1
|
Jiménez-Pompa A, Albillos A. Nicotinic Receptors in Human Chromaffin Cells: Characterization, Functional and Physical Interactions between Subtypes and Regulation. Int J Mol Sci 2024; 25:2304. [PMID: 38396980 PMCID: PMC10888968 DOI: 10.3390/ijms25042304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
This review summarizes our research on nicotinic acetylcholine receptors in human chromaffin cells. Limited research has been conducted in this field on human tissue, primarily due to the difficulties associated with obtaining human cells. Receptor subtypes were characterized here using molecular biology and electrophysiological patch-clamp techniques. However, the most significant aspect of this study refers to the cross-talk between the two main subtypes identified in these cells, the α7- and α3β4* subtypes, aiming to avoid their desensitization. The article also reviews other aspects, including the regulation of their expression, function or physical interaction by choline, Ca2+, and tyrosine and serine/threonine phosphatases. Additionally, the influence of sex on their expression is also discussed.
Collapse
Affiliation(s)
| | - Almudena Albillos
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, 4 Arzobispo Morcillo Str., 28029 Madrid, Spain;
| |
Collapse
|
2
|
Gil A, González-Vélez V, Gutiérrez LM, Villanueva J. The Role of Nicotinic Receptors on Ca 2+ Signaling in Bovine Chromaffin Cells. Curr Issues Mol Biol 2024; 46:808-820. [PMID: 38248354 PMCID: PMC10814139 DOI: 10.3390/cimb46010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Chromaffin cells have been used as a physiological model to understand neurosecretion in mammals for many years. Nicotinic receptors located in the cells' membrane are stimulated by acetylcholine, and they participate in the exocytosis of chromaffin granules, releasing catecholamines in response to stress. In this work, we discuss how the participation of nicotinic receptors and the localization of active zones in the borders of the cytoskeleton can generate local calcium signals leading to secretion. We use a computational model of a cytoskeleton cage to simulate Ca2+ levels in response to voltage and acetylcholine pulses. We find that nicotinic receptors are able to enhance the differences between local and average calcium values, as well as the heterogeneous distributions around the active zones, producing a non-linear, highly localized Ca2+ entry that, although consisting of a few ions, is able to improve secretion responses in chromaffin cells. Our findings emphasize the intricate interplay among nicotinic receptors, the cytoskeleton, and active zones within chromaffin cells as an example of Ca2+-dependent neurosecretion in mammals.
Collapse
Affiliation(s)
- Amparo Gil
- Departamento de Matemática Aplicada y CC de la Computación, Universidad de Cantabria, 39005 Santander, Spain;
| | - Virginia González-Vélez
- Departamento Ciencias Básicas, Universidad Autónoma Metropolitana Azcapotzalco, Mexico City 02128, Mexico
| | - Luis Miguel Gutiérrez
- Instituto de Neurociencias, CSIC-Universidad Miguel Hernández. Ctra de Valencia S/N, Sant Joan d’Alacant, 03550 Alicante, Spain;
| | - José Villanueva
- Instituto de Neurociencias, CSIC-Universidad Miguel Hernández. Ctra de Valencia S/N, Sant Joan d’Alacant, 03550 Alicante, Spain;
| |
Collapse
|
3
|
Bye LJ, Finol-Urdaneta RK, Tae HS, Adams DJ. Nicotinic acetylcholine receptors: Key targets for attenuating neurodegenerative diseases. Int J Biochem Cell Biol 2023; 157:106387. [PMID: 36754161 DOI: 10.1016/j.biocel.2023.106387] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are master regulators of immune functions via the cholinergic anti-inflammatory pathway and are expressed in microglia, the brain's resident immune cells. There is an extensive dialogue between the neurons and the glial cells around them from which microglia are tasked with monitoring, nurturing, and defending their microenvironment. Dysregulation of any of these processes can have devastating and long-lasting consequences involving microglia-mediated neuroinflammation associated with neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, amongst others. Disease-associated microglia acquire a distinguishing phenotype that emphasizes scavenging and defence functions while nurturing and repairing functions become muted. Attempts to resolve this critical imbalance remain a key focus of research. Furthermore, cholinergic modulation of neuroinflammation represents a promising avenue for treatment.
Collapse
Affiliation(s)
- Lydia J Bye
- Illawarra Health and Medical Research Institute (IHMRI), Faculty of Science, Medicine and Health, University of Wollongong, NSW 2522 Australia
| | - Rocio K Finol-Urdaneta
- Illawarra Health and Medical Research Institute (IHMRI), Faculty of Science, Medicine and Health, University of Wollongong, NSW 2522 Australia
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), Faculty of Science, Medicine and Health, University of Wollongong, NSW 2522 Australia
| | - David J Adams
- Illawarra Health and Medical Research Institute (IHMRI), Faculty of Science, Medicine and Health, University of Wollongong, NSW 2522 Australia.
| |
Collapse
|
4
|
α3β4 Acetylcholine Nicotinic Receptors Are Components of the Secretory Machinery Clusters in Chromaffin Cells. Int J Mol Sci 2022; 23:ijms23169101. [PMID: 36012367 PMCID: PMC9409273 DOI: 10.3390/ijms23169101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/25/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
The heteromeric assembly of α3 and β4 subunits of acetylcholine nicotinic receptors (nAChRs) seems to mediate the secretory response in bovine chromaffin cells. However, there is no information about the localization of these nAChRs in relationship with the secretory active zones in this cellular model. The present work presents the first evidence that, in fact, a population of these receptors is associated through the F-actin cytoskeleton with exocytotic machinery components, as detected by SNAP-25 labeling. Furthermore, we also prove that, upon stimulation, the probability to find α3β4 nAChRs very close to exocytotic events increases with randomized distributions, thus substantiating the clear dynamic behavior of these receptors during the secretory process. Modeling on secretory dynamics and secretory component distributions supports the idea that α3β4 nAChR cluster mobility could help with improving the efficiency of the secretory response of chromaffin cells. Our study is limited by the use of conventional confocal microscopy; in this sense, a strengthening to our conclusions could come from the use of super-resolution microscopy techniques in the near future.
Collapse
|
5
|
Orts-Del'Immagine A, Dhanasekar M, Lejeune FX, Roussel J, Wyart C. A norepinephrine-dependent glial calcium wave travels in the spinal cord upon acoustovestibular stimuli. Glia 2021; 70:491-507. [PMID: 34773299 DOI: 10.1002/glia.24118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 02/06/2023]
Abstract
Although calcium waves have been widely observed in glial cells, their occurrence in vivo during behavior remains less understood. Here, we investigated the recruitment of glial cells in the hindbrain and spinal cord after acousto-vestibular (AV) stimuli triggering escape responses using in vivo population calcium imaging in larval zebrafish. We observed that gap-junction-coupled spinal glial network exhibits large and homogenous calcium increases that rose in the rostral spinal cord and propagated bi-directionally toward the spinal cord and toward the hindbrain. Spinal glial calcium waves were driven by the recruitment of neurons and in particular, of noradrenergic signaling acting through α-adrenergic receptors. Noradrenergic neurons of the medulla-oblongata (NE-MO) were revealed in the vicinity of where the calcium wave started. NE-MO were recruited upon AV stimulation and sent dense axonal projections in the rostro-lateral spinal cord, suggesting these cells could trigger the glial wave to propagate down the spinal cord. Altogether, our results revealed that a simple AV stimulation is sufficient to recruit noradrenergic neurons in the brainstem that trigger in the rostral spinal cord two massive glial calcium waves, one traveling caudally in the spinal cord and another rostrally into the hindbrain.
Collapse
Affiliation(s)
| | | | | | | | - Claire Wyart
- Institut du cerveau, Sorbonne Université, Paris, France
| |
Collapse
|
6
|
Clarke MR, Jones B, Squires CLM, Imhoff FM, Harwood DT, Rhodes L, Selwood AI, McNabb PS, Baird SK. Cyclic Imine Pinnatoxin G is Cytotoxic to Cancer Cell Lines via Nicotinic Acetylcholine Receptor-Driven Classical Apoptosis. JOURNAL OF NATURAL PRODUCTS 2021; 84:2035-2042. [PMID: 34170700 DOI: 10.1021/acs.jnatprod.1c00418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pinnatoxin G is a cyclic imine neurotoxin produced by dinoflagellates that has been reported in shellfish. Like other members of the pinnatoxin family, it has been shown to have its effects via antagonism of the nicotinic acetylcholine receptors, with preferential binding to the α7 subunit often upregulated in cancer. Because increased activity of α7 nicotinic acetylcholine receptors contributes to increased growth and resistance to apoptosis, the effect of pinnatoxin G on cancer cell viability was tested. In a panel of six cancer cell lines, all cell types lost viability, but HT29 colon cancer and LN18 and U373 glioma cell lines were more sensitive than MDA-MB-231 breast cancer cells, PC3 prostate cancer cells, and U87 glioma cells, correlating with expression levels of α7, α4, and α9 nicotinic acetylcholine receptors. Some loss of cell viability could be attributed to cell cycle arrest, but significant levels of classical apoptosis were found, characterized by caspase activity, phosphatidylserine exposure, mitochondrial membrane permeability, and fragmented DNA. Intracellular Ca2+ levels also dropped immediately upon pinnatoxin G treatment, which may relate to antagonism of nicotinic acetylcholine receptor-mediated Ca2+ inflow. In conclusion, pinnatoxin G can decrease cancer cell viability, with both cytostatic and cytotoxic effects.
Collapse
Affiliation(s)
- Mitchell R Clarke
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin 9016, New Zealand
| | - Ben Jones
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin 9016, New Zealand
| | - Chloe L M Squires
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin 9016, New Zealand
| | - Floriane M Imhoff
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin 9016, New Zealand
| | - D Tim Harwood
- Cawthron Institute, Private Bag 2, Nelson 7040, New Zealand
| | - Lesley Rhodes
- Cawthron Institute, Private Bag 2, Nelson 7040, New Zealand
| | | | - Paul S McNabb
- Cawthron Institute, Private Bag 2, Nelson 7040, New Zealand
| | - Sarah K Baird
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin 9016, New Zealand
| |
Collapse
|
7
|
Kryukova EV, Vulfius CA, Ziganshin RH, Andreeva TV, Starkov VG, Tsetlin VI, Utkin YN. Snake C-type lectin-like proteins inhibit nicotinic acetylcholine receptors. JOURNAL OF VENOM RESEARCH 2020; 10:23-29. [PMID: 33024544 PMCID: PMC7512478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 10/26/2022]
Abstract
Venoms of viperid snakes affect mostly hemostasis, while C-type lectin-like proteins (CTLPs), one of the main components of viperid venoms, act as anticoagulants, procoagulants, or agonists/antagonists of platelet activation. However, we have shown earlier that CTLPs from the saw-scaled viper Echis multisquamatus, called emunarecins EM1 and EM2, were able to inhibit nicotinic acetylcholine receptors (nAChRs) in neurons of a pond snail (Lymnaea stagnalis). Here we analysed the structure of the emunarecins by mass spectrometry and report that EM1 and EM2 inhibit fluorescent α-bungarotoxin binding to both muscle-type nAChRs from Torpedo californica and human neuronal α7 nAChRs. EM1 at 23µM and EM2 at 9µM almost completely prevented fluorecsent α-bungarotoxin binding to muscle-type nAChRs. Interaction with human neuronal α7 nAChR was weaker; EM1 at the concentration of 23µM blocked the α-bungarotoxin binding only by about 40% and EM2 at 9µM by about 20%. The efficiency of the EM2 interaction with nAChRs was comparable to that of a non-conventional toxin, WTX, from Naja kaouthia cobra venom. Together with the data obtained earlier, these results show that CTLPs may represent new nAChR ligands.
Collapse
Affiliation(s)
- Elena V Kryukova
- 1Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Catherine A Vulfius
- 2Institute of Cell Biophysics Russian Academy of Sciences, 3 Institutskaya Street, Pushchino Moscow region, 142290, Russia
| | - Rustam H Ziganshin
- 1Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Tatyana V Andreeva
- 1Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Vladislav G Starkov
- 1Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Victor I Tsetlin
- 1Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Yuri N Utkin
- 1Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia,*Correspondence to: Yuri Utkin, E-mail: ; , Tel/Fax: +74953366522
| |
Collapse
|
8
|
Sensory Neurons Contacting the Cerebrospinal Fluid Require the Reissner Fiber to Detect Spinal Curvature In Vivo. Curr Biol 2020; 30:827-839.e4. [PMID: 32084399 DOI: 10.1016/j.cub.2019.12.071] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/28/2019] [Accepted: 12/24/2019] [Indexed: 02/04/2023]
Abstract
Recent evidence indicates active roles for the cerebrospinal fluid (CSF) on body axis development and morphogenesis of the spine, implying CSF-contacting neurons (CSF-cNs) in the spinal cord. CSF-cNs project a ciliated apical extension into the central canal that is enriched in the channel PKD2L1 and enables the detection of spinal curvature in a directional manner. Dorsolateral CSF-cNs ipsilaterally respond to lateral bending although ventral CSF-cNs respond to longitudinal bending. Historically, the implication of the Reissner fiber (RF), a long extracellular thread in the CSF, to CSF-cN sensory functions has remained a subject of debate. Here, we reveal, using electron microscopy in zebrafish larvae, that the RF is in close vicinity with cilia and microvilli of ventral and dorsolateral CSF-cNs. We investigate in vivo the role of cilia and the RF in the mechanosensory functions of CSF-cNs by combining calcium imaging with patch-clamp recordings. We show that disruption of cilia motility affects CSF-cN sensory responses to passive and active curvature of the spinal cord without affecting the Pkd2l1 channel activity. Because ciliary defects alter the formation of the RF, we investigated whether the RF contributes to CSF-cN mechanosensitivity in vivo. Using a hypomorphic mutation in the scospondin gene that forbids the aggregation of SCO-spondin into a fiber, we demonstrate in vivo that the RF per se is critical for CSF-cN mechanosensory function. Our study uncovers that neurons contacting the cerebrospinal fluid functionally interact with the RF to detect spinal curvature in the vertebrate spinal cord.
Collapse
|
9
|
Hone AJ, Rueda-Ruzafa L, Gordon TJ, Gajewiak J, Christensen S, Dyhring T, Albillos A, McIntosh JM. Expression of α3β2β4 nicotinic acetylcholine receptors by rat adrenal chromaffin cells determined using novel conopeptide antagonists. J Neurochem 2020; 154:158-176. [PMID: 31967330 DOI: 10.1111/jnc.14966] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/17/2019] [Accepted: 01/13/2020] [Indexed: 01/07/2023]
Abstract
Adrenal chromaffin cells release neurotransmitters in response to stress and may be involved in conditions such as post-traumatic stress and anxiety disorders. Neurotransmitter release is triggered, in part, by activation of nicotinic acetylcholine receptors (nAChRs). However, despite decades of use as a model system for studying exocytosis, the nAChR subtypes involved have not been pharmacologically identified. Quantitative real-time PCR of rat adrenal medulla revealed an abundance of mRNAs for α3, α7, β2, and β4 subunits. Whole-cell patch-clamp electrophysiology of chromaffin cells and subtype-selective ligands were used to probe for nAChRs derived from the mRNAs found in adrenal medulla. A novel conopeptide antagonist, PeIA-5469, was created that is highly selective for α3β2 over other nAChR subtypes heterologously expressed in Xenopus laevis oocytes. Experiments using PeIA-5469 and the α3β4-selective α-conotoxin TxID revealed that rat adrenal medulla contain two populations of chromaffin cells that express either α3β4 nAChRs alone or α3β4 together with the α3β2β4 subtype. Conclusions were derived from observations that acetylcholine-gated currents in some cells were sensitive to inhibition by PeIA-5469 and TxID, while in other cells, currents were sensitive only to TxID. Expression of functional α7 nAChRs was determined using three α7-selective ligands: the agonist PNU282987, the positive allosteric modulator PNU120596, and the antagonist α-conotoxin [V11L,V16D]ArIB. The results of these studies identify for the first time the expression of α3β2β4 nAChRs as well as functional α7 nAChRs by rat adrenal chromaffin cells.
Collapse
Affiliation(s)
- Arik J Hone
- George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah, USA.,School of Biological Sciences and University of Utah, Salt Lake City, Utah, USA.,Departament of Pharmacology and Therapeutics, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lola Rueda-Ruzafa
- Departament of Pharmacology and Therapeutics, Universidad Autónoma de Madrid, Madrid, Spain.,Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| | - Thomas J Gordon
- School of Biological Sciences and University of Utah, Salt Lake City, Utah, USA
| | - Joanna Gajewiak
- School of Biological Sciences and University of Utah, Salt Lake City, Utah, USA
| | - Sean Christensen
- School of Biological Sciences and University of Utah, Salt Lake City, Utah, USA
| | | | - Almudena Albillos
- Departament of Pharmacology and Therapeutics, Universidad Autónoma de Madrid, Madrid, Spain
| | - J Michael McIntosh
- George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah, USA.,School of Biological Sciences and University of Utah, Salt Lake City, Utah, USA.,Department of Psychiatry, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
10
|
Carbone E, Borges R, Eiden LE, García AG, Hernández-Cruz A. Chromaffin Cells of the Adrenal Medulla: Physiology, Pharmacology, and Disease. Compr Physiol 2019; 9:1443-1502. [PMID: 31688964 DOI: 10.1002/cphy.c190003] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Chromaffin cells (CCs) of the adrenal gland and the sympathetic nervous system produce the catecholamines (epinephrine and norepinephrine; EPI and NE) needed to coordinate the bodily "fight-or-flight" response to fear, stress, exercise, or conflict. EPI and NE release from CCs is regulated both neurogenically by splanchnic nerve fibers and nonneurogenically by hormones (histamine, corticosteroids, angiotensin, and others) and paracrine messengers [EPI, NE, adenosine triphosphate, opioids, γ-aminobutyric acid (GABA), etc.]. The "stimulus-secretion" coupling of CCs is a Ca2+ -dependent process regulated by Ca2+ entry through voltage-gated Ca2+ channels, Ca2+ pumps, and exchangers and intracellular organelles (RE and mitochondria) and diffusible buffers that provide both Ca2+ -homeostasis and Ca2+ -signaling that ultimately trigger exocytosis. CCs also express Na+ and K+ channels and ionotropic (nAChR and GABAA ) and metabotropic receptors (mACh, PACAP, β-AR, 5-HT, histamine, angiotensin, and others) that make CCs excitable and responsive to autocrine and paracrine stimuli. To maintain high rates of E/NE secretion during stressful conditions, CCs possess a large number of secretory chromaffin granules (CGs) and members of the soluble NSF-attachment receptor complex protein family that allow docking, fusion, and exocytosis of CGs at the cell membrane, and their recycling. This article attempts to provide an updated account of well-established features of the molecular processes regulating CC function, and a survey of the as-yet-unsolved but important questions relating to CC function and dysfunction that have been the subject of intense research over the past 15 years. Examples of CCs as a model system to understand the molecular mechanisms associated with neurodegenerative diseases are also provided. Published 2019. Compr Physiol 9:1443-1502, 2019.
Collapse
Affiliation(s)
- Emilio Carbone
- Laboratory of Cellular and Molecular Neuroscience, Department of Drug Science, N.I.S. Centre, University of Torino, Torino, Italy
| | - Ricardo Borges
- Unidad de Farmacología, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Lee E Eiden
- Section on Molecular Neuroscience, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Antonio G García
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain
| | - Arturo Hernández-Cruz
- Departamento de Neurociencia Cognitiva and Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autonoma de México, Ciudad Universitaria, CDMX, México
| |
Collapse
|
11
|
Guérineau NC. Cholinergic and peptidergic neurotransmission in the adrenal medulla: A dynamic control of stimulus‐secretion coupling. IUBMB Life 2019; 72:553-567. [DOI: 10.1002/iub.2117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/18/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Nathalie C. Guérineau
- IGFUniv. Montpellier, CNRS, INSERM Montpellier France
- LabEx “Ion Channel Science and Therapeutics” Montpellier France
| |
Collapse
|
12
|
Mei D, Zhao L, Chen B, Zhang X, Wang X, Yu Z, Ni X, Zhang Q. α-Conotoxin ImI-modified polymeric micelles as potential nanocarriers for targeted docetaxel delivery to α7-nAChR overexpressed non-small cell lung cancer. Drug Deliv 2018; 25:493-503. [PMID: 29426250 PMCID: PMC6058686 DOI: 10.1080/10717544.2018.1436097] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A micelle system modified with α-Conotoxin ImI (ImI), a potently antagonist for alpha7 nicotinic acetylcholine receptor (α7-nAChR) previously utilized for targeting breast cancer, was constructed. Its targeting efficiency and cytotoxicity against non-small cell lung cancer (NSCLC) highly expressing α7-nAChR was investigated. A549, a non-small cell lung cancer cell line, was selected as the cell model. The cellular uptake study showed that the optimal modification ratio of ImI on micelle surface was 5% and ImI-modification increased intracellular delivery efficiency to A549 cells via receptor-mediated endocytosis. Intracellular Ca2+ transient assay demonstrated that ImI modification led to enhanced molecular interaction between nanocarriers and A549 cells. The in vivo near-infrared fluorescence imaging further revealed that ImI-modified micelles could facilitate the drug accumulation in tumor sites compared with non-modified micelles via α7-nAChR mediation. Moreover, docetaxel (DTX) was loaded in ImI-modified nanomedicines to evaluate its in vitro cytotoxicity. As a result, DTX-loaded ImI-PMs exhibited greater anti-proliferation effect on A549 cells compared with non-modified micelles. Generally, our study proved that ImI-modified micelles had targeting ability to NSCLC in addition to breast cancer and it may provide a promising strategy to deliver drugs to NSCLC overexpressing α7-nAChR.
Collapse
Affiliation(s)
- Dong Mei
- a Beijing Children's Hospital, Capital Medical University, National Center for Children's Health , Beijing , PR China
| | - Libo Zhao
- a Beijing Children's Hospital, Capital Medical University, National Center for Children's Health , Beijing , PR China
| | - Binlong Chen
- b State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing , PR China
| | - Xiaoyan Zhang
- a Beijing Children's Hospital, Capital Medical University, National Center for Children's Health , Beijing , PR China
| | - Xiaoling Wang
- a Beijing Children's Hospital, Capital Medical University, National Center for Children's Health , Beijing , PR China
| | - Zhiying Yu
- c Department of Pharmacy , Peking University People's Hospital , Beijing , PR China
| | - Xin Ni
- a Beijing Children's Hospital, Capital Medical University, National Center for Children's Health , Beijing , PR China
| | - Qiang Zhang
- b State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing , PR China
| |
Collapse
|
13
|
Nanclares C, Gameiro-Ros I, Méndez-López I, Martínez-Ramírez C, Padín-Nogueira JF, Colmena I, Baraibar AM, Gandía L, García AG. Dual Antidepressant Duloxetine Blocks Nicotinic Receptor Currents, Calcium Signals and Exocytosis in Chromaffin Cells Stimulated with Acetylcholine. J Pharmacol Exp Ther 2018; 367:28-39. [PMID: 30006476 DOI: 10.1124/jpet.118.250969] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/12/2018] [Indexed: 01/09/2023] Open
Abstract
The inhibition of nicotinic acetylcholine receptors (nAChRs) has been proposed as a potential strategy to develop new antidepressant drugs. This is based on the observation that antidepressants that selectively block noradrenaline (NA) or serotonin (5-HT) reuptake also inhibit nAChRs. Dual antidepressants blocking both NA and 5-HT reuptake were proposed to shorten the delay in exerting their clinical effects; whether duloxetine, a prototype of dual antidepressants, also blocks nAChRs is unknown. Here we explored this question in bovine chromaffin cells (BCCs) that express native α3, α5, and α7 nAChRs and in cell lines expressing human α7, α3β4, or α4β2 nAChRs. We have found that duloxetine fully blocked the acetylcholine (ACh)-elicited nicotinic currents in BCCs with an IC50 of 0.86 µM. Such blockade seemed to be noncompetitive, voltage dependent, and partially use dependent. The ACh-elicited membrane depolarization, the elevation of cytosolic calcium ([Ca2+]c), and catecholamine release in BCCs were also blocked by duloxetine. This blockade developed slowly, and the recovery of secretion was also slow and gradual. Duloxetine did not affect Na+ or Ca2+ channel currents neither the high-K+-elicited [Ca2+]c transients and secretion. Of interest was that in cell lines expressing human α7, α3β4, and α4β2 nAChRs, duloxetine blocked nicotinic currents with IC50 values of 0.1, 0.56, and 0.85 µM, respectively. Thus, in blocking α7 receptors, which are abundantly expressed in the brain, duloxetine exhibited approximately 10-fold to 100- fold higher potency with respect to reported IC50 values for various antidepressant drugs. This may contribute to the antidepressant effect of duloxetine.
Collapse
Affiliation(s)
- Carmen Nanclares
- Instituto Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina (C.N., I.G.-R., I.M.-L., C.M.-R., J.F.P.-N., I.C., A.M.B., L.G., A.G.G.) and Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa (A.G.G.), Universidad Autónoma de Madrid, Madrid, Spain; and Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla La Mancha (UCLM), Ciudad Real, Spain (J.F.P.-N.)
| | - Isabel Gameiro-Ros
- Instituto Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina (C.N., I.G.-R., I.M.-L., C.M.-R., J.F.P.-N., I.C., A.M.B., L.G., A.G.G.) and Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa (A.G.G.), Universidad Autónoma de Madrid, Madrid, Spain; and Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla La Mancha (UCLM), Ciudad Real, Spain (J.F.P.-N.)
| | - Iago Méndez-López
- Instituto Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina (C.N., I.G.-R., I.M.-L., C.M.-R., J.F.P.-N., I.C., A.M.B., L.G., A.G.G.) and Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa (A.G.G.), Universidad Autónoma de Madrid, Madrid, Spain; and Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla La Mancha (UCLM), Ciudad Real, Spain (J.F.P.-N.)
| | - Carmen Martínez-Ramírez
- Instituto Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina (C.N., I.G.-R., I.M.-L., C.M.-R., J.F.P.-N., I.C., A.M.B., L.G., A.G.G.) and Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa (A.G.G.), Universidad Autónoma de Madrid, Madrid, Spain; and Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla La Mancha (UCLM), Ciudad Real, Spain (J.F.P.-N.)
| | - J Fernando Padín-Nogueira
- Instituto Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina (C.N., I.G.-R., I.M.-L., C.M.-R., J.F.P.-N., I.C., A.M.B., L.G., A.G.G.) and Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa (A.G.G.), Universidad Autónoma de Madrid, Madrid, Spain; and Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla La Mancha (UCLM), Ciudad Real, Spain (J.F.P.-N.)
| | - Inés Colmena
- Instituto Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina (C.N., I.G.-R., I.M.-L., C.M.-R., J.F.P.-N., I.C., A.M.B., L.G., A.G.G.) and Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa (A.G.G.), Universidad Autónoma de Madrid, Madrid, Spain; and Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla La Mancha (UCLM), Ciudad Real, Spain (J.F.P.-N.)
| | - Andrés M Baraibar
- Instituto Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina (C.N., I.G.-R., I.M.-L., C.M.-R., J.F.P.-N., I.C., A.M.B., L.G., A.G.G.) and Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa (A.G.G.), Universidad Autónoma de Madrid, Madrid, Spain; and Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla La Mancha (UCLM), Ciudad Real, Spain (J.F.P.-N.)
| | - Luis Gandía
- Instituto Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina (C.N., I.G.-R., I.M.-L., C.M.-R., J.F.P.-N., I.C., A.M.B., L.G., A.G.G.) and Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa (A.G.G.), Universidad Autónoma de Madrid, Madrid, Spain; and Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla La Mancha (UCLM), Ciudad Real, Spain (J.F.P.-N.)
| | - Antonio G García
- Instituto Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina (C.N., I.G.-R., I.M.-L., C.M.-R., J.F.P.-N., I.C., A.M.B., L.G., A.G.G.) and Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa (A.G.G.), Universidad Autónoma de Madrid, Madrid, Spain; and Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla La Mancha (UCLM), Ciudad Real, Spain (J.F.P.-N.)
| |
Collapse
|
14
|
Albillos A, McIntosh JM. Human nicotinic receptors in chromaffin cells: characterization and pharmacology. Pflugers Arch 2017; 470:21-27. [PMID: 29058146 DOI: 10.1007/s00424-017-2073-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/14/2017] [Accepted: 09/19/2017] [Indexed: 02/03/2023]
Abstract
During the last 10 years, we have been working on human chromaffin cells obtained from the adrenal gland of organ donors that suffered encephalic or cardiac death. We first electrophysiologically characterized the nicotinic acetylcholine receptors (nAChRs) activated by acetylcholine, and their contribution to the exocytosis of chromaffin vesicles and release of catecholamines. We have shown that these cells possess an adrenergic phenotype. This phenotype may contribute to an increased expression of α7 nAChRs in these cells, allowing for recording of α7 nAChR currents, something that had previously not been achieved in non-human species. The use of α-conotoxins allowed us to characterize non-α7 nAChR subtypes and, together with molecular biology experiments, conclude that the predominant nAChR subtype in human chromaffin cells is α3β4* (asterisk indicates the posible presence of additional subunits). In addition, there is a minor population of αxβ2 nAChRs. Both α7 and non-α7 nAChR subtypes contribute to the exocytotic process. Exocytosis mediated by nAChRs could be as large in magnitude as that elicited by calcium entry through voltage-dependent calcium channels. Finally, we have also investigated the effect of nAChR-targeted tobacco cessation drugs on catecholamine release in chromaffin cells. We have concluded that at therapeutic concentrations, varenicline alone does not increase the frequency of action potentials evoked by ACh. However, varenicline in the presence of nicotine does increase this frequency, and thus, in the presence of both drugs, the probability of increased catecholamine release in human chromaffin cells is high.
Collapse
Affiliation(s)
- Almudena Albillos
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo 4, 28029, Madrid, Spain.
| | - J Michael McIntosh
- George E. Whalen Veterans Affairs Medical Center, Salt Lake City, UT, USA.,Department of Biology, University of Utah, Salt Lake City, UT, USA.,Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
15
|
PACAP signaling in stress: insights from the chromaffin cell. Pflugers Arch 2017; 470:79-88. [PMID: 28965274 DOI: 10.1007/s00424-017-2062-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 10/18/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) was first identified in hypothalamus, based on its ability to elevate cyclic AMP in the anterior pituitary. PACAP has been identified as the adrenomedullary neurotransmitter in stress through a combination of ex vivo, in vivo, and in cellula experiments over the past two decades. PACAP causes catecholamine secretion, and activation of catecholamine biosynthetic enzymes, during episodes of stress in mammals. Features of PACAP signaling allowing stress transduction at the splanchnicoadrenomedullary synapse have yielded insights into the contrasting roles of acetylcholine's and PACAP's actions as first messengers at the chromaffin cell, via differential release at low and high rates of splanchnic nerve firing, and differential signaling pathway engagement leading to catecholamine secretion and chromaffin cell gene transcription. Secretion stimulated by PACAP, via calcium influx independent of action potential generation, is under active investigation in several laboratories both at the chromaffin cell and within autonomic ganglia of both the parasympathetic and sympathetic nervous systems. PACAP is a neurotransmitter important in stress transduction in the central nervous system as well, and is found at stress-transduction nuclei in brain including the paraventricular nucleus of hypothalamus, the amygdala and extended amygdalar nuclei, and the prefrontal cortex. The current status of PACAP as a master regulator of stress signaling in the nervous system derives fundamentally from the establishment of its role as the splanchnicoadrenomedullary transmitter in stress. Experimental elucidation of PACAP action at this synapse remains at the forefront of understanding PACAP's role in stress signaling throughout the nervous system.
Collapse
|
16
|
Acetylcholine nicotinic receptor subtypes in chromaffin cells. Pflugers Arch 2017; 470:13-20. [DOI: 10.1007/s00424-017-2050-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 02/08/2023]
|
17
|
Martínez AK, Jensen K, Hall C, O'Brien A, Ehrlich L, White T, Meng F, Zhou T, Greene J, Bernuzzi F, Invernizzi P, Dostal DE, Lairmore T, Alpini G, Glaser SS. Nicotine Promotes Cholangiocarcinoma Growth in Xenograft Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1093-1105. [PMID: 28315314 DOI: 10.1016/j.ajpath.2017.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 12/29/2016] [Accepted: 01/17/2017] [Indexed: 12/20/2022]
Abstract
Nicotine, the main addictive substance in tobacco, is known to play a role in the development and/or progression of a number of malignant tumors. However, nicotine's involvement in the pathogenesis of cholangiocarcinoma is controversial. Therefore, we studied the effects of nicotine on the growth of cholangiocarcinoma cells in vitro and the progression of cholangiocarcinoma in a mouse xenograft model. The predominant subunit responsible for nicotine-mediated proliferation in normal and cancer cells, the α7 nicotinic acetylcholine receptor (α7-nAChR), was more highly expressed in human cholangiocarcinoma cell lines compared with normal human cholangiocytes. Nicotine also stimulated the proliferation of cholangiocarcinoma cell lines and promoted α7-nAChR-dependent activation of proliferation and phosphorylation of extracellular-regulated kinase in Mz-ChA-1 cells. In addition, nicotine and PNU282987 (α7-nAChR agonist) accelerated the growth of the cholangiocarcinoma tumors in our xenograft mouse model and increased fibrosis, proliferation of the tumor cells, and phosphorylation of extracellular-regulated kinase activation. Finally, α7-nAChR was expressed at significantly higher levels in human cholangiocarcinoma compared with normal human control liver samples. Taken together, results of this study suggest that nicotine acts through α7-nAChR and plays a novel role in the pathogenesis of cholangiocarcinoma. Furthermore, nicotine may act as a mitogen in cholestatic liver disease processes, thereby facilitating malignant transformation.
Collapse
Affiliation(s)
- Allyson K Martínez
- Department of Internal Medicine, Texas A&M Health Science Center, College of Medicine, Temple, Texas
| | - Kendal Jensen
- Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Temple, Texas
| | - Chad Hall
- Department of Surgery, Texas A&M Health Science Center, College of Medicine, Temple, Texas
| | - April O'Brien
- Department of Internal Medicine, Texas A&M Health Science Center, College of Medicine, Temple, Texas
| | - Laurent Ehrlich
- Department of Internal Medicine, Texas A&M Health Science Center, College of Medicine, Temple, Texas
| | - Tori White
- Department of Internal Medicine, Texas A&M Health Science Center, College of Medicine, Temple, Texas
| | - Fanyin Meng
- Department of Internal Medicine, Texas A&M Health Science Center, College of Medicine, Temple, Texas; Central Texas Veterans Health Care System, Temple, Texas; Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas
| | - Tianhao Zhou
- Department of Internal Medicine, Texas A&M Health Science Center, College of Medicine, Temple, Texas
| | - John Greene
- Department of Pathology, Baylor Scott & White Health, Temple, Texas
| | - Francesca Bernuzzi
- Program for Autoimmune Liver Diseases, International Center for Digestive Health, Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy; Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Pietro Invernizzi
- Program for Autoimmune Liver Diseases, International Center for Digestive Health, Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy; Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - David E Dostal
- Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Temple, Texas; Central Texas Veterans Health Care System, Temple, Texas
| | - Terry Lairmore
- Department of Surgery, Texas A&M Health Science Center, College of Medicine, Temple, Texas
| | - Gianfranco Alpini
- Department of Internal Medicine, Texas A&M Health Science Center, College of Medicine, Temple, Texas; Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Temple, Texas; Central Texas Veterans Health Care System, Temple, Texas; Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas
| | - Shannon S Glaser
- Department of Internal Medicine, Texas A&M Health Science Center, College of Medicine, Temple, Texas; Central Texas Veterans Health Care System, Temple, Texas; Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas.
| |
Collapse
|
18
|
Brown DP, Rogers DT, Pomerleau F, Siripurapu KB, Kulshrestha M, Gerhardt GA, Littleton JM. Novel multifunctional pharmacology of lobinaline, the major alkaloid from Lobelia cardinalis. Fitoterapia 2016; 111:109-23. [PMID: 27105955 PMCID: PMC5299595 DOI: 10.1016/j.fitote.2016.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/15/2016] [Accepted: 04/17/2016] [Indexed: 01/18/2023]
Abstract
In screening a library of plant extracts from ~1000 species native to the Southeastern United States, Lobelia cardinalis was identified as containing nicotinic acetylcholine receptor (nicAchR) binding activity which was relatively non-selective for the α4β2- and α7-nicAchR subtypes. This nicAchR binding profile is atypical for plant-derived nicAchR ligands, the majority of which are highly selective for α4β2-nicAchRs. Its potential therapeutic relevance is noteworthy since agonism of α4β2- and α7-nicAchRs is associated with anti-inflammatory and neuroprotective properties. Bioassay-guided fractionation of L. cardinalis extracts led to the identification of lobinaline, a complex binitrogenous alkaloid, as the main source of the unique nicAchR binding profile. Purified lobinaline was a potent free radical scavenger, displayed similar binding affinity at α4β2- and α7-nicAchRs, exhibited agonist activity at nicAchRs in SH-SY5Y cells, and inhibited [(3)H]-dopamine (DA) uptake in rat striatal synaptosomes. Lobinaline significantly increased fractional [(3)H] release from superfused rat striatal slices preloaded with [(3)H]-DA, an effect that was inhibited by the non-selective nicAchR antagonist mecamylamine. In vivo electrochemical studies in urethane-anesthetized rats demonstrated that lobinaline locally applied in the striatum significantly prolonged clearance of exogenous DA by the dopamine transporter (DAT). In contrast, lobeline, the most thoroughly investigated Lobelia alkaloid, is an α4β2-nicAchR antagonist, a poor free radical scavenger, and is a less potent DAT inhibitor. These previously unreported multifunctional effects of lobinaline make it of interest as a lead to develop therapeutics for neuropathological disorders that involve free radical generation, cholinergic, and dopaminergic neurotransmission. These include neurodegenerative conditions, such as Parkinson's disease, and drug abuse.
Collapse
Affiliation(s)
- Dustin P Brown
- College of Medicine, Department of Anatomy & Neurobiology, University of Kentucky Chandler Medical Center, 138 Leader Avenue, Lexington, KY 40536-9983, USA
| | - Dennis T Rogers
- Naprogenix™, UK-AsTeCC, 145 Graham Avenue, Lexington, KY 40506-0286, USA.
| | - Francois Pomerleau
- College of Medicine, Department of Anatomy & Neurobiology, University of Kentucky Chandler Medical Center, 138 Leader Avenue, Lexington, KY 40536-9983, USA; College of Medicine, Parkinson's Disease Translational Research Center for Excellence, University of Kentucky Chandler Medical Center, 138 Leader Avenue, Lexington, KY 40536-9983, USA; College of Medicine, Center for Microelectrode Technology, University of Kentucky Chandler Medical Center, 138 Leader Avenue, Lexington, KY 40536-9983, USA
| | - Kirin B Siripurapu
- College of Arts and Sciences, Department of Psychology, University of Kentucky, Kastle Hall, Lexington, KY 40506-0044, USA
| | - Manish Kulshrestha
- College of Agriculture, Department of Biosystems & Agricultural Engineering, University of Kentucky, 1100 S. Limestone, Lexington, KY 40546-0091, USA
| | - Greg A Gerhardt
- College of Medicine, Department of Anatomy & Neurobiology, University of Kentucky Chandler Medical Center, 138 Leader Avenue, Lexington, KY 40536-9983, USA; College of Medicine, Department of Neurology, University of Kentucky Chandler Medical Center, 138 Leader Avenue, Lexington, KY 40536-9983, USA; College of Medicine, Department of Psychiatry, University of Kentucky Chandler Medical Center, 138 Leader Avenue, Lexington, KY 40536-9983, USA; College of Medicine, Department of Neurosurgery, University of Kentucky Chandler Medical Center, 138 Leader Avenue, Lexington, KY 40536-9983, USA; College of Medicine, Parkinson's Disease Translational Research Center for Excellence, University of Kentucky Chandler Medical Center, 138 Leader Avenue, Lexington, KY 40536-9983, USA; College of Medicine, Center for Microelectrode Technology, University of Kentucky Chandler Medical Center, 138 Leader Avenue, Lexington, KY 40536-9983, USA
| | - John M Littleton
- Naprogenix™, UK-AsTeCC, 145 Graham Avenue, Lexington, KY 40506-0286, USA; College of Arts and Sciences, Department of Psychology, University of Kentucky, Kastle Hall, Lexington, KY 40506-0044, USA
| |
Collapse
|
19
|
Li X, Toyohira Y, Horisita T, Satoh N, Takahashi K, Zhang H, Iinuma M, Yoshinaga Y, Ueno S, Tsutsui M, Sata T, Yanagihara N. Ikarisoside A inhibits acetylcholine-induced catecholamine secretion and synthesis by suppressing nicotinic acetylcholine receptor-ion channels in cultured bovine adrenal medullary cells. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:1259-69. [DOI: 10.1007/s00210-015-1161-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/27/2015] [Indexed: 11/29/2022]
|
20
|
Truong LD, Trostel J, Garcia GE. Absence of nicotinic acetylcholine receptor α7 subunit amplifies inflammation and accelerates onset of fibrosis: an inflammatory kidney model. FASEB J 2015; 29:3558-70. [PMID: 25985801 DOI: 10.1096/fj.14-262493] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 05/04/2015] [Indexed: 01/06/2023]
Abstract
Inflammation is regulated by endogenous mechanisms, including anti-inflammatory cytokines, adenosine, and the nicotinic acetylcholine receptor α7 subunit (α7nAChR). We investigated the role of α7nAChR in protection against the progression of tissue injury in a model of severe, macrophage-mediated, cytokine-dependent anti-glomerular basement membrane (GBM) glomerulonephritis (GN), in α7nAChR-deficient (α7(-/-)) mice . At d 7 after the injection of anti-GBM antibody, kidneys from α7(-/-) mice displayed severe glomeruli (P < 0.0001) and tubulointerstitial lesions (P < 0.001) compared to kidneys from WT mice. An important finding was the presence of severe glomerulosclerosis in α7(-/-) mice in this early phase of the disease. Kidneys of α7(-/-) mice showed greater accumulation of inflammatory cells and higher expression of chemokines and cytokines than did those of WT mice. In addition, in α7(-/-) fibrotic kidneys, the expression of fibrin, collagen, TGF-β, and tissue inhibitor of metalloproteinase (TIMP)-2 increased, and the expression of TIMP3 declined. The increase in counterregulatory responses to inflammation in α7(-/-) nephritic kidneys did not compensate for the lack of α7nAChR. These findings indicate that α7nAChR plays a key role in regulating the inflammatory response in anti-GBM GN and that disruption of the endogenous protective α7nAChR amplifies inflammation to accelerate kidney damage and fibrosis.
Collapse
Affiliation(s)
- Luan D Truong
- *Department of Pathology and Division of Nephrology, Department of Medicine, and The Methodist Hospital, Baylor College of Medicine, Houston, Texas, USA; and Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, Colorado, USA
| | - Jessica Trostel
- *Department of Pathology and Division of Nephrology, Department of Medicine, and The Methodist Hospital, Baylor College of Medicine, Houston, Texas, USA; and Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, Colorado, USA
| | - Gabriela E Garcia
- *Department of Pathology and Division of Nephrology, Department of Medicine, and The Methodist Hospital, Baylor College of Medicine, Houston, Texas, USA; and Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, Colorado, USA
| |
Collapse
|
21
|
Mei D, Lin Z, Fu J, He B, Gao W, Ma L, Dai W, Zhang H, Wang X, Wang J, Zhang X, Lu W, Zhou D, Zhang Q. The use of α-conotoxin ImI to actualize the targeted delivery of paclitaxel micelles to α7 nAChR-overexpressing breast cancer. Biomaterials 2014; 42:52-65. [PMID: 25542793 DOI: 10.1016/j.biomaterials.2014.11.044] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/08/2014] [Accepted: 11/24/2014] [Indexed: 12/24/2022]
Abstract
Alpha7 nicotinic acetylcholine receptor (α7 nAChR), a ligand-gated ion channel, is increasingly emerging as a new tumor target owing to its expression specificity and significancy for cancer. In an attempt to increase the targeted drug delivery to the α7 nAChR-overexpressing tumors, herein, α-conotoxin ImI, a disulfide-rich toxin with highly affinity for α7 nAChR, was modified on the PEG-DSPE micelles (ImI-PMs) for the first time. The DLS, TEM and HPLC detections showed the spherical nanoparticle morphology about 20 nm with negative charge and high drug encapsulation. The ligand modification did not induce significant differences. The immunofluorescence assay confirmed the expression level of α7 nAChR in MCF-7 cells. In vitro and in vivo experiments demonstrated that the α7 nAChR-targeted nanomedicines could deliver more specifically and faster into α7 nAChR-overexpressing MCF-7 cells. Furthermore, fluo-3/AM fluorescence imaging technique indicated that the increased specificity was attributed to the ligand-receptor interaction, and the inducitivity for intracellular Ca(2+) transient by ImI was still remained after modification. Moreover, paclitaxel, a clinical frequently-used anti-tumor drug for breast cancer, was loaded in ImI-modified nanomedicines to evaluate the targeting efficacy. Besides of exhibiting greater cytotoxicity and inducing more cell apoptosis in vitro, paclitaxel-loaded ImI-PMs displayed stronger anti-tumor efficacy in MCF-7 tumor-bearing nu/nu mice. Finally, the active targeting system showed low systemic toxicity and myelosuppression evidenced by less changes in body weight, white blood cells, neutrophilic granulocyte and platelet counts. In conclusion, α7 nAChR is also a promising target for anti-tumor drug delivery and in this case, α-conotoxin ImI-modified nanocarrier is a potential delivery system for targeting α7 nAChR-overexpressing tumors.
Collapse
Affiliation(s)
- Dong Mei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhiqiang Lin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jijun Fu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bing He
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wei Gao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ling Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wenbing Dai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jiancheng Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xuan Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wanliang Lu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
22
|
Synapses on sympathetic neurons and parasympathetic neurons differ in their vulnerability to diabetes. J Neurosci 2014; 34:8865-74. [PMID: 24966386 DOI: 10.1523/jneurosci.0033-14.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Synapses in autonomic ganglia represent the final output of various CNS structures that regulate the function of the periphery. Normally, these excitatory cholinergic-nicotinic synapses produce large suprathreshold EPSPs on sympathetic and parasympathetic neurons to convey signals from the CNS. However, in certain disease states, synaptic transmission in autonomic ganglia is depressed and the periphery becomes deregulated. For example, previous work demonstrated that hyperglycemia depresses EPSPs on sympathetic neurons and disrupts sympathetic reflexes by causing an ROS-dependent inactivation of the postsynaptic nAChRs. What is not clear, however, is whether some autonomic neurons are more vulnerable to hyperglycemia than others. One possibility is that sympathetic neurons may be more prone than cholinergic parasympathetic neurons to hyperglycemia-induced elevations in cytosolic ROS because sympathetic neurons contain several pro-oxidant molecules involved in noradrenaline metabolism. To test this hypothesis, we recorded synaptic transmission from different mouse sympathetic and parasympathetic ganglia, as well as from the adrenal medulla. In addition, we used cellular imaging to measure hyperglycemia-induced changes in cytosolic ROS and whole-cell recordings to measure the use-dependent rundown of ACh-evoked currents. Our results demonstrate that hyperglycemia depresses synaptic transmission on sympathetic neurons and adrenal chromaffin cells and elevates cytosolic ROS. Conversely, hyperglycemia has little effect on synaptic transmission at synapses on parasympathetic neurons. We conclude that sympathetic neurons and adrenal chromaffin cells are more vulnerable to diabetes than parasympathetic neurons, a finding that may have implications for both long-term diabetic autonomic neuropathies and insulin-induced hypoglycemia, a serious complication of diabetes.
Collapse
|
23
|
Gahring LC, Myers E, Palumbos S, Rogers SW. Nicotinic receptor Alpha7 expression during mouse adrenal gland development. PLoS One 2014; 9:e103861. [PMID: 25093893 PMCID: PMC4122369 DOI: 10.1371/journal.pone.0103861] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 07/07/2014] [Indexed: 11/23/2022] Open
Abstract
The nicotinic acetylcholine receptor alpha 7 (α7) is a ligand-activated ion channel that contributes to a diversity of cellular processes involved in development, neurotransmission and inflammation. In this report the expression of α7 was examined in the mouse developing and adult adrenal gland that expresses a green fluorescent protein (GFP) reporter as a bi-cistronic extension of the endogenous α7 transcript (α7(G)). At embryonic day 12.5 (E12.5) α7(G) expression was associated with the suprarenal ganglion and precursor cells of the adrenal gland. The α7(G) cells are catecholaminergic chromaffin cells as reflected by their progressive increase in the co-expression of tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DBH) that is complete by E18.5. In the adult, α7(G) expression is limited to a subset of chromaffin cells in the adrenal medulla that cluster near the border with the adrenal cortex. These chromaffin cells co-express α7(G), TH and DBH, but they lack phenylethanolamine N-methyltransferase (PNMT) consistent with only norepinephrine (NE) synthesis. These cell groups appear to be preferentially innervated by pre-ganglionic afferents identified by the neurotrophin receptor p75. No afferents identified by beta-III tubulin, neurofilament proteins or p75 co-expressed α7(G). Occasional α7(G) cells in the pre-E14.5 embryos express neuronal markers consistent with intrinsic ganglion cells and in the adult some α7(G) cells co-express glutamic acid decarboxylase. The transient expression of α7 during adrenal gland development and its prominent co-expression by a subset of NE chromaffin cells in the adult suggests that the α7 receptor contributes to multiple aspects of adrenal gland development and function that persist into adulthood.
Collapse
Affiliation(s)
- Lorise C. Gahring
- Salt Lake City VA Geriatric Research, Education and Clinical Center, Salt Lake City, Utah, United States of America
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah, United States of America
| | - Elizabeth Myers
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah, United States of America
| | - Sierra Palumbos
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah, United States of America
| | - Scott W. Rogers
- Salt Lake City VA Geriatric Research, Education and Clinical Center, Salt Lake City, Utah, United States of America
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
24
|
Welch KD, Pfister JA, Gardner DR, Green BT, Panter KE. The role of the α7 subunit of the nicotinic acetylcholine receptor on motor coordination in mice treated with methyllycaconitine and anabasine. J Appl Toxicol 2013; 33:1017-26. [PMID: 23702881 DOI: 10.1002/jat.2894] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 11/07/2022]
Abstract
The adverse effects of methyllycaconitine (MLA) have been attributed to competitive antagonism of nicotinic acetylcholine receptors (nAChR). Research has indicated a correlation between the LD50 of MLA and the amount of α7 nAChR in various mouse strains, suggesting that mice with more α7 nAChR require more MLA to be poisoned. However, recent research demonstrated that there was no difference in the acute lethality (LD50 ) to MLA in mice lacking the α7 nAChR subunit compared with wild-type mice. The objective of this study was to determine if the α7 nAChR subunit plays a role in motor coordination deficiencies that result from exposure to nAChR antagonists and agonists. We compared the motor function and coordination in wild-type mice to mice lacking the α7 subunit of the nAChR, after treating them with a non-lethal dose of MLA or anabasine, using the following tests: balance beam, grip strength, rotarod, open field and tremor monitor. Analysis of the data indicated that overall there was no difference between the wild-type and knockout mice (P = 0.39 for grip strength; P = 0.21 for rotarod; P = 0.41 for balance beam; P = 0.22 for open field; and P = 0.62 for tremors). Thus results from this study suggest that α7 nAChR does not play an integral role in the acute effects of MLA or anabasine on motor function/coordination. Consequently other subunits of nAChRs found in the neuromuscular junction are likely the primary target for MLA and anabasine resulting in motor coordination deficiencies and acute toxicosis.
Collapse
Affiliation(s)
- K D Welch
- USDA-ARS Poisonous Plant Research Laboratory, Logan, Utah 84341, USA.
| | | | | | | | | |
Collapse
|
25
|
Welch KD, Green BT, Panter KE, Pfister JA, Gardner DR. The role of the α7subunit of the nicotinic acetylcholine receptor in the acute toxicosis of methyllycaconitine in mice. J Appl Toxicol 2013; 33:1011-6. [DOI: 10.1002/jat.2851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 11/19/2012] [Accepted: 11/20/2012] [Indexed: 11/08/2022]
Affiliation(s)
- K. D. Welch
- USDA-ARS Poisonous Plant Research Laboratory; Logan; UT; 84341; USA
| | - B. T. Green
- USDA-ARS Poisonous Plant Research Laboratory; Logan; UT; 84341; USA
| | - K. E. Panter
- USDA-ARS Poisonous Plant Research Laboratory; Logan; UT; 84341; USA
| | - J. A. Pfister
- USDA-ARS Poisonous Plant Research Laboratory; Logan; UT; 84341; USA
| | - D. R. Gardner
- USDA-ARS Poisonous Plant Research Laboratory; Logan; UT; 84341; USA
| |
Collapse
|
26
|
Criado M, Valor LM, Mulet J, Gerber S, Sala S, Sala F. Expression and functional properties of α7 acetylcholine nicotinic receptors are modified in the presence of other receptor subunits. J Neurochem 2012; 123:504-14. [DOI: 10.1111/j.1471-4159.2012.07931.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 07/30/2012] [Accepted: 08/20/2012] [Indexed: 01/03/2023]
Affiliation(s)
- Manuel Criado
- Instituto de Neurociencias; Universidad Miguel Hernández-CSIC; Alicante Spain
| | - Luis M. Valor
- Instituto de Neurociencias; Universidad Miguel Hernández-CSIC; Alicante Spain
| | - José Mulet
- Instituto de Neurociencias; Universidad Miguel Hernández-CSIC; Alicante Spain
| | - Susana Gerber
- Instituto de Neurociencias; Universidad Miguel Hernández-CSIC; Alicante Spain
| | - Salvador Sala
- Instituto de Neurociencias; Universidad Miguel Hernández-CSIC; Alicante Spain
| | - Francisco Sala
- Instituto de Neurociencias; Universidad Miguel Hernández-CSIC; Alicante Spain
| |
Collapse
|
27
|
Pérez-Alvarez A, Hernández-Vivanco A, Alonso Y Gregorio S, Tabernero A, McIntosh JM, Albillos A. Pharmacological characterization of native α7 nicotinic ACh receptors and their contribution to depolarization-elicited exocytosis in human chromaffin cells. Br J Pharmacol 2012; 165:908-21. [PMID: 21790533 DOI: 10.1111/j.1476-5381.2011.01596.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Expression of α7 nicotinic acetylcholine receptors (nAChRs) and their role in exocytosis have not yet been examined in human chromaffin cells. EXPERIMENTAL APPROACH To characterize these receptors and investigate their function, patch-clamp experiments were performed in human chromaffin cells from organ donors. KEY RESULTS The nicotinic current provoked by 300µM ACh in voltage-clamped cells was blocked by the nicotinic receptor antagonists α-bungarotoxin (α-Bgtx; 1µM; 6 ± 1.7%) or methyllycaconitine (MLA; 10nM; 7 ± 1.6%), respectively, in an irreversible and reversible manner, without affecting exocytosis. Choline (10mM) pulses induced a biphasic current with an initial quickly activated (5.5 ± 0.4ms rise time) and inactivated component (8.5 ± 0.4ms time constant) (termed α7), which was blocked by α-Bgtx or MLA, followed by a slower component (non-α7). α7 nAChR currents were dissected by blocking the non-α7 nAChR current component of the ACh and choline response with the α6* nAChR blocker α-conotoxin (α-Ctx) MII[S4A, E11A, L15A]. PNU-282987, an α7 nAChR-specific agonist, elicited rapidly activated and rapidly inactivated currents. α7 nAChR-positive allosteric modulators, such as 5-hydroxyindole (1mM) and PNU-120596 (10µM), potentiated responses that were blocked by α-Bgtx or MLA. Exocytosis was evoked by depolarization-elicited α7 nAChR currents, using choline in the presence of α-Ctx MII[MS4A, E11A, L15A] or PNU-282987 as agonists. CONCLUSIONS AND IMPLICATIONS Our electrophysiological recordings of pure α7 nAChR currents elicited by rapid application of agonists demonstrated that functional α7 nAChRs are expressed and contribute to depolarization-elicited exocytosis in human chromaffin cells.
Collapse
Affiliation(s)
- Alberto Pérez-Alvarez
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
28
|
Functional chromaffin cell plasticity in response to stress: focus on nicotinic, gap junction, and voltage-gated Ca2+ channels. J Mol Neurosci 2012; 48:368-86. [PMID: 22252244 DOI: 10.1007/s12031-012-9707-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 01/04/2012] [Indexed: 10/14/2022]
Abstract
An increase in circulating catecholamines constitutes one of the mechanisms whereby human body responds to stress. In response to chronic stressful situations, the adrenal medullary tissue exhibits crucial morphological and functional changes that are consistent with an improvement of chromaffin cell stimulus-secretion coupling efficiency. Stimulus-secretion coupling encompasses multiple intracellular (chromaffin cell excitability, Ca(2+) signaling, exocytosis, endocytosis) and intercellular pathways (splanchnic nerve-mediated synaptic transmission, paracrine and endocrine communication, gap junctional coupling), each of them being potentially subjected to functional remodeling upon stress. This review focuses on three chromaffin cell incontrovertible actors, the cholinergic nicotinic receptors and the voltage-dependent T-type Ca(2+) channels that are directly involved in Ca(2+)-dependent events controlling catecholamine secretion and electrical activity, and the gap junctional communication involved in the modulation of catecholamine secretion. We show here that these three actors react differently to various stressors, sometimes independently, sometimes in concert or in opposition.
Collapse
|
29
|
Shen J, Xu L, Owonikoko TK, Sun SY, Khuri FR, Curran WJ, Deng X. NNK promotes migration and invasion of lung cancer cells through activation of c-Src/PKCι/FAK loop. Cancer Lett 2011; 318:106-13. [PMID: 22178655 DOI: 10.1016/j.canlet.2011.12.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 12/05/2011] [Accepted: 12/06/2011] [Indexed: 12/16/2022]
Abstract
Cigarette smoking, either active or passive, is the most important risk factor in the development of human lung cancer. Mounting evidence indicates that cigarette smoke constituents not only contribute to tumorigenesis but also may increase the spread of cancer in the body. Nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is formed by nitrosation of nicotine and has been identified as the most potent carcinogen. NNK, an important component in cigarette smoke, may also promote tumor metastasis by regulating cell motility. Here we found that NNK can induce activation of a functionally interdependent protein kinase cascade, including c-Src, PKCι and FAK, in association with increased migration and invasion of human lung cancer cells. c-Src, PKCι and FAK are extensively co-localized in the cytoplasm. Treatment of cells with α(7) nAChR specific inhibitor α-bungarotoxin (α-BTX) blocks NNK-stimulated activation of c-Src, PKCι and FAK and suppresses cell migration and invasion. Intriguingly, NNK enhances c-Src/PKCι and PKCι/FAK bindings, indicating a potential mechanism by which these kinases activate each other. Specific disruption of c-Src, PKCι or FAK expression by RNA interference significantly reduces NNK-induced cell migration and invasion. These findings suggest that NNK-induced migration and invasion may occur in a mechanism through activation of a c-Src/PKCι/FAK loop, which can contribute to metastasis and/or development of human lung cancer.
Collapse
Affiliation(s)
- Jie Shen
- Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, GA 30322, United States
| | | | | | | | | | | | | |
Collapse
|
30
|
Canastar A, Logel J, Graw S, Finlay-Schultz J, Osborne C, Palionyte M, Drebing C, Plehaty M, Wilson L, Eyeson R, Leonard S. Promoter methylation and tissue-specific transcription of the α7 nicotinic receptor gene, CHRNA7. J Mol Neurosci 2011; 47:389-400. [PMID: 22052086 DOI: 10.1007/s12031-011-9663-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 10/11/2011] [Indexed: 01/08/2023]
Abstract
The α7 nicotinic acetylcholine receptor is known to regulate a wide variety of developmental and secretory functions in neural and non-neural tissues. The mechanisms that regulate its transcription in these varied tissues are not well understood. Epigenetic processes may play a role in the tissue-specific regulation of mRNA expression from the α7 nicotinic receptor subunit gene, CHRNA7. Promoter methylation was correlated with CHRNA7 mRNA expression in various tissue types and the role of DNA methylation in regulating transcription from the gene was tested by using DNA methyltransferase (DNMT1) inhibitors and methyl donors. CHRNA7 mRNA expression was silenced in SH-EP1 cells and bisulfite sequencing PCR revealed the CHRNA7 proximal promoter was hypermethylated. The proximal promoter was hypomethylated in the cell lines HeLa, SH-SY5Y, and SK-N-BE which express varying levels of CHRNA7 mRNA. Expression of CHRNA7 mRNA was present in SH-EP1 cells after treatment with the methylation inhibitor, 5-aza-2-deoxycytidine (5-Aza-CdR), and increased in SH-EP1 and HeLa cells using another methylation inhibitor, zebularine (ZEB). Transcription from the CHRNA7 promoter in HeLa cells was increased when the methyl donor methionine (MET) was absent from the media. Using methylation-sensitive restriction enzyme analysis (MSRE), there was a strong inverse correlation between CHRNA7 mRNA levels and promoter DNA methylation across several human tissue types. The results support a role for DNA methylation of the proximal promoter in regulation of CHRNA7 transcription.
Collapse
Affiliation(s)
- Andrew Canastar
- Department of Psychiatry, University of Colorado Denver, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Nicotinic receptor agonist-induced salivation and its cellular mechanism in parotid acini of rats. Auton Neurosci 2011; 161:81-6. [DOI: 10.1016/j.autneu.2011.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/13/2010] [Accepted: 01/12/2011] [Indexed: 11/20/2022]
|
32
|
Jewell ML, Breyer RM, Currie KPM. Regulation of calcium channels and exocytosis in mouse adrenal chromaffin cells by prostaglandin EP3 receptors. Mol Pharmacol 2011; 79:987-96. [PMID: 21383044 DOI: 10.1124/mol.110.068569] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prostaglandin (PG) E(2) controls numerous physiological functions through a family of cognate G protein-coupled receptors (EP1-EP4). Targeting specific EP receptors might be therapeutically useful and reduce side effects associated with nonsteroidal anti-inflammatory drugs and selective cyclooxygenase-2 inhibitors that block prostanoid synthesis. Systemic immune challenge and inflammatory cytokines have been shown to increase expression of the synthetic enzymes for PGE(2) in the adrenal gland. Catecholamines and other hormones, released from adrenal chromaffin cells in response to Ca(2+) influx through voltage-gated Ca(2+) channels, play central roles in homeostatic function and the coordinated stress response. However, long-term elevation of circulating catecholamines contributes to the pathogenesis of hypertension and heart failure. Here, we investigated the EP receptor(s) and cellular mechanisms by which PGE(2) might modulate chromaffin cell function. PGE(2) did not alter resting intracellular [Ca(2+)] or the peak amplitude of nicotinic acetylcholine receptor currents, but it did inhibit Ca(V)2 voltage-gated Ca(2+) channel currents (I(Ca)). This inhibition was voltage-dependent and mediated by pertussis toxin-sensitive G proteins, consistent with a direct Gβγ subunit-mediated mechanism common to other G(i/o)-coupled receptors. mRNA for all four EP receptors was detected, but using selective pharmacological tools and EP receptor knockout mice, we demonstrated that EP3 receptors mediate the inhibition of I(Ca). Finally, changes in membrane capacitance showed that Ca(2+)-dependent exocytosis was reduced in parallel with I(Ca). To our knowledge, this is the first study of EP receptor signaling in mouse chromaffin cells and identifies a molecular mechanism for paracrine regulation of neuroendocrine function by PGE(2).
Collapse
Affiliation(s)
- Mark L Jewell
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232-2520, USA
| | | | | |
Collapse
|
33
|
Shimizu T, Tanaka K, Hasegawa T, Yokotani K. Brain α4β2 nicotinic acetylcholine receptors are involved in the secretion of noradrenaline and adrenaline from adrenal medulla in rats. Eur J Pharmacol 2011; 654:241-8. [DOI: 10.1016/j.ejphar.2010.12.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 11/30/2010] [Accepted: 12/15/2010] [Indexed: 10/18/2022]
|
34
|
del Barrio L, Egea J, León R, Romero A, Ruiz A, Montero M, Alvarez J, López MG. Calcium signalling mediated through α7 and non-α7 nAChR stimulation is differentially regulated in bovine chromaffin cells to induce catecholamine release. Br J Pharmacol 2011; 162:94-110. [PMID: 20840468 PMCID: PMC3012409 DOI: 10.1111/j.1476-5381.2010.01034.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 07/08/2010] [Accepted: 07/26/2010] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Ca(2+) signalling and exocytosis mediated by nicotinic receptor (nAChR) subtypes, especially the α7 nAChR, in bovine chromaffin cells are still matters of debate. EXPERIMENTAL APPROACH We have used chromaffin cell cultures loaded with Fluo-4 or transfected with aequorins directed to the cytosol or mitochondria, several nAChR agonists (nicotine, 5-iodo-A-85380, PNU282987 and choline), and the α7 nAChR allosteric modulator PNU120596. KEY RESULTS Minimal [Ca(2+) ](c) transients, induced by low concentrations of selective α7 nAChR agonists and nicotine, were markedly increased by the α7 nAChR allosteric modulator PNU120596. These potentiated responses were completely blocked by the α7 nAChR antagonist α-bungarotoxin (α7-modulated-response). Conversely, high concentrations of the α7 nAChR agonists, nicotine or 5-iodo-A-85380 induced larger [Ca(2+) ](c) transients, that were blocked by mecamylamine but were unaffected by α-bungarotoxin (non-α7 response). [Ca(2+) ](c) increases mediated by α7 nAChR were related to Ca(2+) entry through non-L-type Ca(2+) channels, whereas non-α7 nAChR-mediated signals were related to L-type Ca(2+) channels; Ca(2+) -induced Ca(2+) -release contributed to both responses. Mitochondrial involvement in the control of [Ca(2+) ](c) transients, mediated by either receptor, was minimal. Catecholamine release coupled to α7 nAChRs was more efficient in terms of catecholamine released/[Ca(2+) ](c) . CONCLUSIONS AND IMPLICATIONS [Ca(2+) ](c) and catecholamine release mediated by α7 nAChRs required an allosteric modulator and low doses of the agonist. At higher agonist concentrations, the α7 nAChR response was lost and the non-α7 nAChRs were activated. Catecholamine release might therefore be regulated by different nAChR subtypes, depending on agonist concentrations and the presence of allosteric modulators of α7 nAChRs.
Collapse
Affiliation(s)
- Laura del Barrio
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Grove CL, Szabo TM, McIntosh JM, Do SC, Waldeck RF, Faber DS. Fast synaptic transmission in the goldfish CNS mediated by multiple nicotinic receptors. J Physiol 2010; 589:575-95. [PMID: 21115642 DOI: 10.1113/jphysiol.2010.197608] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Usually nicotinic receptors in the central nervous system only influence the strength of a signal between neurons. At a few critical connections, for instance some of those involved in the flight response, nicotinic receptors not only modulate the signal, they actually determine whether a signal is conveyed or not. We show at one of the few such connections accessible for study, up to three different nicotinic receptor subtypes mediate the signal. The subtypes appear to be clustered in separate locations. Depending on the number and combination of the subtypes present the signal can range from short to long duration and from low to high amplitude. This provides a critical connection with a built-in plasticity and may enable it to adapt to a changing environment.
Collapse
Affiliation(s)
- Charlotte L Grove
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Functional characterization of alpha9-containing cholinergic nicotinic receptors in the rat adrenal medulla: implication in stress-induced functional plasticity. J Neurosci 2010; 30:6732-42. [PMID: 20463235 DOI: 10.1523/jneurosci.4997-09.2010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
An increase in circulating adrenal catecholamine levels constitutes one of the mechanisms whereby organisms cope with stress. Accordingly, stimulus-secretion coupling within the stressed adrenal medullary tissue undergoes persistent remodeling. In particular, cholinergic synaptic neurotransmission between splanchnic nerve terminals and chromaffin cells is upregulated in stressed rats. Since synaptic transmission is mainly supported by activation of postsynaptic neuronal acetylcholine nicotinic receptors (nAChRs), we focused our study on the role of alpha9-containing nAChRs, which have been recently described in chromaffin cells. Taking advantage of their specific blockade by the alpha-conotoxin RgIA (alpha-RgIA), we unveil novel functional roles for these receptors in the stimulus-secretion coupling of the medulla. First, we show that in rat acute adrenal slices, alpha9-containing nAChRs codistribute with synaptophysin and significantly contribute to EPSCs. Second, we show that these receptors are involved in the tonic inhibitory control exerted by cholinergic activity on gap junctional coupling between chromaffin cells, as evidenced by an increased Lucifer yellow diffusion within the medulla in alpha-RgIA-treated slices. Third, we unexpectedly found that alpha9-containing nAChRs dominantly (>70%) contribute to acetylcholine-induced current in cold-stressed rats, whereas alpha3 nAChRs are the main contributing channels in unstressed animals. Consistently, expression levels of alpha9 nAChR transcript and protein are overexpressed in cold-stressed rats. As a functional relevance, we propose that upregulation of alpha9-containing nAChR channels and ensuing dominant contribution in cholinergic signaling may be one of the mechanisms whereby adrenal medullary tissue appropriately adapts to increased splanchnic nerve electrical discharges occurring in stressful situations.
Collapse
|
37
|
Arias HR, Rosenberg A, Targowska-Duda KM, Feuerbach D, Jozwiak K, Moaddel R, Wainer IW. Tricyclic antidepressants and mecamylamine bind to different sites in the human alpha4beta2 nicotinic receptor ion channel. Int J Biochem Cell Biol 2010; 42:1007-18. [PMID: 20223294 DOI: 10.1016/j.biocel.2010.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 02/18/2010] [Accepted: 03/01/2010] [Indexed: 10/19/2022]
Abstract
The interaction of tricyclic antidepressants with the human (h) alpha4beta2 nicotinic acetylcholine receptor in different conformational states was compared with that for the noncompetitive antagonist mecamylamine by using functional and structural approaches. The results established that: (a) [(3)H]imipramine binds to halpha4beta2 receptors with relatively high affinity (K(d)=0.83+/-0.08 microM), but imipramine does not differentiate between the desensitized and resting states, (b) although tricyclic antidepressants inhibit (+/-)-epibatidine-induced Ca(2+) influx in HEK293-halpha4beta2 cells with potencies that are in the same concentration range as that for (+/-)-mecamylamine, tricyclic antidepressants inhibit [(3)H]imipramine binding to halpha4beta2 receptors with affinities >100-fold higher than that for (+/-)-mecamylamine. This can be explained by our docking results where imipramine interacts with the leucine (position 9') and valine (position 13') rings by van der Waals contacts, whereas mecamylamine interacts electrostatically with the outer ring (position 20'), (c) van der Waals interactions are in agreement with the thermodynamic results, indicating that imipramine interacts with the desensitized and resting receptors by a combination of enthalpic and entropic components. However, the entropic component is more important in the desensitized state, suggesting local conformational changes. In conclusion, our data indicate that tricyclic antidepressants and mecamylamine efficiently inhibit the ion channel by interacting at different luminal sites. The high proportion of protonated mecamylamine calculated at physiological pH suggests that this drug can be attracted to the channel mouth before binding deeper within the receptor ion channel finally blocking ion flux.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Pharmaceutical Sciences, College of Pharmacy, Midwestern University, 19555 N 59th Avenue, Glendale, AZ 85308, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Arias HR, Targowska-Duda KM, Feuerbach D, Sullivan CJ, Maciejewski R, Jozwiak K. Different interaction between tricyclic antidepressants and mecamylamine with the human alpha3beta4 nicotinic acetylcholine receptor ion channel. Neurochem Int 2010; 56:642-9. [PMID: 20117161 DOI: 10.1016/j.neuint.2010.01.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 01/21/2010] [Accepted: 01/22/2010] [Indexed: 11/29/2022]
Abstract
The interaction of tricyclic antidepressants (TCAs) with the human (h)alpha3beta4 nicotinic acetylcholine receptor (AChR) in different conformational states was compared with that for mecamylamine by using functional and structural approaches including, Ca(2+) influx, radioligand binding, and molecular docking. The results established that: (a) [(3)H]imipramine binds to a single site with relatively high affinity (K(d) = 0.41 +/- 0.04 microM), (b) imipramine inhibits [(3)H]imipramine binding to the resting/kappa-bungarotoxin-bound AChR (K(i) = 0.68 +/- 0.08 microM) with practically the same affinity as to the desensitized/epibatidine-bound AChR (K(i) = 0.83 +/- 0.08 microM), suggesting that TCAs do not discriminate between these conformational states, and (c) although TCAs (IC(50) approximately 1.8-2.7 microM) and mecamylamine (IC(50) = 3.3 +/- 0.4 microM) inhibit (+/-)-epibatidine-induced Ca(2+) influx with potencies in the same concentration range, TCAs (K(i) approximately 1-3.6 microM), but not mecamylamine (apparent IC(50) approximately 0.2 mM), inhibit [(3)H]imipramine binding to halpha3beta4 AChRs in different conformational states. This is explained by our docking results where imipramine, in the neutral and protonated states, interacts with the leucine (position 9') and valine/phenylalanine (position 13') rings, whereas protonated mecamylamine (>99% at physiological pH) interacts with the outer ring (position 20'). Our data indicate that TCAs bind to overlapping sites located between the serine and valine/phenylalanine rings in the halpha3beta4 AChR ion channel, whereas protonated mecamylamine can be attracted to the channel mouth before blocking ion flux by interacting with a luminal site in its neutral state.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Pharmaceutical Sciences, College of Pharmacy, Midwestern University, Glendale, AZ 85308, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Hondebrink L, Meulenbelt J, Timmerman JG, van den Berg M, Westerink RHS. Amphetamine reduces vesicular dopamine content in dexamethasone-differentiated PC12 cells only following l-DOPA exposure. J Neurochem 2009; 111:624-33. [DOI: 10.1111/j.1471-4159.2009.06357.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
40
|
Welch KD, Green BT, Panter KE, Gardner DR, Pfister JA, Cook D, Stegelmeier BL. Investigation of the susceptibility of various strains of mice to methyllycaconitine toxicosis1. J Anim Sci 2009; 87:1558-64. [DOI: 10.2527/jas.2008-1577] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
41
|
Tapia L, García-Eguiagaray J, García AG, Gandía L. Preconditioning stimuli that augment chromaffin cell secretion. Am J Physiol Cell Physiol 2009; 296:C792-800. [PMID: 19211912 DOI: 10.1152/ajpcell.00600.2008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have investigated here whether a preconditioned stimulation of nicotinic and muscarinic receptors augmented the catecholamine release responses elicited by supramaximal 3-s pulses of 100 muM acetylcholine (100ACh) or 100 mM K(+) (100K(+)) applied to fast-perifused bovine adrenal chromaffin cells. Threshold concentrations of nicotine (1-3 muM) that caused only a tiny secretion did, however, augment the responses elicited by 100ACh or 100K(+) by 2- to 3.5-fold. This effect was suppressed by mecamylamine and by Ca(2+) deprivation, was developed with a half-time (t(1/2)) of 1 min, and was reversible. The nicotine effect was mimicked by threshold concentrations of ACh, choline, epibatidine, and oxotremorine-M but not by methacholine. Threshold concentrations of K(+) caused lesser potentiation of secretion compared with that of threshold nicotine. The data are compatible with an hypothesis implying 1) that continuous low-frequency sympathetic discharge places chromaffin cells at the adrenal gland in a permanent "hypersensitive" state; and 2) this allows an explosive secretion of catecholamines by high-frequency sympathetic discharge during stress.
Collapse
Affiliation(s)
- Laura Tapia
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo, 4. 28029 Madrid, Spain
| | | | | | | |
Collapse
|
42
|
Welch KD, Panter KE, Gardner DR, Green BT, Pfister JA, Cook D, Stegelmeier BL. The effect of 7,8-methylenedioxylycoctonine-type diterpenoid alkaloids on the toxicity of methyllycaconitine in mice1. J Anim Sci 2008; 86:2761-70. [DOI: 10.2527/jas.2008-1025] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
43
|
Mahapatra NR. Catestatin is a novel endogenous peptide that regulates cardiac function and blood pressure. Cardiovasc Res 2008; 80:330-8. [DOI: 10.1093/cvr/cvn155] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
44
|
Abstract
In the adrenal medulla, acetylcholine released by the sympathetic splanchnic nerves activates neuronal-type nicotinic acetylcholine receptors (nAChRs) on the membrane of chromaffin cells which liberate catecholamines into the bloodstream in preparation for the fight and flight reactions. On adrenal chromaffin cells the main class of nAChRs is a pentameric assembly of alpha3 and beta4 subunits that forms ion channels which produce membrane depolarization by increasing Na+, K+ and Ca2+ permeability. Homomeric alpha7 nicotinic receptors are expressed in a species-dependent manner and do not contribute to catecholamine secretion. Chromaffin cell nAChRs rapidly activate and desensitize with full recovery on washout. nAChR activity is subjected to various types of dynamic regulation. It is allosterically modulated by the endogenous neuropeptide substance P that stabilizes receptors in their desensitized state, thus depressing their responsiveness. The full-length peptide CGRP acts as a negative allosteric modulator by inhibiting responses without changing desensitization, whereas its N-terminal fragments act as positive allosteric modulators to transiently enhance nAChR function. nAChR expression increases when cells are chronically exposed to either selective antagonists or agonists such as nicotine, a protocol mimicking the condition of chronic heavy smokers. In this case, large upregulation of nAChRs occurs even though most of the extra nAChRs remain inside the cells, creating a mismatch between the increase in total nAChRs and increase in functional nAChRs on the cell surface. These findings highlight the plastic properties of cholinergic neurotransmission in the adrenal medulla to provide robust mechanisms for adapting catecholamine release to acute and chronic changes in sympathetic activity.
Collapse
Affiliation(s)
- F Sala
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Alicante, Spain
| | | | | |
Collapse
|
45
|
Zhang Q, Tang X, Zhang ZF, Velikina R, Shi S, Le AD. Nicotine induces hypoxia-inducible factor-1alpha expression in human lung cancer cells via nicotinic acetylcholine receptor-mediated signaling pathways. Clin Cancer Res 2007; 13:4686-94. [PMID: 17699846 PMCID: PMC4166418 DOI: 10.1158/1078-0432.ccr-06-2898] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE Nicotine, the major component in cigarette smoke, can promote tumor growth and angiogenesis in various cancers, including lung cancer. Hypoxia-inducible factor-1alpha (HIF-1alpha) is overexpressed in human lung cancers, particularly in non-small cell lung cancers (NSCLC), and is closely associated with an advanced tumor grade, increased angiogenesis, and resistance to chemotherapy and radiotherapy. The purpose of this study was to investigate the effects of nicotine on the expression of HIF-1alpha and its downstream target gene, vascular endothelial growth factor (VEGF), in human lung cancer cells. EXPERIMENTAL DESIGN Human NSCLC cell lines A549 and H157 were treated with nicotine and examined for expression of HIF-1alpha and VEGF using Western blot or ELISA. Loss of HIF-1alpha function using specific small interfering RNA was used to determine whether HIF-1alpha is directly involved in nicotine-induced tumor angiogenic activities, including VEGF expression, cancer cell migration, and invasion. RESULTS Nicotine increased HIF-1alpha and VEGF expression in NSCLC cells. Pharmacologically blocking nicotinic acetylcholine receptor-mediated signaling cascades, including the Ca2+/calmodulin, c-Src, protein kinase C, phosphatidylinositol 3-kinase, mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2, and the mammalian target of rapamycin pathways, significantly attenuated nicotine-induced up-regulation of HIF-1alpha protein. Functionally, nicotine potently stimulated in vitro tumor angiogenesis by promoting tumor cell migration and invasion. These proangiogenic and invasive effects were partially abrogated by treatment with small interfering RNA specific for HIF-1alpha. CONCLUSION These findings identify novel mechanisms by which nicotine promotes tumor angiogenesis and metastasis and provide further evidences that HIF-1alpha is a potential anticancer target in nicotine-associated lung cancer.
Collapse
Affiliation(s)
- Qunzhou Zhang
- Center for Craniofacial Molecular Biology, University of Southern California, School of Dentistry; Los Angeles, California
| | - Xudong Tang
- Center for Craniofacial Molecular Biology, University of Southern California, School of Dentistry; Los Angeles, California
| | - Zuo-Feng Zhang
- Department of Epidemiology, School of Public Health, University of California, Los Angeles, California
| | - Rita Velikina
- Department of Epidemiology, School of Public Health, University of California, Los Angeles, California
| | - Shihong Shi
- Center for Craniofacial Molecular Biology, University of Southern California, School of Dentistry; Los Angeles, California
| | - Anh D. Le
- Center for Craniofacial Molecular Biology, University of Southern California, School of Dentistry; Los Angeles, California
| |
Collapse
|
46
|
El-Hajj RA, McKay SB, McKay DB. Pharmacological and immunological identification of native alpha7 nicotinic receptors: evidence for homomeric and heteromeric alpha7 receptors. Life Sci 2007; 81:1317-22. [PMID: 17928008 DOI: 10.1016/j.lfs.2007.08.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 08/27/2007] [Accepted: 08/31/2007] [Indexed: 10/22/2022]
Abstract
Controversy surrounds the expression of alpha7 nicotinic acetylcholine receptors (nAChRs) in adrenal chromaffin cells. In these studies, alpha7 nAChRs expressed in bovine adrenal chromaffin cells are investigated. Using radiolabeled ligand binding techniques, [(125)I]alpha-bungarotoxin (alphaBGT) binding reaches equilibrium within 4 h and is saturable with a K(d) value of 4.2 nM. Using homologous competition experiments, the K(i) for binding of alphaBGT was 1.9 nM. These data are consistent with the expression of homomeric alpha7 nAChRs. Methyllycaconatine (MLA), which binds alpha7 nAChRs with high affinity, inhibits [(125)I]alphaBGT binding in a concentration-dependent manner with a K(i) of 30.6 nM; this value is approximately 10 fold higher than the reported affinity of MLA for alpha7 nAChRs. We also document the ability of bromoacetylcholine (brACh) to alkylate alpha7 nAChRs, as has been previous demonstrated for bovine adrenal alpha3beta4 nAChRs. When adrenal nAChRs are immunoprecipated with mAb319, an antibody which recognizes alpha7 nAChR protein, and then probed with mAb319 using Western blot analysis, a single band of approximately 53 kDa is identified. When adrenal nAChRs are immunoprecipated with mAb35, an antibody which recognizes alpha3 and alpha5 nAChR proteins, and then probed with mAb319 using Western blot analysis, a single band of approximately 53 kDa is identified. Together, these results support the expression of alpha7 nAChRs in bovine adrenal chromaffin cells. However, these data suggest that the subunit composition of some of these receptors may include heteromeric alpha7 nAChRs.
Collapse
Affiliation(s)
- Raed A El-Hajj
- Division of Pharmacology, The Ohio State University, College of Pharmacy, 500 West 12th Avenue, Columbus, OH 43210, USA
| | | | | |
Collapse
|
47
|
Eguchi S, Miyashita S, Kitamura Y, Kawasaki H. Alpha3beta4-nicotinic receptors mediate adrenergic nerve- and peptidergic (CGRP) nerve-dependent vasodilation induced by nicotine in rat mesenteric arteries. Br J Pharmacol 2007; 151:1216-23. [PMID: 17572697 PMCID: PMC2189836 DOI: 10.1038/sj.bjp.0707331] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Previous studies demonstrated that nicotine-induced endothelium-independent vasodilation is mediated by perivascular adrenergic nerves and nerves releasing calcitonin gene-related peptide (CGRPergic nerves). We characterized the nicotinic acetylcholine (ACh) receptor subtype underlying the vasodilation in response to nicotine in rat mesenteric arteries. EXPERIMENTAL APPROACH Rat mesenteric vascular beds without endothelium were contracted by perfusion with Krebs solution containing methoxamine and the perfusion pressure was measured with a pressure transducer. KEY RESULTS Perfusion of nicotine (1-100 microM) for 1 min caused a concentration-dependent decrease in perfusion pressure due to vasodilation. Perfusion of (+/-)-epibatidine (1-100 nM) (non-selective agonist) or (-)-cytisine (1-100 microM) (partial agonist for nicotinic beta2 subtype and full agonist for nicotinic beta4 subtype) induced vasodilation in a concentration-dependent manner. Vasodilation induced by nicotine, (-)-cytisine- and (+/-)-epibatidine was markedly attenuated by guanethidine (5 microM) and pretreatment with capsaicin (1 microM). Mecamylamine (relatively selective antagonist for alpha3beta4 subtype), but not dihydro-beta-erythroidine (selective antagonist for alpha4beta2 subtype) or alpha-bungarotoxin (selective antagonist for alpha7 subtype), markedly inhibited nicotine-induced vasodilation. Nicotine-induced vasodilation was inhibited by methyllycaconitine at high concentrations (>1 microM), which non-selectively antagonize nicotinic receptors, while a low concentration of 10 nM, which selectively antagonizes alpha7 subtype, had no effect. (-)-Cytisine and (+/-)-epibatidine-induced vasodilation were abolished by mecamylamine. CONCLUSION AND IMPLICATIONS These results suggest that the nicotinic alpha3beta4 receptor subtype, but not the alpha7 and alpha4beta2 subtypes, is responsible for the vasodilation in rat mesenteric arteries induced by nicotine- and nicotinic ACh receptor agonists through stimulation of adrenergic and CGRPergic perivascular nerves.
Collapse
Affiliation(s)
- S Eguchi
- Department of Clinical Pharmaceutical Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Okayama, Japan
| | - S Miyashita
- Department of Clinical Pharmaceutical Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Okayama, Japan
| | - Y Kitamura
- Department of Pharmaceutical Care and Health Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Okayama, Japan
| | - H Kawasaki
- Department of Clinical Pharmaceutical Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Okayama, Japan
- Author for correspondence:
| |
Collapse
|
48
|
Gong CL, Chiu YT, Lin NN, Cheng CC, Lin SZ, Lee TJF, Kuo JS. Regulation of the common carotid arterial blood flow by nicotinic receptors in the medulla of cats. Br J Pharmacol 2006; 149:206-14. [PMID: 16894347 PMCID: PMC2013800 DOI: 10.1038/sj.bjp.0706844] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Actions of glutamate and serotonin on their respective receptors in the dorsal facial area (DFA) of the medulla are known to regulate common carotid arterial (CCA) blood flow in cats. Less is known about acetylcholine action on its nicotinic receptor (nAChR) subtypes in the DFA for regulation of CCA blood flow and this aspect was investigated. EXPERIMENTAL APPROACH Nicotinic and muscarinic agonists and antagonists were microinjected into the DFA through a three-barrel tubing in anesthetized cats. RESULTS CCA blood flow was dose-dependently increased by nicotine (a non-selective nAChR agonist) and choline (a selective alpha7-nAChR agonist). These effects of nicotine were attenuated by alpha-bungarotoxin (an alpha7-nAChR antagonist), methyllycaconitine (an alpha7-nAChR antagonist), mecamylamine (a relatively selective alpha3beta4-nAChR antagonist) and dihydro-beta-erythroidine (a relatively selective alpha4beta2-nAChR antagonist). The choline-induced flow increase was attenuated by alpha-bungarotoxin and mecamylamine, but not by dihydro-beta-erythroidine. Muscarinic agonists (muscarine and methacholine) and antagonist (atropine) affected neither the basal nor the nicotine-induced increase in the CCA blood flow. CONCLUSIONS AND IMPLICATIONS Functional alpha7, alpha4beta2, and alpha3beta4 subunits of the nAChR appear to be present on the DFA neurons. Activations of these receptors increase the CCA blood flow. The present findings do not preclude the presence of other nAChRs subunits. Muscarinic receptors, if any, on the DFA are not involved in regulation of the CCA blood flow. Various subtypes of nAChRs in the DFA may mediate regulation of the CCA and cerebral blood flows.
Collapse
Affiliation(s)
- C-L Gong
- Department of Physiology, School of Medicine, China Medical University Taichung, Taiwan
| | - Y-T Chiu
- Department of Education and Research, Taichung Veterans General Hospital Taichung, Taiwan
| | - N-N Lin
- Department of Education and Research, Taichung Veterans General Hospital Taichung, Taiwan
- Department of Veterinary Medicine, National Chung Hsing University Taichung, Taiwan
| | - C-C Cheng
- Department of Education and Research, Taichung Veterans General Hospital Taichung, Taiwan
- Department of Veterinary Medicine, National Chung Hsing University Taichung, Taiwan
| | - S-Z Lin
- Neuro-Medical Scientific Center and Center for Vascular Medicine, Buddhist Tzu Chi General Hospital and Tzu Chi University Hualien, Taiwan
| | - T J-F Lee
- Neuro-Medical Scientific Center and Center for Vascular Medicine, Buddhist Tzu Chi General Hospital and Tzu Chi University Hualien, Taiwan
- Institute of Pharmacology and Toxicology, Tzu Chi University Hualien, Taiwan
- Department of Pharmacology, Southern Illinois University, School of Medicine Springfield, IL, USA
| | - J-S Kuo
- Neuro-Medical Scientific Center and Center for Vascular Medicine, Buddhist Tzu Chi General Hospital and Tzu Chi University Hualien, Taiwan
- Institute of Pharmacology and Toxicology, Tzu Chi University Hualien, Taiwan
- Author for correspondence:
| |
Collapse
|
49
|
González-Rubio JM, Rojo J, Tapia L, Maneu V, Mulet J, Valor LM, Criado M, Sala F, García AG, Gandía L. Activation and blockade by choline of bovine α7 and α3β4 nicotinic receptors expressed in oocytes. Eur J Pharmacol 2006; 535:53-60. [PMID: 16545801 DOI: 10.1016/j.ejphar.2006.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 12/08/2005] [Accepted: 02/07/2006] [Indexed: 11/19/2022]
Abstract
Choline, the precursor and the metabolite of acetylcholine, is reputed as a selective alpha7 nicotinic receptor agonist. In this study, however, we have seen that choline exerted a dual effect on bovine nicotinic receptors expressed in Xenopus oocytes. On the one hand, choline behaved as a weak full agonist on bovine alpha7-mediated inward currents, with an EC50 of 0.43 mM. On the other, choline blocked bovine alpha3beta4 currents, with an IC50 of 0.97 mM. The blockade by choline was fast (tau(on), 0.36 s), fully reversible (tau(off), 1.23 s), exhibited voltage-dependence (60% blockade at -100 mV and 30% blockade at -40 mV), and was of a non-competitive nature, suggesting an open-channel type of alpha3beta4 receptor blockade. Thus, choline by activating alpha7 receptors and/or blocking alpha3beta4 receptors might play a physiological role in the control of neurotransmission at cholinergic synapses where alpha7 and alpha3beta4 receptor are expressed.
Collapse
Affiliation(s)
- Juana M González-Rubio
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Xu L, Deng X. Protein Kinase Cι Promotes Nicotine-induced Migration and Invasion of Cancer Cells via Phosphorylation of μ- and m-Calpains. J Biol Chem 2006; 281:4457-66. [PMID: 16361262 DOI: 10.1074/jbc.m510721200] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nicotine is a major component in cigarette smoke that activates the growth-promoting pathways to facilitate the development of lung cancer. However, it is not clear whether nicotine affects cell motility to facilitate tumor metastasis. Here we discovered that nicotine potently induces phosphorylation of both mu- and m-calpains via activation of protein kinase Ciota (PKCiota), which is associated with accelerated migration and invasion of human lung cancer cells. Purified PKCiota directly phosphorylates mu- and m-calpains in vitro. Overexpression of PKCiota results in increased phosphorylation of both mu- and m-calpains in vivo. Nicotine also induces activation of c-Src, which is a known PKCiota upstream kinase. Treatment of cells with the alpha(7) nicotinic acetylcholine receptor inhibitor alpha-bungarotoxin can block nicotine-induced calpain phosphorylation with suppression of calpain activity, wound healing, cell migration, and invasion, indicating that nicotine-induced calpain phosphorylation occurs, at least in part, through a signaling pathway involving the upstream alpha(7) nicotinic acetylcholine receptor. Intriguingly, depletion of PKCiota by RNA interference suppresses nicotine-induced calpain phosphorylation, calpain activity, cell migration, and invasion, indicating that PKCiota is a necessary component in nicotine-mediated cell motility signaling. Importantly, nicotine potently induces secretion of mu- and m-calpains from lung cancer cells into culture medium, which may have potential to cleave substrates in the extracellular matrix. These findings reveal a novel role for PKCiota as a nicotine-activated, physiological calpain kinase that directly phosphorylates and activates calpains, leading to enhanced migration and invasion of human lung cancer cells.
Collapse
Affiliation(s)
- Lijun Xu
- University of Florida Shands Cancer Center, Department of Medicine, University of Florida, Gainesville, 32610-0232, USA
| | | |
Collapse
|