1
|
Hewitt S, Aragon M, Ashmore PL, Collins TS, Dhingra A. Transcriptome analysis reveals activation of detoxification and defense mechanisms in smoke-exposed Merlot grape (Vitis vinifera) berries. Sci Rep 2024; 14:21330. [PMID: 39266584 PMCID: PMC11393342 DOI: 10.1038/s41598-024-72079-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
A significant consequence of climate change is the rising incidence of wildfires. When wildfires occur close to wine grape (Vitis vinifera) production areas, smoke-derived volatile phenolic compounds can be taken up by the grape berries, negatively affecting the flavor and aroma profile of the resulting wine and compromising the production value of entire vineyards. Evidence for the permeation of smoke-associated compounds into grape berries has been provided through metabolomics; however, the basis for grapevines' response to smoke at the gene expression level has not been investigated in detail. To address this knowledge gap, we employed time-course RNA sequencing to observe gene expression-level changes in grape berries in response to smoke exposure. Significant increases in gene expression (and enrichment of gene ontologies) associated with detoxification of reactive compounds, maintenance of redox homeostasis, and cell wall fortification were observed in response to smoke. These findings suggest that the accumulation of volatile phenols from smoke exposure activates mechanisms that render smoke-derived compounds less reactive while simultaneously fortifying intracellular defense mechanisms. The results of this work lend a better understanding of the molecular basis for grapevines' response to smoke and provide insight into the origins of smoke-taint-associated flavor and aroma attributes in wine produced from smoke-exposed grapes.
Collapse
Affiliation(s)
- Seanna Hewitt
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, USA
| | - Mackenzie Aragon
- Department of Viticulture and Enology, Washington State University, Richland, WA, 99354, USA
| | - P Layton Ashmore
- Department of Viticulture and Enology, Washington State University, Richland, WA, 99354, USA
| | - Thomas S Collins
- Department of Viticulture and Enology, Washington State University, Richland, WA, 99354, USA
| | - Amit Dhingra
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
2
|
Luo X, Chen X, Zhang L, Liu B, Xie L, Ma Y, Zhang M, Jin X. Chemical Constituents and Biological Activities of Bruguiera Genus and Its Endophytes: A Review. Mar Drugs 2024; 22:158. [PMID: 38667775 PMCID: PMC11050931 DOI: 10.3390/md22040158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
The genus Bruguiera, a member of the Rhizophoraceae family, is predominantly found in coastal areas as a mangrove plant, boasting a rich and diverse community of endophytes. This review systematically compiled approximately 496 compounds derived from both the Bruguiera genus and its associated endophytes, including 152 terpenoids, 17 steroids, 16 sulfides, 44 alkaloids and peptides, 66 quinones, 68 polyketides, 19 flavonoids, 38 phenylpropanoids, 54 aromatic compounds, and 22 other compounds. Among these, 201 compounds exhibited a spectrum of activities, including cytotoxicity, antimicrobial, antioxidant, anti-inflammatory, antiviral, antidiabetic, insecticidal and mosquito repellent, and enzyme inhibitory properties, etc. These findings provided promising lead compounds for drug discovery. Certain similar or identical compounds were found to be simultaneously present in both Bruguiera plants and their endophytes, and the phenomenon of their interaction relationship was discussed.
Collapse
Affiliation(s)
- Xiongming Luo
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (X.C.); (L.Z.); (B.L.); (L.X.)
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Y.M.); (M.Z.)
| | - Xiaohong Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (X.C.); (L.Z.); (B.L.); (L.X.)
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Y.M.); (M.Z.)
| | - Lingli Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (X.C.); (L.Z.); (B.L.); (L.X.)
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Y.M.); (M.Z.)
| | - Bin Liu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (X.C.); (L.Z.); (B.L.); (L.X.)
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Y.M.); (M.Z.)
| | - Lian Xie
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (X.C.); (L.Z.); (B.L.); (L.X.)
| | - Yan Ma
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Y.M.); (M.Z.)
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Min Zhang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Y.M.); (M.Z.)
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaobao Jin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Y.M.); (M.Z.)
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
3
|
Neupane S, Alexander L, Baysal-Gurel F. Evaluation of Hydrangea Cultivars for Tolerance Against Root Rot Caused by Fusarium oxysporum. PLANT DISEASE 2023; 107:3967-3974. [PMID: 37392028 DOI: 10.1094/pdis-11-22-2712-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Root rot caused by Fusarium oxysporum Schltdl. is a newly identified disease in oakleaf hydrangea. Some cultivars such as Pee Wee and Queen of Hearts grown in pot-in-pot container systems showed root rot symptoms after late spring frost in May 2018 with 40 and 60% incidence in the infected nursery, respectively. This experiment was carried out to evaluate the tolerance among different hydrangea cultivars against root rot caused by F. oxysporum. Fifteen hydrangea cultivars from four different species were selected, and rooted cuttings were prepared from new spring flushes. Twelve plants from each cultivar were transplanted in a 1-gallon pot. Half of transplanted plants (six single plants) were inoculated by drenching 150 ml of F. oxysporum conidial suspension to maintain the concentration of 1 × 106 conidia/ml. Half of the plants remain noninoculated (control) and were drenched with sterile water. After 4 months, root rot was assessed using a scale of 0 to 100% root area affected, and recovery of F. oxysporum was recorded by plating 1-cm root sections in Fusarium selective medium. Fusaric acid (FA) and mannitol were extracted from the roots of inoculated and noninoculated plants to see the effect and role on pathogenesis. Further, mannitol concentration was analyzed using absorption wavelength in a spectrophotometer, and FA was analyzed using high-performance liquid chromatography (HPLC). Results indicated that no cultivars were resistant to F. oxysporum. Cultivars from Hydrangea arborescens, H. macrophylla, and H. paniculata were more tolerant to F. oxysporum compared to cultivars from H. quercifolia. Among H. quercifolia, cultivars Snowflake, John Wayne, and Alice were more tolerant to F. oxysporum.
Collapse
Affiliation(s)
- Sandhya Neupane
- Department of Agriculture and Environmental Sciences, Otis L. Floyd Nursery Research Center, College of Agriculture, Tennessee State University, McMinnville, TN
| | - Lisa Alexander
- Otis L. Floyd Nursery Research Center, USDA-ARS, U.S. National Arboretum, McMinnville, TN
| | - Fulya Baysal-Gurel
- Department of Agriculture and Environmental Sciences, Otis L. Floyd Nursery Research Center, College of Agriculture, Tennessee State University, McMinnville, TN
| |
Collapse
|
4
|
Ianutsevich EA, Danilova OA, Antropova AB, Tereshina VM. Acquired thermotolerance, membrane lipids and osmolytes profiles of xerohalophilic fungus Aspergillus penicillioides under heat shock. Fungal Biol 2023; 127:909-917. [PMID: 36906381 DOI: 10.1016/j.funbio.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 01/08/2023] [Accepted: 01/16/2023] [Indexed: 01/23/2023]
Abstract
Xerophilic fungi accumulate a large amount of glycerol in the cytosol to counterbalance the external osmotic pressure. But during heat shock (HS) majority of fungi accumulate a thermoprotective osmolyte trehalose. Since glycerol and trehalose are synthesized in the cell from the same precursor (glucose), we hypothesised that, under heat shock conditions, xerophiles growing in media with high concentrations of glycerol may acquire greater thermotolerance than those grown in media with high concentrations of NaCl. Therefore, the composition of membrane lipids and osmolytes of the fungus Aspergillus penicillioides, growing in 2 different media under HS conditions was studied and the acquired thermotolerance was assessed. It was found that in the salt-containing medium an increase in the proportion of phosphatidic acids against a decrease in the proportion of phosphatidylethanolamines is observed in the composition of membrane lipids, and the level of glycerol in the cytosol decreases 6-fold, while in the medium with glycerol, changes in the composition of membrane lipids are insignificant and the level of glycerol is reduced by no more than 30%. In the mycelium trehalose level have increased in both media, but did not exceed 1% of dry weight. However, after exposure to HS the fungus acquires greater thermotolerance in the medium with glycerol than in the medium with salt. The data obtained indicate the interrelation between changes in the composition of osmolytes and membrane lipids in the adaptive response to HS, as well as the synergistic effect of glycerol and trehalose.
Collapse
Affiliation(s)
- Elena A Ianutsevich
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave, 119071, Moscow, Russian Federation.
| | - Olga A Danilova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave, 119071, Moscow, Russian Federation.
| | - Anna B Antropova
- Federal State Budgetary Scientific Institution «I. Mechnikov Research Institute of Vaccines and Sera», 5А, Malyy Kazennyy Pereulok, 105064, Moscow, Russian Federation.
| | - Vera M Tereshina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave, 119071, Moscow, Russian Federation.
| |
Collapse
|
5
|
Identification of an l-Arabitol Transporter from Aspergillus niger. Biomolecules 2023; 13:biom13020188. [PMID: 36830558 PMCID: PMC9953744 DOI: 10.3390/biom13020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
l-arabitol is an intermediate of the pentose catabolic pathway in fungi but can also be used as a carbon source by many fungi, suggesting the presence of transporters for this polyol. In this study, an l-arabitol transporter, LatA, was identified in Aspergillus niger. Growth and expression profiles as well as sugar consumption analysis indicated that LatA only imports l-arabitol and is regulated by the arabinanolytic transcriptional activator AraR. Moreover, l-arabitol production from wheat bran was increased in a metabolically engineered A. niger mutant by the deletion of latA, indicating its potential for improving l-arabitol-producing cell factories. Phylogenetic analysis showed that homologs of LatA are widely conserved in fungi.
Collapse
|
6
|
Böttner L, Malacrinò A, Schulze Gronover C, van Deenen N, Müller B, Xu S, Gershenzon J, Prüfer D, Huber M. Natural rubber reduces herbivory and alters the microbiome below ground. THE NEW PHYTOLOGIST 2023. [PMID: 36597727 DOI: 10.1111/nph.18709] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Laticifers are hypothesized to mediate both plant-herbivore and plant-microbe interactions. However, there is little evidence for this dual function. We investigated whether the major constituent of natural rubber, cis-1,4-polyisoprene, a phylogenetically widespread and economically important latex polymer, alters plant resistance and the root microbiome of the Russian dandelion (Taraxacum koksaghyz) under attack of a root herbivore, the larva of the May cockchafer (Melolontha melolontha). Rubber-depleted transgenic plants lost more shoot and root biomass upon herbivory than normal rubber content near-isogenic lines. Melolontha melolontha preferred to feed on artificial diet supplemented with rubber-depleted rather than normal rubber content latex. Likewise, adding purified cis-1,4-polyisoprene in ecologically relevant concentrations to diet deterred larval feeding and reduced larval weight gain. Metagenomics and metabarcoding revealed that abolishing biosynthesis of natural rubber alters the structure but not the diversity of the rhizosphere and root microbiota (ecto- and endophytes) and that these changes depended on M. melolontha damage. However, the assumption that rubber reduces microbial colonization or pathogen load is contradicted by four lines of evidence. Taken together, our data demonstrate that natural rubber biosynthesis reduces herbivory and alters the plant microbiota, which highlights the role of plant-specialized metabolites and secretory structures in shaping multitrophic interactions.
Collapse
Affiliation(s)
- Laura Böttner
- Institute of Plant Biology and Biotechnology, University of Münster, D-48143, Münster, Germany
- Institute for Evolution and Biodiversity, University of Münster, D-48149, Münster, Germany
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, D-55128, Mainz, Germany
| | - Antonino Malacrinò
- Institute for Evolution and Biodiversity, University of Münster, D-48149, Münster, Germany
- Department of Agriculture, Università degli Studi Mediterranea di Reggio Calabria, I-89122, Reggio Calabria, Italy
| | - Christian Schulze Gronover
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schlossplatz 8, D-48143, Münster, Germany
| | - Nicole van Deenen
- Institute of Plant Biology and Biotechnology, University of Münster, D-48143, Münster, Germany
| | - Boje Müller
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schlossplatz 8, D-48143, Münster, Germany
| | - Shuqing Xu
- Institute for Evolution and Biodiversity, University of Münster, D-48149, Münster, Germany
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, D-55128, Mainz, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, D-07745, Jena, Germany
| | - Dirk Prüfer
- Institute of Plant Biology and Biotechnology, University of Münster, D-48143, Münster, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schlossplatz 8, D-48143, Münster, Germany
| | - Meret Huber
- Institute of Plant Biology and Biotechnology, University of Münster, D-48143, Münster, Germany
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, D-55128, Mainz, Germany
| |
Collapse
|
7
|
Bari VK, Singh D, Nassar JA, Aly R. Silencing of a mannitol transport gene in Phelipanche aegyptiaca by the tobacco rattle virus system reduces the parasite germination on the host root. PLANT SIGNALING & BEHAVIOR 2022; 17:2139115. [PMID: 36420997 PMCID: PMC9704376 DOI: 10.1080/15592324.2022.2139115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Root parasitic weed Phelipanche aegyptiaca is an obligate plant parasite that causes severe damage to host crops. Agriculture crops mainly belong to the Brassicaceae, Leguminosae, Cruciferae, and Solanaceae plant families affected by this parasitic weed, leading to the devastating loss of crop yield and economic growth. This root-specific parasitic plant is not able to complete its life cycle without a suitable host and is dependent on the host plant for nutrient uptake and germination. Therefore, selected parasitic genes of P. aegyptiaca which were known to be upregulated upon interaction with the host were chosen. These genes are essential for parasitism, and reduced activity of these genes could affect host-parasitic interaction and provide resistance to the host against these parasitic weeds. To check and examine the role of these parasitic genes which can affect the development of host resistance, we silenced selected genes in the P. aegyptiaca using the tobacco rattle virus (TRV) based virus-induced gene silencing (VIGS) method. Our results demonstrated that the total number of P. aegyptiaca parasite tubercles attached to the root of the host plant Nicotiana benthamiana was substantially decreased in all the silenced plants. However, silencing of the P. aegyptiaca MNT1 gene which encodes the mannitol transporter showed a significantly reduced number of germinated shoots and tubercles. Thus, our study indicates that the mannitol transport gene of P. aegyptiaca plays a crucial role in parasitic germination, and silencing of the PaMNT1 gene abolishes the germination of parasites on the host roots.
Collapse
Affiliation(s)
- Vinay Kumar Bari
- Department of Plant Pathology and Weed Sciences, Newe Yaar Research Station, Agricultural Research Organization (ARO), Ramat Yishay, Israel
- Department of Biochemistry, Central University of Punjab, Bathinda, India
| | - Dharmendra Singh
- Department of Computational Sciences, Central University of Punjab, Bathinda, India
| | - Jackline Abu Nassar
- Department of Plant Pathology and Weed Sciences, Newe Yaar Research Station, Agricultural Research Organization (ARO), Ramat Yishay, Israel
| | - Radi Aly
- Department of Plant Pathology and Weed Sciences, Newe Yaar Research Station, Agricultural Research Organization (ARO), Ramat Yishay, Israel
| |
Collapse
|
8
|
Sun Y, Zang Y, Chen J, Shang S, Wang J, Liu Q, Tang X. The differing responses of central carbon cycle metabolism in male and female Sargassum thunbergii to ultraviolet-B radiation. FRONTIERS IN PLANT SCIENCE 2022; 13:904943. [PMID: 36262652 PMCID: PMC9574197 DOI: 10.3389/fpls.2022.904943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
The enhancement of ultraviolet-B radiation (UV-B) radiation reaching the Earth's surface due to ozone layer depletion is an important topic. Macroalgal species growing in the intertidal zone are often directly exposed to UV-B radiation periodically as the tide changes. In order to better understand the response of macroalgae to UV-B stressed condition, we studied the dominant dioecious intertidal macroalgae Sargassum thunbergii. After consecutive UV-B radiation treatments, we used metabonomics models to analyze and compare the maximum photosynthetic electron transport rate (ETRmax), central carbon cycle metabolism (CCCM) gene expression level, CCCM enzymic activities [pyruvate dehydrogenase and citrate synthase (PDH and CS)], and carbon-based metabolite (including pyruvate, soluble sugar, total amino acid, and lipids) content in male and female S. thunbergii. The results showed that under low and high UV-B radiation, the ETRmax values and six targeted CCCM gene expression levels were significantly higher in males than in females. Under high UV-B radiation, only the CS activity was significantly higher in males than in females. There was no significant difference in PDH activity between males and females. The CCCM models constructed using the metabonomics analysis demonstrate that S. thunbergii males and females exhibit obvious gender differences in their responses to UV-B radiation, providing us with a new understanding of the macroalgal gender differences under UV-B radiation, as past investigations always underestimated their diecious characteristics.
Collapse
Affiliation(s)
- Yan Sun
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yu Zang
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Jun Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shuai Shang
- College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
| | - Jing Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qian Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
9
|
Pleyerová I, Hamet J, Konrádová H, Lipavská H. Versatile roles of sorbitol in higher plants: luxury resource, effective defender or something else? PLANTA 2022; 256:13. [PMID: 35713726 DOI: 10.1007/s00425-022-03925-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Sorbitol metabolism plays multiple roles in many plants, including energy and carbon enrichment, effective defence against various stresses and other emerging specific roles. The underlying mechanisms are, however, incompletely understood. This review provides the current state-of-the-art, highlights missing knowledge and poses several remaining questions. The basic properties of sugar alcohols are summarised and pathways of sorbitol metabolism, including biosynthesis, degradation and key enzymes are described. Sorbitol transport within the plant body is discussed and individual roles of sorbitol in different organs, specific cells or even cellular compartments, are elaborated, clarifying the critical importance of sorbitol allocation and distribution. In addition to plants that accumulate and transport significant quantities of sorbitol (usual producers), there are some that synthesize small amounts of sorbitol or only possess sorbitol metabolising enzymes (non-usual producers). Modern analytical methods have recently enabled large amounts of data to be acquired on this topic, although numerous uncertainties and questions remain. For a long time, it has been clear that enriching carbohydrate metabolism with a sorbitol branch improves plant fitness under stress. Nevertheless, this is probably valid only when appropriate growth and defence trade-offs are ensured. Information on the ectopic expression of sorbitol metabolism genes has contributed substantially to our understanding of the sorbitol roles and raises new questions regarding sorbitol signalling potential. We finally examine strategies in plants producing sorbitol compared with those producing mannitol. Providing an in-depth understanding of sugar alcohol metabolism is essential for the progress in plant physiology as well as in targeted, knowledge-based crop breeding.
Collapse
Affiliation(s)
- Iveta Pleyerová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 43, Prague 2, Czech Republic
| | - Jaromír Hamet
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 43, Prague 2, Czech Republic
| | - Hana Konrádová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 43, Prague 2, Czech Republic.
| | - Helena Lipavská
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 43, Prague 2, Czech Republic
| |
Collapse
|
10
|
A New Anodic Electrochemiluminescence of Tris(2,2′- bipyridine)ruthenium(II) with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide as a Coreactant for Determination of Hydrogen peroxide. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
|
12
|
Deshmukh R, Tiwari S. Molecular interaction of charcoal rot pathogenesis in soybean: a complex interaction. PLANT CELL REPORTS 2021; 40:1799-1812. [PMID: 34232377 DOI: 10.1007/s00299-021-02747-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Charcoal rot (CR) is a major disease of soybean, which is caused by Macrophomina phaseolina (Mp). Increasing temperatures and low rainfall in recent years have immensely benefitted the pathogen. Hence, the search for genetically acquired resistance to this pathogen is essential. The pathogen is a hemibiotroph, which germinates on the root surface and colonizes epidermal tissue. Several surface receptors initiate pathogenesis, followed by the secretion of various enzymes that provide entry to host tissue. Several enzymes and other converging cascades in the pathogen participate against host defensive responses. β-glucan of the fungal cell wall is recognized as MAMPs (microbe-associated molecular patterns) in plants, which trigger host immune responses. Kinase receptors, resistance, and pathogenesis-related genes correspond to host defense response. They work in conjunction with hormone-mediated defense pathway especially, the systemic acquired resistance, calcium-signaling, and production of phytoalexins. Due to its quantitative nature, limited QTLs have been identified in soybean for CR resistance. The present review attempts to provide a functional link between M. phaseolina pathogenicity and soybean responses. Elucidation of CR resistance responses would facilitate improved designing of breeding programs, and may help in the selection of corresponding genes to introgress CR resistant traits.
Collapse
Affiliation(s)
- Reena Deshmukh
- Biotechnology Centre, Jawaharlal Nehru Agriculture University, Jabalpur, India.
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India.
| | - Sharad Tiwari
- Biotechnology Centre, Jawaharlal Nehru Agriculture University, Jabalpur, India
| |
Collapse
|
13
|
Mascellani A, Natali L, Cavallini A, Mascagni F, Caruso G, Gucci R, Havlik J, Bernardi R. Moderate Salinity Stress Affects Expression of Main Sugar Metabolism and Transport Genes and Soluble Carbohydrate Content in Ripe Fig Fruits ( Ficus carica L. cv. Dottato). PLANTS 2021; 10:plants10091861. [PMID: 34579394 PMCID: PMC8471620 DOI: 10.3390/plants10091861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 09/06/2021] [Indexed: 12/22/2022]
Abstract
Fig trees (Ficus carica L.) are commonly grown in the Mediterranean area, where salinity is an increasing problem in coastal areas. Young, fruiting plants of cv. Dottato were subjected to moderate salt stress (100 mM NaCl added to irrigation water) for 48 days before fruit sampling. To clarify the effect of salinity stress, we investigated changes in the transcription of the main sugar metabolism-related genes involved in the synthesis, accumulation and transport of soluble carbohydrates in ripe fruits by quantitative real-time PCR as well as the content of soluble sugars by quantitative 1H nuclear magnetic resonance spectroscopy. A general increase in the transcript levels of genes involved in the transport of soluble carbohydrates was observed. Alkaline-neutral and Acid Invertases transcripts, related to the synthesis of glucose and fructose, were up-regulated in ripe fruits of NaCl-stressed plants without a change in the content of D-glucose and D-fructose. The increases in sucrose and D-sorbitol contents were likely the result of the up-regulation of the transcription of Sucrose-Synthase- and Sorbitol-Dehydrogenase-encoding genes.
Collapse
Affiliation(s)
- Anna Mascellani
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (A.M.); (L.N.); (A.C.); (F.M.); (G.C.); (R.G.)
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic;
| | - Lucia Natali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (A.M.); (L.N.); (A.C.); (F.M.); (G.C.); (R.G.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Andrea Cavallini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (A.M.); (L.N.); (A.C.); (F.M.); (G.C.); (R.G.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Flavia Mascagni
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (A.M.); (L.N.); (A.C.); (F.M.); (G.C.); (R.G.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Giovanni Caruso
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (A.M.); (L.N.); (A.C.); (F.M.); (G.C.); (R.G.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Riccardo Gucci
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (A.M.); (L.N.); (A.C.); (F.M.); (G.C.); (R.G.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Jaroslav Havlik
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic;
| | - Rodolfo Bernardi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (A.M.); (L.N.); (A.C.); (F.M.); (G.C.); (R.G.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Correspondence:
| |
Collapse
|
14
|
Montecchiarini ML, Silva-Sanzana C, Valderramo L, Alemano S, Gollán A, Rivadeneira MF, Bello F, Vázquez D, Blanco-Herrera F, Podestá FE, Tripodi KEJ. Biochemical differences in the skin of two blueberries (Vaccinium corymbosum) varieties with contrasting firmness: Implication of ions, metabolites and cell wall related proteins in two developmental stages. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:483-495. [PMID: 33756354 DOI: 10.1016/j.plaphy.2021.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
The pursuit of firmer and better-quality blueberries is a continuous task that aims at a more profitable production. To this end it is essential to understand the biological processes linked to fruit firmness, which may diverge among tissues. By contrasting varieties with opposing firmness, we were able to elucidate events that, taking place at immature stage, lay the foundation to produce a firmer ripe fruit. A deep analysis of blueberry skin was carried out, involving diverse comparative approaches including proteomics and metabolomics coupled to immunolocalization assays. In'O'Neal' (low firmness) enhanced levels of aquaporins, expansins and pectin esterases at the green stage were found to be critical in distinguishing it from 'Emerald' (high firmness). The latter featured higher levels of ABA, low methyl esterified pectins in tricellular junctions and high levels of catechin at this stage. Meanwhile, in 'Emerald' 's ripe fruit epicarp, several mechanisms of cell wall reinforcement such as calcium and probably boron bridges, appear to be more prominent than in 'O'Neal'. This study highlights the importance of cell wall reorganization and structure, abundance of specific metabolites, water status, and hormonal signalling in connection to fruit firmness. These findings result particularly valuable in order to improve the fertilization procedures or in the search of molecular markers related with firmness.
Collapse
Affiliation(s)
- M L Montecchiarini
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - C Silva-Sanzana
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - L Valderramo
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - S Alemano
- Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - A Gollán
- Estación Experimental Concordia, Instituto Nacional de Tecnología Agropecuaria (INTA), Colonia Yeruá, Entre Ríos, Argentina
| | - M F Rivadeneira
- Estación Experimental Concordia, Instituto Nacional de Tecnología Agropecuaria (INTA), Colonia Yeruá, Entre Ríos, Argentina
| | - F Bello
- Estación Experimental Concordia, Instituto Nacional de Tecnología Agropecuaria (INTA), Colonia Yeruá, Entre Ríos, Argentina
| | - D Vázquez
- Estación Experimental Concordia, Instituto Nacional de Tecnología Agropecuaria (INTA), Colonia Yeruá, Entre Ríos, Argentina
| | - F Blanco-Herrera
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - F E Podestá
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - K E J Tripodi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina.
| |
Collapse
|
15
|
Chen J, Ullah C, Giddings Vassão D, Reichelt M, Gershenzon J, Hammerbacher A. Sclerotinia sclerotiorum Infection Triggers Changes in Primary and Secondary Metabolism in Arabidopsis thaliana. PHYTOPATHOLOGY 2021; 111:559-569. [PMID: 32876531 DOI: 10.1094/phyto-04-20-0146-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sclerotinia sclerotiorum is a devastating plant pathogen that causes substantial losses in various agricultural crops. Although plants have developed some well-known defense mechanisms against invasive fungi, much remains to be learned about plant responses to fungal pathogens. In this study, we investigated how S. sclerotiorum infection affects plant primary and secondary metabolism in the model plant Arabidopsis thaliana. Our results showed that soluble sugar and amino acid content changed significantly in A. thaliana leaves upon fungal colonization, with a decrease in sucrose and an increase in mannitol, attributed to fungal biosynthesis. Furthermore, the jasmonate signaling pathway was rapidly activated by S. sclerotiorum infection, and there was a striking accumulation of antifungal metabolites such as camalexin, p-coumaroyl agmatine, feruloyl agmatine, and Nδ-acetylornithine. On the other hand, the characteristic defense compounds of the Brassicaceae, the glucosinolates, were not induced in A. thaliana infected by S. sclerotiorum. Our study provides a better understanding of how A. thaliana primary and secondary metabolism is modified during infection by a fungal pathogen like S. sclerotiorum that has both hemibiotrophic and necrotrophic stages.
Collapse
Affiliation(s)
- J Chen
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - C Ullah
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - D Giddings Vassão
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - M Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - J Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - A Hammerbacher
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
16
|
Tsamir-Rimon M, Ben-Dor S, Feldmesser E, Oppenhimer-Shaanan Y, David-Schwartz R, Samach A, Klein T. Rapid starch degradation in the wood of olive trees under heat and drought is permitted by three stress-specific beta amylases. THE NEW PHYTOLOGIST 2021; 229:1398-1414. [PMID: 32880972 DOI: 10.1111/nph.16907] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Carbon reserve use is a major drought response in trees, enabling tree survival in conditions prohibiting photosynthesis. However, regulation of starch metabolism under drought at the whole-tree scale is still poorly understood. To this end, we combined measurements of nonstructural carbohydrates (NSCs), tree physiology and gene expression. The experiment was conducted outside on olive trees in pots under 90 d of seasonal spring to summer warming. Half of the trees were also subjected to limited water conditions for 28 d. Photosynthesis decreased in dehydrating trees from 19 to 0.5 µmol m-2 s-1 during the drought period. Starch degradation and mannitol production were a major drought response, with mannitol increasing to 71% and 41% out of total NSCs in shoots and roots, respectively. We identified the gene family members potentially relevant either to long-term or stress-induced carbon storage. Partitioning of expression patterns among β amylase and starch synthase family members was observed, with three β amylases possibly facilitating the rapid starch degradation under heat and drought. Our results suggest a group of stress-related, starch metabolism genes, correlated with NSC fluctuations during drought and recovery. The daily starch metabolism gene expression was different from the stress-mode starch metabolism pattern, where some genes are uniquely expressed during the stress-mode response.
Collapse
Affiliation(s)
- Mor Tsamir-Rimon
- Plant & Environmental Sciences Department, Weizmann Institute of Science, Rehovot, 76100, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Shifra Ben-Dor
- Life Science Core Facilities, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Ester Feldmesser
- Life Science Core Facilities, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yaara Oppenhimer-Shaanan
- Plant & Environmental Sciences Department, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Rakefet David-Schwartz
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, 7505101, Israel
| | - Alon Samach
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Tamir Klein
- Plant & Environmental Sciences Department, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
17
|
Taxonomic and Functional Shifts in the Sprout Spent Irrigation Water Microbiome in Response to Salmonella Contamination of Alfalfa Seeds. Appl Environ Microbiol 2021; 87:AEM.01811-20. [PMID: 33218999 DOI: 10.1128/aem.01811-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/11/2020] [Indexed: 11/20/2022] Open
Abstract
Despite recent advances in Salmonella-sprout research, little is known about the relationship between Salmonella and the sprout microbiome during sprouting. Sprout spent irrigation water (SSIW) provides an informative representation of the total microbiome of this primarily aquaponic crop. This study was designed to characterize the function and taxonomy of the most actively transcribed genes in SSIW from Salmonella enterica serovar Cubana-contaminated alfalfa seeds throughout the sprouting process. Genomic DNA and total RNA from SSIW was collected at regular intervals and sequenced using Illumina MiSeq and NextSeq platforms. Nucleic acid data were annotated using four different pipelines. Both metagenomic and metatranscriptomic analyses revealed a diverse and highly dynamic SSIW microbiome. A "core" SSIW microbiome comprised Klebsiella, Enterobacter, Pantoea, and Cronobacter The impact, however, of Salmonella contamination on alfalfa seeds influenced SSIW microbial community dynamics not only structurally but also functionally. Changes in genes associated with metabolism, genetic information processing, environmental information processing, and cellular processes were abundant and time dependent. At time points of 24 h, 48 h, and 96 h, totals of 541, 723, and 424 S Cubana genes, respectively, were transcribed at either higher or lower levels than at 0 h in SSIW during sprouting. An array of S Cubana genes (107) were induced at all three time points, including genes involved in biofilm formation and modulation, stress responses, and virulence and tolerance to antimicrobials. Taken together, these findings expand our understanding of the effect of Salmonella seed contamination on the sprout crop microbiome and metabolome.IMPORTANCE Interactions of human enteric pathogens like Salmonella with plants and plant microbiomes remain to be elucidated. The rapid development of next-generation sequencing technologies provides powerful tools enabling investigation of such interactions from broader and deeper perspectives. Using metagenomic and metatranscriptomic approaches, this study identified not only changes in microbiome structure of SSIW associated with sprouting but also changes in the gene expression patterns related to the sprouting process in response to Salmonella contamination of alfalfa seeds. This study advances our knowledge on Salmonella-plant (i.e., sprout) interaction.
Collapse
|
18
|
Jlilat A, Ragone R, Gualano S, Santoro F, Gallo V, Varvaro L, Mastrorilli P, Saponari M, Nigro F, D'Onghia AM. A non-targeted metabolomics study on Xylella fastidiosa infected olive plants grown under controlled conditions. Sci Rep 2021; 11:1070. [PMID: 33441842 PMCID: PMC7806896 DOI: 10.1038/s41598-020-80090-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 12/16/2020] [Indexed: 12/25/2022] Open
Abstract
In the last decade, the bacterial pathogen Xylella fastidiosa has devastated olive trees throughout Apulia region (Southern Italy) in the form of the disease called "Olive Quick Decline Syndrome" (OQDS). This study describes changes in the metabolic profile due to the infection by X. fastidiosa subsp. pauca ST53 in artificially inoculated young olive plants of the susceptible variety Cellina di Nardò. The test plants, grown in a thermo-conditioned greenhouse, were also co-inoculated with some xylem-inhabiting fungi known to largely occur in OQDS-affected trees, in order to partially reproduce field conditions in terms of biotic stress. The investigations were performed by combining NMR spectroscopy and MS spectrometry with a non-targeted approach for the analysis of leaf extracts. Statistical analysis revealed that Xylella-infected plants were characterized by higher amounts of malic acid, formic acid, mannitol, and sucrose than in Xylella-non-infected ones, whereas it revealed slightly lower amounts of oleuropein. Attention was paid to mannitol which may play a central role in sustaining the survival of the olive tree against bacterial infection. This study contributes to describe a set of metabolites playing a possible role as markers in the infections by X. fastidiosa in olive.
Collapse
Affiliation(s)
- Asmae Jlilat
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università Degli Studi Della Tuscia, Via San Camillo de Lellis, 01100, Viterbo, Italy
| | - Rosa Ragone
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari, Via Orabona 4, 70125, Bari, Italy
- Innovative Solutions S.R.L. - Spin Off del Politecnico Di Bari, Zona H 150/B, 70015, Noci, BA, Italy
| | - Stefania Gualano
- Centre International de Hautes Etudes Agronomiques Méditerranéennes (CIHEAM) of Bari, Via Ceglie 9, 70010, Valenzano, BA, Italy
| | - Franco Santoro
- Centre International de Hautes Etudes Agronomiques Méditerranéennes (CIHEAM) of Bari, Via Ceglie 9, 70010, Valenzano, BA, Italy
| | - Vito Gallo
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari, Via Orabona 4, 70125, Bari, Italy.
- Innovative Solutions S.R.L. - Spin Off del Politecnico Di Bari, Zona H 150/B, 70015, Noci, BA, Italy.
| | - Leonardo Varvaro
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università Degli Studi Della Tuscia, Via San Camillo de Lellis, 01100, Viterbo, Italy
| | - Piero Mastrorilli
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari, Via Orabona 4, 70125, Bari, Italy
- Innovative Solutions S.R.L. - Spin Off del Politecnico Di Bari, Zona H 150/B, 70015, Noci, BA, Italy
| | - Maria Saponari
- Istituto Per La Protezione Sostenibile Delle Piante, CNR, SS Bari, Via Amendola 165/A, 70126, Bari, Italy
| | - Franco Nigro
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università Degli Studi di Bari ″Aldo Moro″, Via Amendola 165/A, 70126, Bari, Italy
| | - Anna Maria D'Onghia
- Centre International de Hautes Etudes Agronomiques Méditerranéennes (CIHEAM) of Bari, Via Ceglie 9, 70010, Valenzano, BA, Italy
| |
Collapse
|
19
|
Hooshmand K, Kudjordjie EN, Nicolaisen M, Fiehn O, Fomsgaard IS. Mass Spectrometry-Based Metabolomics Reveals a Concurrent Action of Several Chemical Mechanisms in Arabidopsis-Fusarium oxysporum Compatible and Incompatible Interactions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:15335-15344. [PMID: 33305951 DOI: 10.1021/acs.jafc.0c05144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fusarium oxysporum is a destructive root-infecting plant pathogen that causes significant yield losses in many economically important crop species. Hence, a deeper understanding of pathogen infection strategies is needed. With liquid chromatography-tandem mass spectrometry and gas chromatography-time of flight mass spectrometry platforms, we analyzed the metabolic changes in a time-course experiment with Arabidopsis accessions either resistant (Col-0) or susceptible (Ler-0) to isolates of Fusarium oxysporum forma specialis matthioli infection. We showed a concurrent effect of Fusarium-derived polyols and the mycotoxin beauvericin in the suppression of the immune response of susceptible hosts. A significant increase in oxidized glutathione in the resistant host was probably associated with effective reactive oxygen species-mediated resistance responses. Through a combination of targeted and untargeted metabolomics, we demonstrated the concurrent action of several Arabidopsis defense systems as well as the concurrent action of several virulence systems in the fungal attack of susceptible Arabidopsis.
Collapse
Affiliation(s)
- Kourosh Hooshmand
- Department of Agroecology, Research Center Flakkebjerg, Aarhus University, DK-4200 Slagelse, Denmark
| | - Enoch Narh Kudjordjie
- Department of Agroecology, Research Center Flakkebjerg, Aarhus University, DK-4200 Slagelse, Denmark
| | - Mogens Nicolaisen
- Department of Agroecology, Research Center Flakkebjerg, Aarhus University, DK-4200 Slagelse, Denmark
| | - Oliver Fiehn
- NIH West Coast Metabolomics Center, University of California Davis, 95616 Davis, California, United States
| | - Inge S Fomsgaard
- Department of Agroecology, Research Center Flakkebjerg, Aarhus University, DK-4200 Slagelse, Denmark
| |
Collapse
|
20
|
Rodrigues AM, Kubitschek-Barreira PH, Pinheiro BG, Teixeira-Ferreira A, Hahn RC, de Camargo ZP. Immunoproteomic Analysis Reveals Novel Candidate Antigens for the Diagnosis of Paracoccidioidomycosis Due to Paracoccidioides lutzii. J Fungi (Basel) 2020; 6:jof6040357. [PMID: 33322269 PMCID: PMC7770604 DOI: 10.3390/jof6040357] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
Paracoccidioidomycosis (PCM) is a life-threatening systemic infection caused by the fungal pathogen Paracoccidioides brasiliensis and related species. Whole-genome sequencing and stage-specific proteomic analysis of Paracoccidioides offer the opportunity to profile humoral immune responses against P. lutzii and P. brasiliensis s. str. infection using innovative screening approaches. Here, an immunoproteomic approach was used to identify PCM-associated antigens that elicit immune responses by combining 2-D electrophoresis of P. lutzii and P. brasiliensis proteomes, immunological detection using a gold-standard serum, and mass spectrometry analysis. A total of 16 and 25 highly immunoreactive proteins were identified in P. lutzii and P. brasiliensis, respectively, and 29 were shown to be the novel antigens for Paracoccidioides species, including seven uncharacterized proteins. Among the panel of proteins identified, most are involved in metabolic pathways, carbon metabolism, and biosynthesis of secondary metabolites in both immunoproteomes. Remarkably, six isoforms of the surface-associated enolase in the range of 54 kDa were identified as the major antigens in human PCM due to P. lutzii. These novel immunoproteomes of Paracoccidioides will be employed to develop a sensitive and affordable point-of-care diagnostic assay and an effective vaccine to identify infected hosts and prevent infection and development of human PCM. These findings provide a unique opportunity for the refinement of diagnostic tools of this important neglected systemic mycosis, which is usually associated with poverty.
Collapse
Affiliation(s)
- Anderson Messias Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil;
- Correspondence: (A.M.R.); (Z.P.d.C.); Tel.: +55-1155764551 (ext. 1540) (A.M.R.); +55-1155764551 (ext. 1512) (Z.P.d.C.)
| | - Paula Helena Kubitschek-Barreira
- Department of Cellular Biology, Roberto Alcantara Gomes Institute of Biology, Rio de Janeiro State University (UERJ), Rio de Janeiro 20511010, Brazil;
| | - Breno Gonçalves Pinheiro
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil;
| | - André Teixeira-Ferreira
- Toxinology Laboratory, Department of Physiology and Pharmacodynamics, Fiocruz, Rio de Janeiro 21040900, Brazil;
| | - Rosane Christine Hahn
- Laboratory of Mycology/Research, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá 78060900, Brazil;
- Júlio Muller University Hospital, Federal University of Mato Grosso, Cuiabá 78048902, Brazil
| | - Zoilo Pires de Camargo
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil;
- Department of Medicine, Discipline of Infectious Diseases, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil
- Correspondence: (A.M.R.); (Z.P.d.C.); Tel.: +55-1155764551 (ext. 1540) (A.M.R.); +55-1155764551 (ext. 1512) (Z.P.d.C.)
| |
Collapse
|
21
|
Danilova OA, Ianutsevich EA, Bondarenko SA, Georgieva ML, Vikchizhanina DA, Groza NV, Bilanenko EN, Tereshina VM. Osmolytes and membrane lipids in the adaptation of micromycete Emericellopsis alkalina to ambient pH and sodium chloride. Fungal Biol 2020; 124:884-891. [DOI: 10.1016/j.funbio.2020.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 11/28/2022]
|
22
|
Zhang H, Zhang D, Wang F, Hsiang T, Liu J, Li G. Lasiodiplodia theobromae-induced alteration in ROS metabolism and its relation to gummosis development in Prunus persica. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:43-53. [PMID: 32526610 DOI: 10.1016/j.plaphy.2020.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 05/21/2023]
Abstract
Peach gummosis caused by Lasiodiplodia theobromae is one of the most detrimental diseases to peaches in southern China. Reactive oxygen species (ROS) play major roles in plant-pathogen interactions, however, their roles in the pathogenesis of peach gummosis, especially shoot disease in perennials, are largely unknown. In this study, the effects of L. theobromae on ROS production-scavenging systems and on signalling transduction during L. theobromae-induced gummosis in current-year peach shoots were investigated. The infection by L. theobromae led to a ROS burst and activated the plant antioxidant enzyme-dependent scavenging system. With disease progression, the capacity of the plant antioxidant machinery declined, and allowed for ROS accumulation and eventual malondialdehyde production. As for the fungus L. theobromae, the transcripts of genes related to ROS production were significantly repressed, and concomitantly the expression of genes related to antioxidant systems and oxidative stress resistance was markedly upregulated, perhaps to alleviate oxidative stress for successful colonisation. Moreover, genes involved in phytohormones biosynthesis and pathogenesis-related proteins were all markedly promoted, which could contribute to the restriction of disease development in peach shoots. Overall, the results showed that the ROS production-scavenging system in P. persica might affect disease development during peach-L. theobromae interaction. Our findings lay the foundations for future in-depth investigations of the molecular mechanisms and regulatory networks underlying L. theobromae-mediated shoot diseases in terms of ROS production-scavenging systems.
Collapse
Affiliation(s)
- He Zhang
- Key Laboratory of Horticultural Plant Biology-Ministry of Education, College of Horticulture and Forest Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Dongmei Zhang
- Key Laboratory of Horticultural Plant Biology-Ministry of Education, College of Horticulture and Forest Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Fan Wang
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, 332005, Jiangxi Province, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Junwei Liu
- Key Laboratory of Horticultural Plant Biology-Ministry of Education, College of Horticulture and Forest Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| | - Guohuai Li
- Key Laboratory of Horticultural Plant Biology-Ministry of Education, College of Horticulture and Forest Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
23
|
Owusu EGA, Yaghini E, Naasani I, Parkin IP, Allan E, MacRobert AJ. Synergistic interactions of cadmium-free quantum dots embedded in a photosensitised polymer surface: efficient killing of multidrug-resistant strains at low ambient light levels. NANOSCALE 2020; 12:10609-10622. [PMID: 32373810 PMCID: PMC7497474 DOI: 10.1039/c9nr10421f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Cadmium-free quantum dots (QD) were combined with crystal violet photosensitising dye and incorporated into medical grade polyurethane via a non-covalent dipping process known as 'swell-encapsulation-shrink'. The antibacterial efficacy of the prepared quantum dot-crystal violet polyurethane substrates (QD + CV PU) was investigated under low power visible light illumination at similar intensities (500 lux) to those present in clinical settings. The antibacterial performance of QD + CV PU was superior to the constituent polymer substrates, eliminating ∼99.9% of an environmental P. aeruginosa strain, a clinical P. aeruginosa strain from a cystic fibrosis patient and a clinical E. coli strain. The nature of the reactive oxygen species (ROS) involved in antibacterial activity of the QD + CV PU surface was investigated using ROS inhibitors and time-resolved optical spectroscopy. The photo-physical interactions of the green-emitting QDs with CV lead to a combination of Type I and II electron transfer and energy transfer processes, with the highly potent ROS singlet oxygen playing a dominant role. This study is the first to demonstrate highly efficient synergistic killing of clinical and environmental strains of intrinsically resistant and multi-drug resistant Gram-negative bacteria using light-activated surfaces containing biocompatible cadmium-free QDs and crystal violet dye at ambient light levels.
Collapse
Affiliation(s)
- Ethel G. A. Owusu
- UCL Division of Surgery and Interventional Science
, University College London
,
Charles Bell House
, 43-45 Foley Street
, London W1 W 7TS
, UK
.
- Materials Chemistry Research Centre
, Department of Chemistry
, University College London
,
20 Gordon Street
, London WC1H 0AJ
, UK
- Department of Microbial Diseases
, UCL Eastman Dental Institute
, University College London
,
256 Gray's Inn Road
, London WC1X 8LD
, UK
| | - Elnaz Yaghini
- UCL Division of Surgery and Interventional Science
, University College London
,
Charles Bell House
, 43-45 Foley Street
, London W1 W 7TS
, UK
.
| | - Imad Naasani
- Nanoco Technologies Ltd
,
46 Grafton Street
, Manchester M13 9NT
, UK
| | - Ivan P. Parkin
- Materials Chemistry Research Centre
, Department of Chemistry
, University College London
,
20 Gordon Street
, London WC1H 0AJ
, UK
| | - Elaine Allan
- Department of Microbial Diseases
, UCL Eastman Dental Institute
, University College London
,
256 Gray's Inn Road
, London WC1X 8LD
, UK
| | - Alexander J. MacRobert
- UCL Division of Surgery and Interventional Science
, University College London
,
Charles Bell House
, 43-45 Foley Street
, London W1 W 7TS
, UK
.
| |
Collapse
|
24
|
Eberl F, Fernandez de Bobadilla M, Reichelt M, Hammerbacher A, Gershenzon J, Unsicker SB. Herbivory meets fungivory: insect herbivores feed on plant pathogenic fungi for their own benefit. Ecol Lett 2020; 23:1073-1084. [PMID: 32307873 DOI: 10.1111/ele.13506] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/19/2020] [Accepted: 03/08/2020] [Indexed: 12/23/2022]
Abstract
Plants are regularly colonised by fungi and bacteria, but plant-inhabiting microbes are rarely considered in studies on plant-herbivore interactions. Here we show that young gypsy moth (Lymantria dispar) caterpillars prefer to feed on black poplar (Populus nigra) foliage infected by the rust fungus Melampsora larici-populina instead of uninfected control foliage, and selectively consume fungal spores. This consumption, also observed in a related lepidopteran species, is stimulated by the sugar alcohol mannitol, found in much higher concentration in fungal tissue and infected leaves than uninfected plant foliage. Gypsy moth larvae developed more rapidly on rust-infected leaves, which cannot be attributed to mannitol but rather to greater levels of total nitrogen, essential amino acids and B vitamins in fungal tissue and fungus-infected leaves. Herbivore consumption of fungi and other microbes may be much more widespread than commonly believed with important consequences for the ecology and evolution of plant-herbivore interactions.
Collapse
Affiliation(s)
- Franziska Eberl
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Maite Fernandez de Bobadilla
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Almuth Hammerbacher
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Hatfield, 0028, South Africa
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Sybille B Unsicker
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| |
Collapse
|
25
|
Hang L, Li H, Zhang T, Men D, Zhang C, Gao P, Zhang Q. Au@Prussian Blue Hybrid Nanomaterial Synergy with a Chemotherapeutic Drug for Tumor Diagnosis and Chemodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39493-39502. [PMID: 31576732 DOI: 10.1021/acsami.9b13470] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recently, the chemodynamic therapy (CDT) has been widely reported and applied to tumor therapy. However, only low level hydroxyl radicals (•OH) generated by the endogenous hydrogen peroxide alone are insufficient to kill the cancer cells. To overcome the insufficient therapeutic effect, this study reports a novel CDT based on Fenton catalyst Au@Prussian blue nanocubes (Au@PB NCs), subsequently encapsulated with doxorubicin (Dox). The in vitro and in vivo results indicate that the Dox-Au@PB NCs can take synergistic effects on tumor suppressor by CDT. In addition, Au@PB NCs possess high X-ray computed tomography contrast enhanced efficiency about ∼27.13 HU·mL·mg-1. This study highlights a great potential of the Dox-Au@PB NCs for tumor diagnosis and CDT.
Collapse
Affiliation(s)
- Lifeng Hang
- College of Chemistry and Environmental Engineering , Shenzhen University , Shenzhen 518060 , P. R. China
- University of Science and Technology of China , Hefei 230027 , P. R. China
| | - Hailiang Li
- Department of General Surgery II , Guangdong Second Provincial General Hospital , Guangzhou 518037 , P. R. China
| | - Tao Zhang
- University of Science and Technology of China , Hefei 230027 , P. R. China
| | - Dandan Men
- University of Science and Technology of China , Hefei 230027 , P. R. China
| | - Cong Zhang
- University of Science and Technology of China , Hefei 230027 , P. R. China
| | - Peng Gao
- Department of General Surgery II , Guangdong Second Provincial General Hospital , Guangzhou 518037 , P. R. China
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering , Shenzhen University , Shenzhen 518060 , P. R. China
| |
Collapse
|
26
|
Hang L, Li H, Zhang T, Men D, Zhang C, Gao P, Zhang Q. Au@Prussian Blue Hybrid Nanomaterial Synergy with a Chemotherapeutic Drug for Tumor Diagnosis and Chemodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39493-39502. [DOI: doi.org/10.1021/acsami.9b13470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Affiliation(s)
- Lifeng Hang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- University of Science and Technology of China, Hefei 230027, P. R. China
| | - Hailiang Li
- Department of General Surgery II, Guangdong Second Provincial General Hospital, Guangzhou 518037, P. R. China
| | - Tao Zhang
- University of Science and Technology of China, Hefei 230027, P. R. China
| | - Dandan Men
- University of Science and Technology of China, Hefei 230027, P. R. China
| | - Cong Zhang
- University of Science and Technology of China, Hefei 230027, P. R. China
| | - Peng Gao
- Department of General Surgery II, Guangdong Second Provincial General Hospital, Guangzhou 518037, P. R. China
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
27
|
Király A, Hámori C, Gyémánt G, Kövér KE, Pócsi I, Leiter É. Characterization of gfdB, putatively encoding a glycerol 3-phosphate dehydrogenase in Aspergillus nidulans. Fungal Biol 2019; 124:352-360. [PMID: 32389297 DOI: 10.1016/j.funbio.2019.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/26/2019] [Accepted: 09/28/2019] [Indexed: 11/18/2022]
Abstract
The genome of Aspergillus nidulans accommodates two glycerol 3-phosphate dehydrogenase genes, gfdA and gfdB. Previous studies confirmed that GfdA is involved in the osmotic stress defence of the fungus. In this work, the physiological role of GfdB was characterized via the construction and functional characterization of the gene deletion mutant ΔgfdB. Unexpectedly, ΔgfdB strains showed oxidative stress sensitivity in the presence of a series of well-known oxidants including tert-butyl-hydroperoxide (tBOOH), diamide as well as hydrogen peroxide. Moderate sensitivity of the mutant towards the cell wall stress inducing agent CongoRed was also observed. Hence, both Gfd isoenzymes contributed to the environmental stress defence of the fungus but their functions were stress-type-specific. Furthermore, the specific activities of certain antioxidant enzymes, like catalase and glutathione peroxidase, were lower in ΔgfdB hyphae than those recorded in the control strain. As a consequence, mycelia from ΔgfdB cultures accumulated reactive species at higher levels than the control. On the other hand, the specific glutathione reductase activity was higher in the mutant, most likely to compensate for the elevated intracellular oxidative species concentrations. Nevertheless, the efficient control of reactive species failed in ΔgfdB cultures, which resulted in reduced viability and, concomitantly, early onset of programmed cell death in mutant hyphae. Inactivation of gfdB brought about higher mannitol accumulation in mycelia meanwhile the erythritol production was not disturbed in unstressed cultures. After oxidative stress treatment with tBOOH, only mannitol was detected in both mutant and control mycelia and the accumulation of mannitol even intensified in the ΔgfdB strain.
Collapse
Affiliation(s)
- Anita Király
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary; University of Debrecen, Pál Juhász-Nagy Doctoral School of Biology and Environmental Sciences, Hungary
| | - Csaba Hámori
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Gyöngyi Gyémánt
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Katalin E Kövér
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Éva Leiter
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
28
|
Nguyen T, Kim T, Ta HM, Yeo WS, Choi J, Mizar P, Lee SS, Bae T, Chaurasia AK, Kim KK. Targeting Mannitol Metabolism as an Alternative Antimicrobial Strategy Based on the Structure-Function Study of Mannitol-1-Phosphate Dehydrogenase in Staphylococcus aureus. mBio 2019; 10:e02660-18. [PMID: 31289190 PMCID: PMC6623548 DOI: 10.1128/mbio.02660-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/05/2019] [Indexed: 11/22/2022] Open
Abstract
Mannitol-1-phosphate dehydrogenase (M1PDH) is a key enzyme in Staphylococcus aureus mannitol metabolism, but its roles in pathophysiological settings have not been established. We performed comprehensive structure-function analysis of M1PDH from S. aureus USA300, a strain of community-associated methicillin-resistant S. aureus, to evaluate its roles in cell viability and virulence under pathophysiological conditions. On the basis of our results, we propose M1PDH as a potential antibacterial target. In vitro cell viability assessment of ΔmtlD knockout and complemented strains confirmed that M1PDH is essential to endure pH, high-salt, and oxidative stress and thus that M1PDH is required for preventing osmotic burst by regulating pressure potential imposed by mannitol. The mouse infection model also verified that M1PDH is essential for bacterial survival during infection. To further support the use of M1PDH as an antibacterial target, we identified dihydrocelastrol (DHCL) as a competitive inhibitor of S. aureus M1PDH (SaM1PDH) and confirmed that DHCL effectively reduces bacterial cell viability during host infection. To explain physiological functions of SaM1PDH at the atomic level, the crystal structure of SaM1PDH was determined at 1.7-Å resolution. Structure-based mutation analyses and DHCL molecular docking to the SaM1PDH active site followed by functional assay identified key residues in the active site and provided the action mechanism of DHCL. Collectively, we propose SaM1PDH as a target for antibiotic development based on its physiological roles with the goals of expanding the repertory of antibiotic targets to fight antimicrobial resistance and providing essential knowledge for developing potent inhibitors of SaM1PDH based on structure-function studies.IMPORTANCE Due to the shortage of effective antibiotics against drug-resistant Staphylococcus aureus, new targets are urgently required to develop next-generation antibiotics. We investigated mannitol-1-phosphate dehydrogenase of S. aureus USA300 (SaM1PDH), a key enzyme regulating intracellular mannitol levels, and explored the possibility of using SaM1PDH as a target for developing antibiotic. Since mannitol is necessary for maintaining the cellular redox and osmotic potential, the homeostatic imbalance caused by treatment with a SaM1PDH inhibitor or knockout of the gene encoding SaM1PDH results in bacterial cell death through oxidative and/or mannitol-dependent cytolysis. We elucidated the molecular mechanism of SaM1PDH and the structural basis of substrate and inhibitor recognition by enzymatic and structural analyses of SaM1PDH. Our results strongly support the concept that targeting of SaM1PDH represents an alternative strategy for developing a new class of antibiotics that cause bacterial cell death not by blocking key cellular machinery but by inducing cytolysis and reducing stress tolerance through inhibition of the mannitol pathway.
Collapse
Affiliation(s)
- Thanh Nguyen
- Department of Molecular Cell Biology, Institute for Antimicrobial Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Truc Kim
- Department of Molecular Cell Biology, Institute for Antimicrobial Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Hai Minh Ta
- Department of Molecular Cell Biology, Institute for Antimicrobial Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Won Sik Yeo
- Department of Microbiology and Immunology, Indiana University School of Medicine Northwest, Gary, Indiana, USA
| | - Jongkeun Choi
- Department of Chemical Engineering, Chungwoon University, Incheon, South Korea
| | - Pushpak Mizar
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| | - Seung Seo Lee
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| | - Taeok Bae
- Department of Microbiology and Immunology, Indiana University School of Medicine Northwest, Gary, Indiana, USA
| | - Akhilesh Kumar Chaurasia
- Department of Molecular Cell Biology, Institute for Antimicrobial Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Institute for Antimicrobial Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, South Korea
- Samsung Biomedical Research Institute, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
29
|
|
30
|
Fereja TH, Kitte SA, Gao W, Yuan F, Snizhko D, Qi L, Nsabimana A, Liu Z, Xu G. Artesunate-luminol chemiluminescence system for the detection of hemin. Talanta 2019; 204:379-385. [PMID: 31357309 DOI: 10.1016/j.talanta.2019.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/21/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022]
Abstract
Fabricating simple, accurate and user-friendly diagnostic device for "point of care testing" (POCT) applications is one of the most challenging objectives in the analytical field. Hemin detection is important for drugs monitoring, diagnosis, and forensic latent bloodstain imaging. Herein is developed, luminol chemiluminescence biosensor for hemin detection using artesunate as coreactant. A possible mechanism to account for the chemiluminescence reaction is discussed. Hemin was detected using both photomultiplier tube (PMT) and smartphone as detector. The detection limit for hemin using smartphone as detector is 20 nM, enabling the visual detection of hemin in blood sample with a dilution factor of blood up to 120,000. While PMT detector is used, the system is able to detect hemin down to 0.22 nM. In addition to high sensitivity, this sensing system exhibit high selectivity. It can successfully distinguish bloodstain from other stains while applying the system for point of care testing using smart phone as detector. Moreover, the system can detect artesunate with a linear range from 0.1 nM to 1.0 μM with a limit of detection of 0.078 nM.
Collapse
Affiliation(s)
- Tadesse Haile Fereja
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Ambo University, College of Medicine and Health Sciences, Department of Pharmacy, P.O.Box 19, Ambo, Ethiopia
| | - Shimeles Addisu Kitte
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Wenyue Gao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Fan Yuan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, PR China; University of Science and Technology of China. Anhui, 230026, PR China
| | - Dmytro Snizhko
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, PR China; Laboratory of Analytical Optochemotronics, Kharkiv National University of Radio Electronics, 14 Nauka Ave., Kharkiv, 61166, Ukraine
| | - Liming Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Anaclet Nsabimana
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zhongyuan Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, PR China.
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, PR China; University of Science and Technology of China. Anhui, 230026, PR China.
| |
Collapse
|
31
|
Solingapuram Sai KK, Bashetti N, Chen X, Norman S, Hines JW, Meka O, Kumar JVS, Devanathan S, Deep G, Furdui CM, Mintz A. Initial biological evaluations of 18F-KS1, a novel ascorbate derivative to image oxidative stress in cancer. EJNMMI Res 2019; 9:43. [PMID: 31101996 PMCID: PMC6525227 DOI: 10.1186/s13550-019-0513-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Reactive oxygen species (ROS)-induced oxidative stress damages many cellular components such as fatty acids, DNA, and proteins. This damage is implicated in many disease pathologies including cancer and neurodegenerative and cardiovascular diseases. Antioxidants like ascorbate (vitamin C, ascorbic acid) have been shown to protect against the deleterious effects of oxidative stress in patients with cancer. In contrast, other data indicate potential tumor-promoting activity of antioxidants, demonstrating a potential temporal benefit of ROS. However, quantifying real-time tumor ROS is currently not feasible, since there is no way to directly probe global tumor ROS. In order to study this ROS-induced damage and design novel therapeutics to prevent its sequelae, the quantitative nature of positron emission tomography (PET) can be harnessed to measure in vivo concentrations of ROS. Therefore, our goal is to develop a novel translational ascorbate-based probe to image ROS in cancer in vivo using noninvasive PET imaging of tumor tissue. The real-time evaluations of ROS state can prove critical in developing new therapies and stratifying patients to therapies that are affected by tumor ROS. METHODS We designed, synthesized, and characterized a novel ascorbate derivative (E)-5-(2-chloroethylidene)-3-((4-(2-fluoroethoxy)benzyl)oxy)-4-hydroxyfuran-2(5H)-one (KS1). We used KS1 in an in vitro ROS MitoSOX-based assay in two different head and neck squamous cancer cells (HNSCC) that express different ROS levels, with ascorbate as reference standard. We radiolabeled 18F-KS1 following 18F-based nucleophilic substitution reactions and determined in vitro reactivity and specificity of 18F-KS1 in HNSCC and prostate cancer (PCa) cells. MicroPET imaging and standard biodistribution studies of 18F-KS1 were performed in mice bearing PCa cells. To further demonstrate specificity, we performed microPET blocking experiments using nonradioactive KS1 as a blocker. RESULTS KS1 was synthesized and characterized using 1H NMR spectra. MitoSOX assay demonstrated good correlations between increasing concentrations of KS1 and ascorbate and increased reactivity in SCC-61 cells (with high ROS levels) versus rSCC-61cells (with low ROS levels). 18F-KS1 was radiolabeled with high radiochemical purity (> 94%) and specific activity (~ 100 GBq/μmol) at end of synthesis (EOS). Cell uptake of 18F-KS1 was high in both types of cancer cells, and the uptake was significantly blocked by nonradioactive KS1, and the ROS blocker, superoxide dismutase (SOD) demonstrating specificity. Furthermore, 18F-KS1 uptake was increased in PCa cells under hypoxic conditions, which have been shown to generate high ROS. Initial in vivo tumor uptake studies in PCa tumor-bearing mice demonstrated that 18F-KS1 specifically bound to tumor, which was significantly blocked (threefold) by pre-injecting unlabeled KS1. Furthermore, biodistribution studies in the same tumor-bearing mice showed high tumor to muscle (target to nontarget) ratios. CONCLUSION This work demonstrates the strong preliminary support of 18F-KS1, both in vitro and in vivo for imaging ROS in cancer. If successful, this work will provide a new paradigm to directly probe real-time oxidative stress levels in vivo. Our work could enhance precision medicine approaches to treat cancer, as well as neurodegenerative and cardiovascular diseases affected by ROS.
Collapse
Affiliation(s)
| | - Nagaraju Bashetti
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh 522502 India
| | - Xiaofei Chen
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Skylar Norman
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Justin W. Hines
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Omsai Meka
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - J. V. Shanmukha Kumar
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh 522502 India
| | | | - Gagan Deep
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Cristina M. Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Akiva Mintz
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032 USA
| |
Collapse
|
32
|
Montecchiarini ML, Margarit E, Morales L, Rivadeneira MF, Bello F, Gollán A, Vázquez D, Podestá FE, Tripodi KEJ. Proteomic and metabolomic approaches unveil relevant biochemical changes in carbohydrate and cell wall metabolisms of two blueberry (Vaccinium corymbosum) varieties with different quality attributes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 136:230-244. [PMID: 30708258 DOI: 10.1016/j.plaphy.2018.12.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/13/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
Quality maintenance in rapidly decaying fruit such as blueberries (Vaccinium corymbosum) is of essential importance to guarantee the economic success of the crop. Fruit quality is a multifaceted subject that encompasses flavor, aroma, visual and physical issues as main factors. In this paper we report an ample characterization of different biochemical and physical aspects in two varieties (O'Neal and Emerald) of blueberries that differ in firmness, aspect, flavor and harvesting times, at two different phenological stages (fruit set vs. ripe), with the intention of unveiling how the metabolic signature of each contributes to their contrasting quality. To this effect a metabolomic, ionomic and proteomic approach was selected. The results presented here show marked differences in several variables at the two stages and between varieties. Emerald is an early variety with a large, good taste and firm fruit, while O'Neal is soft, medium sized and very sweet. Proteomic data comparison between both cultivars showed that, at fruit set, processes related with the response to inorganic compounds and small molecule metabolisms are relevant in both varieties. However, solute accumulation (mainly amino acids and organic acids), enzymes related with C: N balance, water transport and cell wall recycling are enhanced in Emerald. In ripe fruit, Emerald showed an enrichment of proteins associated with TCA, nitrogen, small molecules and cell wall in muro recycling processes, while mannitol and fatty acid metabolism were enhanced in the soft variety. The measured variation in metabolite levels gave strong support to the precedent results. This study suggests that at fruit set, a composite scenario of active metabolic recycling of the cell wall, improved C: N balance and solute accumulation give place to a more efficient carbon and water resource management. During the ripe stage, an increased and efficient in muro and metabolic recycling of the cell wall, added to enhanced inositol and secondary metabolism may be responsible for a best turgor conservation in Emerald. These findings may yield clues for improvements in fertilization practices, as well as to assist the guided development of new varieties based on biochemical quality.
Collapse
Affiliation(s)
- M L Montecchiarini
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Santa Fe, Argentina
| | - E Margarit
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Santa Fe, Argentina
| | - L Morales
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Santa Fe, Argentina
| | - M F Rivadeneira
- Estación Experimental Concordia, Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Yuquerí, 3200, Concordia, Entre Ríos, Argentina
| | - F Bello
- Estación Experimental Concordia, Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Yuquerí, 3200, Concordia, Entre Ríos, Argentina
| | - A Gollán
- Estación Experimental Concordia, Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Yuquerí, 3200, Concordia, Entre Ríos, Argentina
| | - D Vázquez
- Estación Experimental Concordia, Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Yuquerí, 3200, Concordia, Entre Ríos, Argentina
| | - F E Podestá
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Santa Fe, Argentina.
| | - K E J Tripodi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Santa Fe, Argentina.
| |
Collapse
|
33
|
Bönnighausen J, Schauer N, Schäfer W, Bormann J. Metabolic profiling of wheat rachis node infection by Fusarium graminearum - decoding deoxynivalenol-dependent susceptibility. THE NEW PHYTOLOGIST 2019; 221:459-469. [PMID: 30084118 DOI: 10.1111/nph.15377] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/09/2018] [Indexed: 05/20/2023]
Abstract
Fusarium graminearum is a filamentous ascomycete and the causal agent of Fusarium head blight on wheat that threatens food and feed production worldwide as infection reduces crop yield both quantitatively by interfering with kernel development and qualitatively by poisoning any remaining kernels with mycotoxins. In wheat, F. graminearum infects spikelets and colonizes the entire head by growing through the rachis node at the bottom of each spikelet. Without the mycotoxin deoxynivalenol (DON), the pathogen cannot penetrate the rachis node and wheat is able to resist colonization. Using a global metabolite profiling approach we compared the metabolic profile of rachis nodes inoculated with either water, the Fusarium graminearum wild-type or the DON-deficient ∆tri5 mutant. Extensive metabolic rearrangements mainly affect metabolites for general stress perception and signaling, reactive oxygen species (ROS) metabolism, cell wall composition, the tri-carbonic acid (TCA) cycle and γ-aminobutyric acid (GABA) shunt as well as sugar alcohols, amino acids, and storage carbohydrates. The results revealed specific, DON-related susceptibility factors. Wild-type infection resulted in an oxidative burst and the induction of plant programmed cell death, while spread of the DON-deficient mutant was blocked in a jasmonate (JA)-related defense reaction in concert with other factors. Hence, the ∆tri5 mutant is prone to defense reactions that are, in the case of a wild-type infection, not initiated.
Collapse
Affiliation(s)
- Jakob Bönnighausen
- Department of Molecular Phytopathology, Institute of Plant Science and Microbiology (IPM), University of Hamburg, Ohnhorststr. 18, D-22609, Hamburg, Germany
| | - Nicolas Schauer
- Metabolomic Discoveries GmbH, Am Mühlenberg 11, D-14476, Potsdam, Germany
| | - Wilhelm Schäfer
- Department of Molecular Phytopathology, Institute of Plant Science and Microbiology (IPM), University of Hamburg, Ohnhorststr. 18, D-22609, Hamburg, Germany
| | - Jörg Bormann
- Department of Molecular Phytopathology, Institute of Plant Science and Microbiology (IPM), University of Hamburg, Ohnhorststr. 18, D-22609, Hamburg, Germany
- Department for Cell Biology, University of Bremen, Leobener Str. NW2, 28359, Bremen, Germany
| |
Collapse
|
34
|
Matthews JL, Oakley CA, Lutz A, Hillyer KE, Roessner U, Grossman AR, Weis VM, Davy SK. Partner switching and metabolic flux in a model cnidarian-dinoflagellate symbiosis. Proc Biol Sci 2018; 285:20182336. [PMID: 30487315 PMCID: PMC6283946 DOI: 10.1098/rspb.2018.2336] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/02/2018] [Indexed: 11/12/2022] Open
Abstract
Metabolite exchange is fundamental to the viability of the cnidarian-Symbiodiniaceae symbiosis and survival of coral reefs. Coral holobiont tolerance to environmental change might be achieved through changes in Symbiodiniaceae species composition, but differences in the metabolites supplied by different Symbiodiniaceae species could influence holobiont fitness. Using 13C stable-isotope labelling coupled to gas chromatography-mass spectrometry, we characterized newly fixed carbon fate in the model cnidarian Exaiptasia pallida (Aiptasia) when experimentally colonized with either native Breviolum minutum or non-native Durusdinium trenchii Relative to anemones containing B. minutum, D. trenchii-colonized hosts exhibited a 4.5-fold reduction in 13C-labelled glucose and reduced abundance and diversity of 13C-labelled carbohydrates and lipogenesis precursors, indicating symbiont species-specific modifications to carbohydrate availability and lipid storage. Mapping carbon fate also revealed significant alterations to host molecular signalling pathways. In particular, D. trenchii-colonized hosts exhibited a 40-fold reduction in 13C-labelled scyllo-inositol, a potential interpartner signalling molecule in symbiosis specificity. 13C-labelling also highlighted differential antioxidant- and ammonium-producing pathway activities, suggesting physiological responses to different symbiont species. Such differences in symbiont metabolite contribution and host utilization may limit the proliferation of stress-driven symbioses; this contributes valuable information towards future scenarios that select in favour of less-competent symbionts in response to environmental change.
Collapse
Affiliation(s)
- Jennifer L Matthews
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Clinton A Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Adrian Lutz
- Metabolomics Australia, School of Botany, The University of Melbourne, Parkville 3052, Victoria, Australia
| | - Katie E Hillyer
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Ute Roessner
- Metabolomics Australia, School of Botany, The University of Melbourne, Parkville 3052, Victoria, Australia
| | - Arthur R Grossman
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331, USA
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| |
Collapse
|
35
|
Characterization of a novel regulatory pathway for mannitol metabolism and its coordination with biofilm formation in Mycobacterium smegmatis. J Genet Genomics 2018; 45:477-488. [DOI: 10.1016/j.jgg.2018.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/26/2018] [Indexed: 01/03/2023]
|
36
|
Meng D, Li C, Park HJ, González J, Wang J, Dandekar AM, Turgeon BG, Cheng L. Sorbitol Modulates Resistance to Alternaria alternata by Regulating the Expression of an NLR Resistance Gene in Apple. THE PLANT CELL 2018; 30:1562-1581. [PMID: 29871985 PMCID: PMC6096587 DOI: 10.1105/tpc.18.00231] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/08/2018] [Accepted: 05/30/2018] [Indexed: 05/19/2023]
Abstract
In plant-microbe interactions, plant sugars produced by photosynthesis are not only a carbon source for pathogens, but may also act as signals that modulate plant defense responses. Here, we report that decreasing sorbitol synthesis in apple (Malus domestica) leaves by antisense suppression of ALDOSE-6-PHOSPHATE REDUCTASE (A6PR) leads to downregulation of 56 NUCLEOTIDE BINDING/LEUCINE-RICH REPEAT (NLR) genes and converts the phenotypic response to Alternaria alternata from resistant to susceptible. We identified a resistance protein encoded by the apple MdNLR16 gene and a small protein encoded by the fungal HRIP1 gene that interact in both a yeast two-hybrid assay and a bimolecular fluorescence complementation assay. Deletion of HRIP1 in A. alternata enables gain of virulence on the wild-type control plant. Overexpression of MdNLR16 in two antisense A6PR lines increases resistance, whereas RNAi suppression of MdNLR16 in the wild-type control decreases resistance against A. alternata MdWRKY79 transcriptionally regulates MdNLR16 by binding to the promoter of MdNLR16 in response to sorbitol, and exogenous sorbitol feeding partially restores resistance of the antisense A6PR lines to A. alternata These findings indicate that sorbitol modulates resistance to A. alternata via the MdNLR16 protein that interacts with the fungal effector in a classic gene-for-gene manner in apple.
Collapse
Affiliation(s)
- Dong Meng
- Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Chunlong Li
- Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Hee-Jin Park
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Ithaca, New York 14853
| | - Jonathan González
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Ithaca, New York 14853
| | - Jingying Wang
- Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Abhaya M Dandekar
- Department of Plant Sciences, University of California at Davis, Davis, California 95616
| | - B Gillian Turgeon
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Ithaca, New York 14853
| | - Lailiang Cheng
- Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| |
Collapse
|
37
|
Sekova VY, Dergacheva DI, Tereshina VM, Isakova EP, Deryabina YI. Carbohydrate Spectrum of Extremophilic Yeasts Yarrowia lipolytica under pH Stress. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718020133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
38
|
Pandey V, Singh M, Pandey D, Marla S, Kumar A. Secretome Analysis Identifies Potential Pathogenicity/Virulence Factors of Tilletia indica, a Quarantined Fungal Pathogen Inciting Karnal Bunt Disease in Wheat. Proteomics 2018; 18:e1700473. [PMID: 29508525 DOI: 10.1002/pmic.201700473] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/22/2018] [Indexed: 11/07/2022]
Abstract
Tilletia indica is a smut fungus that incites Karnal bunt in wheat. It has been considered as quarantine pest in more than 70 countries. Despite its quarantine significance, there is meager knowledge regarding the molecular mechanisms of disease pathogenesis. Moreover, various disease management strategies have proven futile. Development of effective disease management strategy requires identification of pathogenicity/virulence factors. With this aim, the present study was conducted to compare the secretomes of T. indica isolates, that is, highly (TiK) and low (TiP) virulent isolates. About 120 and 95 protein spots were detected reproducibly in TiK and TiP secretome gel images. Nineteen protein spots, which were consistently observed as upregulated/differential in the secretome of TiK isolate, were selected for their identification by MALDI-TOF/TOF. Identified proteins exhibited homology with fungal proteins playing important role in fungal adhesion, penetration, invasion, protection against host-derived reactive oxygen species, production of virulence factors, cellular signaling, and degradation of host cell wall proteins and antifungal proteins. These results were complemented with T. indica genome sequence leading to identification of candidate pathogenicity/virulence factors homologs that were further subjected to sequence- and structure-based functional annotation. Thus, present study reports the first comparative secretome analysis of T. indica for identification of pathogenicity/virulence factors. This would provide insights into pathogenic mechanisms of T. indica and aid in devising effective disease management strategies.
Collapse
Affiliation(s)
- Vishakha Pandey
- Department of Molecular Biology and Genetic Engineering, G.B. Pant University of Agriculture and Technology, Uttarakhand, India
| | - Manoj Singh
- Department of Molecular Biology and Genetic Engineering, G.B. Pant University of Agriculture and Technology, Uttarakhand, India
| | - Dinesh Pandey
- Department of Molecular Biology and Genetic Engineering, G.B. Pant University of Agriculture and Technology, Uttarakhand, India
| | - Soma Marla
- Division of Genomic Resources, National Bureau of Plant Genetic Resources, New Delhi, India
| | - Anil Kumar
- Department of Molecular Biology and Genetic Engineering, G.B. Pant University of Agriculture and Technology, Uttarakhand, India
| |
Collapse
|
39
|
Rodriguez-Furlan C, Raikhel NV, Hicks GR. Merging roads: chemical tools and cell biology to study unconventional protein secretion. JOURNAL OF EXPERIMENTAL BOTANY 2017; 69:39-46. [PMID: 28992077 DOI: 10.1093/jxb/erx261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The endomembrane trafficking network is highly complex and dynamic, with both conventional and so-called unconventional routes which are in essence recently discovered pathways that are poorly understood in plants. One approach to dissecting endomembrane pathways that we have pioneered is the use of chemical biology. Classical genetic manipulations often deal with indirect pleiotropic phenotypes resulting from the perturbation of key players of the trafficking routes. Many of these difficulties can be circumvented using small molecules to modify or disrupt the function or localization of key proteins regulating these pathways. In this review, we summarize how small molecules have been used as probes to define these pathways, and how they could be used to increase current knowledge of unconventional protein secretion pathways.
Collapse
Affiliation(s)
- Cecilia Rodriguez-Furlan
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, USA
| | - Natasha V Raikhel
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, USA
| | - Glenn R Hicks
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, USA
| |
Collapse
|
40
|
Saski CA, Scheffler BE, Hulse-Kemp AM, Liu B, Song Q, Ando A, Stelly DM, Scheffler JA, Grimwood J, Jones DC, Peterson DG, Schmutz J, Chen ZJ. Sub genome anchored physical frameworks of the allotetraploid Upland cotton (Gossypium hirsutum L.) genome, and an approach toward reference-grade assemblies of polyploids. Sci Rep 2017; 7:15274. [PMID: 29127298 PMCID: PMC5681701 DOI: 10.1038/s41598-017-14885-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 10/18/2017] [Indexed: 01/06/2023] Open
Abstract
Like those of many agricultural crops, the cultivated cotton is an allotetraploid and has a large genome (~2.5 gigabase pairs). The two sub genomes, A and D, are highly similar but unequally sized and repeat-rich, which pose significant challenges for accurate genome reconstruction using standard approaches. Here we report the development of BAC libraries, sub genome specific physical maps, and a new-generation sequencing approach that will lead to a reference-grade genome assembly for Upland cotton. Three BAC libraries were constructed, fingerprinted, and integrated with BAC-end sequences (BES) to produce a de novo whole-genome physical map. The BAC map was partitioned by sub genomes through alignment to the diploid progenitor D-genome reference sequence with densely spaced BES anchor points and computational filtering. The physical maps were validated with FISH and genetic mapping of SNP markers derived from BES. Two pairs of homeologous chromosomes, A11/D11 and A12/D12, were used to assess multiplex sequencing approaches for completeness and scalability. The results represent the first sub genome anchored physical maps of Upland cotton, and a new-generation approach to the whole-genome sequencing, which will lead to the reference-grade assembly of allopolyploid cotton and serve as a general strategy for sequencing other polyploid species.
Collapse
Affiliation(s)
| | - Brian E Scheffler
- USDA-ARS, Genomics and Bioinformatics Research Unit, Stoneville, MS, USA
| | - Amanda M Hulse-Kemp
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, USA
| | - Bo Liu
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, USA
| | - Qingxin Song
- Department of Molecular Biosciences, Center for Computational Biology and Bioinformatics, and Institute for Cellular and Molecular Biology, University of Texas, Austin, TX, 78712, USA
| | - Atsumi Ando
- Department of Molecular Biosciences, Center for Computational Biology and Bioinformatics, and Institute for Cellular and Molecular Biology, University of Texas, Austin, TX, 78712, USA
| | - David M Stelly
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, USA
| | | | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Don C Jones
- Agriculture and Environmental Research, Cotton Incorporated, Cary, NC, USA
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing & Biotechnology and Department of Plant & Soil Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.
| | - Z Jeffery Chen
- Department of Molecular Biosciences, Center for Computational Biology and Bioinformatics, and Institute for Cellular and Molecular Biology, University of Texas, Austin, TX, 78712, USA.
| |
Collapse
|
41
|
Tian L, Liu L, Yin Y, Huang M, Chen Y, Xu X, Wu P, Li M, Wu G, Jiang H, Chen Y. Heterogeneity in the expression and subcellular localization of POLYOL/MONOSACCHARIDE TRANSPORTER genes in Lotus japonicus. PLoS One 2017; 12:e0185269. [PMID: 28931056 PMCID: PMC5607196 DOI: 10.1371/journal.pone.0185269] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 09/08/2017] [Indexed: 11/23/2022] Open
Abstract
Polyols can serve as a means for the translocation of carbon skeletons and energy between source and sink organs as well as being osmoprotective solutes and antioxidants which may be involved in the resistance of some plants to biotic and abiotic stresses. Polyol/Monosaccharide transporter (PLT) proteins previously identified in plants are involved in the loading of polyols into the phloem and are reported to be located in the plasma membrane. The functions of PLT proteins in leguminous plants are not yet clear. In this study, a total of 14 putative PLT genes (LjPLT1-14) were identified in the genome of Lotus japonicus and divided into 4 clades based on phylogenetic analysis. Different patterns of expression of LjPLT genes in various tissues were validated by qRT-PCR analysis. Four genes (LjPLT3, 4, 11, and 14) from clade II were expressed at much higher levels in nodule than in other tissues. Moreover, three of these genes (LjPLT3, 4, and 14) showed significantly increased expression in roots after inoculation with Mesorhizobium loti. Three genes (LjPLT1, 3, and 9) responded when salinity and/or osmotic stresses were applied to L. japonicus. Transient expression of GFP-LjPLT fusion constructs in Arabidopsis and Nicotiana benthamiana protoplasts indicated that the LjPLT1, LjPLT6 and LjPLT7 proteins are localized to the plasma membrane, but LjPLT2 (clade IV), LjPLT3, 4, 5 (clade II) and LjPLT8 (clade III) proteins possibly reside in the Golgi apparatus. The results suggest that members of the LjPLT gene family may be involved in different biological processes, several of which may potentially play roles in nodulation in this nitrogen-fixing legume.
Collapse
Affiliation(s)
- Lu Tian
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Leru Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Yehu Yin
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Mingchao Huang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Yanbo Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Xinlan Xu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
| | - Pingzhi Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
| | - Meiru Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
| | - Guojiang Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
| | - Huawu Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
| | - Yaping Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
- * E-mail:
| |
Collapse
|
42
|
Geng P, Siu KC, Wang Z, Wu JY. Antifatigue Functions and Mechanisms of Edible and Medicinal Mushrooms. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9648496. [PMID: 28890898 PMCID: PMC5584359 DOI: 10.1155/2017/9648496] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/16/2017] [Indexed: 12/14/2022]
Abstract
Fatigue is the symptom of tiredness caused by physical and/or psychological stresses. As fatigue is becoming a serious problem in the modern society affecting human health, work efficiency, and quality of life, effective antifatigue remedies other than pharmacological drugs or therapies are highly needed. Mushrooms have been widely used as health foods, because of their various bioactive constituents such as polysaccharides, proteins, vitamins, minerals, and dietary fiber. This paper reviews the major findings from previous studies on the antifatigue effects, the active components of mushrooms, and the possible mechanisms. Many studies have demonstrated the antifatigue effects of edible and medicinal mushrooms. These mushrooms probably mitigate human fatigue through effects on the functional systems, including the muscular, cardiovascular, hormone, and immune system. The bioactive constituents that contribute to the antifatigue effects of mushrooms may include polysaccharides, peptides, nucleosides, phenolic compounds, and triterpenoids. Further research is still needed to identify the active ingredients and to investigate their mechanism of action on the antifatigue effects. Since most previous studies have been carried out in animal models, more human trials should be performed to verify the antifatigue function of edible and medicinal mushrooms.
Collapse
Affiliation(s)
- Ping Geng
- Department of Applied Biology & Chemical Technology, State Key Laboratory of Chinese Medicine and Molecular Pharmacology in Shenzhen, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Ka-Chai Siu
- Department of Applied Biology & Chemical Technology, State Key Laboratory of Chinese Medicine and Molecular Pharmacology in Shenzhen, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Zhaomei Wang
- School of Food Science & Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jian-Yong Wu
- Department of Applied Biology & Chemical Technology, State Key Laboratory of Chinese Medicine and Molecular Pharmacology in Shenzhen, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
43
|
Cheng J, Li W, Tan G, Wang Z, Li S, Jin Y. Synthesis and in vitro photodynamic therapy of chlorin derivative 131-ortho-trifluoromethyl-phenylhydrazone modified pyropheophorbide-a. Biomed Pharmacother 2017; 87:263-273. [DOI: 10.1016/j.biopha.2016.12.081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/05/2016] [Accepted: 12/19/2016] [Indexed: 12/22/2022] Open
|
44
|
André P, Villain F. Free radical scavenging properties of mannitol and its role as a constituent of hyaluronic acid fillers: a literature review. Int J Cosmet Sci 2017; 39:355-360. [PMID: 28027572 DOI: 10.1111/ics.12386] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/21/2016] [Indexed: 12/01/2022]
Abstract
Mannitol has both hydrating and antioxidant properties that make it an ideal excipient for use with hyaluronic acid (HA) fillers. This review examines the role of reactive oxygen species in the ageing process and their effects on both endogenous HA and HA products developed for aesthetic use. Evidence is presented to show that the free radical scavenging properties of mannitol provide it with a two-fold mechanism of action when combined with HA fillers: reducing the inflammation and swelling associated with the injection procedure itself, and preventing the degradation of the injected HA by free radicals. Mannitol also has a long- and well-established safety profile in both the food and pharmaceutical industry. Having established the rationale for using mannitol in combination with an HA filler, the products using this strategy are then reviewed. The addition of mannitol to HA fillers is a viable and safe option for improving both short- and long-term HA aesthetic effects.
Collapse
Affiliation(s)
- P André
- Paris-Université Laser Skin Clinic, 157, rue de l'Université, 75007, Paris, France
| | - F Villain
- Merz Pharmaceuticals GmbH, 100 Eckenheimer Landstrasse, 60318, Frankfurt am Main, Germany
| |
Collapse
|
45
|
Huang X, Wang L, Laserna AKC, Li SFY. Correlations in the elemental and metabolic profiles of the lichenDirinaria pictaafter road traffic exposure. Metallomics 2017; 9:1610-1621. [DOI: 10.1039/c7mt00207f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Diverse metabolites were identified in lichens and their correlations with heavy metals revealed metabolic toxicity and the detoxification mechanism.
Collapse
Affiliation(s)
- Xulei Huang
- Department of Chemistry
- National University of Singapore
- Singapore
| | - Lei Wang
- Department of Chemistry
- National University of Singapore
- Singapore
| | | | - Sam Fong Yau Li
- Department of Chemistry
- National University of Singapore
- Singapore
- NUS Environmental Research Institute (NERI)
- Singapore 117411
| |
Collapse
|
46
|
Ray S, Singh V, Singh S, Sarma BK, Singh HB. Biochemical and histochemical analyses revealing endophytic Alcaligenes faecalis mediated suppression of oxidative stress in Abelmoschus esculentus challenged with Sclerotium rolfsii. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 109:430-441. [PMID: 27816824 DOI: 10.1016/j.plaphy.2016.10.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/27/2016] [Accepted: 10/22/2016] [Indexed: 06/06/2023]
Abstract
Sclerotium rolfsii is a highly aggressive pathogen that causes huge economic losses, especially in temperate climates. Alcaligenes faecalis, particularly in endophytic form, has rarely been used to control this fungus. In this study, endophytic Alcaligenes sp. strain BHU 12, BHU 16 (isolated from Abelmoschus esculentus leaf) and BHU M7 (isolated from Andrographis paniculata leaf) were reported to trigger a wide range of host defenses in Okra plant against the collar-rot pathogen S. rolfsii. Endophytic colonization of the strains in ten days old plants was assessed through re-isolation of the rif-tagged strains on rifampicin augmented nutrient agar media. The ability of the endophytic strains to induce systemic defense responses in above-ground organs was assessed by collecting leaf tissues of the Okra plants grown under non-gnotobiotic conditions at different time intervals post seedling bacterization with the endophytic biocontrol agents. The pathogen challenged unprimed plants exhibited flaccidity of the stem and leaves at 48 h post infection (hpi) in contrast to the bioprimed and challenged plants. Biochemical and histochemical analyses explained the above phenomenon as activation of phyto-peroxidases leading to an increased metabolism of the reactive oxygen species (ROS), accompanied by activation of the phenylpropanoid network and a subsequent enhancement in plant phenolics. Interestingly, though the maximum increase in the defense pathways was observed in treatments with native endophytes of Okra plant, yet the enhancement in antioxidant pathway due to A. paniculata borne endophytes was also quite significant. Thus, this work clearly demonstrates how Okra plants respond to the "non-hostile" colonization of bacterial endophytes and how induced defense response can contribute to the biocontrol activity of the endophytic strains.
Collapse
Affiliation(s)
- Shatrupa Ray
- Department of Botany, Institute of Science, Banaras Hindu University, India
| | - Vivek Singh
- Department of Botany, Institute of Science, Banaras Hindu University, India; Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, India
| | - Surendra Singh
- Department of Botany, Institute of Science, Banaras Hindu University, India
| | - Birinchi Kumar Sarma
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, India
| | - Harikesh Bahadur Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, India.
| |
Collapse
|
47
|
Patel TK, Williamson JD. Mannitol in Plants, Fungi, and Plant-Fungal Interactions. TRENDS IN PLANT SCIENCE 2016; 21:486-497. [PMID: 26850794 DOI: 10.1016/j.tplants.2016.01.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/18/2015] [Accepted: 01/05/2016] [Indexed: 05/18/2023]
Abstract
Although the presence of mannitol in organisms as diverse as plants and fungi clearly suggests that this compound has important roles, our understanding of fungal mannitol metabolism and its interaction with mannitol metabolism in plants is far from complete. Despite recent inroads into understanding the importance of mannitol and its metabolic roles in salt, osmotic, and oxidative stress tolerance in plants and fungi, our current understanding of exactly how mannitol protects against reactive oxygen is also still incomplete. In this opinion, we propose a new model of the interface between mannitol metabolism in plants and fungi and how it impacts plant-pathogen interactions.
Collapse
Affiliation(s)
- Takshay K Patel
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, USA
| | - John D Williamson
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
48
|
Metabolic responses of Beauveria bassiana to hydrogen peroxide-induced oxidative stress using an LC-MS-based metabolomics approach. J Invertebr Pathol 2016; 137:1-9. [DOI: 10.1016/j.jip.2016.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/23/2022]
|
49
|
Wyatt TT, Wösten HAB, Dijksterhuis J. Fungal spores for dispersion in space and time. ADVANCES IN APPLIED MICROBIOLOGY 2016; 85:43-91. [PMID: 23942148 DOI: 10.1016/b978-0-12-407672-3.00002-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Spores are an integral part of the life cycle of the gross majority of fungi. Their morphology and the mode of formation are both highly variable among the fungi, as is their resistance to stressors. The main aim for spores is to be dispersed, both in space, by various mechanisms or in time, by an extended period of dormancy. Some fungal ascospores belong to the most stress-resistant eukaryotic cells described to date. Stabilization is a process in which biomolecules and complexes thereof are protected by different types of molecules against heat, drought, or other molecules. This review discusses the most important compounds that are known to protect fungal spores and also addresses the biophysics of cell protection. It further covers the phenomena of dormancy, breaking of dormancy, and early germination. Germination is the transition from a dormant cell toward a vegetative cell and includes a number of specific changes. Finally, the applied aspects of spore biology are discussed.
Collapse
Affiliation(s)
- Timon T Wyatt
- Department of Applied and Industrial Mycology, CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, Utrecht, The Netherlands
| | | | | |
Collapse
|
50
|
Li Y, Yang ZY, Li TR. Synthesis, characterisation, in vitro DNA binding properties and antioxidant activities of Ln(III) complexes with chromone-3-carbaldehyde-(2′-hydroxy) benzoyl hydrazone. PROGRESS IN REACTION KINETICS AND MECHANISM 2016. [DOI: 10.3184/146867815x14455981832978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ln(III) complexes with chromone-3-carbaldehyde-(2′-hydroxy)benzoyl hydrazone as the Schiff base ligand have been synthesised and characterised by elemental analysis, molar conductivity, 1H NMR, mass spectra, UV–Vis spectra, and IR spectra. Electronic absorption spectra, fluorescence spectra, ethidium bromide displacement experiments and viscosity measurements indicate that the free ligand and its Ln(III) complexes, especially the La(III) complex, bind strongly to calf thymus DNA via an intercalation mechanism. The intrinsic binding constants of the free ligand, La(III) complex, Sm(III) complex and Er(III) complex with DNA were (2.20±0.12) x 105 M−1, (8.83±0.04) x 106 M−1, (7.35±0.07) x 106 M−1 and (3.24±0.04) x 106 M−1, respectively. Furthermore, the antioxidant activity of the ligand and its Ln(III) complexes was determined by the superoxide and hydroxyl radical scavenging method in vitro, which indicates that the ligand and its Ln(III) complexes are efficient antioxidants and the Ln(III) complexes exhibit more effective antioxidant activity than the free ligand alone and some standard antioxidants, such as mannitol and vitamin C.
Collapse
Affiliation(s)
- Yong Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074 P.R. China
| | - Zheng-yin Yang
- College of Chemistry and Chemical Engineering and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| | - Tian-rong Li
- College of Chemistry and Chemical Engineering and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|