1
|
Zawistowska-Deniziak A, Powązka K, Pękacz M, Basałaj K, Klockiewicz M, Wiśniewski M, Młocicki D. Immunoproteomic Analysis of Dirofilaria repens Microfilariae and Adult Parasite Stages. Pathogens 2021; 10:pathogens10020174. [PMID: 33562513 PMCID: PMC7914743 DOI: 10.3390/pathogens10020174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/19/2022] Open
Abstract
Dirofilariarepens is a parasitic nematode causing a vector-borne zoonotic infection (dirofilariosis), considered an emerging problem in human and veterinary medicine. Currently, diagnosis is based on the detection of the adult parasite and microfilariae in the host tissues. However, the efficacy of tests relying on microfilariae detection is limited by microfilariae periodic occurrence. Therefore, a new reliable and affordable serological diagnostic method is needed. Better characteristic of the parasite biology and its interaction with host immune system should help to achieve this goal. This study analyzes adult and microfilariae proteomes, and the use of one-dimensional electrophoresis (1-DE) and two-dimensional electrophoresis (2-DE) proteomics, immunoproteomics, and LC-MS/MS mass spectrometry allowed us to identify 316 potentially immunogenic proteins (75 belong to adult stage, 183 to microfilariae, and 58 are common for both). Classified by their ontology, the proteins showed important similarities and differences between both parasite stages. The most frequently identified proteins are structural, metabolic, and heat shock proteins. Additionally, real-time PCR analysis of some immunogenic targets revealed significant differences between microfilariae and adult life stages. We indicated molecules involved in parasite-host interactions and discussed their importance in parasite biology, which may help to reveal potential diagnostic antigens or select drug and vaccine targets.
Collapse
Affiliation(s)
- Anna Zawistowska-Deniziak
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, 00-818 Warsaw, Poland; (K.P.); (M.P.); (K.B.); (D.M.)
- Correspondence: ; Tel.: +48-22-697-89-66
| | - Katarzyna Powązka
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, 00-818 Warsaw, Poland; (K.P.); (M.P.); (K.B.); (D.M.)
| | - Mateusz Pękacz
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, 00-818 Warsaw, Poland; (K.P.); (M.P.); (K.B.); (D.M.)
- Division of Parasitology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-786 Warsaw, Poland; (M.K.); (M.W.)
| | - Katarzyna Basałaj
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, 00-818 Warsaw, Poland; (K.P.); (M.P.); (K.B.); (D.M.)
| | - Maciej Klockiewicz
- Division of Parasitology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-786 Warsaw, Poland; (M.K.); (M.W.)
| | - Marcin Wiśniewski
- Division of Parasitology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-786 Warsaw, Poland; (M.K.); (M.W.)
| | - Daniel Młocicki
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, 00-818 Warsaw, Poland; (K.P.); (M.P.); (K.B.); (D.M.)
- Department of General Biology and Parasitology, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
2
|
Watanabe Y, Okuya K, Takada Y, Kinoshita M, Yokoi S, Chisada S, Kamei Y, Tatsukawa H, Yamamoto N, Abe H, Hashimoto H, Hitomi K. Gene disruption of medaka (Oryzias latipes) orthologue for mammalian tissue-type transglutaminase (TG2) causes movement retardation. J Biochem 2020; 168:213-222. [PMID: 32251518 DOI: 10.1093/jb/mvaa038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/19/2020] [Indexed: 12/20/2022] Open
Abstract
Transglutaminases are an enzyme family that catalyses protein cross-linking essential for several biological functions. In the previous studies, we characterized the orthologues of the mammalian transglutaminase family in medaka (Oryzias latipes), an established fish model. Among the human isozymes, tissue-type transglutaminase (TG2) has multiple functions that are involved in several biological phenomena. In this study, we established medaka mutants deficient for the orthologue of human TG2 using the CRISPR/Cas9 and transcription activator-like effector nucleases systems. Although apparent morphological changes in the phenotype were not observed, movement retardation was found in the mutant fish when evaluated by a tank-diving test. Furthermore, comparative immunohistochemistry analysis using in this fish model revealed that orthologue of human TG2 was expressed at the periventricular layer of the optic tectum. Our findings provide novel insight for the relationship between tissue-type transglutaminase and the nervous system and the associated behaviour.
Collapse
Affiliation(s)
- Yuko Watanabe
- Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa, Nagoya 4648601, Japan
| | - Kazuho Okuya
- Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa, Nagoya 4648601, Japan
| | - Yuki Takada
- Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa, Nagoya 4648601, Japan
| | - Masato Kinoshita
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Saori Yokoi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 0600812, Japan
| | - Shinichi Chisada
- Kyorin University School of Medicine, Mitaka, Tokyo 1818611, Japan
| | - Yasuhiro Kamei
- National Institute for Basic Biology, Okazaki 4448585, Japan
| | - Hideki Tatsukawa
- Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa, Nagoya 4648601, Japan
| | - Naoyuki Yamamoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 4648601, Japan
| | - Hideki Abe
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 4648601, Japan
| | - Hisashi Hashimoto
- Graduate School of Science, Nagoya University, Nagoya 4648602, Japan
| | - Kiyotaka Hitomi
- Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa, Nagoya 4648601, Japan
| |
Collapse
|
3
|
Zhang Y, Simpson BK. Food-related transglutaminase obtained from fish/shellfish. Crit Rev Food Sci Nutr 2019; 60:3214-3232. [DOI: 10.1080/10408398.2019.1681357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yi Zhang
- Department of Food Science and Agricultural Chemistry, McGill University, Québec, Québec, Canada
| | - Benjamin K. Simpson
- Department of Food Science and Agricultural Chemistry, McGill University, Québec, Québec, Canada
| |
Collapse
|
4
|
A comparative analysis of secreted protein disulfide isomerases from the tropical co-endemic parasites Schistosoma mansoni and Leishmania major. Sci Rep 2019; 9:9568. [PMID: 31267027 PMCID: PMC6606611 DOI: 10.1038/s41598-019-45709-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/10/2019] [Indexed: 12/19/2022] Open
Abstract
The human parasites Schistosoma mansoni and Leishmania major are co-endemic and a major threat to human health. Though displaying different tissue tropisms, they excrete/secrete similar subsets of intracellular proteins that, interacting with the host extracellular matrix (ECM), help the parasites invading the host. We selected one of the most abundant proteins found in the secretomes of both parasites, protein disulfide isomerase (PDI), and performed a comparative screening with surface plasmon resonance imaging (SPRi), looking for ECM binding partners. Both PDIs bind heparan sulfate; none of them binds collagens; each of them binds further ECM components, possibly linked to the different tropisms. We investigated by small-angle X-ray scattering both PDIs structures and those of a few complexes with host partners, in order to better understand the differences within this conserved family fold. Furthermore, we highlighted a previously undisclosed moonlighting behaviour of both PDIs, namely a concentration-dependent switch of function from thiol-oxidoreductase to holdase. Finally, we have tried to exploit the differences to look for possible compounds able to interfere with the redox activity of both PDI.
Collapse
|
5
|
Abstract
Human lymphatic filariasis, the parasitic disease caused by the filarial nematodes Wuchereria bancrofti, Brugia malayi, and Brugia timori, is ranked as the second most complex clinical condition leading to permanent and long-term disability. The multiple antigen peptide (MAP) approach is an effective method to chemically synthesize and deliver multiple T and B cell epitopes as the constituents of a single immunogen. Here, we report on the design, chemical synthesis, and immunoprophylaxis of three epitopes that have been identified from promising vaccine candidates reported in our previous studies, constructed as MAP on an inert lysine core for human lymphatic filariasis in Jird model. Two epitopes from Thioredoxin and one epitope from Transglutaminase were constructed as MAP in an inert lysine core. The immunoprophylaxis of the synthetic vaccine construct studied in Jird models showed protective antibody (1 in 64,000 titer) and cellular immune response. Thioredoxin-Transglutaminase MAP (TT MAP) conferred a significantly high protection of 63.04% compared to control (8.5%). Multi-antigen peptide vaccine is one best approach to provide immunity against multiple antigens delivered by the complex filarial parasite.
Collapse
|
6
|
Armstrong SD, Xia D, Bah GS, Krishna R, Ngangyung HF, LaCourse EJ, McSorley HJ, Kengne-Ouafo JA, Chounna-Ndongmo PW, Wanji S, Enyong PA, Taylor DW, Blaxter ML, Wastling JM, Tanya VN, Makepeace BL. Stage-specific Proteomes from Onchocerca ochengi, Sister Species of the Human River Blindness Parasite, Uncover Adaptations to a Nodular Lifestyle. Mol Cell Proteomics 2016; 15:2554-75. [PMID: 27226403 PMCID: PMC4974336 DOI: 10.1074/mcp.m115.055640] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 04/30/2016] [Indexed: 12/13/2022] Open
Abstract
Despite 40 years of control efforts, onchocerciasis (river blindness) remains one of the most important neglected tropical diseases, with 17 million people affected. The etiological agent, Onchocerca volvulus, is a filarial nematode with a complex lifecycle involving several distinct stages in the definitive host and blackfly vector. The challenges of obtaining sufficient material have prevented high-throughput studies and the development of novel strategies for disease control and diagnosis. Here, we utilize the closest relative of O. volvulus, the bovine parasite Onchocerca ochengi, to compare stage-specific proteomes and host-parasite interactions within the secretome. We identified a total of 4260 unique O. ochengi proteins from adult males and females, infective larvae, intrauterine microfilariae, and fluid from intradermal nodules. In addition, 135 proteins were detected from the obligate Wolbachia symbiont. Observed protein families that were enriched in all whole body extracts relative to the complete search database included immunoglobulin-domain proteins, whereas redox and detoxification enzymes and proteins involved in intracellular transport displayed stage-specific overrepresentation. Unexpectedly, the larval stages exhibited enrichment for several mitochondrial-related protein families, including members of peptidase family M16 and proteins which mediate mitochondrial fission and fusion. Quantification of proteins across the lifecycle using the Hi-3 approach supported these qualitative analyses. In nodule fluid, we identified 94 O. ochengi secreted proteins, including homologs of transforming growth factor-β and a second member of a novel 6-ShK toxin domain family, which was originally described from a model filarial nematode (Litomosoides sigmodontis). Strikingly, the 498 bovine proteins identified in nodule fluid were strongly dominated by antimicrobial proteins, especially cathelicidins. This first high-throughput analysis of an Onchocerca spp. proteome across the lifecycle highlights its profound complexity and emphasizes the extremely close relationship between O. ochengi and O. volvulus The insights presented here provide new candidates for vaccine development, drug targeting and diagnostic biomarkers.
Collapse
Affiliation(s)
- Stuart D Armstrong
- From the ‡Institute of Infection & Global Health, University of Liverpool, Liverpool L3 5RF, UK
| | - Dong Xia
- From the ‡Institute of Infection & Global Health, University of Liverpool, Liverpool L3 5RF, UK
| | - Germanus S Bah
- §Institut de Recherche Agricole pour le Développement, Regional Centre of Wakwa, BP65 Ngaoundéré, Cameroon
| | - Ritesh Krishna
- ¶Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Henrietta F Ngangyung
- §Institut de Recherche Agricole pour le Développement, Regional Centre of Wakwa, BP65 Ngaoundéré, Cameroon
| | - E James LaCourse
- ‖Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Henry J McSorley
- **The Queens Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4JT
| | - Jonas A Kengne-Ouafo
- ‡‡Research Foundation for Tropical Diseases and Environment, PO Box 474 Buea, Cameroon
| | | | - Samuel Wanji
- ‡‡Research Foundation for Tropical Diseases and Environment, PO Box 474 Buea, Cameroon
| | - Peter A Enyong
- ‡‡Research Foundation for Tropical Diseases and Environment, PO Box 474 Buea, Cameroon; §§Tropical Medicine Research Station, Kumba, Cameroon
| | - David W Taylor
- From the ‡Institute of Infection & Global Health, University of Liverpool, Liverpool L3 5RF, UK; ¶¶Division of Pathway Medicine, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Mark L Blaxter
- ‖‖Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Jonathan M Wastling
- From the ‡Institute of Infection & Global Health, University of Liverpool, Liverpool L3 5RF, UK; ‡‡‡The National Institute for Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool L3 5RF, UK
| | - Vincent N Tanya
- §Institut de Recherche Agricole pour le Développement, Regional Centre of Wakwa, BP65 Ngaoundéré, Cameroon
| | - Benjamin L Makepeace
- From the ‡Institute of Infection & Global Health, University of Liverpool, Liverpool L3 5RF, UK;
| |
Collapse
|
7
|
Nurminskaya MV, Belkin AM. Cellular functions of tissue transglutaminase. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 294:1-97. [PMID: 22364871 PMCID: PMC3746560 DOI: 10.1016/b978-0-12-394305-7.00001-x] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transglutaminase 2 (TG2 or tissue transglutaminase) is a highly complex multifunctional protein that acts as transglutaminase, GTPase/ATPase, protein disulfide isomerase, and protein kinase. Moreover, TG2 has many well-documented nonenzymatic functions that are based on its noncovalent interactions with multiple cellular proteins. A vast array of biochemical activities of TG2 accounts for its involvement in a variety of cellular processes, including adhesion, migration, growth, survival, apoptosis, differentiation, and extracellular matrix organization. In turn, the impact of TG2 on these processes implicates this protein in various physiological responses and pathological states, contributing to wound healing, inflammation, autoimmunity, neurodegeneration, vascular remodeling, tumor growth and metastasis, and tissue fibrosis. TG2 is ubiquitously expressed and is particularly abundant in endothelial cells, fibroblasts, osteoblasts, monocytes/macrophages, and smooth muscle cells. The protein is localized in multiple cellular compartments, including the nucleus, cytosol, mitochondria, endolysosomes, plasma membrane, and cell surface and extracellular matrix, where Ca(2+), nucleotides, nitric oxide, reactive oxygen species, membrane lipids, and distinct protein-protein interactions in the local microenvironment jointly regulate its activities. In this review, we discuss the complex biochemical activities and molecular interactions of TG2 in the context of diverse subcellular compartments and evaluate its wide ranging and cell type-specific biological functions and their regulation.
Collapse
Affiliation(s)
- Maria V Nurminskaya
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
8
|
Transglutaminase 2: a molecular Swiss army knife. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:406-19. [PMID: 22015769 DOI: 10.1016/j.bbamcr.2011.09.012] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 09/02/2011] [Accepted: 09/06/2011] [Indexed: 12/26/2022]
Abstract
Transglutaminase 2 (TG2) is the most widely distributed member of the transglutaminase family with almost all cell types in the body expressing TG2 to varying extents. In addition to being widely expressed, TG2 is an extremely versatile protein exhibiting transamidating, protein disulphide isomerase and guanine and adenine nucleotide binding and hydrolyzing activities. TG2 can also act as a protein scaffold or linker. This unique protein also undergoes extreme conformational changes and exhibits localization diversity. Being mainly a cytosolic protein; it is also found in the nucleus, associated with the cell membrane (inner and outer side) and with the mitochondria, and also in the extracellular matrix. These different activities, conformations and localization need to be carefully considered while assessing the role of TG2 in physiological and pathological processes. For example, it is becoming evident that the role of TG2 in cell death processes is dependent upon the cell type, stimuli, subcellular localization and conformational state of the protein. In this review we discuss in depth the conformational and functional diversity of TG2 in the context of its role in numerous cellular processes. In particular, we have highlighted how differential localization, conformation and activities of TG2 may distinctly mediate cell death processes.
Collapse
|
9
|
Kumar A, Xu J, Brady S, Gao H, Yu D, Reuben J, Mehta K. Tissue transglutaminase promotes drug resistance and invasion by inducing mesenchymal transition in mammary epithelial cells. PLoS One 2010; 5:e13390. [PMID: 20967228 PMCID: PMC2953521 DOI: 10.1371/journal.pone.0013390] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 09/15/2010] [Indexed: 12/26/2022] Open
Abstract
Recent observations that aberrant expression of tissue transglutaminase (TG2) promotes growth, survival, and metastasis of multiple tumor types is of great significance and could yield novel therapeutic targets for improved patient outcomes. To accomplish this, a clear understanding of how TG2 contributes to these phenotypes is essential. Using mammary epithelial cell lines (MCF10A, MCF12A, MCF7 and MCF7/RT) as a model system, we determined the impact of TG2 expression on cell growth, cell survival, invasion, and differentiation. Our results show that TG2 expression promotes drug resistance and invasive functions by inducing epithelial-mesenchymal transition (EMT). Thus, TG2 expression supported anchorage-independent growth of mammary epithelial cells in soft-agar, disrupted the apical-basal polarity, and resulted in disorganized acini structures when grown in 3D-culture. At molecular level, TG2 expression resulted in loss of E-cadherin and increased the expression of various transcriptional repressors (Snail1, Zeb1, Zeb2 and Twist1). Tumor growth factor-beta (TGF-β) failed to induce EMT in cells lacking TG2 expression, suggesting that TG2 is a downstream effector of TGF-β-induced EMT. Moreover, TG2 expression induced stem cell-like phenotype in mammary epithelial cells as revealed by enrichment of CD44(+)/CD24(-/low) cell populations. Overall, our studies show that aberrant expression of TG2 is sufficient for inducing EMT in epithelial cells and establish a strong link between TG2 expression and progression of metastatic breast disease.
Collapse
Affiliation(s)
- Anupam Kumar
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Jia Xu
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, Texas, United States of America
| | - Samuel Brady
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, Texas, United States of America
| | - Hui Gao
- Department of Hematopathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, Texas, United States of America
| | - James Reuben
- Department of Hematopathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Kapil Mehta
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
10
|
Kausar T, Sharma R, Hasan MR, Tripathi SC, Saraya A, Chattopadhyay TK, Gupta SD, Ralhan R. Clinical significance of GPR56, transglutaminase 2, and NF-κB in esophageal squamous cell carcinoma. Cancer Invest 2010; 29:42-8. [PMID: 20874003 DOI: 10.3109/07357907.2010.512597] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Proteins do not operate as individual units, and components of intracellular canonical pathways often cross talk in tumor genesis. We hypothesized that G-protein-coupled receptor 56 (GPR56), transglutaminase (TG2), and nuclear factor-κB (NF-κB) may collaborate in interconnected pathways and contribute to the aggressive behavior of esophageal squamous cell carcinoma (ESCC). Immunohistochemical analysis of GPR56, TG2, and NF-κB was carried out using ESCC tissue microarrays. Immunostaining of all the three proteins revealed a significant increase in their expression in ESCCs as compared with normal epithelia and correlated with their concomitant expression. A significant correlation between GPR56, TG2, and NF-κB was observed that correlated with nodal metastasis and tumor invasion in ESCCs.
Collapse
Affiliation(s)
- Tasneem Kausar
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Pena F, Jansens A, van Zadelhoff G, Braakman I. Calcium as a crucial cofactor for low density lipoprotein receptor folding in the endoplasmic reticulum. J Biol Chem 2010; 285:8656-64. [PMID: 20089850 DOI: 10.1074/jbc.m110.105718] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The family of low density lipoprotein (LDL) receptors mediate uptake of a plethora of ligands from the circulation and couple this to signaling, thereby performing a crucial role in physiological processes including embryonic development, cancer development, homeostasis of lipoproteins, viral infection, and neuronal plasticity. Structural integrity of individual ectodomain modules in these receptors depends on calcium, and we showed before that the LDL receptor folds its modules late after synthesis via intermediates with abundant non-native disulfide bonds and structure. Using a radioactive pulse-chase approach, we here show that for proper LDL receptor folding, calcium had to be present from the very early start of folding, which suggests at least some native, essential coordination of calcium ions at the still largely non-native folding phase. As long as the protein was in the endoplasmic reticulum (ER), its folding was reversible, which changed only upon both proper incorporation of calcium and exit from the ER. Coevolution of protein folding with the high calcium concentration in the ER may be the basis for the need for this cation throughout the folding process even though calcium is only stably integrated in native repeats at a later stage.
Collapse
Affiliation(s)
- Florentina Pena
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | | | | | | |
Collapse
|
12
|
Immune responses generated by intramuscular DNA immunization of Brugia malayi transglutaminase (BmTGA) in mice. Parasitology 2009; 136:887-94. [DOI: 10.1017/s0031182009006143] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
SUMMARYAn attempt was made to evaluate the immunoprophylactic efficacy of Brugia malayi transglutaminase (BmTGA) as a DNA vaccine, for human lymphatic filariasis. BmTGA was cloned and characterized in the DNA vaccine vector pVAX1. Further, the tissue distribution study of the DNA construct, pVAX-TGA was carried out in mice and the DNA vaccine was shown to be efficiently distributed to all the organs, was accessible to the immune system, and at the same time was metabolized quickly and did not pose problems of toxicity. Intramuscular immunization in mice showed significant antibody production and splenocyte proliferation upon antigenic stimulation. The immune responses were biased towards the Th1 arm, as evaluated in terms of isotype antibody distribution and cytokine profile. Thus, analysis of the humoral and cellular immune responses indicated that BmTGA is a potent immunogen. However, protection studies as determined by the micropore chamber method using live microfilarial larvae, showed that the DNA vaccine could confer only partial protection in the mouse model. We conclude that despite the induction of sufficient humoral and cellular immune responses, BmTGA as a DNA vaccine could not confer much protection against subsequent challenge and other aspects of the immune responses need to be further investigated.
Collapse
|
13
|
Hwang JY, Mangala LS, Fok JY, Lin YG, Merritt WM, Spannuth WA, Nick AM, Fiterman DJ, Vivas-Mejia PE, Deavers MT, Coleman RL, Lopez-Berestein G, Mehta K, Sood AK. Clinical and biological significance of tissue transglutaminase in ovarian carcinoma. Cancer Res 2008; 68:5849-58. [PMID: 18632639 DOI: 10.1158/0008-5472.can-07-6130] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Tissue type transglutaminase (TG2) is a unique multifunctional protein that plays a role in many steps in the cancer metastatic cascade. Here, we examined the clinical (n = 93 epithelial ovarian cancers) and biological (in vitro adhesion, invasion, and survival and in vivo therapeutic targeting) significance of TG2 in ovarian cancer. The overexpression of TG2 was associated with significantly worse overall patient survival in both univariate and multivariate analyses. Transfection of TG2 into SKOV3ip1 cells promoted attachment and spreading on fibronectin-coated surfaces and increased the in vitro invasive potential of these cells. Conversely, TG2 silencing with small interfering RNA (siRNA) of HeyA8 cells significantly decreased the invasive potential of the cells and also increased docetaxel-induced cell death. In vivo therapy experiments using chemotherapy-sensitive (HeyA8) and chemotherapy-resistant (HeyA8-MDR and RMG2) models showed significant antitumor activity both with TG2 siRNA-1,2-dioleoyl-sn-glycero-3-phosphatidylcholine alone and in combination with docetaxel chemotherapy. This antitumor activity was related to decreased proliferation and angiogenesis and increased tumor cell apoptosis in vivo. Taken together, these findings indicate that TG2 overexpression is an adverse prognostic factor in ovarian carcinoma and TG2 targeting may be an attractive therapeutic approach.
Collapse
Affiliation(s)
- Jee Young Hwang
- Department of Gynecologic Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hong BX, Soong L. Identification and enzymatic activities of four protein disulfide isomerase (PDI) isoforms of Leishmania amazonensis. Parasitol Res 2007; 102:437-46. [PMID: 18058133 DOI: 10.1007/s00436-007-0784-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2007] [Accepted: 10/26/2007] [Indexed: 01/22/2023]
Abstract
Leishmania parasites primarily infect cells of macrophage lineage and can cause leishmaniasis in the skin, mucosal, and visceral organs, depending on both host- and parasite-derived factors. The protein disulfide isomerases (PDIs) are thiol-disulfide oxidoreductases that catalyze the formation, reduction, and isomerization of disulfide bonds of proteins in cells. Although four Leishmania PDI genes are functionally inferred from homology in the genome sequences, only two of them have been expressed as active proteins to date. The functional relationship among various PDI enzymes remains largely unclear. In this study, we expressed and partially characterized all four L. amazonensis PDIs encoding 52-, 47-, 40-, and 15-kDa proteins. Homology analysis showed that the sequence identity between L. amazonensis (New World) PDIs and their counterpart PDI sequences from L. major (Old World) ranged from 76% to 99%. Kinetic characterization indicated that while the 15-, 40-, and 47- kDa PDI proteins displayed both insulin isomerase and reductase activities, the 52-kDa protein had only isomerase activity with no detectable reductase activity. All four PDI proteins were recognized by sera from L. amazonensis-infected mice and were sensitive to inhibition by standard PDI inhibitors. This study describes the enzymatic activities of recombinant L. amazonensis PDIs and suggests a role for these proteins in parasite development.
Collapse
Affiliation(s)
- B X Hong
- Department of Microbiology and Immunology and Pathology, Institute for Human Infections and Immunity, The University of Texas Medical Branch, Medical Research Building 3.142B, Galveston, TX 77555-1070, USA.
| | | |
Collapse
|
15
|
Tsuji N, Battsetseg B, Boldbaatar D, Miyoshi T, Xuan X, Oliver JH, Fujisaki K. Babesial vector tick defensin against Babesia sp. parasites. Infect Immun 2007; 75:3633-40. [PMID: 17485458 PMCID: PMC1932947 DOI: 10.1128/iai.00256-07] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 03/17/2007] [Accepted: 04/26/2007] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial peptides are major components of host innate immunity, a well-conserved, evolutionarily ancient defensive mechanism. Infectious disease-bearing vector ticks are thought to possess specific defense molecules against the transmitted pathogens that have been acquired during their evolution. We found in the tick Haemaphysalis longicornis a novel parasiticidal peptide named longicin that may have evolved from a common ancestral peptide resembling spider and scorpion toxins. H. longicornis is the primary vector for Babesia sp. parasites in Japan. Longicin also displayed bactericidal and fungicidal properties that resemble those of defensin homologues from invertebrates and vertebrates. Longicin showed a remarkable ability to inhibit the proliferation of merozoites, an erythrocyte blood stage of equine Babesia equi, by killing the parasites. Longicin was localized at the surface of the Babesia sp. parasites, as demonstrated by confocal microscopic analysis. In an in vivo experiment, longicin induced significant reduction of parasitemia in animals infected with the zoonotic and murine B. microti. Moreover, RNA interference data demonstrated that endogenous longicin is able to directly kill the canine B. gibsoni, thus indicating that it may play a role in regulating the vectorial capacity in the vector tick H. longicornis. Theoretically, longicin may serve as a model for the development of chemotherapeutic compounds against tick-borne disease organisms.
Collapse
Affiliation(s)
- Naotoshi Tsuji
- Laboratory of Emerging Infectious Diseases, School of Frontier Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Bergamini CM. Effects of ligands on the stability of tissue transglutaminase: studies in vitro suggest possible modulation by ligands of protein turn-over in vivo. Amino Acids 2006; 33:415-21. [PMID: 17086478 DOI: 10.1007/s00726-006-0457-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2006] [Accepted: 10/05/2006] [Indexed: 01/24/2023]
Abstract
Tissue transglutaminase catalyzes irreversible post-translational modification of specific protein substrates by either crosslinkage or incorporation of primary amines into glutamine residues, through glutamyl-amide isopeptide bonds. Modulation in vivo of these reactions (collectively called "transamidation") is brought about by both ligand dependent effects (chiefly, activation by calcium and inhibition by GTP) as well as by variation in enzyme tissue levels by transcriptional effects. Accumulating observations that the enzyme stability in vitro is greatly affected by interaction with ligands led us to postulate that also the turn-over in vivo might be modulated by ligands opening new scenarios on the regulation of the tissue transamidating activity. This proposal is consistent with data obtained in in vitro cell culture systems and has important implications for the expression of activity in vivo.
Collapse
Affiliation(s)
- C M Bergamini
- Department of Biochemistry and Molecular Biology and Interdisciplinary Centre for the Study of Inflammation (ICSI), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
17
|
Mangala LS, Fok JY, Zorrilla-Calancha IR, Verma A, Mehta K. Tissue transglutaminase expression promotes cell attachment, invasion and survival in breast cancer cells. Oncogene 2006; 26:2459-70. [PMID: 17043648 DOI: 10.1038/sj.onc.1210035] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Distant metastasis is frequently observed in patients with breast cancer and is a major cause of cancer-related deaths in these patients. Currently, very little is known about the mechanisms that underlie the development of the metastatic phenotype in breast cancer cells. We previously found that metastatic breast cancer cells express high levels of tissue transglutaminase (TG2), but established no direct link between TG2 and metastasis. In this study, we hypothesized that TG2 plays a role in conferring the metastatic phenotype to breast cancer cells. The results obtained suggested that increased expression of TG2 in breast cancer cells contributes to their increased survival, invasion and motility. We further found that TG2 protein in a metastatic breast cancer MDA-MB231 cells was present on the cell surface in close association with integrins beta1, beta4 and beta5. Downregulation of endogenous TG2 by small interfering RNA inhibited fibronectin (Fn)-mediated cell attachment, survival and invasion. Conversely, ectopic expression of TG2 augmented invasion of breast cancer cells and attachment to Fn-coated surfaces. We conclude that TG2 expression in breast cancer cells plays an important role in the development of the metastatic phenotype.
Collapse
Affiliation(s)
- L S Mangala
- Department of Experimental Therapeutics - Unit 326, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
18
|
Fok JY, Ekmekcioglu S, Mehta K. Implications of tissue transglutaminase expression in malignant melanoma. Mol Cancer Ther 2006; 5:1493-503. [PMID: 16818508 DOI: 10.1158/1535-7163.mct-06-0083] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human malignant melanoma is a highly aggressive form of cancer; the 5-year survival rate in patients with stage III or IV disease is <5%. In patients with metastatic melanoma, systemic therapy becomes ineffective because of the high resistance of melanoma cells to various anticancer therapies. We have found previously that development of the drug resistance and metastatic phenotypes in breast cancer cells is associated with increased tissue transglutaminase (TG2) expression. In the study reported here, we investigated TG2 expression and its implications in metastatic melanoma. We found that metastatic melanoma cell lines expressed levels of TG2 up to 24-fold higher than levels in radial growth phase of primary melanoma cell lines. Activation of endogenous TG2 by the calcium ionophore A23187 induced a rapid and strong apoptotic response in A375 cells and A23187-induced apoptosis could be blocked by TG2-specific inhibitors. These findings indicated that activation of endogenous TG2 could serve as a strategy for inducing apoptosis in malignant melanomas. Importantly, tumor samples from patients with malignant melanomas showed strong expression of TG2, suggesting that TG2 expression is selectively up-regulated during advanced developmental stages of melanoma. We observed that 20% to 30% of TG2 protein was present on cell membranes in association with beta1 and beta5 integrins. This association of TG2 with cell surface integrins promoted strong attachment of A375 cells to fibronectin-coated surfaces, resulting in increased cell survival in serum-free medium. Inhibition of TG2 by small interfering RNA inhibited fibronectin-mediated cell attachment and cell survival functions in A375 cells. Overall, our results suggest that TG2 expression contributes to the development of chemoresistance in malignant melanoma cells by exploiting integrin-mediated cell survival signaling pathways.
Collapse
Affiliation(s)
- Jansina Y Fok
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | |
Collapse
|
19
|
Mastroberardino PG, Farrace MG, Viti I, Pavone F, Fimia GM, Melino G, Rodolfo C, Piacentini M. "Tissue" transglutaminase contributes to the formation of disulphide bridges in proteins of mitochondrial respiratory complexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:1357-65. [PMID: 16979579 DOI: 10.1016/j.bbabio.2006.07.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 07/13/2006] [Accepted: 07/31/2006] [Indexed: 01/05/2023]
Abstract
In this study we provide the first in vivo evidences showing that, under physiological conditions, "tissue" transglutaminase (TG2) might acts as a protein disulphide isomerase (PDI) and through this activity contributes to the correct assembly of the respiratory chain complexes. Mice lacking TG2 exhibit mitochondrial energy production impairment, evidenced by decreased ATP levels after physical challenge. This defect is phenotypically reflected in a dramatic decrease of motor behaviour of the animals. We propose that the molecular mechanism, underlying such a phenotype, resides in a defective disulphide bonds formation in ATP synthase (complex V), NADH-ubiquinone oxidoreductase (complex I), succinate-ubiquinone oxidoreductase (complex II) and cytochrome c oxidase (complex IV). In addition, TG2-PDI might control the respiratory chain by modulating the formation of the prohibitin complexes. These data elucidate a new pathway that directly links the TG2-PDI enzymatic activity with the regulation of mitochondrial respiratory chain function.
Collapse
|
20
|
Okudo H, Kato H, Arakaki Y, Urade R. Cooperation of ER-60 and BiP in the Oxidative Refolding of Denatured Proteins In Vitro. ACTA ACUST UNITED AC 2005; 138:773-80. [PMID: 16428306 DOI: 10.1093/jb/mvi166] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
ER-60 is a PDI family protein that has protein thiol-disulfide oxidoreductase activity. It has been shown to associate with BiP in the endoplasmic reticulum. Here, we analyzed the cooperation of ER-60 and BiP in the oxidative refolding of denatured proteins in vitro. ER-60 facilitated the refolding of 20 or 30% of denatured alpha-lactalbumin or ribonuclease B during incubation for 80 min, and these levels of nearly doubled on the addition of BiP to the reaction mixture. BiP alone could not refold denatured ribonuclease B, but could refold denatured alpha-lactalbumin a little. Enhancement of oxidative refolding of alpha-lactalbumin by ER-60 could be detected only when ER-60 was present from the start of refolding. On surface plasmon resonance analysis, ER-60 was shown to associate with BiP. The association was not influenced by ATP or ADP. Domains a and/or b' of ER-60 were implicated in the association with BiP.
Collapse
Affiliation(s)
- Hirokazu Okudo
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011
| | | | | | | |
Collapse
|
21
|
Nemes Z, Petrovski G, Fésüs L. Tools for the detection and quantitation of protein transglutamination. Anal Biochem 2005; 342:1-10. [PMID: 15958174 DOI: 10.1016/j.ab.2004.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zoltan Nemes
- Department of Psychiatry, Medical and Health Sciences Center, University of Debrecen, H-4012 Debrecen, Hungary.
| | | | | |
Collapse
|
22
|
Krasnikov BF, Kim SY, McConoughey SJ, Ryu H, Xu H, Stavrovskaya I, Iismaa SE, Mearns BM, Ratan RR, Blass JP, Gibson GE, Cooper AJL. Transglutaminase activity is present in highly purified nonsynaptosomal mouse brain and liver mitochondria. Biochemistry 2005; 44:7830-43. [PMID: 15909997 PMCID: PMC2597021 DOI: 10.1021/bi0500877] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several active transglutaminase (TGase) isoforms are known to be present in human and rodent tissues, at least three of which, namely, TGase 1, TGase 2 (tissue transglutaminase), and TGase 3, are present in the brain. TGase activity is known to be present in the cytosolic, nuclear, and extracellular compartments of the brain. Here, we show that highly purified mouse brain nonsynaptosomal mitochondria and mouse liver mitochondria and mitoplast fractions derived from these preparations possess TGase activity. Western blotting and experiments with TGase 2 knock-out (KO) mice ruled out the possibility that most of the mitochondrial/mitoplast TGase activity is due to TGase 2, the TGase isoform responsible for the majority of the activity ([14C]putrescine-binding assay) in whole brain and liver homogenates. The identity of the mitochondrial/mitoplast TGase(s) is not yet known. Possibly, the activity may be due to one of the other TGase isoforms or perhaps to a protein that does not belong to the classical TGase family. This activity may play a role in regulation of mitochondrial function both in normal physiology and in disease. Its nature and regulation deserve further study.
Collapse
Affiliation(s)
- Boris F Krasnikov
- Department of Neurology and Neurosciences, and Medicine, Weill Medical College of Cornell University, New York City, New York 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Trigwell SM, Lynch PT, Griffin M, Hargreaves AJ, Bonner PLR. An improved colorimetric assay for the measurement of transglutaminase (type II) -(gamma-glutamyl) lysine cross-linking activity. Anal Biochem 2005; 330:164-6. [PMID: 15183775 DOI: 10.1016/j.ab.2004.03.068] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Indexed: 10/26/2022]
Affiliation(s)
- Susan M Trigwell
- Division of Biological Sciences, University of Derby, Kedleston Road, Derby DE22 1GB, UK
| | | | | | | | | |
Collapse
|
24
|
Davids BJ, Mehta K, Fesus L, McCaffery JM, Gillin FD. Dependence of Giardia lamblia encystation on novel transglutaminase activity. Mol Biochem Parasitol 2004; 136:173-80. [PMID: 15478797 DOI: 10.1016/j.molbiopara.2004.03.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Earlier, we found that three protein disulfide isomerases (PDI) from Giardia lamblia (gPDI) also have transglutaminase (TGase) activity in vitro. We now show that differentiating Giardia cells contain isopeptide bonds (epsilon(gamma-glutamyl)lysine), the biological product of TGase activity that results in irreversible crosslinking of proteins in vivo. HPLC analyses showed the highest isopeptide bond content in cells encysting for 21 h, indicating an important role for TGase early in encystation. We were not able to detect isopeptide bonds in water-resistant cysts, possibly because they could not be extracted. One of the hallmarks of early encystation is the formation of encystation secretory vesicles (ESV) that transport nascent cyst wall proteins (CWPs) to the outer cell surface. ImmunoEM and live-cell immunofluorescence assays of encysting parasites revealed that gPDIs 1-3 are located in ESV and that gPDI-2 is also novel in that it is localized on the cell surface. Cystamine, a widely used TGase inhibitor, caused a dose-dependent inhibition of ESV formation by 21 h, thereby preventing development of trophozoites into cysts. Since cystamine (0.5-1 mM) inhibited the TGase activity of recombinant gPDIs 1-3 in vitro, PDIs appear to be the physiologic targets of cystamine. We found that when parasites were treated with cystamine, CWPs were not processed normally. These data suggest that TGase-catalyzed reactions may be needed for either the machinery that processes CWP precursors or their recruitment to ESV.
Collapse
Affiliation(s)
- B J Davids
- Department of Pathology, Division of Infectious Diseases, UCSD Medical Center, University of California, CTF-C 403, 214 Dickinson Street, San Diego, CA 92103-8416, USA.
| | | | | | | | | |
Collapse
|
25
|
Sreedhar AS, Csermely P. Heat shock proteins in the regulation of apoptosis: new strategies in tumor therapy: a comprehensive review. Pharmacol Ther 2004; 101:227-57. [PMID: 15031001 DOI: 10.1016/j.pharmthera.2003.11.004] [Citation(s) in RCA: 309] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heat shock proteins (Hsp) form the most ancient defense system in all living organisms on earth. These proteins act as molecular chaperones by helping in the refolding of misfolded proteins and assisting in their elimination if they become irreversibly damaged. Hsp interact with a number of cellular systems and form efficient cytoprotective mechanisms. However, in some cases, wherein it is better if the cell dies, there is no reason for any further defense. Programmed cell death is a widely conserved general phenomenon helping in many processes involving the reconstruction of multicellular organisms, as well as in the elimination of old or damaged cells. Here, we review some novel elements of the apoptotic process, such as its interrelationship with cellular senescence and necrosis, as well as bacterial apoptosis. We also give a survey of the most important elements of the apoptotic machinery and show the various modes of how Hsp interact with the apoptotic events in detail. We review caspase-independent apoptotic pathways and anoikis as well. Finally, we show the emerging variety of pharmacological interventions inhibiting or, just conversely, inducing Hsp and review the emergence of Hsp as novel therapeutic targets in anticancer protocols.
Collapse
Affiliation(s)
- Amere Subbarao Sreedhar
- Department of Medical Chemistry, Semmelweis University, P.O. Box 260, H-1444 Budapest, Hungary
| | | |
Collapse
|
26
|
Mádi A, Hoffrogge R, Blaskó B, Glocker MO, Fésüs L. Amine donor protein substrates for transglutaminase activity in Caenorhabditis elegans. Biochem Biophys Res Commun 2004; 315:1064-9. [PMID: 14985121 DOI: 10.1016/j.bbrc.2004.01.159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Indexed: 01/22/2023]
Abstract
Transglutaminase dependent cross-linking of proteins has been implicated in a wide range of biological phenomena occurring in both extracellular and intracellular compartments. Clarification of the physiological role of transglutaminases requires identification of substrate molecules. Here we report the detection, purification, and identification by mass spectrometry of proteins, the glutamate dehydrogenase, a protein disulfide isomerase, and aldehyde dehydrogenase as amine donor substrates for the transglutaminase activity of the nematode Caenorhabditis elegans utilizing a novel biotinylated oligoglutamine peptide as a substrate. We also purified and identified streptavidin-binding proteins of the worm.
Collapse
Affiliation(s)
- András Mádi
- Signalling and Apoptosis Research Group of the Hungarian Academy of Sciences, University of Debrecen, Debrecen, Hungary.
| | | | | | | | | |
Collapse
|
27
|
Hasegawa G, Suwa M, Ichikawa Y, Ohtsuka T, Kumagai S, Kikuchi M, Sato Y, Saito Y. A novel function of tissue-type transglutaminase: protein disulphide isomerase. Biochem J 2003; 373:793-803. [PMID: 12737632 PMCID: PMC1223550 DOI: 10.1042/bj20021084] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2002] [Revised: 05/02/2003] [Accepted: 05/09/2003] [Indexed: 11/17/2022]
Abstract
We have found that tissue-type transglutaminase (tTG), also called TGc, TGase2 and Galpha(h), has the activity of protein disulphide isomerase (PDI). We have shown that tTG converts completely reduced/denatured inactive RNase A molecule to the native active enzyme. The PDI activity of tTG was strongly inhibited by bacitracin, which is a frequently used inhibitor of conventional PDI activity. It was substantially inhibited by the simultaneous presence of other potential substrate proteins such as completely reduced BSA, but not by native BSA. This activity was especially high in the presence of GSSG, but not GSH. The addition of GSH to the reaction mixture in the presence of GSSG at a fixed concentration up to at least 200-fold excess did not very substantially inhibit the PDI activity. It is possible that tTG can exert PDI activity in a fairly reducing environment like cytosol, where most of tTG is found. It is quite obvious from the following observations that PDI activity of tTG is catalysed by a domain different from that used for the transglutaminase reaction. Although the alkylation of Cys residues in tTG completely abolished the transglutaminase activity, as was expected, it did not affect the PDI activity at all. This PDI activity did not require the presence of Ca(2+). It was not inhibited by nucleotides including GTP at all, unlike the other activity of tTG.
Collapse
Affiliation(s)
- Go Hasegawa
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Blaskó B, Mádi A, Fésüs L. Thioredoxin motif of Caenorhabditis elegans PDI-3 provides Cys and His catalytic residues for transglutaminase activity. Biochem Biophys Res Commun 2003; 303:1142-7. [PMID: 12684055 DOI: 10.1016/s0006-291x(03)00490-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous reports have suggested that protein disulfide isomerases (PDIs) have transglutaminase (TGase) activity. The structural basis of this reaction has not been revealed. We demonstrate here that Caenorhabditis elegans PDI-3 can function as a Ca(2+)-dependent TGase in assays based on modification of protein- and peptide-bound glutamine residues. By site-directed mutagenesis the second cysteine residue of the -CysGlyHisCys- motif in the thioredoxin domain of the enzyme protein was found to be the active site of the transamidation reaction and chemical modification of histidine in their motif blocked TGase activity.
Collapse
Affiliation(s)
- Bernadett Blaskó
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Medical and Health Science Center, University of Debrecen, POB 6, Hungary
| | | | | |
Collapse
|
29
|
You M, Xuan X, Tsuji N, Kamio T, Taylor D, Suzuki N, Fujisaki K. Identification and molecular characterization of a chitinase from the hard tick Haemaphysalis longicornis. J Biol Chem 2003; 278:8556-63. [PMID: 12502707 DOI: 10.1074/jbc.m206831200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A cDNA encoding tick chitinase was cloned from a cDNA library of mRNA from Haemaphysalis longicornis eggs and designated as CHT1 cDNA. The CHT1 cDNA contains an open reading frame of 2790 bp that codes for 930 amino acid residues with a coding capacity of 104 kDa. The deduced amino acid sequence shows a 31% amino acid homology to Aedes aegypti chitinase and a multidomain structure containing one chitin binding peritrophin A domain and two glycosyl hydrolase family 18 chitin binding domains. The endogenous chitinase of H. longicornis was identified by a two-dimensional immunoblot analysis with mouse anti-rCHT1 serum and shown to have a molecular mass of 108 kDa with a pI of 5.0. A recombinant baculovirus AcMNPV.CHT1-expressed rCHT1 is glycosylated and able to degrade chitin. Chitin degradation was ablated by allosamidin in a dose-dependent manner. The optimal temperature and pH for activity of the purified chitinase were 45 degrees C and pH 5-7. The CHT1 cDNA has an ELR motif for chemokine-mediated angiogenesis and appears to be a chitinase of the chemokine family. Localization analysis using mouse anti-rCHT1 serum revealed that native chitinase is highly expressed in the epidermis and midgut of the tick. AcMNPV.CHT1 topically applied to H. longicornis ticks exhibited replication. This is the first report of insect baculovirus infection of ticks. The importance of AcMNPV.CHT1 as a novel bio-acaricide for tick control is discussed.
Collapse
Affiliation(s)
- Myungjo You
- Department of Basic Veterinary Science, the United Graduate School of Veterinary Sciences, Gifu University, Yanagito, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Eschenlauer SCP, Page AP. The Caenorhabditis elegans ERp60 homolog protein disulfide isomerase-3 has disulfide isomerase and transglutaminase-like cross-linking activity and is involved in the maintenance of body morphology. J Biol Chem 2003; 278:4227-37. [PMID: 12424233 DOI: 10.1074/jbc.m210510200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel protein disulfide isomerase gene, pdi-3, was isolated from the nematode Caenorhabditis elegans. This gene encodes an enzyme related to the ERp60 class of thioredoxin proteins and was found to exhibit unusual enzymatic properties. Recombinant protein displayed both disulfide bond isomerase activity and calcium-dependent transglutaminase-like cross-linking activity. The pdi-3 transcript was developmentally constitutively expressed, and the encoded protein is present in many tissues including the gut and the hypodermis. The nematode hypodermis synthesizes the essential collagenous extracellular matrix (ECM) called the cuticle. Transcript disruption via double-stranded RNA interference resulted in dramatic and specific synthetic phenotypes in several C. elegans mutant alleles with weakened cuticles: sqt-3(e2117), dpy-18(e364, ok162, and bx26). These nematodes displayed severe dumpy phenotypes and disrupted lateral alae, a destabilized cuticle and abnormal male and hermaphrodite tail morphologies. These defects were confirmed to be consistent with hypodermal seam cell abnormalities and corresponded with the severe disruption of a cuticle collagen. Wild type nematodes did not exhibit observable morphological defects; however, cuticle collagen localization was mildly disrupted following pdi-3 RNA interference. The unusual thioredoxin enzyme, protein disulfide isomerase-3, may therefore play a role in ECM assembly. This enzyme is required for the proper maintenance of post-embryonic body shape in strains with a weakened cuticle, perhaps through ECM stabilization via cross-linking activity, disulfide isomerase protein folding activity, protein disulfide isomerase chaperone activity, or via multifunctional events.
Collapse
Affiliation(s)
- Sylvain C P Eschenlauer
- Wellcome Centre for Molecular Parasitology, Anderson College, the University of Glasgow, United Kingdom
| | | |
Collapse
|
31
|
Vercauteren I, Geldhof P, Peelaers I, Claerebout E, Berx G, Vercruysse J. Identification of excretory-secretory products of larval and adult Ostertagia ostertagi by immunoscreening of cDNA libraries. Mol Biochem Parasitol 2003; 126:201-8. [PMID: 12615319 DOI: 10.1016/s0166-6851(02)00274-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Excretory-secretory (ES) products of Ostertagia ostertagi, an abomasal nematode of cattle, are considered to be important for the development and survival of the parasite within the host. To gain insight in the composition of these ES products of both larval (L3, L4) and adult life stages of Ostertagia cDNA libraries of the parasite were immunoscreened with polyclonal rabbit serum raised against these ES products. This approach led to the identification of 41 proteins, amongst which are structural proteins such as actin, kinesin and vitellogenin, housekeeping proteins such as those involved in protein folding, different metabolic pathways or mitochondrial functioning and proteins associated with stress (heat shock protein) or antioxidantia (thioredoxin peroxidase). A large number of the isolated proteins were similar to hypothetical proteins of the model nematode Caenorhabditis elegans. Because somatic proteins can be non-specifically released during in vitro culturing as nematodes deteriorate, it was checked if the isolated proteins are genuinely secreted. The amino acid sequences of the translated cDNAs were investigated for signal peptides and monospecific antibodies against the isolated proteins were purified and used to develop Western blots of ES and somatic extracts. In this manner it could be proven that 15 cDNAs code for genuine secreted proteins. The identification of these ES antigens allows to select proteins with potential protective capacities, which are targets for vaccine development.
Collapse
Affiliation(s)
- Isabel Vercauteren
- Department of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke B-9820, Belgium.
| | | | | | | | | | | |
Collapse
|
32
|
Geldhof P, Vercauteren I, Knox D, Demaere V, Van Zeveren A, Berx G, Vercruysse J, Claerebout E. Protein disulphide isomerase of Ostertagia ostertagi: an excretory-secretory product of L4 and adult worms? Int J Parasitol 2003; 33:129-36. [PMID: 12633650 DOI: 10.1016/s0020-7519(02)00260-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A pepstatin A-agarose column was used in an attempt to purify a previously described antibody-degrading aspartyl proteinase from excretory-secretory material from the L4 and the adult stages of the bovine abomasal nematode Ostertagia ostertagi. However, no aspartyl proteinase activity was detected in the eluted fractions (L4Pepst and AdPepst). Screening of cDNA libraries with polyclonal antibodies raised against L4Pepst and AdPepst showed that a protein disulphide isomerase (Ost-PDI2) was present in both antigen fractions. This multifunctional enzyme was detected in extracts of L3, L4 and adult parasites and, interestingly, also in excretory-secretory material of L4 and adult O. ostertagi. By immunohistochemistry, the Ost-PDI2 enzyme was localised in some parts of the hypodermis of L4 and adult worms and in the intestinal cells of all three parasitic life stages. Two-dimensional Western blot analysis indicated that Ost-PDI2 is recognised by calves during a natural O. ostertagi infection, which suggests that Ost-PDI2 could be used for immunological control of ostertagiosis.
Collapse
Affiliation(s)
- P Geldhof
- Department of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B9820 Merelbeke, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Wada F, Nakamura A, Masutani T, Ikura K, Maki M, Hitomi K. Identification of mammalian-type transglutaminase in Physarum polycephalum. Evidence from the cDNA sequence and involvement of GTP in the regulation of transamidating activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:3451-60. [PMID: 12135484 DOI: 10.1046/j.1432-1033.2002.03026.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transglutaminase (TGase) catalyses the post-translational modification of proteins by transamidation of available glutamine residues. While several TGase genes of fish and arthropods have been cloned and appear to have similar structures to those of mammals, no homologous gene has been found in lower eukaryotes. We have cloned the acellular slime mold Physarum polycephalum TGase cDNA using RT-PCR with degenerated primers, based on the partial amino acid sequence of the purified enzyme. The cDNA contained a 2565-bp ORF encoding a 855-residue polypeptide. By Northern blotting, an mRNA of approximately 2600 bases was detected. In comparison with primary sequences of mammalian TGases, surprisingly, significant similarity was observed including catalytic triad residues (Cys, His, Asn) and a GTP-binding region. The alignment of sequences and a phylogenetic tree also demonstrated that the structure of P. polycephalum TGase is similar to that of TGases of vertebrates. Furthermore, we observed that the purified TGase had GTP-hydrolysing activity and that GTP inhibited its transamidating activity, as in the case of mammalian tissue-type TGase (TGase 2).
Collapse
Affiliation(s)
- Fumitaka Wada
- Department of Applied Biological Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Okudo H, Kito M, Moriyama T, Ogawa T, Urade R. Transglutaminase activity of human ER-60. Biosci Biotechnol Biochem 2002; 66:1423-6. [PMID: 12162574 DOI: 10.1271/bbb.66.1423] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Human recombinant ER-60 was confirmed to have transglutaminase activity by a microtiter plate assay. Transglutaminase activity of ER-60 did not require calcium and was inhibited by cystamine, a substrate analogue. In addition, the transglutaminase activity of ER-60 was not inhibited by SH-blocking reagents. These results suggest that the properties of the transglutaminase activity of ER-60 are different from those in the cases of known mammalian transglutaminases of which the active site includes a cysteine residue.
Collapse
Affiliation(s)
- Hirokazu Okudo
- Graduate School of Agriculture, Kyoto University, Uji, Japan
| | | | | | | | | |
Collapse
|
35
|
McArthur AG, Knodler LA, Silberman JD, Davids BJ, Gillin FD, Sogin ML. The evolutionary origins of eukaryotic protein disulfide isomerase domains: new evidence from the Amitochondriate protist Giardia lamblia. Mol Biol Evol 2001; 18:1455-63. [PMID: 11470836 DOI: 10.1093/oxfordjournals.molbev.a003931] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A phylogenetic analysis of protein disulfide isomerase (PDI) domain evolution was performed with the inclusion of recently reported PDIs from the amitochondriate protist Giardia lamblia, yeast PDIs that contain a single thioredoxin-like domain, and PDIs from a diverse selection of protists. We additionally report and include two new giardial PDIs, each with a single thioredoxin-like domain. Inclusion of protist PDIs in our analyses revealed that the evolutionary history of the endoplasmic reticulum may not be simple. Phylogenetic analyses support common ancestry of all eukaryotic PDIs from a thioredoxin ancestor and independent duplications of thioredoxin-like domains within PDIs throughout eukaryote evolution. This was particularly evident for Acanthamoeba PDI, Dictyostelium PDI, and mammalian erp5 domains. In contrast, gene duplication, instead of domain duplication, produces PDI diversity in G. lamblia. Based on our results and the known diversity of PDIs, we present a new hypothesis that the five single-domain PDIs of G. lamblia may reflect an ancestral mechanism of protein folding in the eukaryotic endoplasmic reticulum. The PDI complement of G. lamblia and yeast suggests that a combination of PDIs may be used as a redox chain analogous to that known for bacterial Dsb proteins.
Collapse
Affiliation(s)
- A G McArthur
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts 02543-1015, USA
| | | | | | | | | | | |
Collapse
|
36
|
Kasug-Aoki H, Tsuji N, Suzuki K, Arakawa T, Matsumoto Y, Isobe T. Identification of larval-stage antigens of ascaris suum recognized with immune sera from pigs. J Vet Med Sci 2001; 63:683-5. [PMID: 11459018 DOI: 10.1292/jvms.63.683] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Antigens were identified from the third-stage larvae (L3) and lung-stage larvae of Ascaris suum by two-dimensional immunoblot method with antisera obtained from pigs that received chemically abbreviated Ascaris suum larval infections. Forty-seven and 13 spots were recognized as antigens from the L3 and lung-stage larvae, respectively. Their apparent molecular weight ranged from 20 to 101 kDa and their isoelectric point from 3.6 to 8.0. The present study provides a framework for further molecular cloning of those antigens and consequently leads to the development of recombinant peptide vaccines against A. suum.
Collapse
Affiliation(s)
- H Kasug-Aoki
- Laboratory of Parasitic Diseases, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Mádi A, Kele Z, Janáky T, Punyiczki M, Fésüs L. Identification of Protein Substrates for Transglutaminase in Caenorhabditis elegans. Biochem Biophys Res Commun 2001; 283:964-8. [PMID: 11350079 DOI: 10.1006/bbrc.2001.4872] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transglutaminase-dependent cross-linking of proteins leads to protein polymerisation that confers stability as well as resistance to mechanical disruption and chemical attack. Various transglutaminases have been implicated in a wide range of biological phenomena occurring in both extracellular and intracellular compartments, but further clarification of the physiological role of these enzymes requires identification of possible substrate molecules. Here we report the detection, purification, and identification of two proteins, enolase and ATP synthase alpha subunit as glutamine donor protein substrates for the transglutaminase of the nematode Caenorhabditis elegans.
Collapse
Affiliation(s)
- A Mádi
- Signal Transduction and Apoptosis Research Group of the Hungarian Academy of Sciences, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4012, Hungary
| | | | | | | | | |
Collapse
|
38
|
Tsuji N, Kamio T, Isobe T, Fujisaki K. Molecular characterization of a peroxiredoxin from the hard tick Haemaphysalis longicornis. INSECT MOLECULAR BIOLOGY 2001; 10:121-129. [PMID: 11422507 DOI: 10.1046/j.1365-2583.2001.00246.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Antioxidant enzymes in eukaryotes play an important role in protection against the oxygen radicals generated during aerobic metabolism. Here we report the cloning and characterization of a cDNA encoding the antioxidant enzyme peroxiredoxin from the hard tick Haemaphysalis longicornis (HlPrx). HlPrx is 939 bp long and contains a 101 bp non-translated sequence at the 5' end and a polyadenylation singnal followed by a poly(A) tail at the 3' end. HlPrx encodes a full-length protein with a predicted molecular mass of 26 kDa that possesses one cysteine residue at amino acid 49 that is conserved among Prx proteins of various species. GenBanktrade mark analysis showed that the deduced amino acid sequence had significant similarity to mammalian and plant Prxs at the amino acid level. A DNA-nicking assay revealed that Escherichia coli-expressed recombinant HlPrx (rHlPrx) inhibited oxidative-nicking of supercoiled plasmid DNA. Two-dimensional immunoblot analysis with mouse antirHlPrx serum showed reaction with a major constituent protein spot in extracts of adult ticks. In addition, immunoblot analysis showed that rHlPrx was immunoreacted with serum from rabbits repeatedly infested with H. longicornis. Localization analysis using mouse antirHlPrx serum revealed that native HlPrx was highly expressed in the salivary gland of the tick. Moreover, Northern blot analysis showed that the level of HlPrx transcripts was increased during blood sucking. The present results indicate that HlPrx may be an important detoxifying enzyme during the normal life span as well as during blood sucking in ticks.
Collapse
Affiliation(s)
- N Tsuji
- Laboratory of Parasitic Diseases, National Institute of Animal Health, Ministry of Agriculture, Forestry and Fisheries, 3-1-1 Kannondai, Tsukuba, Ibaraki 305-0856 Japan.
| | | | | | | |
Collapse
|
39
|
Wang X, Allen R, Ding X, Goellner M, Maier T, de Boer JM, Baum TJ, Hussey RS, Davis EL. Signal peptide-selection of cDNA cloned directly from the esophageal gland cells of the soybean cyst nematode Heterodera glycines. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:536-44. [PMID: 11310741 DOI: 10.1094/mpmi.2001.14.4.536] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Secretions from the esophageal gland cells of plant-parasitic nematodes play critical roles in the nematode-parasitic cycle. A novel method to isolate cDNA encoding putative nematode secretory proteins was developed that utilizes mRNA for reverse transcription-polymerase chain reaction derived from microaspiration of the esophageal gland cell contents of parasitic stages of the soybean cyst nematode Heterodera glycines. The resulting H. glycines gland cell cDNA was cloned into the pRK18 vector, and plasmid DNA was transformed into a mutated yeast host for specific selection of cDNA inserts that encode proteins with functional signal peptides. Of the 223 cDNA clones recovered from selection in yeast, 97% of the clones encoded a predicted signal peptide. Fourteen unique cDNA clones hybridized to genomic DNA of H. glycines on Southern blots and, among them, nine cDNA clones encoded putative extracellular proteins, as predicted by PSORT II computer analysis. Four cDNA clones hybridized to transcripts within the dorsal esophageal gland cell of parasitic stages of H. glycines, and in situ hybridization within H. glycines was not detected for eight cDNA clones. The protocol provides a direct means to isolate potential plant-parasitic nematode esophageal gland secretory protein genes.
Collapse
Affiliation(s)
- X Wang
- Department of Plant Pathology, North Carolina State University, Raleigh 27695-7616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Tsuji N, Kasuga-Aoki H, Isobe T, Yoshihara S. Cloning and characterisation of a peroxiredoxin from the swine roundworm Ascaris suum. Int J Parasitol 2000; 30:125-8. [PMID: 10704594 DOI: 10.1016/s0020-7519(99)00180-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Antioxidant enzymes in parasites play an important role in protection against the oxygen radicals by generating during aerobic metabolism, as well as in defence against host immune cell assault. Here we report the cloning and characterisation of a cDNA encoding peroxiredoxin from Ascaris suum (AsPrx). AsPrx is 776bp long and contains the nematode 22bp splice leader sequence at the 5' end and polyadenylation signal followed by poly(A) tail at the 3' end. AsPrx codes a full-length protein with a predicted molecular mass of 22. 6kDa, and possesses two cysteine residues at amino acid 49 and 168 that are conserved among Prx proteins. GenBank() analysis showed that the deduced amino acid sequence had significant similarity to parasite and mammalian Prx at the amino acid level. DNA nicking revealed that Escherichia coli-expressed recombinant AsPrx (rAsPrx) is enzymatically inhibited to form oxidative-nicking of supercoiled plasmid DNA. Two-dimensional immunoblot analysis with mouse anti-rAsPrx serum reacted two major constituent protein spots in extracts of adult female worms, suggesting that the native AsPrx might be function as a major antioxidant enzyme in Ascaris suum.
Collapse
Affiliation(s)
- N Tsuji
- Laboratory of Parasitic Diseases, National Institute of Animal Health, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki, Japan.
| | | | | | | |
Collapse
|
41
|
Chandrashekar R, Mehta K. Transglutaminase-catalyzed reactions in the growth, maturation and development of parasitic nematodes. PARASITOLOGY TODAY (PERSONAL ED.) 2000; 16:11-7. [PMID: 10637581 DOI: 10.1016/s0169-4758(99)01587-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Parasitic nematodes cause several debilitating diseases in humans and animals. New drugs that are parasite specific and minimally toxic to the host are needed to counter these infections effectively. The identification and inhibition of enzymes that are vital for the growth and survival of parasites offer new approaches for developing effective chemotherapeutic agents. Several enzymes in nematodes fall into this category. Here, Ramaswamy Chandrashekar and Kapil Mehta examine in detail the role of transglutaminase, a protein-crosslinking enzyme, in the normal growth and development of nematodes, with an emphasis on filarial parasites.
Collapse
|
42
|
cld and lec23 are disparate mutations that affect maturation of lipoprotein lipase in the endoplasmic reticulum. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)32428-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
43
|
Knodler LA, Noiva R, Mehta K, McCaffery JM, Aley SB, Svärd SG, Nystul TG, Reiner DS, Silberman JD, Gillin FD. Novel protein-disulfide isomerases from the early-diverging protist Giardia lamblia. J Biol Chem 1999; 274:29805-11. [PMID: 10514458 DOI: 10.1074/jbc.274.42.29805] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein-disulfide isomerase is essential for formation and reshuffling of disulfide bonds during nascent protein folding in the endoplasmic reticulum. The two thioredoxin-like active sites catalyze a variety of thiol-disulfide exchange reactions. We have characterized three novel protein-disulfide isomerases from the primitive eukaryote Giardia lamblia. Unlike other protein-disulfide isomerases, the giardial enzymes have only one active site. The active-site sequence motif in the giardial proteins (CGHC) is characteristic of eukaryotic protein-disulfide isomerases, and not other members of the thioredoxin superfamily that have one active site, such as thioredoxin and Dsb proteins from Gram-negative bacteria. The three giardial proteins have very different amino acid sequences and molecular masses (26, 50, and 13 kDa). All three enzymes were capable of rearranging disulfide bonds, and giardial protein-disulfide isomerase-2 also displayed oxidant and reductant activities. Surprisingly, the three giardial proteins also had Ca(2+)-dependent transglutaminase activity. This is the first report of protein-disulfide isomerases with a single active site that have diverse roles in protein cross-linking. This study may provide clues to the evolution of key functions of the endoplasmic reticulum in eukaryotic cells, protein disulfide formation, and isomerization.
Collapse
Affiliation(s)
- L A Knodler
- Department of Pathology, Division of Infectious Diseases, University of California, San Diego, California 92103-8416, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Noiva R. Protein disulfide isomerase: the multifunctional redox chaperone of the endoplasmic reticulum. Semin Cell Dev Biol 1999; 10:481-93. [PMID: 10597631 DOI: 10.1006/scdb.1999.0319] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein disulfide isomerase (PDI) is a protein-thiol oxidoreductase that catalyzes the oxidation, reduction and isomerization of protein disulfides. In the endoplasmic reticulum PDI catalyzes both the oxidation and isomerization of disulfides on nascent polypeptides. Under the reducing condition of the cytoplasm, endosomes and cell surface. PDI catalyzes the reduction of protein disulfides. At those locations, PDI has been demonstrated to participate in the regulation of reception function, cell-cell interaction, gene expression, and actin filament polymerization. These activities of PDI will be discussed, as well as its activity as a chaperone and subunit of prolyl 4-hydroxylase and microsomal triglyceride transfer protein.
Collapse
Affiliation(s)
- R Noiva
- University of South Dakota School of Medicine, Division of Basic Biomedical Sciences, Biochemistry and Molecular Biology Group, Vermillion 57069, USA.
| |
Collapse
|
45
|
Abstract
Tissue transglutaminase (tTG) belongs to the family of transglutaminase enzymes that catalyze the posttranslational modification of proteins via Ca(2+)-dependent cross-linking reactions. The catalytic action of tTG results in the formation of an isopeptide bond that is of great physiological significance since it is highly resistant to proteolysis and denaturants. Although tTG-mediated cross-linking reactions have been implicated to play a role in diverse biological processes, the precise physiological function of the enzyme remains unclear. Recent data, however, suggest that the protein polymers resulting from tTG-catalyzed reactions may play a role in commitment of cells to undergo apoptosis. On the same token, tTG-mediated formation of insoluble protein aggregates may underlie the markers of numerous pathological conditions, such as the senile plaques in Alzheimer's disease and the Lewy bodies in Parkinson's disease. In addition to catalyzing Ca(2+)-dependent cross-linking reactions, tTG can also bind and hydrolyze guanosine triphosphate and adenosine triphosphate. By virtue of this ability, tTG has been identified as a novel G-protein that interacts and activates phospholipase C following stimulation of the alpha-adrenergic receptor. The ability of tTG to mediate signal transduction may contribute to its involvement in the regulation of cell cycle progression. The following review summarizes the important features of this multifunctional enzyme that have emerged as a result of recent work from different laboratories.
Collapse
Affiliation(s)
- J S Chen
- Department of Bioimmunotherapy, University of Texas, M.D. Anderson Cancer Center, Houston 77030, USA
| | | |
Collapse
|
46
|
Urade R, Yasunishi A, Okudo H, Moriyama T, Kito M. Autodegradation of protein disulfide isomerase. Biosci Biotechnol Biochem 1999; 63:610-3. [PMID: 10227155 DOI: 10.1271/bbb.63.610] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein disulfide isomerase (PDI) and its degradation products were found in HepG2, COS-1, and CHO-K1 cells. Whether or not the products were formed through autodegradation of PDI was examined, since PDI contains the CGHC motif, which is the active center of proteolytic activity in ER-60 protease. Commercial bovine PDI was autodegraded to produce a trimmed PDI. In addition, human recombinant PDI also had autodegradation activity. Mutant recombinant PDIs with CGHC motifs of which cysteine residues were replaced with serine or alanine residues were prepared. However, they were not autodegraded, suggesting the cysteine residues of motifs are necessary for autodegradation.
Collapse
Affiliation(s)
- R Urade
- Research Institute for Food Science, Kyoto University, Japan.
| | | | | | | | | |
Collapse
|
47
|
Tsuji N, Morales TH, Ozols VV, Carmody AB, Chandrashekar R. Molecular characterization of a calcium-binding protein from the filarial parasite Dirofilaria immitis. Mol Biochem Parasitol 1998; 97:69-79. [PMID: 9879888 DOI: 10.1016/s0166-6851(98)00131-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A full length D. immitis cDNA (nDiCal) encoding a protein with significant similarity to the calreticulin protein family was isolated from a 6-day fourth-stage larval cDNA expression library by immunoscreening, using serum from a rabbit immunized by repeated injection of small numbers of third-stage larvae. nDiCal is 1538 bp long and contains the 21 bp nematode splice leader sequence SL1 at the 5' end. nDiCal encodes for a protein (pDiCal) with a predicted molecular mass of 46 kDa. pDiCal sequence analysis revealed similarities with calreticulin, a protein that typically resides in the endoplasmic reticulum. pDiCal possesses three consensus sequences of the calreticulin family of proteins: a neutral N-terminal region with a putative signal sequence; a proline- and tryptophan-rich P region; and a highly acidic C-terminal region. A 45Ca2+-overlay assay showed that recombinant pDiCal (rDiCal) is a Ca2+-binding protein. Antibodies to rDiCal identified a 56 kDa native antigen in all developmental stages including the excretory-secretory products derived from larvae and adult worms. Localization studies demonstrated the ubiquitous presence of pDiCal with intense expression in the hypodermis and syncitial muscle cells in both male and female adult worms. Labeling was also seen in the developing embryos within the uterus of the female worms. Sera from immune as well as chronically-infected microfilaremic dogs contained antibodies that bind rDiCal. In addition, immunoblot analysis showed that serum from a rabbit immunized with L3 cuticles reacted with rDiCal.
Collapse
Affiliation(s)
- N Tsuji
- Heska Corporation, Fort Collins, CO 80525, USA
| | | | | | | | | |
Collapse
|
48
|
Mottahedeh J, Marsh R. Characterization of 101-kDa transglutaminase from Physarum polycephalum and identification of LAV1-2 as substrate. J Biol Chem 1998; 273:29888-95. [PMID: 9792706 DOI: 10.1074/jbc.273.45.29888] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Plasmodial transglutaminase of Physarum polycephalum was purified by anion exchange and hydrophobic chromatography. Gel filtration and SDS-polyacrylamide gel electrophoresis indicate that it is a monomer of 96-101 kDa. It is Ca2+-dependent, with half-maximal activity at 0. 7 mM Ca2+. Optimal activity occurs at pH 7.5 and at 50 mM KCl. Inactivation by N-ethylmaleimide indicates that it is a thiol enzyme. With N,N-dimethylcasein as substrate, the Km for monodansylcadaverine is 33.9 +/- 1.8 microM. Damage of plasmodia by brief treatment with 15% ethanol activates the transglutaminase, with rapid accumulation of cross-linked proteins unable to enter gels during SDS-polyacrylamide gel electrophoresis. Added monodansylcadaverine is conjugated principally to LAV1-2, a plasmodia-specific 40-kDa protein with four EF-hand sequences believed to bind Ca2+. Actin is seen as an additional substrate only in plasmodial homogenates. Immunoblots show that upon ethanol treatment, a portion of LAV1-2 is modified quickly and shifts to 36 kDa; another portion is cross-linked to itself or other proteins. The modification of LAV1-2 may lead to localized release of Ca2+ and activation of transglutaminase for walling off damaged areas of plasmodia. No significant increase in amount of the transglutaminase occurs during starvation-induced differentiation of plasmodia to form spherules, but a 50% reduction in the amount of total protein leads to a doubling in the specific mass of the TGase. Neither the transglutaminase nor LAV1-2 is found in the ameboid form of the organism.
Collapse
Affiliation(s)
- J Mottahedeh
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas 75083-0688, USA
| | | |
Collapse
|