1
|
Williams JT, Baker JJ, Zheng H, Dechow SJ, Fallon J, Murto M, Albrecht VJ, Gilliland HN, Olive AJ, Abramovitch RB. A genetic selection for Mycobacterium smegmatis mutants tolerant to killing by sodium citrate defines a combined role for cation homeostasis and osmotic stress in cell death. mSphere 2023; 8:e0035823. [PMID: 37681985 PMCID: PMC10597346 DOI: 10.1128/msphere.00358-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 09/09/2023] Open
Abstract
Mycobacteria can colonize environments where the availability of metal ions is limited. Biological or inorganic chelators play an important role in limiting metal availability, and we developed a model to examine Mycobacterium smegmatis survival in the presence of the chelator sodium citrate. We observed that instead of restricting M. smegmatis growth, concentrated sodium citrate killed M. smegmatis. RNAseq analysis during sodium citrate treatment revealed transcriptional signatures of metal starvation and hyperosmotic stress. Notably, metal starvation and hyperosmotic stress, individually, do not kill M. smegmatis under these conditions. A forward genetic transposon selection was conducted to examine why sodium citrate was lethal, and several sodium-citrate-tolerant mutants were isolated. Based on the identity of three tolerant mutants, mgtE, treZ, and fadD6, we propose a dual stress model of killing by sodium citrate, where sodium citrate chelate metals from the cell envelope and then osmotic stress in combination with a weakened cell envelope causes cell lysis. This sodium citrate tolerance screen identified mutants in several other genes with no known function, with most conserved in the pathogen M. tuberculosis. Therefore, this model will serve as a basis to define their functions, potentially in maintaining cell wall integrity, cation homeostasis, or osmotolerance. IMPORTANCE Bacteria require mechanisms to adapt to environments with differing metal availability. When Mycobacterium smegmatis is treated with high concentrations of the metal chelator sodium citrate, the bacteria are killed. To define the mechanisms underlying killing by sodium citrate, we conducted a genetic selection and observed tolerance to killing in mutants of the mgtE magnesium transporter. Further characterization studies support a model where killing by sodium citrate is driven by a weakened cell wall and osmotic stress, that in combination cause cell lysis.
Collapse
Affiliation(s)
- John T. Williams
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Jacob J. Baker
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Huiqing Zheng
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Shelby J. Dechow
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Jared Fallon
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Megan Murto
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Veronica J. Albrecht
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Haleigh N. Gilliland
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Andrew J. Olive
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Robert B. Abramovitch
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
2
|
Li X, Long X, Chen L, Guo X, Lu L, Hu L, He ZG. Mycobacterial phage TM4 requires a eukaryotic-like Ser/Thr protein kinase to silence and escape anti-phage immunity. Cell Host Microbe 2023; 31:1469-1480.e4. [PMID: 37567169 DOI: 10.1016/j.chom.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/15/2023] [Accepted: 07/14/2023] [Indexed: 08/13/2023]
Abstract
In eukaryotic cells, serine/threonine protein kinases (StpKs) play important roles in limiting viral infections. StpKs are commonly activated upon infections, inhibiting the expression of genes central for viral replication. Here, we report that a eukaryotic-like StpK7 encoded by MSMEG_1200 in M. smegmatis is required for mycobacteriophage TM4 to escape bacterial defense. stpK7 is located within a gene island, MSMEG_1191-MSMEG_1200, containing multiple anti-phage genes resembling the BREX (bacteriophage exclusion) phage-resistance system. StpK7 negatively regulates the expression of this gene island. Following phage TM4 infection, StpK7 is induced, directly phosphorylating the transcriptional regulator MSMEG_1198 and inhibiting its positive regulatory activity, thus reducing the expression of multiple downstream genes in the BREX-like gene island. Further analysis showed that genes within this anti-phage island critically regulate mycobacterial lipid hemostasis and phage adsorption. Collectively, this work characterizes a regulatory network driven by StpK7, which is utilized by phage TM4 to escape from the host defense against mycobacteria.
Collapse
Affiliation(s)
- Xiaohui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Xiating Long
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Liu Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Xiao Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Lining Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Lihua Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Zheng-Guo He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
3
|
Wang CL, Zhang LY, Ding XY, Sun YC. Identification of Toxic Proteins Encoded by Mycobacteriophage TM4 Using a Next-Generation Sequencing-Based Method. Microbiol Spectr 2023; 11:e0501522. [PMID: 37154774 PMCID: PMC10269906 DOI: 10.1128/spectrum.05015-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/13/2023] [Indexed: 05/10/2023] Open
Abstract
Mycobacteriophages are viruses that specifically infect mycobacteria and which, due to their diversity, represent a large gene pool. Characterization of the function of these genes should provide useful insights into host-phage interactions. Here, we describe a next-generation sequencing (NGS)-based, high-throughput screening approach for the identification of mycobacteriophage-encoded proteins that are toxic to mycobacteria. A plasmid-derived library representing the mycobacteriophage TM4 genome was constructed and transformed into Mycobacterium smegmatis. NGS and growth assays showed that the expression of TM4 gp43, gp77, -78, and -79, or gp85 was toxic to M. smegmatis. Although the genes associated with bacterial toxicity were expressed during phage infection, they were not required for lytic replication of mycobacteriophage TM4. In conclusion, we describe here an NGS-based approach which required significantly less time and resources than traditional methods and allowed the identification of novel mycobacteriophage gene products that are toxic to mycobacteria. IMPORTANCE The wide spread of drug-resistant Mycobacterium tuberculosis has brought an urgent need for new drug development. Mycobacteriophages are natural killers of M. tuberculosis, and their toxic gene products might provide potential anti-M. tuberculosis candidates. However, the enormous genetic diversity of mycobacteriophages poses challenges for the identification of these genes. Here, we used a simple and convenient screening method, based on next-generation sequencing, to identify mycobacteriophage genes encoding toxic products for mycobacteria. Using this approach, we screened and validated several toxic products encoded by mycobacteriophage TM4. In addition, we also found that the genes encoding these toxic products are nonessential for lytic replication of TM4. Our work describes a promising method for the identification of phage genes that encode proteins that are toxic to mycobacteria and which might facilitate the identification of novel antimicrobial molecules.
Collapse
Affiliation(s)
- Chun-Liang Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lan-Yue Zhang
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xin-Yuan Ding
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi-Cheng Sun
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Dulberger CL, Guerrero-Bustamante CA, Owen SV, Wilson S, Wuo MG, Garlena RA, Serpa LA, Russell DA, Zhu J, Braunecker BJ, Squyres GR, Baym M, Kiessling LL, Garner EC, Rubin EJ, Hatfull GF. Mycobacterial nucleoid-associated protein Lsr2 is required for productive mycobacteriophage infection. Nat Microbiol 2023; 8:695-710. [PMID: 36823286 PMCID: PMC10066036 DOI: 10.1038/s41564-023-01333-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/23/2023] [Indexed: 02/25/2023]
Abstract
Mycobacteriophages are a diverse group of viruses infecting Mycobacterium with substantial therapeutic potential. However, as this potential becomes realized, the molecular details of phage infection and mechanisms of resistance remain ill-defined. Here we use live-cell fluorescence microscopy to visualize the spatiotemporal dynamics of mycobacteriophage infection in single cells and populations, showing that infection is dependent on the host nucleoid-associated Lsr2 protein. Mycobacteriophages preferentially adsorb at Mycobacterium smegmatis sites of new cell wall synthesis and following DNA injection, Lsr2 reorganizes away from host replication foci to establish zones of phage DNA replication (ZOPR). Cells lacking Lsr2 proceed through to cell lysis when infected but fail to generate consecutive phage bursts that trigger epidemic spread of phage particles to neighbouring cells. Many mycobacteriophages code for their own Lsr2-related proteins, and although their roles are unknown, they do not rescue the loss of host Lsr2.
Collapse
Affiliation(s)
- Charles L Dulberger
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | | | - Siân V Owen
- Department of Biomedical Informatics and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Sean Wilson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Michael G Wuo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rebecca A Garlena
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lexi A Serpa
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel A Russell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Junhao Zhu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Ben J Braunecker
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Georgia R Squyres
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Michael Baym
- Department of Biomedical Informatics and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Laura L Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ethan C Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Eric J Rubin
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Sparks IL, Derbyshire KM, Jacobs WR, Morita YS. Mycobacterium smegmatis: The Vanguard of Mycobacterial Research. J Bacteriol 2023; 205:e0033722. [PMID: 36598232 PMCID: PMC9879119 DOI: 10.1128/jb.00337-22] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The genus Mycobacterium contains several slow-growing human pathogens, including Mycobacterium tuberculosis, Mycobacterium leprae, and Mycobacterium avium. Mycobacterium smegmatis is a nonpathogenic and fast growing species within this genus. In 1990, a mutant of M. smegmatis, designated mc2155, that could be transformed with episomal plasmids was isolated, elevating M. smegmatis to model status as the ideal surrogate for mycobacterial research. Classical bacterial models, such as Escherichia coli, were inadequate for mycobacteria research because they have low genetic conservation, different physiology, and lack the novel envelope structure that distinguishes the Mycobacterium genus. By contrast, M. smegmatis encodes thousands of conserved mycobacterial gene orthologs and has the same cell architecture and physiology. Dissection and characterization of conserved genes, structures, and processes in genetically tractable M. smegmatis mc2155 have since provided previously unattainable insights on these same features in its slow-growing relatives. Notably, tuberculosis (TB) drugs, including the first-line drugs isoniazid and ethambutol, are active against M. smegmatis, but not against E. coli, allowing the identification of their physiological targets. Furthermore, Bedaquiline, the first new TB drug in 40 years, was discovered through an M. smegmatis screen. M. smegmatis has become a model bacterium, not only for M. tuberculosis, but for all other Mycobacterium species and related genera. With a repertoire of bioinformatic and physical resources, including the recently established Mycobacterial Systems Resource, M. smegmatis will continue to accelerate mycobacterial research and advance the field of microbiology.
Collapse
Affiliation(s)
- Ian L. Sparks
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Keith M. Derbyshire
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| | - William R. Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Yasu S. Morita
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
6
|
Hosseiniporgham S, Sechi LA. A Review on Mycobacteriophages: From Classification to Applications. Pathogens 2022; 11:777. [PMID: 35890022 PMCID: PMC9317374 DOI: 10.3390/pathogens11070777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Mycobacterial infections are a group of life-threatening conditions triggered by fast- or slow-growing mycobacteria. Some mycobacteria, such as Mycobacterium tuberculosis, promote the deaths of millions of lives throughout the world annually. The control of mycobacterial infections is influenced by the challenges faced in the diagnosis of these bacteria and the capability of these pathogens to develop resistance against common antibiotics. Detection of mycobacterial infections is always demanding due to the intracellular nature of these pathogens that, along with the lipid-enriched structure of the cell wall, complicates the access to the internal contents of mycobacterial cells. Moreover, recent studies depicted that more than 20% of M. tuberculosis (Mtb) infections are multi-drug resistant (MDR), and only 50% of positive MDR-Mtb cases are responsive to standard treatments. Similarly, the susceptibility of nontuberculosis mycobacteria (NTM) to first-line tuberculosis antibiotics has also declined in recent years. Exploiting mycobacteriophages as viruses that infect mycobacteria has significantly accelerated the diagnosis and treatment of mycobacterial infections. This is because mycobacteriophages, regardless of their cycle type (temperate/lytic), can tackle barriers in the mycobacterial cell wall and make the infected bacteria replicate phage DNA along with their DNA. Although the infectivity of the majority of discovered mycobacteriophages has been evaluated in non-pathogenic M. smegmatis, more research is still ongoing to find mycobacteriophages specific to pathogenic mycobacteria, such as phage DS6A, which has been shown to be able to infect members of the M. tuberculosis complex. Accordingly, this review aimed to introduce some potential mycobacteriophages in the research, specifically those that are infective to the three troublesome mycobacteria, M. tuberculosis, M. avium subsp. paratuberculosis (MAP), and M. abscessus, highlighting their theranostic applications in medicine.
Collapse
Affiliation(s)
| | - Leonardo A. Sechi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Microbiology and Virology, Azienda Ospedaliera Universitaria (AOU) Sassari, 07100 Sassari, Italy
| |
Collapse
|
7
|
Abstract
Mycobacteriophages-bacteriophages infecting Mycobacterium hosts-contribute substantially to our understanding of viral diversity and evolution, provide resources for advancing Mycobacterium genetics, are the basis of high-impact science education programs, and show considerable therapeutic potential. Over 10,000 individual mycobacteriophages have been isolated by high school and undergraduate students using the model organism Mycobacterium smegmatis mc2155 and 2,100 have been completely sequenced, giving a high-resolution view of the phages that infect a single common host strain. The phage genomes are revealed to be highly diverse and architecturally mosaic and are replete with genes of unknown function. Mycobacteriophages have provided many widely used tools for Mycobacterium genetics including integration-proficient vectors and recombineering systems, as well as systems for efficient delivery of reporter genes, transposons, and allelic exchange substrates. The genomic insights and engineering tools have facilitated exploration of phages for treatment of Mycobacterium infections, although their full therapeutic potential has yet to be realized.
Collapse
Affiliation(s)
- Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States of America
| |
Collapse
|
8
|
Hatfull GF. Wildy Prize Lecture, 2020-2021: Who wouldn't want to discover a new virus? MICROBIOLOGY-SGM 2021; 167. [PMID: 34468308 PMCID: PMC8549241 DOI: 10.1099/mic.0.001094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Innovations in science education are desperately needed to find ways to engage and interest students early in their undergraduate careers. Exposing students to authentic research experiences is highly beneficial, but finding ways to include all types of students and to do this at large scale is especially challenging. An attractive solution is the concept of an inclusive research education community (iREC) in which centralized research leadership and administration supports multiple institutions, including diverse groups of schools and universities, faculty and students. The Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Sciences (SEA-PHAGES) programme is an excellent example of an iREC, in which students explore viral diversity and evolution through discovery and genomic analysis of novel bacteriophages. The SEA-PHAGES programme has proven to be sustainable, to be implemented at large scale, and to enhance student persistence in science, as well as to produce substantial research advances. Discovering a new virus with the potential for new biological insights and clinical applications is inherently exciting. Who wouldn't want to discover a new virus?
Collapse
Affiliation(s)
- Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
9
|
Abstract
Actinobacteriophages are viruses that infect bacterial hosts in the phylum Actinobacteria. More than 17,000 actinobacteriophages have been described and over 3,000 complete genome sequences reported, resulting from large-scale, high-impact, integrated research-education initiatives such as the Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Sciences (SEA-PHAGES) program. Their genomic diversity is enormous; actinobacteriophages comprise many architecturally mosaic genomes with distinct DNA sequences. Their genome diversity is driven by the highly dynamic interactions between phages and their hosts, and prophages can confer a variety of systems that defend against attack by genetically distinct phages; phages can neutralize these defense systems by coding for counter-defense proteins. These phages not only provide insights into diverse and dynamic phage populations but also have provided numerous tools for mycobacterial genetics. A case study using a three-phage cocktail to treat a patient with a drug-resistant Mycobacterium abscessus suggests that phages may have considerable potential for the therapeutic treatment of mycobacterial infections.
Collapse
Affiliation(s)
- Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA;
| |
Collapse
|
10
|
Abstract
Mycobacteriophage Fulbright was isolated from soil in central Oklahoma using Mycobacterium smegmatis mc2115. The genome of phage Fulbright is 42,396 bp long and contains 70 open reading frames (ORFs), with 33 having predicted functions and 37 having hypothetical proteins. It belongs to cluster N and shares 99% nucleotide identity with mycobacteriophage Phloss.
Collapse
|
11
|
Payaslian F, Gradaschi V, Rondón Salazar L, Dieterle ME, Urdániz E, Di Paola M, Peña Cárcamo J, Zon F, Sosa E, Fernandez Do Porto D, Dunne M, Goeller P, Klumpp J, Raya RR, Reyes A, Piuri M. Isolation and Characterization of vB_MsmS_Celfi: A New Mycobacterium tuberculosis Bacteriophage. PHAGE (NEW ROCHELLE, N.Y.) 2021; 2:43-49. [PMID: 36148439 PMCID: PMC9041486 DOI: 10.1089/phage.2020.0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Introduction: Because of the clinical relevance of Mycobacteria, and from a therapeutic perspective, there is an increasing interest to study phages that infect bacteria belonging to this genus. Materials and Methods: A phage was isolated from a soil sample, using Mycobacterium smegmatis as host. Its characterization included sequencing, annotation, and analysis of the genome, host range determination, and electron microscopy imaging. Results: Mycobacterium phage vB_MsmS_Celfi is a temperate phage able to infect Mycobacterium tuberculosis with high efficiency. From electron microscopy images, Celfi belongs to the Siphoviridae family. Genome analysis classified phage Celfi into cluster L, subcluster L2 of Actinobacteriophage clusters. Mycobacterium phage Celfi exhibits a Lysin B distant to those present in other members of the subcluster and other mycobacteriophages. Conclusions: The discovery of new phages that infect M. tuberculosis could contribute to the development of novel tools for detection systems and future treatment of the disease.
Collapse
Affiliation(s)
- Florencia Payaslian
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Victoria Gradaschi
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Liliana Rondón Salazar
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Maria Eugenia Dieterle
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Estefanía Urdániz
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Matias Di Paola
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - José Peña Cárcamo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Fabio Zon
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Ezequiel Sosa
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Darío Fernandez Do Porto
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Matthew Dunne
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Pauline Goeller
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Jochen Klumpp
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | | | - Alejandro Reyes
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mariana Piuri
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
12
|
Allué-Guardia A, Saranathan R, Chan J, Torrelles JB. Mycobacteriophages as Potential Therapeutic Agents against Drug-Resistant Tuberculosis. Int J Mol Sci 2021; 22:ijms22020735. [PMID: 33450990 PMCID: PMC7828454 DOI: 10.3390/ijms22020735] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 01/21/2023] Open
Abstract
The current emergence of multi-, extensively-, extremely-, and total-drug resistant strains of Mycobacterium tuberculosis poses a major health, social, and economic threat, and stresses the need to develop new therapeutic strategies. The notion of phage therapy against bacteria has been around for more than a century and, although its implementation was abandoned after the introduction of drugs, it is now making a comeback and gaining renewed interest in Western medicine as an alternative to treat drug-resistant pathogens. Mycobacteriophages are genetically diverse viruses that specifically infect mycobacterial hosts, including members of the M. tuberculosis complex. This review describes general features of mycobacteriophages and their mechanisms of killing M. tuberculosis, as well as their advantages and limitations as therapeutic and prophylactic agents against drug-resistant M. tuberculosis strains. This review also discusses the role of human lung micro-environments in shaping the availability of mycobacteriophage receptors on the M. tuberculosis cell envelope surface, the risk of potential development of bacterial resistance to mycobacteriophages, and the interactions with the mammalian host immune system. Finally, it summarizes the knowledge gaps and defines key questions to be addressed regarding the clinical application of phage therapy for the treatment of drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Anna Allué-Guardia
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Correspondence: (A.A.-G.); (J.B.T.)
| | - Rajagopalan Saranathan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA; (R.S.); (J.C.)
| | - John Chan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA; (R.S.); (J.C.)
| | - Jordi B. Torrelles
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Correspondence: (A.A.-G.); (J.B.T.)
| |
Collapse
|
13
|
Nanoluciferase Reporter Mycobacteriophage for Sensitive and Rapid Detection of Mycobacterium tuberculosis Drug Susceptibility. J Bacteriol 2020; 202:JB.00411-20. [PMID: 32900827 PMCID: PMC7585058 DOI: 10.1128/jb.00411-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/01/2020] [Indexed: 01/02/2023] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis disease, remains a public health crisis on a global scale, and development of new interventions and identification of drug resistance are pillars in the World Health Organization End TB Strategy. Leveraging the tractability of the TM4 mycobacteriophage and the sensitivity of the nanoluciferase reporter enzyme, the present work describes an evolution of phage-mediated detection and drug susceptibility testing of M. tuberculosis, adding a valuable tool in drug discovery and basic biology research. With additional validation, this system may play a role as a quantitative phenotypic reference method and complement to genotypic methods for diagnosis and antibiotic susceptibility testing. Phenotypic testing for drug susceptibility of Mycobacterium tuberculosis is critical to basic research and managing the evolving problem of antimicrobial resistance in tuberculosis management, but it remains a specialized technique to which access is severely limited. Here, we report on the development and validation of an improved phage-mediated detection system for M. tuberculosis. We incorporated a nanoluciferase (Nluc) reporter gene cassette into the TM4 mycobacteriophage genome to create phage TM4-nluc. We assessed the performance of this reporter phage in the context of cellular limit of detection and drug susceptibility testing using multiple biosafety level 2 drug-sensitive and -resistant auxotrophs as well as virulent M. tuberculosis strains. For both limit of detection and drug susceptibility testing, we developed a standardized method consisting of a 96-hour cell preculture followed by a 72-hour experimental window for M. tuberculosis detection with or without antibiotic exposure. The cellular limit of detection of M. tuberculosis in a 96-well plate batch culture was ≤102 CFU. Consistent with other phenotypic methods for drug susceptibility testing, we found TM4-nluc to be compatible with antibiotics representing multiple classes and mechanisms of action, including inhibition of core central dogma functions, cell wall homeostasis, metabolic inhibitors, compounds currently in clinical trials (SQ109 and Q203), and susceptibility testing for bedaquiline, pretomanid, and linezolid (components of the BPaL regimen for the treatment of multi- and extensively drug-resistant tuberculosis). Using the same method, we accurately identified rifampin-resistant and multidrug-resistant M. tuberculosis strains. IMPORTANCEMycobacterium tuberculosis, the causative agent of tuberculosis disease, remains a public health crisis on a global scale, and development of new interventions and identification of drug resistance are pillars in the World Health Organization End TB Strategy. Leveraging the tractability of the TM4 mycobacteriophage and the sensitivity of the nanoluciferase reporter enzyme, the present work describes an evolution of phage-mediated detection and drug susceptibility testing of M. tuberculosis, adding a valuable tool in drug discovery and basic biology research. With additional validation, this system may play a role as a quantitative phenotypic reference method and complement to genotypic methods for diagnosis and antibiotic susceptibility testing.
Collapse
|
14
|
Phillips IL, Everman JL, Bermudez LE, Danelishvili L. Acanthamoeba castellanii as a Screening Tool for Mycobacterium avium Subspecies paratuberculosis Virulence Factors with Relevance in Macrophage Infection. Microorganisms 2020; 8:microorganisms8101571. [PMID: 33066018 PMCID: PMC7601679 DOI: 10.3390/microorganisms8101571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/05/2023] Open
Abstract
The high prevalence of Johne's disease has driven a continuous effort to more readily understand the pathogenesis of the etiological causative bacterium, Mycobacterium avium subsp. paratuberculosis (MAP), and to develop effective preventative measures for infection spread. In this study, we aimed to create an in vivo MAP infection model employing an environmental protozoan host and used it as a tool for selection of bacterial virulence determinants potentially contributing to MAP survival in mammalian host macrophages. We utilized Acanthamoeba castellanii (amoeba) to explore metabolic consequences of the MAP-host interaction and established a correlation between metabolic changes of this phagocytic host and MAP virulence. Using the library of gene knockout mutants, we identified MAP clones that can either enhance or inhibit amoeba metabolism and we discovered that, for most part, it mirrors the pattern of MAP attenuation or survival during infection of macrophages. It was found that MAP mutants that induced an increase in amoeba metabolism were defective in intracellular growth in macrophages. However, MAP clones that exhibited low metabolic alteration in amoeba were able to survive at a greater rate within mammalian cells, highlighting importance of both category of genes in bacterial pathogenesis. Sequencing of MAP mutants has identified several virulence factors previously shown to have a biological relevance in mycobacterial survival and intracellular growth in phagocytic cells. In addition, we uncovered new genetic determinants potentially contributing to MAP pathogenicity. Results of this study support the use of the amoeba model system as a quick initial screening tool for selection of virulence factors of extremely slow-grower MAP that is challenging to study.
Collapse
Affiliation(s)
- Ida L. Phillips
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (I.L.P.); (L.E.B.)
| | - Jamie L. Everman
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA;
| | - Luiz E. Bermudez
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (I.L.P.); (L.E.B.)
- Department of Microbiology, College of Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Lia Danelishvili
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (I.L.P.); (L.E.B.)
- Correspondence: ; Tel.: +541-737-6544; Fax: +541-737-2730
| |
Collapse
|
15
|
Lee KI, Choi S, Choi HG, Kebede SG, Dang TB, Back YW, Park HS, Kim HJ. Recombinant Rv3261 protein of Mycobacterium tuberculosis induces apoptosis through a mitochondrion-dependent pathway in macrophages and inhibits intracellular bacterial growth. Cell Immunol 2020; 354:104145. [DOI: 10.1016/j.cellimm.2020.104145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/21/2020] [Accepted: 05/24/2020] [Indexed: 02/08/2023]
|
16
|
Alonso MN, Malaga W, Mc Neil M, Jackson M, Romano MI, Guilhot C, Santangelo MP. Efficient method for targeted gene disruption by homologous recombination in Mycobacterium avium subspecie paratuberculosis. Res Microbiol 2020; 171:203-210. [PMID: 32283218 DOI: 10.1016/j.resmic.2020.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 10/24/2022]
Abstract
Targeted gene disruption by homologous recombination, has been widely used in mycobacterium species to understand the genetic basis of virulence and persistence in the host and to develop efficacious potential live vaccines. However, in slow growing pathogenic mycobacteria as Mycobacterium avium subsp paratuberculosis (MAP), these methods have been inefficient, in part due to the low frequency of legitimate homologous recombination. Another feature of mycobacteria is the low efficiency of transformation; therefore, some years ago, a phage-mediated transduction process was developed to introduce DNA into mycobacteria. This strategy is very efficient, due to the high rate of infection of the phage. This report describes a genetic method for the generation of targeted deletion mutations in MAP by allelic exchange using in vitro-generated specialized transducing mycobacteriophages, which does not require the critical packaging step and that could also be applied to other mycobacteria. We provide a detailed gene deletion methodology and demonstrate the use of this genetic system by deleting the mce4 operon of MAP. Finally, our results showed that the deletion of mce4 in MAP induces triacylglycerol accumulation; alter morphology and aggregation in liquid culture.
Collapse
Affiliation(s)
- Maria Natalia Alonso
- IABIMO Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, Los Reseros y Nicolas Repetto 1686, Hurlingham, Buenos Aires, Argentina.
| | - Wladimir Malaga
- Institut de Pharmacologie et de Biologie Structurale, IPBS, University of Toulouse, CNRS, UPS, BP64182 205 Route de Narbonne, 31077 Toulouse Cedex 04, France.
| | - Michael Mc Neil
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA.
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA.
| | - Maria Isabel Romano
- IABIMO Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, Los Reseros y Nicolas Repetto 1686, Hurlingham, Buenos Aires, Argentina.
| | - Christophe Guilhot
- Institut de Pharmacologie et de Biologie Structurale, IPBS, University of Toulouse, CNRS, UPS, BP64182 205 Route de Narbonne, 31077 Toulouse Cedex 04, France.
| | - María Paz Santangelo
- IABIMO Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, Los Reseros y Nicolas Repetto 1686, Hurlingham, Buenos Aires, Argentina.
| |
Collapse
|
17
|
Bannantine JP, Zinniel DK, Barletta RG. Transposon Mutagenesis in Mycobacterium avium Subspecies Paratuberculosis. Methods Mol Biol 2020; 2016:117-125. [PMID: 31197714 DOI: 10.1007/978-1-4939-9570-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
While transposon mutagenesis has been developed for Mycobacterium avium subspecies paratuberculosis (Map), relatively few laboratories have adopted this important genetic tool to examine gene function and essentiality. Here we describe the construction of a Map transposon library using the Himar1 mariner transposon, but concepts can also be applied to the Tn5367 transposon, which has also been used by our group. Delivery of the transposon is by a temperature-sensitive phagemid, ϕMycoMarT7, and plating transductants requires patience and specialized media due to length of incubation required to observe colonies. Several transposon mutants obtained from these libraries have been tested in vaccine and pathogenesis studies. By providing the following detailed protocol herein, we expect to demystify the procedure and encourage additional investigators to incorporate transposon mutagenesis in their studies on Johne's disease.
Collapse
Affiliation(s)
| | - Denise K Zinniel
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, USA
| | - Raúl G Barletta
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, USA
| |
Collapse
|
18
|
Budell WC, Germain GA, Janisch N, McKie-Krisberg Z, Jayaprakash AD, Resnick AE, Quadri LEN. Transposon mutagenesis in Mycobacterium kansasii links a small RNA gene to colony morphology and biofilm formation and identifies 9,885 intragenic insertions that do not compromise colony outgrowth. Microbiologyopen 2020; 9:e988. [PMID: 32083796 PMCID: PMC7142372 DOI: 10.1002/mbo3.988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 01/05/2023] Open
Abstract
Mycobacterium kansasii (Mk) is a resilient opportunistic human pathogen that causes tuberculosis‐like chronic pulmonary disease and mortality stemming from comorbidities and treatment failure. The standard treatment of Mk infections requires costly, long‐term, multidrug courses with adverse side effects. The emergence of drug‐resistant isolates further complicates the already challenging drug therapy regimens and threatens to compromise the future control of Mk infections. Despite the increasingly recognized global burden of Mk infections, the biology of this opportunistic pathogen remains essentially unexplored. In particular, studies reporting gene function or generation of defined mutants are scarce. Moreover, no transposon (Tn) mutagenesis tool has been validated for use in Mk, a situation limiting the repertoire of genetic approaches available to accelerate the dissection of gene function and the generation of gene knockout mutants in this poorly characterized pathogen. In this study, we validated the functionality of a powerful Tn mutagenesis tool in Mk and used this tool in conjunction with a forward genetic screen to establish a previously unrecognized role of a conserved mycobacterial small RNA gene of unknown function in colony morphology features and biofilm formation. We also combined Tn mutagenesis with next‐generation sequencing to identify 12,071 Tn insertions that do not compromise viability in vitro. Finally, we demonstrated the susceptibility of the Galleria mellonella larva to Mk, setting the stage for further exploration of this simple and economical infection model system to the study of this pathogen.
Collapse
Affiliation(s)
- William C Budell
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, USA.,Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY, USA
| | - Gabrielle A Germain
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, USA.,Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY, USA
| | - Niklas Janisch
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, USA.,Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY, USA
| | - Zaid McKie-Krisberg
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, USA
| | | | - Andrew E Resnick
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, USA
| | - Luis E N Quadri
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, USA.,Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY, USA.,Biochemistry Ph.D. Program, Graduate Center, City University of New York, New York, NY, USA
| |
Collapse
|
19
|
Global Assessment of Mycobacterium avium subsp. hominissuis Genetic Requirement for Growth and Virulence. mSystems 2019; 4:4/6/e00402-19. [PMID: 31822597 PMCID: PMC6906737 DOI: 10.1128/msystems.00402-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nontuberculous mycobacterial infections caused by the opportunistic pathogen Mycobacterium avium subsp. hominissuis (MAH) are currently receiving renewed attention due to increased incidence combined with difficult treatment. Insights into the disease-causing mechanisms of this species have been hampered by difficulties in genetic manipulation of the bacteria. Here, we identified and sequenced a highly transformable, virulent MAH clinical isolate susceptible to high-density transposon mutagenesis, facilitating global gene disruption and subsequent investigation of MAH gene function. By transposon insertion sequencing (TnSeq) of this strain, we defined the MAH genome-wide genetic requirement for virulence and in vitro growth and organized ∼3,500 identified transposon mutants for hypothesis-driven research. The majority (96%) of the genes we identified as essential for MAH in vitro had a mutual ortholog in the related and highly virulent Mycobacterium tuberculosis (Mtb). However, passaging our library through a mouse model of infection revealed a substantial number (54% of total hits) of novel virulence genes. More than 97% of the MAH virulence genes had a mutual ortholog in Mtb Finally, we validated novel genes required for successful MAH infection: one encoding a probable major facilitator superfamily (MFS) transporter and another encoding a hypothetical protein located in the immediate vicinity of six other identified virulence genes. In summary, we provide new, fundamental insights into the underlying genetic requirement of MAH for growth and host infection.IMPORTANCE Pulmonary disease caused by nontuberculous mycobacteria is increasing worldwide. The majority of these infections are caused by the Mycobacterium avium complex (MAC), whereof >90% are due to Mycobacterium avium subsp. hominissuis (MAH). Treatment of MAH infections is currently difficult, with a combination of antibiotics given for at least 12 months. To control MAH by improved therapy, prevention, and diagnostics, we need to understand the underlying mechanisms of infection. Here, we provide crucial insights into MAH's global genetic requirements for growth and infection. We find that the vast majority of genes required for MAH growth and virulence (96% and 97%, respectively) have mutual orthologs in the tuberculosis-causing pathogen M. tuberculosis (Mtb). However, we also find growth and virulence genes specific to MAC species. Finally, we validate novel mycobacterial virulence factors that might serve as future drug targets for MAH-specific treatment or translate to broader treatment of related mycobacterial diseases.
Collapse
|
20
|
Stamm CE, Pasko BL, Chaisavaneeyakorn S, Franco LH, Nair VR, Weigele BA, Alto NM, Shiloh MU. Screening Mycobacterium tuberculosis Secreted Proteins Identifies Mpt64 as a Eukaryotic Membrane-Binding Bacterial Effector. mSphere 2019; 4:e00354-19. [PMID: 31167949 PMCID: PMC6553557 DOI: 10.1128/msphere.00354-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 05/19/2019] [Indexed: 02/07/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is one of the most successful human pathogens. One reason for its success is that Mtb can reside within host macrophages, a cell type that normally functions to phagocytose and destroy infectious bacteria. However, Mtb is able to evade macrophage defenses in order to survive for prolonged periods of time. Many intracellular pathogens secrete virulence factors targeting host membranes and organelles to remodel their intracellular environmental niche. We hypothesized that Mtb secreted proteins that target host membranes are vital for Mtb to adapt to and manipulate the host environment for survival. Thus, we characterized 200 secreted proteins from Mtb for their ability to associate with eukaryotic membranes using a unique temperature-sensitive yeast screen and to manipulate host trafficking pathways using a modified inducible secretion screen. We identified five Mtb secreted proteins that both associated with eukaryotic membranes and altered the host secretory pathway. One of these secreted proteins, Mpt64, localized to the endoplasmic reticulum during Mtb infection of murine and human macrophages and impaired the unfolded protein response in macrophages. These data highlight the importance of secreted proteins in Mtb pathogenesis and provide a basis for further investigation into their molecular mechanisms.IMPORTANCE Advances have been made to identify secreted proteins of Mycobacterium tuberculosis during animal infections. These data, combined with transposon screens identifying genes important for M. tuberculosis virulence, have generated a vast resource of potential M. tuberculosis virulence proteins. However, the function of many of these proteins in M. tuberculosis pathogenesis remains elusive. We have integrated three cell biological screens to characterize nearly 200 M. tuberculosis secreted proteins for eukaryotic membrane binding, host subcellular localization, and interactions with host vesicular trafficking. In addition, we observed the localization of one secreted protein, Mpt64, to the endoplasmic reticulum (ER) during M. tuberculosis infection of macrophages. Interestingly, although Mpt64 is exported by the Sec pathway, its delivery into host cells was dependent upon the action of the type VII secretion system. Finally, we observed that Mpt64 impairs the ER-mediated unfolded protein response in macrophages.
Collapse
Affiliation(s)
- Chelsea E Stamm
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Breanna L Pasko
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sujittra Chaisavaneeyakorn
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Luis H Franco
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Vidhya R Nair
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Bethany A Weigele
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Neal M Alto
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Michael U Shiloh
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
21
|
Conte E, Mende L, Grainge I, Colloms SD. A Mini-ISY100 Transposon Delivery System Effective in γ Proteobacteria. Front Microbiol 2019; 10:280. [PMID: 30873132 PMCID: PMC6400869 DOI: 10.3389/fmicb.2019.00280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/04/2019] [Indexed: 11/17/2022] Open
Abstract
Transposons are invaluable biological tools for the genetic manipulation of microorganisms. ISY100 from Synechocystis sp. PCC6803 is a member of the Tc1/mariner/IS630 superfamily, and is characterized by high transposition efficiency and a strong preference for TA target sequences. In this paper, we describe the design and application of a mini-ISY100 suicide vector for the in vivo creation of stable random transposon insertion libraries. The system was successfully applied in seven species belonging to four different orders of γ proteobacteria. In all cases, delivery using conjugation consistently showed the highest transposition efficiency compared to chemical transformation or electroporation. We determined the frequency of transposon insertions in all the species and proved the utility of the system by identifying genes involved in colony coloration in Shewanella oneidensis. The ease and the efficiency of the protocol developed here allow the creation of complete knock-out libraries in an extensive range of host microorganisms in less than a week with no requirement for preparatory modification.
Collapse
Affiliation(s)
- Emanuele Conte
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Linda Mende
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, NSW, Australia
| | - Ian Grainge
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, NSW, Australia
| | - Sean D Colloms
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
22
|
Abstract
Mycobacteriophages are viruses that infect mycobacterial hosts. A large number of mycobacteriophages have been isolated and genomically characterized, providing insights into viral diversity and evolution, as well as fueling development of tools for mycobacterial genetics. Mycobacteriophages have intimate relationships with their hosts and provide insights into the genetics and physiology of the mycobacteria and tools for potential clinical applications such as drug development, diagnosis, vaccines, and potentially therapy.
Collapse
|
23
|
Nazarova EV, Montague CR, Huang L, La T, Russell D, VanderVen BC. The genetic requirements of fatty acid import by Mycobacterium tuberculosis within macrophages. eLife 2019; 8:e43621. [PMID: 30735132 PMCID: PMC6368401 DOI: 10.7554/elife.43621] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/10/2019] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) imports and metabolizes fatty acids to maintain infection within human macrophages. Although this is a well-established paradigm, the bacterial factors required for fatty acid import are poorly understood. Previously, we found that LucA and Mce1 are required for fatty acid import in Mtb (Nazarova et al., 2017). Here, we identified additional Mtb mutants that have a reduced ability to import a fluorescent fatty acid substrate during infection within macrophages. This screen identified the novel genes as rv2799 and rv0966c as be necessary for fatty acid import and confirmed the central role for Rv3723/LucA and putative components of the Mce1 fatty acid transporter (Rv0200/OmamB, Rv0172/Mce1D, and Rv0655/MceG) in this process.
Collapse
Affiliation(s)
- Evgeniya V Nazarova
- Department of Microbiology and Immunology, College of Veterinary MedicineCornell UniversityIthacaUnited States
| | - Christine R Montague
- Department of Microbiology and Immunology, College of Veterinary MedicineCornell UniversityIthacaUnited States
| | - Lu Huang
- Department of Microbiology and Immunology, College of Veterinary MedicineCornell UniversityIthacaUnited States
| | - Thuy La
- Department of Microbiology and Immunology, College of Veterinary MedicineCornell UniversityIthacaUnited States
| | - David Russell
- Department of Microbiology and Immunology, College of Veterinary MedicineCornell UniversityIthacaUnited States
| | - Brian C VanderVen
- Department of Microbiology and Immunology, College of Veterinary MedicineCornell UniversityIthacaUnited States
| |
Collapse
|
24
|
Koliwer‐Brandl H, Knobloch P, Barisch C, Welin A, Hanna N, Soldati T, Hilbi H. DistinctMycobacterium marinumphosphatases determine pathogen vacuole phosphoinositide pattern, phagosome maturation, and escape to the cytosol. Cell Microbiol 2019; 21:e13008. [DOI: 10.1111/cmi.13008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/18/2018] [Accepted: 01/12/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Hendrik Koliwer‐Brandl
- Faculty of Medicine, Institute of Medical MicrobiologyUniversity of Zurich Zurich Switzerland
| | - Paulina Knobloch
- Faculty of Medicine, Institute of Medical MicrobiologyUniversity of Zurich Zurich Switzerland
| | - Caroline Barisch
- Faculty of Science, Department of BiochemistryUniversity of Geneva Geneva Switzerland
| | - Amanda Welin
- Faculty of Medicine, Institute of Medical MicrobiologyUniversity of Zurich Zurich Switzerland
| | - Nabil Hanna
- Faculty of Science, Department of BiochemistryUniversity of Geneva Geneva Switzerland
| | - Thierry Soldati
- Faculty of Science, Department of BiochemistryUniversity of Geneva Geneva Switzerland
| | - Hubert Hilbi
- Faculty of Medicine, Institute of Medical MicrobiologyUniversity of Zurich Zurich Switzerland
| |
Collapse
|
25
|
Dedrick RM, Guerrero Bustamante CA, Garlena RA, Pinches RS, Cornely K, Hatfull GF. Mycobacteriophage ZoeJ: A broad host-range close relative of mycobacteriophage TM4. Tuberculosis (Edinb) 2019; 115:14-23. [PMID: 30948168 DOI: 10.1016/j.tube.2019.01.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/09/2019] [Accepted: 01/13/2019] [Indexed: 10/27/2022]
Abstract
A collection of over 1600 sequenced bacteriophages isolated on a single host strain, Mycobacterium smegmatis mc2155, can be grouped into over two dozen types that have little or no nucleotide sequence similarity to each other. One group, Cluster K, can be divided into several subclusters, and the well-characterized and much exploited phage TM4 lies in Subcluster K2. Many of the Cluster K phages have broad host ranges and infect both fast- and slow-growing mycobacterial strains. Here we describe phage ZoeJ, a new Subcluster K2 member, which infects a broad spectrum of mycobacterial hosts including M. smegmatis, Mycobacterium tuberculosis, and Mycobacterium avium. ZoeJ has extensive sequence similarity to TM4, and comparative analysis reveals the precise deletion conferring the lytic phenotype of TM4. The ZoeJ immunity repressor was identified as gene 45, which is prophage-expressed, is required for lysogeny, and is sufficient to confer superinfection immunity to ZoeJ. ZoeJ gp45 also confers immunity to Subcluster K2 phage Milly, and Subcluster K1 phages Adephagia and CrimD, but surprisingly not to TM4. RNAseq analysis reveals the temporal pattern of early and late gene expressions in ZoeJ lytic growth and suggests a role for the ESAS motifs for gene regulation.
Collapse
Affiliation(s)
- Rebekah M Dedrick
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - Rebecca A Garlena
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - R Seth Pinches
- Department of Chemistry and Biochemistry, Providence College, Providence, RI 02918, USA
| | - Kathleen Cornely
- Department of Chemistry and Biochemistry, Providence College, Providence, RI 02918, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
26
|
Paik S, Choi S, Lee KI, Back YW, Son YJ, Jo EK, Kim HJ. Mycobacterium tuberculosis acyl carrier protein inhibits macrophage apoptotic death by modulating the reactive oxygen species/c-Jun N-terminal kinase pathway. Microbes Infect 2019; 21:40-49. [DOI: 10.1016/j.micinf.2018.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/25/2018] [Accepted: 06/25/2018] [Indexed: 12/14/2022]
|
27
|
Phan TH, van Leeuwen LM, Kuijl C, Ummels R, van Stempvoort G, Rubio-Canalejas A, Piersma SR, Jiménez CR, van der Sar AM, Houben ENG, Bitter W. EspH is a hypervirulence factor for Mycobacterium marinum and essential for the secretion of the ESX-1 substrates EspE and EspF. PLoS Pathog 2018; 14:e1007247. [PMID: 30102741 PMCID: PMC6107294 DOI: 10.1371/journal.ppat.1007247] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/23/2018] [Accepted: 07/26/2018] [Indexed: 12/31/2022] Open
Abstract
The pathogen Mycobacterium tuberculosis employs a range of ESX-1 substrates to manipulate the host and build a successful infection. Although the importance of ESX-1 secretion in virulence is well established, the characterization of its individual components and the role of individual substrates is far from complete. Here, we describe the functional characterization of the Mycobacterium marinum accessory ESX-1 proteins EccA1, EspG1 and EspH, i.e. proteins that are neither substrates nor structural components. Proteomic analysis revealed that EspG1 is crucial for ESX-1 secretion, since all detectable ESX-1 substrates were absent from the cell surface and culture supernatant in an espG1 mutant. Deletion of eccA1 resulted in minor secretion defects, but interestingly, the severity of these secretion defects was dependent on the culture conditions. Finally, espH deletion showed a partial secretion defect; whereas several ESX-1 substrates were secreted in normal amounts, secretion of EsxA and EsxB was diminished and secretion of EspE and EspF was fully blocked. Interaction studies showed that EspH binds EspE and therefore could function as a specific chaperone for this substrate. Despite the observed differences in secretion, hemolytic activity was lost in all M. marinum mutants, implying that hemolytic activity is not strictly correlated with EsxA secretion. Surprisingly, while EspH is essential for successful infection of phagocytic host cells, deletion of espH resulted in a significantly increased virulence phenotype in zebrafish larvae, linked to poor granuloma formation and extracellular outgrowth. Together, these data show that different sets of ESX-1 substrates play different roles at various steps of the infection cycle of M. marinum. M. tuberculosis is a facultative intracellular pathogen that has an intimate relationship with host macrophages. Proteins secreted by the ESX-1 secretion system play an important role in this interaction, for instance by orchestrating the escape from the phagosome into the cytosol of the macrophage. However, the exact role of the ESX-1 substrates is unknown, due to their complicated interdependency for secretion. Here, we study the function of ESX-1 accessory proteins EccA1, EspG1 and EspH in ESX-1 secretion in Mycobacterium marium, the causative agent of fish tuberculosis. We found that these proteins affect the secretion of different substrate classes, which offers an approach to study the roles of these substrate groups. An espG1 deletion broadly aborts ESX-1 secretion and thus resulted in severe attenuation in a zebrafish model for tuberculosis, whereas EccA1 is only crucial under specific growth conditions. The most surprising results were obtained for EspH. This protein seems to function as a molecular chaperone for EspE and is as such involved in the secretion of a small subset of ESX-1 substrates. Disruption of espH showed a dual character: whereas this gene is essential for the successful infection of macrophages, deletion of espH resulted in significantly increased virulence in zebrafish larvae. These data convincingly show that different subsets of ESX-1 substrates play different roles at various steps in the mycobacterial infection cycle.
Collapse
Affiliation(s)
- Trang H. Phan
- Section Molecular Microbiology, Amsterdam Institute of Molecules, Medicines & Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Lisanne M. van Leeuwen
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Coen Kuijl
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Roy Ummels
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Gunny van Stempvoort
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Alba Rubio-Canalejas
- Section Molecular Microbiology, Amsterdam Institute of Molecules, Medicines & Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sander R. Piersma
- Department of Medical Oncology, OncoProteomics Laboratory, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Connie R. Jiménez
- Department of Medical Oncology, OncoProteomics Laboratory, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Astrid M. van der Sar
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Edith N. G. Houben
- Section Molecular Microbiology, Amsterdam Institute of Molecules, Medicines & Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Wilbert Bitter
- Section Molecular Microbiology, Amsterdam Institute of Molecules, Medicines & Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- * E-mail:
| |
Collapse
|
28
|
Jian W, Li X, Kang J, Lei Y, Bai Y, Xue Y. Antitumor effect of recombinant Mycobacterium smegmatis expressing MAGEA3 and SSX2 fusion proteins. Exp Ther Med 2018; 16:2160-2166. [PMID: 30186454 DOI: 10.3892/etm.2018.6425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 06/08/2018] [Indexed: 12/17/2022] Open
Abstract
Mycobacterium smegmatis (M. smegmatis), which is a nonpathogenic and fast-growing mycobacterium, is a potential vaccine vector capable of expressing heterologous antigens. Spontaneous humoral and cellular immune responses have been demonstrated against cancer/testis antigens (CTA), including melanoma-associated antigen A (MAGEA) and SSX. In the present study, recombinant plasmids expressing MAGEA3 and SSX2 were constructed. The recombinant plasmids were transferred into M. smegmatis to generate the novel antitumor DNA vaccine. As MAGEA3 and SSX2 were in different ligation sequences, the two DNA vaccines were recombinant M. smegmatis MAGEA3-SSX2 (rM.S-MS) and recombinant M. smegmatis SSX2-MAGEA3 (rM.S-SM), respectively. The expression levels of Fusion proteins were assessed by western blotting. BALB/c mice were immunized with rM.S and western blot analysis was used to determine whether antibodies against MAGEA3 or SSX2 were produced in immunized mice. EC9706 cells were inoculated into BALB/c nude mice and the mice were maintained until an obvious visible tumor appeared on the back. Subsequently, the blood from the rM.S immunized BALB/c mice was injected into the BALB/c nude mice via the tail vein. In order to evaluate the antitumor effect of the vaccines, tumor volume and weight were measured 5 to 21 days after injection. Mice were euthanized on day 21 of tumor growth, and the tumor was dissected and weighed. The two fusion proteins were expressed in the rM.S and the specific fusion protein antibodies were expressed in the blood of immunized BALB/c mice. The tumor volumes and weight in the recombinant M. smegmatis MAGEA3 (rM.S-M) and recombinant M. smegmatis SSX2 (rM.S-S) groups were significantly reduced compared with the control group. Furthermore, the decrease in tumor volumes and weight in the rM.S-MS and rM.S-SM groups was more severe than in the rM.S-M or rM.S-S groups. There was no significant difference in the antitumor effect of the rM.S-MS and rM.S-SM groups. The present findings suggest that this rM.S may be a potential candidate therapeutic vaccine for the treatment of cancer.
Collapse
Affiliation(s)
- Wen Jian
- Department of Respiratory Medicine, The First Affiliated Hospital of The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xin Li
- Medical Oncology Center, Dongguan Kanghua Hospital, Dongguan, Guangdong 523080, P.R. China
| | - Jian Kang
- Department of Basic Microbiology, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yingfeng Lei
- Department of Basic Microbiology, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yinlan Bai
- Department of Basic Microbiology, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Ying Xue
- Medical Oncology Center, Dongguan Kanghua Hospital, Dongguan, Guangdong 523080, P.R. China.,Department of Radiation Oncology, The First Affiliated Hospital of The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
29
|
Ates LS, Sayes F, Frigui W, Ummels R, Damen MPM, Bottai D, Behr MA, van Heijst JWJ, Bitter W, Majlessi L, Brosch R. RD5-mediated lack of PE_PGRS and PPE-MPTR export in BCG vaccine strains results in strong reduction of antigenic repertoire but little impact on protection. PLoS Pathog 2018; 14:e1007139. [PMID: 29912964 PMCID: PMC6023246 DOI: 10.1371/journal.ppat.1007139] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/28/2018] [Accepted: 06/05/2018] [Indexed: 01/03/2023] Open
Abstract
Tuberculosis is the deadliest infectious disease worldwide. Although the BCG vaccine is widely used, it does not efficiently protect against pulmonary tuberculosis and an improved tuberculosis vaccine is therefore urgently needed. Mycobacterium tuberculosis uses different ESX/Type VII secretion (T7S) systems to transport proteins important for virulence and host immune responses. We recently reported that secretion of T7S substrates belonging to the mycobacteria-specific Pro-Glu (PE) and Pro-Pro-Glu (PPE) proteins of the PGRS (polymorphic GC-rich sequences) and MPTR (major polymorphic tandem repeat) subfamilies required both a functional ESX-5 system and a functional PPE38/71 protein for secretion. Inactivation of ppe38/71 and the resulting loss of PE_PGRS/PPE-MPTR secretion were linked to increased virulence of M. tuberculosis strains. Here, we show that a predicted total of 89 PE_PGRS/PPE-MPTR surface proteins are not exported by certain animal-adapted strains of the M. tuberculosis complex including M. bovis. This Δppe38/71-associated secretion defect therefore also occurs in the M. bovis-derived tuberculosis vaccine BCG and could be partially restored by introduction of the M. tuberculosis ppe38-locus. Epitope mapping of the PPE-MPTR protein PPE10, further allowed us to monitor T-cell responses in splenocytes from BCG/M. tuberculosis immunized mice, confirming the dependence of PPE10-specific immune-induction on ESX-5/PPE38-mediated secretion. Restoration of PE_PGRS/PPE-MPTR secretion in recombinant BCG neither altered global antigenic presentation or activation of innate immune cells, nor protective efficacy in two different mouse vaccination-infection models. This unexpected finding stimulates a reassessment of the immunomodulatory properties of PE_PGRS/PPE-MPTR proteins, some of which are contained in vaccine formulations currently in clinical evaluation. One of the major findings of the pioneering Mycobacterium tuberculosis H37Rv genome sequencing project was the identification of the highly abundant PE and PPE proteins, named after their N-terminal motifs Pro–Glu (PE) or Pro–Pro–Glu (PPE). Within the 20 years of research since then, many claims were made that PE/PPE proteins, including the two large subgroups encoded by repetitive sequences with very high GC content (PE_PGRS and PPE-MPTR families), are exported to the bacterial surface or beyond, and show broad immunomodulatory impact on host-pathogen interaction. We thus screened strains from different branches of the M. tuberculosis complex, including the attenuated Mycobacterium bovis BCG vaccine strains, for their capacity to export PE_PGRS/PPE-MPTR proteins. Strikingly, we found that BCG strains were unable to export the plethora of PE_PGRS/PPE-MPTR proteins due to the absence of the region of difference RD5, which in M. tuberculosis encodes PPE38, required for PE_PGRS/PPE-MPTR export. Surprisingly, the restoration of PE_PGRS/PPE-MPTR export by genetic complementation in recombinant BCG did not result in immunomodulatory changes or altered protection in mouse models. Our results thus put into perspective the numerous reports on virulence-associated immunomodulatory impact of individual PE_PGRS and PPE-MPTR proteins and open novel questions on their biological function(s).
Collapse
Affiliation(s)
- Louis S. Ates
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR3525, Paris, France
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- * E-mail: (LSA); (RB)
| | - Fadel Sayes
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR3525, Paris, France
| | - Wafa Frigui
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR3525, Paris, France
| | - Roy Ummels
- Department of Medical Microbiology and Infection Prevention, VU University Medical Center, Amsterdam, the Netherlands
| | - Merel P. M. Damen
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR3525, Paris, France
- Section Molecular Microbiology, Amsterdam Institute of Molecules, Medicine & Systems, Vrije Universiteit, Amsterdam, the Netherlands
| | - Daria Bottai
- University of Pisa, Department of Biology, Pisa, Italy
| | - Marcel A. Behr
- McGill International TB Centre, Infectious Diseases and Immunity in Global Health Program at the McGill University Health Centre Research Institute, Montreal, Canada
| | - Jeroen W. J. van Heijst
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Prevention, VU University Medical Center, Amsterdam, the Netherlands
- Section Molecular Microbiology, Amsterdam Institute of Molecules, Medicine & Systems, Vrije Universiteit, Amsterdam, the Netherlands
| | - Laleh Majlessi
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR3525, Paris, France
| | - Roland Brosch
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR3525, Paris, France
- * E-mail: (LSA); (RB)
| |
Collapse
|
30
|
Chhotaray C, Tan Y, Mugweru J, Islam MM, Adnan Hameed HM, Wang S, Lu Z, Wang C, Li X, Tan S, Liu J, Zhang T. Advances in the development of molecular genetic tools for Mycobacterium tuberculosis. J Genet Genomics 2018; 45:S1673-8527(18)30114-0. [PMID: 29941353 DOI: 10.1016/j.jgg.2018.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mycobacterium tuberculosis, a clinically relevant Gram-positive bacterium of great clinical relevance, is a lethal pathogen owing to its complex physiological characteristics and development of drug resistance. Several molecular genetic tools have been developed in the past few decades to study this microorganism. These tools have been instrumental in understanding how M. tuberculosis became a successful pathogen. Advanced molecular genetic tools have played a significant role in exploring the complex pathways involved in M. tuberculosis pathogenesis. Here, we review various molecular genetic tools used in the study of M. tuberculosis. Further, we discuss the applications of clustered regularly interspaced short palindromic repeat interference (CRISPRi), a novel technology recently applied in M. tuberculosis research to study target gene functions. Finally, prospective outcomes of the applications of molecular techniques in the field of M. tuberculosis genetic research are also discussed.
Collapse
Affiliation(s)
- Chiranjibi Chhotaray
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Julius Mugweru
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Biological Sciences, University of Embu, P.O Box 6 -60100, Embu, Kenya
| | - Md Mahmudul Islam
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - H M Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhili Lu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Changwei Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xinjie Li
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Shouyong Tan
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Jianxiong Liu
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China.
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
31
|
Lai LY, Lin TL, Chen YY, Hsieh PF, Wang JT. Role of the Mycobacterium marinum ESX-1 Secretion System in Sliding Motility and Biofilm Formation. Front Microbiol 2018; 9:1160. [PMID: 29899738 PMCID: PMC5988883 DOI: 10.3389/fmicb.2018.01160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/14/2018] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium marinum is a close relative of Mycobacterium tuberculosis that can cause systemic tuberculosis-like infections in ectotherms and skin infections in humans. Sliding motility correlates with biofilm formation and virulence in most bacteria. In this study, we used a sliding motility assay to screen 2,304 transposon mutants of M. marinum NTUH-M6885 and identified five transposon mutants with decreased sliding motility. Transposons that interrupted the type VII secretion system (T7SS) ESX-1-related genes, espE (mmar_5439), espF (mmar_5440), and eccA1 (mmar_5443), were present in 3 mutants. We performed reverse-transcription polymerase chain reaction to verify genes from mmar_5438 to mmar_5450, which were found to belong to a single transcriptional unit. Deletion mutants of espE, espF, espG (mmar_5441), and espH (mmar_5442) displayed significant attenuation regarding sliding motility and biofilm formation. M. marinum NTUH-M6885 possesses a functional ESX-1 secretion system. However, deletion of espG or espH resulted in slightly decreased secretion of EsxB (which is also known as CFP-10). Thus, the M. marinum ESX-1 secretion system mediates sliding motility and is crucial for biofilm formation. These data provide new insight into M. marinum biofilm formation.
Collapse
Affiliation(s)
- Li-Yin Lai
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tzu-Lung Lin
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Yin Chen
- Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pei-Fang Hsieh
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jin-Town Wang
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
32
|
Baker JJ, Abramovitch RB. Genetic and metabolic regulation of Mycobacterium tuberculosis acid growth arrest. Sci Rep 2018; 8:4168. [PMID: 29520087 PMCID: PMC5843633 DOI: 10.1038/s41598-018-22343-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/21/2018] [Indexed: 01/02/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) senses and adapts to acidic environments during the course of infection. Acidic pH-dependent adaptations include the induction of metabolic genes associated with anaplerosis and growth arrest on specific carbon sources. Here we report that deletion of isocitrate lyase or phosphoenolpyruvate carboxykinase results in reduced growth at acidic pH and altered metabolite profiles, supporting that remodeling of anaplerotic metabolism is required for pH-dependent adaptation. Mtb cultured at pH 5.7 in minimal medium containing glycerol as a single carbon source exhibits an acid growth arrest phenotype, where the bacterium is non-replicating but viable and metabolically active. The bacterium assimilates and metabolizes glycerol and maintains ATP pools during acid growth arrest and becomes tolerant to detergent stress and the antibiotics isoniazid and rifampin. A forward genetic screen identified mutants that do not arrest their growth at acidic pH, including four enhanced acid growth (eag) mutants with three distinct mutations in the proline-proline-glutamate (PPE) gene MT3221 (also named ppe51). Overexpression of the MT3221(S211R) variant protein in wild type Mtb results in enhanced acid growth and reduced drug tolerance. These findings support that acid growth arrest is a genetically controlled, adaptive process and not simply a physiological limitation associated with acidic pH.
Collapse
Affiliation(s)
- Jacob J Baker
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, 48824, United States
| | - Robert B Abramovitch
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, 48824, United States.
| |
Collapse
|
33
|
Ates LS, Dippenaar A, Ummels R, Piersma SR, van der Woude AD, van der Kuij K, Le Chevalier F, Mata-Espinosa D, Barrios-Payán J, Marquina-Castillo B, Guapillo C, Jiménez CR, Pain A, Houben ENG, Warren RM, Brosch R, Hernández-Pando R, Bitter W. Mutations in ppe38 block PE_PGRS secretion and increase virulence of Mycobacterium tuberculosis. Nat Microbiol 2018; 3:181-188. [DOI: 10.1038/s41564-017-0090-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/29/2017] [Indexed: 12/30/2022]
|
34
|
Rathnaiah G, Zinniel DK, Bannantine JP, Stabel JR, Gröhn YT, Collins MT, Barletta RG. Pathogenesis, Molecular Genetics, and Genomics of Mycobacterium avium subsp. paratuberculosis, the Etiologic Agent of Johne's Disease. Front Vet Sci 2017; 4:187. [PMID: 29164142 PMCID: PMC5681481 DOI: 10.3389/fvets.2017.00187] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/20/2017] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the etiologic agent of Johne's disease in ruminants causing chronic diarrhea, malnutrition, and muscular wasting. Neonates and young animals are infected primarily by the fecal-oral route. MAP attaches to, translocates via the intestinal mucosa, and is phagocytosed by macrophages. The ensuing host cellular immune response leads to granulomatous enteritis characterized by a thick and corrugated intestinal wall. We review various tissue culture systems, ileal loops, and mice, goats, and cattle used to study MAP pathogenesis. MAP can be detected in clinical samples by microscopy, culturing, PCR, and an enzyme-linked immunosorbent assay. There are commercial vaccines that reduce clinical disease and shedding, unfortunately, their efficacies are limited and may not engender long-term protective immunity. Moreover, the potential linkage with Crohn's disease and other human diseases makes MAP a concern as a zoonotic pathogen. Potential therapies with anti-mycobacterial agents are also discussed. The completion of the MAP K-10 genome sequence has greatly improved our understanding of MAP pathogenesis. The analysis of this sequence has identified a wide range of gene functions involved in virulence, lipid metabolism, transcriptional regulation, and main metabolic pathways. We also review the transposons utilized to generate random transposon mutant libraries and the recent advances in the post-genomic era. This includes the generation and characterization of allelic exchange mutants, transcriptomic analysis, transposon mutant banks analysis, new efforts to generate comprehensive mutant libraries, and the application of transposon site hybridization mutagenesis and transposon sequencing for global analysis of the MAP genome. Further analysis of candidate vaccine strains development is also provided with critical discussions on their benefits and shortcomings, and strategies to develop a highly efficacious live-attenuated vaccine capable of differentiating infected from vaccinated animals.
Collapse
Affiliation(s)
- Govardhan Rathnaiah
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, United States
| | - Denise K. Zinniel
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, United States
| | - John P. Bannantine
- Infectious Bacterial Diseases, National Animal Disease Center, USDA-ARS, Ames, IA, United States
| | - Judith R. Stabel
- Infectious Bacterial Diseases, National Animal Disease Center, USDA-ARS, Ames, IA, United States
| | - Yrjö T. Gröhn
- Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Michael T. Collins
- Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Raúl G. Barletta
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
35
|
Abstract
The global bacteriophage population is large, dynamic, old, and highly diverse genetically. Many phages are tailed and contain double-stranded DNA, but these remain poorly characterized genomically. A collection of over 1,000 phages infecting Mycobacterium smegmatis reveals the diversity of phages of a common bacterial host, but their relationships to phages of phylogenetically proximal hosts are not known. Comparative sequence analysis of 79 phages isolated on Gordonia shows these also to be diverse and that the phages can be grouped into 14 clusters of related genomes, with an additional 14 phages that are “singletons” with no closely related genomes. One group of six phages is closely related to Cluster A mycobacteriophages, but the other Gordonia phages are distant relatives and share only 10% of their genes with the mycobacteriophages. The Gordonia phage genomes vary in genome length (17.1 to 103.4 kb), percentage of GC content (47 to 68.8%), and genome architecture and contain a variety of features not seen in other phage genomes. Like the mycobacteriophages, the highly mosaic Gordonia phages demonstrate a spectrum of genetic relationships. We show this is a general property of bacteriophages and suggest that any barriers to genetic exchange are soft and readily violable. Despite the numerical dominance of bacteriophages in the biosphere, there is a dearth of complete genomic sequences. Current genomic information reveals that phages are highly diverse genomically and have mosaic architectures formed by extensive horizontal genetic exchange. Comparative analysis of 79 phages of Gordonia shows them to not only be highly diverse, but to present a spectrum of relatedness. Most are distantly related to phages of the phylogenetically proximal host Mycobacterium smegmatis, although one group of Gordonia phages is more closely related to mycobacteriophages than to the other Gordonia phages. Phage genome sequence space remains largely unexplored, but further isolation and genomic comparison of phages targeted at related groups of hosts promise to reveal pathways of bacteriophage evolution.
Collapse
|
36
|
Biosynthesis of isonitrile lipopeptides by conserved nonribosomal peptide synthetase gene clusters in Actinobacteria. Proc Natl Acad Sci U S A 2017. [PMID: 28634299 DOI: 10.1073/pnas.1705016114] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A putative lipopeptide biosynthetic gene cluster is conserved in many species of Actinobacteria, including Mycobacterium tuberculosis and M. marinum, but the specific function of the encoding proteins has been elusive. Using both in vivo heterologous reconstitution and in vitro biochemical analyses, we have revealed that the five encoding biosynthetic enzymes are capable of synthesizing a family of isonitrile lipopeptides (INLPs) through a thio-template mechanism. The biosynthesis features the generation of isonitrile from a single precursor Gly promoted by a thioesterase and a nonheme iron(II)-dependent oxidase homolog and the acylation of both amino groups of Lys by the same isonitrile acyl chain facilitated by a single condensation domain of a nonribosomal peptide synthetase. In addition, the deletion of INLP biosynthetic genes in M. marinum has decreased the intracellular metal concentration, suggesting the role of this biosynthetic gene cluster in metal transport.
Collapse
|
37
|
Otal I, Pérez-Herrán E, Garcia-Morales L, Menéndez MC, Gonzalez-Y-Merchand JA, Martín C, García MJ. Detection of a Putative TetR-Like Gene Related to Mycobacterium bovis BCG Growth in Cholesterol Using a gfp-Transposon Mutagenesis System. Front Microbiol 2017; 8:315. [PMID: 28321208 PMCID: PMC5337628 DOI: 10.3389/fmicb.2017.00315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/15/2017] [Indexed: 11/13/2022] Open
Abstract
In vitro transposition is a powerful genetic tool for identifying mycobacterial virulence genes and studying virulence factors in relation to the host. Transposon shuttle mutagenesis is a method for constructing stable insertions in the genome of different microorganisms including mycobacteria. Using an IS1096 derivative, we have constructed the Tngfp, a transposon containing a promoterless green fluorescent protein (gfp) gene. This transposon was able to transpose randomly in Mycobacterium bovis BCG. Bacteria with a single copy of the gfp gene per chromosome from an M. bovis BCG::Tngfp library were analyzed and cells exhibiting high levels of fluorescence were detected by flow cytometry. Application of this approach allowed for the selection of a mutant, BCG_2177c::Tngfp (BCG-Tn), on the basis of high level of long-standing fluorescence at stationary phase. This BCG-Tn mutant showed some particular phenotypic features compared to the wild type strain, mainly during stationary phase, when cholesterol was used as a sole carbon source, thus supporting the relationships of the targeted gene with the regulation of cholesterol metabolism in this bacteria. This approach showed that Tngfp is a potentially useful tool for studying the involvement of the targeted loci in metabolic pathways of mycobacteria.
Collapse
Affiliation(s)
- Isabel Otal
- Grupo de Genética de Micobacterias, Departamento de Microbiologia, Medicina Preventiva y Salud Pública, Universidad de ZaragozaZaragoza, Spain; Centros de Investigación Biomédica en Red Enfermedades Respiratorias, Instituto de Salud Carlos IIIMadrid, Spain; Instituto de Investigación Sanitaria AragónZaragoza, Spain
| | - Esther Pérez-Herrán
- Grupo de Genética de Micobacterias, Departamento de Microbiologia, Medicina Preventiva y Salud Pública, Universidad de ZaragozaZaragoza, Spain; Diseases of the Developing World, GlaxoSmithKlineTres Cantos, Spain
| | - Lazaro Garcia-Morales
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Ciudad de Mexico, Mexico
| | - María C Menéndez
- Departamento de Medicina Preventiva, Universidad Autónoma Madrid, Spain
| | - Jorge A Gonzalez-Y-Merchand
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Ciudad de Mexico, Mexico
| | - Carlos Martín
- Grupo de Genética de Micobacterias, Departamento de Microbiologia, Medicina Preventiva y Salud Pública, Universidad de ZaragozaZaragoza, Spain; Centros de Investigación Biomédica en Red Enfermedades Respiratorias, Instituto de Salud Carlos IIIMadrid, Spain; Instituto de Investigación Sanitaria AragónZaragoza, Spain
| | - María J García
- Departamento de Medicina Preventiva, Universidad Autónoma Madrid, Spain
| |
Collapse
|
38
|
Phan TH, Ummels R, Bitter W, Houben ENG. Identification of a substrate domain that determines system specificity in mycobacterial type VII secretion systems. Sci Rep 2017; 7:42704. [PMID: 28205541 PMCID: PMC5311947 DOI: 10.1038/srep42704] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/13/2017] [Indexed: 12/31/2022] Open
Abstract
Type VII secretion (T7S) systems are specialized machineries used by mycobacterial pathogens to transport important virulence factors across their highly hydrophobic cell envelope. There are up to five mycobacterial T7S systems, named ESX-1 to ESX-5, at least three of which specifically secrete a different subset of substrates. The T7S substrates or substrate complexes are defined by the general secretion motif YxxxD/E. However this motif does not determine system specificity. Here, we show that the substrate domain recognized by the EspG chaperone is the determinant factor for this specificity. We first show that the introduction of point mutations into the EspG1-binding domain of the ESX-1 substrate pair PE35/PPE68_1 affects their secretion. Subsequently, we demonstrate that replacing this domain by the EspG5-binding domain of the ESX-5 substrate PPE18 resulted in EspG5 dependence and exclusive rerouting to the ESX-5 system. This rerouting of PE35/PPE68_1 to the ESX-5 system had a negative effect on the secretion of endogenous ESX-5 substrates.
Collapse
Affiliation(s)
- Trang H Phan
- Section Molecular Microbiology, Amsterdam Institute of Molecules, Medicines &Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Roy Ummels
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, The Netherlands
| | - Wilbert Bitter
- Section Molecular Microbiology, Amsterdam Institute of Molecules, Medicines &Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, The Netherlands
| | - Edith N G Houben
- Section Molecular Microbiology, Amsterdam Institute of Molecules, Medicines &Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
39
|
Zheng Q, Li Z, Zhou S, Zhang Q, Zhou L, Fu X, Yang L, Ma Y, Hao X. Heparin-binding Hemagglutinin of Mycobacterium tuberculosis Is an Inhibitor of Autophagy. Front Cell Infect Microbiol 2017; 7:33. [PMID: 28224118 PMCID: PMC5293787 DOI: 10.3389/fcimb.2017.00033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/23/2017] [Indexed: 11/13/2022] Open
Abstract
Airway epithelial cell is often the initial site of attack by pathogens, and cell death is commonly caused by internalization of Mycobacterium tuberculosis (Mtb). However, the mechanism of interaction between epithelial cells and Mtb is not well understood. In this study, we investigated the role of the heparin-binding hemagglutinin (HBHA) protein of Mtb in the function of epithelial cells. In particular, the autophagy of A549 cells was determined based on microtubule-associated protein 1 light chain 3 alpha (LC3) activity. Autophagosome formation was detected by Monodansylcadaverine (MDC) staining and immune fluorescence staining of LC3. Autophagy could be significantly suppressed by HBHA protein. In addition, the LDH assay results showed that HBHA treatment could induce death on A549 cells. To explore the form of cell death, we detected the activity of caspase-3 and LDH release of A549 cells in the presence or absence of caspase inhibitor Z-VAD-FMK. Results demonstrated that HBHA treatment could induce apoptosis of A549 cells. To further confirm these results, we constructed the recombinant Mycobacterium smegmatis (MS) expressing HBHA (rMS-HBHA) and explored the influence of rMS-HBHA on the function of A549 cells. rMS-HBHA infection significantly inhibited LC3 expression and the maturation of autophagosomes in A549 cells. Subsequently, we infected A549 cells with MS and detected the viability of intracellular MS by CFU counts. rMS-HBHA showed higher survival and replication capacity in A549 cells than those of the wild-type MS. Finally, infection of A549 cells with rMS-HBHA caused further apoptosis. These findings suggested that rMS-HBHA could inhibit autophagy, promote its survival and replication within A549 cells, and subsequently induce apoptosis on infected cells to facilitate infection.
Collapse
Affiliation(s)
- Qing Zheng
- Department of Clinical Laboratory, Xijing Hospital, Fourth Military Medical University Xi'an, China
| | - Zhi Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University Xi'an, China
| | - Shan Zhou
- Department of Clinical Laboratory, Xijing Hospital, Fourth Military Medical University Xi'an, China
| | - Qian Zhang
- Department of Clinical Laboratory, Xijing Hospital, Fourth Military Medical University Xi'an, China
| | - Lei Zhou
- Department of Clinical Laboratory, Xijing Hospital, Fourth Military Medical University Xi'an, China
| | - Xiaorui Fu
- Department of Clinical Laboratory, Xijing Hospital, Fourth Military Medical University Xi'an, China
| | - Liu Yang
- Department of Clinical Laboratory, Xijing Hospital, Fourth Military Medical University Xi'an, China
| | - Yueyun Ma
- Department of Clinical Laboratory, Xijing Hospital, Fourth Military Medical University Xi'an, China
| | - Xiaoke Hao
- Department of Clinical Laboratory, Xijing Hospital, Fourth Military Medical University Xi'an, China
| |
Collapse
|
40
|
Identification of Bicarbonate as a Trigger and Genes Involved with Extracellular DNA Export in Mycobacterial Biofilms. mBio 2016; 7:mBio.01597-16. [PMID: 27923918 PMCID: PMC5142616 DOI: 10.1128/mbio.01597-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Extracellular DNA (eDNA) is an integral biofilm matrix component of numerous pathogens, including nontuberculous mycobacteria (NTM). Cell lysis is the source of eDNA in certain bacteria, but the source of eDNA remains unidentified for NTM, as well as for other eDNA-containing bacterial species. In this study, conditions affecting eDNA export were examined, and genes involved with the eDNA export mechanism were identified. After a method for monitoring eDNA in real time in undisturbed biofilms was established, different conditions affecting eDNA were investigated. Bicarbonate positively influenced eDNA export in a pH-independent manner in Mycobacterium avium, M. abscessus, and M. chelonae The surface-exposed proteome of M. avium in eDNA-containing biofilms revealed abundant carbonic anhydrases. Chemical inhibition of carbonic anhydrases with ethoxzolamide significantly reduced eDNA export. An unbiased transposon mutant library screen for eDNA export in M. avium identified many severely eDNA-attenuated mutants, including one not expressing a unique FtsK/SpoIIIE-like DNA-transporting pore, two with inactivation of carbonic anhydrases, and nine with inactivation of genes belonging to a unique genomic region, as well as numerous mutants involved in metabolism and energy production. Complementation of nine mutants that included the FtsK/SpoIIIE and carbonic anhydrase significantly restored eDNA export. Interestingly, several attenuated eDNA mutants have mutations in genes encoding proteins that were found with the surface proteomics, and many more mutations are localized in operons potentially encoding surface proteins. Collectively, our data strengthen the evidence of eDNA export being an active mechanism that is activated by the bacterium responding to bicarbonate. IMPORTANCE Many bacteria contain extracellular DNA (eDNA) in their biofilm matrix, as it has various biological and physical functions. We recently reported that nontuberculous mycobacteria (NTM) can contain significant quantities of eDNA in their biofilms. In some bacteria, eDNA is derived from dead cells, but that does not appear to be the case for all eDNA-containing organisms, including NTM. In this study, we found that eDNA export in NTM is conditionally dependent on the molecules to which the bacteria are exposed and that bicarbonate positively influences eDNA export. We also identified genes and proteins important for eDNA export, which begins to piece together a description of a mechanism for eDNA. Better understanding of eDNA export can give new targets for the development of antivirulence drugs, which are attractive because resistance to classical antibiotics is currently a significant problem.
Collapse
|
41
|
Lee KI, Whang J, Choi HG, Son YJ, Jeon HS, Back YW, Park HS, Paik S, Park JK, Choi CH, Kim HJ. Mycobacterium avium MAV2054 protein induces macrophage apoptosis by targeting mitochondria and reduces intracellular bacterial growth. Sci Rep 2016; 6:37804. [PMID: 27901051 PMCID: PMC5129020 DOI: 10.1038/srep37804] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/03/2016] [Indexed: 12/17/2022] Open
Abstract
Mycobacterium avium complex induces macrophage apoptosis. However, the M. avium components that inhibit or trigger apoptosis and their regulating mechanisms remain unclear. We recently identified the immunodominant MAV2054 protein by fractionating M. avium culture filtrate protein by multistep chromatography; this protein showed strong immuno-reactivity in M. avium complex pulmonary disease and in patients with tuberculosis. Here, we investigated the biological effects of MAV2054 on murine macrophages. Recombinant MAV2054 induced caspase-dependent macrophage apoptosis. Enhanced reactive oxygen species production and JNK activation were essential for MAV2054-mediated apoptosis and MAV2054-induced interleukin-6, tumour necrosis factor, and monocyte chemoattractant protein-1 production. MAV2054 was targeted to the mitochondrial compartment of macrophages treated with MAV2054 and infected with M. avium. Dissipation of the mitochondrial transmembrane potential (ΔΨm) and depletion of cytochrome c also occurred in MAV2054-treated macrophages. Apoptotic response, reactive oxygen species production, and ΔΨm collapse were significantly increased in bone marrow-derived macrophages infected with Mycobacterium smegmatis expressing MAV2054, compared to that in M. smegmatis control. Furthermore, MAV2054 expression suppressed intracellular growth of M. smegmatis and increased the survival rate of M. smegmatis-infected mice. Thus, MAV2054 induces apoptosis via a mitochondrial pathway in macrophages, which may be an innate cellular response to limit intracellular M. avium multiplication.
Collapse
Affiliation(s)
- Kang-In Lee
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jake Whang
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Han-Gyu Choi
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Yeo-Jin Son
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Haet Sal Jeon
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Yong Woo Back
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hye-Soo Park
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Seungwha Paik
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jeong-Kyu Park
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Chul Hee Choi
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hwa-Jung Kim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
42
|
Reconstitution of a Mycobacterium tuberculosis proteostasis network highlights essential cofactor interactions with chaperone DnaK. Proc Natl Acad Sci U S A 2016; 113:E7947-E7956. [PMID: 27872278 DOI: 10.1073/pnas.1617644113] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During host infection, Mycobacterium tuberculosis (Mtb) encounters several types of stress that impair protein integrity, including reactive oxygen and nitrogen species and chemotherapy. The resulting protein aggregates can be resolved or degraded by molecular machinery conserved from bacteria to eukaryotes. Eukaryotic Hsp104/Hsp70 and their bacterial homologs ClpB/DnaK are ATP-powered chaperones that restore toxic protein aggregates to a native folded state. DnaK is essential in Mycobacterium smegmatis, and ClpB is involved in asymmetrically distributing damaged proteins during cell division as a mechanism of survival in Mtb, commending both proteins as potential drug targets. However, their molecular partners in protein reactivation have not been characterized in mycobacteria. Here, we reconstituted the activities of the Mtb ClpB/DnaK bichaperone system with the cofactors DnaJ1, DnaJ2, and GrpE and the small heat shock protein Hsp20. We found that DnaJ1 and DnaJ2 activate the ATPase activity of DnaK differently. A point mutation in the highly conserved HPD motif of the DnaJ proteins abrogates their ability to activate DnaK, although the DnaJ2 mutant still binds to DnaK. The purified Mtb ClpB/DnaK system reactivated a heat-denatured model substrate, but the DnaJ HPD mutants inhibited the reaction. Finally, either DnaJ1 or DnaJ2 is required for mycobacterial viability, as is the DnaK-activating activity of a DnaJ protein. These studies lay the groundwork for strategies to target essential chaperone-protein interactions in Mtb, the leading cause of death from a bacterial infection.
Collapse
|
43
|
Fluorescent Reporter DS6A Mycobacteriophages Reveal Unique Variations in Infectibility and Phage Production in Mycobacteria. J Bacteriol 2016; 198:3220-3232. [PMID: 27672191 DOI: 10.1128/jb.00592-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/13/2016] [Indexed: 12/22/2022] Open
Abstract
Mycobacteriophage DS6A is unique among the more than 8,000 isolated mycobacteriophages due to its ability to form plaques exclusively on mycobacteria belonging to the Mycobacterium tuberculosis complex (MTBC). Speculation surrounding this specificity has led to unsupported assertions in published studies and patents that nontuberculous mycobacteria (NTM) are wholly resistant to DS6A infection. In this study, we identified two independent nonessential regions in the DS6A genome and replaced them with an mVenus-expressing plasmid to generate fluorescent reporter phages Φ2GFP12 and Φ2GFP13. We show that even though DS6A is able to form plaques only on MTBC bacteria, infection of various NTM results in mVenus expression in transduced cells. The efficiency of DS6A in delivering DNA varied between NTM species. Additionally, we saw a striking difference in the efficiency of DNA delivery between the closely related members of the Mycobacterium abscessus complex, M. abscessus and Mycobacterium massiliense We also demonstrated that TM4 and DS6A, two phages that do not form plaques on M. massiliense, differ in their ability to deliver DNA, suggesting that there is a phage-specific restriction between mycobacterial species. Phylogenetic analysis reveals that the DS6A genome has a characteristically mosaic structure but provided few insights into the basis for the specificity for MTBC hosts. This study demonstrates that the inability of the MTBC-specific phage DS6A to form plaques on NTM is more complex than previously thought. Moreover, the DS6A-derived fluorophages provide important new tools for the study of mycobacterial biology. IMPORTANCE The coevolution of bacteria and their infecting phages involves a constant arms race for bacteria to prevent phage infection and phage to overcome these preventions. Although a diverse array of phage defense systems is well characterized in bacteria, very few phage restriction systems are known in mycobacteria. The DS6A mycobacteriophage is unique in the mycobacterial world in that it forms plaques only on members of the Mycobacterium tuberculosis complex. However, the novel DS6A reporter phages developed in this work demonstrate that DS6A can infect nontuberculous mycobacteria at various efficiencies. By comparing the abilities of DS6A and another phage, TM4, to infect and form plaques on various mycobacterial species, we can begin to discern new phage restriction systems employed within the genus.
Collapse
|
44
|
Pandey A, Cabello A, Akoolo L, Rice-Ficht A, Arenas-Gamboa A, McMurray D, Ficht TA, de Figueiredo P. The Case for Live Attenuated Vaccines against the Neglected Zoonotic Diseases Brucellosis and Bovine Tuberculosis. PLoS Negl Trop Dis 2016; 10:e0004572. [PMID: 27537413 PMCID: PMC4990199 DOI: 10.1371/journal.pntd.0004572] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Vaccination of humans and animals with live attenuated organisms has proven to be an effective means of combatting some important infectious diseases. In fact, the 20th century witnessed tremendous improvements in human and animal health worldwide as a consequence of large-scale vaccination programs with live attenuated vaccines (LAVs). Here, we use the neglected zoonotic diseases brucellosis and bovine tuberculosis (BTb) caused by Brucella spp. and Mycobacterium bovis (M. bovis), respectively, as comparative models to outline the merits of LAV platforms with emphasis on molecular strategies that have been pursued to generate LAVs with enhanced vaccine safety and efficacy profiles. Finally, we discuss the prospects of LAV platforms in the fight against brucellosis and BTb and outline new avenues for future research towards developing effective vaccines using LAV platforms.
Collapse
Affiliation(s)
- Aseem Pandey
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, United States of America
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
- Norman Borlaug Center, Texas A&M University, College Station, Texas, United States of America
- * E-mail: (AP); (PdF)
| | - Ana Cabello
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Lavoisier Akoolo
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Allison Rice-Ficht
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, Bryan, Texas, United States of America
| | - Angela Arenas-Gamboa
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - David McMurray
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, United States of America
| | - Thomas A. Ficht
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Paul de Figueiredo
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, United States of America
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
- Norman Borlaug Center, Texas A&M University, College Station, Texas, United States of America
- * E-mail: (AP); (PdF)
| |
Collapse
|
45
|
Key experimental evidence of chromosomal DNA transfer among selected tuberculosis-causing mycobacteria. Proc Natl Acad Sci U S A 2016; 113:9876-81. [PMID: 27528665 DOI: 10.1073/pnas.1604921113] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Horizontal gene transfer (HGT) is a major driving force of bacterial diversification and evolution. For tuberculosis-causing mycobacteria, the impact of HGT in the emergence and distribution of dominant lineages remains a matter of debate. Here, by using fluorescence-assisted mating assays and whole genome sequencing, we present unique experimental evidence of chromosomal DNA transfer between tubercle bacilli of the early-branching Mycobacterium canettii clade. We found that the obtained recombinants had received multiple donor-derived DNA fragments in the size range of 100 bp to 118 kbp, fragments large enough to contain whole operons. Although the transfer frequency between M. canettii strains was low and no transfer could be observed among classical Mycobacterium tuberculosis complex (MTBC) strains, our study provides the proof of concept for genetic exchange in tubercle bacilli. This outstanding, now experimentally validated phenomenon presumably played a key role in the early evolution of the MTBC toward pathogenicity. Moreover, our findings also provide important information for the risk evaluation of potential transfer of drug resistance and fitness mutations among clinically relevant mycobacterial strains.
Collapse
|
46
|
Lima-Junior JD, Viana-Niero C, Conde Oliveira DV, Machado GE, Rabello MCDS, Martins-Junior J, Martins LF, Digiampietri LA, da Silva AM, Setubal JC, Russell DA, Jacobs-Sera D, Pope WH, Hatfull GF, Leão SC. Characterization of mycobacteria and mycobacteriophages isolated from compost at the São Paulo Zoo Park Foundation in Brazil and creation of the new mycobacteriophage Cluster U. BMC Microbiol 2016; 16:111. [PMID: 27316672 PMCID: PMC4912749 DOI: 10.1186/s12866-016-0734-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 06/08/2016] [Indexed: 01/13/2023] Open
Abstract
Background A large collection of sequenced mycobacteriophages capable of infecting a single host strain of Mycobacterium smegmatis shows considerable genomic diversity with dozens of distinctive types (clusters) and extensive variation within those sharing evident nucleotide sequence similarity. Here we profiled the mycobacterial components of a large composting system at the São Paulo zoo. Results We isolated and sequenced eight mycobacteriophages using Mycobacterium smegmatis mc2155 as a host. None of these eight phages infected any of mycobacterial strains isolated from the same materials. The phage isolates span considerable genomic diversity, including two phages (Barriga, Nhonho) related to Subcluster A1 phages, two Cluster B phages (Pops, Subcluster B1; Godines, Subcluster B2), three Subcluster F1 phages (Florinda, Girafales, and Quico), and Madruga, a relative of phage Patience with which it constitutes the new Cluster U. Interestingly, the two Subcluster A1 phages and the three Subcluster F1 phages have genomic relationships indicating relatively recent evolution within a geographically isolated niche in the composting system. Conclusions We predict that composting systems such as those used to obtain these mycobacteriophages will be a rich source for the isolation of additional phages that will expand our view of bacteriophage diversity and evolution. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0734-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- James Daltro Lima-Junior
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Cristina Viana-Niero
- Departmento de Ciências Biológicas, Universidade Federal de São Paulo, campus Diadema, São Paulo, Brazil
| | - Daniel V Conde Oliveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Gabriel Esquitini Machado
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Joaquim Martins-Junior
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Layla Farage Martins
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | - Aline Maria da Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - João Carlos Setubal
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.,Virginia Bioinformatics Institute, Blacksburg, VA, 24060, USA
| | - Daniel A Russell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 1524, USA
| | - Deborah Jacobs-Sera
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 1524, USA
| | - Welkin H Pope
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 1524, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 1524, USA
| | - Sylvia Cardoso Leão
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.
| |
Collapse
|
47
|
Rathnaiah G, Bannantine JP, Bayles DO, Zinniel DK, Stabel JR, Gröhn YT, Barletta RG. Analysis of Mycobacterium avium subsp. paratuberculosis mutant libraries reveals loci-dependent transposition biases and strategies for novel mutant discovery. MICROBIOLOGY-SGM 2016; 162:633-641. [PMID: 26888023 DOI: 10.1099/mic.0.000258] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP), the aetiological agent of Johne's disease, is one of the most important bacterial pathogens in ruminants. A thorough understanding of MAP pathogenesis is needed to develop new vaccines and diagnostic tests. The generation of comprehensive random transposon mutant libraries is a fundamental genetic technology to determine the role of genes in physiology and pathogenesis. In this study, whole MAP genome analysis compared the insertion sites for the mycobacterial transposon Tn5367 derived from the Mycobacterium smegmatis insertion sequence IS1096 and the mariner transposon MycoMarT7 carrying the Himar1 transposase. We determined that only MycoMarT7 provides a random representation of insertions in 99 % of all MAP genes. Analysis of the MAP K-10 genome indicated that 710 of all ORFs do not possess IS1096 recognition sites, while only 37 do not have the recognition site for MycoMarT7. Thus, a significant number of MAP genes remain underrepresented in insertion libraries from IS1096-derived transposons. Analysis of MycoMarT7 and Tn5367 mutants showed that Tn5367 has a predilection to insert within intergenic regions, suggesting that MycoMarT7 is the more adequate for generating a comprehensive library. However, we uncovered the novel finding that both transposons have loci-dependent biases, with Tn5367 being the most skewed. These loci-dependent transposition biases led to an underestimation of the number of independent mutants required to generate a comprehensive mutant library, leading to an overestimation of essential genes. Herein, we also demonstrated a useful platform for gene discovery and analysis by isolating three novel mutants for each transposon.
Collapse
Affiliation(s)
- Govardhan Rathnaiah
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE,USA
| | - John P Bannantine
- Infectious Bacterial Diseases, National Animal Disease Center, United States Department of Agriculture - Agricultural Research Service, Ames, IA, USA
| | - Darrell O Bayles
- Infectious Bacterial Diseases, National Animal Disease Center, United States Department of Agriculture - Agricultural Research Service, Ames, IA, USA
| | - Denise K Zinniel
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE,USA
| | - Judith R Stabel
- Infectious Bacterial Diseases, National Animal Disease Center, United States Department of Agriculture - Agricultural Research Service, Ames, IA, USA
| | - Yrjö T Gröhn
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, NY, USA
| | - Raúl G Barletta
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE,USA
| |
Collapse
|
48
|
Abstract
Infectious diseases have plagued humankind throughout history and have posed serious public health problems. Yet vaccines have eradicated smallpox and antibiotics have drastically decreased the mortality rate of many infectious agents. These remarkable successes in the control of infections came from knowing the causative agents of the diseases, followed by serendipitous discoveries of attenuated viruses and antibiotics. The discovery of DNA as genetic material and the understanding of how this information translates into specific phenotypes have changed the paradigm for developing new vaccines, drugs, and diagnostic tests. Knowledge of the mechanisms of immunity and mechanisms of action of drugs has led to new vaccines and new antimicrobial agents. The key to the acquisition of the knowledge of these mechanisms has been identifying the elemental causes (i.e., genes and their products) that mediate immunity and drug resistance. The identification of these genes is made possible by being able to transfer the genes or mutated forms of the genes into causative agents or surrogate hosts. Such an approach was limited in Mycobacterium tuberculosis by the difficulty of transferring genes or alleles into M. tuberculosis or a suitable surrogate mycobacterial host. The construction of shuttle phasmids-chimeric molecules that replicate in Escherichia coli as plasmids and in mycobacteria as mycobacteriophages-was instrumental in developing gene transfer systems for M. tuberculosis. This review will discuss M. tuberculosis genetic systems and their impact on tuberculosis research.
Collapse
|
49
|
Chen YY, Yang FL, Wu SH, Lin TL, Wang JT. Mycobacterium marinum mmar_2318 and mmar_2319 are Responsible for Lipooligosaccharide Biosynthesis and Virulence Toward Dictyostelium. Front Microbiol 2016; 6:1458. [PMID: 26779131 PMCID: PMC4703794 DOI: 10.3389/fmicb.2015.01458] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 12/04/2015] [Indexed: 12/15/2022] Open
Abstract
Resistance to phagocyte killing is an important virulence factor in mycobacteria. Dictyostelium has been used to study the interaction between phagocytes and bacteria, given its similarity to the mammalian macrophage. Here, we investigated the genes responsible for virulence to Dictyostelium by screening 1728 transposon mutants of the Mycobacterium marinum NTUH-M6094 strain. A total of 30 mutants that permissive for Dictyostelium growth were identified. These mutants revealed interruptions in 20 distinct loci. Of the 20 loci, six genes (losA, mmar_2318, mmar_2319, wecE, mmar_2323 and mmar_2353) were located in the lipooligosaccharide (LOS) synthesis cluster. LOS are antigenic glycolipids and the core LOS structure from LOS-I to LOS-IV have been reported to exist in M. marinum. Two-dimensional thin-layer chromatography (2D-TLC) glycolipid profiles revealed that deletion of mmar_2318 or mmar_2319 resulted in the accumulation of LOS-III and deficiency of LOS-IV. Deletion and complementation of mmar_2318 or mmar_2319 confirmed that these genes both contributed to virulence toward Dictyostelium but not entry and replication inside Dictyostelium. Co-incubation with a murine macrophage cell line J774a.1 or PMA-induced human monocytic cell line THP-1 demonstrated that mmar_2318 or mmar_2319 deletion mutant could grow in macrophages, and their initial entry rate was not affected in J774a.1 but significantly increased in THP-1. In conclusion, although mmar_2319 has been reported to involve LOS biosynthesis in a previous study, we identified a new gene, mmar_2318 that is also involved in the biosynthesis of LOS. Deletion of mmar_2318 or mmar_2319 both exhibits reduction of virulence toward Dictyostelium and increased entry into THP-1 cells.
Collapse
Affiliation(s)
- Yi-Yin Chen
- Department of Microbiology, National Taiwan University College of Medicine Taipei, Taiwan
| | - Feng-Ling Yang
- Institute of Biological Chemistry, Academia Sinica Taipei, Taiwan
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica Taipei, Taiwan
| | - Tzu-Lung Lin
- Department of Microbiology, National Taiwan University College of Medicine Taipei, Taiwan
| | - Jin-Town Wang
- Department of Microbiology, National Taiwan University College of MedicineTaipei, Taiwan; Department of Internal Medicine, National Taiwan University HospitalTaipei, Taiwan
| |
Collapse
|
50
|
Hatfull GF. In the Trenches of Microbial Warfare: Identification of Genes and Pathways Contributing to Bacteriophage Infection by Quantitative Selection Analysis. J Mol Biol 2016; 428:413-5. [DOI: 10.1016/j.jmb.2015.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|