1
|
Craven GB, Chu H, Sun JD, Carelli JD, Coyne B, Chen H, Chen Y, Ma X, Das S, Kong W, Zajdlik AD, Yang KS, Reisberg SH, Thompson PA, Lipford JR, Taunton J. Mutant-selective AKT inhibition through lysine targeting and neo-zinc chelation. Nature 2025; 637:205-214. [PMID: 39506119 DOI: 10.1038/s41586-024-08176-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 10/08/2024] [Indexed: 11/08/2024]
Abstract
Somatic alterations in the oncogenic kinase AKT1 have been identified in a broad spectrum of solid tumours. The most common AKT1 alteration replaces Glu17 with Lys (E17K) in the regulatory pleckstrin homology domain1, resulting in constitutive membrane localization and activation of oncogenic signalling. In clinical studies, pan-AKT inhibitors have been found to cause dose-limiting hyperglycaemia2-6, which has motivated the search for mutant-selective inhibitors. We exploited the E17K mutation to design allosteric, lysine-targeted salicylaldehyde inhibitors with selectivity for AKT1 (E17K) over wild-type AKT paralogues, a major challenge given the presence of three conserved lysines near the allosteric site. Crystallographic analysis of the covalent inhibitor complex unexpectedly revealed an adventitious tetrahedral zinc ion that coordinates two proximal cysteines in the kinase activation loop while simultaneously engaging the E17K-imine conjugate. The salicylaldimine complex with AKT1 (E17K), but not that with wild-type AKT1, recruits endogenous Zn2+ in cells, resulting in sustained inhibition. A salicylaldehyde-based inhibitor was efficacious in AKT1 (E17K) tumour xenograft models at doses that did not induce hyperglycaemia. Our study demonstrates the potential to achieve exquisite residence-time-based selectivity for AKT1 (E17K) by targeting the mutant lysine together with Zn2+ chelation by the resulting salicylaldimine adduct.
Collapse
Affiliation(s)
- Gregory B Craven
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Hang Chu
- Terremoto Biosciences, San Francisco, CA, USA
| | | | | | | | - Hao Chen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Ying Chen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Xiaolei Ma
- Terremoto Biosciences, San Francisco, CA, USA
| | | | - Wayne Kong
- Terremoto Biosciences, San Francisco, CA, USA
| | | | - Kin S Yang
- Terremoto Biosciences, San Francisco, CA, USA
| | | | | | | | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Brandner S. Rodent models of tumours of the central nervous system. Mol Oncol 2024; 18:2842-2870. [PMID: 39324445 PMCID: PMC11619804 DOI: 10.1002/1878-0261.13729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 07/03/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024] Open
Abstract
Modelling of human diseases is an essential component of biomedical research, to understand their pathogenesis and ultimately, develop therapeutic approaches. Here, we will describe models of tumours of the central nervous system, with focus on intrinsic CNS tumours. Model systems for brain tumours were established as early as the 1920s, using chemical carcinogenesis, and a systematic analysis of different carcinogens, with a more refined histological analysis followed in the 1950s and 1960s. Alternative approaches at the time used retroviral carcinogenesis, allowing a more topical, organ-centred delivery. Most of the neoplasms arising from this approach were high-grade gliomas. Whilst these experimental approaches did not directly demonstrate a cell of origin, the localisation and growth pattern of the tumours already pointed to an origin in the neurogenic zones of the brain. In the 1980s, expression of oncogenes in transgenic models allowed a more targeted approach by expressing the transgene under tissue-specific promoters, whilst the constitutive inactivation of tumour suppressor genes ('knock out')-often resulted in embryonic lethality. This limitation was elegantly solved by engineering the Cre-lox system, allowing for a promoter-specific, and often also time-controlled gene inactivation. More recently, the use of the CRISPR Cas9 technology has significantly increased experimental flexibility of gene expression or gene inactivation and thus added increased value of rodent models for the study of pathogenesis and establishing preclinical models.
Collapse
Affiliation(s)
- Sebastian Brandner
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of Neurology and Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals, NHS Foundation TrustLondonUK
| |
Collapse
|
3
|
Yu Y, Yang J, Zheng L, Su H, Cao S, Jiang X, Liu X, Liu W, Wang Z, Meng F, Xu H, Wen D, Sun C, Song X, Vidal-Puig A, Cao L. Dysfunction of Akt/FoxO3a/Atg7 regulatory loop magnifies obesity-regulated muscular mass decline. Mol Metab 2024; 81:101892. [PMID: 38331318 PMCID: PMC10876605 DOI: 10.1016/j.molmet.2024.101892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Myoprotein degradation accelerates in obese individuals, resulting in a decline in muscular mass. Atg7 plays a crucial role in regulating protein stability and function through both autophagy-dependent and independent pathways. As obesity progresses, the expression of Atg7 gradually rises in muscle tissue. Nonetheless, the precise impact and mechanism of Atg7 in promoting muscle mass decline in obesity remain uncertain. The study aimed to elucidate the role and underly mechanism of Atg7 action in the context of obesity-induced muscle mass decline. METHODS In this study, we established a murine model of high-fat diet-induced obesity (DIO) and introduced adeno-associated virus delivery of short hairpin RNA to knock down Atg7 (shAtg7) into the gastrocnemius muscle. We then examined the expressions of Atg7 and myoprotein degradation markers in the gastrocnemius tissues of obese patients and mice using immunofluorescence and western blotting techniques. To further investigate the effects of Atg7, we assessed skeletal muscle cell diameter and the myoprotein degradation pathway in C2C12 and HSkMC cells in the presence or absence of Atg7. Immunofluorescence staining for MyHC and western blotting were utilized for this purpose. To understand the transcriptional regulation of Atg7 in response to myoprotein degradation, we conducted luciferase reporter assays and chromatin immunoprecipitation experiments to examine whether FoxO3a enhances the transcription of Atg7. Moreover, we explored the role of Akt in Atg7-mediated regulation and its relevance to obesity-induced muscle mass decline. This was accomplished by Akt knockdown, treatment with MK2206, and GST pulldown assays to assess the interaction between Atg7 and Akt. RESULTS After 20 weeks of being on a high-fat diet, obesity was induced, leading to a significant decrease in the gastrocnemius muscle area and a decline in muscle performance. This was accompanied by a notable increase in Atg7 protein expression (p < 0.01). Similarly, in gastrocnemius tissues of obese patients when compared to nonobese individuals, there was a significant increase in both Atg7 (p < 0.01) and TRIM63 (p < 0.01) levels. When palmitic acid was administered to C2C12 cells, it resulted in increased Atg7 (p < 0.01), LC3Ⅱ/Ⅰ (p < 0.01), and p62 levels (p < 0.01). Additionally, it promoted FoxO3a-mediated transcription of Atg7. The knockdown of Atg7 in the gastrocnemius partially reversed DIO-induced muscle mass decline. Furthermore, when Atg7 was knocked down in C2C12 and HSkMC cells, it mitigated palmitic acid-induced insulin resistance, increased the p-Akt/Akt ratio (p < 0.01), and reduced TRIM63 (p < 0.01). Muscular atrophy mediated by Atg7 was reversed by genetic knockdown of Akt and treatment with the p-Akt inhibitor MK2206. Palmitic acid administration increased the binding between Atg7 and Akt (p < 0.01) while weakening the binding of PDK1 (p < 0.01) and PDK2 (p < 0.01) to Akt. GST pulldown assays demonstrated that Atg7 directly interacted with the C-terminal domain of Akt. CONCLUSION The consumption of a high-fat diet, along with lipid-induced effects, led to the inhibition of Akt signaling, which, in turn, promoted FoxO3a-mediated transcription, increasing Atg7 levels in muscle cells. The excess Atg7 inhibited the phosphorylation of Akt, leading to a cyclic activation of FoxO3a and exacerbating the decline in muscle mass regulated by obesity. Consequently, Atg7 serves as a regulatory point in determining the decline in muscle mass induced by obesity.
Collapse
Affiliation(s)
- Yang Yu
- Institute of Health Sciences, China Medical University, Shenyang 110122, Liaoning, China; College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang 110122, Liaoning, China
| | - Jing Yang
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang 110122, Liaoning, China
| | - Lixia Zheng
- Institute of Health Sciences, China Medical University, Shenyang 110122, Liaoning, China; College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang 110122, Liaoning, China
| | - Han Su
- Institute of Health Sciences, China Medical University, Shenyang 110122, Liaoning, China; College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang 110122, Liaoning, China
| | - Sunrun Cao
- Institute of Health Sciences, China Medical University, Shenyang 110122, Liaoning, China; College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang 110122, Liaoning, China
| | - Xuehan Jiang
- Institute of Health Sciences, China Medical University, Shenyang 110122, Liaoning, China; College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang 110122, Liaoning, China
| | - Xiyan Liu
- Institute of Health Sciences, China Medical University, Shenyang 110122, Liaoning, China; College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang 110122, Liaoning, China
| | - Weiwei Liu
- Institute of Health Sciences, China Medical University, Shenyang 110122, Liaoning, China
| | - Zhuo Wang
- Institute of Health Sciences, China Medical University, Shenyang 110122, Liaoning, China; College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang 110122, Liaoning, China
| | - Fang Meng
- Institute of Health Sciences, China Medical University, Shenyang 110122, Liaoning, China; College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang 110122, Liaoning, China
| | - Hongde Xu
- Institute of Health Sciences, China Medical University, Shenyang 110122, Liaoning, China; College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang 110122, Liaoning, China
| | - Deliang Wen
- Institute of Health Sciences, China Medical University, Shenyang 110122, Liaoning, China
| | - Chen Sun
- Institute of Health Sciences, China Medical University, Shenyang 110122, Liaoning, China; Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| | - Xiaoyu Song
- Institute of Health Sciences, China Medical University, Shenyang 110122, Liaoning, China; College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang 110122, Liaoning, China.
| | - Antonio Vidal-Puig
- MRC Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, CB2 1TN, Cambridge, UK; Centro de Investigacion Principe Felipe, Valencia, Spain; Cambridge University Nanjing Centre of Technology and Innovation, Nanjing, China.
| | - Liu Cao
- Institute of Health Sciences, China Medical University, Shenyang 110122, Liaoning, China; College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang 110122, Liaoning, China.
| |
Collapse
|
4
|
Pal DS, Banerjee T, Lin Y, de Trogoff F, Borleis J, Iglesias PA, Devreotes PN. Actuation of single downstream nodes in growth factor network steers immune cell migration. Dev Cell 2023; 58:1170-1188.e7. [PMID: 37220748 PMCID: PMC10524337 DOI: 10.1016/j.devcel.2023.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/14/2023] [Accepted: 04/27/2023] [Indexed: 05/25/2023]
Abstract
Ras signaling is typically associated with cell growth, but not direct regulation of motility or polarity. By optogenetically targeting different nodes in the Ras/PI3K/Akt network in differentiated human HL-60 neutrophils, we abruptly altered protrusive activity, bypassing the chemoattractant receptor/G-protein network. First, global recruitment of active KRas4B/HRas isoforms or a RasGEF, RasGRP4, immediately increased spreading and random motility. Second, activating Ras at the cell rear generated new protrusions, reversed pre-existing polarity, and steered sustained migration in neutrophils or murine RAW 264.7 macrophages. Third, recruiting a RasGAP, RASAL3, to cell fronts extinguished protrusions and changed migration direction. Remarkably, persistent RASAL3 recruitment at stable fronts abrogated directed migration in three different chemoattractant gradients. Fourth, local recruitment of the Ras-mTORC2 effector, Akt, in neutrophils or Dictyostelium amoebae generated new protrusions and rearranged pre-existing polarity. Overall, these optogenetic effects were mTORC2-dependent but relatively independent of PI3K. Thus, receptor-independent, local activations of classical growth-control pathways directly control actin assembly, cell shape, and migration modes.
Collapse
Affiliation(s)
- Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Tatsat Banerjee
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yiyan Lin
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Félix de Trogoff
- Department of Mechanical Engineering, STI School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jane Borleis
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Pablo A Iglesias
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter N Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
5
|
Mo Y, Shi Q, Qi G, Chen K. Potential anti-tumor effects of Solenopsis invicta venom. Front Immunol 2023; 14:1200659. [PMID: 37283754 PMCID: PMC10239855 DOI: 10.3389/fimmu.2023.1200659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/08/2023] [Indexed: 06/08/2023] Open
Affiliation(s)
- Yizhang Mo
- Department of Spine Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qingxing Shi
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Science, Guangzhou, Guangdong, China
| | - Guojun Qi
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Science, Guangzhou, Guangdong, China
| | - Kebing Chen
- Department of Spine Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Rutland CD, Bean GR, Charville GW. Contemporary diagnostic approach to atypical vascular lesion and angiosarcoma. Semin Diagn Pathol 2023:S0740-2570(23)00045-X. [PMID: 37121782 DOI: 10.1053/j.semdp.2023.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023]
Abstract
Vascular neoplasms account for a substantial fraction of cutaneous mesenchymal tumors, spanning from clinically indolent benign lesions to highly aggressive malignancies. These neoplasms present a distinctive challenge in terms of their diagnostic histopathology, both because of the breadth of their morphological manifestations and because of the significant histological overlap between different entities, even benign and malignant ones. The post-radiotherapy setting is particularly problematic diagnostically, insofar as radiation exposure predisposes not only to secondary angiosarcoma, but also to atypical vascular lesion, a largely benign proliferation of cutaneous blood vessels typically affecting the breast. To address these challenges, we explore the clinical, histological, and molecular features of malignant vascular neoplasia, including primary and secondary subtypes, through the comparative lens of atypical vascular lesion. In addition to highlighting the key morphological indicators of malignancy in superficial vasoformative tumors, we offer an approach that integrates clinical characteristics and molecular genetic profiling to facilitate accurate classification. With this current knowledge as our foundation, we also look ahead in an effort to frame some of the key unanswered questions regarding superficial vascular malignancies and their natural history, clinical management, and molecular underpinnings.
Collapse
Affiliation(s)
- Cooper D Rutland
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Gregory R Bean
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Gregory W Charville
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
7
|
Conroy M, Cowzer D, Kolch W, Duffy AG. Emerging RAS-directed therapies for cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 4:543-558. [PMID: 35582302 PMCID: PMC9094076 DOI: 10.20517/cdr.2021.07] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
RAS oncogenes are the most commonly mutated oncogenes in human cancer, and RAS-mutant cancers represent a major burden of human disease. Though these oncogenes were discovered decades ago, recent years have seen major advances in understanding of their structure and function, including the therapeutic and prognostic significance of diverse isoforms. Targeting of these mutations has proven difficult, despite some successes with inhibition of RAS effector signalling. More recently, direct RAS inhibition has been achieved in a trial setting. While this has yet to be translated to everyday clinical practice, this development carries much promise. This review summarizes the diverse approaches that have been taken to RAS inhibition and then focuses on the most recent developments in direct inhibition of KRAS(G12C).
Collapse
Affiliation(s)
- Michael Conroy
- Department of Medical Oncology, Mater Misericordiae University Hospital, Dublin 7, Ireland.,Authors contributed equally
| | - Darren Cowzer
- Department of Medical Oncology, Mater Misericordiae University Hospital, Dublin 7, Ireland.,Authors contributed equally
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.,Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Austin G Duffy
- Department of Medical Oncology, Mater Misericordiae University Hospital, Dublin 7, Ireland
| |
Collapse
|
8
|
Cases-Cunillera S, van Loo KMJ, Pitsch J, Quatraccioni A, Sivalingam S, Salomoni P, Borger V, Dietrich D, Schoch S, Becker AJ. Heterogeneity and excitability of BRAFV600E-induced tumors is determined by Akt/mTOR-signaling state and Trp53-loss. Neuro Oncol 2022; 24:741-754. [PMID: 34865163 PMCID: PMC9071348 DOI: 10.1093/neuonc/noab268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Developmental brain tumors harboring BRAFV600E somatic mutation are diverse. Here, we describe molecular factors that determine BRAFV600E-induced tumor biology and function. METHODS Intraventricular in utero electroporation in combination with the piggyBac transposon system was utilized to generate developmental brain neoplasms, which were comprehensively analyzed with regard to growth using near-infrared in-vivo imaging, transcript signatures by RNA sequencing, and neuronal activity by multielectrode arrays. RESULTS BRAF V600E expression in murine neural progenitors elicits benign neoplasms composed of enlarged dysmorphic neurons and neoplastic astroglia recapitulating ganglioglioma (GG) only in concert with active Akt/mTOR-signaling. Purely glial tumors resembling aspects of polymorphous low-grade neuroepithelial tumors of the young (PLNTYs) emerge from BRAFV600E alone. Additional somatic Trp53-loss is sufficient to generate anaplastic GGs (aGGs) with glioneuronal clonality. Functionally, only BRAFV600E/pAkt tumors intrinsically generate substantial neuronal activity and show enhanced relay to adjacent tissue conferring high epilepsy propensity. In contrast, PLNTY- and aGG models lack significant spike activity, which appears in line with the glial differentiation of the former and a dysfunctional tissue structure combined with reduced neuronal transcript signatures in the latter. CONCLUSION mTOR-signaling and Trp53-loss critically determine the biological diversity and electrical activity of BRAFV600E-induced tumors.
Collapse
Affiliation(s)
- Silvia Cases-Cunillera
- Institute of Neuropathology, Section for Translational Epilepsy Research, Medical Faculty, University of Bonn, Bonn, Germany
| | - Karen M J van Loo
- Institute of Neuropathology, Section for Translational Epilepsy Research, Medical Faculty, University of Bonn, Bonn, Germany
- Department of Epileptology, Neurology, RWTH Aachen University, Aachen, Germany
| | - Julika Pitsch
- Department of Epileptology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Anne Quatraccioni
- Institute of Neuropathology, Section for Translational Epilepsy Research, Medical Faculty, University of Bonn, Bonn, Germany
| | - Sugirthan Sivalingam
- Institute of Neuropathology, Section for Translational Epilepsy Research, Medical Faculty, University of Bonn, Bonn, Germany
- Department of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Paolo Salomoni
- Nuclear Function Group, German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Valeri Borger
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Dirk Dietrich
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Susanne Schoch
- Department of Epileptology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Albert J Becker
- Institute of Neuropathology, Section for Translational Epilepsy Research, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
9
|
Wang Y, He J, Xu M, Xue Q, Zhu C, Liu J, Zhang Y, Shi W. Holistic View of ALK TKI Resistance in ALK-Positive Anaplastic Large Cell Lymphoma. Front Oncol 2022; 12:815654. [PMID: 35211406 PMCID: PMC8862178 DOI: 10.3389/fonc.2022.815654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/04/2022] [Indexed: 11/23/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase expressed at early stages of normal development and in various cancers including ALK-positive anaplastic large cell lymphoma (ALK+ ALCL), in which it is the main therapeutic target. ALK tyrosine kinase inhibitors (ALK TKIs) have greatly improved the prognosis of ALK+ALCL patients, but the emergence of drug resistance is inevitable and limits the applicability of these drugs. Although various mechanisms of resistance have been elucidated, the problem persists and there have been relatively few relevant clinical studies. This review describes research progress on ALK+ ALCL including the application and development of new therapies, especially in relation to drug resistance. We also propose potential treatment strategies based on current knowledge to inform the design of future clinical trials.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China.,Nantong University School of Medicine, Nantong, China
| | - Jing He
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China.,Nantong University School of Medicine, Nantong, China
| | - Manyu Xu
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, China
| | - Qingfeng Xue
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Cindy Zhu
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Juan Liu
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China.,Nantong University School of Medicine, Nantong, China
| | - Yaping Zhang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| | - Wenyu Shi
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China.,Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
10
|
Bellon M, Yuan Y, Nicot C. Transcription Independent Stimulation of Telomerase Enzymatic Activity by HTLV-I Tax Through Stimulation of IKK. JOURNAL OF CANCER SCIENCES 2021; 8. [PMID: 34938859 PMCID: PMC8691565 DOI: 10.13188/2377-9292.1000024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The persistence and spreading of HTLV-I infected cells relies upon their clonal expansion through cellular replication. The development of adult T cell leukemia (ATLL) occurs decades following primary infection by HTLV-I. Moreover, identical provirus integration sites have been found in samples recovered several years apart from infected individuals. These observations suggest that infected cells persist in the host for an extended period of time. To endure long term proliferation, HTLV-I pre-leukemic cells must acquire critical oncogenic events, two of which are the bypassing of apoptosis and replicative senescence. In the early stages of disease, interleukin-2 (IL-2)/IL-2R signaling likely plays a major role in combination with activation of anti-apoptotic pathways. Avoidance of replicative senescence in HTLV-I infected cells is achieved through reactivation of human telomerase (hTERT). We have previously shown that HTLV-I viral Tax transcriptionally activates the hTERT promoter. In this study we demonstrate that Tax can stimulate hTERT enzymatic activity independently of its transcriptional effects. We further show that this occurs through Tax-mediated NF-KB activating functions. Our results suggest that in ATLL cells acquire Tax-transcriptional and post-transcriptional events to elevate telomerase activity.
Collapse
Affiliation(s)
- M Bellon
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, USA
| | - Y Yuan
- Department of Pharmacology, Baylor College of Medicine, USA
| | - C Nicot
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, USA
| |
Collapse
|
11
|
Jeong M, Jeong MH, Kim JE, Cho S, Lee KJ, Park S, Sohn J, Park YG. TCTP protein degradation by targeting mTORC1 and signaling through S6K, Akt, and Plk1 sensitizes lung cancer cells to DNA-damaging drugs. Sci Rep 2021; 11:20812. [PMID: 34675258 PMCID: PMC8531033 DOI: 10.1038/s41598-021-00247-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/08/2021] [Indexed: 11/14/2022] Open
Abstract
Translationally controlled tumor protein (TCTP) is expressed in many tissues, particularly in human tumors. It plays a role in malignant transformation, apoptosis prevention, and DNA damage repair. The signaling mechanisms underlying TCTP regulation in cancer are only partially understood. Here, we investigated the role of mTORC1 in regulating TCTP protein levels, thereby modulating chemosensitivity, in human lung cancer cells and an A549 lung cancer xenograft model. The inhibition of mTORC1, but not mTORC2, induced ubiquitin/proteasome-dependent TCTP degradation without a decrease in the mRNA level. PLK1 activity was required for TCTP ubiquitination and degradation and for its phosphorylation at Ser46 upon mTORC1 inhibition. Akt phosphorylation and activation was indispensable for rapamycin-induced TCTP degradation and PLK1 activation, and depended on S6K inhibition, but not mTORC2 activation. Furthermore, the minimal dose of rapamycin required to induce TCTP proteolysis enhanced the efficacy of DNA-damaging drugs, such as cisplatin and doxorubicin, through the induction of apoptotic cell death in vitro and in vivo. This synergistic cytotoxicity of these drugs was induced irrespective of the functional status of p53. These results demonstrate a new mechanism of TCTP regulation in which the mTORC1/S6K pathway inhibits a novel Akt/PLK1 signaling axis and thereby induces TCTP protein stabilization and confers resistance to DNA-damaging agents. The results of this study suggest a new therapeutic strategy for enhancing chemosensitivity in lung cancers regardless of the functional status of p53.
Collapse
Affiliation(s)
- Mini Jeong
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 73 Koryodae-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea
- Korean Institute of Molecular Medicine and Nutrition, Korea University College of Medicine, Seoul, Republic of Korea
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Mi Hyeon Jeong
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 73 Koryodae-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea
- Korean Institute of Molecular Medicine and Nutrition, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jung Eun Kim
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 73 Koryodae-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea
- Korean Institute of Molecular Medicine and Nutrition, Korea University College of Medicine, Seoul, Republic of Korea
| | - Serin Cho
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 73 Koryodae-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea
- Korean Institute of Molecular Medicine and Nutrition, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyoung Jin Lee
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 73 Koryodae-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea
- Korean Institute of Molecular Medicine and Nutrition, Korea University College of Medicine, Seoul, Republic of Korea
| | - Serkin Park
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 73 Koryodae-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea
- Korean Institute of Molecular Medicine and Nutrition, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jeongwon Sohn
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 73 Koryodae-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea
- Korean Institute of Molecular Medicine and Nutrition, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yun Gyu Park
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 73 Koryodae-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea.
- Korean Institute of Molecular Medicine and Nutrition, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
12
|
The Akt-mTOR Pathway Drives Myelin Sheath Growth by Regulating Cap-Dependent Translation. J Neurosci 2021; 41:8532-8544. [PMID: 34475201 DOI: 10.1523/jneurosci.0783-21.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 11/21/2022] Open
Abstract
In the vertebrate CNS, oligodendrocytes produce myelin, a specialized membrane, to insulate and support axons. Individual oligodendrocytes wrap multiple axons with myelin sheaths of variable lengths and thicknesses. Myelin grows at the distal ends of oligodendrocyte processes, and multiple lines of work have provided evidence that mRNAs and RNA binding proteins localize to myelin, together supporting a model where local translation controls myelin sheath growth. What signal transduction mechanisms could control this? One strong candidate is the Akt-mTOR pathway, a major cellular signaling hub that coordinates transcription, translation, metabolism, and cytoskeletal organization. Here, using zebrafish as a model system, we found that Akt-mTOR signaling promotes myelin sheath growth and stability during development. Through cell-specific manipulations to oligodendrocytes, we show that the Akt-mTOR pathway drives cap-dependent translation to promote myelination and that restoration of cap-dependent translation is sufficient to rescue myelin deficits in mTOR loss-of-function animals. Moreover, an mTOR-dependent translational regulator was phosphorylated and colocalized with mRNA encoding a canonically myelin-translated protein in vivo, and bioinformatic investigation revealed numerous putative translational targets in the myelin transcriptome. Together, these data raise the possibility that Akt-mTOR signaling in nascent myelin sheaths promotes sheath growth via translation of myelin-resident mRNAs during development.SIGNIFICANCE STATEMENT In the brain and spinal cord, oligodendrocytes extend processes that tightly wrap axons with myelin, a protein- and lipid-rich membrane that increases electrical impulses and provides trophic support. Myelin membrane grows dramatically following initial axon wrapping in a process that demands protein and lipid synthesis. How protein and lipid synthesis is coordinated with the need for myelin to be generated in certain locations remains unknown. Our study reveals that the Akt-mTOR signaling pathway promotes myelin sheath growth by regulating protein translation. Because we found translational regulators of the Akt-mTOR pathway in myelin, our data raise the possibility that Akt-mTOR activity regulates translation in myelin sheaths to deliver myelin on demand to the places it is needed.
Collapse
|
13
|
Synthetic fluorescent MYC probe: Inhibitor binding site elucidation and development of a high-throughput screening assay. Bioorg Med Chem 2021; 42:116246. [PMID: 34130216 DOI: 10.1016/j.bmc.2021.116246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/22/2023]
Abstract
We report the discovery of a fluorescent small molecule probe. This probe exhibits an emission increase in the presence of the oncoprotein MYC that can be attenuated by a competing inhibitor. Hydrogen-deuterium exchange mass spectrometry analysis, rationalized by induced-fit docking, suggests it binds to the "coiled-coil" region of the leucine zipper domain. Point mutations of this site produced functional MYC constructs resistant to inhibition in an oncogenic transformation assay by compounds that displace the probe. Utilizing this probe, we have developed a high-throughput assay to identify MYC inhibitor scaffolds. Screening of a diversity library (N = 1408, 384-well) and a library of pharmacologically active compounds (N = 1280, 1536-well) yielded molecules with greater drug-like properties than the probe. One lead is a potent inhibitor of oncogenic transformation and is specific for MYC relative to resistant mutants and transformation-inducing oncogenes. This method is simple, inexpensive, and does not require protein modification, DNA binding, or the dimer partner MAX. This assay presents an opportunity for MYC inhibition researchers to discover unique scaffolds.
Collapse
|
14
|
He X, Li M, Yu H, Liu G, Wang N, Yin C, Tu Q, Narla G, Tao Y, Cheng S, Yin H. Loss of hepatic aldolase B activates Akt and promotes hepatocellular carcinogenesis by destabilizing the Aldob/Akt/PP2A protein complex. PLoS Biol 2020; 18:e3000803. [PMID: 33275593 PMCID: PMC7744066 DOI: 10.1371/journal.pbio.3000803] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/16/2020] [Accepted: 11/13/2020] [Indexed: 12/21/2022] Open
Abstract
Loss of hepatic fructose-1, 6-bisphosphate aldolase B (Aldob) leads to a paradoxical up-regulation of glucose metabolism to favor hepatocellular carcinogenesis (HCC), but the upstream signaling events remain poorly defined. Akt is highly activated in HCC, and targeting Akt is being explored as a potential therapy for HCC. Herein, we demonstrate that Aldob suppresses Akt activity and tumor growth through a protein complex containing Aldob, Akt, and protein phosphatase 2A (PP2A), leading to inhibition of cell viability, cell cycle progression, glucose uptake, and metabolism. Interestingly, Aldob directly interacts with phosphorylated Akt (p-Akt) and promotes the recruitment of PP2A to dephosphorylate p-Akt, and this scaffolding effect of Aldob is independent of its enzymatic activity. Loss of Aldob or disruption of Aldob/Akt interaction in Aldob R304A mutant restores Akt activity and tumor-promoting effects. Consistently, Aldob and p-Akt expression are inversely correlated in human HCC tissues, and Aldob down-regulation coupled with p-Akt up-regulation predicts a poor prognosis for HCC. We have further discovered that Akt inhibition or a specific small-molecule activator of PP2A (SMAP) efficiently attenuates HCC tumorigenesis in xenograft mouse models. Our work reveals a novel nonenzymatic role of Aldob in negative regulation of Akt activation, suggesting that directly inhibiting Akt activity or through reactivating PP2A may be a potential therapeutic approach for HCC treatment.
Collapse
Affiliation(s)
- Xuxiao He
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Min Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Hongming Yu
- The Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Guijun Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ningning Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Chunzhao Yin
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qiaochu Tu
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Goutham Narla
- Division of Genetic Medicine, Department of International Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yongzhen Tao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Shuqun Cheng
- The Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Huiyong Yin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China
| |
Collapse
|
15
|
Abstract
RAS (KRAS, NRAS and HRAS) is the most frequently mutated gene family in cancers, and, consequently, investigators have sought an effective RAS inhibitor for more than three decades. Even 10 years ago, RAS inhibitors were so elusive that RAS was termed 'undruggable'. Now, with the success of allele-specific covalent inhibitors against the most frequently mutated version of RAS in non-small-cell lung cancer, KRASG12C, we have the opportunity to evaluate the best therapeutic strategies to treat RAS-driven cancers. Mutation-specific biochemical properties, as well as the tissue of origin, are likely to affect the effectiveness of such treatments. Currently, direct inhibition of mutant RAS through allele-specific inhibitors provides the best therapeutic approach. Therapies that target RAS-activating pathways or RAS effector pathways could be combined with these direct RAS inhibitors, immune checkpoint inhibitors or T cell-targeting approaches to treat RAS-mutant tumours. Here we review recent advances in therapies that target mutant RAS proteins and discuss the future challenges of these therapies, including combination strategies.
Collapse
|
16
|
Zhai K, Liskova A, Kubatka P, Büsselberg D. Calcium Entry through TRPV1: A Potential Target for the Regulation of Proliferation and Apoptosis in Cancerous and Healthy Cells. Int J Mol Sci 2020; 21:E4177. [PMID: 32545311 PMCID: PMC7312732 DOI: 10.3390/ijms21114177] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Intracellular calcium (Ca2+) concentration ([Ca2+]i) is a key determinant of cell fate and is implicated in carcinogenesis. Membrane ion channels are structures through which ions enter or exit the cell, depending on the driving forces. The opening of transient receptor potential vanilloid 1 (TRPV1) ligand-gated ion channels facilitates transmembrane Ca2+ and Na+ entry, which modifies the delicate balance between apoptotic and proliferative signaling pathways. Proliferation is upregulated through two mechanisms: (1) ATP binding to the G-protein-coupled receptor P2Y2, commencing a kinase signaling cascade that activates the serine-threonine kinase Akt, and (2) the transactivation of the epidermal growth factor receptor (EGFR), leading to a series of protein signals that activate the extracellular signal-regulated kinases (ERK) 1/2. The TRPV1-apoptosis pathway involves Ca2+ influx and efflux between the cytosol, mitochondria, and endoplasmic reticulum (ER), the release of apoptosis-inducing factor (AIF) and cytochrome c from the mitochondria, caspase activation, and DNA fragmentation and condensation. While proliferative mechanisms are typically upregulated in cancerous tissues, shifting the balance to favor apoptosis could support anti-cancer therapies. TRPV1, through [Ca2+]i signaling, influences cancer cell fate; therefore, the modulation of the TRPV1-enforced proliferation-apoptosis balance is a promising avenue in developing anti-cancer therapies and overcoming cancer drug resistance. As such, this review characterizes and evaluates the role of TRPV1 in cell death and survival, in the interest of identifying mechanistic targets for drug discovery.
Collapse
Affiliation(s)
- Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, PO Box 24144, Qatar;
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, PO Box 24144, Qatar;
| |
Collapse
|
17
|
Knudsen JR, Fritzen AM, James DE, Jensen TE, Kleinert M, Richter EA. Growth Factor-Dependent and -Independent Activation of mTORC2. Trends Endocrinol Metab 2020; 31:13-24. [PMID: 31699566 DOI: 10.1016/j.tem.2019.09.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/19/2019] [Accepted: 09/12/2019] [Indexed: 01/03/2023]
Abstract
The target of rapamycin complex 2 (TORC2) was discovered in 2002 in budding yeast. Its mammalian counterpart, mTORC2, was first described in 2004. Soon thereafter it was demonstrated that mTORC2 directly phosphorylates Akt on Ser473, ending a long search for the elusive 'second' insulin-responsive Akt kinase. In this review we discuss key evidence pertaining to the subcellular localization of mTORC2, highlighting a spatial heterogeneity that relates to mTORC2 activation. We summarize current models for how growth factors (GFs), such as insulin, trigger mTORC2 activation, and we provide a comprehensive discussion focusing on a new exciting frontier, the molecular mechanisms underpinning GF-independent activation of mTORC2.
Collapse
Affiliation(s)
- Jonas R Knudsen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Andreas M Fritzen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - David E James
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Thomas E Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Maximilian Kleinert
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Zentrum Muenchen & German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Erik A Richter
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
18
|
Shafabakhsh R, Mirzaei H, Asemi Z. Melatonin: A promising agent targeting leukemia. J Cell Biochem 2019; 121:2730-2738. [PMID: 31713261 DOI: 10.1002/jcb.29495] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/10/2019] [Indexed: 12/27/2022]
Abstract
Leukemia or cancer of blood is a well-known cancer, which affects a range of people from newborns to the very old. It is a public health problem throughout the world. By way of treatment, due to the lack of specific anticancer therapies, common treatments of leukemia lead to severe side effects. Nonspecific anticancer drugs result in inhibition of normal cell growth and thereby their necrosis. Moreover, drug resistance is an additional problem, which stands in the way of leukemia treatment. Thus, finding new treatments for leukemia is essential. Melatonin, as a natural product, has been shown to be effective in a wide variety of diseases such as coronary heart disease, schizophrenia, chronic pain, and Alzheimer's disease. In addition, melatonin levels have been observed to be altered in different cancers, such as breast cancer, colorectal cancer endometrial cancer, and hematopoetical cancers. Anticancer features of melatonin such as pro-oxidation, apoptosis induction, antiangiogenesis property and metastasis and invasion inhibition suggest that this natural compound can be used as a potential agent in novel therapeutic strategies for cancers. Also, it has been reported that melatonin has positive and protective effects on different physiological reactions and in normal bone marrow cells suggesting effectiveness in leukemia therapy. Thus, the aim of our paper was to depict and summarize the main molecular targets of melatonin on leukemia models.
Collapse
Affiliation(s)
- Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
19
|
Kircher DA, Trombetti KA, Silvis MR, Parkman GL, Fischer GM, Angel SN, Stehn CM, Strain SC, Grossmann AH, Duffy KL, Boucher KM, McMahon M, Davies MA, Mendoza MC, VanBrocklin MW, Holmen SL. AKT1 E17K Activates Focal Adhesion Kinase and Promotes Melanoma Brain Metastasis. Mol Cancer Res 2019; 17:1787-1800. [PMID: 31138602 PMCID: PMC6726552 DOI: 10.1158/1541-7786.mcr-18-1372] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/18/2019] [Accepted: 05/22/2019] [Indexed: 02/03/2023]
Abstract
Alterations in the PI3K/AKT pathway occur in up to 70% of melanomas and are associated with disease progression. The three AKT paralogs are highly conserved but data suggest they have distinct functions. Activating mutations of AKT1 and AKT3 occur in human melanoma but their role in melanoma formation and metastasis remains unclear. Using an established melanoma mouse model, we evaluated E17K, E40K, and Q79K mutations in AKT1, AKT2, and AKT3 and show that mice harboring tumors expressing AKT1E17K had the highest incidence of brain metastasis and lowest mean survival. Tumors expressing AKT1E17K displayed elevated levels of focal adhesion factors and enhanced phosphorylation of focal adhesion kinase (FAK). AKT1E17K expression in melanoma cells increased invasion and this was reduced by pharmacologic inhibition of either AKT or FAK. These data suggest that the different AKT paralogs have distinct roles in melanoma brain metastasis and that AKT and FAK may be promising therapeutic targets. IMPLICATIONS: This study suggests that AKT1E17K promotes melanoma brain metastasis through activation of FAK and provides a rationale for the therapeutic targeting of AKT and/or FAK to reduce melanoma metastasis.
Collapse
Affiliation(s)
- David A Kircher
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Kirby A Trombetti
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Mark R Silvis
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Gennie L Parkman
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Grant M Fischer
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephanie N Angel
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Christopher M Stehn
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Sean C Strain
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Allie H Grossmann
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Keith L Duffy
- Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Kenneth M Boucher
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
- Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Martin McMahon
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah
- Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Michael A Davies
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michelle C Mendoza
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Matthew W VanBrocklin
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah
- Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Sheri L Holmen
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah.
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah
- Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, Utah
| |
Collapse
|
20
|
Hwang CC, Igase M, Okuda M, Coffey M, Noguchi S, Mizuno T. Reovirus changes the expression of anti-apoptotic and proapoptotic proteins with the c-kit downregulation in canine mast cell tumor cell lines. Biochem Biophys Res Commun 2019; 517:233-237. [PMID: 31345575 DOI: 10.1016/j.bbrc.2019.07.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022]
Abstract
Although reovirus has reached phase II and III clinical trials in human cancers, the exact mechanism of reovirus oncolysis is still not completely understood. Previously, we have shown that canine mast cell tumor (MCT) cell lines were highly susceptible to reovirus, as compared with other kinds of canine cancer cell lines. In this study, we showed that reovirus infection not only led to the dephosphorylation but also downregulation of c-kit in four canine MCT cell lines, where c-kit activation is required for proliferation. Consistent with c-kit dysregulation, downstream signaling of c-kit, the level of Ras-GTP and phosphorylation of all the downstream effectors of Ras (Raf, MEK, and ERK) and Akt decreased in all the cell lines after reovirus infection, except for Akt in one of cell lines. Pro-apoptotic and anti-apoptotic proteins such as Bim, Bad and Mcl-1 were also altered by reovirus infection in these cell lines. In short, reovirus infection degraded c-kit in all the canine MCT cell lines, leading to the downregulation of downstream signaling of c-kit, which may relate to the cell death induced by reovirus.
Collapse
Affiliation(s)
- Chung Chew Hwang
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Masaya Igase
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Masaru Okuda
- Laboratory of Veterinary Internal Medicine, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Matt Coffey
- Oncolytics Biotech Inc, Calgary, Alberta, Canada
| | - Shunsuke Noguchi
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Takuya Mizuno
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan.
| |
Collapse
|
21
|
Abstract
The PI3K/AKT/mTOR pathway is frequently activated in various human cancers and has been considered a promising therapeutic target. Many of the positive regulators of the PI3K/AKT/mTOR axis, including the catalytic (p110α) and regulatory (p85α), of class IA PI3K, AKT, RHEB, mTOR, and eIF4E, possess oncogenic potentials, as demonstrated by transformation assays in vitro and by genetically engineered mouse models in vivo. Genetic evidences also indicate their roles in malignancies induced by activation of the upstream oncoproteins including receptor tyrosine kinases and RAS and those induced by the loss of the negative regulators of the PI3K/AKT/mTOR pathway such as PTEN, TSC1/2, LKB1, and PIPP. Possible mechanisms by which the PI3K/AKT/mTOR axis contributes to oncogenic transformation include stimulation of proliferation, survival, metabolic reprogramming, and invasion/metastasis, as well as suppression of autophagy and senescence. These phenotypic changes are mediated by eIF4E-induced translation of a subset of mRNAs and by other downstream effectors of mTORC1 including S6K, HIF-1α, PGC-1α, SREBP, and ULK1 complex.
Collapse
|
22
|
Shapiro GI, LoRusso P, Kwak E, Pandya S, Rudin CM, Kurkjian C, Cleary JM, Pilat MJ, Jones S, de Crespigny A, Fredrickson J, Musib L, Yan Y, Wongchenko M, Hsieh HJ, Gates MR, Chan IT, Bendell J. Phase Ib study of the MEK inhibitor cobimetinib (GDC-0973) in combination with the PI3K inhibitor pictilisib (GDC-0941) in patients with advanced solid tumors. Invest New Drugs 2019; 38:419-432. [PMID: 31020608 DOI: 10.1007/s10637-019-00776-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/01/2019] [Indexed: 12/21/2022]
Abstract
Purpose We investigated the combination of the MEK inhibitor, cobimetinib, and the pan-PI3K inhibitor, pictilisib, in an open-label, phase Ib study. Experimental Design Patients with advanced solid tumors were enrolled in 3 dose escalation schedules: (1) both agents once-daily for 21-days-on 7-days-off ("21/7"); (2) intermittent cobimetinib and 21/7 pictilisib ("intermittent"); or (3) both agents once-daily for 7-days-on 7-days-off ("7/7"). Starting doses for the 21/7, intermittent, and 7/7 schedules were 20/80, 100/130, and 40/130 mg of cobimetinib/pictilisib, respectively. Nine indication-specific expansion cohorts interrogated the recommended phase II dose and schedule. Results Of 178 enrollees (dose escalation: n = 98), 177 patients were dosed. The maximum tolerated doses for cobimetinib/pictilisib (mg) were 40/100, 125/180, and not reached, for the 21/7, intermittent, and 7/7 schedules, respectively. Six dose-limiting toxicities included grade 3 (G3) elevated lipase, G4 elevated creatine phosphokinase, and G3 events including fatigue concurrent with a serious adverse event (SAE) of diarrhea, decreased appetite, and SAEs of hypersensitivity and dehydration. Common drug-related adverse events included nausea, fatigue, vomiting, decreased appetite, dysgeusia, rash, and stomatitis. Pharmacokinetic parameters of the drugs used in combination were unaltered compared to monotherapy exposures. Confirmed partial responses were observed in patients with BRAF-mutant melanoma (n = 1) and KRAS-mutant endometrioid adenocarcinoma (n = 1). Eighteen patients remained on study ≥6 months. Biomarker data established successful blockade of MAP kinase (MAPK) and PI3K pathways. The metabolic response rate documented by FDG-PET was similar to that observed with cobimetinib monotherapy. Conclusions Cobimetinib and pictilisib combination therapy in patients with solid tumors had limited tolerability and efficacy.
Collapse
Affiliation(s)
- Geoffrey I Shapiro
- Dana-Farber Cancer Institute, Mayer 446, 450 Brookline Avenue, Boston, MA, 02215, USA.
| | | | - Eunice Kwak
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Susan Pandya
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Carla Kurkjian
- Stephenson Cancer Center University of Oklahoma, Oklahoma City, OK, USA
| | - James M Cleary
- Dana-Farber Cancer Institute, Mayer 446, 450 Brookline Avenue, Boston, MA, 02215, USA
| | | | - Suzanne Jones
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN, USA
| | | | | | - Luna Musib
- Genentech, Inc., South San Francisco, CA, USA
| | - Yibing Yan
- Genentech, Inc., South San Francisco, CA, USA
| | | | | | | | - Iris T Chan
- Genentech, Inc., South San Francisco, CA, USA
| | - Johanna Bendell
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN, USA
| |
Collapse
|
23
|
Protein Phosphatase 1 Regulatory Subunit SDS22 Inhibits Breast Cancer Cell Tumorigenesis by Functioning as a Negative Regulator of the AKT Signaling Pathway. Neoplasia 2018; 21:30-40. [PMID: 30500680 PMCID: PMC6262785 DOI: 10.1016/j.neo.2018.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 01/22/2023] Open
Abstract
Protein phosphatases play a crucial role in cell cycle progression, cell survival, cellular signaling, and genomic integrity. The protein phosphatase 1 (PP1) regulatory subunit SDS22 plays a significant role in cell cycle progression. A recent study showed that SDS22 plays a vital role in epithelial integrity and tumor suppression in Drosophila. However, its tumor suppressive activity remains obscure in the mammalian system. Here, for the first time, we show that SDS22 inhibits the growth of breast cancer cells through induction of apoptosis. SDS22 negatively regulates the AKT kinase signaling pathway through PP1. SDS22 associates predominantly with AKT and dephosphorylates the phospho Thr308 and phospho Ser473 through PP1 and hence abrogates the cell migration, invasion, and tumor growth. Thus, our study deciphers the long-standing question of how PP1 negatively regulates the AKT signaling pathway. Further, we observed a significant converse correlation in the expression levels of SDS22 and phospho form of AKT with reduced levels of SDS22 in the higher grades of cancer. Overall, our results suggest that SDS22 could be a putative tumor suppressor and replenishment of SDS22 would be an important strategy to restrict the tumor progression.
Collapse
|
24
|
Saha M, Kumar S, Bukhari S, Balaji SA, Kumar P, Hindupur SK, Rangarajan A. AMPK-Akt Double-Negative Feedback Loop in Breast Cancer Cells Regulates Their Adaptation to Matrix Deprivation. Cancer Res 2018; 78:1497-1510. [PMID: 29339542 PMCID: PMC6033311 DOI: 10.1158/0008-5472.can-17-2090] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/17/2017] [Accepted: 01/10/2018] [Indexed: 12/11/2022]
Abstract
Cell detachment from the extracellular matrix triggers anoikis. Disseminated tumor cells must adapt to survive matrix deprivation, while still retaining the ability to attach at secondary sites and reinitiate cell division. In this study, we elucidate mechanisms that enable reversible matrix attachment by breast cancer cells. Matrix deprival triggered AMPK activity and concomitantly inhibited AKT activity by upregulating the Akt phosphatase PHLPP2. The resultant pAMPKhigh/pAktlow state was critical for cell survival in suspension, as PHLPP2 silencing also increased anoikis while impairing autophagy and metastasis. In contrast, matrix reattachment led to Akt-mediated AMPK inactivation via PP2C-α-mediated restoration of the pAkthigh/pAMPKlow state. Clinical specimens of primary and metastatic breast cancer displayed an Akt-associated gene expression signature, whereas circulating breast tumor cells displayed an elevated AMPK-dependent gene expression signature. Our work establishes a double-negative feedback loop between Akt and AMPK to control the switch between matrix-attached and matrix-detached states needed to coordinate cell growth and survival during metastasis.Significance: These findings reveal a molecular switch that regulates cancer cell survival during metastatic dissemination, with the potential to identify targets to prevent metastasis in breast cancer. Cancer Res; 78(6); 1497-510. ©2018 AACR.
Collapse
Affiliation(s)
- Manipa Saha
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Saurav Kumar
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Shoiab Bukhari
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Sai A Balaji
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Prashant Kumar
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, India
| | - Sravanth K Hindupur
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
25
|
Ito Y, Vogt PK, Hart JR. Domain analysis reveals striking functional differences between the regulatory subunits of phosphatidylinositol 3-kinase (PI3K), p85α and p85β. Oncotarget 2017; 8:55863-55876. [PMID: 28915558 PMCID: PMC5593529 DOI: 10.18632/oncotarget.19866] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 07/12/2017] [Indexed: 01/24/2023] Open
Abstract
Our understanding of isoform-specific activities of phosphatidylinositol 3-kinase (PI3K) is still rudimentary, and yet, deep knowledge of these non-redundant functions in the PI3K family is essential for effective and safe control of PI3K in disease. The two major isoforms of the regulatory subunits of PI3K are p85α and p85β, encoded by the genes PIK3R1 and PIK3R2, respectively. These isoforms show distinct functional differences that affect and control cellular PI3K activity and signaling [1–4]. In this study, we have further explored the differences between p85α and p85β by genetic truncations and substitutions. We have discovered unexpected activities of the mutant proteins that reflect regulatory functions of distinct p85 domains. These results can be summarized as follows: Deletion of the SH3 domain increases oncogenic and PI3K signaling activity. Deletion of the combined SH3-RhoGAP domains abolishes these activities. In p85β, deletion of the cSH2 domain reduces oncogenic and signaling activities. In p85α, such a deletion has an activating effect. The deletions of the combined cSH2 and iSH2 domains and also the deletion of the cSH2, iSH2 and nSH2 domains yield results that go in the same direction, generally activating in p85α and reducing activity in p85β. The contrasting functions of the cSH2 domains are verified by domain exchanges with the cSH2 domain of p85β exerting an activating effect and the cSH2 domain of p85α an inactivating effect, even in the heterologous isoform. In the cell systems studied, protein stability was not correlated with oncogenic and signaling activity. These observations significantly expand our knowledge of the isoform-specific activities of p85α and p85β and of the functional significance of specific domains for regulating the catalytic subunits of class IA PI3K.
Collapse
Affiliation(s)
- Yoshihiro Ito
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, San Diego, CA, USA
| | - Peter K Vogt
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, San Diego, CA, USA
| | - Jonathan R Hart
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, San Diego, CA, USA
| |
Collapse
|
26
|
Srivastava S, Mohibi S, Mirza S, Band H, Band V. Epidermal Growth Factor Receptor activation promotes ADA3 acetylation through the AKT-p300 pathway. Cell Cycle 2017; 16:1515-1525. [PMID: 28759294 PMCID: PMC5584872 DOI: 10.1080/15384101.2017.1339846] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The ADA3 (Alteration/Deficiency in Activation 3) protein is an essential adaptor component of several Lysine Acetyltransferase (KAT) complexes involved in chromatin modifications. Previously, we and others have demonstrated a crucial role of ADA3 in cell cycle progression and in maintenance of genomic stability. Recently, we have shown that acetylation of ADA3 is key to its role in cell cycle progression. Here, we demonstrate that AKT activation downstream of Epidermal Growth Factor Receptor (EGFR) family proteins stimulation leads to phosphorylation of p300, which in turn promotes the acetylation of ADA3. Inhibition of upstream receptor tyrosine kinases (RTKs), HER1 (EGFR)/HER2 by lapatinib and the accompanying reduction of phospho-AKT levels led to a decrease in p300 phosphorylation and ADA3 protein levels. The p300/PCAF inhibitor garcinol also destabilized the ADA3 protein in a proteasome-dependent manner and an ADA3 mutant with K→R mutations exhibited a marked increase in half-life, consistent with opposite role of acetylation and ubiquitination of ADA3 on shared lysine residues. ADA3 knockdown led to cell cycle inhibitory effects, as well as apoptosis similar to those induced by lapatinib treatment of HER2+ breast cancer cells, as seen by accumulation of CDK inhibitor p27, reduction in mitotic marker pH3(S10), and a decrease in the S-phase marker PCNA, as well as the appearance of cleaved PARP. Taken together our results reveal a novel RTK-AKT-p300-ADA3 signaling pathway involved in growth factor-induced cell cycle progression.
Collapse
Affiliation(s)
- Shashank Srivastava
- a Genetics, Cell Biology and Anatomy , University of Nebraska Medical Center , Omaha , NE , USA
| | - Shakur Mohibi
- a Genetics, Cell Biology and Anatomy , University of Nebraska Medical Center , Omaha , NE , USA
| | - Sameer Mirza
- a Genetics, Cell Biology and Anatomy , University of Nebraska Medical Center , Omaha , NE , USA
| | - Hamid Band
- a Genetics, Cell Biology and Anatomy , University of Nebraska Medical Center , Omaha , NE , USA.,b Pathology & Microbiology , University of Nebraska Medical Center , Omaha , NE , USA.,c Biochemistry & Molecular Biology , College of Medicine, University of Nebraska Medical Center , Omaha , NE , USA.,d Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center , Omaha , NE , USA.,e Fred & Pamela Buffett Cancer Center; University of Nebraska Medical Center , Omaha , NE , USA
| | - Vimla Band
- a Genetics, Cell Biology and Anatomy , University of Nebraska Medical Center , Omaha , NE , USA.,d Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center , Omaha , NE , USA.,e Fred & Pamela Buffett Cancer Center; University of Nebraska Medical Center , Omaha , NE , USA
| |
Collapse
|
27
|
Cholesterol Biosynthesis Supports Myelin Gene Expression and Axon Ensheathment through Modulation of P13K/Akt/mTor Signaling. J Neurosci 2017; 36:7628-39. [PMID: 27445141 DOI: 10.1523/jneurosci.0726-16.2016] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/06/2016] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Myelin, which ensheaths and insulates axons, is a specialized membrane highly enriched with cholesterol. During myelin formation, cholesterol influences membrane fluidity, associates with myelin proteins such as myelin proteolipid protein, and assembles lipid-rich microdomains within membranes. Surprisingly, cholesterol also is required by oligodendrocytes, glial cells that make myelin, to express myelin genes and wrap axons. How cholesterol mediates these distinct features of oligodendrocyte development is not known. One possibility is that cholesterol promotes myelination by facilitating signal transduction within the cell, because lipid-rich microdomains function as assembly points for signaling molecules. Signaling cascades that localize to cholesterol-rich regions of the plasma membrane include the PI3K/Akt pathway, which acts upstream of mechanistic target of rapamycin (mTOR), a major driver of myelination. Through manipulation of cholesterol levels and PI3K/Akt/mTOR signaling in zebrafish, we discovered that mTOR kinase activity in oligodendrocytes requires cholesterol. Drawing on a combination of pharmacological and rescue experiments, we provide evidence that mTOR kinase activity is required for cholesterol-mediated myelin gene expression. On the other hand, cholesterol-dependent axon ensheathment is mediated by Akt signaling, independent of mTOR kinase activity. Our data reveal that cholesterol-dependent myelin gene expression and axon ensheathment are facilitated by distinct signaling cascades downstream of Akt. Because mTOR promotes cholesterol synthesis, our data raise the possibility that cholesterol synthesis and mTOR signaling engage in positive feedback to promote the formation of myelin membrane. SIGNIFICANCE STATEMENT The speed of electrical impulse movement through axons is increased by myelin, a specialized, cholesterol-rich glial cell membrane that tightly wraps axons. During development, myelin membrane grows dramatically, suggesting a significant demand on mechanisms that produce and assemble myelin components, while it spirally wraps axons. Our studies indicate that cholesterol is necessary for both myelin growth and axon wrapping. Specifically, we found that cholesterol facilitates signaling mediated by the PI3K/Akt/mTOR pathway, a powerful driver of myelination. Because mTOR promotes the expression of genes necessary for cholesterol synthesis, cholesterol formation and PI3K/Akt/mTOR signaling might function as a feedforward mechanism to produce the large amounts of myelin membrane necessary for axon ensheathment.
Collapse
|
28
|
Guo J, Chakraborty AA, Liu P, Gan W, Zheng X, Inuzuka H, Wang B, Zhang J, Zhang L, Yuan M, Novak J, Cheng JQ, Toker A, Signoretti S, Zhang Q, Asara JM, Kaelin WG, Wei W. pVHL suppresses kinase activity of Akt in a proline-hydroxylation-dependent manner. Science 2017; 353:929-32. [PMID: 27563096 DOI: 10.1126/science.aad5755] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 10/29/2015] [Indexed: 12/21/2022]
Abstract
Activation of the serine-threonine kinase Akt promotes the survival and proliferation of various cancers. Hypoxia promotes the resistance of tumor cells to specific therapies. We therefore explored a possible link between hypoxia and Akt activity. We found that Akt was prolyl-hydroxylated by the oxygen-dependent hydroxylase EglN1. The von Hippel-Lindau protein (pVHL) bound directly to hydroxylated Akt and inhibited Akt activity. In cells lacking oxygen or functional pVHL, Akt was activated to promote cell survival and tumorigenesis. We also identified cancer-associated Akt mutations that impair Akt hydroxylation and subsequent recognition by pVHL, thus leading to Akt hyperactivation. Our results show that microenvironmental changes, such as hypoxia, can affect tumor behaviors by altering Akt activation, which has a critical role in tumor growth and therapeutic resistance.
Collapse
Affiliation(s)
- Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Abhishek A Chakraborty
- Department of Medicine, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Pengda Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenjian Gan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Xingnan Zheng
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Bin Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jinfang Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Linli Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Min Yuan
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jesse Novak
- Department of Pathology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jin Q Cheng
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Alex Toker
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Sabina Signoretti
- Department of Pathology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Qing Zhang
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - William G Kaelin
- Department of Medicine, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
29
|
Kawamura M, Umehara D, Odahara Y, Miyake A, Ngo MH, Ohsato Y, Hisasue M, Nakaya MA, Watanabe S, Nishigaki K. AKT capture by feline leukemia virus. Arch Virol 2016; 162:1031-1036. [PMID: 28005210 DOI: 10.1007/s00705-016-3192-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/01/2016] [Indexed: 10/20/2022]
Abstract
Oncogene-containing retroviruses are generated by recombination events between viral and cellular sequences, a phenomenon called "oncogene capture". The captured cellular genes, referred to as "v-onc" genes, then acquire new oncogenic properties. We report a novel feline leukemia virus (FeLV), designated "FeLV-AKT", that has captured feline c-AKT1 in feline lymphoma. FeLV-AKT contains a gag-AKT fusion gene that encodes the myristoylated Gag matrix protein and the kinase domain of feline c-AKT1, but not its pleckstrin homology domain. Therefore, it differs structurally from the v-Akt gene of murine retrovirus AKT8. AKT may be involved in the mechanisms underlying malignant diseases in cats.
Collapse
Affiliation(s)
- Maki Kawamura
- Laboratory of Molecular Immunology and Infectious Disease, The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Daigo Umehara
- Laboratory of Molecular Immunology and Infectious Disease, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Yuka Odahara
- Laboratory of Molecular Immunology and Infectious Disease, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Ariko Miyake
- Laboratory of Molecular Immunology and Infectious Disease, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Minh Ha Ngo
- Laboratory of Molecular Immunology and Infectious Disease, The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | | | - Masaharu Hisasue
- Laboratory of Internal Medicine 2, Veterinary Medicine, Azabu University, 1-17-71, Fuchinobe, Chuou-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Masa-Aki Nakaya
- Department of Molecular Biology, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Shinya Watanabe
- Laboratory of Molecular Immunology and Infectious Disease, The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Kazuo Nishigaki
- Laboratory of Molecular Immunology and Infectious Disease, The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan. .,Laboratory of Molecular Immunology and Infectious Disease, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan.
| |
Collapse
|
30
|
Konantz M, Alghisi E, Müller JS, Lenard A, Esain V, Carroll KJ, Kanz L, North TE, Lengerke C. Evi1 regulates Notch activation to induce zebrafish hematopoietic stem cell emergence. EMBO J 2016; 35:2315-2331. [PMID: 27638855 DOI: 10.15252/embj.201593454] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 08/23/2016] [Indexed: 12/22/2022] Open
Abstract
During development, hematopoietic stem cells (HSCs) emerge from aortic endothelial cells (ECs) through an intermediate stage called hemogenic endothelium by a process known as endothelial-to-hematopoietic transition (EHT). While Notch signaling, including its upstream regulator Vegf, is known to regulate this process, the precise molecular control and temporal specificity of Notch activity remain unclear. Here, we identify the zebrafish transcriptional regulator evi1 as critically required for Notch-mediated EHT In vivo live imaging studies indicate that evi1 suppression impairs EC progression to hematopoietic fate and therefore HSC emergence. evi1 is expressed in ECs and induces these effects cell autonomously by activating Notch via pAKT Global or endothelial-specific induction of notch, vegf, or pAKT can restore endothelial Notch and HSC formations in evi1 morphants. Significantly, evi1 overexpression induces Notch independently of Vegf and rescues HSC numbers in embryos treated with a Vegf inhibitor. In sum, our results unravel evi1-pAKT as a novel molecular pathway that, in conjunction with the shh-vegf axis, is essential for activation of Notch signaling in VDA endothelial cells and their subsequent conversion to HSCs.
Collapse
Affiliation(s)
- Martina Konantz
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Elisa Alghisi
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Joëlle S Müller
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Anna Lenard
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Virginie Esain
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kelli J Carroll
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lothar Kanz
- Department of Internal Medicine II, University Hospital Tuebingen, Tuebingen, Germany
| | - Trista E North
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Claudia Lengerke
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland .,Department of Internal Medicine II, University Hospital Tuebingen, Tuebingen, Germany.,Division of Hematology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
31
|
Ward WO, Delker DA, Hester SD, Thai SF, Wolf DC, Allen JW, Nesnow S. Transcriptional Profiles in Liver from Mice Treated with Hepatotumorigenic and Nonhepatotumorigenic Triazole Conazole Fungicides: Propiconazole, Triadimefon, and Myclobutanil. Toxicol Pathol 2016; 34:863-78. [PMID: 17178688 DOI: 10.1080/01926230601047832] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Conazoles are environmental and pharmaceutical fungicides. The present study relates the toxicological effects of conazoles to alterations of gene and pathway transcription and identifies potential modes of tumorigenic action. In a companion study employing conventional toxicological bioassays ( Allen et al., 2006 ), male CD-1 mice were fed triadimefon, propiconazole, or myclobutanil in a continuous oral-dose regimen for 4, 30, or 90 days. These conazoles were found to induce hepatomegaly, to induce high levels of hepatic pentoxyresorufin-O-dealkylase activity, to increase hepatic cell proliferation, to decrease serum cholesterol, and to increase serum triglycerides. Differentially expressed genes and pathways were identified using Affymetrix GeneChips. Gene-pathway associations were obtained from the Kyoto Encyclopedia of Genes and Genomes, Biocarta, and MetaCore compendia. The pathway profiles of each conazole were different at each time point. In general, the number of altered metabolism, signaling, and growth pathways increased with time and dose and were greatest with propiconazole. All conazoles had effects on nuclear receptors as evidenced by increased expression and enzymatic activities of a series of related cytochrome P450s (CYP). A subset of altered genes and pathways distinguished the three conazoles from each other. Triadimefon and propiconazole both altered apoptosis, cell cycle, adherens junction, calcium signaling, and EGFR signaling pathways. Triadimefon produced greater changes in cholesterol biosynthesis and retinoic acid metabolism genes and in selected signaling pathways. Propiconazole had greater effects on genes responding to oxidative stress and on the IGF/P13K/AKt/PTEN/mTor and Wnt-β-catenin pathways. In conclusion, while triadimefon, propiconazole, and myclobutanil had similar effects in mouse liver on hepatomegaly, histology, CYP activities, cell proliferation, and serum cholesterol, genomic analyses revealed major differences in their gene expression profiles.
Collapse
Affiliation(s)
- William O Ward
- Environmental Carcinogenesis Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Zhang ZX, Jin WJ, Yang S, Ji CL. BRAF kinase inhibitor exerts anti-tumor activity against breast cancer cells via inhibition of FGFR2. Am J Cancer Res 2016; 6:1040-1052. [PMID: 27293997 PMCID: PMC4889718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/13/2016] [Indexed: 06/06/2023] Open
Abstract
Most anti-angiogenic therapies currently being evaluated in clinical trials targetvascular endothelial growth factor (VEGF) pathway; however, the tumor vasculature can acquire resistance to VEGF-targeted therapy by shifting to other angiogenesis mechanisms. Therefore, other potential therapeutic agents that block non-VEGF angiogenic pathways need to be evaluated. Here we identified BRAF kinase inhibitor, vemurafenibas an agent with potential anti-angiogenic and anti-breast cancer activities. Vemurafenib demonstrated inhibition of endothelial cell proliferation, migration, and tube formation in response to basic fibroblast growth factor (bFGF). In ex vivo and in vivo angiogenesis assays, vemurafenib suppressed bFGF-induced microvessel sprouting of rat aortic rings and angiogenesis in vivo. To understand the underlying molecular basis, we examined the effects of vemurafenib on different molecular components in treated endothelial cell, and found that vemurafenib suppressed bFGF-triggered activation of FGFR2 and protein kinase B (AKT). Moreover, vemurafenib directly inhibited proliferation and blocked the oncogenic signaling pathways in breast cancer cell. In vivo, using xenograft models of breast cancer cells MDA-MB-231, vemurafenib showed growth-inhibitory activity associated with inhibition of tumor angiogenesis. Taken together, our results indicate that vemurafenib targets the FGFR2-mediated AKT signaling pathway in endothelial cells, leading to the suppression of tumor growth and angiogenesis.
Collapse
Affiliation(s)
- Zong Xin Zhang
- Department of Clinical Laboratory, Huzhou Central HospitalNo. 198, Hongqi Road, Huzhou 313000, Zhejiang Province, China
| | - Wen Jun Jin
- Department of Clinical Laboratory, Huzhou Central HospitalNo. 198, Hongqi Road, Huzhou 313000, Zhejiang Province, China
| | - Sheng Yang
- Department of Breast Medical Care, Huzhou Maternity and Child Health Care HospitalWuxing District, East Street 2, Huzhou 313000, Zhejiang Province, China
| | - Cun Li Ji
- Department of Breast Medical Care, Huzhou Maternity and Child Health Care HospitalWuxing District, East Street 2, Huzhou 313000, Zhejiang Province, China
| |
Collapse
|
33
|
Xu LJ, Wang YC, Lan HW, Li J, Xia T. Grb2-associated binder-2 gene promotes migration of non-small cell lung cancer cells via Akt signaling pathway. Am J Transl Res 2016; 8:1208-17. [PMID: 27158407 PMCID: PMC4846964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/12/2015] [Indexed: 06/05/2023]
Abstract
Early stages of non-small cell lung cancer (NSCLC) can be successfully treated by surgical resection of the tumor, but there is still no effective treatment once it is progressed to metastatic phases. Investigation of NSCLC cancer cell migration, metastasis and development of strategies to block this process is essential to improve the disease prognosis. In the present study, we found that GRB2-associated-binding protein 2 (Gab2) is involved in the migration of NSCLC cells and demonstrated that Gab2 disruption impairs NSCLC cells migration. The requirement of Gab2 in the migration of NSCLC was further confirmed by gene silencing in vitro. In corresponding to this result, over-expression of Gab2 significantly promoted the migratory of NSCLC cells. Finally, we found that Gab2 promotes NSCLC migration through the protein kinase B (Akt) signaling pathway and up-regulation the activity of matrix metallopeptidase (MMP)-2/9. To conclude, our findings suggest a novel mechanism underlying the migration of NSCLC cells which might serve as a new intervention target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Li Jun Xu
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyNo.1095, Jiefang Avenue, Wuhan, Hubei Province, 430030, China
| | - Yu Chang Wang
- Department of Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, Hubei 430030, China
| | - Hong Wen Lan
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyNo.1095, Jiefang Avenue, Wuhan, Hubei Province, 430030, China
| | - Jun Li
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyNo.1095, Jiefang Avenue, Wuhan, Hubei Province, 430030, China
| | - Tian Xia
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyNo.1277, Jiefang Avenue, Wuhan, Hubei Province, 430030, China
| |
Collapse
|
34
|
Cho JH, Robinson JP, Arave RA, Burnett WJ, Kircher DA, Chen G, Davies MA, Grossmann AH, VanBrocklin MW, McMahon M, Holmen SL. AKT1 Activation Promotes Development of Melanoma Metastases. Cell Rep 2015; 13:898-905. [PMID: 26565903 DOI: 10.1016/j.celrep.2015.09.057] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/31/2015] [Accepted: 09/18/2015] [Indexed: 10/22/2022] Open
Abstract
Metastases are the major cause of melanoma-related mortality. Previous studies implicating aberrant AKT signaling in human melanoma metastases led us to evaluate the effect of activated AKT1 expression in non-metastatic BRAF(V600E)/Cdkn2a(Null) mouse melanomas in vivo. Expression of activated AKT1 resulted in highly metastatic melanomas with lung and brain metastases in 67% and 17% of our mice, respectively. Silencing of PTEN in BRAF(V600E)/Cdkn2a(Null) melanomas cooperated with activated AKT1, resulting in decreased tumor latency and the development of lung and brain metastases in nearly 80% of tumor-bearing mice. These data demonstrate that AKT1 activation is sufficient to elicit lung and brain metastases in this context and reveal that activation of AKT1 is distinct from PTEN silencing in metastatic melanoma progression. These findings advance our knowledge of the mechanisms driving melanoma metastasis and may provide valuable insights for clinical management of this disease.
Collapse
Affiliation(s)
- Joseph H Cho
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - James P Robinson
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Rowan A Arave
- Department of Chemistry, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - William J Burnett
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - David A Kircher
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - Guo Chen
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Allie H Grossmann
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - Matthew W VanBrocklin
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - Martin McMahon
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - Sheri L Holmen
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA.
| |
Collapse
|
35
|
Wang X, Lan H, Li J, Su Y, Xu L. Muc1 promotes migration and lung metastasis of melanoma cells. Am J Cancer Res 2015; 5:2590-2604. [PMID: 26609470 PMCID: PMC4633892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/11/2015] [Indexed: 06/05/2023] Open
Abstract
Early stages of melanoma can be successfully treated by surgical resection of the tumor, but there is still no effective treatment once it is progressed to metastatic phases. Although growing family of both melanoma metastasis promoting and metastasis suppressor genes have been reported be related to metastasis, the molecular mechanisms governing melanoma metastatic cascade are still not completely understood. Therefore, defining the molecules that govern melanoma metastasis may aid the development of more effective therapeutic strategies for combating melanoma. In the present study, we found that muc1 is involved in the metastasis of melanoma cells and demonstrated that muc1 disruption impairs melanoma cells migration and metastasis. The requirement of muc1 in the migration of melanoma cells was further confirmed by gene silencing in vitro. In corresponding to this result, over-expression of muc1 significantly promoted the migratory of melanoma cells. Moreover, down-regulation of muc1 expression strikingly inhibits melanoma cellular metastasis in vivo. Finally, we found that muc1 promotes melanoma migration through the protein kinase B (Akt) signaling pathway. To conclude, our findings suggest a novel mechanism underlying the metastasis of melanoma cells which might serve as a new intervention target for the treatment of melanoma.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Cardiothroracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyNo. 1095, Jiefang Avenue, Wuhan 430030, Hubei Province, China
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Hongwen Lan
- Department of Cardiothroracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyNo. 1095, Jiefang Avenue, Wuhan 430030, Hubei Province, China
| | - Jun Li
- Department of Cardiothroracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyNo. 1095, Jiefang Avenue, Wuhan 430030, Hubei Province, China
| | - Yushu Su
- Department of Cardiothroracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyNo. 1095, Jiefang Avenue, Wuhan 430030, Hubei Province, China
| | - Lijun Xu
- Department of Cardiothroracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyNo. 1095, Jiefang Avenue, Wuhan 430030, Hubei Province, China
| |
Collapse
|
36
|
Rosuvastatin suppresses atrial tachycardia-induced cellular remodeling via Akt/Nrf2/heme oxygenase-1 pathway. J Mol Cell Cardiol 2015; 82:84-92. [DOI: 10.1016/j.yjmcc.2015.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 12/12/2022]
|
37
|
Bessière L, Todeschini AL, Auguste A, Sarnacki S, Flatters D, Legois B, Sultan C, Kalfa N, Galmiche L, Veitia RA. A Hot-spot of In-frame Duplications Activates the Oncoprotein AKT1 in Juvenile Granulosa Cell Tumors. EBioMedicine 2015; 2:421-31. [PMID: 26137586 PMCID: PMC4485906 DOI: 10.1016/j.ebiom.2015.03.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/04/2015] [Accepted: 03/05/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Ovarian granulosa cell tumors are the most common sex-cord stromal tumors and have juvenile (JGCTs) and adult forms. In a previous study we reported the occurrence of activating somatic mutations of Gαs, which transduces mitogenic signals, in 30% of the analyzed JGCTs. METHODS We have searched for alterations in other proteins involved in ovarian mitogenic signaling. We focused on the PI3K-AKT axis. As we found mutations in AKT1, we analyzed the subcellular localization of the mutated proteins and performed functional explorations using Western-blot and luciferase assays. FINDINGS We detected in-frame duplications affecting the pleckstrin-homology domain of AKT1 in more than 60% of the tumors occurring in girls under 15 years of age. The somatic status of the mutations was confirmed when peritumoral DNA was available. The JGCTs without duplications carried point mutations affecting highly conserved residues. Several of these substitutions were somatic lesions. The mutated proteins carrying the duplications had a non-wild-type subcellular distribution, with a marked enrichment at the plasma membrane. This led to a striking degree of AKT1 activation demonstrated by a strong phosphorylation level and by reporter assays. INTERPRETATION Our study incriminates somatic mutations of AKT1 as a major event in the pathogenesis of JGCTs. The existence of AKT inhibitors currently tested in clinical trials opens new perspectives for targeted therapies for these tumors, which are currently treated with standard non-specific chemotherapy protocols.
Collapse
Affiliation(s)
- Laurianne Bessière
- Institut Jacques Monod, Université Paris Diderot, CNRS UMR7592, Paris 75013, France ; Université Paris Diderot-Paris VII, 75205 Paris Cedex 13, France
| | - Anne-Laure Todeschini
- Institut Jacques Monod, Université Paris Diderot, CNRS UMR7592, Paris 75013, France ; Université Paris Diderot-Paris VII, 75205 Paris Cedex 13, France
| | - Aurélie Auguste
- Institut Jacques Monod, Université Paris Diderot, CNRS UMR7592, Paris 75013, France ; Université Paris Diderot-Paris VII, 75205 Paris Cedex 13, France
| | - Sabine Sarnacki
- Hôpital Necker Enfants-Malades, Paris, France ; Université Paris Descartes-Paris V, 75015 Paris, France
| | - Delphine Flatters
- Université Paris Diderot-Paris VII, 75205 Paris Cedex 13, France ; Molecules Thérapeutiques in silico, Université Paris Diderot, INSERM UMR973, Paris 75013, France
| | - Bérangère Legois
- Institut Jacques Monod, Université Paris Diderot, CNRS UMR7592, Paris 75013, France ; Université Paris Diderot-Paris VII, 75205 Paris Cedex 13, France
| | - Charles Sultan
- Deparment of Pediatric Endocrinology, University Hospital of Montpellier, Montpellier, France ; Deparment of Pediatric Surgery, Hôpital Lapeyronie, CHU Montpellier, France
| | - Nicolas Kalfa
- Deparment of Pediatric Endocrinology, University Hospital of Montpellier, Montpellier, France ; Deparment of Pediatric Surgery, Hôpital Lapeyronie, CHU Montpellier, France
| | - Louise Galmiche
- Hôpital Necker Enfants-Malades, Paris, France ; Université Paris Descartes-Paris V, 75015 Paris, France
| | - Reiner A Veitia
- Institut Jacques Monod, Université Paris Diderot, CNRS UMR7592, Paris 75013, France ; Université Paris Diderot-Paris VII, 75205 Paris Cedex 13, France
| |
Collapse
|
38
|
Liu J, Zhang C, Lin M, Zhu W, Liang Y, Hong X, Zhao Y, Young KH, Hu W, Feng Z. Glutaminase 2 negatively regulates the PI3K/AKT signaling and shows tumor suppression activity in human hepatocellular carcinoma. Oncotarget 2015; 5:2635-47. [PMID: 24797434 PMCID: PMC4058033 DOI: 10.18632/oncotarget.1862] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The tumor suppressor p53 and its signaling pathway play a critical role in tumor prevention. As a direct p53 target gene, the role of glutaminase 2 (GLS2) in tumorigenesis is unclear. In this study, we found that GLS2 expression is significantly decreased in majority of human hepatocellular carcinoma (HCC). Restoration of GLS2 expression in HCC cells inhibits the anchorage-independent growth of cells and reduces the growth of HCC xenograft tumors. Interestingly, we found that GLS2 negatively regulates the PI3K/AKT signaling, which is frequently activated in HCC. Blocking the PI3K/AKT signaling in HCC cells largely abolishes the inhibitory effect of GLS2 on the anchorage-independent cell growth and xenograft tumor growth. The GLS2 promoter is hypermethylated in majority of HCC samples. CpG methylation of GLS2 promoter inhibits GLS2 transcription, whereas reducing the methylation of GLS2 promoter induces GLS2 expression. Taken together, our results demonstrate that GLS2 plays an important role in tumor suppression in HCC, and the negative regulation of PI3K/AKT signaling contributes greatly to this function of GLS2. Furthermore, hypermethylation of GLS2 promoter is an important mechanism contributing to the decreased GLS2 expression in HCC.
Collapse
Affiliation(s)
- Juan Liu
- Department of Radiation Oncology
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Dey-Guha I, Alves CP, Yeh AC, Sole X, Darp R, Ramaswamy S. A mechanism for asymmetric cell division resulting in proliferative asynchronicity. Mol Cancer Res 2015; 13:223-30. [PMID: 25582703 DOI: 10.1158/1541-7786.mcr-14-0474] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED All cancers contain an admixture of rapidly and slowly proliferating cancer cells. This proliferative heterogeneity complicates the diagnosis and treatment of patients with cancer because slow proliferators are hard to eradicate, can be difficult to detect, and may cause disease relapse sometimes years after apparently curative treatment. While clonal selection theory explains the presence and evolution of rapid proliferators within cancer cell populations, the circumstances and molecular details of how slow proliferators are produced is not well understood. Here, a β1-integrin/FAK/mTORC2/AKT1-associated signaling pathway is discovered that can be triggered for rapidly proliferating cancer cells to undergo asymmetric cell division and produce slowly proliferating AKT1(low) daughter cells. In addition, evidence indicates that the proliferative output of this signaling cascade involves a proteasome-dependent degradation process mediated by the E3 ubiquitin ligase TTC3. These findings reveal that proliferative heterogeneity within cancer cell populations, in part, is produced through a targetable signaling mechanism, with potential implications for understanding cancer progression, dormancy, and therapeutic resistance. IMPLICATIONS These findings provide a deeper understanding of the proliferative heterogeneity that exists in the tumor environment and highlight the importance of designing future therapies against multiple proliferative contexts. VISUAL OVERVIEW: A proposed mechanism for producing slowly proliferating cancer cells. http://mcr.aacrjournals.org/content/early/2015/01/09/1541-7786.MCR-14-0474/F1.large.jpg.
Collapse
Affiliation(s)
- Ipsita Dey-Guha
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts
| | - Cleidson P Alves
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts
| | | | - Xavier Sole
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts
| | - Revati Darp
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Sridhar Ramaswamy
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts. Broad Institute of Harvard and MIT, Cambridge, Massachusetts. Harvard Stem Cell Institute, Cambridge, Massachusetts. Harvard-Ludwig Center for Cancer Research, Boston, Massachusetts.
| |
Collapse
|
40
|
Oncogenic signaling is dominant to cell of origin and dictates astrocytic or oligodendroglial tumor development from oligodendrocyte precursor cells. J Neurosci 2015; 34:14644-51. [PMID: 25355217 DOI: 10.1523/jneurosci.2977-14.2014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Stem cells, believed to be the cellular origin of glioma, are able to generate gliomas, according to experimental studies. Here we investigated the potential and circumstances of more differentiated cells to generate glioma development. We and others have shown that oligodendrocyte precursor cells (OPCs) can also be the cell of origin for experimental oligodendroglial tumors. However, the question of whether OPCs have the capacity to initiate astrocytic gliomas remains unanswered. Astrocytic and oligodendroglial tumors represent the two most common groups of glioma and have been considered as distinct disease groups with putatively different origins. Here we show that mouse OPCs can give rise to both types of glioma given the right circumstances. We analyzed tumors induced by K-RAS and AKT and compared them to oligodendroglial platelet-derived growth factor B-induced tumors in Ctv-a mice with targeted deletions of Cdkn2a (p16(Ink4a-/-), p19(Arf-/-), Cdkn2a(-/-)). Our results showed that glioma can originate from OPCs through overexpression of K-RAS and AKT when combined with p19(Arf) loss, and these tumors displayed an astrocytic histology and high expression of astrocytic markers. We argue that OPCs have the potential to develop both astrocytic and oligodendroglial tumors given loss of p19(Arf), and that oncogenic signaling is dominant to cell of origin in determining glioma phenotype. Our mouse data are supported by the fact that human astrocytoma and oligodendroglioma display a high degree of overlap in global gene expression with no clear distinctions between the two diagnoses.
Collapse
|
41
|
Zhang D, Tong X, Arthurs B, Guha A, Rui L, Kamath A, Inoki K, Yin L. Liver clock protein BMAL1 promotes de novo lipogenesis through insulin-mTORC2-AKT signaling. J Biol Chem 2014; 289:25925-35. [PMID: 25063808 PMCID: PMC4162191 DOI: 10.1074/jbc.m114.567628] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/15/2014] [Indexed: 12/15/2022] Open
Abstract
The clock protein BMAL1 (brain and muscle Arnt-like protein 1) participates in circadian regulation of lipid metabolism, but its contribution to insulin AKT-regulated hepatic lipid synthesis is unclear. Here we used both Bmal1(-/-) and acute liver-specific Bmal1-depleted mice to study the role of BMAL1 in refeeding-induced de novo lipogenesis in the liver. Both global deficiency and acute hepatic depletion of Bmal1 reduced lipogenic gene expression in the liver upon refeeding. Conversely, Bmal1 overexpression in mouse liver by adenovirus was sufficient to elevate the levels of mRNA of lipogenic enzymes. Bmal1(-/-) primary mouse hepatocytes displayed decreased levels of de novo lipogenesis and lipogenic enzymes, supporting the notion that BMAL1 regulates lipid synthesis in hepatocytes in a cell-autonomous manner. Both refed mouse liver and insulin-treated primary mouse hepatocytes showed impaired AKT activation in the case of either Bmal1 deficiency or Bmal1 depletion by adenoviral shRNA. Restoring AKT activity by a constitutively active mutant of AKT nearly normalized de novo lipogenesis in Bmal1(-/-) hepatocytes. Finally, Bmal1 deficiency or knockdown decreased the protein abundance of RICTOR, the key component of the mTORC2 complex, without affecting the gene expression of key factors of insulin signaling. Thus, our study uncovered a novel metabolic function of hepatic BMAL1 that promotes de novo lipogenesis via the insulin-mTORC2-AKT signaling during refeeding.
Collapse
Affiliation(s)
- Deqiang Zhang
- From the Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Xin Tong
- From the Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Blake Arthurs
- From the Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Anirvan Guha
- From the Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Liangyou Rui
- From the Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Avani Kamath
- From the Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Ken Inoki
- From the Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Lei Yin
- From the Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
42
|
Abstract
In a fluorescence polarization screen for the MYC-MAX interaction, we have identified a novel small-molecule inhibitor of MYC, KJ-Pyr-9, from a Kröhnke pyridine library. The Kd of KJ-Pyr-9 for MYC in vitro is 6.5 ± 1.0 nM, as determined by backscattering interferometry; KJ-Pyr-9 also interferes with MYC-MAX complex formation in the cell, as shown in a protein fragment complementation assay. KJ-Pyr-9 specifically inhibits MYC-induced oncogenic transformation in cell culture; it has no or only weak effects on the oncogenic activity of several unrelated oncoproteins. KJ-Pyr-9 preferentially interferes with the proliferation of MYC-overexpressing human and avian cells and specifically reduces the MYC-driven transcriptional signature. In vivo, KJ-Pyr-9 effectively blocks the growth of a xenotransplant of MYC-amplified human cancer cells.
Collapse
|
43
|
Ding X, Li F, McKnight J, Schmidt C, Strooisma K, Shimizu H, Faber K, Ware JA, Dean B. A supported liquid extraction-LC-MS/MS method for determination of GDC-0980 (Apitolisib), a dual small-molecule inhibitor of class 1A phosphoinositide 3-kinase and mammalian target of rapamycin, in human plasma. J Pharm Biomed Anal 2014; 100:150-156. [PMID: 25165011 DOI: 10.1016/j.jpba.2014.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 07/30/2014] [Accepted: 08/02/2014] [Indexed: 12/31/2022]
Abstract
A liquid chromatographic-tandem mass spectrometry (LC-MS/MS) method for the determination of GDC-0980 (Apitolisib) concentrations in human plasma has been developed and validated to support clinical development. Supported liquid extraction (SLE) was used to extract plasma samples (80μL) and the resulting samples were analyzed using reverse-phase chromatography and mass spectrometry coupled with a turbo-ionspray interface. The mass analysis of GDC-0980 was performed using multiple reaction monitoring (MRM) transitions in positive ionization mode. The method was validated over the calibration curve range 0.0500-25.0ng/mL using linear regression and 1/x(2) weighting. Within-run relative standard deviation (%RSD) ranged from 0.4 to 3.9%, while the between-run %RSD varied from 1.1 to 1.5% for QCs. The accuracy ranged from 96.1% to 106.7% of nominal for within-run and 96.7-106.7% of nominal for between-run at all concentrations including the LLOQ quality control at 0.0500ng/mL. Extraction recovery of GDC-0980 was between 72.4% and 75.5%. Stability of GDC-0980 was established in human plasma for 547 days at -20°C and -70°C and established in reconstituted sample extracts for 146h when stored at 2-8°C. Stable-labeled internal standard was used to minimize matrix effects. Mean pharmacokinetic parameters determined using this method for the day 1 control group in a phase I trial were: Cmax=11.1ng/mL, AUC0-inf=108ngh/mL, and T1/2=13.1h.
Collapse
Affiliation(s)
- X Ding
- Genentech, Drug Metabolism and Pharmacokinetics, 1 DNA Way, South San Francisco, CA 94080, United States.
| | - F Li
- Covance Laboratories, 3301 Kinsman Blvd., Madison, WI 53704, United States
| | - J McKnight
- Covance Laboratories, 3301 Kinsman Blvd., Madison, WI 53704, United States
| | - C Schmidt
- Covance Laboratories, 3301 Kinsman Blvd., Madison, WI 53704, United States
| | - K Strooisma
- Covance Laboratories, 3301 Kinsman Blvd., Madison, WI 53704, United States
| | - H Shimizu
- Genentech, Companion Diagnostics Development, 1 DNA Way, South San Francisco, CA 94080, United States
| | - K Faber
- Genentech, Small Molecule Clinical Pharmacology, 1 DNA Way, South San Francisco, CA 94080, United States
| | - J A Ware
- Genentech, Small Molecule Clinical Pharmacology, 1 DNA Way, South San Francisco, CA 94080, United States
| | - B Dean
- Genentech, Drug Metabolism and Pharmacokinetics, 1 DNA Way, South San Francisco, CA 94080, United States
| |
Collapse
|
44
|
Yu L, Zhang J, Guo X, Li Z, Zhang P. MicroRNA-224 upregulation and AKT activation synergistically predict poor prognosis in patients with hepatocellular carcinoma. Cancer Epidemiol 2014; 38:408-13. [PMID: 24923856 DOI: 10.1016/j.canep.2014.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 05/07/2014] [Accepted: 05/13/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIM Previous evidence has shown that microRNA (miR)-224 may function as an onco-miRNA in hepatocellular carcinoma (HCC) cells by activating AKT signaling. However, little is known about the clinical significance of the combined expression of miR-224 and phosphorylated-AKT (pAKT) on human HCC. The aim of this study was to investigate the synergistical influence of miR-224 and pAKT on clinical characteristics and prognosis in patients with HCC. METHODS One-hundred and thirty HCC patients who had undergone curative liver resection were selected. In situ hybridization and immunohistochemistry were respectively performed to detect the expression of miR-224 and pAKT in the respective tumors. RESULTS Compared with the adjacent nonneoplastic liver tissues, the expression levels of miR-224 and pAKT protein in HCC tissues were both significantly increased (both P<0.001). In addition, the combined upregulation of miR-224 and pAKT protein was significantly associated with serum AFP (P=0.01), tumor stage (P=0.002) and tumor grade (P=0.008). Moreover, HCC patients highly expressing both miR-224 and pAKT protein had worse 5-year disease-free survival and 5-year overall survival (both P<0.001). Furthermore, the Cox proportional hazards model showed that the combined upregulation of miR-224 and pAKT protein (miR-224-high/pAKT-high) may be independent poor prognostic factors for both 5-year disease-free survival (P=0.008) and 5-year overall survival (P=0.01) in HCC. CONCLUSION These results indicate for the first time that miR-224 upregulation and AKT activation may synergistically associate with tumor progression of HCC. The combined high expression of miR-224 and pAKT may be a potential indicator for predicting unfavorable prognosis in HCC patients.
Collapse
Affiliation(s)
| | | | | | - Zhiwei Li
- 302 Hospital of PLA, Beijing 100039, China.
| | | |
Collapse
|
45
|
Hashimoto M, Suizu F, Tokuyama W, Noguchi H, Hirata N, Matsuda-Lennikov M, Edamura T, Masuzawa M, Gotoh N, Tanaka S, Noguchi M. Protooncogene TCL1b functions as an Akt kinase co-activator that exhibits oncogenic potency in vivo. Oncogenesis 2013; 2:e70. [PMID: 24042734 PMCID: PMC3816220 DOI: 10.1038/oncsis.2013.30] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 07/16/2013] [Indexed: 02/07/2023] Open
Abstract
Protooncogene T-cell leukemia 1 (TCL1), which is implicated in human T-cell prolymphocytic leukemia (T-PLL), interacts with Akt and enhances its kinase activity, functioning as an Akt kinase co-activator. Two major isoforms of TCL1 Protooncogenes (TCL1 and TCL1b) are present adjacent to each other on human chromosome 14q.32. In human T-PLL, both TCL1 and TCL1b are activated by chromosomal translocation. Moreover, TCL1b-transgenic mice have never been created. Therefore, it remains unclear whether TCL1b itself, independent of TCL1, exhibits oncogenicity. In co-immunoprecipitation assays, both ectopic and endogenous TCL1b interacted with Akt. In in vitro Akt kinase assays, TCL1b enhanced Akt kinase activity in dose- and time-dependent manners. Bioinformatics approaches utilizing multiregression analysis, cluster analysis, KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway mapping, Venn diagrams and Gene Ontology (GO) demonstrated that TCL1b showed highly homologous gene-induction signatures similar to Myr-Akt or TCL1. TCL1b exhibited oncogenicity in in vitro colony-transformation assay. Further, two independent lines of β-actin promoter-driven TCL1b-transgenic mice developed angiosarcoma on the intestinal tract. Angiosarcoma is a rare form of cancer in humans with poor prognosis. Using immunohistochemistry, 11 out of 13 human angiosarcoma samples were positively stained with both anti-TCL1b and anti-phospho-Akt antibodies. Consistently, in various cancer tissues, 69 out of 146 samples were positively stained with anti-TCL1b, out of which 46 were positively stained with anti-phospho-Akt antibodies. Moreover, TCL1b structure-based inhibitor 'TCL1b-Akt-in' inhibited Akt kinase activity in in vitro kinase assays and PDGF (platelet-derived growth factor)-induced Akt kinase activities-in turn, 'TCL1b-Akt-in' inhibited cellular proliferation of sarcoma. The current study disclosed TCL1b bears oncogenicity and hence serves as a novel therapeutic target for human neoplastic diseases.
Collapse
Affiliation(s)
- M Hashimoto
- Division of Cancer Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Robertson AJ, Coluccio A, Jensen S, Rydlizky K, Coffman JA. Sea urchin akt activity is Runx-dependent and required for post-cleavage stage cell division. Biol Open 2013; 2:472-8. [PMID: 23789095 PMCID: PMC3654265 DOI: 10.1242/bio.20133913] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 03/01/2013] [Indexed: 01/22/2023] Open
Abstract
In animal development following the initial cleavage stage of embryogenesis, the cell cycle becomes dependent on intercellular signaling and controlled by the genomically encoded ontogenetic program. Runx transcription factors are critical regulators of metazoan developmental signaling, and we have shown that the sea urchin Runx gene runt-1, which is globally expressed during early embryogenesis, functions in support of blastula stage cell proliferation and expression of the mitogenic genes pkc1, cyclinD, and several wnts. To obtain a more comprehensive list of early runt-1 regulatory targets, we screened a Strongylocentrotus purpuratus microarray to identify genes mis-expressed in mid-blastula stage runt-1 morphants. This analysis showed that loss of Runx function perturbs the expression of multiple genes involved in cell division, including the pro-growth and survival kinase Akt (PKB), which is significantly underexpressed in runt-1 morphants. Further genomic analysis revealed that Akt is encoded by two genes in the S. purpuratus genome, akt-1 and akt-2, both of which contain numerous canonical Runx target sequences. The transcripts of both genes accumulate several fold during blastula stage, contingent on runt-1 expression. Inhibiting Akt expression or activity causes blastula stage cell cycle arrest, whereas overexpression of akt-1 mRNA rescues cell proliferation in runt-1 morphants. These results indicate that post-cleavage stage cell division requires Runx-dependent expression of akt.
Collapse
Affiliation(s)
- Anthony J Robertson
- Present address: King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | | | | | | | | |
Collapse
|
47
|
Site-specific activation of AKT protects cells from death induced by glucose deprivation. Oncogene 2013; 33:745-55. [PMID: 23396361 DOI: 10.1038/onc.2013.2] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 12/11/2012] [Indexed: 12/14/2022]
Abstract
The serine/threonine kinase AKT is a key mediator of cancer cell survival. We demonstrate that transient glucose deprivation modestly induces AKT phosphorylation at both Thr308 and Ser473. In contrast, prolonged glucose deprivation induces selective AKTThr308 phosphorylation and phosphorylation of a distinct subset of AKT downstream targets leading to cell survival under metabolic stress. Glucose-deprivation-induced AKTThr308 phosphorylation is dependent on PDK1 and PI3K but not EGF receptor or IGF1R. Prolonged glucose deprivation induces the formation of a complex of AKT, PDK1 and the GRP78 chaperone protein, directing phosphorylation of AKTThr308 but not AKTSer473. Our results reveal a novel mechanism of AKT activation under prolonged glucose deprivation that protects cells from metabolic stress. The selective activation of AKTThr308 phosphorylation that occurs during prolonged nutrient deprivation may provide an unexpected opportunity for the development and implementation of drugs targeting cell metabolism and aberrant AKT signaling.
Collapse
|
48
|
Evidence of mTOR Activation by an AKT-Independent Mechanism Provides Support for the Combined Treatment of PTEN-Deficient Prostate Tumors with mTOR and AKT Inhibitors. Transl Oncol 2012; 5:422-9. [PMID: 23323157 DOI: 10.1593/tlo.12241] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 08/16/2012] [Accepted: 08/20/2012] [Indexed: 01/08/2023] Open
Abstract
Activation of the phosphoinositide 3-kinase pathway is commonly observed in human prostate cancer. Loss of function of phosphatase and tensin homolog (PTEN) is associated with the activation of AKT and mammalian target of rapamycin (mTOR) in many cancer cell lines as well as in other model systems. However, activation of mTOR is also dependent of kinases other than AKT. Here, we show that activation of mTOR is not dependent on AKT in a prostate-specific PTEN-deficient mouse model of prostate cancer. Pathway bifurcation of AKT and mTOR was noted in both mouse and human prostate tumors. We demonstrated for the first time that cotargeting mTOR and AKT with ridaforolimus/MK-8669 and M1K-2206, respectively, delivers additive antitumor effects in vivo when compared to single agents. Our preclinical data suggest that the combination of AKT and mTOR inhibitors might be more effective in treating prostate cancer patients than current treatment regimens or either treatment alone.
Collapse
|
49
|
Choo EF, Ng CM, Berry L, Belvin M, Lewin-Koh N, Merchant M, Salphati L. PK-PD modeling of combination efficacy effect from administration of the MEK inhibitor GDC-0973 and PI3K inhibitor GDC-0941 in A2058 xenografts. Cancer Chemother Pharmacol 2012; 71:133-43. [PMID: 23053270 DOI: 10.1007/s00280-012-1988-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 09/18/2012] [Indexed: 02/01/2023]
Abstract
PURPOSE Mutations and activations of the MEK and PI3K pathways are associated with the development of many cancers. GDC-0973 and GDC-0941 are inhibitors of MEK and PI3K, respectively, currently being evaluated clinically in combination as anti-cancer treatment. The objective of these studies was to characterize the relationship between the plasma concentrations of GDC-0973 and GDC-0941 administered in combination and efficacy in A2058 melanoma xenograft. METHODS GDC-0973 and GDC-0941 were administered to A2058 tumor-bearing mice daily (QD) or every third day (Q3D) either as single agents or in combination. A semi-mechanistic population anti-cancer model was developed to simultaneously describe the tumor growth following QD/Q3D single-agent and QD combination treatments. The interaction terms ψ included in the model were used to assess whether the combination was additive. Using this model, data from the Q3D combination regimen were simulated and compared with the observed tumor volumes. RESULTS The model consisting of saturable tumor growth provided the best fit of the data. The estimates for ψ were not significantly different from 1, suggesting an additive effect of GDC-0973 and GDC-0941 on tumor growth inhibition. The population rate constants associated with tumor growth inhibition for GDC-0973 and GDC-0941 were 0.00102 and 0000651 μM(-1) h(-1), respectively. Using the model based on single-agent and QD combination efficacy data, simulations adequately described the tumor growth from the Q3D combination regimen. CONCLUSIONS These findings suggest that, based on minimal data, it is possible to predict the effects of various combinations preclinically and also assess the potential clinical efficacy of combinations using human pharmacokinetic inputs.
Collapse
Affiliation(s)
- Edna F Choo
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA 94080, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Lassman AB, Dai C, Fuller GN, Vickers AJ, Holland EC. Overexpression of c-MYC promotes an undifferentiated phenotype in cultured astrocytes and allows elevated Ras and Akt signaling to induce gliomas from GFAP-expressing cells in mice. ACTA ACUST UNITED AC 2012; 1:157-63. [PMID: 17047730 PMCID: PMC1615889 DOI: 10.1017/s1740925x04000249] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The c-MYC protooncogene is overexpressed in the most malignant primary brain tumor, glioblastoma multiforme (GBM), and has been correlated with the undifferentiated character of several cell types. However, the role of Myc activity in the generation of GBMs is not known. In this report, we show that gene transfer of c-MYC to GFAP-expressing astrocytes in vitro promotes the outgrowth of GFAP-negative, nestin-expressing cells with progenitor-like morphology, growth characteristics and gene-expression pattern. In addition, gene transfer of c-MYC to GFAP-expressing astrocytes in vivo induces GBMs when co-expressed with activated Ras and Akt. Without c-MYC, Ras+Akt induces GBMs from nestin-expressing CNS progenitors but is insufficient in GFAP-expressing differentiated astrocytes. The ability of Myc activity to enhance the oncogenic effects of Ras+Akt appears to be limited to GFAP-expressing astrocytes because nestin-expressing progenitors show no increase in GBM formation with the addition of MYC to Ras+Akt. These studies indicate that one role of MYC activity in the formation of gliomas might be to either promote or reinforce an undifferentiated phenotype required for glioma cells to respond to the oncogenic effects of elevated Ras and Akt activity.
Collapse
Affiliation(s)
- Andrew B. Lassman
- Department of Neurology, Memorial Sloan-Kettering Cancer Center New York, NY
| | - Chengkai Dai
- Departments of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center New York, NY
| | | | - Andrew J. Vickers
- Departments of Epidemiology and Biostatistics Memorial Sloan-Kettering Cancer Center New York, NY
| | - Eric C. Holland
- Department of Neurology, Memorial Sloan-Kettering Cancer Center New York, NY
- Department of Surgery (Neurosurgery), Memorial Sloan-Kettering Cancer Center New York, NY
- Departments of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center New York, NY
| |
Collapse
|