1
|
Fernandes B, Cavaco-Paulo A, Matamá T. A Comprehensive Review of Mammalian Pigmentation: Paving the Way for Innovative Hair Colour-Changing Cosmetics. BIOLOGY 2023; 12:biology12020290. [PMID: 36829566 PMCID: PMC9953601 DOI: 10.3390/biology12020290] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/26/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
The natural colour of hair shafts is formed at the bulb of hair follicles, and it is coupled to the hair growth cycle. Three critical processes must happen for efficient pigmentation: (1) melanosome biogenesis in neural crest-derived melanocytes, (2) the biochemical synthesis of melanins (melanogenesis) inside melanosomes, and (3) the transfer of melanin granules to surrounding pre-cortical keratinocytes for their incorporation into nascent hair fibres. All these steps are under complex genetic control. The array of natural hair colour shades are ascribed to polymorphisms in several pigmentary genes. A myriad of factors acting via autocrine, paracrine, and endocrine mechanisms also contributes for hair colour diversity. Given the enormous social and cosmetic importance attributed to hair colour, hair dyeing is today a common practice. Nonetheless, the adverse effects of the long-term usage of such cosmetic procedures demand the development of new methods for colour change. In this context, case reports of hair lightening, darkening and repigmentation as a side-effect of the therapeutic usage of many drugs substantiate the possibility to tune hair colour by interfering with the biology of follicular pigmentary units. By scrutinizing mammalian pigmentation, this review pinpoints key targetable processes for the development of innovative cosmetics that can safely change the hair colour from the inside out.
Collapse
Affiliation(s)
- Bruno Fernandes
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Artur Cavaco-Paulo
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| | - Teresa Matamá
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| |
Collapse
|
2
|
Liang D, Zhao P, Si J, Fang L, Pairo-Castineira E, Hu X, Xu Q, Hou Y, Gong Y, Liang Z, Tian B, Mao H, Yindee M, Faruque MO, Kongvongxay S, Khamphoumee S, Liu GE, Wu DD, Barker JSF, Han J, Zhang Y. Genomic Analysis Revealed a Convergent Evolution of LINE-1 in Coat Color: A Case Study in Water Buffaloes (Bubalus bubalis). Mol Biol Evol 2021; 38:1122-1136. [PMID: 33212507 PMCID: PMC7947781 DOI: 10.1093/molbev/msaa279] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Visible pigmentation phenotypes can be used to explore the regulation of gene expression and the evolution of coat color patterns in animals. Here, we performed whole-genome and RNA sequencing and applied genome-wide association study, comparative population genomics and biological experiments to show that the 2,809-bp-long LINE-1 insertion in the ASIP (agouti signaling protein) gene is the causative mutation for the white coat phenotype in swamp buffalo (Bubalus bubalis). This LINE-1 insertion (3' truncated and containing only 5' UTR) functions as a strong proximal promoter that leads to a 10-fold increase in the transcription of ASIP in white buffalo skin. The 165 bp of 5' UTR transcribed from the LINE-1 is spliced into the first coding exon of ASIP, resulting in a chimeric transcript. The increased expression of ASIP prevents melanocyte maturation, leading to the absence of pigment in white buffalo skin and hairs. Phylogenetic analyses indicate that the white buffalo-specific ASIP allele originated from a recent genetic transposition event in swamp buffalo. Interestingly, as a similar LINE-1 insertion has been identified in the cattle ASIP gene, we discuss the convergent mechanism of coat color evolution in the Bovini tribe.
Collapse
Affiliation(s)
- Dong Liang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding and Reproduction of MOAR, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Pengju Zhao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding and Reproduction of MOAR, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jingfang Si
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding and Reproduction of MOAR, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lingzhao Fang
- Medical Research Council Human Genetics Unit at the Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Erola Pairo-Castineira
- Medical Research Council Human Genetics Unit at the Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Xiaoxiang Hu
- State Key Laboratory of AgroBiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qing Xu
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Yali Hou
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yu Gong
- Guizhou Domestic Animal Genetic Resources Management Station, Guiyang, China
| | - Zhengwen Liang
- Agriculture and Rural Affairs Bureau of Fenggang County, Zunyi, China
| | - Bing Tian
- Animal Disease Prevention and Control Station of Zunyi City, Zunyi, China
| | - Huaming Mao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Marnoch Yindee
- Akkhararatchakumari Veterinary College (AVC), Walailak University, Nakorn Si Thammarat, Thailand
| | - Md Omar Faruque
- Department of Animal Breeding and Genetics, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Siton Kongvongxay
- Livestock Research Center, National Agriculture and Forestry Research Institute, Ministry of Agriculture and Forestry, Vientiane, Lao PDR
| | - Souksamlane Khamphoumee
- Livestock Research Center, National Agriculture and Forestry Research Institute, Ministry of Agriculture and Forestry, Vientiane, Lao PDR
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD
| | - Dong-Dong Wu
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - James Stuart F Barker
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Jianlin Han
- International Livestock Research Institute (ILRI), Nairobi, Kenya
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yi Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding and Reproduction of MOAR, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Bruders R, Van Hollebeke H, Osborne EJ, Kronenberg Z, Maclary E, Yandell M, Shapiro MD. A copy number variant is associated with a spectrum of pigmentation patterns in the rock pigeon (Columba livia). PLoS Genet 2020; 16:e1008274. [PMID: 32433666 PMCID: PMC7239393 DOI: 10.1371/journal.pgen.1008274] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 04/09/2020] [Indexed: 12/15/2022] Open
Abstract
Rock pigeons (Columba livia) display an extraordinary array of pigment pattern variation. One such pattern, Almond, is characterized by a variegated patchwork of plumage colors that are distributed in an apparently random manner. Almond is a sex-linked, semi-dominant trait controlled by the classical Stipper (St) locus. Heterozygous males (ZStZ+ sex chromosomes) and hemizygous Almond females (ZStW) are favored by breeders for their attractive plumage. In contrast, homozygous Almond males (ZStZSt) develop severe eye defects and often lack plumage pigmentation, suggesting that higher dosage of the mutant allele is deleterious. To determine the molecular basis of Almond, we compared the genomes of Almond pigeons to non-Almond pigeons and identified a candidate St locus on the Z chromosome. We found a copy number variant (CNV) within the differentiated region that captures complete or partial coding sequences of four genes, including the melanosome maturation gene Mlana. We did not find fixed coding changes in genes within the CNV, but all genes are misexpressed in regenerating feather bud collar cells of Almond birds. Notably, six other alleles at the St locus are associated with depigmentation phenotypes, and all exhibit expansion of the same CNV. Structural variation at St is linked to diversity in plumage pigmentation and gene expression, and thus provides a potential mode of rapid phenotypic evolution in pigeons. The genetic changes responsible for different animal color patterns are poorly understood, due in part to a paucity of research organisms that are both genetically tractable and phenotypically diverse. Domestic pigeons (Columba livia) have been artificially selected for many traits, including an enormous variety of color patterns that are variable both within and among different breeds of this single species. We investigated the genetic basis of a sex-linked color pattern in pigeons called Almond that is characterized by a sprinkled pattern of plumage pigmentation. Pigeons with one copy of the Almond allele have desirable color pattern; however, male pigeons with two copies of the Almond mutation have severely depleted pigmentation and congenital eye defects. By comparing the genomes of Almond and non-Almond pigeons, we discovered that Almond pigeons have extra copies of a chromosome region that contains a gene that is critical for the formation of pigment granules. We also found that different numbers of copies of this region are associated with varying degrees of pigment reduction. The Almond phenotype in pigeons bears a remarkable resemblance to Merle coat color mutants in dogs, and our new results from pigeons suggest that similar genetic mechanisms underlie these traits in both species. Our work highlights the role of gene copy number variation as a potential driver of rapid phenotypic evolution.
Collapse
Affiliation(s)
- Rebecca Bruders
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Hannah Van Hollebeke
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Edward J. Osborne
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Zev Kronenberg
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Emily Maclary
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Mark Yandell
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Michael D. Shapiro
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
4
|
Melanogenic Effects of Maclurin Are Mediated through the Activation of cAMP/PKA/CREB and p38 MAPK/CREB Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9827519. [PMID: 31949887 PMCID: PMC6942912 DOI: 10.1155/2019/9827519] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022]
Abstract
Melanogenesis is the biological process which the skin pigment melanin is synthesized to protect the skin against ultraviolet irradiation and other external stresses. Abnormal biology of melanocytes is closely associated with depigmented skin disorders such as vitiligo. In this study, we examined the effects of maclurin on melanogenesis and cytoprotection. Maclurin enhanced cellular tyrosinase activity as well as cellular melanin levels. We found that maclurin treatment increased the expression of microphthalmia-associated transcription factor (MITF), tyrosinase-related protein- (TRP-) 1, TRP-2, and tyrosinase. Mechanistically, maclurin promoted melanogenesis through cyclic adenosine monophosphate (cAMP) response element binding (CREB) protein-dependent upregulation of MITF. CREB activation was found to be mediated by p38 mitogen-activated protein kinase (MAPK) or cAMP-protein kinase A (PKA) signaling. In addition, maclurin-induced CREB phosphorylation was mediated through the activation of both the cAMP/PKA and the p38 MAPK signaling pathways. Maclurin-induced suppression of p44/42 MAPK activation also contributed to its melanogenic activity. Furthermore, maclurin showed protective effects against H2O2 treatment and UVB irradiation in human melanocytes. These findings indicate that the melanogenic effects of maclurin depend on increased MITF gene expression, which is mediated by the activation of both p38 MAPK/CREB and cAMP/PKA/CREB signaling. Our results thus suggest that maclurin could be useful as a protective agent against hypopigmented skin disorders.
Collapse
|
5
|
D'Alba L, Shawkey MD. Melanosomes: Biogenesis, Properties, and Evolution of an Ancient Organelle. Physiol Rev 2019; 99:1-19. [PMID: 30255724 DOI: 10.1152/physrev.00059.2017] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Melanosomes are organelles that produce and store melanin, a widespread biological pigment with a unique suite of properties including high refractive index, semiconducting capabilities, material stiffness, and high fossilization potential. They are involved in numerous critical biological functions in organisms across the tree of life. Individual components such as melanin chemistry and melanosome development have recently been addressed, but a broad synthesis is needed. Here, we review the hierarchical structure, development, functions, and evolution of melanosomes. We highlight variation in melanin chemistry and melanosome morphology and how these may relate to function. For example, we review what is known of the chemical differences between different melanin types (eumelanin, pheomelanin, allomelanin) and whether/how melanosome morphology relates to chemistry and color. We integrate the distribution of melanin across living organisms with what is known from the fossil record and produce hypotheses on its evolution. We suggest that melanin was present in life forms early in evolutionary history and that melanosomes evolved at the origin of organelles. Throughout, we discuss the (sometimes gaping) holes in our knowledge and suggest areas that need particular attention as we move forward in our understanding of these still-mysterious organelles and the materials that they contain.
Collapse
Affiliation(s)
- Liliana D'Alba
- Evolution and Optics of Nanostructures Group, Department of Biology, University of Ghent , Ghent , Belgium
| | - Matthew D Shawkey
- Evolution and Optics of Nanostructures Group, Department of Biology, University of Ghent , Ghent , Belgium
| |
Collapse
|
6
|
Almeida Scalvino S, Chapelle A, Hajem N, Lati E, Gasser P, Choulot JC, Michel L, Hocquaux M, Loing E, Attia J, Wdzieczak-Bakala J. Efficacy of an agonist of α-MSH, the palmitoyl tetrapeptide-20, in hair pigmentation. Int J Cosmet Sci 2018; 40:516-524. [PMID: 30222197 DOI: 10.1111/ics.12494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/04/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Hair greying (i.e., canities) is a component of chronological ageing and occurs regardless of gender or ethnicity. Canities is directly linked to the loss of melanin and increase in oxidative stress in the hair follicle and shaft. To promote hair pigmentation and reduce the hair greying process, an agonist of α-melanocyte-stimulating hormone (α-MSH), a biomimetic peptide (palmitoyl tetrapeptide-20; PTP20) was developed. The aim of this study was to describe the effects of the designed peptide on hair greying. METHODS Effect of the PTP20 on the enzymatic activity of catalase and the production of H2 O2 by Human Follicle Dermal Papilla Cells (HFDPC) was evaluated. Influence of PTP20 on the expression of melanocortin receptor-1 (MC1-R) and the production of melanin were investigated. Enzymatic activity of sirtuin 1 (SIRT1) after treatment with PTP20 was also determined. Ex vivo studies using human micro-dissected hairs allowed to visualize the effect of PTP20 on the expression in hair follicle of catalase, TRP-1, TRP-2, Melan-A, ASIP, and MC1-R. These investigations were completed by a clinical study on 15 human male volunteers suffering from premature canities. RESULTS The in vitro and ex vivo studies revealed the capacity of the examined PTP20 peptide to enhance the expression of catalase and to decrease (30%) the intracellular level of H2 O2 . Moreover, PTP20 was shown to activate in vitro and ex vivo the melanogenesis process. In fact, an increase in the production of melanin was shown to be correlated with elevated expression of MC1-R, TRP-1, and Melan-A, and with the reduction in ASIP expression. A modulation on TRP-2 was also observed. The pivotal role of MC1-R was confirmed on protein expression analysed on volunteer's plucked hairs after 3 months of the daily application of lotion containing 10 ppm of PTP20 peptide. CONCLUSION The current findings demonstrate the ability of the biomimetic PTP20 peptide to preserve the function of follicular melanocytes. The present results suggest potential cosmetic application of this newly designed agonist of α-MSH to promote hair pigmentation and thus, reduce the hair greying process.
Collapse
Affiliation(s)
| | - A Chapelle
- ICSN, UPR2301 CNRS, 91198, Gif-sur-Yvette, France
| | - N Hajem
- Ales Groupe, 95871, Bezons, France
| | - E Lati
- Laboratoire BIO-EC, 91160, Longjumeau, France
| | - P Gasser
- Laboratoire BIO-EC, 91160, Longjumeau, France
| | | | - L Michel
- Inserm UMR976, 75475, Paris, France
| | - M Hocquaux
- IFF-Lucas Meyer Cosmetics, 31036, Toulouse, France
| | - E Loing
- IFF-Lucas Meyer Cosmetics, G1V4W2, Québec, Canada
| | - J Attia
- IFF-Lucas Meyer Cosmetics, 31036, Toulouse, France
| | | |
Collapse
|
7
|
Hwang YS, Kim YJ, Kim MO, Kang M, Oh SW, Nho YH, Park SH, Lee J. Cannabidiol upregulates melanogenesis through CB1 dependent pathway by activating p38 MAPK and p42/44 MAPK. Chem Biol Interact 2017; 273:107-114. [PMID: 28601556 DOI: 10.1016/j.cbi.2017.06.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 06/06/2017] [Indexed: 01/01/2023]
Abstract
Melanogenesis plays a critical role in the protection of skin against external stresses such as ultraviolet irradiation and oxidative stressors. This study was aimed to investigate the effects of cannabidiol on melanogenesis and its mechanisms of action in human epidermal melanocytes. We found that cannabidiol increased both melanin content and tyrosinase activity. The mRNA levels of microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein (TRP) 1, and TRP2 were increased following cannabidiol treatment. Likewise, cannabidiol increased the protein levels of MITF, TRP 1, TRP 2, and tyrosinase. Mechanistically, we found that cannabidiol regulated melanogenesis by upregulating MITF through phosphorylation of p38 mitogen-activated protein kinase (MAPK) and p42/44 MAPK, independent of cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling. In addition, the melanogenic effect of cannabidiol was found to be mediated by cannabinoid CB1 receptor, not by CB2 receptor. Taken together, these findings indicate that cannabidiol-induced melanogenesis is cannabinoid CB1 receptor-dependent, and cannabidiol induces melanogenesis through increasing MITF gene expression which is mediated by activation of p38 MAPK and p42/44 MAPK. Our results suggest that cannabidiol might be useful as a protective agent against external stresses.
Collapse
Affiliation(s)
- Young Sun Hwang
- Department of Dental Hygiene, College of Health Science, Eulji University, Seongnam City, 131-35 Gyunggi Do, Republic of Korea
| | - Youn-Jung Kim
- Department of Marine Science, Incheon National University, 220-12, Incheon City, Republic of Korea
| | - Mi Ok Kim
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City, 164-19 Gyunggi Do, Republic of Korea
| | - Mingyeong Kang
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City, 164-19 Gyunggi Do, Republic of Korea
| | - Sae Woong Oh
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City, 164-19 Gyunggi Do, Republic of Korea
| | - Youn Hwa Nho
- COSMAX R&I Center, COSMAX Inc., Seongnam City, 134-86, Gyunggi Do, Republic of Korea
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, 300-16, Sejong City, Republic of Korea.
| | - Jongsung Lee
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City, 164-19 Gyunggi Do, Republic of Korea.
| |
Collapse
|
8
|
Bissig C, Rochin L, van Niel G. PMEL Amyloid Fibril Formation: The Bright Steps of Pigmentation. Int J Mol Sci 2016; 17:ijms17091438. [PMID: 27589732 PMCID: PMC5037717 DOI: 10.3390/ijms17091438] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/12/2016] [Accepted: 08/22/2016] [Indexed: 02/06/2023] Open
Abstract
In pigment cells, melanin synthesis takes place in specialized organelles, called melanosomes. The biogenesis and maturation of melanosomes is initiated by an unpigmented step that takes place prior to the initiation of melanin synthesis and leads to the formation of luminal fibrils deriving from the pigment cell-specific pre-melanosomal protein (PMEL). In the lumen of melanosomes, PMEL fibrils optimize sequestration and condensation of the pigment melanin. Interestingly, PMEL fibrils have been described to adopt a typical amyloid-like structure. In contrast to pathological amyloids often associated with neurodegenerative diseases, PMEL fibrils represent an emergent category of physiological amyloids due to their beneficial cellular functions. The formation of PMEL fibrils within melanosomes is tightly regulated by diverse mechanisms, such as PMEL traffic, cleavage and sorting. These mechanisms revealed increasing analogies between the formation of physiological PMEL fibrils and pathological amyloid fibrils. In this review we summarize the known mechanisms of PMEL fibrillation and discuss how the recent understanding of physiological PMEL amyloid formation may help to shed light on processes involved in pathological amyloid formation.
Collapse
Affiliation(s)
- Christin Bissig
- Institut Curie, Paris Sciences et Lettres Research University, UMR144, Centre de Recherche, 26 rue d'ULM, Paris F-75231, France.
- Centre National de la Recherche Scientifique, UMR144, Paris F-75248, France.
| | - Leila Rochin
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK.
| | - Guillaume van Niel
- Institut Curie, Paris Sciences et Lettres Research University, UMR144, Centre de Recherche, 26 rue d'ULM, Paris F-75231, France.
- Centre National de la Recherche Scientifique, UMR144, Paris F-75248, France.
| |
Collapse
|
9
|
Jung E, Kim JH, Kim MO, Jang S, Kang M, Oh SW, Nho YH, Kang SH, Kim MH, Park SH, Lee J. Afzelin positively regulates melanogenesis through the p38 MAPK pathway. Chem Biol Interact 2016; 254:167-72. [PMID: 27287415 DOI: 10.1016/j.cbi.2016.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/06/2016] [Accepted: 06/06/2016] [Indexed: 11/29/2022]
Abstract
Melanogenesis refers to synthesis of the skin pigment melanin, which plays a critical role in the protection of skin against ultraviolet irradiation and oxidative stressors. We investigated the effects of afzelin on melanogenesis and its mechanisms of action in human epidermal melanocytes. In this study, we found that afzelin increased both melanin content and tyrosinase activity in a concentration-dependent manner. While the mRNA levels of microphthalmia-associated transcription factor (MITF), tyrosinase, and tyrosinase-related protein (TRP)-1 increased following afzelin treatment, the mRNA levels of TRP-2 were not affected by afzelin. Likewise, afzelin increased the protein levels of MITF, TRP-1, and tyrosinase but not TRP-2. Mechanistically, we found that afzelin regulated melanogenesis by upregulating MITF through phosphorylation of p38 mitogen-activated protein kinase (MAPK), independent of cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling. Taken together, these findings indicate that the promotion of melanogenesis by afzelin occurs through increased MITF gene expression, which is mediated by activation of p38 MAPK, and suggest that afzelin may be useful as a protective agent against ultraviolet irradiation.
Collapse
Affiliation(s)
- Eunsun Jung
- Biospectrum Life Science Institute, Seongnam City, 132-16, Gyunggi Do, Republic of Korea
| | - Jin Hee Kim
- College of Herbal Bio-Industry, Daegu Haany University, Gyeongsan City, 712-715, Gyeongsangbuk Do, Republic of Korea
| | - Mi Ok Kim
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City, 164-19, Gyunggi Do, Republic of Korea
| | - Sunghee Jang
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City, 164-19, Gyunggi Do, Republic of Korea
| | - Mingyeong Kang
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City, 164-19, Gyunggi Do, Republic of Korea
| | - Sae Woong Oh
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City, 164-19, Gyunggi Do, Republic of Korea
| | - Youn Hwa Nho
- COSMAX R&I Center, COSMAX Inc., Seongnam City, 134-86, Gyunggi Do, Republic of Korea
| | - Seung Hyun Kang
- COSMAX R&I Center, COSMAX Inc., Seongnam City, 134-86, Gyunggi Do, Republic of Korea
| | - Min Hee Kim
- Department of Physical Therapy, College of Health Science, Eulji University, Seongnam City, 131-35, Gyunggi Do, Republic of Korea
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong City, 300-16, Republic of Korea.
| | - Jongsung Lee
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City, 164-19, Gyunggi Do, Republic of Korea.
| |
Collapse
|
10
|
Seiberg M. Age-induced hair greying - the multiple effects of oxidative stress. Int J Cosmet Sci 2013; 35:532-8. [PMID: 24033376 DOI: 10.1111/ics.12090] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/20/2013] [Indexed: 01/14/2023]
Abstract
An obvious sign of ageing is hair greying, or the loss of pigment production and deposition within the hair shafts. Numerous mechanisms, acting at different levels and follicular locations, contribute to hair greying, ranging from melanocyte stem cells defects to follicular melanocyte death. One key issue that is in common to these processes is oxidative damage. At the hair follicle stem cells niche, oxidative stress, accelerated by B-cell lymphoma 2 gene (BCL-2) depletion, leads to selective apoptosis and diminution of melanocyte stem cells, reducing the repopulation of newly formed anagen follicles. Melanotic bulbar melanocytes express high levels of BCL-2 to enable survival from melanogenesis- and ultraviolet A (UVA)-induced reactive oxygen species (ROS) attacks. With ageing, the bulbar melanocyte expression of anti-oxidant proteins such as BCL-2, and possibly TRP-2, is reduced, and the dedicated enzymatic anti-oxidant defence system throughout the follicle weakens, resulting in enhanced oxidative stress. A marked reduction in catalase expression and activity results in millimolar accumulation of hydrogen peroxide, contributing to bulbar melanocyte malfunction and death. Interestingly, amelanotic melanocytes at the outer root sheath (ORS) are somewhat less affected by these processes and survive for longer time even within the white, ageing hair follicles. Better understanding of the overtime susceptibility of melanocytes to oxidative stress at the different follicular locations might yield clues to possible therapies for the prevention and reversal of hair greying.
Collapse
Affiliation(s)
- M Seiberg
- Seiberg Consulting, LLC, Princeton, NJ, USA
| |
Collapse
|
11
|
Watt B, van Niel G, Raposo G, Marks MS. PMEL: a pigment cell-specific model for functional amyloid formation. Pigment Cell Melanoma Res 2013; 26:300-15. [PMID: 23350640 DOI: 10.1111/pcmr.12067] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 01/15/2013] [Indexed: 12/15/2022]
Abstract
PMEL is a pigment cell-specific protein responsible for the formation of fibrillar sheets within the pigment organelle, the melanosome. The fibrillar sheets serve as a template upon which melanins polymerize as they are synthesized. The PMEL fibrils are required for optimal pigment cell function, as animals that either lack PMEL expression or express mutant PMEL variants show varying degrees of hypopigmentation and pigment cell inviability. The PMEL fibrils have biophysical properties of amyloid, a protein fold that is frequently associated with neurodegenerative and other diseases. However, PMEL is one of a growing number of non-pathogenic amyloid proteins that contribute to the function of the cell and/or organism that produces them. Understanding how PMEL generates amyloid in a non-pathogenic manner might provide insights into how to avoid toxicity due to pathological amyloid formation. In this review, we summarize and reconcile data concerning the fate of PMEL from its site of synthesis in the endoplasmic reticulum to newly formed melanosomes and the role of distinct PMEL subdomains in trafficking and amyloid fibril formation. We then discuss how its progression through the secretory pathway into the endosomal system might allow for the regulated and non-toxic conversion of PMEL into an ordered amyloid polymer.
Collapse
Affiliation(s)
- Brenda Watt
- Department of Pathology and Laboratory Medicine, Department of Physiology, and Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
12
|
Leskinen PK, Laaksonen T, Ruuskanen S, Primmer CR, Leder EH. The proteomics of feather development in pied flycatchers (Ficedula hypoleuca) with different plumage coloration. Mol Ecol 2012; 21:5762-77. [DOI: 10.1111/mec.12073] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 08/28/2012] [Accepted: 08/31/2012] [Indexed: 02/04/2023]
Affiliation(s)
| | - Toni Laaksonen
- Department of Biology; University of Turku; Turku; 20014; Finland
| | - Suvi Ruuskanen
- Department of Biology; University of Turku; Turku; 20014; Finland
| | - Craig R. Primmer
- Department of Biology; University of Turku; Turku; 20014; Finland
| | - Erica H. Leder
- Department of Biology; University of Turku; Turku; 20014; Finland
| |
Collapse
|
13
|
Sitaram A, Marks MS. Mechanisms of protein delivery to melanosomes in pigment cells. Physiology (Bethesda) 2012; 27:85-99. [PMID: 22505665 DOI: 10.1152/physiol.00043.2011] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vertebrate pigment cells in the eye and skin are useful models for cell types that use specialized endosomal trafficking pathways to partition cargo proteins to unique lysosome-related organelles such as melanosomes. This review describes current models of protein trafficking required for melanosome biogenesis in mammalian melanocytes.
Collapse
Affiliation(s)
- Anand Sitaram
- Cell and Molecular Biology Graduate Group, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
14
|
Pausch H, Wang X, Jung S, Krogmeier D, Edel C, Emmerling R, Götz KU, Fries R. Identification of QTL for UV-protective eye area pigmentation in cattle by progeny phenotyping and genome-wide association analysis. PLoS One 2012; 7:e36346. [PMID: 22567150 PMCID: PMC3342244 DOI: 10.1371/journal.pone.0036346] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 04/01/2012] [Indexed: 02/07/2023] Open
Abstract
Pigmentation patterns allow for the differentiation of cattle breeds. A dominantly inherited white head is characteristic for animals of the Fleckvieh (FV) breed. However, a minority of the FV animals exhibits peculiar pigmentation surrounding the eyes (ambilateral circumocular pigmentation, ACOP). In areas where animals are exposed to increased solar ultraviolet radiation, ACOP is associated with a reduced susceptibility to bovine ocular squamous cell carcinoma (BOSCC, eye cancer). Eye cancer is the most prevalent malignant tumour affecting cattle. Selection for animals with ACOP rapidly reduces the incidence of BOSCC. To identify quantitative trait loci (QTL) underlying ACOP, we performed a genome-wide association study using 658,385 single nucleotide polymorphisms (SNPs). The study population consisted of 3579 bulls of the FV breed with a total of 320,186 progeny with phenotypes for ACOP. The proportion of progeny with ACOP was used as a quantitative trait with high heritability (h2 = 0.79). A variance component based approach to account for population stratification uncovered twelve QTL regions on seven chromosomes. The identified QTL point to MCM6, PAX3, ERBB3, KITLG, LEF1, DKK2, KIT, CRIM1, ATRN, GSDMC, MITF and NBEAL2 as underlying genes for eye area pigmentation in cattle. The twelve QTL regions explain 44.96% of the phenotypic variance of the proportion of daughters with ACOP. The chromosomes harbouring significantly associated SNPs account for 54.13% of the phenotypic variance, while another 19.51% of the phenotypic variance is attributable to chromosomes without identified QTL. Thus, the missing heritability amounts to 7% only. Our results support a polygenic inheritance pattern of ACOP in cattle and provide the basis for efficient genomic selection of animals that are less susceptible to serious eye diseases.
Collapse
Affiliation(s)
- Hubert Pausch
- Lehrstuhl fuer Tierzucht, Technische Universitaet Muenchen, Freising, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Inactivation of Pmel alters melanosome shape but has only a subtle effect on visible pigmentation. PLoS Genet 2011; 7:e1002285. [PMID: 21949658 PMCID: PMC3174228 DOI: 10.1371/journal.pgen.1002285] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 06/18/2011] [Indexed: 11/19/2022] Open
Abstract
PMEL is an amyloidogenic protein that appears to be exclusively expressed in pigment cells and forms intralumenal fibrils within early stage melanosomes upon which eumelanins deposit in later stages. PMEL is well conserved among vertebrates, and allelic variants in several species are associated with reduced levels of eumelanin in epidermal tissues. However, in most of these cases it is not clear whether the allelic variants reflect gain-of-function or loss-of-function, and no complete PMEL loss-of-function has been reported in a mammal. Here, we have created a mouse line in which the Pmel gene has been inactivated (Pmel−/−). These mice are fully viable, fertile, and display no obvious developmental defects. Melanosomes within Pmel−/− melanocytes are spherical in contrast to the oblong shape present in wild-type animals. This feature was documented in primary cultures of skin-derived melanocytes as well as in retinal pigment epithelium cells and in uveal melanocytes. Inactivation of Pmel has only a mild effect on the coat color phenotype in four different genetic backgrounds, with the clearest effect in mice also carrying the brown/Tyrp1 mutation. This phenotype, which is similar to that observed with the spontaneous silver mutation in mice, strongly suggests that other previously described alleles in vertebrates with more striking effects on pigmentation are dominant-negative mutations. Despite a mild effect on visible pigmentation, inactivation of Pmel led to a substantial reduction in eumelanin content in hair, which demonstrates that PMEL has a critical role for maintaining efficient epidermal pigmentation. Pigmentation has since long constituted a prime model to study how genes act and interact. The PMEL gene encodes a protein exclusively found in the melanosomes of pigment-producing cells. Mutations in PMEL underlie some spectacular color phenotypes in animals including Dominant white color in chickens, Silver in horses, and Merle in dogs, but no spontaneous mutation causing a complete inactivation of this gene has yet been found in mammals. We have now developed a PMEL knockout mouse to further study the function of this protein. We show that mice lacking PMEL have almost normal visible pigmentation. However, loss of PMEL has a dramatic effect on the morphology of the melanosomes in skin, hair, and eye, such that the normally rod-shaped melanosomes in wild-type animals are spherical in the knockout mice. The knockout animals also have a substantial reduction in the content of black pigment in hair. The study establishes that PMEL has a critical role for maintaining normal pigment production.
Collapse
|
16
|
Karlsson AC, Kerje S, Hallböök F, Jensen P. The Dominant white mutation in the PMEL17 gene does not cause visual impairment in chickens. Vet Ophthalmol 2009; 12:292-8. [PMID: 19751488 DOI: 10.1111/j.1463-5224.2009.00714.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To examine whether the Dominant white mutation (causing a hypopigmented phenotype in chicken) affects the visual ability and gives rise to ocular abnormalities in chickens (Gallus gallus). PROCEDURE Chickens homozygous for either the Dominant white mutation or the wild-type alleles were tested in a visual contrast behavioral test and subjected to histological and ophthalmologic examination. RESULTS There were no differences between the genotypes in the visual contrast behavioral test, and there were no abnormal structures among the Dominant white chickens in the ophthalmic examination. The histological sections from the Dominant white chickens did not differ from the wild-type chicken in structure, photoreceptor density, or RPE pigmentation. CONCLUSIONS The results indicate that the Dominant white mutation in PMEL17 does not seem to affect the visual ability or eye structures in chickens.
Collapse
Affiliation(s)
- Anna-Carin Karlsson
- IFM Biology, Division of Zoology, Linköping University, SE-581 83 Linköping, Sweden
| | | | | | | |
Collapse
|
17
|
Beaumont KA, Liu YY, Sturm RA. The melanocortin-1 receptor gene polymorphism and association with human skin cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 88:85-153. [PMID: 20374726 DOI: 10.1016/s1877-1173(09)88004-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The melanocortin-1 receptor (MC1R) is a key gene involved in the regulation of melanin synthesis and encodes a G-protein coupled receptor expressed on the surface of the melanocyte in the skin and hair follicles. MC1R activation after ultraviolet radiation exposure results in the production of the dark eumelanin pigment and the tanning process in humans, providing physical protection against DNA damage. The MC1R gene is highly polymorphic in Caucasian populations with a number of MC1R variant alleles associated with red hair, fair skin, freckling, poor tanning, and increased risk of melanoma and nonmelanoma skin cancer. Variant receptors have shown alterations in biochemical function, largely due to intracellular retention or impaired G-protein coupling, but retain some signaling ability. The association of MC1R variant alleles with skin cancer risk remains after correction for pigmentation phenotype, indicating regulation of nonpigmentary pathways. Notably, MC1R activation has been linked to DNA repair and may also contribute to the regulation of immune responses.
Collapse
Affiliation(s)
- Kimberley A Beaumont
- Melanogenix Group, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia
| | | | | |
Collapse
|
18
|
|
19
|
Greco G, Wakamatsu K, Panzella L, Ito S, Napolitano A, d’Ischia M. Isomeric cysteinyldopas provide a (photo)degradable bulk component and a robust structural element in red human hair pheomelanin. Pigment Cell Melanoma Res 2009; 22:319-27. [DOI: 10.1111/j.1755-148x.2009.00561.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Le Pape E, Passeron T, Giubellino A, Valencia JC, Wolber R, Hearing VJ. Microarray analysis sheds light on the dedifferentiating role of agouti signal protein in murine melanocytes via the Mc1r. Proc Natl Acad Sci U S A 2009; 106:1802-7. [PMID: 19174519 PMCID: PMC2644118 DOI: 10.1073/pnas.0806753106] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Indexed: 12/27/2022] Open
Abstract
The melanocortin-1 receptor (MC1R) is a key regulator of pigmentation in mammals and is tightly linked to an increased risk of skin cancers, including melanoma, in humans. Physiologically activated by alpha-melanocyte stimulating hormone (alphaMSH), MC1R function can be antagonized by a secreted factor, agouti signal protein (ASP), which is responsible for the lighter phenotypes in mammals (including humans), and is also associated with increased risk of skin cancer. It is therefore of great interest to characterize the molecular effects elicited by those MC1R ligands. In this study, we determined the gene expression profiles of murine melan-a melanocytes treated with ASP or alphaMSH over a 4-day time course using genome-wide oligonucleotide microarrays. As expected, there were significant reductions in expression of numerous melanogenic proteins elicited by ASP, which correlates with its inhibition of pigmentation. ASP also unexpectedly modulated the expression of genes involved in various other cellular pathways, including glutathione synthesis and redox metabolism. Many genes up-regulated by ASP are involved in morphogenesis (especially in nervous system development), cell adhesion, and extracellular matrix-receptor interactions. Concomitantly, ASP enhanced the migratory potential and the invasiveness of melanocytic cells in vitro. These results demonstrate the role of ASP in the dedifferentiation of melanocytes, identify pigment-related genes targeted by ASP and by alphaMSH, and provide insights into the pleiotropic molecular effects of MC1R signaling that may function during development and may affect skin cancer risk.
Collapse
Affiliation(s)
- Elodie Le Pape
- Pigment Cell Biology Section, Laboratory of Cell Biology
| | | | - Alessio Giubellino
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | | | - Rainer Wolber
- Beiersdorf AG, Research and Development, Skin Research Center, 20245 Hamburg, Germany
| | | |
Collapse
|
21
|
Characterization of Japanese quail yellow as a genomic deletion upstream of the avian homolog of the mammalian ASIP (agouti) gene. Genetics 2008; 178:777-86. [PMID: 18287407 DOI: 10.1534/genetics.107.077073] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ASIP is an important pigmentation gene responsible for dorsoventral and hair-cycle-specific melanin-based color patterning in mammals. We report some of the first evidence that the avian ASIP gene has a role in pigmentation. We have characterized the genetic basis of the homozygous lethal Japanese quail yellow mutation as a >90-kb deletion upstream of ASIP. This deletion encompasses almost the entire coding sequence of two upstream loci, RALY and EIF2B, and places ASIP expression under control of the RALY promoter, leading to the presence of a novel transcript. ASIP mRNA expression was upregulated in many tissues in yellow compared to wild type but was not universal, and consistent differences were not observed among skins of yellow and wild-type quail. In a microarray analysis on developing feather buds, the locus with the largest downregulation in yellow quail was SLC24A5, implying that it is regulated by ASIP. Finally, we document the presence of ventral skin-specific isoforms of ASIP mRNA in both wild-type quails and chickens. Overall, there are remarkable similarities between yellow in quail and lethal yellow in mouse, which involve a deletion in a similar genomic position. The presence of ventral-specific ASIP expression in birds shows that this feature is conserved across vertebrates.
Collapse
|
22
|
Anti-tumor immunity elicited by adenovirus encoding AdhTrp2 or AdmTrp2 without vitiligo. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY. MEDICAL SCIENCES = HUA ZHONG KE JI DA XUE XUE BAO. YI XUE YING DE WEN BAN = HUAZHONG KEJI DAXUE XUEBAO. YIXUE YINGDEWEN BAN 2008; 28:132-5. [PMID: 18480980 DOI: 10.1007/s11596-008-0204-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Indexed: 10/19/2022]
Abstract
To compare the difference in tumor immunity and autoimmunity elicited by adenovirus (Ad) encoding human or murine tyrosinase-related protein 2 (AdhTRP2 or AdmTRP2), and to find the most effective way to induce immunity by AdhTRP2 or AdmTRP2, C57BL/6 mice were immunized with AdhTRP2 or AdmTRP2 intramuscularly at different doses of 10(5), 10(6), 10(7) and 10(8) separately (10 mice for each dose). Two weeks after the immunization, in vivo CTL assay and intracellular staining (ICS) of IFN-gamma were carried out to analyze the dose-effect relationship. Tumor growth and vitiligo (as an sign of autoimmunity) were observed until 3 months after challenge with 10(5) B16F10 tumor cells. The results showed that Ad encoding AdmTrp2 induced weak tumor immune response. Similar immunization with AdhTrp-2 elicited stronger protective immunity. CTL activity and IFN-gamma-produced CD8+T cells were directly proportional to dose of AdhTrp2 or AdmTrp2. Moreover, AdhTrp2 group showed tumor rejection in 100% of challenged mice till the end of 3rd month while 60% of mice immunized with AdmTrp2 were protected against tumor. In the whole process of this experiment, no vitiligo was observed in mice immunized either with AdhTrp2 or AdmTrp2. It is concluded that anti-melanoma responses induced by genetic vaccination expressing xenoantigens breaks immune tolerance effectively and is able to elicit strong antigen-specific cytotoxic T cell response without vitiligo.
Collapse
|
23
|
Wolff GL, Stanley JS, Ferguson ME, Simpson PM, Ronis MJJ, Badger TM. Agouti signaling protein stimulates cell division in "viable yellow" (A(vy)/a) mouse liver. Exp Biol Med (Maywood) 2008; 232:1326-9. [PMID: 17959845 DOI: 10.3181/0704-bc-95] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Enhanced linear growth, hyperplasia, and tumorigenesis are well-known characteristics of "viable yellow" agouti A(vy)/- mice (Wolff GL, Roberts DW, Mountjoy KG. Physiol Genomics 1:151-163, 1999); however, the functional basis for this aspect of the phenotype is unknown. In the present study, we ascertained whether agouti signaling protein (ASIP) levels in A(vy)/a or a/a livers are associated with hepatocyte proliferation as a possible factor in promotion of hepatocellular tumor formation. Proliferating cell nuclear antigen (PCNA) assays and quantitative real-time reverse transcriptase polymerase chain reaction assays were performed on liver samples from mottled yellow A(vy)/a, pseudoagouti A(vy)/a, and black a/a VY mice to determine mitotic indices and expression levels of A(vy )and a in relation to the expression level of the housekeeping gene hprt. We found that ASIP levels were approximately 100-fold higher in yellow than in pseudoagouti or black mice and that the proportion of PCNA-positive hepatocytes was greater (P < 0.001) in yellow than in pseudoagouti or black mice.
Collapse
Affiliation(s)
- George L Wolff
- Arkansas Children's Nutrition Center, Little Rock, AR72202, USA
| | | | | | | | | | | |
Collapse
|
24
|
Raposo G, Marks MS. Melanosomes--dark organelles enlighten endosomal membrane transport. Nat Rev Mol Cell Biol 2007; 8:786-97. [PMID: 17878918 PMCID: PMC2786984 DOI: 10.1038/nrm2258] [Citation(s) in RCA: 382] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Melanosomes are tissue-specific lysosome-related organelles of pigment cells in which melanins are synthesized and stored. Analyses of the trafficking and fate of melanosomal components are beginning to reveal how melanosomes are formed through novel pathways from early endosomal intermediates. These studies unveil generalized structural and functional modifications of the endosomal system in specialized cells, and provide unexpected insights into the biogenesis of multivesicular bodies and how compartmentalization regulates protein refolding. Moreover, genetic disorders that affect the biogenesis of melanosomes and other lysosome-related organelles have shed light onto the molecular machinery that controls specialized endosomal sorting events.
Collapse
Affiliation(s)
- Graça Raposo
- Institut Curie, Centre de Recherche, Paris, F-75248 France.
| | | |
Collapse
|
25
|
Gutiérrez-Gil B, Wiener P, Williams JL. Genetic effects on coat colour in cattle: dilution of eumelanin and phaeomelanin pigments in an F2-Backcross Charolais x Holstein population. BMC Genet 2007; 8:56. [PMID: 17705851 PMCID: PMC1994163 DOI: 10.1186/1471-2156-8-56] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Accepted: 08/16/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In cattle, the gene coding for the melanocortin receptor 1 (MC1R) is known to be the main regulator of the switch between the two coat colour pigments: eumelanin (black pigment) and phaeomelanin (red pigment). Some breeds, such as Charolais and Simmental, exhibit a lightening of the original pigment over the whole body. The dilution mutation in Charolais (Dc) is responsible for the white coat colour of this breed. Using an F2-Backcross Charolais x Holstein population which includes animals with both pigment backgrounds, we present a linkage mapping study of the Charolais dilution locus. RESULTS A Charolais x Holstein crossbred population was investigated for genetic effects on coat colour dilution. Three different traits representing the dilution of the phaeomelanin, eumelanin, and non-pigment-specific dilution were defined. Highly significant genome-wide associations were detected on chromosome 5 for the three traits analysed in the marker interval [ETH10-DIK5248]. The SILV gene was examined as the strongest positional and functional candidate gene. A previously reported non-synonymous mutation in exon 1 of this gene, SILV c.64A>G, was associated with the coat colour dilution phenotype in this resource population. Although some discrepancies were identified between this mutation and the dilution phenotype, no convincing recombination events were found between the SILV c.64A>G mutation and the Dc locus. Further analysis identified a region on chromosome 28 influencing the variation in pigment intensity for a given coat colour category. CONCLUSION The present study has identified a region on bovine chromosome 5 that harbours the major locus responsible for the dilution of the eumelanin and phaeomelanin seen in Charolais crossbred cattle. In this study, no convincing evidence was found to exclude SILV c.64A>G as the causative mutation for the Charolais dilution phenotype, although other genetic effects may influence the coat colour variation in the population studied. A region on chromosome 28 influences the intensity of pigment within coat colour categories, and therefore may include a modifier of the Dc locus. A candidate gene for this effect, LYST, was identified.
Collapse
Affiliation(s)
- Beatriz Gutiérrez-Gil
- Roslin Institute (Edinburgh), Roslin, Midlothian, Scotland, UK Midlothian EH25 9PS, UK
| | - Pamela Wiener
- Roslin Institute (Edinburgh), Roslin, Midlothian, Scotland, UK Midlothian EH25 9PS, UK
| | - John L Williams
- Roslin Institute (Edinburgh), Roslin, Midlothian, Scotland, UK Midlothian EH25 9PS, UK
- Current Address: Parco Tecnologico Padano, Via Einstein, Polo Universitario, Lodi 26900, Italy
| |
Collapse
|
26
|
Passeron T, Valencia JC, Bertolotto C, Hoashi T, Le Pape E, Takahashi K, Ballotti R, Hearing VJ. SOX9 is a key player in ultraviolet B-induced melanocyte differentiation and pigmentation. Proc Natl Acad Sci U S A 2007; 104:13984-9. [PMID: 17702866 PMCID: PMC1955778 DOI: 10.1073/pnas.0705117104] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SOX (SRY type HMG box) proteins are transcription factors that are predominantly known for their roles during development. During melanocyte development from the neural crest, SOX10 regulates microphthalmia-associated transcription factor, which controls a set of genes critical for pigment cell development and pigmentation, including dopachrome tautomerase and tyrosinase. We report here that another SOX factor, SOX9, is expressed by melanocytes in neonatal and adult human skin and is up-regulated by UVB exposure. We demonstrate that this regulation is mediated by cAMP and protein kinase. We also show that agouti signal protein, a secreted factor known to decrease pigmentation, down-regulates SOX9 expression. In adult and neonatal melanocytes, SOX9 regulates microphthalmia-associated transcription factor, dopachrome tautomerase, and tyrosinase promoters, leading to an increase in the expression of these key melanogenic proteins and finally to a stimulation of pigmentation. SOX9 completes the complex and tightly regulated process leading to the production of melanin by acting at a very upstream level. This role of SOX9 in pigmentation emphasizes the poorly understood impact of SOX proteins in adult tissues.
Collapse
Affiliation(s)
- Thierry Passeron
- *Pigment Cell Biology Section, Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814; and
| | - Julio C. Valencia
- *Pigment Cell Biology Section, Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814; and
| | - Corine Bertolotto
- Unité 597, Institut National de la Santé et de la Recherche Médicale, Faculté de Médecine, Université de Nice Sophia–Antipolis, 06103 Nice, France
| | - Toshihiko Hoashi
- *Pigment Cell Biology Section, Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814; and
| | - Elodie Le Pape
- *Pigment Cell Biology Section, Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814; and
| | - Kaoruko Takahashi
- *Pigment Cell Biology Section, Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814; and
| | - Robert Ballotti
- Unité 597, Institut National de la Santé et de la Recherche Médicale, Faculté de Médecine, Université de Nice Sophia–Antipolis, 06103 Nice, France
| | - Vincent J. Hearing
- *Pigment Cell Biology Section, Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814; and
- To whom correspondence may be addressed.
Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Building 37, Room 2132, MSC 4256, Bethesda, MD 20892. E-mail:
| |
Collapse
|
27
|
Dalvit C, De Marchi M, Cassandro M. Genetic traceability of livestock products: A review. Meat Sci 2007; 77:437-49. [PMID: 22061927 DOI: 10.1016/j.meatsci.2007.05.027] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 04/14/2007] [Accepted: 05/31/2007] [Indexed: 11/16/2022]
Abstract
Traceability is the ability to maintain the identification of animal, or animal products, all along the production chain. It represents an essential tool to safeguard public and animal health and to valorize typical production systems. European food legislation is particularly strict and traceability systems, based on product labeling, have become mandatory in all European countries. However, the implementation of this system does not ensure consumers against fraud. Paper documents can be counterfeit so researchers have focused on the study of genetic traceability systems based on products identification through DNA analysis. In fact DNA is inalterable, detectable in every cell, resistant to heat treatments, and allows for individual, breed or species identification. Even if results are promising, these techniques are too expensive to be converted in routine tests but they could be a trusted tool for verification of suspected fraud. The present review proposes a synthesis of the major advances made in individual, breed, and species genetic identification in the last years, focusing on advantages and disadvantages and on their real future applications for animal productions.
Collapse
Affiliation(s)
- C Dalvit
- Department of Animal Science, University of Padova, 35020 Legnaro (PD), Italy
| | | | | |
Collapse
|
28
|
April CS, Barsh GS. Skin layer-specific transcriptional profiles in normal and recessive yellow (Mc1re/Mc1re) mice. ACTA ACUST UNITED AC 2006; 19:194-205. [PMID: 16704453 DOI: 10.1111/j.1600-0749.2006.00305.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The melanocortin 1 receptor (Mc1r) plays a central role in cutaneous biology, but is expressed at very low levels by a small fraction of cells in the skin. In humans, loss-of-function MC1R mutations cause fair skin, freckling, red hair, and increased predisposition to melanoma; in mice, Mc1r loss-of-function is responsible for the recessive yellow mutation, associated with pheomelanic hair and a decreased number of epidermal melanocytes. To better understand how Mc1r signaling affects different cutaneous phenotypes, we examined large-scale patterns of gene expression in different skin components (whole epidermal sheets, basal epidermal cells and whole skins) of neonatal (P2.5) normal and recessive yellow mice, starting with a 26K mouse cDNA microarray. From c. 17 000 genes whose levels could be accurately measured in neonatal skin, we identified 883, 2097 and 552 genes that were uniquely expressed in the suprabasal epidermis, basal epidermis and dermis, respectively; specific biologic roles could be assigned for each class. Comparison of normal and recessive yellow mice revealed 69 differentially expressed genes, of which the majority had not been previously implicated in Mc1r signaling. Surprisingly, many of the Mc1r-dependent genes are expressed in cells other than melanocytes, even though Mc1r expression in the skin is confined almost exclusively to epidermal melanocytes. These results reveal new targets for Mc1r signaling, and point to a previously unappreciated role for a Mc1r-dependent paracrine effect of melanocytes on other components of the skin.
Collapse
Affiliation(s)
- Craig S April
- Department of Genetics and Pediatrics, Stanford University School of Medicine, CA 94305-5323, USA
| | | |
Collapse
|
29
|
Lanning JL, Wallace JS, Zhang D, Diwakar G, Jiao Z, Hornyak TJ. Altered melanocyte differentiation and retinal pigmented epithelium transdifferentiation induced by Mash1 expression in pigment cell precursors. J Invest Dermatol 2005; 125:805-17. [PMID: 16185282 DOI: 10.1111/j.0022-202x.2005.23819.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transcription factor genes governing pigment cell development that are associated with spotting mutations in mice include members of several structural transcription factor classes but not members of the basic helix-loop-helix (bHLH) class, important for neurogenesis and myogenesis. To determine the effects of bHLH factor expression on pigment cell development, the neurogenic bHLH factor Mash1 was expressed early in pigment cell development in transgenic mice from the dopachrome tautomerase (Dct) promoter. Dct:Mash1 transgenic founders exhibit variable microphthalmia and patchy coat color hypopigmentation. Transgenic F1 mice exhibit microphthalmia with complete coat color dilution. Marker analysis demonstrates that Mash1 expression in the retinal pigmented epithelium (RPE) initiates neurogenesis in this cell layer, whereas expression in remaining neural crest-derived melanocytes alters their differentiation, in part by profoundly downregulating expression of the p (pink-eyed dilution) gene, while maintaining their cell fate. The effects of transcriptional perturbation of pigment cell precursors by Mash1 further highlight differences between pigment cells of distinct developmental origins, and suggest a mechanism for the alteration of melanogenesis to result in marked coat color dilution.
Collapse
Affiliation(s)
- Jessica L Lanning
- Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA
| | | | | | | | | | | |
Collapse
|
30
|
Theos AC, Truschel ST, Raposo G, Marks MS. The Silver locus product Pmel17/gp100/Silv/ME20: controversial in name and in function. ACTA ACUST UNITED AC 2005; 18:322-36. [PMID: 16162173 PMCID: PMC2788625 DOI: 10.1111/j.1600-0749.2005.00269.x] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mouse coat color mutants have led to the identification of more than 120 genes that encode proteins involved in all aspects of pigmentation, from the regulation of melanocyte development and differentiation to the transcriptional activation of pigment genes, from the enzymatic formation of pigment to the control of melanosome biogenesis and movement [Bennett and Lamoreux (2003) Pigment Cell Res. 16, 333]. One of the more perplexing of the identified mouse pigment genes is encoded at the Silver locus, first identified by Dunn and Thigpen [(1930) J. Heredity 21, 495] as responsible for a recessive coat color dilution that worsened with age on black backgrounds. The product of the Silver gene has since been discovered numerous times in different contexts, including the initial search for the tyrosinase gene, the characterization of major melanosome constituents in various species, and the identification of tumor-associated antigens from melanoma patients. Each discoverer provided a distinct name: Pmel17, gp100, gp95, gp85, ME20, RPE1, SILV and MMP115 among others. Although all its functions are unlikely to have yet been fully described, the protein clearly plays a central role in the biogenesis of the early stages of the pigment organelle, the melanosome, in birds, and mammals. As such, we will refer to the protein in this review simply as pre-melanosomal protein (Pmel). This review will summarize the structural and functional aspects of Pmel and its role in melanosome biogenesis.
Collapse
Affiliation(s)
- Alexander C. Theos
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Steven T. Truschel
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Graça Raposo
- Institut Curie, Centre National de la Recherche Scientifique, UMR-144, Paris Cedex, France
| | - Michael S. Marks
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Address correspondence to Michael S. Marks,
| |
Collapse
|
31
|
Costin GE, Valencia J, Wakamatsu K, Ito S, Solano F, Milac A, Vieira W, Yamaguchi Y, Rouzaud F, Petrescu AJ, Lamoreux M, Hearing V. Mutations in dopachrome tautomerase (Dct) affect eumelanin/pheomelanin synthesis, but do not affect intracellular trafficking of the mutant protein. Biochem J 2005; 391:249-59. [PMID: 15960609 PMCID: PMC1276922 DOI: 10.1042/bj20042070] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 06/06/2005] [Accepted: 06/16/2005] [Indexed: 11/17/2022]
Abstract
Dopachrome tautomerase (Dct) is a type I membrane protein and an important regulatory enzyme that plays a pivotal role in the biosynthesis of melanin and in the rapid metabolism of its toxic intermediates. Dct-mutant melanocytes carrying the slaty or slaty light mutations were derived from the skin of newborn congenic C57BL/6J non-agouti black mice and were used to study the effect(s) of these mutations on the intracellular trafficking of Dct and on the pigmentation of the cells. Dct activity is 3-fold lower in slaty cells compared with non-agouti black melanocytes, whereas slaty light melanocytes have a surprisingly 28-fold lower Dct activity. Homology modelling of the active site of Dct suggests that the slaty mutation [R194Q (Arg194-->Gln)] is located in the active site and may alter the ability of the enzyme to transform the substrate. Transmembrane prediction methods indicate that the slaty light mutation [G486R (Gly486-->Arg)] may result in the sliding of the transmembrane domain towards the N-terminus, thus interfering with Dct function. Chemical analysis showed that both Dct mutations increase pheomelanin and reduce eumelanin produced by melanocytes in culture. Thus the enzymatic activity of Dct may play a role in determining whether the eumelanin or pheomelanin pathway is preferred for pigment biosynthesis.
Collapse
Key Words
- dopachrome tautomerase (dct)
- eumelanin
- melanocyte
- pheomelanin
- pigmentation
- slaty
- 4-ahp, 4-amino-3-hydroxyphenylalanine
- bip, immunoglobulin heavy-chain binding protein
- dapi, 4,6-diamidino-2-phenylindole
- dct, dopachrome tautomerase
- dhica, 5,6-dihydroxyindole-2-carboxylic acid
- endo h, endoglycosidase h
- er, endoplasmic reticulum
- hrp, horseradish peroxidase
- np40, nonidet p40
- oca, oculocutaneous albinism
- pngase f, peptide n-glycosidase f
- ptca, pyrrole-2,3,5-tricarboxylic acid
- rt, reverse transcriptase
Collapse
Affiliation(s)
- Gertrude-E. Costin
- *Pigment Cell Biology Section, Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, U.S.A
| | - Julio C. Valencia
- *Pigment Cell Biology Section, Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, U.S.A
| | - Kazumasa Wakamatsu
- †Fujita Health University School of Health Sciences, Toyoake, Aichi, Japan
| | - Shosuke Ito
- †Fujita Health University School of Health Sciences, Toyoake, Aichi, Japan
| | - Francisco Solano
- ‡Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia, Murcia, Spain
| | - Adina L. Milac
- §Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Wilfred D. Vieira
- *Pigment Cell Biology Section, Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, U.S.A
| | - Yuji Yamaguchi
- *Pigment Cell Biology Section, Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, U.S.A
| | - François Rouzaud
- *Pigment Cell Biology Section, Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, U.S.A
| | | | - M. Lynn Lamoreux
- ∥Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, U.S.A
| | - Vincent J. Hearing
- *Pigment Cell Biology Section, Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, U.S.A
| |
Collapse
|
32
|
Abstract
Among more than 120 genes that are now known to regulate mammalian pigmentation, one of the key genes is MC1R, which encodes the melanocortin 1 receptor, a seven transmembrane G protein-coupled receptor expressed on the surface of melanocytes. Since the monoexonic sequence of the gene was cloned and characterized more than a decade ago, tremendous efforts have been dedicated to the extensive genotyping of mostly red-haired populations all around the world, thus providing allelic variants that may or may not account for melanoma susceptibility in the presence or absence of ultraviolet (UV) exposure. Soluble factors, such as proopiomelanocortin (POMC) derivatives, agouti signal protein (ASP) and others, regulate MC1R expression, leading to improved photoprotection via increased eumelanin synthesis or in contrast, inducing the switch to pheomelanin. However, there is an obvious lack of knowledge regarding the numerous and complex regulatory mechanisms that govern the expression of MC1R at the intra-cellular level, from gene transcription in response to an external stimulus to the expression of the mature receptor on the melanocyte surface.
Collapse
Affiliation(s)
- Francois Rouzaud
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Building 37, Room 2132, Bethesda, MD 20892, USA
| | | |
Collapse
|
33
|
Kaput J, Klein KG, Reyes EJ, Kibbe WA, Cooney CA, Jovanovic B, Visek WJ, Wolff GL. Identification of genes contributing to the obese yellow Avy phenotype: caloric restriction, genotype, diet x genotype interactions. Physiol Genomics 2004; 18:316-24. [PMID: 15306695 DOI: 10.1152/physiolgenomics.00065.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The incidence and severity of obesity and type 2 diabetes are increasing in Western societies. The progression of obesity to type 2 diabetes is gradual with overlapping symptoms of insulin resistance, hyperinsulinemia, hyperglycemia, dyslipidemias, ion imbalance, and inflammation; this complex syndrome has been called diabesity. We describe here comparisons of gene expression in livers of A/a (agouti) vs. A(vy)/A (obese yellow) segregants (i.e., littermates) from BALB/cStCrlfC3H/Nctr x VYWffC3Hf/Nctr-A(vy)/a matings in response to 70% and 100% of ad libitum caloric intakes of a reproducible diet. Twenty-eight (28) genes regulated by diet, genotype, or diet x genotype interactions mapped to diabesity quantitative trait loci. A subset of the identified genes is linked to abnormal physiological signs observed in obesity and diabetes.
Collapse
Affiliation(s)
- Jim Kaput
- University of California at Davis, Davis, California 95616, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Guibert S, Girardot M, Leveziel H, Julien R, Oulmouden A. Pheomelanin Coat Colour Dilution in French Cattle Breeds is not Correlated with the TYR, TYRP1 and DCT Transcription Levels. ACTA ACUST UNITED AC 2004; 17:337-45. [PMID: 15250935 DOI: 10.1111/j.1600-0749.2004.00152.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study we report the isolation of full-length cDNAs and the expression patterns of TYR, TYRP1 and DCT in four e/e cattle breeds exhibiting different pheomelanic coat colours ranging from reddish brown to creamy white phenotypes. Predicted proteins encoded by bovine TYR, TYRP1 and DCT display high levels of homology and contain all characteristic domains shared between their mouse and human counterparts. The full expression of these three genes is observed in melanocytes of black areas of E(D)/E(D) Prim'Holstein's animals. On the other hand, e/e melanocytes of animals belonging to the Blonde d'Aquitaine (blond), Limousine (red) and Salers (reddish brown) breeds present different levels of down-regulated TYR and DCT expression and a complete repression of TYRP1. Surprisingly, e/e melanocytes of animals belonging to the Charolais breed (creamy white) present an inverse relationship between TYR, TYRP1 and DCT expression and its lower melanogenic activity. The sum of these results shows that the dilution of the coat colour in French cattle breeds is not correlated with a transcription level of TYR family genes. Other possible modifier loci are suggested.
Collapse
Affiliation(s)
- Sylvain Guibert
- Unité de Génétique Moléculaire Animale, UMR1061 INRA/Université de Limoges, Limoges, France
| | | | | | | | | |
Collapse
|
35
|
Suzuki I, Motokawa T. In Situ Hybridization: An Informative Technique for Pigment Cell Researchers. ACTA ACUST UNITED AC 2004; 17:10-4. [PMID: 14717840 DOI: 10.1046/j.1600-0749.2003.00112.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Many cellular events are regulated at the transcriptional level. Recent technical advances such as DNA microarray have made it possible to determine mRNA profiles of cultured cells or tissues. However, since it is still impossible to completely simulate the in vivo environment in culture conditions, mRNA profiles of cultured cells are not perfect representatives of original cells. Furthermore, for cells that exist at lower densities, mRNA profiling using tissue samples would be difficult. By using tissue in situ hybridization, mRNA levels of genes in tissues can be determined at cellular resolution. Although throughput of tissue in situ hybridization is not high enough for mRNA profiling, it may be sufficient to investigate temporal/spatial expression profiles of genes that are known to be important or found to be interesting in high-throughput transcriptome/proteome analyses. Recent technical advances have made it easier for everybody to perform tissue in situ hybridization using normal experimental instruments with sufficient sensitivity to detect most genes. Although this technique has been utilized mainly in developmental biology, it will be fully advantageous when combined with high-throughput comprehensive transcriptome/proteome analyses.
Collapse
Affiliation(s)
- Itaru Suzuki
- POLA Chemical Industries, Inc., Totsuka-ku, Yokohama, Japan.
| | | |
Collapse
|
36
|
Rouzaud F, Annereau JP, Valencia JC, Costin GE, Hearing VJ. Regulation of melanocortin 1 receptor expression at the mRNA and protein levels by its natural agonist and antagonist. FASEB J 2003; 17:2154-6. [PMID: 14500544 DOI: 10.1096/fj.03-0206fje] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Five melanocortin receptors, which form a subfamily of G protein-coupled receptors, are expressed in mammalian tissues and regulate such diverse physiological processes as pigmentation, adrenal function, energy homeostasis, feeding efficiency, and sebaceous gland lipid production, as well as immune and sexual function. Pigmentation in mammals is stimulated by alpha-melanocyte stimulating hormone (MSH), which binds to the melanocortin 1 receptor (Mc1r) and induces an activation of melanogenic enzymes through stimulation of adenylate cyclase and protein kinase A. The antagonist agouti signal protein (ASP) interacts with the Mc1r and blocks its stimulation by MSH. We examined the influence of ASP or MSH on Mc1r gene expression, and we report that both ligands influence the Mc1r 5' promoter structure in distinct manners. Our study further shows that MSH regulates Mc1r function at both the mRNA and protein levels, whereas ASP acts only on its translation.
Collapse
Affiliation(s)
- Francois Rouzaud
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
37
|
Wolff GL. Regulation of yellow pigment formation in mice: a historical perspective. PIGMENT CELL RESEARCH 2003; 16:2-15. [PMID: 12519120 DOI: 10.1034/j.1600-0749.2003.00012.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pigment synthesis by hair follicle melanocytes is modulated by a large number of environmental and genetic factors, many of which are discussed in this review. Eumelanic (non-yellow) pigment is produced by hair follicle melanocytes following the binding of alpha-melanocyte stimulating hormone to melanocortin receptor 1. Binding of this hormone to the melanocyte membrane is blocked by agouti signaling protein (ASP) which is encoded by the agouti locus and results in the synthesis of yellow pigment, instead of non-yellow (black/brown) pigment. The cyclical release of ASP by hair follicle cells results in a black/brown hair with a subapical yellow band. This is the wild-type coat color pattern of many mammals and is called agouti. Several dominant mutations at the agouti locus in mice, induced by retrotransposon-like intracisternal A particles, result in ectopic over-expression of ASP and animals with much higher proportions of all-yellow hairs. This abnormal presence of ASP in essentially all body cells results in the 'yellow agouti obese mouse syndrome.' The obesity has been associated with binding of ASP to melanocortin receptor 4 inactivating the latter. The syndrome also includes hyperinsulinemia, increased somatic growth, and increased susceptibility to hyperplasia and carcinogenesis. The physiologic and molecular bases for these syndrome components have not yet been elucidated. This historically orientated review is subdivided, where applicable, into pre- and post-1992 subsections to emphasize the impact of the cloning of the agouti and extension loci and their protein products on the identification of the molecular and physiological pathways modulating the manifold aspects of pheomelanogenesis.
Collapse
Affiliation(s)
- George L Wolff
- Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration, Jefferson, AR 72079, USA.
| |
Collapse
|
38
|
Voisey J, Kelly G, Van Daal A. Agouti signal protein regulation in human melanoma cells. PIGMENT CELL RESEARCH 2003; 16:65-71. [PMID: 12519127 DOI: 10.1034/j.1600-0749.2003.00007.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Production of the pigment eumelanin is controlled by alpha-melanocyte stimulating hormone (alpha-MSH) stimulation of melanocortin 1 receptor (Mc1r), whereas production of pheomelanin results from agouti antagonism of alpha-MSH signalling through Mc1r. The role of agouti in mouse pigmentation has been extensively investigated but a role for agouti signalling protein (ASIP) in human pigmentation has not been determined. To determine whether ASIP regulates known melanogenic genes in humans, ASIP was over-expressed in a human melanoma cell line. Levels of mRNA and protein were measured in genes known to be up or down-regulated by agouti in the mouse, namely microphthalmia (Mitf), tyrosinase (Tyr), tyrosinase-related protein 1 (Tyrp1), dopachrome tautomerase (Dct), Mc1r, silver, initiation transcription factor 2 (Itf2) and mini chromosome maintenance protein 6 (Mcm6). These melanogenic genes were not found to be significantly up or down-regulated by ASIP at the transcriptional level in human melanoma cells. However, ASIP down-regulation of tyrp1 was observed at the translational level. To identify novel genes that may be regulated by ASIP in melanoma cells, microarrays were used to determine differences in gene expression between the control and ASIP transfected melanoma cells. The expression level of human RNAs were determined by microarray analysis using a 19,200 cDNA and a 19,200 oligonucleotide array representing 13,000 and 18,864 individual genes, respectively. Genes observed to be modulated by ASIP were confirmed by quantitative real-time polymerase chain reaction. Results identify five genes, namely PPARbeta, eIF-4B, RRM2, MINOR and EVI2B that are down-regulated by ASIP, indicating a likely role for ASIP in human melanogenesis.
Collapse
Affiliation(s)
- Joanne Voisey
- CRC for Diagnostics, Queensland University of Technology, Brisbane, Australia
| | | | | |
Collapse
|
39
|
Brett PM, Parkar M, Olsen I, Tonetti M. Expression profiling of periodontal ligament cells stimulated with enamel matrix proteins in vitro: a model for tissue regeneration. J Dent Res 2002; 81:776-83. [PMID: 12407094 DOI: 10.1177/0810776] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Several studies have examined the role of enamel matrix proteins in root formation and periodontal regeneration, although most of these have focused on a few specific genes which had previously been implicated. However, recent advances in expressional profiling have made it possible to examine the range of genetic responses involved in these processes. In the present experiments, we have therefore utilized this technique to determine the effects of enamel matrix proteins on the gene activities of periodontal ligament cells in vitro. Such cells were found to have an elevated level of RNA synthesis compared with control cells. Moreover, hybridization of the cDNA prepared from this RNA to gene array filters showed that there was differential expression of 121 genes, most of which had not previously been associated with periodontal regeneration. Some of these selective changes in gene activity might thus reflect the fundamental events that underlie periodontal development.
Collapse
Affiliation(s)
- P M Brett
- Department of Periodontology, Eastman Dental Institute, University College London, 256 Gray's Inn Road, London WC1X 8LD, UK
| | | | | | | |
Collapse
|
40
|
Abstract
The agouti protein regulates pigmentation in the mouse hair follicle producing a black hair with a subapical yellow band. Its effect on pigmentation is achieved by antagonizing the binding of alpha-melanocyte stimulating hormone (alpha-MSH) to melanocortin 1 receptor (Mc1r), switching melanin synthesis from eumelanin (black/brown) to phaeomelanin (red/yellow). Dominant mutations in the non-coding region of mouse agouti cause yellow coat colour and ectopic expression also results in obesity, type 11 diabetes, increased somatic growth and tumourigenesis. At least some of these pleiotropic effects can be explained by antagonism of other members of the melanocortin receptor family by agouti protein. The yellow coat colour is the result of agouti chronically antagonizing the binding of alpha-MSH to Mc1r and the obese phenotype results from agouti protein antagonizing the binding of alpha-MSH to Mc3r and/or Mc4r. Despite the existence of a highly homologous agouti protein in humans, agouti signal protein (ASIP), its role has yet to be defined. However it is known that human ASIP is expressed at highest levels in adipose tissue where it may antagonize one of the melanocortin receptors. The conserved nature of the agouti protein combined with the diverse phenotypic effects of agouti mutations in mouse and the different expression patterns of human and mouse agouti, suggest ASIP may play a role in human energy homeostasis and possibly human pigmentation.
Collapse
Affiliation(s)
- Joanne Voisey
- Co-operative Research Centre for Diagnostics, Queensland University of Technology, Brisbane, Australia
| | | |
Collapse
|
41
|
Meije CB, Hakvoort TBM, Swart GWM, Westerhof W, Lamers WH, Das PK. Gene expression patterns in melanocytic cells: candidate markers for early stage and malignant transformation. J Pathol 2002; 196:51-8. [PMID: 11748642 DOI: 10.1002/path.1017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Different stages of differentiation of human melanocytic cells, such as normal melanocytes, naevus and melanoma cells, reflect distinct gene expression patterns. A PCR-based subtractive hybridization and display method was applied to identify genes that are differentially expressed in melanocytic cells in relation to early stage and malignant transformation. This resulted in the identification of a number of candidate cDNAs differentially expressed among melanocytes, naevus cells, and (non)-metastatic melanoma cells. Out of this collection of cDNAs, 16 clones were screened that comprised 12 novel genes, one previously identified expressed sequence tag related to vesicular trafficking (Ras-related protein Rab5b). The other three were also known genes that were either related to cell motility (beta-tubulin), pre-mRNA splicing (small nuclear protein U1A), or of unknown function (the human TI227-H gene). The differential expression patterns of Rab5b and two novel gene fragments (pCMa1, pCMn2) were further assessed in melanocytic cells. pCMa1 was expressed more in metastatic melanoma than in primary melanoma cells. In contrast, pCMn2 was expressed in both non-metastatic and metastatic melanoma cells, but was not detectable in either normal melanocytes or naevus cells. The Ras-related protein Rab5b showed lower levels of expression in highly metastatic than in other melanoma cells. These three cDNAs may therefore be involved in the early stage and malignant transformation of melanocytes.
Collapse
Affiliation(s)
- Clifton B Meije
- Department of Pathology, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
42
|
Sturm RA, Teasdale RD, Box NF. Human pigmentation genes: identification, structure and consequences of polymorphic variation. Gene 2001; 277:49-62. [PMID: 11602344 DOI: 10.1016/s0378-1119(01)00694-1] [Citation(s) in RCA: 253] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The synthesis of the visible pigment melanin by the melanocyte cell is the basis of the human pigmentary system, those genes directing the formation, transport and distribution of the specialised melanosome organelle in which melanin accumulates can legitimately be called pigmentation genes. The genes involved in this process have been identified through comparative genomic studies of mouse coat colour mutations and by the molecular characterisation of human hypopigmentary genetic diseases such as OCA1 and OCA2. The melanocyte responds to the peptide hormones alpha-MSH or ACTH through the MC1R G-protein coupled receptor to stimulate melanin production through induced maturation or switching of melanin type. The pheomelanosome, containing the key enzyme of the pathway tyrosinase, produces light red/yellowish melanin, whereas the eumelanosome produces darker melanins via induction of additional TYRP1, TYRP2, SILV enzymes, and the P-protein. Intramelanosomal pH governed by the P-protein may act as a critical determinant of tyrosinase enzyme activity to control the initial step in melanin synthesis or TYRP complex formation to facilitate melanogenesis and melanosomal maturation. The search for genetic variation in these candidate human pigmentation genes in various human populations has revealed high levels of polymorphism in the MC1R locus, with over 30 variant alleles so far identified. Functional correlation of MC1R alleles with skin and hair colour provides evidence that this receptor molecule is a principle component underlying normal human pigment variation.
Collapse
Affiliation(s)
- R A Sturm
- Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | |
Collapse
|
43
|
Sviderskaya EV, Hill SP, Balachandar D, Barsh GS, Bennett DC. Agouti signaling protein and other factors modulating differentiation and proliferation of immortal melanoblasts. Dev Dyn 2001; 221:373-9. [PMID: 11500974 DOI: 10.1002/dvdy.1153] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The melanocyte lineage potentially forms an attractive model system for studies in cell differentiation, developmental genetics, cell signaling, and melanoma, because differentiated cells produce the visible pigment melanin. Immortal lines of murine melanoblasts (melanocyte precursors) have been described previously, but induction of differentiation involved a complex culture system with keratinocyte feeder cells. Here we describe conditions for both growth and induced differentiation of the melanoblast line melb-a, without feeder cells, and analyze factors that directly control proliferation and differentiation of these pure melanoblasts. Several active factors are products of developmental and other coat color genes, including stem cell factor (SCF), melanocyte-stimulating hormone (alphaMSH), and agouti signaling protein (ASP), a natural antagonist at the MSH receptor (melanocortin 1 receptor, MC1R) encoded by the agouti gene. A stable analog of alphaMSH (NDP-MSH) stimulated differentiation and inhibited growth. ASP in excess inhibited both effects of NDP-MSH, that is, ASP could inhibit pigmentation and stimulate growth. These effects provide an explanation for the interactions in mice of melanocyte developmental mutations with yellow agouti and Mc1r alleles, and a role for embryonic expression patterns of ASP.
Collapse
Affiliation(s)
- E V Sviderskaya
- Department of Anatomy and Developmental Biology, St George's Hospital Medical School, London, United Kingdom.
| | | | | | | | | |
Collapse
|
44
|
Furumura M, Potterf SB, Toyofuku K, Matsunaga J, Muller J, Hearing VJ. Involvement of ITF2 in the transcriptional regulation of melanogenic genes. J Biol Chem 2001; 276:28147-54. [PMID: 11382753 DOI: 10.1074/jbc.m101626200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In response to agouti signal protein, melanocytes switch from producing eumelanin to pheomelanin concomitant with the down-regulation of melanogenic gene transcription. We previously reported that a ubiquitous basic helix-loop-helix transcription factor, known as ITF2, is up-regulated during this switch, and we now report that treatment of melanocytes with melanocyte-stimulating hormone down-regulates expression of ITF2. To more fully characterize the involvement of ITF2 in regulating melanogenic gene transcription, ITF2 sense or antisense constructs were introduced into melan-a melanocytes. Gene and protein expression analyses and luciferase reporter assays using promoters from melanogenic genes showed that up-regulation of ITF2 suppressed melanogenic gene expression as well as the expression of Mitf, a melanocyte-specific transcription factor. In addition, stable ITF2 sense transfectants had significant reductions in pigmentation and a less dendritic phenotype compared with mock transfectants. In contrast, ITF2 antisense-transfected melanocytes were more pigmented and more dendritic. These results demonstrate that up-regulation of ITF2 during the pheomelanin switch is functionally significant and reveal that differential expression of a ubiquitous basic helix-loop-helix transcription factor can modulate expression of melanogenic genes and the differentiation of melanocytes.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
- Blotting, Northern
- Cell Differentiation
- Cyclic AMP/metabolism
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/physiology
- Dendritic Cells/metabolism
- Down-Regulation
- Genes, Reporter
- Helix-Loop-Helix Motifs
- Luciferases/metabolism
- MART-1 Antigen
- Melanins/metabolism
- Melanocytes/metabolism
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Microscopy, Electron
- Models, Biological
- Neoplasm Proteins/metabolism
- Nerve Tissue Proteins
- Oligonucleotides, Antisense/metabolism
- Phenotype
- Plasmids/metabolism
- Precipitin Tests
- Promoter Regions, Genetic
- Protein Isoforms
- RNA, Messenger/metabolism
- Ribonucleases/metabolism
- TCF Transcription Factors
- Trans-Activators/chemistry
- Trans-Activators/physiology
- Transcription Factor 4
- Transcription Factors/metabolism
- Transcription, Genetic
- Transfection
- Up-Regulation
Collapse
Affiliation(s)
- M Furumura
- Pigment Cell Biology Section, Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
45
|
Raposo G, Tenza D, Murphy DM, Berson JF, Marks MS. Distinct protein sorting and localization to premelanosomes, melanosomes, and lysosomes in pigmented melanocytic cells. J Cell Biol 2001; 152:809-24. [PMID: 11266471 PMCID: PMC2195785 DOI: 10.1083/jcb.152.4.809] [Citation(s) in RCA: 352] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2000] [Accepted: 12/29/2000] [Indexed: 11/22/2022] Open
Abstract
Melanosomes and premelanosomes are lysosome-related organelles with a unique structure and cohort of resident proteins. We have positioned these organelles relative to endosomes and lysosomes in pigmented melanoma cells and melanocytes. Melanosome resident proteins Pmel17 and TRP1 localized to separate vesicular structures that were distinct from those enriched in lysosomal proteins. In immunogold-labeled ultrathin cryosections, Pmel17 was most enriched along the intralumenal striations of premelanosomes. Increased pigmentation was accompanied by a decrease in Pmel17 and by an increase in TRP1 in the limiting membrane. Both proteins were largely excluded from lysosomal compartments enriched in LAMP1 and cathepsin D. By kinetic analysis of fluid phase uptake and immunogold labeling, premelanosomal proteins segregated from endocytic markers within an unusual endosomal compartment. This compartment contained Pmel17, was accessed by BSA-gold after 15 min, was acidic, and displayed a cytoplasmic planar coat that contained clathrin. Our results indicate that premelanosomes and melanosomes represent a distinct lineage of organelles, separable from conventional endosomes and lysosomes within pigmented cells. Furthermore, they implicate an unusual clathrin-coated endosomal compartment as a site from which proteins destined for premelanosomes and lysosomes are sorted.
Collapse
Affiliation(s)
- Graça Raposo
- Curie Institute, Research Section, Paris, 7505 France
| | | | - Diane M. Murphy
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Joanne F. Berson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Michael S. Marks
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
46
|
Virador VM, Santis C, Furumura M, Kalbacher H, Hearing VJ. Bioactive motifs of agouti signal protein. Exp Cell Res 2000; 259:54-63. [PMID: 10942578 DOI: 10.1006/excr.2000.4975] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The switch between the synthesis of eu- and pheomelanins is modulated by the interaction of two paracrine signaling molecules, alpha-melanocyte stimulating hormone (MSH) and agouti signal protein (ASP), which interact with melanocytes via the MSH receptor (MC1R). Comparison of the primary sequence of ASP with the known MSH pharmacophore provides no suggestion about the putative bioactive domain(s) of ASP. To identify such bioactive motif(s), we synthesized 15-mer peptides that spanned the primary sequence of ASP and determined their effects on the melanogenic activities of murine melanocytes. Northern and Western blotting were used, together with chemical analysis of melanins and enzymatic assays, to identify three distinct bioactive regions of ASP that down-regulate eumelanogenesis. The decrease in eumelanin production was mediated by down-regulation of mRNA levels for tyrosinase and other melanogenic enzymes, as occurs in vivo, and these effects were comparable to those elicited by intact recombinant ASP. Shorter peptides in those motifs were synthesized and their effects on melanogenesis were further investigated. The amino acid arginine, which is present in the MSH peptide pharmacophore (HFRW), is also in the most active domain of ASP (KVARP). Our data suggest that lysines and an arginine (in motifs such as KxxxxKxxR or KxxRxxxxK) are important for the bioactivity of ASP. Identification of the specific ASP epitope that interacts with the MC1R has potential pharmacological applications in treating dysfunctions of skin pigmentation.
Collapse
Affiliation(s)
- V M Virador
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, Maryland, 20892, USA
| | | | | | | | | |
Collapse
|
47
|
Perricone MA, Claussen KA, Smith KA, Kaplan JM, Piraino S, Shankara S, Roberts BL. Immunogene therapy for murine melanoma using recombinant adenoviral vectors expressing melanoma-associated antigens. Mol Ther 2000; 1:275-84. [PMID: 10933943 DOI: 10.1006/mthe.2000.0029] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adenoviral vectors expressing tumor-associated antigens can be used to evoke a specific immune response and inhibit tumor growth. In this study, we tested the efficacy of adenoviral vectors encoding human gp100 (Ad2/hugp100), murine gp100 (Ad2/mugp100), or murine TRP-2 (Ad2/muTRP-2) for their ability to elicit a specific cellular immune response and inhibit the growth of B16 melanoma tumor cells in the mouse. C57BL/6 mice were immunized with Ad2/hugp100, Ad2/mugp100, or Ad2/muTRP-2 either 2 weeks prior to B16-F10 tumor challenge (prophylactic treatment) or 3 days after tumor challenge (active treatment). Ad2/hugp100 and Ad2/muTRP-2 administered to two or more intradermal (i.d.) sites inhibited subsequent subcutaneous tumor growth in > or = 80% of the mice and elicited an antigen-specific cytotoxic T lymphocyte response, whereas other administration routes were not as effective. Ad2/mugp100 administered to two i.d. sites did not inhibit tumor growth or provoke cellular immunity. Immunization was less effective with active treatment where tumor growth was not significantly inhibited by a single dose of either Ad2/muTRP-2 or Ad2/hugp100. However, increasing the number of intradermal immunization sites and the number of doses resulted in progressive improvements in protection from tumor growth in the active treatment model. In conclusion, breaking host tolerance to elicit protective immunity by using adenoviral vectors expressing melanoma-associated antigens is dependent upon the choice of antigen, the site of administration, and the number of doses. These observations provide insights into the clinical applicability of adenoviral vaccines for immunotherapy of malignant diseases.
Collapse
Affiliation(s)
- M A Perricone
- Genzyme Molecular Oncology, Framingham, Massachusetts 01701-9322, USA.
| | | | | | | | | | | | | |
Collapse
|