-Tong Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Ji-Xuan Lang
- Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Di-Jie Liu
- Central Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Chun-Dong Zhang
- Central Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.
- Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.
| |
Collapse
|
5
|
Ghazi B, El Ghanmi A, Kandoussi S, Ghouzlani A, Badou A. CAR T-cells for colorectal cancer immunotherapy: Ready to go? Front Immunol 2022; 13:978195. [PMID: 36458008 PMCID: PMC9705989 DOI: 10.3389/fimmu.2022.978195] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/14/2022] [Indexed: 08/12/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cells represent a new genetically engineered cell-based immunotherapy tool against cancer. The use of CAR T-cells has revolutionized the therapeutic approach for hematological malignancies. Unfortunately, there is a long way to go before this treatment can be developed for solid tumors, including colorectal cancer. CAR T-cell therapy for colorectal cancer is still in its early stages, and clinical data are scarce. Major limitations of this therapy include high toxicity, relapses, and an impermeable tumor microenvironment for CAR T-cell therapy in colorectal cancer. In this review, we summarize current knowledge, highlight challenges, and discuss perspectives regarding CAR T-cell therapy in colorectal cancer.
Collapse
Affiliation(s)
- Bouchra Ghazi
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Adil El Ghanmi
- Mohammed VI International University Hospital, Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Sarah Kandoussi
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Amina Ghouzlani
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Abdallah Badou
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| |
Collapse
|
6
|
Caspi A, Entezari AA, Crutcher M, Snook AE, Waldman SA. Guanylyl cyclase C as a diagnostic and therapeutic target in colorectal cancer. Per Med 2022; 19:457-472. [PMID: 35920071 DOI: 10.2217/pme-2022-0026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022]
Abstract
Colorectal cancer remains a major cause of mortality in the USA, despite advances in prevention and screening. Existing therapies focus primarily on generic treatment such as surgical intervention and chemotherapy, depending on disease severity. As personalized medicine and targeted molecular oncology continue to develop as promising treatment avenues, there has emerged a need for effective targets and biomarkers of colorectal cancer. The transmembrane receptor guanylyl cyclase C (GUCY2C) regulates intestinal homeostasis and has emerged as a tumor suppressor. Further, it is universally expressed in advanced metastatic colorectal tumors, as well as other cancer types that arise through intestinal metaplasia. In this context, GUCY2C satisfies many characteristics of a compelling target and biomarker for gastrointestinal malignancies.
Collapse
Affiliation(s)
- Adi Caspi
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ariana A Entezari
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Madison Crutcher
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Adam E Snook
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Scott A Waldman
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
7
|
Flickinger JC, Staudt RE, Singh J, Carlson RD, Barton JR, Baybutt TR, Rappaport JA, Zalewski A, Pattison A, Waldman SA, Snook AE. Chimeric adenoviral (Ad5.F35) and listeria vector prime-boost immunization is safe and effective for cancer immunotherapy. NPJ Vaccines 2022; 7:61. [PMID: 35739202 PMCID: PMC9226178 DOI: 10.1038/s41541-022-00483-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 05/16/2022] [Indexed: 12/15/2022] Open
Abstract
Strategies to augment immunity to self/neoantigens expressed by cancers are urgently needed to expand the proportion of patients benefiting from immunotherapy, particularly for GI cancers where only a fraction of patients respond to immunotherapies. However, current vaccine strategies are limited by poor immunogenicity, pre-existing vector-specific immunity, and vaccine-induced vector-specific immunity. Here, we examined a prime-boost strategy using a chimeric adenoviral vector (Ad5.F35) that resists pre-existing immunity followed by recombinant Listeria monocytogenes (Lm) to amplify immunity to the GI cancer antigen GUCY2C. This previously unexplored combination enhanced the quantity, avidity, polyfunctionality, and antitumor efficacy of GUCY2C-specific effector CD8+ T cells, without toxicity in any tissue, including GUCY2C-expressing intestines and brain. Importantly, this combination was partially resistant to pre-existing immunity to Ad5 which is endemic in human populations and vector-specific immunity did not limit the ability of multiple Lm administrations to repeatedly enhance GUCY2C-specific responses. Broadly, these findings suggest that cancer patient immunizations targeting self/neoantigens, as well as immunizations for difficult infectious diseases (HIV, malaria, etc), may be most successful using a combination of Ad5.F35-based priming, followed by Lm-based boosting. More specifically, Lm-GUCY2C may be utilized to amplify GUCY2C-specific immunity in patients receiving adenovirus-based GUCY2C vaccines currently in clinical trials to prevent or treat recurrent GI cancer.
Collapse
Affiliation(s)
- John C Flickinger
- Department of Pharmacology, Physiology, & Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Ross E Staudt
- Department of Pharmacology, Physiology, & Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Jagmohan Singh
- Department of Pharmacology, Physiology, & Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Robert D Carlson
- Department of Pharmacology, Physiology, & Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Joshua R Barton
- Department of Pharmacology, Physiology, & Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Trevor R Baybutt
- Department of Pharmacology, Physiology, & Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Jeffrey A Rappaport
- Department of Pharmacology, Physiology, & Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Alicja Zalewski
- Department of Pharmacology, Physiology, & Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
- Department of Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Amanda Pattison
- Department of Pharmacology, Physiology, & Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Scott A Waldman
- Department of Pharmacology, Physiology, & Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
- Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, PA, 19107, USA
| | - Adam E Snook
- Department of Pharmacology, Physiology, & Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
- Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, PA, 19107, USA.
| |
Collapse
|
8
|
Fan A, Wang B, Wang X, Nie Y, Fan D, Zhao X, Lu Y. Immunotherapy in colorectal cancer: current achievements and future perspective. Int J Biol Sci 2022. [PMID: 34671202 DOI: 10.7150/ijbs.64077.pmid:34671202;pmcid:pmc8495390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Following dramatic success in many types of advanced solid tumors, interest in immunotherapy for the treatment of colorectal cancer (CRC) is increasingly growing. Given the compelling long-term durable remission, two programmed cell death 1 (PD-1)-blocking antibodies, pembrolizumab and nivolumab (with or without Ipilimumab), have been approved for the treatment of patients with metastatic colorectal cancer (mCRC) that is mismatch-repair-deficient and microsatellite instability-high (dMMR-MSI-H). Practice-changing results of several randomized controlled trials to move immunotherapy into the first-line treatment for MSI-H metastasis cancer and earlier stage were reported successively in the past 2 years. Besides, new intriguing advances to expand the efficacy of immunotherapy to mCRC that is mismatch-repair-proficient and low microsatellite instability (pMMR-MSI-L) demonstrated the potential benefits for the vast majority of mCRC cases. Great attention is also paid to the advances in cancer vaccines and adoptive cell therapy (ACT). In this review, we summarize the above progresses, and also highlight the current predictive biomarkers of responsiveness in immunotherapy with broad clinical utility.
Collapse
Affiliation(s)
- Ahui Fan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Boda Wang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xin Wang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiaodi Zhao
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yuanyuan Lu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
9
|
Prasad H, Mathew JKK, Visweswariah SS. Receptor Guanylyl Cyclase C and Cyclic GMP in Health and Disease: Perspectives and Therapeutic Opportunities. Front Endocrinol (Lausanne) 2022; 13:911459. [PMID: 35846281 PMCID: PMC9276936 DOI: 10.3389/fendo.2022.911459] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Receptor Guanylyl Cyclase C (GC-C) was initially characterized as an important regulator of intestinal fluid and ion homeostasis. Recent findings demonstrate that GC-C is also causally linked to intestinal inflammation, dysbiosis, and tumorigenesis. These advances have been fueled in part by identifying mutations or changes in gene expression in GC-C or its ligands, that disrupt the delicate balance of intracellular cGMP levels and are associated with a wide range of clinical phenotypes. In this review, we highlight aspects of the current knowledge of the GC-C signaling pathway in homeostasis and disease, emphasizing recent advances in the field. The review summarizes extra gastrointestinal functions for GC-C signaling, such as appetite control, energy expenditure, visceral nociception, and behavioral processes. Recent research has expanded the homeostatic role of GC-C and implicated it in regulating the ion-microbiome-immune axis, which acts as a mechanistic driver in inflammatory bowel disease. The development of transgenic and knockout mouse models allowed for in-depth studies of GC-C and its relationship to whole-animal physiology. A deeper understanding of the various aspects of GC-C biology and their relationships with pathologies such as inflammatory bowel disease, colorectal cancer, and obesity can be leveraged to devise novel therapeutics.
Collapse
Affiliation(s)
- Hari Prasad
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | | | - Sandhya S. Visweswariah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India
- *Correspondence: Sandhya S. Visweswariah,
| |
Collapse
|
10
|
A β-Catenin-TCF-Sensitive Locus Control Region Mediates GUCY2C Ligand Loss in Colorectal Cancer. Cell Mol Gastroenterol Hepatol 2021; 13:1276-1296. [PMID: 34954189 PMCID: PMC9073733 DOI: 10.1016/j.jcmgh.2021.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Sporadic colorectal cancers arise from initiating mutations in APC, producing oncogenic β-catenin/TCF-dependent transcriptional reprogramming. Similarly, the tumor suppressor axis regulated by the intestinal epithelial receptor GUCY2C is among the earliest pathways silenced in tumorigenesis. Retention of the receptor, but loss of its paracrine ligands, guanylin and uroguanylin, is an evolutionarily conserved feature of colorectal tumors, arising in the earliest dysplastic lesions. Here, we examined a mechanism of GUCY2C ligand transcriptional silencing by β-catenin/TCF signaling. METHODS We performed RNA sequencing analysis of 4 unique conditional human colon cancer cell models of β-catenin/TCF signaling to map the core Wnt-transcriptional program. We then performed a comparative analysis of orthogonal approaches, including luciferase reporters, chromatin immunoprecipitation sequencing, CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats) knockout, and CRISPR epigenome editing, which were cross-validated with human tissue chromatin immunoprecipitation sequencing datasets, to identify functional gene enhancers mediating GUCY2C ligand loss. RESULTS RNA sequencing analyses reveal the GUCY2C hormones as 2 of the most sensitive targets of β-catenin/TCF signaling, reflecting transcriptional repression. The GUCY2C hormones share an insulated genomic locus containing a novel locus control region upstream of the guanylin promoter that mediates the coordinated silencing of both genes. Targeting this region with CRISPR epigenome editing reconstituted GUCY2C ligand expression, overcoming gene inactivation by mutant β-catenin/TCF signaling. CONCLUSIONS These studies reveal DNA elements regulating corepression of GUCY2C ligand transcription by β-catenin/TCF signaling, reflecting a novel pathophysiological step in tumorigenesis. They offer unique genomic strategies that could reestablish hormone expression in the context of canonical oncogenic mutations to reconstitute the GUCY2C axis and oppose transformation.
Collapse
|
11
|
Fan A, Wang B, Wang X, Nie Y, Fan D, Zhao X, Lu Y. Immunotherapy in colorectal cancer: current achievements and future perspective. Int J Biol Sci 2021; 17:3837-3849. [PMID: 34671202 PMCID: PMC8495390 DOI: 10.7150/ijbs.64077] [Citation(s) in RCA: 210] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023] Open
Abstract
Following dramatic success in many types of advanced solid tumors, interest in immunotherapy for the treatment of colorectal cancer (CRC) is increasingly growing. Given the compelling long-term durable remission, two programmed cell death 1 (PD-1)-blocking antibodies, pembrolizumab and nivolumab (with or without Ipilimumab), have been approved for the treatment of patients with metastatic colorectal cancer (mCRC) that is mismatch-repair-deficient and microsatellite instability-high (dMMR-MSI-H). Practice-changing results of several randomized controlled trials to move immunotherapy into the first-line treatment for MSI-H metastasis cancer and earlier stage were reported successively in the past 2 years. Besides, new intriguing advances to expand the efficacy of immunotherapy to mCRC that is mismatch-repair-proficient and low microsatellite instability (pMMR-MSI-L) demonstrated the potential benefits for the vast majority of mCRC cases. Great attention is also paid to the advances in cancer vaccines and adoptive cell therapy (ACT). In this review, we summarize the above progresses, and also highlight the current predictive biomarkers of responsiveness in immunotherapy with broad clinical utility.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaodi Zhao
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yuanyuan Lu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
12
|
Entezari AA, Snook AE, Waldman SA. Guanylyl cyclase 2C (GUCY2C) in gastrointestinal cancers: recent innovations and therapeutic potential. Expert Opin Ther Targets 2021; 25:335-346. [PMID: 34056991 DOI: 10.1080/14728222.2021.1937124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Gastrointestinal (GI) cancers account for the second leading cause of cancer-related deaths in the United States. Guanylyl cyclase C (GUCY2C) is an intestinal signaling system that regulates intestinal fluid and electrolyte secretion as well as intestinal homeostasis. In recent years, it has emerged as a promising target for chemoprevention and therapy for GI malignancies. AREAS COVERED The loss of GUCY2C signaling early in colorectal tumorigenesis suggests it could have a significant impact on tumor initiation. Recent studies highlight the importance of GUCY2C signaling in preventing colorectal tumorigenesis using agents such as linaclotide, plecanatide, and sildenafil. Furthermore, GUCY2C is a novel target for immunotherapy and a diagnostic marker for primary and metastatic diseases. EXPERT OPINION There is an unmet need for prevention and therapy in GI cancers. In that context, GUCY2C is a promising target for prevention, although the precise mechanisms by which GUCY2C signaling affects tumorigenesis remain to be defined. Furthermore, clinical trials are exploring its role as an immunotherapeutic target for vaccines to prevent metastatic disease. Indeed, GUCY2C is an emerging target across the disease continuum from chemoprevention, to diagnostic management, through the treatment and prevention of metastatic diseases.
Collapse
Affiliation(s)
- Ariana A Entezari
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
13
|
Wang C, Fakih M. Targeting MSS colorectal cancer with immunotherapy: are we turning the corner? Expert Opin Biol Ther 2021; 21:1347-1357. [PMID: 34030532 DOI: 10.1080/14712598.2021.1933940] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Immunotherapy with checkpoint inhibition has shown potent antitumor activity in patients with microsatellite instability (MSI) metastatic cancer. Microsatellite stable (MSS) colorectal cancer has long been considered resistant to immunotherapy. AREAS COVERED In this review, we provide an overview of current progress on strategies to overcome the resistance to immunotherapy in MSS colorectal cancer. EXPERT OPINION Emerging evidence suggest that combination of immune modulators such as regorafenib may improve the responsiveness of MSS colorectal cancer to checkpoint blockade. In addition, signs of clinical activity have also been observed in other combination strategies, such as the combination of checkpoint blockade with Stat3 inhibitor, or bispecific T-cell engagers. Nevertheless, predictive biomarkers that can identify patients who may benefit from immunotherapy are key for its implementation in clinical setting. Metastatic disease sites may predict for the response or resistance to checkpoint blockade, with liver metastases emerging as a strong predictive biomarker of lack of benefit from PD-1 targeting, even with combination therapies. Additional efforts are required to study the mechanism of resistance and to develop novel therapeutic strategies to overcome immune resistance. ABBREVIATIONS CEA: carcinoembryonic antigen; CR: complete response; CTLA-4: cytotoxic T-lymphocyte-associated protein 4; DCR: disease control rate; MSI-H: microsatellite instability-high; MSS: Microsatellite stable (MSS); OS: overall survival; PD-1: programmed cell death protein 1; PD-L1: programmed death-ligand receptor 1; PR: partial response; PFS: progression-free survival; SD: stable disease; TMB: tumor mutation burden; VEGFR: vascular endothelial growth factor receptor.
Collapse
Affiliation(s)
- Chongkai Wang
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Marwan Fakih
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| |
Collapse
|
14
|
Kopenhaver J, Crutcher M, Waldman SA, Snook AE. The shifting paradigm of colorectal cancer treatment: a look into emerging cancer stem cell-directed therapeutics to lead the charge toward complete remission. Expert Opin Biol Ther 2021; 21:1335-1345. [PMID: 33977849 DOI: 10.1080/14712598.2021.1929167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Colorectal cancer (CRC) is one of the most common forms of cancer worldwide and is the second leading cause of cancer-related death in the United States. Despite advances in early detection, ~25% of patients are late stage, and treated patients have <12% chance of survival after five years. Tumor relapse and metastasis are the main causes of patient death. Cancer stem cells (CSCs) are a rare population of cancer cells characterized by properties of self-renewal, chemo- and radio-resistance, tumorigenicity, and high plasticity. These qualities make CSCs particularly important for metastasic seeding, DNA-damage resistance, and tumor repopulating.Areas Covered: The following review article focuses on the role of CRC-SCs in tumor initiation, metastasis, drug resistance, and tumor relapse, as well as on potential therapeutic options for targeting CSCs.Expert Opinion: Current studies are underway to better isolate and discriminate CSCs from normal stem cells and to produce CSC-targeted therapeutics. The intestinal receptor, guanylate cyclase C (GUCY2C) could potentially provide a unique therapeutic target for both non-stem cells and CSCs alike in colorectal cancer through immunotherapies. Indeed, immunotherapies targeting CSCs have the potential to break the treatment-recurrence cycle in the management of advanced malignancies.
Collapse
Affiliation(s)
- Jessica Kopenhaver
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, United States
| | - Madison Crutcher
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, United States.,Department of Surgery, Thomas Jefferson University, Philadelphia, United States
| | - Scott A Waldman
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, United States
| | - Adam E Snook
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, United States
| |
Collapse
|
15
|
Jimenez-Luna C, González-Flores E, Ortiz R, Martínez-González LJ, Antúnez-Rodríguez A, Expósito-Ruiz M, Melguizo C, Caba O, Prados J. Circulating PTGS2, JAG1, GUCY2C and PGF mRNA in Peripheral Blood and Serum as Potential Biomarkers for Patients with Metastatic Colon Cancer. J Clin Med 2021; 10:2248. [PMID: 34067294 PMCID: PMC8196898 DOI: 10.3390/jcm10112248] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/24/2022] Open
Abstract
Genes involved in the angiogenic process have been proposed for the diagnosis and therapeutic response of metastatic colorectal cancer (CRC). This study aimed to investigate the value of PTGS2, JAG1, GUCY2C and PGF-circulating RNA as biomarkers in metastatic CRC. Blood cells and serum mRNA from 59 patients with metastatic CRC and 47 healthy controls were analyzed by digital PCR. The area under the receiver operating characteristic curve (AUC) was used to estimate the diagnostic value of each mRNA alone or mRNA combinations. A significant upregulation of the JAG1, PTGS2 and GUCY2C genes in blood cells and serum samples from metastatic CRC patients was detected. Circulating mRNA levels in the serum of all genes were significantly more abundant than in blood. The highest discrimination ability between metastatic CRC patients and healthy donors was obtained with PTGS2 (AUC of 0.984) and GUCY2C (AUC of 0.896) in serum samples. Biomarker combinations did not improve the discriminatory capacity of biomarkers separately. Analyzed biomarkers showed no correlation with overall survival or progression-free survival, but GUCY2C and GUCY2C/PTGS2 expression in serum correlated significantly with the response to antiangiogenic agents. These findings demonstrate that assessment of genes involved in the angiogenic process may be a potential non-invasive diagnostic tool for metastatic CRC and its response to antiangiogenic therapy.
Collapse
Affiliation(s)
- Cristina Jimenez-Luna
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (C.J.-L.); (R.O.); (O.C.); (J.P.)
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, 18012 Granada, Spain;
| | - Encarnación González-Flores
- Instituto de Investigación Biosanitaria ibs. Granada, 18012 Granada, Spain;
- Medical Oncology Service, Hospital Virgen de las Nieves, 18014 Granada, Spain
| | - Raul Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (C.J.-L.); (R.O.); (O.C.); (J.P.)
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, 18012 Granada, Spain;
| | - Luis J. Martínez-González
- GENyO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, 18016 Granada, Spain; (L.J.M.-G.); (A.A.-R.)
| | - Alba Antúnez-Rodríguez
- GENyO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, 18016 Granada, Spain; (L.J.M.-G.); (A.A.-R.)
| | - Manuela Expósito-Ruiz
- Unit of Biostatistics, Department of Statistics and Operations Research, School of Medicine, University of Granada, 18071 Granada, Spain;
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (C.J.-L.); (R.O.); (O.C.); (J.P.)
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, 18012 Granada, Spain;
| | - Octavio Caba
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (C.J.-L.); (R.O.); (O.C.); (J.P.)
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, 18012 Granada, Spain;
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (C.J.-L.); (R.O.); (O.C.); (J.P.)
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, 18012 Granada, Spain;
| |
Collapse
|
16
|
Lisby AN, Flickinger JC, Bashir B, Weindorfer M, Shelukar S, Crutcher M, Snook AE, Waldman SA. GUCY2C as a biomarker to target precision therapies for patients with colorectal cancer. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2021; 6:117-129. [PMID: 34027103 DOI: 10.1080/23808993.2021.1876518] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction Colorectal cancer (CRC) is one of the most-deadly malignancies worldwide. Current therapeutic regimens for CRC patients are relatively generic, based primarily on disease type and stage, with little variation. As the field of molecular oncology advances, so too must therapeutic management of CRC. Understanding molecular heterogeneity has led to a new-found promotion for precision therapy in CRC; underlining the diversity of molecularly targeted therapies based on individual tumor characteristics. Areas covered We review current approaches for the treatment of CRC and discuss the potential of precision therapy in advanced CRC. We highlight the utility of the intestinal protein guanylyl cyclase C (GUCY2C), as a multi-purpose biomarker and unique therapeutic target in CRC. Here, we summarize current GUCY2C-targeted approaches for treatment of CRC. Expert opinion The GUCY2C biomarker has multi-faceted utility in medicine. Developmental investment of GUCY2C as a diagnostic and therapeutic biomarker offers a variety of options taking the molecular characteristics of cancer into account. From GUCY2C-targeted therapies, namely cancer vaccines, CAR-T cells, and monoclonal antibodies, to GUCY2C agonists for chemoprevention in those who are at high risk for developing colorectal cancer, the utility of this protein provides many avenues for exploration with significance in the field of precision medicine.
Collapse
Affiliation(s)
- Amanda N Lisby
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - John C Flickinger
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Babar Bashir
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Megan Weindorfer
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Sanjna Shelukar
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Madison Crutcher
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| |
Collapse
|
17
|
Flickinger JC, Rappaport JA, Barton JR, Baybutt TR, Pattison AM, Snook AE, Waldman SA. Guanylyl cyclase C as a biomarker for immunotherapies for the treatment of gastrointestinal malignancies. Biomark Med 2021; 15:201-217. [PMID: 33470843 PMCID: PMC8293028 DOI: 10.2217/bmm-2020-0359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal cancers encompass a diverse class of tumors arising in the GI tract, including esophagus, stomach, pancreas and colorectum. Collectively, gastrointestinal cancers compose a high fraction of all cancer deaths, highlighting an unmet need for novel and effective therapies. In this context, the transmembrane receptor guanylyl cyclase C (GUCY2C) has emerged as an attractive target for the prevention, detection and treatment of many gastrointestinal tumors. GUCY2C is an intestinally-restricted protein implicated in tumorigenesis that is universally expressed by primary and metastatic colorectal tumors as well as ectopically expressed by esophageal, gastric and pancreatic cancers. This review summarizes the current state of GUCY2C-targeted modalities in the management of gastrointestinal malignancies, with special focus on colorectal cancer, the most incident gastrointestinal malignancy.
Collapse
Affiliation(s)
- John C Flickinger
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jeffrey A Rappaport
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Joshua R Barton
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Trevor R Baybutt
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Amanda M Pattison
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Adam E Snook
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Scott A Waldman
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
18
|
Jin KT, Chen B, Liu YY, Lan HUR, Yan JP. Monoclonal antibodies and chimeric antigen receptor (CAR) T cells in the treatment of colorectal cancer. Cancer Cell Int 2021; 21:83. [PMID: 33522929 PMCID: PMC7851946 DOI: 10.1186/s12935-021-01763-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer deaths worldwide. Besides common therapeutic approaches, such as surgery, chemotherapy, and radiotherapy, novel therapeutic approaches, including immunotherapy, have been an advent in CRC treatment. The immunotherapy approaches try to elicit patients` immune responses against tumor cells to eradicate the tumor. Monoclonal antibodies (mAbs) and chimeric antigen receptor (CAR) T cells are two branches of cancer immunotherapy. MAbs demonstrate the great ability to completely recognize cancer cell-surface receptors and blockade proliferative or inhibitory pathways. On the other hand, T cell activation by genetically engineered CAR receptor via the TCR/CD3 and costimulatory domains can induce potent immune responses against specific tumor-associated antigens (TAAs). Both of these approaches have beneficial anti-tumor effects on CRC. Herein, we review the different mAbs against various pathways and their applications in clinical trials, the different types of CAR-T cells, various specific CAR-T cells against TAAs, and their clinical use in CRC treatment.
Collapse
Affiliation(s)
- Ke-Tao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hosptial, Zhejiang University School of Medicine, Zhejiang Province, Jinhua, 312000, P.R. China
| | - Bo Chen
- Department of Neurology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Yu-Yao Liu
- Department of Colorectal Surgery, Affiliated Jinhua Hosptial, Zhejiang University School of Medicine, Zhejiang Province, Jinhua, 312000, P.R. China
| | - H Uan-Rong Lan
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hosptial, Zhejiang University School of Medicine, Zhejiang Province, Jinhua, 312000, P.R. China
| | - Jie-Ping Yan
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, 310014, China.
| |
Collapse
|
19
|
Lü P, Qiu S, Pan Y, Yu F, Chen K. Preclinical Chimeric Antibody Chimeric Antigen Receptor T Cell Progress in Digestive System Cancers. Cancer Biother Radiopharm 2021; 36:307-315. [PMID: 33481647 DOI: 10.1089/cbr.2020.4089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Digestive system cancers, including hepatocellular carcinoma, colorectal and gastric tumors, are characterized by high rates of incidence and mortality. Digestive cancers are difficult to diagnose during the early stages, and the side effects of chemotherapy are often severe and may outweigh the therapeutic benefits. Chimeric antibody chimeric antigen receptor T cell (CAR-T) therapy, a novel immunotherapy, has achieved excellent results for the treatment of hematological tumors. However, CAR-T treatment of solid tumors has struggled due to a lack of target specificity, a difficult tumor microenvironment, and T cell homing. Despite the challenges, CAR-T treatment of digestive cancers is progressing. Combining CAR-T with other targets and/or modifying the CAR may represent the most promising approaches for future treatment of digestive cancers.
Collapse
Affiliation(s)
- Peng Lü
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China.,School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Songlin Qiu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ye Pan
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Feng Yu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
20
|
Chen K, Huang B, Yan S, Xu S, Li K, Zhang K, Wang Q, Zhuang Z, Wei L, Zhang Y, Liu M, Lian H, Zhong C. Two machine learning methods identify a metastasis-related prognostic model that predicts overall survival in medulloblastoma patients. Aging (Albany NY) 2020; 12:21481-21503. [PMID: 33159021 PMCID: PMC7695392 DOI: 10.18632/aging.103923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/30/2020] [Indexed: 11/25/2022]
Abstract
Approximately 30% of medulloblastoma (MB) patients exhibit metastasis at initial diagnosis, which often leads to a poor prognosis. Here, by using univariate Cox regression analysis, two machine learning methods (Lasso-penalized Cox regression and random survival forest-variable hunting (RSF-VH)), and multivariate Cox regression analysis, we established two metastasis-related prognostic models, including the 47-mRNA-based model based on the Lasso method and the 21-mRNA-based model based on the RSF-VH method. In terms of the results of the receiver operating characteristic (ROC) curve analyses, we selected the 47-mRNA metastasis-associated model with the higher area under the curve (AUC). The 47-mRNA-based prognostic model could classify MB patients into two subgroups with different prognoses. The ROC analyses also suggested that the 47-mRNA metastasis-associated model may have a better predictive ability than MB subgroup. Multivariable Cox regression analysis demonstrated that the 47-mRNA-based model was independent of other clinical characteristics. In addition, a nomogram comprising the 47-mRNA-based model was built. The results of ROC analyses suggested that the nomogram had good discrimination ability. Our 47-mRNA metastasis-related prognostic model and nomogram might be an efficient and valuable tool for overall survival (OS) prediction and provide information for individualized treatment decisions in patients with MB.
Collapse
Affiliation(s)
- Kui Chen
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Bingsong Huang
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Shan Yan
- Huamu Community Health Service Center, Shanghai 201204, P.R. China
| | - Siyi Xu
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Keqin Li
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Kuiming Zhang
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Qi Wang
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Zhongwei Zhuang
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Liang Wei
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Yanfei Zhang
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Min Liu
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Hao Lian
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Chunlong Zhong
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| |
Collapse
|
21
|
Rappaport JA, Waldman SA. An update on guanylyl cyclase C in the diagnosis, chemoprevention, and treatment of colorectal cancer. Expert Rev Clin Pharmacol 2020; 13:1125-1137. [PMID: 32945718 DOI: 10.1080/17512433.2020.1826304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Colorectal cancer remains the second leading cause of cancer death in the United States, underscoring the need for novel therapies. Despite the successes of new targeted agents for other cancers, colorectal cancer suffers from a relative scarcity of actionable biomarkers. In this context, the intestinal receptor, guanylyl cyclase C (GUCY2C), has emerged as a promising target.Areas covered: GUCY2C regulates a tumor-suppressive signaling axis that is silenced through loss of its endogenous ligands at the earliest stages of tumorigenesis. A body of literature supports a cancer chemoprevention strategy involving reactivation of GUCY2C through FDA-approved cGMP-elevating agents such as linaclotide, plecanatide, and sildenafil. Its limited expression in extra-intestinal tissues, and retention on the surface of cancer cells, also positions GUCY2C as a target for immunotherapies to treat metastatic disease, including vaccines, chimeric antigen receptor T-cells, and antibody-drug conjugates. Likewise, GUCY2C mRNA identifies metastatic cells, enhancing colorectal cancer detection, and staging. Pre-clinical and clinical programs exploring these GUCY2C-targeting strategies will be reviewed.Expert opinion: Recent mechanistic insights characterizing GUCY2C ligand loss early in tumorigenesis, coupled with results from the first clinical trials testing GUCY2C-targeting strategies, continue to elevate GUCY2C as an ideal target for prevention, detection, and therapy.
Collapse
Affiliation(s)
- Jeffrey A Rappaport
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University , Philadelphia, PA, USA
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University , Philadelphia, PA, USA
| |
Collapse
|
22
|
Abu-Yousif AO, Cvet D, Gallery M, Bannerman BM, Ganno ML, Smith MD, Lai KC, Keating TA, Stringer B, Kamali A, Eng K, Koseoglu S, Zhu A, Xia CQ, Landen MS, Borland M, Robertson R, Bolleddula J, Qian MG, Fretland J, Veiby OP. Preclinical Antitumor Activity and Biodistribution of a Novel Anti-GCC Antibody-Drug Conjugate in Patient-derived Xenografts. Mol Cancer Ther 2020; 19:2079-2088. [PMID: 32788205 DOI: 10.1158/1535-7163.mct-19-1102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/04/2020] [Accepted: 07/30/2020] [Indexed: 12/24/2022]
Abstract
Guanylyl cyclase C (GCC) is a unique therapeutic target with expression restricted to the apical side of epithelial cell tight junctions thought to be only accessible by intravenously administered agents on malignant tissues where GCC expression is aberrant. In this study, we sought to evaluate the therapeutic potential of a second-generation investigational antibody-dug conjugate (ADC), TAK-164, comprised of a human anti-GCC mAb conjugated via a peptide linker to the highly cytotoxic DNA alkylator, DGN549. The in vitro binding, payload release, and in vitro activity of TAK-164 was characterized motivating in vivo evaluation. The efficacy of TAK-164 and the relationship to exposure, pharmacodynamic marker activation, and biodistribution was evaluated in xenograft models and primary human tumor xenograft (PHTX) models. We demonstrate TAK-164 selectively binds to, is internalized by, and has potent cytotoxic effects against GCC-expressing cells in vitro A single intravenous administration of TAK-164 (0.76 mg/kg) resulted in significant growth rate inhibition in PHTX models of metastatic colorectal cancer. Furthermore, imaging studies characterized TAK-164 uptake and activity and showed positive relationships between GCC expression and tumor uptake which correlated with antitumor activity. Collectively, our data suggest that TAK-164 is highly active in multiple GCC-positive tumors including those refractory to TAK-264, a GCC-targeted auristatin ADC. A strong relationship between uptake of 89Zr-labeled TAK-164, levels of GCC expression and, most notably, response to TAK-164 therapy in GCC-expressing xenografts and PHTX models. These data supported the clinical development of TAK-164 as part of a first-in-human clinical trial (NCT03449030).
Collapse
Affiliation(s)
- Adnan O Abu-Yousif
- Millennium Pharmaceuticals, Inc. (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachsetts.
| | - Donna Cvet
- Millennium Pharmaceuticals, Inc. (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachsetts
| | - Melissa Gallery
- Millennium Pharmaceuticals, Inc. (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachsetts
| | - Bret M Bannerman
- Millennium Pharmaceuticals, Inc. (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachsetts
| | - Michelle L Ganno
- Millennium Pharmaceuticals, Inc. (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachsetts
| | - Michael D Smith
- Millennium Pharmaceuticals, Inc. (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachsetts
| | | | | | - Bradley Stringer
- Millennium Pharmaceuticals, Inc. (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachsetts
| | - Afrand Kamali
- Millennium Pharmaceuticals, Inc. (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachsetts
| | - Kurt Eng
- Millennium Pharmaceuticals, Inc. (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachsetts
| | - Secil Koseoglu
- Millennium Pharmaceuticals, Inc. (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachsetts
| | | | - Cindy Q Xia
- Millennium Pharmaceuticals, Inc. (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachsetts
| | - Melissa Saylor Landen
- Millennium Pharmaceuticals, Inc. (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachsetts
| | - Maria Borland
- Millennium Pharmaceuticals, Inc. (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachsetts
| | | | - Jayaprakasam Bolleddula
- Millennium Pharmaceuticals, Inc. (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachsetts
| | - Mark G Qian
- Millennium Pharmaceuticals, Inc. (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachsetts
| | - Jennifer Fretland
- Millennium Pharmaceuticals, Inc. (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachsetts
| | - O Petter Veiby
- Millennium Pharmaceuticals, Inc. (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachsetts
| |
Collapse
|
23
|
Pattison AM, Barton JR, Entezari AA, Zalewski A, Rappaport JA, Snook AE, Waldman SA. Silencing the intestinal GUCY2C tumor suppressor axis requires APC loss of heterozygosity. Cancer Biol Ther 2020; 21:799-805. [PMID: 32594830 PMCID: PMC7515455 DOI: 10.1080/15384047.2020.1779005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Most sporadic colorectal cancer reflects acquired mutations in the adenomatous polyposis coli (APC) tumor suppressor gene, while germline heterozygosity for mutant APC produces the autosomal dominant disorder Familial Adenomatous Polyposis (FAP) with a predisposition to colorectal cancer. In these syndromes, loss of heterozygosity (LOH) silences the remaining normal allele of APC, through an unknown mechanism, as the initiating step in transformation. Guanylyl cyclase C receptor (GUCY2C) and its hormones, uroguanylin and guanylin, have emerged as a key signaling axis opposing mutations driving intestinal tumorigenesis. Indeed, uroguanylin and guanylin are among the most commonly repressed genes in colorectal cancer. Here, we explored the role of APC heterozygosity in mechanisms repressing hormone expression which could contribute to LOH. In genetic mouse models of APC loss, uroguanylin and guanylin expression were quantified following monoallelic or biallelic deletion of the Apc gene. Induced biallelic loss of APC repressed uroguanylin and guanylin expression. However, monoallelic APC loss in Apcmin/+ mice did not alter hormone expression. Similarly, in FAP patients, normal colonic mucosa (monoallelic APC loss) expressed guanylin while adenomas and an invasive carcinoma (biallelic APC loss) were devoid of hormone expression. Thus, uroguanylin and guanylin expression by normal intestinal epithelial cells persists in the context of APC heterozygosity and is lost only after tumor initiation by APC LOH. These observations reveal a role for loss of the hormones silencing the GUCY2C axis in tumor progression following biallelic APC loss, but not in mechanisms creating the genetic vulnerability in epithelial cells underlying APC LOH initiating tumorigenesis.
Collapse
Affiliation(s)
- Amanda M Pattison
- Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia, PA, USA
| | - Joshua R Barton
- Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia, PA, USA
| | - Ariana A Entezari
- Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia, PA, USA
| | - Alicja Zalewski
- Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia, PA, USA
| | - Jeff A Rappaport
- Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia, PA, USA
| | - Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia, PA, USA
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia, PA, USA
| |
Collapse
|
24
|
Blomain ES, Rappaport JA, Pattison AM, Bashir B, Caparosa E, Stem J, Snook AE, Waldman SA. APC-β-catenin-TCF signaling silences the intestinal guanylin-GUCY2C tumor suppressor axis. Cancer Biol Ther 2020; 21:441-451. [PMID: 32037952 PMCID: PMC7515458 DOI: 10.1080/15384047.2020.1721262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sporadic colorectal cancer initiates with mutations in APC or its degradation target β-catenin, producing TCF-dependent nuclear transcription driving tumorigenesis. The intestinal epithelial receptor, GUCY2C, with its canonical paracrine hormone guanylin, regulates homeostatic signaling along the crypt-surface axis opposing tumorigenesis. Here, we reveal that expression of the guanylin hormone, but not the GUCY2C receptor, is lost at the earliest stages of transformation in APC-dependent tumors in humans and mice. Hormone loss, which silences GUCY2C signaling, reflects transcriptional repression mediated by mutant APC-β-catenin-TCF programs in the nucleus. These studies support a pathophysiological model of intestinal tumorigenesis in which mutant APC-β-catenin-TCF transcriptional regulation eliminates guanylin expression at tumor initiation, silencing GUCY2C signaling which, in turn, dysregulates intestinal homeostatic mechanisms contributing to tumor progression. They expand the mechanistic paradigm for colorectal cancer from a disease of irreversible mutations in APC and β-catenin to one of guanylin hormone loss whose replacement, and reconstitution of GUCY2C signaling, could prevent tumorigenesis
Collapse
Affiliation(s)
- Erik S Blomain
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jeffrey A Rappaport
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| | - Amanda M Pattison
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| | - Babar Bashir
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ellen Caparosa
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jonathan Stem
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
25
|
Therapeutic opportunities in colon cancer: Focus on phosphodiesterase inhibitors. Life Sci 2019; 230:150-161. [PMID: 31125564 DOI: 10.1016/j.lfs.2019.05.043] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 02/08/2023]
Abstract
Despite novel technologies, colon cancer remains undiagnosed and 25% of patients are diagnosed with metastatic colon cancer. Resistant to chemotherapeutic agents is one of the major problems associated with treating colon cancer which creates the need to develop novel agents targeting towards newer targets. A phosphodiesterase is a group of isoenzyme, which, hydrolyze cyclic nucleotides and thereby lowers intracellular levels of cAMP and cGMP leading to tumorigenic effects. Many in vitro and in vivo studies have confirmed increased PDE expression in different types of cancers including colon cancer. cAMP-specific PDE inhibitors increase intracellular cAMP that leads to activation of effector molecules-cAMP-dependent protein kinase A, exchange protein activated by cAMP and cAMP gated ion channels. These molecules regulate cellular responses and exert its anticancer role through different mechanisms including apoptosis, inhibition of angiogenesis, upregulating tumor suppressor genes and suppressing oncogenes. On the other hand, cGMP specific PDE inhibitors exhibit anticancer effects through cGMP dependent protein kinase and cGMP dependent cation channels. Elevation in cGMP works through activation of caspases, suppression of Wnt/b-catenin pathway and TCF transcription leading to inhibition of CDK and survivin. These studies point out towards the fact that PDE inhibition is associated with anti-proliferative, anti-apoptotic and anti-angiogenic pathways involved in its anticancer effects in colon cancer. Thus, inhibition of PDE enzymes can be used as a novel approach to treat colon cancer. This review will focus on cAMP and cGMP signaling pathways leading to tumorigenesis and the use of PDE inhibitors in colon cancer.
Collapse
|
26
|
Snook AE, Baybutt TR, Xiang B, Abraham TS, Flickinger JC, Hyslop T, Zhan T, Kraft WK, Sato T, Waldman SA. Split tolerance permits safe Ad5-GUCY2C-PADRE vaccine-induced T-cell responses in colon cancer patients. J Immunother Cancer 2019; 7:104. [PMID: 31010434 PMCID: PMC6477737 DOI: 10.1186/s40425-019-0576-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/22/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The colorectal cancer antigen GUCY2C exhibits unique split tolerance, evoking antigen-specific CD8+, but not CD4+, T-cell responses that deliver anti-tumor immunity without autoimmunity in mice. Here, the cancer vaccine Ad5-GUCY2C-PADRE was evaluated in a first-in-man phase I clinical study of patients with early-stage colorectal cancer to assess its safety and immunological efficacy. METHODS Ten patients with surgically-resected stage I or stage II (pN0) colon cancer received a single intramuscular injection of 1011 viral particles (vp) of Ad5-GUCY2C-PADRE. Safety assessment and immunomonitoring were carried out for 6 months following immunization. This trial employed continual monitoring of both efficacy and toxicity of subjects as joint primary outcomes. RESULTS All patients receiving Ad5-GUCY2C-PADRE completed the study and none developed adverse events greater than grade 1. Antibody responses to GUCY2C were detected in 10% of patients, while 40% exhibited GUCY2C-specific T-cell responses. GUCY2C-specific responses were exclusively CD8+ cytotoxic T cells, mimicking pre-clinical studies in mice in which GUCY2C-specific CD4+ T cells are eliminated by self-tolerance, while CD8+ T cells escape tolerance and mediate antitumor immunity. Moreover, pre-existing neutralizing antibodies (NAbs) to the Ad5 vector were associated with poor vaccine-induced responses, suggesting that Ad5 NAbs oppose GUCY2C immune responses to the vaccine in patients and supported by mouse studies. CONCLUSIONS Split tolerance to GUCY2C in cancer patients can be exploited to safely generate antigen-specific cytotoxic CD8+, but not autoimmune CD4+, T cells by Ad5-GUCY2C-PADRE in the absence of pre-existing NAbs to the viral vector. TRIAL REGISTRATION This trial (NCT01972737) was registered at ClinicalTrials.gov on October 30th, 2013. https://clinicaltrials.gov/ct2/show/NCT01972737.
Collapse
Affiliation(s)
- Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, JAH 368, Philadelphia, PA, 19107, USA.
| | - Trevor R Baybutt
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, JAH 368, Philadelphia, PA, 19107, USA
| | - Bo Xiang
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, JAH 368, Philadelphia, PA, 19107, USA
| | - Tara S Abraham
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, JAH 368, Philadelphia, PA, 19107, USA
| | - John C Flickinger
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, JAH 368, Philadelphia, PA, 19107, USA
| | - Terry Hyslop
- Department of Biostatistics and Bioinformatics, Duke Cancer Institute, Duke University, Durham, NC, 27710, USA
| | - Tingting Zhan
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, JAH 368, Philadelphia, PA, 19107, USA
| | - Walter K Kraft
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, JAH 368, Philadelphia, PA, 19107, USA
| | - Takami Sato
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, JAH 368, Philadelphia, PA, 19107, USA
| |
Collapse
|
27
|
Leal AD, Krishnamurthy A, Head L, Messersmith WA. Antibody drug conjugates under investigation in phase I and phase II clinical trials for gastrointestinal cancer. Expert Opin Investig Drugs 2018; 27:901-916. [PMID: 30359534 DOI: 10.1080/13543784.2018.1541085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Antibody drug conjugates (ADCs) represent a developing class of anticancer therapeutics which are designed to selectively deliver a cytotoxic payload to tumors, while limiting systemic toxicity to healthy tissues. There are several ADCs which are currently in various stages of clinical development for the treatment of gastrointestinal malignancies. AREAS COVERED We discuss the biologic rationale and review the clinical experience with ADCs in the treatment of gastrointestinal malignancies, summarizing the pre-clinical and phase I/II clinical trial data that have been completed or are ongoing. EXPERT OPINION While there have been significant advances in the development of ADCs since they were first introduced, several challenges remain. These challenges include (i) the selection of an ideal antigen target which is tumor specific and internalized upon binding, (ii) selection of an antibody which has high affinity for its antigen target and low immunogenicity, (iii) selection of a potent payload which is cytotoxic at sub-nanomolar concentrations, and (iv) optimal design of a linker to confer ADC stability with limited off-site toxicity. Efforts are ongoing to address these issues and innovate the ADC technology to improve the safety and efficacy of these agents.
Collapse
Affiliation(s)
- Alexis D Leal
- a Division of Medical Oncology , University of Colorado , Aurora , CO , USA
| | | | - Lia Head
- b Department of Internal Medicine , University of Colorado , Aurora , CO , USA
| | | |
Collapse
|
28
|
Fan J, Shang D, Han B, Song J, Chen H, Yang JM. Adoptive Cell Transfer: Is it a Promising Immunotherapy for Colorectal Cancer? Am J Cancer Res 2018; 8:5784-5800. [PMID: 30555581 PMCID: PMC6276301 DOI: 10.7150/thno.29035] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/04/2018] [Indexed: 12/12/2022] Open
Abstract
The last decade has witnessed significant advances in the adoptive cell transfer (ACT) technique, which has been appreciated as one of the most promising treatments for patients with cancer. Utilization of ACT can enhance the function of the immune system or improve the specificity and persistence of transferred cells. Various immune cells including T lymphocytes, natural killer cells, dendritic cells, and even stem cells can be used in the ACT despite their different functional mechanisms. Colorectal cancer (CRC) is among the most common malignancies and causes millions of deaths worldwide every year. In this review, we discuss the status and perspective of the ACT in the treatment of CRC.
Collapse
|
29
|
Ghai A, Singh B, Li M, Daniels TA, Coelho R, Orcutt K, Watkins GL, Norenberg JP, Cvet D, Schultz MK. Optimizing the radiosynthesis of [ 68Ga]DOTA-MLN6907 peptide containing three disulfide cyclization bonds - a GCC specific chelate for clinical radiopharmaceuticals. Appl Radiat Isot 2018; 140:333-341. [PMID: 30138815 DOI: 10.1016/j.apradiso.2018.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/17/2018] [Accepted: 08/08/2018] [Indexed: 10/28/2022]
Abstract
In the present study, the effect of radiolabeling conditions on radiolabeling efficiency and achievable specific activity of a DOTA-conjugated highly-lipophilic peptide containing three disulfide cyclization bonds was examined. The peptide is designed to bind specifically (with high affinity) to cell-surface receptor guanylyl cyclase C (GCC), which is universally expressed by colorectal cancer cells. The effect of systematic variation of chemical parameters pH, mass of peptide, acetate buffer concentration (ionic strength), and inclusion of ethanol in the radiolabeling reaction vessel on achievable specific activity and labeling efficiency was examined. In addition, a unique approach to acetone-based elution of 68Ga from an initial cation-exchange pre-concentration column is introduced, which improved radiochemical yield and radiochemical purity. For the evaluation of the acetone-based method, two different post-radiolabeling reverse-phase (C18) approaches to purify the final radiolabeled peptide were tested. These results revealed the potential for peptide degradation via the cleavage of disulfide cyclization bonds to form free thiols when using one of these C18 cartridges. The final optimized procedure enabled radiolabeling efficiency of greater than 99% and specific activity greater than 35 MBq/nmole in less than 30 min. The optimized parameters were amenable to the use of an automated 68Ge/68Ga generator and fluid-handling system for clinical production of the GCC receptor-specific [68Ga]DOTA-MLN6907 peptide. The chemical characteristics of individual peptides govern the most appropriate radiolabeling conditions for the preparation of radiopharmaceuticals.
Collapse
Affiliation(s)
- Anchal Ghai
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education & Research, Sector 12, Chandigarh 160012, India
| | - Baljinder Singh
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education & Research, Sector 12, Chandigarh 160012, India
| | - Mengshi Li
- Department of Radiology, The University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA; Departments of Radiation Oncology (Free Radical and Radiation Biology Program), Pediatrics, and Chemistry, and the Interdisciplinary Program in Human Toxicology, The University of Iowa, 500 N Road, ML B180, FRRB, Iowa City, IA, USA
| | - Tamara A Daniels
- Radiopharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | | | - Kelly Orcutt
- InviCRO, LLC, 27 Drydock Avenue, Boston, MA 02210 , USA
| | - G Leonard Watkins
- Department of Radiology, The University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Jeffrey P Norenberg
- Radiopharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Donna Cvet
- Takeda Pharmaceuticals, 40 Landsdowne Street, Cambridge, MA 02139, USA
| | - Michael K Schultz
- Department of Radiology, The University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA; Departments of Radiation Oncology (Free Radical and Radiation Biology Program), Pediatrics, and Chemistry, and the Interdisciplinary Program in Human Toxicology, The University of Iowa, 500 N Road, ML B180, FRRB, Iowa City, IA, USA.
| |
Collapse
|
30
|
Rappaport JA, Waldman SA. The Guanylate Cyclase C-cGMP Signaling Axis Opposes Intestinal Epithelial Injury and Neoplasia. Front Oncol 2018; 8:299. [PMID: 30131940 PMCID: PMC6091576 DOI: 10.3389/fonc.2018.00299] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/17/2018] [Indexed: 12/12/2022] Open
Abstract
Guanylate cyclase C (GUCY2C) is a transmembrane receptor expressed on the luminal aspect of the intestinal epithelium. Its ligands include bacterial heat-stable enterotoxins responsible for traveler's diarrhea, the endogenous peptide hormones uroguanylin and guanylin, and the synthetic agents, linaclotide, plecanatide, and dolcanatide. Ligand-activated GUCY2C catalyzes the synthesis of intracellular cyclic GMP (cGMP), initiating signaling cascades underlying homeostasis of the intestinal epithelium. Mouse models of GUCY2C ablation, and recently, human populations harboring GUCY2C mutations, have revealed the diverse contributions of this signaling axis to epithelial health, including regulating fluid secretion, microbiome composition, intestinal barrier integrity, epithelial renewal, cell cycle progression, responses to DNA damage, epithelial-mesenchymal cross-talk, cell migration, and cellular metabolic status. Because of these wide-ranging roles, dysregulation of the GUCY2C-cGMP signaling axis has been implicated in the pathogenesis of bowel transit disorders, inflammatory bowel disease, and colorectal cancer. This review explores the current understanding of cGMP signaling in the intestinal epithelium and mechanisms by which it opposes intestinal injury. Particular focus will be applied to its emerging role in tumor suppression. In colorectal tumors, endogenous GUCY2C ligand expression is lost by a yet undefined mechanism conserved in mice and humans. Further, reconstitution of GUCY2C signaling through genetic or oral ligand replacement opposes tumorigenesis in mice. Taken together, these findings suggest an intriguing hypothesis that colorectal cancer arises in a microenvironment of functional GUCY2C inactivation, which can be repaired by oral ligand replacement. Hence, the GUCY2C signaling axis represents a novel therapeutic target for preventing colorectal cancer.
Collapse
Affiliation(s)
- Jeffrey A Rappaport
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, United States
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
31
|
Townsend MH, Shrestha G, Robison RA, O’Neill KL. The expansion of targetable biomarkers for CAR T cell therapy. J Exp Clin Cancer Res 2018; 37:163. [PMID: 30031396 PMCID: PMC6054736 DOI: 10.1186/s13046-018-0817-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022] Open
Abstract
Biomarkers are an integral part of cancer management due to their use in risk assessment, screening, differential diagnosis, prognosis, prediction of response to treatment, and monitoring progress of disease. Recently, with the advent of Chimeric Antigen Receptor (CAR) T cell therapy, a new category of targetable biomarkers has emerged. These biomarkers are associated with the surface of malignant cells and serve as targets for directing cytotoxic T cells. The first biomarker target used for CAR T cell therapy was CD19, a B cell marker expressed highly on malignant B cells. With the success of CD19, the last decade has shown an explosion of new targetable biomarkers on a range of human malignancies. These surface targets have made it possible to provide directed, specific therapy that reduces healthy tissue destruction and preserves the patient's immune system during treatment. As of May 2018, there are over 100 clinical trials underway that target over 25 different surface biomarkers in almost every human tissue. This expansion has led to not only promising results in terms of patient outcome, but has also led to an exponential growth in the investigation of new biomarkers that could potentially be utilized in CAR T cell therapy for treating patients. In this review, we discuss the biomarkers currently under investigation and point out several promising biomarkers in the preclinical stage of development that may be useful as targets.
Collapse
Affiliation(s)
- Michelle H. Townsend
- Department of Microbiology and Molecular Biology, Brigham Young University, 3142 LSB, Provo, UT 84602 USA
| | - Gajendra Shrestha
- Department of Microbiology and Molecular Biology, Brigham Young University, 3142 LSB, Provo, UT 84602 USA
- Thunder Biotech, Highland, UT USA
| | - Richard A. Robison
- Department of Microbiology and Molecular Biology, Brigham Young University, 3142 LSB, Provo, UT 84602 USA
| | - Kim L. O’Neill
- Department of Microbiology and Molecular Biology, Brigham Young University, 3142 LSB, Provo, UT 84602 USA
| |
Collapse
|
32
|
Expression of guanylyl cyclase C in tissue samples and the circulation of rectal cancer patients. Oncotarget 2018; 8:38841-38849. [PMID: 28418917 PMCID: PMC5503576 DOI: 10.18632/oncotarget.16406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 02/17/2017] [Indexed: 01/09/2023] Open
Abstract
Guanylyl cyclase C (GCC) is a transmembrane surface receptor restricted to intestinal epithelial cells, from the duodenum to the rectum. We compared GCC expression in tumors and normal rectal tissues, and investigated the relation between GCC expression and metastasis and long-term survival of rectal cancer patients. Based on the UICC classification, 42 rectal cancer patients in this study were classified as stage I, 48 patients as stage II, and 90 patients as stage III. Overexpression of GCC was observed in 80 rectal tumors as compared to matched normal tissues, where no strong staining of GCC was observed. An association between GCC mRNA in the circulation and tumor emboli in vessels, CK20 mRNA, distant organ metastasis, and survival status was observed in 100 rectal cancer patients. Univariate Cox regression analysis indicated that tumor emboli in vessels, lymph node metastasis, mesenteric root lymph node metastasis and GCC mRNA correlated with 5-year disease-free survival (DFS); while lymph node metastasis, GCC mRNA, and CK20 mRNA strongly correlated with 5-year overall survival (OS). In a multivariate Cox regression model, GCC mRNA level and mesenteric root lymph node metastasis associated with DFS, while GCC mRNA levels associated with OS. Quantification of GCC expression in circulation is a valuable biomarker for assessing tumor burden and predicting outcome in rectal cancer patients.
Collapse
|
33
|
Magee MS, Abraham TS, Baybutt TR, Flickinger JC, Ridge NA, Marszalowicz GP, Prajapati P, Hersperger AR, Waldman SA, Snook AE. Human GUCY2C-Targeted Chimeric Antigen Receptor (CAR)-Expressing T Cells Eliminate Colorectal Cancer Metastases. Cancer Immunol Res 2018; 6:509-516. [PMID: 29615399 DOI: 10.1158/2326-6066.cir-16-0362] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 11/03/2017] [Accepted: 03/22/2018] [Indexed: 12/22/2022]
Abstract
One major hurdle to the success of adoptive T-cell therapy is the identification of antigens that permit effective targeting of tumors in the absence of toxicities to essential organs. Previous work has demonstrated that T cells engineered to express chimeric antigen receptors (CAR-T cells) targeting the murine homolog of the colorectal cancer antigen GUCY2C treat established colorectal cancer metastases, without toxicity to the normal GUCY2C-expressing intestinal epithelium, reflecting structural compartmentalization of endogenous GUCY2C to apical membranes comprising the intestinal lumen. Here, we examined the utility of a human-specific, GUCY2C-directed single-chain variable fragment as the basis for a CAR construct targeting human GUCY2C-expressing metastases. Human GUCY2C-targeted murine CAR-T cells promoted antigen-dependent T-cell activation quantified by activation marker upregulation, cytokine production, and killing of GUCY2C-expressing, but not GUCY2C-deficient, cancer cells in vitro GUCY2C CAR-T cells provided long-term protection against lung metastases of murine colorectal cancer cells engineered to express human GUCY2C in a syngeneic mouse model. GUCY2C murine CAR-T cells recognized and killed human colorectal cancer cells endogenously expressing GUCY2C, providing durable survival in a human xenograft model in immunodeficient mice. Thus, we have identified a human GUCY2C-specific CAR-T cell therapy approach that may be developed for the treatment of GUCY2C-expressing metastatic colorectal cancer. Cancer Immunol Res; 6(5); 509-16. ©2018 AACR.
Collapse
Affiliation(s)
- Michael S Magee
- Bluebird Bio, Cambridge, Massachusetts.,Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Tara S Abraham
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Trevor R Baybutt
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - John C Flickinger
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Natalie A Ridge
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Glen P Marszalowicz
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Priyanka Prajapati
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Adam R Hersperger
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
34
|
Burinaru TA, Avram M, Avram A, Mărculescu C, Ţîncu B, Ţucureanu V, Matei A, Militaru M. Detection of Circulating Tumor Cells Using Microfluidics. ACS COMBINATORIAL SCIENCE 2018; 20:107-126. [PMID: 29363937 DOI: 10.1021/acscombsci.7b00146] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Metastasis is the main cause of death in cancer patients worldwide. During metastasis, cancer cells detach from the primary tumor and invade distant tissue. The cells that undergo this process are called circulating tumor cells (CTCs). Studies show that the number of CTCs in the peripheral blood can predict progression-free survival and overall survival and can be informative concerning the efficacy of treatment. Research is now concentrated on developing devices that can detect CTCs in the blood of cancer patients with improved sensitivity and specificity that can lead to improved clinical evaluation. This review focuses on devices that detect and capture CTCs using different cell properties (surface markers, size, deformability, electrical properties, etc.). We also discuss the process of tumor cell dissemination, the biology of CTCs, epithelial-mesenchymal transition (EMT), and several challenges and clinical applications of CTC detection.
Collapse
Affiliation(s)
- Tiberiu A. Burinaru
- National Institute for R&D in Microtechnologies, IMT-Bucharest, Bucharest, Romania, 077190
| | - Marioara Avram
- National Institute for R&D in Microtechnologies, IMT-Bucharest, Bucharest, Romania, 077190
| | - Andrei Avram
- National Institute for R&D in Microtechnologies, IMT-Bucharest, Bucharest, Romania, 077190
| | - Cătălin Mărculescu
- National Institute for R&D in Microtechnologies, IMT-Bucharest, Bucharest, Romania, 077190
| | - Bianca Ţîncu
- National Institute for R&D in Microtechnologies, IMT-Bucharest, Bucharest, Romania, 077190
| | - Vasilica Ţucureanu
- National Institute for R&D in Microtechnologies, IMT-Bucharest, Bucharest, Romania, 077190
| | - Alina Matei
- National Institute for R&D in Microtechnologies, IMT-Bucharest, Bucharest, Romania, 077190
| | - Manuella Militaru
- University of Agronomic
Sciences and Veterinary Medicine, Bucharest, Romania, 050097
| |
Collapse
|
35
|
Abstract
Metastatic colorectal cancer (mCRC) is a leading cause of cancer-related mortality with a 5-year overall survival rate of 13%. Despite recent advances in cancer immunotherapy, only the minority of CRC patients (<15%) with microsatellite instability can potentially benefit from immune checkpoint inhibitors, the only immunotherapy currently approved for mCRC. In that context, there is an unmet need to improve survival in mCRC. Our ever-increasing understanding of the immune system and its interactions with cancer has allowed development of multiple strategies to potentially improve outcomes in the majority of mCRC patients. Various approaches to manipulate patient immunity to recognize and kill colorectal cancer cells are being explored simultaneously, with combination therapies likely being the most effective. Ideally, therapies would target tumor-restricted antigens selectively found in tumors, but shielded from immune attack in normal tissues, to mount an effective cytotoxic T-cell response, while also overcoming cellular and molecular inhibitory pathways, self-tolerance, and T-cell exhaustion. Here, we provide a brief overview of the most promising immunotherapy candidates in mCRC and their strategies to produce a lasting immune response and clinical benefit in patients with mCRC.
Collapse
Affiliation(s)
- Babar Bashir
- a Departments of Pharmacology and Experimental Therapeutics , Thomas Jefferson University , Philadelphia , PA , USA.,b Department of Medical Oncology , Thomas Jefferson University , Philadelphia , PA , USA
| | - Adam E Snook
- a Departments of Pharmacology and Experimental Therapeutics , Thomas Jefferson University , Philadelphia , PA , USA
| |
Collapse
|
36
|
Almhanna K, Wright D, Mercade TM, Van Laethem JL, Gracian AC, Guillen-Ponce C, Faris J, Lopez CM, Hubner RA, Bendell J, Bols A, Feliu J, Starling N, Enzinger P, Mahalingham D, Messersmith W, Yang H, Fasanmade A, Danaee H, Kalebic T. A phase II study of antibody-drug conjugate, TAK-264 (MLN0264) in previously treated patients with advanced or metastatic pancreatic adenocarcinoma expressing guanylyl cyclase C. Invest New Drugs 2017; 35:634-641. [PMID: 28527133 DOI: 10.1007/s10637-017-0473-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/10/2017] [Indexed: 10/19/2022]
Abstract
Background This phase II open-label, multicenter study evaluated the efficacy, safety, and tolerability of TAK-264 in previously treated patients with advanced or metastatic pancreatic adenocarcinoma expressing guanylyl cyclase C (GCC). Methods Patients with advanced or metastatic pancreatic adenocarcinoma expressing GCC (H-score ≥ 10) received TAK-264 1.8 mg/kg on day 1 of a 21-day cycle as a 30-min intravenous infusion for up to 1 year or until disease progression or unacceptable toxicity. The primary objective was overall response rate (ORR [complete response + partial response (PR)]). Secondary objectives included evaluations of the safety and pharmacokinetic profile of TAK-264 (NCT02202785). Results 43 patients were enrolled and treated with 1.8 mg/kg TAK-264: 11, 15, and 17 patients with low, intermediate, and high GCC expression, respectively. Median number of treatment cycles received was two (range 1-10). The ORR was 3%, including one patient with intermediate GCC expression who achieved a PR. All patients experienced ≥1 adverse events (AE). The majority of patients experienced grade 1/2 AEs affecting the gastrointestinal tract. Fifteen (35%) patients experienced ≥grade 3 drug-related AEs; five (12%) patients had a serious AE. The most common (≥10% of patients) all-grade drug-related AEs were nausea (33%), fatigue (28%), neutropenia (23%), decreased appetite (23%), vomiting (16%), asthenia (16%), and alopecia (14%). Conclusions TAK-264 demonstrated a manageable safety profile; however, the low efficacy of TAK-264 observed in this study did not support further clinical investigation.
Collapse
Affiliation(s)
- Khaldoun Almhanna
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA.
| | | | | | | | - Antonio Cubillo Gracian
- HM Universitario Sanchinarro, Centro Integral Oncológico Clara Campal (CIOCC), Madrid, Spain
- Departamento de Ciencias Médicas Clínicas, Universidad San Pablo CEU, Madrid, Spain
| | | | - Jason Faris
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | | | | | - Johanna Bendell
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN, USA
| | - Alain Bols
- Brugge Oostende Oncologisch Centrum, Bruges, Belgium
| | - Jaime Feliu
- CIBERONC, La Paz University Hospital, Madrid, Spain
| | | | | | | | | | - Huyuan Yang
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | - Adedigbo Fasanmade
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | - Hadi Danaee
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | - Thea Kalebic
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| |
Collapse
|
37
|
Baybutt TR, Aka AA, Snook AE. The Heat-Stable Enterotoxin Receptor, Guanylyl Cyclase C, as a Pharmacological Target in Colorectal Cancer Immunotherapy: A Bench-to-Bedside Current Report. Toxins (Basel) 2017; 9:toxins9090282. [PMID: 28914772 PMCID: PMC5618215 DOI: 10.3390/toxins9090282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/05/2017] [Accepted: 09/13/2017] [Indexed: 01/30/2023] Open
Abstract
Cancer immunotherapy is becoming a routine treatment modality in the oncology clinic, in spite of the fact that it is a relatively nascent field. The challenge in developing effective immunotherapeutics is the identification of target molecules that promote anti-tumor efficacy across the patient population while sparing healthy tissue from damaging autoimmunity. The intestinally restricted receptor guanylyl cyclase C (GUCY2C) is a target that has been investigated for the treatment of colorectal cancer and numerous animal, and clinical studies have demonstrated both efficacy and safety. Here, we describe the current state of GUCY2C-directed cancer immunotherapy and the future directions of this work.
Collapse
Affiliation(s)
- Trevor R Baybutt
- Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Allison A Aka
- Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA.
- Department of Surgery, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
38
|
Snook AE, Baybutt TR, Hyslop T, Waldman SA. Preclinical Evaluation of a Replication-Deficient Recombinant Adenovirus Serotype 5 Vaccine Expressing Guanylate Cyclase C and the PADRE T-helper Epitope. Hum Gene Ther Methods 2017; 27:238-250. [PMID: 27903079 DOI: 10.1089/hgtb.2016.114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
There is an unmet need for improved therapeutics for colorectal cancer, the second leading cause of cancer mortality worldwide. Adjuvant chemotherapy only marginally improves survival in some patients and has no benefit in others, underscoring the clinical opportunity for novel immunotherapeutic approaches to improve survival in colorectal cancer. In that context, guanylate cyclase C (GUCY2C) is an established biomarker and therapeutic target for metastatic colorectal cancer with immunological characteristics that promote durable antitumor efficacy without autoimmunity. Preliminary studies established non-replicating human type 5 adenovirus (Ad5) expressing GUCY2C as safe and effective to induce GUCY2C-specific immune responses and antitumor immunity in mice. This study characterized the biodistribution, immunogenicity, and safety of a vector expressing GUCY2C fused with the human CD4+ T helper cell epitope PADRE (Ad5-GUCY2C-PADRE) to advance this vaccine into clinical trials in colorectal cancer patients. Ad5-GUCY2C-PADRE levels were highest in the injection site and distributed in vivo primarily to draining lymph nodes, the liver, spleen and, unexpectedly, to the bone marrow. Immune responses following Ad5-GUCY2C-PADRE administration were characterized by PADRE-specific CD4+ T-cell and GUCY2C-specific B-cell and CD8+ T-cell responses, producing antitumor immunity targeting GUCY2C-expressing colorectal cancer metastases in the lungs, without acute or chronic autoimmune or other toxicities. Collectively, these data support Ad5-GUCY2C-PADRE as a safe and effective vaccination strategy in preclinical models and position Ad5-GUCY2C-PADRE for Phase I clinical testing in colorectal cancer patients.
Collapse
Affiliation(s)
- Adam E Snook
- 1 Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Trevor R Baybutt
- 1 Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Terry Hyslop
- 2 Department of Biostatistics and Bioinformatics, Duke Cancer Institute, Duke University , Durham, North Carolina
| | - Scott A Waldman
- 1 Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
39
|
Xiang B, Baybutt TR, Berman-Booty L, Magee MS, Waldman SA, Alexeev VY, Snook AE. Prime-Boost Immunization Eliminates Metastatic Colorectal Cancer by Producing High-Avidity Effector CD8 + T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:3507-3514. [PMID: 28341670 PMCID: PMC5435941 DOI: 10.4049/jimmunol.1502672] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/27/2017] [Indexed: 11/19/2022]
Abstract
Heterologous prime-boost immunization with plasmid DNA and viral vector vaccines is an emerging approach to elicit CD8+ T cell-mediated immunity targeting pathogens and tumor Ags that is superior to either monotherapy. Yet, the mechanisms underlying the synergy of prime-boost strategies remain incompletely defined. In this study, we examine a DNA and adenovirus (Ad5) combination regimen targeting guanylyl cyclase C (GUCY2C), a receptor expressed by intestinal mucosa and universally expressed by metastatic colorectal cancer. DNA immunization efficacy was optimized by i.m. delivery via electroporation, yet it remained modest compared with Ad5. Sequential immunization with DNA and Ad5 produced superior antitumor efficacy associated with increased TCR avidity, whereas targeted disruption of TCR avidity enhancement eliminated GUCY2C-specific antitumor efficacy, without affecting responding T cell number or cytokine profile. Indeed, functional TCR avidity of responding GUCY2C-specific CD8+ T cells induced by various prime or prime-boost regimens correlated with antitumor efficacy, whereas T cell number and cytokine profile were not. Importantly, although sequential immunization with DNA and Ad5 maximized antitumor efficacy through TCR avidity enhancement, it produced no autoimmunity, reflecting sequestration of GUCY2C to intestinal apical membranes and segregation of mucosal and systemic immunity. Together, TCR avidity enhancement may be leveraged by prime-boost immunization to improve GUCY2C-targeted colorectal cancer immunotherapeutic efficacy and patient outcomes without concomitant autoimmune toxicity.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- CD8-Positive T-Lymphocytes/physiology
- CD8-Positive T-Lymphocytes/transplantation
- Cells, Cultured
- Colorectal Neoplasms/immunology
- Colorectal Neoplasms/therapy
- Cytotoxicity, Immunologic
- Immunity, Mucosal
- Immunization, Secondary
- Immunotherapy, Adoptive/methods
- Intestinal Mucosa/physiology
- Mice
- Mice, Inbred BALB C
- Neoplasm Metastasis
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Enterotoxin
- Receptors, Guanylate Cyclase-Coupled/genetics
- Receptors, Guanylate Cyclase-Coupled/metabolism
- Receptors, Peptide/genetics
- Receptors, Peptide/metabolism
- Tumor Burden
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Bo Xiang
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107
| | - Trevor R Baybutt
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107
| | - Lisa Berman-Booty
- Department of Discovery Toxicology, Bristol-Myers Squibb, Princeton, NJ 08543
| | - Michael S Magee
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107
- Bluebird Bio, Cambridge, MA 02141; and
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107
| | - Vitali Y Alexeev
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107;
| |
Collapse
|
40
|
Aka AA, Rappaport JA, Pattison AM, Sato T, Snook AE, Waldman SA. Guanylate cyclase C as a target for prevention, detection, and therapy in colorectal cancer. Expert Rev Clin Pharmacol 2017; 10:549-557. [PMID: 28162021 DOI: 10.1080/17512433.2017.1292124] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Colorectal cancer remains the second leading cause of cancer death in the United States, and new strategies to prevent, detect, and treat the disease are needed. The receptor, guanylate cyclase C (GUCY2C), a tumor suppressor expressed by the intestinal epithelium, has emerged as a promising target. Areas covered: This review outlines the role of GUCY2C in tumorigenesis, and steps to translate GUCY2C-targeting schemes to the clinic. Endogenous GUCY2C-activating ligands disappear early in tumorigenesis, silencing its signaling axis and enabling transformation. Pre-clinical models support GUCY2C ligand supplementation as a novel disease prevention paradigm. With the recent FDA approval of the GUCY2C ligand, linaclotide, and two more synthetic ligands in the pipeline, this strategy can be tested in human trials. In addition to primary tumor prevention, we also review immunotherapies targeting GUCY2C expressed by metastatic lesions, and platforms using GUCY2C as a biomarker for detection and patient staging. Expert commentary: Results of the first GUCY2C targeting schemes in patients will become available in the coming years. The identification of GUCY2C ligand loss as a requirement for colorectal tumorigenesis has the potential to change the treatment paradigm from an irreversible disease of genetic mutation, to a treatable disease of ligand insufficiency.
Collapse
Affiliation(s)
- Allison A Aka
- a Department of Pharmacology and Experimental Therapeutics , Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia , PA , USA.,b Department of Surgery , Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia , PA , USA
| | - Jeff A Rappaport
- a Department of Pharmacology and Experimental Therapeutics , Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia , PA , USA
| | - Amanda M Pattison
- a Department of Pharmacology and Experimental Therapeutics , Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia , PA , USA
| | - Takami Sato
- c Department of Medical Oncology , Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia , PA , USA
| | - Adam E Snook
- a Department of Pharmacology and Experimental Therapeutics , Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia , PA , USA
| | - Scott A Waldman
- a Department of Pharmacology and Experimental Therapeutics , Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia , PA , USA
| |
Collapse
|
41
|
Myers RE, Wolf T, Shwae P, Hegarty S, Peiper SC, Waldman SA. A survey of physician receptivity to molecular diagnostic testing and readiness to act on results for early-stage colon cancer patients. BMC Cancer 2016; 16:766. [PMID: 27716119 PMCID: PMC5048478 DOI: 10.1186/s12885-016-2812-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 09/23/2016] [Indexed: 12/20/2022] Open
Abstract
Background We sought to assess physician interest in molecular prognosic testing for patients with early stage colon cancer, and identify factors associated with the likelihood of test adoption. Methods We identified physicians who care for patients with early-stage (pN0) colon cancer patients, mailed them a survey, and analyzed survey responses to assess clinician receptivity to the use of a new molecular test (GUCY2C) that identifies patients at risk for recurrence, and clinician readiness to act on abnormal test results. Results Of 104 eligible potential respondents, 41 completed and returned the survey. Among responding physicians, 56 % were receptive to using the new prognostic test. Multivariable analyses showed that physicians in academic medical centers were significantly more receptive to molecular test use than those in non-academic settings. Forty-one percent of respondents were ready to act on abnormal molecular test results. Physicians who viewed current staging methods as inaccurate and were confident in their capacity to incorporate molecular testing in practice were more likely to say they would act on abnormal test results. Conclusions Physician receptivity to molecular diagnostic testing for early-stage colon cancer patients is likely to be influenced by practice setting and perceptions related to delivering quality care to patients. Trial registration ClinicalTrials.gov Identifier: NCT01972737
Collapse
Affiliation(s)
- Ronald E Myers
- Department of Medical Oncology, Thomas Jefferson University, Benjamin Franklin House, Suite 314, 834 Chestnut St, Philadelphia, PA, 19107, USA.
| | - Thomas Wolf
- Department of Medical Oncology, Thomas Jefferson University, Benjamin Franklin House, Suite 314, 834 Chestnut St, Philadelphia, PA, 19107, USA
| | - Phillip Shwae
- Thomas Jefferson University, 305 South 11th Street, Apt. 4F, Philadelphia, PA, 19107, USA
| | - Sarah Hegarty
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, 1015 Chestnut Street Building, Suite M-100 Mezzanine, 1015 Chestnut Street, Philadelphia, PA, 19107, USA
| | - Stephen C Peiper
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Jeff Hall, Room 279, 1020 Locust St, Philadelphia, PA, 19107, USA
| | - Scott A Waldman
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, 1015 Chestnut Street Building, Suite M-100 Mezzanine, 1015 Chestnut Street, Philadelphia, PA, 19107, USA
| |
Collapse
|
42
|
Pattison AM, Merlino DJ, Blomain ES, Waldman SA. Guanylyl cyclase C signaling axis and colon cancer prevention. World J Gastroenterol 2016; 22:8070-8077. [PMID: 27688649 PMCID: PMC5037076 DOI: 10.3748/wjg.v22.i36.8070] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/25/2016] [Accepted: 08/01/2016] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a major cause of cancer-related mortality and morbidity worldwide. While improved treatments have enhanced overall patient outcome, disease burden encompassing quality of life, cost of care, and patient survival has seen little benefit. Consequently, additional advances in CRC treatments remain important, with an emphasis on preventative measures. Guanylyl cyclase C (GUCY2C), a transmembrane receptor expressed on intestinal epithelial cells, plays an important role in orchestrating intestinal homeostatic mechanisms. These effects are mediated by the endogenous hormones guanylin (GUCA2A) and uroguanylin (GUCA2B), which bind and activate GUCY2C to regulate proliferation, metabolism and barrier function in intestine. Recent studies have demonstrated a link between GUCY2C silencing and intestinal dysfunction, including tumorigenesis. Indeed, GUCY2C silencing by the near universal loss of its paracrine hormone ligands increases colon cancer susceptibility in animals and humans. GUCY2C’s role as a tumor suppressor has opened the door to a new paradigm for CRC prevention by hormone replacement therapy using synthetic hormone analogs, such as the FDA-approved oral GUCY2C ligand linaclotide (Linzess™). Here we review the known contributions of the GUCY2C signaling axis to CRC, and relate them to a novel clinical strategy targeting tumor chemoprevention.
Collapse
|
43
|
Magee MS, Kraft CL, Abraham TS, Baybutt TR, Marszalowicz GP, Li P, Waldman SA, Snook AE. GUCY2C-directed CAR-T cells oppose colorectal cancer metastases without autoimmunity. Oncoimmunology 2016; 5:e1227897. [PMID: 27853651 PMCID: PMC5087292 DOI: 10.1080/2162402x.2016.1227897] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 12/14/2022] Open
Abstract
Adoptive T-cell therapy (ACT) is an emerging paradigm in which T cells are genetically modified to target cancer-associated antigens and eradicate tumors. However, challenges treating epithelial cancers with ACT reflect antigen targets that are not tumor-specific, permitting immune damage to normal tissues, and preclinical testing in artificial xenogeneic models, preventing prediction of toxicities in patients. In that context, mucosa-restricted antigens expressed by cancers exploit anatomical compartmentalization which shields mucosae from systemic antitumor immunity. This shielding may be amplified with ACT platforms employing antibody-based chimeric antigen receptors (CARs), which mediate MHC-independent recog-nition of antigens. GUCY2C is a cancer mucosa antigen expressed on the luminal surfaces of the intestinal mucosa in mice and humans, and universally overexpressed by colorectal tumors, suggesting its unique utility as an ACT target. T cells expressing CARs directed by a GUCY2C-specific antibody fragment recognized GUCY2C, quantified by expression of activation markers and cytokines. Further, GUCY2C CAR-T cells lysed GUCY2C-expressing, but not GUCY2C-deficient, mouse colorectal cancer cells. Moreover, GUCY2C CAR-T cells reduced tumor number and morbidity and improved survival in mice harboring GUCY2C-expressing colorectal cancer metastases. GUCY2C-directed T cell efficacy reflected CAR affinity and surface expression and was achieved without immune-mediated damage to normal tissues in syngeneic mice. These observations highlight the potential for therapeutic translation of GUCY2C-directed CAR-T cells to treat metastatic tumors, without collateral autoimmunity, in patients with metastatic colorectal cancer.
Collapse
Affiliation(s)
- Michael S Magee
- Bluebird Bio, Seattle, Cambridge, MA, USA; Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| | - Crystal L Kraft
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University , Philadelphia, PA, USA
| | - Tara S Abraham
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University , Philadelphia, PA, USA
| | - Trevor R Baybutt
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University , Philadelphia, PA, USA
| | - Glen P Marszalowicz
- School of Biomedical Engineering, Science & Health Systems, Drexel University , Philadelphia, PA, USA
| | - Peng Li
- Department of Pathology, Stanford University School of Medicine , Stanford, CA, USA
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University , Philadelphia, PA, USA
| | - Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University , Philadelphia, PA, USA
| |
Collapse
|
44
|
Abstract
cGMP controls many cellular functions ranging from growth, viability, and differentiation to contractility, secretion, and ion transport. The mammalian genome encodes seven transmembrane guanylyl cyclases (GCs), GC-A to GC-G, which mainly modulate submembrane cGMP microdomains. These GCs share a unique topology comprising an extracellular domain, a short transmembrane region, and an intracellular COOH-terminal catalytic (cGMP synthesizing) region. GC-A mediates the endocrine effects of atrial and B-type natriuretic peptides regulating arterial blood pressure/volume and energy balance. GC-B is activated by C-type natriuretic peptide, stimulating endochondral ossification in autocrine way. GC-C mediates the paracrine effects of guanylins on intestinal ion transport and epithelial turnover. GC-E and GC-F are expressed in photoreceptor cells of the retina, and their activation by intracellular Ca(2+)-regulated proteins is essential for vision. Finally, in the rodent system two olfactorial GCs, GC-D and GC-G, are activated by low concentrations of CO2and by peptidergic (guanylins) and nonpeptidergic odorants as well as by coolness, which has implications for social behaviors. In the past years advances in human and mouse genetics as well as the development of sensitive biosensors monitoring the spatiotemporal dynamics of cGMP in living cells have provided novel relevant information about this receptor family. This increased our understanding of the mechanisms of signal transduction, regulation, and (dys)function of the membrane GCs, clarified their relevance for genetic and acquired diseases and, importantly, has revealed novel targets for therapies. The present review aims to illustrate these different features of membrane GCs and the main open questions in this field.
Collapse
Affiliation(s)
- Michaela Kuhn
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
45
|
Mohammadi P, Saidijam M, Kaki A, Etemadi K, Shabab N, Yadegarazari R. A Pilot Study of CK19, CK20 and GCC mRNA in the Peripheral Blood as a Colorectal Cancer Biomarker Panel. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2016; 5:30-6. [PMID: 27386436 PMCID: PMC4916781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Colorectal cancer remains one of the major cancer- related deaths despite progress in the treatment during past decades. Detection of disease at earlier stages reduces its mortality. The aim of current study was to investigate expression of Cytokeratin 19 (CK19), Cytokeratin 20 (CK20) and Guanylyl Cyclase C (GCC) mRNA in peripheral blood of non- metastatic colorectal cancer patients which may result into introducing of an early detection test. 25 patients with colorectal cancer and 25 healthy controls were recruited. Blood was obtained from all individuals. Expression of CK19 and CK20 and GCC mRNA and 18SrRNA (as reference gene) were determined based on real- time RT-PCR on total RNA from blood. CK19, CK20 and GCC expression had been detected in 68%, 76% & 52% of patient group, respectively, which was higher than healthy group, with 8%, 32% and 0% expression, respectively (p<0.05). CK20 was over-expressed 8- fold more in patients compared to controls. Similar result was found for CK19 with 4- fold over- expression. Sensitivity and specificity of combination of markers were 88% and 68%, respectively. Current data suggest that the detection of CK20 & CK19 as relative sensitive markers may become a valuable tool for primary diagnosis of colorectal cancer in early stages. GCC could be considered as a specific tumor marker for detection of colorectal cancer. Higher expression of these markers in patients may be considered as a relative good tool for the diagnosis of disease in non- metastatic stages.
Collapse
Affiliation(s)
- Pouria Mohammadi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Genetic & Molecular Medicine, Hamadan University of Medical Sciences, Hamadan , Iran.
| | - Arastoo Kaki
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Katayoon Etemadi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Genetic & Molecular Medicine, Hamadan University of Medical Sciences, Hamadan , Iran.
| | - Nooshin Shabab
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Genetic & Molecular Medicine, Hamadan University of Medical Sciences, Hamadan , Iran.
| | - Reza Yadegarazari
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Genetic & Molecular Medicine, Hamadan University of Medical Sciences, Hamadan , Iran.,Corresponding author:. Hamedan University of Medical Sciences, Hamadan, Iran. E-mail:
| |
Collapse
|
46
|
Tchernychev B, Ge P, Kessler MM, Solinga RM, Wachtel D, Tobin JV, Thomas SR, Lunte CE, Fretzen A, Hannig G, Bryant AP, Kurtz CB, Currie MG, Silos-Santiago I. MRP4 Modulation of the Guanylate Cyclase-C/cGMP Pathway: Effects on Linaclotide-Induced Electrolyte Secretion and cGMP Efflux. J Pharmacol Exp Ther 2015; 355:48-56. [PMID: 26216942 DOI: 10.1124/jpet.115.224329] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/24/2015] [Indexed: 12/17/2022] Open
Abstract
MRP4 mediates the efflux of cGMP and cAMP and acts as an important regulator of these secondary messengers, thereby affecting signaling events mediated by cGMP and cAMP. Immunofluorescence staining showed high MRP4 expression localized predominantly in the apical membrane of rat colonic epithelium. In vitro studies were performed using a rat colonic mucosal layer mounted in an Ussing chamber. Linaclotide activation of the guanylate cyclase-C (GC-C)/cGMP pathway induced a concentration-dependent increase in transepithelial ion current [short-circuit current (Isc)] across rat colonic mucosa (EC50: 9.2 nM). Pretreatment of colonic mucosa with the specific MRP4 inhibitor MK571 potentiated linaclotide-induced electrolyte secretion and augmented linaclotide-stimulated intracellular cGMP accumulation. Notably, pretreatment with the phosphodiesterase 5 inhibitor sildenafil increased basal Isc, but had no amplifying effect on linaclotide-induced Isc. MRP4 inhibition selectively affected the activation phase, but not the deactivation phase, of linaclotide. In contrast, incubation with a GC-C/Fc chimera binding to linaclotide abrogated linaclotide-induced Isc, returning to baseline. Furthermore, linaclotide activation of GC-C induced cGMP secretion from the apical and basolateral membranes of colonic epithelium. MRP4 inhibition blocked cGMP efflux from the apical membrane, but not the basolateral membrane. These data reveal a novel, previously unrecognized mechanism that functionally couples GC-C-induced luminal electrolyte transport and cGMP secretion to spatially restricted, compartmentalized regulation by MRP4 at the apical membrane of intestinal epithelium. These findings have important implications for gastrointestinal disorders with symptoms associated with dysregulated fluid homeostasis, such as irritable bowel syndrome with constipation, chronic idiopathic constipation, and secretory diarrhea.
Collapse
Affiliation(s)
- Boris Tchernychev
- Ironwood Pharmaceuticals, Cambridge, Massachusetts (B.T., P.G., M.M.K., R.M.S., D.W., J.V.T., A.F., G.H., A.P.B., C.B.K., M.G.C., I.S.-S.); and Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, Lawrence, Kansas (S.R.T., C.E.L.)
| | - Pei Ge
- Ironwood Pharmaceuticals, Cambridge, Massachusetts (B.T., P.G., M.M.K., R.M.S., D.W., J.V.T., A.F., G.H., A.P.B., C.B.K., M.G.C., I.S.-S.); and Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, Lawrence, Kansas (S.R.T., C.E.L.)
| | - Marco M Kessler
- Ironwood Pharmaceuticals, Cambridge, Massachusetts (B.T., P.G., M.M.K., R.M.S., D.W., J.V.T., A.F., G.H., A.P.B., C.B.K., M.G.C., I.S.-S.); and Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, Lawrence, Kansas (S.R.T., C.E.L.)
| | - Robert M Solinga
- Ironwood Pharmaceuticals, Cambridge, Massachusetts (B.T., P.G., M.M.K., R.M.S., D.W., J.V.T., A.F., G.H., A.P.B., C.B.K., M.G.C., I.S.-S.); and Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, Lawrence, Kansas (S.R.T., C.E.L.)
| | - Derek Wachtel
- Ironwood Pharmaceuticals, Cambridge, Massachusetts (B.T., P.G., M.M.K., R.M.S., D.W., J.V.T., A.F., G.H., A.P.B., C.B.K., M.G.C., I.S.-S.); and Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, Lawrence, Kansas (S.R.T., C.E.L.)
| | - Jenny V Tobin
- Ironwood Pharmaceuticals, Cambridge, Massachusetts (B.T., P.G., M.M.K., R.M.S., D.W., J.V.T., A.F., G.H., A.P.B., C.B.K., M.G.C., I.S.-S.); and Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, Lawrence, Kansas (S.R.T., C.E.L.)
| | - Sara R Thomas
- Ironwood Pharmaceuticals, Cambridge, Massachusetts (B.T., P.G., M.M.K., R.M.S., D.W., J.V.T., A.F., G.H., A.P.B., C.B.K., M.G.C., I.S.-S.); and Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, Lawrence, Kansas (S.R.T., C.E.L.)
| | - Craig E Lunte
- Ironwood Pharmaceuticals, Cambridge, Massachusetts (B.T., P.G., M.M.K., R.M.S., D.W., J.V.T., A.F., G.H., A.P.B., C.B.K., M.G.C., I.S.-S.); and Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, Lawrence, Kansas (S.R.T., C.E.L.)
| | - Angelika Fretzen
- Ironwood Pharmaceuticals, Cambridge, Massachusetts (B.T., P.G., M.M.K., R.M.S., D.W., J.V.T., A.F., G.H., A.P.B., C.B.K., M.G.C., I.S.-S.); and Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, Lawrence, Kansas (S.R.T., C.E.L.)
| | - Gerhard Hannig
- Ironwood Pharmaceuticals, Cambridge, Massachusetts (B.T., P.G., M.M.K., R.M.S., D.W., J.V.T., A.F., G.H., A.P.B., C.B.K., M.G.C., I.S.-S.); and Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, Lawrence, Kansas (S.R.T., C.E.L.)
| | - Alexander P Bryant
- Ironwood Pharmaceuticals, Cambridge, Massachusetts (B.T., P.G., M.M.K., R.M.S., D.W., J.V.T., A.F., G.H., A.P.B., C.B.K., M.G.C., I.S.-S.); and Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, Lawrence, Kansas (S.R.T., C.E.L.)
| | - Caroline B Kurtz
- Ironwood Pharmaceuticals, Cambridge, Massachusetts (B.T., P.G., M.M.K., R.M.S., D.W., J.V.T., A.F., G.H., A.P.B., C.B.K., M.G.C., I.S.-S.); and Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, Lawrence, Kansas (S.R.T., C.E.L.)
| | - Mark G Currie
- Ironwood Pharmaceuticals, Cambridge, Massachusetts (B.T., P.G., M.M.K., R.M.S., D.W., J.V.T., A.F., G.H., A.P.B., C.B.K., M.G.C., I.S.-S.); and Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, Lawrence, Kansas (S.R.T., C.E.L.)
| | - Inmaculada Silos-Santiago
- Ironwood Pharmaceuticals, Cambridge, Massachusetts (B.T., P.G., M.M.K., R.M.S., D.W., J.V.T., A.F., G.H., A.P.B., C.B.K., M.G.C., I.S.-S.); and Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, Lawrence, Kansas (S.R.T., C.E.L.)
| |
Collapse
|
47
|
Folgueira C, Sanchez-Rebordelo E, Barja-Fernandez S, Leis R, Tovar S, Casanueva FF, Dieguez C, Nogueiras R, Seoane LM. Uroguanylin levels in intestine and plasma are regulated by nutritional status in a leptin-dependent manner. Eur J Nutr 2015; 55:529-536. [DOI: 10.1007/s00394-015-0869-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/25/2015] [Indexed: 01/09/2023]
|
48
|
Gill S, Haince JF, Shi Q, Pavey ES, Beaudry G, Sargent DJ, Fradet Y. Prognostic Value of Molecular Detection of Lymph Node Metastases After Curative Resection of Stage II Colon Cancer: A Systematic Pooled Data Analysis. Clin Colorectal Cancer 2014; 14:99-105. [PMID: 25619805 DOI: 10.1016/j.clcc.2014.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND We aimed to clarify the prognostic value of guanylyl cyclase C (GCC) lymph node ratio (LNR) status as a predictor of recurrence in untreated stage IIA colon cancer on the basis of pooled individual data from previous studies. METHODS Patients were classified according to predefined GCC LNR risk groups (low, LNR ≤ 0.1; intermediate, 0.1 < LNR ≤ 0.2; high, LNR > 0.2). Outcomes included time to recurrence, disease-free survival, and overall survival. Stratified log-rank tests and multivariate Cox models assessed the association between outcomes and GCC lymph node status. RESULTS The final data set contained 553 patients with stage IIA colon cancer with a median of 18 lymph nodes examined after resection; 65 patients (11.8%) had recurrence. Overall, 109 patients (19.7%) were classified high risk on the basis of GCC LNR. In multivariate analysis, high GCC LNR value (> 0.2) was a significant predictor of cancer recurrence (hazard ratio [HR], 3.18; 95% confidence interval [CI], 1.77-5.71; P < .001) and lower disease-free survival (HR, 2.40; 95% CI, 1.60-3.62; P < .001) and overall survival (HR, 2.12; 95% CI, 1.35-3.33; P = .001). CONCLUSION Patients considered at high risk on the basis of their GCC LNR status have significantly inferior outcomes compared to those with low GCC LNR values, particularly among those traditionally considered to be at low risk for recurrence.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/mortality
- Adenocarcinoma/secondary
- Adenocarcinoma/surgery
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Colonic Neoplasms/genetics
- Colonic Neoplasms/mortality
- Colonic Neoplasms/pathology
- Colonic Neoplasms/surgery
- Female
- Follow-Up Studies
- Humans
- Lymphatic Metastasis
- Male
- Middle Aged
- Neoplasm Grading
- Neoplasm Invasiveness
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/mortality
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/surgery
- Prognosis
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Receptors, Enterotoxin
- Receptors, Guanylate Cyclase-Coupled/genetics
- Receptors, Peptide/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Survival Rate
- Young Adult
Collapse
Affiliation(s)
- Sharlene Gill
- University of British Columbia, BC Cancer Agency, Vancouver, BC, Canada.
| | | | - Qian Shi
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN
| | - Emily S Pavey
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN
| | | | - Daniel J Sargent
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
49
|
Bian K, Murad F. sGC-cGMP signaling: target for anticancer therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 814:5-13. [PMID: 25015797 DOI: 10.1007/978-1-4939-1031-1_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The biologic endogenous production of cGMP was reported in the 1960s and followed by the demonstration of guanylyl cyclase activity and the isoforms of soluble and membrane-bound guanylyl cyclases. During the same period, cGMP specific phosphodiesterases also was discovered. Murad's lab established link between the endothelium derived relaxation factor (EDRF) and elevated cGMP concentration in the vascular system. October 12, 1998, the Nobel Assembly awarded the Nobel Prize in Medicine or Physiology to scientists Robert Furchgott, Louis Ignarro, and Ferid Murad for their discoveries concerning nitric oxide (NO) as a signaling molecule in the cardiovascular system. In contrast with the short research history of the enzymatic synthesis of NO, the introduction of nitrate-containing compounds for medicinal purposes marked its 150th anniversary in 1997. Glyceryl trinitrate (nitroglycerin; GTN) is the first compound of this category. Alfred Nobel (the founder of the Nobel Prize) himself had suffered from angina pectoris and was prescribed nitroglycerin for his chest pain while he refused to take due to the induction of headaches. Almost a century after its first chemical use, research in the nitric oxide and 3',5'-cyclic guanosine monophosphate (NO/cGMP) pathway has dramatically expanded and the role of NO/cGMP in physiology and pathology has been extensively studied. Soluble guanylyl cyclase (sGC) is the receptor for NO. The α1β1 heterodimer is the predominant isoform of sGC that is obligatory for catalytic activity. NO binds to the ferrous (Fe(2+)) heme at histidine 105 of the β1 subunit and leads to an increase in sGC activity and cGMP production of at least 200-fold. In this chapter, we reviewed the studies of sGC-cGMP signaling in cell proliferation; introduced our work of targeting sGC-cGMP signaling for cancer therapy; and explored the role of sGC-cGMP signaling in the chromatin-microenvironment.
Collapse
Affiliation(s)
- Ka Bian
- Department of Biochemistry and Molecular Medicine, School of Medicine, George Washington University, Washington, DC, 20037, USA,
| | | |
Collapse
|
50
|
Marszalowicz GP, Snook AE, Magee MS, Merlino D, Lisa DBB, Waldman SA. GUCY2C lysosomotropic endocytosis delivers immunotoxin therapy to metastatic colorectal cancer. Oncotarget 2014; 5:9460-71. [PMID: 25294806 PMCID: PMC4253446 DOI: 10.18632/oncotarget.2455] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/07/2014] [Indexed: 02/06/2023] Open
Abstract
The emergence of targeted cancer therapy has been limited by the paucity of determinants which are tumor-specific and generally associated with disease, and have cell dynamics which effectively deploy cytotoxic payloads. Guanylyl cyclase C (GUCY2C) may be ideal for targeting because it is normally expressed only in insulated barrier compartments, including intestine and brain, but over-expressed by systemic metastatic colorectal tumors. Here, we reveal that GUCY2C rapidly internalizes from the cell surface to lysosomes in intestinal and colorectal cancer cells. Endocytosis is independent of ligand binding and receptor activation, and is mediated by clathrin. This mechanism suggests a design for immunotoxins comprising a GUCY2C-directed monoclonal antibody conjugated through a reducible disulfide linkage to ricin A chain, which is activated to a potent cytotoxin in lysosomes. Indeed, this immunotoxin specifically killed GUCY2C-expressing colorectal cancer cells in a lysosomal- and clathrin-dependent fashion. Moreover, this immunotoxin reduced pulmonary tumors>80% (p<0.001), and improved survival 25% (p<0.001), in mice with established colorectal cancer metastases. Further, therapeutic efficacy was achieved without histologic evidence of toxicity in normal tissues. These observations support GUCY2C-targeted immunotoxins as novel therapeutics for metastatic tumors originating in the GI tract, including colorectum, stomach, esophagus, and pancreas.
Collapse
Affiliation(s)
- Glen P. Marszalowicz
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Adam E. Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael S. Magee
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| | - Dante Merlino
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Scott A. Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|