1
|
Naser-Khdour S, Scheuber F, Fields PD, Ebert D. The Evolution of Extreme Genetic Variability in a Parasite-Resistance Complex. Genome Biol Evol 2024; 16:evae222. [PMID: 39391977 PMCID: PMC11500718 DOI: 10.1093/gbe/evae222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
Genomic regions that play a role in parasite defense are often found to be highly variable, with the major histocompatibility complex serving as an iconic example. Single nucleotide polymorphisms may represent only a small portion of this variability, with Indel polymorphisms and copy number variation further contributing. In extreme cases, haplotypes may no longer be recognized as orthologous. Understanding the evolution of such highly divergent regions is challenging because the most extreme variation is not visible using reference-assisted genomic approaches. Here we analyze the case of the Pasteuria Resistance Complex in the crustacean Daphnia magna, a defense complex in the host against the common and virulent bacterium Pasteuria ramosa. Two haplotypes of this region have been previously described, with parts of it being nonhomologous, and the region has been shown to be under balancing selection. Using pan-genome analysis and tree reconciliation methods to explore the evolution of the Pasteuria Resistance Complex and its characteristics within and between species of Daphnia and other Cladoceran species, our analysis revealed a remarkable diversity in this region even among host species, with many nonhomologous hyper-divergent haplotypes. The Pasteuria Resistance Complex is characterized by extensive duplication and losses of Fucosyltransferase (FuT) and Galactosyltransferase (GalT) genes that are believed to play a role in parasite defense. The Pasteuria Resistance Complex region can be traced back to common ancestors over 250 million years. The unique combination of an ancient resistance complex and a dynamic, hyper-divergent genomic environment presents a fascinating opportunity to investigate the role of such regions in the evolution and long-term maintenance of resistance polymorphisms. Our findings offer valuable insights into the evolutionary forces shaping disease resistance and adaptation, not only in the genus Daphnia, but potentially across the entire Cladocera class.
Collapse
Affiliation(s)
- Suha Naser-Khdour
- Department of Environmental Sciences, Zoology, University of Basel, Basel 4051, Switzerland
| | - Fabian Scheuber
- Department of Environmental Sciences, Zoology, University of Basel, Basel 4051, Switzerland
| | - Peter D Fields
- Department of Environmental Sciences, Zoology, University of Basel, Basel 4051, Switzerland
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Basel 4051, Switzerland
| |
Collapse
|
2
|
Arbanasić H, Medrano-González L, Hrenar T, Mikelić A, Gomerčić T, Svetličić I, Pavlinec Ž, Đuras M, Galov A. Recent selection created distinctive variability patterns on MHC class II loci in three dolphin species from the Mediterranean Sea. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 150:105079. [PMID: 37832898 DOI: 10.1016/j.dci.2023.105079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
The major histocompatibility complex (MHC) includes highly polymorphic genes involved in antigen presentation, which is crucial for adaptive immune response. They represent fitness related genetic markers particularly informative for populations exposed to environmental challenges. Here we analyse the diversity and evolutionary traits of MHC class II DQA and DQB genes in the dolphins Stenella coeruleoalba and Grampus griseus from the Mediterranean Sea. We found substantial nucleotide and functional diversity, as well as strong evidence of balancing selection indicated by allele and supertype frequencies, Tajima's D statistics and dN/dS tests. The Risso's dolphin, considered the least abundant in the region, showed the effect of divergent allele advantage at the nucleotide and functional-peptide levels. An outstanding polymorphism was found in the striped dolphin, particularly intriguing in the DQA gene where the Ewens-Watterson test detected a selection sweep that occurred in recent history. We hypothesize that morbillivirus, which has recurrently invaded Mediterranean populations over the last decades, exerted the detected selective pressure.
Collapse
Affiliation(s)
- Haidi Arbanasić
- Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia.
| | - Luis Medrano-González
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico.
| | - Tomica Hrenar
- Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia.
| | - Ana Mikelić
- Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia.
| | - Tomislav Gomerčić
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000, Zagreb, Croatia.
| | - Ida Svetličić
- Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia.
| | - Željko Pavlinec
- Croatian Academy of Sciences and Arts, Trg Nikole Šubića Zrinskog 11, 10000, Zagreb, Croatia.
| | - Martina Đuras
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000, Zagreb, Croatia.
| | - Ana Galov
- Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia.
| |
Collapse
|
3
|
Palacios-Marquez JJ, Guevara-Fiore P. Parasitism in viviparous vertebrates: an overview. Parasitol Res 2023; 123:53. [PMID: 38100003 DOI: 10.1007/s00436-023-08083-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023]
Abstract
The reproductive mode of viviparity has independently evolved in various animal taxa. It refers to the condition in which the embryos or young develop inside the female's body during gestation, providing advantages such as protection, nutrition, and improved survival chances. However, parasites and diseases can be an evolutionary force that limit the host's resources, leading to physiological, morphological, and behavioral changes that impose additional costs on both the pregnant female and her offspring. This review integrates the primary literature published between 1980 and 2021 on the parasitism of viviparous hosts. We describe aspects such as reproductive investment in females, offspring sex ratios, lactation investment in mammals, alterations in birth intervals, current reproductive investment, variations between environments, immune system activity in response to immunological challenges, and other factors that can influence the interaction between viviparous females and parasites. Maintaining pregnancy incurs costs in managing the mother's resources and regulating the immune system's responses to the offspring, while simultaneously maintaining an adequate defense against parasites and pathogens. Parasites can significantly influence this reproductive mode: parasitized females adjust their investment in survival and reproduction based on their life history, environmental factors, and the diversity of encountered parasites.
Collapse
Affiliation(s)
- Juan J Palacios-Marquez
- Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Blvd. Valsequillo y Av. San Claudio, Edificio Bio-1, Ciudad Universitaria, Col. Jardines de San Manuel, 72580, Puebla, CP, Mexico
| | - Palestina Guevara-Fiore
- Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Blvd. Valsequillo y Av. San Claudio, Edificio Bio-1, Ciudad Universitaria, Col. Jardines de San Manuel, 72580, Puebla, CP, Mexico.
| |
Collapse
|
4
|
Gowane GR, Sharma P, Kumar R, Misra SS, Alex R, Vohra V, Chhotaray S, Sharma N, Chopra A, Kandalkar Y, Choudhary A, Magotra A. Population-wide genetic analysis of Ovar-DQA1 and DQA2 loci across sheep breeds in India revealed their evolutionary importance and fitness of sheep in a tropical climate. Anim Biotechnol 2023; 34:4645-4657. [PMID: 36847639 DOI: 10.1080/10495398.2023.2180010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Genetic variability at the major histocompatibility complex (MHC) is important in any species due to significant role played by MHC for antigen presentation. DQA locus has not been studied for its genetic variability across sheep population in India. In the present study, MHC of sheep at DQA1 and DQA2 loci were evaluated across 17 Indian sheep breeds. Results revealed high degree of heterozygosity (10.34% to 100% for DQA1 and 37.39 to 100% for DQA2). 18 DQA1 alleles and 22 DQA2 alleles were isolated in different breeds. Nucleotide content for DQA region revealed richness of AT content (54.85% for DQA1 and 53.89% for DQA2). DQA1 and DQA2 sequences clustered independently. We could see evidence of divergence of DQA as DQA1 and DQA2 across sheep breeds. Wu-Kabat variability index revealed vast genetic variation across DQA1 and DQA2, specifically at peptide binding sites (PBS) that consisted 21 residues for DQA1 and 17 residues for DQA2. Evolutionary analysis revealed the presence of positive and balancing selection for DQA1 locus, however DQA2 was under purifying selection across sheep breeds. Higher heterozygosity and large diversity at both loci especially at PBS indicated the fitness of the sheep population for evading pathogens and adapt to the harsh tropical climate.
Collapse
Affiliation(s)
- G R Gowane
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Priya Sharma
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Rajiv Kumar
- Animal Genetics and Breeding Division, ICAR-Central Sheep and Wool Research Institute, Avikanagar
| | - S S Misra
- Animal Genetics and Breeding Division, ICAR-Central Sheep and Wool Research Institute, Avikanagar
| | - Rani Alex
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, India
| | - V Vohra
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, India
| | - S Chhotaray
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Nikita Sharma
- Animal Health Section, ICAR-Central Institute for Research on Goats, Makhdoom, India
| | - Ashish Chopra
- Animal Genetics and Breeding Division, ICAR-Arid Region Campus, Central Sheep and Wool Research Institute, Bikaner, India
| | - Yogesh Kandalkar
- Deccani Sheep Breeding Unit, NWPSI at Mahatma Phule Krishi Vidyapith, Rahuri, India
| | | | - Ankit Magotra
- Animal Genetics and Breeding Division, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| |
Collapse
|
5
|
Gowane GR, Sharma P, Kumar R, Misra SS, Alex R, Vohra V, Chhotaray S, Dass G, Chopra A, Kandalkar Y, Vijay V, Choudhary A, Magotra A, Rajendran R. Cross-population genetic analysis revealed genetic variation and selection in the Ovar-DRB1 gene of Indian sheep breeds. Anim Biotechnol 2023; 34:2928-2939. [PMID: 36153754 DOI: 10.1080/10495398.2022.2125404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
In sheep, MHC variability is studied widely to explore disease association. The aim of the current study was to explore the genetic diversity of Ovar-DRB diversity across sheep breeds of India. Here, Ovar-DRB1 locus was studied across 20 sheep breeds. DRB1 was amplified (301 bp) and sequenced using a PCR-sequence-based typing approach. Results revealed a high degree of heterozygosity across breeds (mean: 73.99%). Overall mean distance for DRB1 was highest in Sangamneri (0.18) and lowest in Madgyal sheep (0.10). There was a higher rate of transition, across breeds. Further, 39 alleles were isolated in different breeds, out of which 10 were new. To allow easy access and use of the immune-polymorphic database, an online database management system was launched (http://www.mhcdbms.in/). Nucleotide content across breeds for the DRB1 region revealed the richness of GC content (59.26%). Wu-Kabat index revealed vast genetic variation across peptide binding sites (PBS) of DRB1. Residues 6, 66, 69, 52, and 81, were polymorphic showing utility for antigen presentation. All breeds were under positive selection for DRB1 locus (dN > dS). Study revealed the importance of DRB locus diversity for beta chain specifically at PBS across sheep breeds of the Indian subcontinent and presented evidence of positive selection for DRB owing to its evolutionary significance.
Collapse
Affiliation(s)
- G R Gowane
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Priya Sharma
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Rajiv Kumar
- Animal Genetics & Breeding Division, ICAR-Central Sheep & Wool Research Institute, Avikanagar, India
| | - S S Misra
- Animal Genetics & Breeding Division, ICAR-Central Sheep & Wool Research Institute, Avikanagar, India
| | - Rani Alex
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, India
| | - V Vohra
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, India
| | - S Chhotaray
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Gopal Dass
- Animal Genetics & Breeding Division, ICAR-Central Institute for Research on Goats, Makhdoom, India
| | - Ashish Chopra
- Animal Genetics & Breeding Division, ICAR-Arid Region Campus, Central Sheep & Wool Research Institute Bikaner, Avikanagar, India
| | - Yogesh Kandalkar
- Deccani Sheep Breeding Unit, NWPSI at Mahatma Phule Krishi Vidyapith, Rahuri, India
| | - V Vijay
- Sonadi Seep Breeding Unit, NWPSI at Navaniya Maharana Pratap University of Agriculture and Technology, Udaipur, India
| | | | - Ankit Magotra
- Animal Genetics & Breeding Division, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - R Rajendran
- Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University, Theni, India
| |
Collapse
|
6
|
Wanelik KM, Begon M, Bradley JE, Friberg IM, Jackson JA, Taylor CH, Paterson S. Effects of an IgE receptor polymorphism acting on immunity, susceptibility to infection, and reproduction in a wild rodent. eLife 2023; 12:e77666. [PMID: 36645701 PMCID: PMC9842384 DOI: 10.7554/elife.77666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 12/22/2022] [Indexed: 01/17/2023] Open
Abstract
The genotype of an individual is an important predictor of their immune function, and subsequently, their ability to control or avoid infection and ultimately contribute offspring to the next generation. However, the same genotype, subjected to different intrinsic and/or extrinsic environments, can also result in different phenotypic outcomes, which can be missed in controlled laboratory studies. Natural wildlife populations, which capture both genotypic and environmental variability, provide an opportunity to more fully understand the phenotypic expression of genetic variation. We identified a synonymous polymorphism in the high-affinity Immunoglobulin E (IgE) receptor (GC and non-GC haplotypes) that has sex-dependent effects on immune gene expression, susceptibility to infection, and reproductive success of individuals in a natural population of field voles (Microtus agrestis). We found that the effect of the GC haplotype on the expression of immune genes differed between sexes. Regardless of sex, both pro-inflammatory and anti-inflammatory genes were more highly relatively expressed in individuals with the GC haplotype than individuals without the haplotype. However, males with the GC haplotype showed a stronger signal for pro-inflammatory genes, while females showed a stronger signal for anti-inflammatory genes. Furthermore, we found an effect of the GC haplotype on the probability of infection with a common microparasite, Babesia microti, in females - with females carrying the GC haplotype being more likely to be infected. Finally, we found an effect of the GC haplotype on reproductive success in males - with males carrying the GC haplotype having a lower reproductive success. This is a rare example of a polymorphism whose consequences we are able to follow across immunity, infection, and reproduction for both males and females in a natural population.
Collapse
Affiliation(s)
- Klara M Wanelik
- Institute of Infection, Veterinary and Ecological Sciences, University of LiverpoolLiverpoolUnited Kingdom
| | - Mike Begon
- Institute of Infection, Veterinary and Ecological Sciences, University of LiverpoolLiverpoolUnited Kingdom
| | - Janette E Bradley
- School of Life Sciences, University of NottinghamNottinghamUnited Kingdom
| | - Ida M Friberg
- School of Environment and Life Sciences, University of SalfordSalfordUnited Kingdom
| | - Joseph A Jackson
- School of Environment and Life Sciences, University of SalfordSalfordUnited Kingdom
| | | | - Steve Paterson
- Institute of Infection, Veterinary and Ecological Sciences, University of LiverpoolLiverpoolUnited Kingdom
| |
Collapse
|
7
|
Dugovich BS, Beechler BR, Dolan BP, Crowhurst RS, Gonzales BJ, Powers JG, Hughson DL, Vu RK, Epps CW, Jolles AE. Population connectivity patterns of genetic diversity, immune responses and exposure to infectious pneumonia in a metapopulation of desert bighorn sheep. J Anim Ecol 2023. [PMID: 36637333 DOI: 10.1111/1365-2656.13885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023]
Abstract
Habitat fragmentation is an important driver of biodiversity loss and can be remediated through management actions aimed at maintenance of natural connectivity in metapopulations. Connectivity may protect populations from infectious diseases by preserving immunogenetic diversity and disease resistance. However, connectivity could exacerbate the risk of infectious disease spread across vulnerable populations. We tracked the spread of a novel strain of Mycoplasma ovipneumoniae in a metapopulation of desert bighorn sheep Ovis canadensis nelsoni in the Mojave Desert to investigate how variation in connectivity among populations influenced disease outcomes. M. ovipneumoniae was detected throughout the metapopulation, indicating that the relative isolation of many of these populations did not protect them from pathogen invasion. However, we show that connectivity among bighorn sheep populations was correlated with higher immunogenetic diversity, a protective immune response and lower disease prevalence. Variation in protective immunity predicted infection risk in individual bighorn sheep and was associated with heterozygosity at genetic loci linked to adaptive and innate immune signalling. Together, these findings may indicate that population connectivity maintains immunogenetic diversity in bighorn sheep populations in this system and has direct effects on immune responses in individual bighorn sheep and their susceptibility to infection by a deadly pathogen. Our study suggests that the genetic benefits of population connectivity could outweigh the risk of infectious disease spread and supports conservation management that maintains natural connectivity in metapopulations.
Collapse
Affiliation(s)
- Brian S Dugovich
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
| | - Brianna R Beechler
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Brian P Dolan
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Rachel S Crowhurst
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Ben J Gonzales
- California Department of Fish and Wildlife, Rancho Cordova, California, USA
| | - Jenny G Powers
- National Park Service, Biological Resources Division, Fort Collins, Colorado, USA
| | - Debra L Hughson
- National Park Service, Mojave National Preserve, Barstow, California, USA
| | - Regina K Vu
- California Department of Fish and Wildlife, Rancho Cordova, California, USA
| | - Clinton W Epps
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Anna E Jolles
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA.,Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
8
|
Lukacs M, Nymo IH, Madslien K, Våge J, Veiberg V, Rolandsen CM, Bøe CA, Sundaram AYM, Grimholt U. Functional immune diversity in reindeer reveals a high Arctic population at risk. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.1058674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Climate changes the geographic range of both species as well as pathogens, causing a potential increase in the vulnerability of populations or species with limited genetic diversity. With advances in high throughput sequencing (HTS) technologies, we can now define functional expressed genetic diversity of wild species at a larger scale and identify populations at risk. Previous studies have used genomic DNA to define major histocompatibility complex (MHC) class II diversity in reindeer. Varying numbers of expressed genes found in many ungulates strongly argues for using cDNA in MHC typing strategies to ensure that diversity estimates relate to functional genes. We have used available reindeer genomes to identify candidate genes and established an HTS approach to define expressed MHC class I and class II diversity. To capture a broad diversity we included samples from wild reindeer from Southern Norway, semi-domesticated reindeer from Northern Norway and reindeer from the high Artic archipelago Svalbard. Our data show a medium MHC diversity in semi-domesticated and wild Norwegian mainland reindeer, and low MHC diversity reindeer in Svalbard reindeer. The low immune diversity in Svalbard reindeer provides a potential risk if the pathogenic pressure changes in response to altered environmental conditions due to climate change, or increased human-related activity.
Collapse
|
9
|
Kloch A, Mierzejewska EJ, Welc-Falęciak R, Bajer A, Biedrzycka A. Cytokine gene polymorphism and parasite susceptibility in free-living rodents: Importance of non-coding variants. PLoS One 2023; 18:e0258009. [PMID: 36693052 PMCID: PMC9873194 DOI: 10.1371/journal.pone.0258009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/06/2023] [Indexed: 01/25/2023] Open
Abstract
Associations between genetic variants and susceptibility to infections have long been studied in free-living hosts so as to infer the contemporary evolutionary forces that shape the genetic polymorphisms of immunity genes. Despite extensive studies of proteins interacting with pathogen-derived ligands, such as MHC (major histocompatilbility complex) or TLR (Toll-like receptors), little is known about the efferent arm of the immune system. Cytokines are signalling molecules that trigger and modulate the immune response, acting as a crucial link between innate and adaptive immunity. In the present study we investigated how genetic variation in cytokines in bank voles Myodes glareolus affects their susceptibility to infection by parasites (nematodes: Aspiculuris tianjensis, Heligmosomum mixtum, Heligmosomoides glareoli) and microparasites (Cryptosporidium sp, Babesia microti, Bartonella sp.). We focused on three cytokines: tumour necrosis factor (TNF), lymphotoxin alpha (LTα), and interferon beta (IFNβ1). Overall, we identified four single nucleotide polymorphisms (SNPs) associated with susceptibility to nematodes: two located in LTα and two in IFNβ1. One of those variants was synonymous, another located in an intron. Each SNP associated with parasite load was located in or next to a codon under selection, three codons displayed signatures of positive selection, and one of purifying selection. Our results indicate that cytokines are prone to parasite-driven selection and that non-coding variants, although commonly disregarded in studies of the genetic background of host-parasite co-evolution, may play a role in susceptibility to infections in wild systems.
Collapse
Affiliation(s)
- Agnieszka Kloch
- Department of Ecology, Faculty of Biology, University of Warsaw, Warszawa, Poland
- * E-mail:
| | - Ewa J. Mierzejewska
- Wild Urban Evolution and Ecology Laboratory, Centre of New Technologies, University of Warsaw, Warszawa, Poland
| | - Renata Welc-Falęciak
- Department of Parasitology, Faculty of Biology, University of Warsaw, Warszawa, Poland
| | - Anna Bajer
- Department of Eco-epidemiology of Parasitic Diseases, Faculty of Biology, University of Warsaw, Warszawa, Poland
| | | |
Collapse
|
10
|
Slatkin M. Joint estimation of selection intensity and mutation rate under balancing selection with applications to HLA. Genetics 2022; 221:6569836. [PMID: 35435218 PMCID: PMC9157114 DOI: 10.1093/genetics/iyac058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
A composite likelihood method is introduced for jointly estimating the intensity of selection and the rate of mutation, both scaled by the effective population size, when there is balancing selection at a single multi-allelic locus in an isolated population at demographic equilibrium. The performance of the method is tested using simulated data. Average estimated mutation rates and selection intensities are close to the true values but there is considerable variation about the averages. Allowing for both population growth and population subdivision does not result in qualitative differences but the estimated mutation rates and selection intensities do not in general reflect the current effective population size. The method is applied to three class I (HLA-A, HLA-B and HLA-C) and two class II loci (HLA-DRB1 and HLA-DQA1) in the 1000 Genomes populations. Allowing for asymmetric balancing selection has only a slight effect on the results from the symmetric model. Mutations that restore symmetry of the selection model are preferentially retained because of the tendency of natural selection to maximize average fitness. However, slight differences in selective effects result in much longer persistence time of some alleles. Trans-species polymorphism (TSP), which is characteristic of major-histocompatibility loci in vertebrates, is more likely when there are small differences in allelic fitness than when complete symmetry is assumed. Therefore, variation in allelic fitness expands the range of parameter values consistent with observations of TSP.
Collapse
Affiliation(s)
- Montgomery Slatkin
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720-3140, USA
| |
Collapse
|
11
|
Buzan E, Potušek S, Duniš L, Pokorny B. Neutral and Selective Processes Shape MHC Diversity in Roe Deer in Slovenia. Animals (Basel) 2022; 12:ani12060723. [PMID: 35327121 PMCID: PMC8944837 DOI: 10.3390/ani12060723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/23/2022] [Accepted: 03/10/2022] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Disease prevention and appropriate wildlife management are among the major challenges in wildlife conservation. In the present study, we made a first assessment of the variability of major histocompatibility complex (MHC) genes in roe deer in Slovenia and evaluated local population adaptation by comparing MHC variability with neutral microsatellites. We discovered three new MHC DRB exon 2 alleles in addition to seven previously described in the literature. Moreover, we found evidence of historical positive selection, as selection analysis indicated that approx. 10% of the encoded amino acids were subjected to episodic positive selection. This study provides the basis for further research on immunogenetic variation in roe deer and highlights opportunities to incorporate genetic data into science-based population management. Abstract Disease control and containment in free-ranging populations is one of the greatest challenges in wildlife management. Despite the importance of major histocompatibility complex (MHC) genes for immune response, an assessment of the diversity and occurrence of these genes is still rare in European roe deer, the most abundant and widespread large mammal in Europe. Therefore, we examined immunogenetic variation in roe deer in Slovenia to identify species adaptation by comparing the genetic diversity of the MHC genes with the data on neutral microsatellites. We found ten MHC DRB alleles, three of which are novel. Evidence for historical positive selection on the MHC was found using the maximum likelihood codon method. Patterns of MHC allelic distribution were not congruent with neutral population genetic findings. The lack of population genetic differentiation in MHC genes compared to existing structure in neutral markers suggests that MHC polymorphism was influenced primarily by balancing selection and, to a lesser extent, by neutral processes such as genetic drift, with no clear evidence of local adaptation. Selection analyses indicated that approx. 10% of amino acids encoded under episodic positive selection. This study represents one of the first steps towards establishing an immunogenetic map of roe deer populations across Europe, aiming to better support science-based management of this important game species.
Collapse
Affiliation(s)
- Elena Buzan
- Faculty of Mathematics, Natural Sciences, and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia; (S.P.); (L.D.)
- Environmental Protection College, Trg Mladosti 7, 3320 Velenje, Slovenia;
- Correspondence: ; Tel.: +38-65-6117570; Fax: +38-65-61175
| | - Sandra Potušek
- Faculty of Mathematics, Natural Sciences, and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia; (S.P.); (L.D.)
| | - Luka Duniš
- Faculty of Mathematics, Natural Sciences, and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia; (S.P.); (L.D.)
| | - Boštjan Pokorny
- Environmental Protection College, Trg Mladosti 7, 3320 Velenje, Slovenia;
- Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
12
|
Huang W, Dicks KL, Hadfield JD, Johnston SE, Ballingall KT, Pemberton JM. Contemporary selection on MHC genes in a free-living ruminant population. Ecol Lett 2022; 25:828-838. [PMID: 35050541 PMCID: PMC9306867 DOI: 10.1111/ele.13957] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/21/2021] [Accepted: 12/08/2021] [Indexed: 11/27/2022]
Abstract
Genes within the major histocompatibility complex (MHC) are the most variable identified in vertebrates. Pathogen-mediated selection is believed to be the main force maintaining MHC diversity. However, relatively few studies have demonstrated contemporary selection on MHC genes. Here, we examine associations between MHC variation and several fitness measurements including total fitness and five fitness components, in 3400 wild Soay sheep (Ovis aries) monitored between 1989 and 2012. In terms of total fitness, measured as lifetime breeding success of all individuals born, we found haplotypes named C and D were associated with decreased and increased male total fitness respectively. In terms of fitness components, juvenile survival was associated with haplotype divergence while individual haplotypes (C, D and F) were associated with adult fitness components. Consistent with the increased male total fitness, the rarest haplotype D has increased in frequency throughout the study period more than expected under neutral expectations. Our results demonstrate contemporary natural selection is acting on MHC class II genes in Soay sheep and the mode of selection on specific fitness components can be different mode from selection on total fitness.
Collapse
Affiliation(s)
- Wei Huang
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Kara L Dicks
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,Royal Zoological Society of Scotland, Edinburgh, UK
| | - Jarrod D Hadfield
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Susan E Johnston
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Josephine M Pemberton
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
13
|
Huang W, Dicks KL, Ballingall KT, Johnston SE, Sparks AM, Watt K, Pilkington JG, Pemberton JM. Associations between MHC class II variation and phenotypic traits in a free-living sheep population. Mol Ecol 2021; 31:902-915. [PMID: 34748666 DOI: 10.1111/mec.16265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/22/2021] [Accepted: 11/03/2021] [Indexed: 01/03/2023]
Abstract
Pathogen-mediated selection (PMS) is thought to maintain the high level of allelic diversity observed in the major histocompatibility complex (MHC) class II genes. A comprehensive way to demonstrate contemporary selection is to examine associations between MHC variation and individual fitness. As individual fitness is hard to measure, many studies examine associations between MHC variation and phenotypic traits, including direct or indirect measures of adaptive immunity thought to contribute to fitness. Here, we tested associations between MHC class II variation and five phenotypic traits measured in free-living sheep captured in August: weight, strongyle faecal egg count, and plasma IgA, IgE and IgG immunoglobulin titres against the gastrointestinal nematode parasite Teladorsagia circumcincta. We found no association between MHC class II variation and weight or strongyle faecal egg count. We did, however, find associations between MHC class II variation and immunoglobulin levels which varied with isotype, age and sex. Our results suggest associations between MHC and phenotypic traits are more likely to be found for traits more closely associated with pathogen defence than integrative traits such as bodyweight and highlight the association between MHC variation and antibodies in wild populations.
Collapse
Affiliation(s)
- Wei Huang
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Kara L Dicks
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Susan E Johnston
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Alexandra M Sparks
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,School of Biology, University of Leeds, Leeds, UK
| | - Kathryn Watt
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Jill G Pilkington
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Josephine M Pemberton
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
14
|
Arnocky S, Hodges-Simeon C, Davis AC, Desmarais R, Greenshields A, Liwski R, Quillen EE, Cardenas R, Breedlove SM, Puts D. Heterozygosity of the major histocompatibility complex predicts later self-reported pubertal maturation in men. Sci Rep 2021; 11:19862. [PMID: 34615944 PMCID: PMC8494901 DOI: 10.1038/s41598-021-99334-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 09/23/2021] [Indexed: 12/24/2022] Open
Abstract
Individual variation in the age of pubertal onset is linked to physical and mental health, yet the factors underlying this variation are poorly understood. Life history theory predicts that individuals at higher risk of mortality due to extrinsic causes such as infectious disease should sexually mature and reproduce earlier, whereas those at lower risk can delay puberty and continue to invest resources in somatic growth. We examined relationships between a genetic predictor of infectious disease resistance, heterozygosity of the major histocompatibility complex (MHC), referred to as the human leukocyte antigen (HLA) gene in humans, and self-reported pubertal timing. In a combined sample of men from Canada (n = 137) and the United States (n = 43), MHC heterozygosity predicted later self-reported pubertal development. These findings suggest a genetic trade-off between immunocompetence and sexual maturation in human males.
Collapse
Affiliation(s)
| | | | | | | | - Anna Greenshields
- Queen Elizabeth II Health Sciences Centre, Dalhousie University, Halifax, Canada
| | - Robert Liwski
- Queen Elizabeth II Health Sciences Centre, Dalhousie University, Halifax, Canada
| | | | | | | | - David Puts
- Pennsylvania State University, State College, USA
| |
Collapse
|
15
|
Fuess LE, Weber JN, den Haan S, Steinel NC, Shim KC, Bolnick DI. Between-population differences in constitutive and infection-induced gene expression in threespine stickleback. Mol Ecol 2021; 30:6791-6805. [PMID: 34582586 PMCID: PMC8796319 DOI: 10.1111/mec.16197] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023]
Abstract
Vertebrate immunity is a complex system consisting of a mix of constitutive and inducible defences. Furthermore, host immunity is subject to selective pressure from a range of parasites and pathogens which can produce variation in these defences across populations. As populations evolve immune responses to parasites, they may adapt via a combination of (1) constitutive differences, (2) shared inducible responses, or (3) divergent inducible responses. Here, we leverage a powerful natural host‐parasite model system (Gasterosteus aculeatus and Schistochephalus solidus) to tease apart the relative contributions of these three types of adaptations to among‐population divergence in response to parasites. Gene expression analyses revealed limited evidence of significant divergence in constitutive expression of immune defence, and strong signatures of conserved inducible responses to the parasite. Furthermore, our results highlight a handful of immune‐related genes which show divergent inducible responses which may contribute disproportionately to functional differences in infection success or failure. In addition to investigating variation in evolutionary adaptation to parasite selection, we also leverage this unique data set to improve understanding of cellular mechanisms underlying a putative resistance phenotype (fibrosis). Combined, our results provide a case study in evolutionary immunology showing that a very small number of genes may contribute to genotype differences in infection response.
Collapse
Affiliation(s)
- Lauren E Fuess
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA.,Department of Biology, Texas State University, San Marcos, Texas, USA
| | - Jesse N Weber
- Department of Integrative Biology, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Stijn den Haan
- International Institute for Industrial Environmental Economics (IIIEE), Lund University, Lund, Sweden
| | - Natalie C Steinel
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Kum Chuan Shim
- Department of Ecology, Evolution, and Behavior, University of Texas at Austin, Austin, Texas, USA
| | - Daniel I Bolnick
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
16
|
Dicks KL, Pemberton JM, Ballingall KT, Johnston SE. MHC class IIa haplotypes derived by high-throughput SNP screening in an isolated sheep population. G3-GENES GENOMES GENETICS 2021; 11:6298591. [PMID: 34568908 PMCID: PMC8496268 DOI: 10.1093/g3journal/jkab200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/12/2021] [Indexed: 12/01/2022]
Abstract
Investigating the current evolutionary processes acting on a highly polymorphic gene region, such as the major histocompatibility complex (MHC), requires extensive population data for both genotypes and phenotypes. The MHC consists of several tightly linked loci with both allelic and gene content variation, making it challenging to genotype. Eight class IIa haplotypes have previously been identified in the Soay sheep (Ovis aries) of St. Kilda using Sanger sequencing and cloning, but no single locus is representative of all haplotypes. Here, we exploit the closed nature of the island population of Soay sheep and its limited haplotypic variation to identify a panel of SNPs that enable imputation of MHC haplotypes. We compared MHC class IIa haplotypes determined by Sanger sequence-based genotyping of 135 individuals to their SNP profiles generated using the Ovine Infinium HD BeadChip. A panel of 11 SNPs could reliably determine MHC diplotypes, and two additional SNPs within the DQA1 gene enabled detection of a recombinant haplotype affecting only the SNPs downstream of the expressed genes. The panel of 13 SNPs was genotyped in 5951 Soay sheep, of which 5349 passed quality control. Using the Soay sheep pedigree, we were able to trace the origin and inheritance of the recombinant SNP haplotype. This SNP-based method has enabled the rapid generation of locus-specific MHC genotypes for large numbers of Soay sheep. This volume of high-quality genotypes in a well-characterized population of free-living sheep will be valuable for investigating the mechanisms maintaining diversity at the MHC.
Collapse
Affiliation(s)
- Kara L Dicks
- School of Biological Sciences, Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Josephine M Pemberton
- School of Biological Sciences, Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Keith T Ballingall
- Moredun Research Institute, Pentlands Science Park, Edinburgh EH26 0PZ, UK
| | - Susan E Johnston
- School of Biological Sciences, Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
17
|
Machuka EM, Muigai AWT, Amimo JO, Domelevo Entfellner JB, Lekolool I, Abworo EO, Pelle R. Comparative Analysis of SLA-1, SLA-2, and DQB1 Genetic Diversity in Locally-Adapted Kenyan Pigs and Their Wild Relatives, Warthogs. Vet Sci 2021; 8:180. [PMID: 34564574 PMCID: PMC8473215 DOI: 10.3390/vetsci8090180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
Swine leukocyte antigen (SLA) plays a central role in controlling the immune response by discriminating self and foreign antigens and initiating an immune response. Studies on SLA polymorphism have demonstrated associations between SLA allelic variants, immune response, and disease resistance. The SLA polymorphism is due to host-pathogen co-evolution resulting in improved adaptation to diverse environments making SLA a crucial genomic region for comparative diversity studies. Although locally-adapted African pigs have small body sizes, they possess increased resilience under harsh environmental conditions and robust immune systems with reported tolerance to some diseases, including African swine fever. However, data on the SLA diversity in these pigs are not available. We characterized the SLA of unrelated locally-adapted domestic pigs from Homa Bay, Kenya, alongside exotic pigs and warthogs. We undertook SLA comparative diversity of the functionally expressed SLA class I (SLA-1, SLA-2) and II (DQB1) repertoires in these three suids using the reverse transcription polymerase chain reaction (RT-PCR) sequence-based typing (SBT) method. Our data revealed higher genetic diversity in the locally-adapted pigs and warthogs compared to the exotic pigs. The nucleotide substitution rates were higher in the peptide-binding regions of the SLA-1, SLA-2, and DQB1 loci, indicative of adaptive evolution. We obtained high allele frequencies in the three SLA loci, including some breed-specific private alleles, which could guide breeders to increase their frequency through selection if confirmed to be associated with enhanced resilience. Our study contributes to the growing body of knowledge on genetic diversity in free-ranging animal populations in their natural environment, availing the first DQB1 gene data from locally-adapted Kenyan pigs.
Collapse
Affiliation(s)
- Eunice Magoma Machuka
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, Nairobi P.O. Box 30709-00100, Kenya;
- Institute for Basic Sciences Technology and Innovation (PAUSTI), Pan African University, Nairobi P.O. Box 62000-00200, Kenya
| | - Anne W. Thairu Muigai
- Botany Department, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya;
| | - Joshua Oluoch Amimo
- Center for Food Animal Health, Department of Animal Sciences, 1680 Madison Avenue, The Ohio State University, Wooster, OH 44691, USA;
| | - Jean-Baka Domelevo Entfellner
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, Nairobi P.O. Box 30709-00100, Kenya;
| | - Isaac Lekolool
- Kenya Wildlife Services, Nairobi P.O. Box 40241-00100, Kenya;
| | - Edward Okoth Abworo
- Animal and Human Health Program, International Livestock Research Institute, Nairobi P.O. Box 30709-00100, Kenya;
| | - Roger Pelle
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, Nairobi P.O. Box 30709-00100, Kenya;
| |
Collapse
|
18
|
Quéméré E, Hessenauer P, Galan M, Fernandez M, Merlet J, Chaval Y, Morellet N, Verheyden H, Gilot-Fromont E, Charbonnel N. Pathogen-mediated selection favours the maintenance of innate immunity gene polymorphism in a widespread wild ungulate. J Evol Biol 2021; 34:1156-1166. [PMID: 34062025 DOI: 10.1111/jeb.13876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/07/2021] [Accepted: 05/15/2021] [Indexed: 12/11/2022]
Abstract
Toll-like receptors (TLR) play a central role in recognition and host frontline defence against a wide range of pathogens. A number of recent studies have shown that TLR genes (Tlrs) often exhibit large polymorphism in natural populations. Yet, there is little knowledge on how this polymorphism is maintained and how it influences disease susceptibility in the wild. In previous work, we showed that some Tlrs exhibit similarly high levels of genetic diversity as genes of the Major Histocompatibility Complex (MHC), and signatures of contemporary balancing selection in roe deer (Capreolus capreolus), the most abundant cervid species in Europe. Here, we investigated the evolutionary mechanisms by which pathogen-mediated selection could shape this innate immunity genetic diversity by examining the relationships between Tlr (Tlr2, Tlr4 and Tlr5) genotypes (heterozygosity status and presence of specific alleles) and infections with Toxoplasma and Chlamydia, two widespread intracellular pathogens known to cause reproductive failure in ungulates. We showed that Toxoplasma and Chlamydia exposures vary significantly across years and landscape features with few co-infection events detected and that the two pathogens exert antagonistic selection on Tlr2 polymorphism. By contrast, we found limited support for Tlr heterozygote advantage. Our study confirmed the importance of looking beyond Mhc genes in wildlife immunogenetic studies. It also emphasized the necessity to consider multiple pathogen challenges and their spatiotemporal variation to improve our understanding of vertebrate defence evolution against pathogens.
Collapse
Affiliation(s)
- Erwan Quéméré
- Université de Toulouse, INRAE, CEFS, Castanet-Tolosan, France.,LTSER ZA PYRénées GARonne, Auzeville-Tolosane, France.,ESE, Ecology and Ecosystems Health, INRAE, Rennes, France
| | | | - Maxime Galan
- Département de Foresterie, Université Laval, Quebec, QC, Canada
| | - Marie Fernandez
- Université de Toulouse, INRAE, CEFS, Castanet-Tolosan, France.,LTSER ZA PYRénées GARonne, Auzeville-Tolosane, France
| | - Joël Merlet
- Université de Toulouse, INRAE, CEFS, Castanet-Tolosan, France.,LTSER ZA PYRénées GARonne, Auzeville-Tolosane, France
| | - Yannick Chaval
- Université de Toulouse, INRAE, CEFS, Castanet-Tolosan, France.,LTSER ZA PYRénées GARonne, Auzeville-Tolosane, France
| | - Nicolas Morellet
- Université de Toulouse, INRAE, CEFS, Castanet-Tolosan, France.,LTSER ZA PYRénées GARonne, Auzeville-Tolosane, France
| | - Hélène Verheyden
- Université de Toulouse, INRAE, CEFS, Castanet-Tolosan, France.,LTSER ZA PYRénées GARonne, Auzeville-Tolosane, France
| | - Emmanuelle Gilot-Fromont
- Université de Lyon, Université Lyon 1, UMR CNRS 5558, Villeurbanne, France.,Université de Lyon, VetAgro Sup, Marcy l'Etoile, France
| | - Nathalie Charbonnel
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ Montpellier, Montpellier, France
| |
Collapse
|
19
|
Oladosu OJ, Haruna IL, Hadebe SA, Zhou H, Hickford JGH. Nucleotide sequence variation of the major histocompatibility complex class II DQA1 gene in different cattle breeds from Nigeria and New Zealand. Vet Immunol Immunopathol 2021; 237:110273. [PMID: 34044268 DOI: 10.1016/j.vetimm.2021.110273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 11/30/2022]
Abstract
The major histocompatibility complex (MHC) plays a role in immune response. Among other activities, the bovine MHC genes (BoLA) trigger immune responses, including the activation of antibody-producing B-cells. In this study, White Fulani (n = 24), Red Bororo (n = 5) and Holstein-White × Fulani-cross (n = 11) cattle from Nigeria, and New Zealand Holstein-Friesian × Jersey-cross (n = 40) cattle were used to investigate variability in exon 2 of BoLA-DQA1. Ten alleles were identified using a PCR-Single Strand Conformation Polymorphism (SSCP) approach and their nucleotide sequences confirmed by DNA sequencing. A total of 12.60 % of all nucleotide positions analysed were revealed to be variable and two novel BoLA-DQA1 alleles are reported here for the first time.
Collapse
Affiliation(s)
- Oyekunle J Oladosu
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, 7647, New Zealand
| | - Ishaku L Haruna
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, 7647, New Zealand
| | - Sibusiso A Hadebe
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, 7647, New Zealand
| | - Huitong Zhou
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, 7647, New Zealand
| | - Jon G H Hickford
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, 7647, New Zealand.
| |
Collapse
|
20
|
Zanet S, Ferroglio E, Orlandini F, Bassano B, Battisti E, Brambilla A. Bronchopulmonary Nematodes in Alpine Ibex: Shedding of First Stage Larvae Analyzed at the Individual Host Level. Front Vet Sci 2021; 8:663268. [PMID: 33996985 PMCID: PMC8116586 DOI: 10.3389/fvets.2021.663268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/06/2021] [Indexed: 12/03/2022] Open
Abstract
Pneumonia is the most frequent cause of death for Alpine ibex (Capra ibex) in Gran Paradiso National Park, (Italy). The etiology of this form of pneumonia is currently unknown and the identification of the primary etiological agent remains difficult due to biological and logistic constraints. Uncovering individual differences in Protostrongylid prevalence and intensity is important to further investigate the epidemiology of respiratory diseases and their relationship to heterozygosity and inbreeding in a once almost extinct population like C. ibex. In a group of 21 individually recognizable adult male we monitored monthly prevalence and intensity of Protostrongylid first-stage larvae using Baerman's technique from June to September 2019. First-stage larvae of 5 genera were detected. Muellerius (P = 100%, CI95% = 84–100) and Protostrongylus (P = 86%, CI95%:71–100) were two dominant genera according to Bush's importance index. Neostrongylus (P = 38%,CI95%: 17–59), Cystocaulus (P = 33%,CI95% = 13–53) were classified as co-dominant genera while Dictyocaulus filaria (P = 0.05%, CI95% = 0.04–0.13) was detected, for the first time in Alpine ibex, in one subject. Protostrongylidae larval excretion varied significantly over time, with minimum L1 excretion in July. Individual median larval intensity ranged from 4.4 lpg to 82.2 lpg with Poulin's discrepancy index showing highly aggregated distribution patterns for Muellerius spp. (D = 0.283, CI95% = 0.760–0.895) and Protostrongylus spp. (D = 0.635, CI95% = 0.580–0.705). Presented data provide the necessary base point to further investigate how lungworm infection account for the different rates of progression of pneumonia in C. ibex. Individual aggregation of larval intensity must be further evaluated to determine whether these differences mirror different levels of parasitic infection related to individual differences in immune response, hormonal-states or genetic fitness.
Collapse
Affiliation(s)
- Stefania Zanet
- Department Veterinary Sciences, University of Turin, Turin, Italy
| | - Ezio Ferroglio
- Department Veterinary Sciences, University of Turin, Turin, Italy
| | | | - Bruno Bassano
- Gran Paradiso National Park, Alpine Wildlife Research Center, Noasca, Italy
| | - Elena Battisti
- Department Veterinary Sciences, University of Turin, Turin, Italy
| | - Alice Brambilla
- Gran Paradiso National Park, Alpine Wildlife Research Center, Noasca, Italy.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Holding ML, Strickland JL, Rautsaw RM, Hofmann EP, Mason AJ, Hogan MP, Nystrom GS, Ellsworth SA, Colston TJ, Borja M, Castañeda-Gaytán G, Grünwald CI, Jones JM, Freitas-de-Sousa LA, Viala VL, Margres MJ, Hingst-Zaher E, Junqueira-de-Azevedo ILM, Moura-da-Silva AM, Grazziotin FG, Gibbs HL, Rokyta DR, Parkinson CL. Phylogenetically diverse diets favor more complex venoms in North American pitvipers. Proc Natl Acad Sci U S A 2021; 118:e2015579118. [PMID: 33875585 PMCID: PMC8092465 DOI: 10.1073/pnas.2015579118] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The role of natural selection in the evolution of trait complexity can be characterized by testing hypothesized links between complex forms and their functions across species. Predatory venoms are composed of multiple proteins that collectively function to incapacitate prey. Venom complexity fluctuates over evolutionary timescales, with apparent increases and decreases in complexity, and yet the causes of this variation are unclear. We tested alternative hypotheses linking venom complexity and ecological sources of selection from diet in the largest clade of front-fanged venomous snakes in North America: the rattlesnakes, copperheads, cantils, and cottonmouths. We generated independent transcriptomic and proteomic measures of venom complexity and collated several natural history studies to quantify dietary variation. We then constructed genome-scale phylogenies for these snakes for comparative analyses. Strikingly, prey phylogenetic diversity was more strongly correlated to venom complexity than was overall prey species diversity, specifically implicating prey species' divergence, rather than the number of lineages alone, in the evolution of complexity. Prey phylogenetic diversity further predicted transcriptomic complexity of three of the four largest gene families in viper venom, showing that complexity evolution is a concerted response among many independent gene families. We suggest that the phylogenetic diversity of prey measures functionally relevant divergence in the targets of venom, a claim supported by sequence diversity in the coagulation cascade targets of venom. Our results support the general concept that the diversity of species in an ecological community is more important than their overall number in determining evolutionary patterns in predator trait complexity.
Collapse
Affiliation(s)
- Matthew L Holding
- Department of Biological Sciences, Clemson University, Clemson, SC 29634;
- Department of Biological Science, Florida State University, Tallahassee, FL 32306
| | - Jason L Strickland
- Department of Biological Sciences, Clemson University, Clemson, SC 29634
| | - Rhett M Rautsaw
- Department of Biological Sciences, Clemson University, Clemson, SC 29634
| | - Erich P Hofmann
- Department of Biological Sciences, Clemson University, Clemson, SC 29634
| | - Andrew J Mason
- Department of Biological Sciences, Clemson University, Clemson, SC 29634
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210
| | - Michael P Hogan
- Department of Biological Science, Florida State University, Tallahassee, FL 32306
| | - Gunnar S Nystrom
- Department of Biological Science, Florida State University, Tallahassee, FL 32306
| | - Schyler A Ellsworth
- Department of Biological Science, Florida State University, Tallahassee, FL 32306
| | - Timothy J Colston
- Department of Biological Science, Florida State University, Tallahassee, FL 32306
| | - Miguel Borja
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, C.P. 35010 Gómez Palacio, Dgo., Mexico
| | - Gamaliel Castañeda-Gaytán
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, C.P. 35010 Gómez Palacio, Dgo., Mexico
| | | | - Jason M Jones
- HERP.MX A.C., Villa del Álvarez, Colima 28973, Mexico
| | | | - Vincent Louis Viala
- Laboratório de Toxinologia Aplicada, Instituto Butantan, São Paulo 05503-900, Brazil
- Center of Toxins, Immune-Response and Cell Signaling, São Paulo 05503-900, Brazil
| | - Mark J Margres
- Department of Biological Sciences, Clemson University, Clemson, SC 29634
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
| | | | - Inácio L M Junqueira-de-Azevedo
- Laboratório de Toxinologia Aplicada, Instituto Butantan, São Paulo 05503-900, Brazil
- Center of Toxins, Immune-Response and Cell Signaling, São Paulo 05503-900, Brazil
| | - Ana M Moura-da-Silva
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo 05503-900, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus 69040, Brazil
| | - Felipe G Grazziotin
- Laboratório de Coleções Zoológicas, Instituto Butantan, São Paulo 05503-900, Brazil
| | - H Lisle Gibbs
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL 32306
| | - Christopher L Parkinson
- Department of Biological Sciences, Clemson University, Clemson, SC 29634;
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC 29634
| |
Collapse
|
22
|
Smallbone W, Ellison A, Poulton S, van Oosterhout C, Cable J. Depletion of MHC supertype during domestication can compromise immunocompetence. Mol Ecol 2020; 30:736-746. [PMID: 33274493 PMCID: PMC7898906 DOI: 10.1111/mec.15763] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/27/2022]
Abstract
The major histocompatibility complex (MHC) plays an important role in infectious disease resistance. The presence of certain MHC alleles and functionally similar groups of MHC alleles (i.e., supertypes) has been associated with resistance to particular parasite species. Farmed and domesticated fish stocks are often depleted in their MHC alleles and supertype diversity, possibly as a consequence of artificial selection for desirable traits, inbreeding (loss of heterozygosity), genetic drift (loss of allelic diversity) and/or reduced parasite biodiversity. Here we quantify the effects of depletion of MHC class II genotype and supertype variation on resistance to the parasite Gyrodactylus turnbulli in guppies (Poecilia reticulata). Compared to the descendants of wild‐caught guppies, ornamental fish had a significantly reduced MHC variation (i.e., the numbers of MHC alleles and supertypes per individual, and per population). In addition, ornamental fish were significantly more susceptible to G. turnbulli infections, accumulating peak intensity 10 times higher than that of their wildtype counterparts. Four out of 13 supertypes were associated with a significantly reduced parasite load, and the presence of some supertypes had a dramatic effect on the intensity of infection. Remarkably, the ornamental and wildtype fish differed in the supertypes that were associated with parasite resistance. Analysis with a genetic algorithm showed that resistance‐conferring supertypes of the wildtype and ornamental fish shared two unique amino acids in the peptide‐binding region of the MHC that were not found in any other alleles. These data show that the supertype demarcation captures some, but not all, of the variation in the immune function of the alleles. This study highlights the importance of managing functional MHC diversity in livestock, and suggests there might be some immunological redundancy among MHC supertypes.
Collapse
Affiliation(s)
| | - Amy Ellison
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Simon Poulton
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Joanne Cable
- School of Biosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
23
|
MHC-DRB1 exon 2 polymorphism and its association with mycoplasma ovipneumonia resistance or susceptibility genotypes in sheep. J Genet 2020. [DOI: 10.1007/s12041-020-1175-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Rödel HG, Oppelt C, Starkloff A, Prager N, Long E, Rüdiger AT, Seltmann MW, Monclús R, Hudson R, Poteaux C. Within-litter covariance of allele-specific MHC heterozygosity, coccidian endoparasite load and growth is modulated by sibling differences in starting mass. Oecologia 2020; 194:345-357. [PMID: 32980896 DOI: 10.1007/s00442-020-04764-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 09/19/2020] [Indexed: 10/23/2022]
Abstract
Although littermates in altricial mammals usually experience highly similar environmental conditions during early life, considerable differences in growth and health can emerge among them. In a study on subadults of a European rabbit (Oryctolagus cuniculus) population with low MHC polymorphism, we tested whether litter-sibling differences in endoparasitic coccidia load and body mass at the end of the vegetation period were associated with within-litter differences in starting body mass (measured around 2 weeks prior to weaning) and in immune-genetic (MHC class II DRB) constitution. We hypothesized that siblings with a lighter starting mass might be more susceptible to endoparasite infections and thus, negative effects of a more unfavourable MHC constitution might be particularly pronounced in such individuals. Within-litter comparisons revealed that animals with a lighter starting mass reached a relatively lower body mass in autumn. Furthermore, there were indications for an allele-specific heterozygote advantage, as animals with heterozygous combinations of the allele Orcu-DRB*4 had relatively lower hepatic coccidia loads than their littermates with certain homozygous allele combinations. Consistent with our hypothesis, significantly higher hepatic coccidia loads and tendentially lower autumn body masses in homozygous compared to heterozygous individuals for the allele Orcu-DRB*4 were evident in initially lighter but not in heavier siblings, suggesting synergistic effects between an unfavourable MHC constitution and a light starting mass. Taken together, these effects might lead to notable differences in fitness among litter siblings, as a low body mass and a high endoparasite burden are key factors limiting young rabbits' survival during winter.
Collapse
Affiliation(s)
- Heiko G Rödel
- Laboratoire d'Ethologie Expérimentale et Comparée UR 4443, Université Sorbonne Paris Nord, 93430, Villetaneuse, France. .,Department of Animal Physiology, University of Bayreuth, 95440, Bayreuth, Germany.
| | - Claus Oppelt
- Department of Animal Physiology, University of Bayreuth, 95440, Bayreuth, Germany
| | - Anett Starkloff
- Department of Animal Physiology, University of Bayreuth, 95440, Bayreuth, Germany
| | - Nelly Prager
- Laboratoire d'Ethologie Expérimentale et Comparée UR 4443, Université Sorbonne Paris Nord, 93430, Villetaneuse, France
| | - Emilie Long
- Laboratoire d'Ethologie Expérimentale et Comparée UR 4443, Université Sorbonne Paris Nord, 93430, Villetaneuse, France
| | - Anna-Theresa Rüdiger
- Department of Animal Physiology, University of Bayreuth, 95440, Bayreuth, Germany
| | - Martin W Seltmann
- Department of Animal Physiology, University of Bayreuth, 95440, Bayreuth, Germany.,Department of Biology, University of Turku, 20014, Turku, Finland
| | - Raquel Monclús
- Laboratoire d'Ethologie Expérimentale et Comparée UR 4443, Université Sorbonne Paris Nord, 93430, Villetaneuse, France
| | - Robyn Hudson
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Chantal Poteaux
- Laboratoire d'Ethologie Expérimentale et Comparée UR 4443, Université Sorbonne Paris Nord, 93430, Villetaneuse, France
| |
Collapse
|
25
|
Liu C, Lei H, Ran X, Wang J. Genetic variation and selection in the major histocompatibility complex Class II gene in the Guizhou pony. PeerJ 2020; 8:e9889. [PMID: 32999762 PMCID: PMC7505079 DOI: 10.7717/peerj.9889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 08/17/2020] [Indexed: 11/20/2022] Open
Abstract
The Guizhou pony (GZP) is an indigenous species of equid found in the mountains of the Guizhou province in southwest China. We selected four regions of the equine leukocyte antigen (ELA), including DQA, DRA, DQB, and DRB, and used them to assess the diversity of the major histocompatibility complex (MHC) class II gene using direct sequencing technology. DRA had the lowest dN/dS ratio (0.560) compared with the other three loci, indicating that DRA was conserved and could be conserved after undergoing selective processes. Nine DQA, five DQB, nine DRA, and seven DRB codons were under significant positive selection at the antigen binding sites (ABS), suggesting that the selected residues in ABS may play a significant role in the innate immune system of the GZP. Two GZP alleles were shared with Przewalski’s horse, and six older GZP haplotypes had a better relationship with other horse species by one or two mutational steps, indicating that the GZP may be a natural ancient variety of equid. The specific diversity of ABS and the numbers of unique haplotypes in the evolutionary process affords this species a better genetic fitness and ability to adapt to the native environment.
Collapse
Affiliation(s)
- Chang Liu
- College of Animal Sciences, Guizhou University, Guiyang, China.,College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Hongmei Lei
- College of Animal Sciences, Guizhou University, Guiyang, China
| | - Xueqin Ran
- College of Animal Sciences, Guizhou University, Guiyang, China
| | - Jiafu Wang
- College of Animal Sciences, Guizhou University, Guiyang, China.,Tongren University, Tongren, China
| |
Collapse
|
26
|
Unravelling effects of grazing intensity on genetic diversity and fitness of desert vegetation. Perspect Ecol Conserv 2020. [DOI: 10.1016/j.pecon.2020.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
27
|
Murray DR, Moran JB, Prokosch ML, Kerry N. No evidence for a relationship between MHC heterozygosity and life history strategy in a sample of North American undergraduates. Sci Rep 2020; 10:10140. [PMID: 32576939 PMCID: PMC7311407 DOI: 10.1038/s41598-020-67406-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 06/08/2020] [Indexed: 12/05/2022] Open
Abstract
Although allelic diversity at the major histocompatibility complex (MHC) has implications for adaptive immunity, mate choice, and social signalling, how diversity at the MHC influences the calibration of life history strategies remains largely uninvestigated. The current study investigated whether greater MHC heterozygosity was associated with markers of slower life history strategies in a sample of 789 North American undergraduates. Contrary to preregistered predictions and to previously published findings, MHC heterozygosity was not related to any of the psychological life history-relevant variables measured (including short- vs. long-term sexual strategy, temporal discounting, the Arizona life history battery, past and current health, disgust sensitivity, and Big Five personality traits). Further, no meaningful effects emerged when analysing women and men separately. Possible reasons for why the current results are inconsistent with previous work are discussed.
Collapse
Affiliation(s)
- Damian R Murray
- Department of Psychology, Tulane University, 2007 Percival Stern Hall, New Orleans, LA, 70118, USA.
| | - James B Moran
- Department of Psychology, Tulane University, 2007 Percival Stern Hall, New Orleans, LA, 70118, USA
| | - Marjorie L Prokosch
- Department of Psychology, Tulane University, 2007 Percival Stern Hall, New Orleans, LA, 70118, USA
| | - Nicholas Kerry
- Department of Psychology, Tulane University, 2007 Percival Stern Hall, New Orleans, LA, 70118, USA
| |
Collapse
|
28
|
Zhu Y, Grueber C, Li Y, He M, Hu L, He K, Liu H, Zhang H, Wu H. MHC-associated Baylisascaris schroederi load informs the giant panda reintroduction program. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2020; 12:113-120. [PMID: 32528846 PMCID: PMC7283101 DOI: 10.1016/j.ijppaw.2020.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/24/2020] [Accepted: 05/24/2020] [Indexed: 12/27/2022]
Abstract
Reintroducing captive giant pandas (Ailuropoda melanoleuca) to the wild is the ultimate goal of their ex situ conservation. Choosing higher fitness candidates to train prior to release is the first step in the giant panda reintroduction program. Disease resistance is one important index of individual fitness and presumed to be related to variation at major histocompatibility complex genes (MHC). Here, we used seven polymorphic functional MHC genes (Aime-C, Aime-I, Aime-L, Aime-DQA1, Aime-DQA2, Aime-DQB1 and Aime-DRB3) and estimate their relationship with Baylisascaris schroederi (Ascarididae) infection in giant panda. We found that DQA1 heterozygous pandas were less frequently infected than homozygotes. The presence of one MHC genotype and one MHC allele were also associated with B. schroederi infection: Aime-C*0203 and Aime-L*08 were both associated with B. schroederi resistance. Our results indicate that both heterozygosity and certain MHC variants are important for panda disease resistance, and should therefore be considered in future reintroduction programs for this species alongside conventional selection criteria (such as physical condition and pedigree-based information). MHC heterozygous pandas were less frequently infected by Baylisascaris schroederi than homozygotes. Presence of Aime-C*0203 and Aime-L*08 are associated with Baylisascaris schroederi resistance. MHC types are important for panda parasite resistance.
Collapse
Affiliation(s)
- Ying Zhu
- Sichuan Province Laboratory for Natural Resources Protection and Sustainable Utilization, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China.,Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Catherine Grueber
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Yudong Li
- Sichuan Province Laboratory for Natural Resources Protection and Sustainable Utilization, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
| | - Ming He
- China Conservation and Research Center for the Giant Panda, Dujiangyan, Sichuan, China
| | - Lan Hu
- China Conservation and Research Center for the Giant Panda, Dujiangyan, Sichuan, China
| | - Ke He
- College of Animal Sciences & Technology, Zhejiang A & F University, Hangzhou, China
| | - Hongyi Liu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Hemin Zhang
- China Conservation and Research Center for the Giant Panda, Dujiangyan, Sichuan, China
| | - Honglin Wu
- China Conservation and Research Center for the Giant Panda, Dujiangyan, Sichuan, China
| |
Collapse
|
29
|
Genome-Wide Changes in Genetic Diversity in a Population of Myotis lucifugus Affected by White-Nose Syndrome. G3-GENES GENOMES GENETICS 2020; 10:2007-2020. [PMID: 32276959 PMCID: PMC7263666 DOI: 10.1534/g3.119.400966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Novel pathogens can cause massive declines in populations, and even extirpation of hosts. But disease can also act as a selective pressure on survivors, driving the evolution of resistance or tolerance. Bat white-nose syndrome (WNS) is a rapidly spreading wildlife disease in North America. The fungus causing the disease invades skin tissues of hibernating bats, resulting in disruption of hibernation behavior, premature energy depletion, and subsequent death. We used whole-genome sequencing to investigate changes in allele frequencies within a population of Myotis lucifugus in eastern North America to search for genetic resistance to WNS. Our results show low FST values within the population across time, i.e., prior to WNS (Pre-WNS) compared to the population that has survived WNS (Post-WNS). However, when dividing the population with a geographical cut-off between the states of Pennsylvania and New York, a sharp increase in values on scaffold GL429776 is evident in the Post-WNS samples. Genes present in the diverged area are associated with thermoregulation and promotion of brown fat production. Thus, although WNS may not have subjected the entire M. lucifugus population to selective pressure, it may have selected for specific alleles in Pennsylvania through decreased gene flow within the population. However, the persistence of remnant sub-populations in the aftermath of WNS is likely due to multiple factors in bat life history.
Collapse
|
30
|
Sawada A, Ando H, Takagi M. Evaluating the existence and benefit of major histocompatibility complex-based mate choice in an isolated owl population. J Evol Biol 2020; 33:762-772. [PMID: 32281698 DOI: 10.1111/jeb.13629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/16/2020] [Accepted: 04/01/2020] [Indexed: 11/28/2022]
Abstract
How mate preferences evolve in the first place has been a major conundrum for sexual selection. Some hypotheses explaining this assume fitness benefit derived from subsequent generations. Major histocompatibility complex (MHC)-based mate choice is a representative example of the mate choice that is associated with such trans-generational mechanisms. To provide evidences for fitness benefit of MHC-based mate choice, previous studies assessed the association between own MHC genotype and own fitness components. However, the association between MHC-based mate choice in the parental generation and fitness components in the resultant offspring generation has only rarely been measured in wild populations. Focusing on the isolated population of the monogamous Ryukyu Scops Owl (Otus elegans interpositus) on Minami-daito Island, Japan, we found evidence of MHC-based mate choice. However, we found no evidence of MHC-based mate choice increasing own reproductive success or offspring survival. This is a rare case study that directly examines the existence of the trans-generational indirect benefit of MHC-based mate choice for genetic compatibility from trans-generational data in a wild bird population. By investigating the fitness benefits of mate choice, this study serves to facilitate our understanding of the evolution of MHC-based mate choice.
Collapse
Affiliation(s)
- Akira Sawada
- Department of Natural History Science, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | - Haruko Ando
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Tsukuba, Japan
| | - Masaoki Takagi
- Department of Natural History Science, Graduate School of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
31
|
Gobbin TP, Vanhove MPM, Pariselle A, Groothuis TGG, Maan ME, Seehausen O. Temporally consistent species differences in parasite infection but no evidence for rapid parasite-mediated speciation in Lake Victoria cichlid fish. J Evol Biol 2020; 33:556-575. [PMID: 32163649 PMCID: PMC7318199 DOI: 10.1111/jeb.13615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 02/17/2020] [Accepted: 03/04/2020] [Indexed: 12/31/2022]
Abstract
Parasites may have strong eco‐evolutionary interactions with their hosts. Consequently, they may contribute to host diversification. The radiation of cichlid fish in Lake Victoria provides a good model to study the role of parasites in the early stages of speciation. We investigated patterns of macroparasite infection in a community of 17 sympatric cichlids from a recent radiation and 2 older species from 2 nonradiating lineages, to explore the opportunity for parasite‐mediated speciation. Host species had different parasite infection profiles, which were only partially explained by ecological factors (diet, water depth). This may indicate that differences in infection are not simply the result of differences in exposure, but that hosts evolved species‐specific resistance, consistent with parasite‐mediated divergent selection. Infection was similar between sampling years, indicating that the direction of parasite‐mediated selection is stable through time. We morphologically identified 6 Cichlidogyrus species, a gill parasite that is considered a good candidate for driving parasite‐mediated speciation, because it is host species‐specific and has radiated elsewhere in Africa. Species composition of Cichlidogyrus infection was similar among the most closely related host species (members of the Lake Victoria radiation), but two more distantly related species (belonging to nonradiating sister lineages) showed distinct infection profiles. This is inconsistent with a role for Cichlidogyrus in the early stages of divergence. To conclude, we find significant interspecific variation in parasite infection profiles, which is temporally consistent. We found no evidence that Cichlidogyrus‐mediated selection contributes to the early stages of speciation. Instead, our findings indicate that species differences in infection accumulate after speciation.
Collapse
Affiliation(s)
- Tiziana P Gobbin
- Division of Aquatic Ecology & Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands.,Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Maarten P M Vanhove
- Research Group Zoology: Biodiversity & Toxicology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.,Department of Biology, Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven, Leuven, Belgium.,Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic.,Zoology Unit, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Antoine Pariselle
- ISEM, CNRS, Université de Montpellier, IRD, Montpellier, France.,Faculty of Sciences, Laboratory of Biodiversity, Ecology and Genome, Mohammed V University in Rabat, Rabat, Morocco
| | - Ton G G Groothuis
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Martine E Maan
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Ole Seehausen
- Division of Aquatic Ecology & Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
32
|
Hanks E, Todd H, Palarea-Albaladejo J, McNeilly TN, Britton C, Ballingall KT. A novel technique for retrospective genetic analysis of the response to vaccination or infection using cell-free DNA from archived sheep serum and plasma. Vet Res 2020; 51:9. [PMID: 32024546 PMCID: PMC7003321 DOI: 10.1186/s13567-020-0737-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/16/2020] [Indexed: 12/31/2022] Open
Abstract
Genetic variation is associated with differences in disease resistance and susceptibility among individuals within a population. To date, molecular genetic analyses of host responses have relied on extraction of genomic DNA from whole blood or tissue samples. However, such samples are not routinely collected during large-scale field studies. We demonstrate that cell-free genomic DNA (cfDNA) may be extracted and amplified from archived plasma samples, allowing retrospective analysis of host genetic diversity. This technique was also applicable to archived serum samples up to 35 years old and to different ruminant species. As proof of concept, we used this cfDNA approach to genotype the major histocompatibility complex (MHC) class II DRB1 locus of 224 Merino sheep which had participated in field trials of a commercial Haemonchus contortus vaccine, Barbervax®, in Australia. This identified a total of 51 different DRB1 alleles and their relative frequencies. This is the first study to examine host MHC diversity using DNA extracted from archived plasma samples, an approach that may be applied to retrospective analyses of genetic diversity and responses to vaccination or infection across different species and populations.
Collapse
Affiliation(s)
- Eve Hanks
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK. .,SAC Consulting: Veterinary Services, SRUC Veterinary Services, Pentland Science Park, Bush Loan, Penicuik, Midlothian, EH26 0PZ, UK.
| | - Helen Todd
- Moredun Research Institute, Pentlands Science Park, Penicuik, Edinburgh, EH26 0PZ, UK
| | - Javier Palarea-Albaladejo
- Biomathematics and Statistics Scotland, JCMB, The King's Buildings, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - Tom N McNeilly
- Moredun Research Institute, Pentlands Science Park, Penicuik, Edinburgh, EH26 0PZ, UK
| | - Collette Britton
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK.
| | - Keith T Ballingall
- Moredun Research Institute, Pentlands Science Park, Penicuik, Edinburgh, EH26 0PZ, UK.
| |
Collapse
|
33
|
Arauco-Shapiro G, Schumacher KI, Boersma D, Bouzat JL. The role of demographic history and selection in shaping genetic diversity of the Galápagos penguin (Spheniscus mendiculus). PLoS One 2020; 15:e0226439. [PMID: 31910443 PMCID: PMC6946592 DOI: 10.1371/journal.pone.0226439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/26/2019] [Indexed: 11/25/2022] Open
Abstract
Although many studies have documented the effects of demographic bottlenecks on the genetic diversity of natural populations, there is conflicting evidence of the roles that genetic drift and selection may play in driving changes in genetic variation at adaptive loci. We analyzed genetic variation at microsatellite and mitochondrial loci in conjunction with an adaptive MHC class II locus in the Galápagos penguin (Spheniscus mendiculus), a species that has undergone serial demographic bottlenecks associated with El Niño events through its evolutionary history. We compared levels of variation in the Galápagos penguin to those of its congener, the Magellanic penguin (Spheniscus magellanicus), which has consistently maintained a large population size and thus was used as a non-bottlenecked control. The comparison of neutral and adaptive markers in these two demographically distinct species allowed assessment of the potential role of balancing selection in maintaining levels of MHC variation during bottleneck events. Our analysis suggests that the lack of genetic diversity at both neutral and adaptive loci in the Galápagos penguin likely resulted from its restricted range, relatively low abundance, and history of demographic bottlenecks. The Galápagos penguin revealed two MHC alleles, one mitochondrial haplotype, and six alleles across five microsatellite loci, which represents only a small fraction of the diversity detected in Magellanic penguins. Despite the decreased genetic diversity in the Galápagos penguin, results revealed signals of balancing selection at the MHC, which suggest that selection can mitigate some of the effects of genetic drift during bottleneck events. Although Galápagos penguin populations have persisted for a long time, increased frequency of El Niño events due to global climate change, as well as the low diversity exhibited at immunological loci, may put this species at further risk of extinction.
Collapse
Affiliation(s)
- Gabriella Arauco-Shapiro
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, United States of America
| | - Katelyn I. Schumacher
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, United States of America
| | - Dee Boersma
- Center for Ecosystem Sentinels and Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Juan L. Bouzat
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, United States of America
| |
Collapse
|
34
|
Gaigher A, Burri R, San-Jose LM, Roulin A, Fumagalli L. Lack of statistical power as a major limitation in understanding MHC-mediated immunocompetence in wild vertebrate populations. Mol Ecol 2019; 28:5115-5132. [PMID: 31614047 DOI: 10.1111/mec.15276] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 01/09/2023]
Abstract
Disentangling the sources of variation in developing an effective immune response against pathogens is of major interest to immunoecology and evolutionary biology. To date, the link between immunocompetence and genetic variation at the major histocompatibility complex (MHC) has received little attention in wild animals, despite the key role of MHC genes in activating the adaptive immune system. Although several studies point to a link between MHC and immunocompetence, negative findings have also been reported. Such disparate findings suggest that limited statistical power might be affecting studies on this topic, owing to insufficient sample sizes and/or a generally small effect of MHC on the immunocompetence of wild vertebrates. To clarify this issue, we investigated the link between MHC variation and seven immunocompetence proxies in a large sample of barn owls and estimated the effect sizes and statistical power of this and published studies on this topic. We found that MHC poorly explained variation in immunocompetence of barn owls, with small-to-moderate associations between MHC and immunocompetence in owls (effect size: .1 ≥ r ≤ .3) similar to other vertebrates studied to date. Such small-to-moderate effects were largely associated with insufficient power, which was only sufficient (>0.8) to detect moderate-to-large effect sizes (r ≥ .3). Thus, studies linking MHC variation with immunocompetence in wild populations are underpowered to detect MHC effects, which are likely to be of generally small magnitude. Larger sample sizes (>200) will be required to achieve sufficient power in future studies aiming to robustly test for a link between MHC variation and immunocompetence.
Collapse
Affiliation(s)
- Arnaud Gaigher
- Department of Ecology and Evolution, Laboratory for Conservation Biology, Biophore, University of Lausanne, Lausanne, Switzerland.,Department of Computational Biology, Génopode, University of Lausanne, Lausanne, Switzerland.,CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
| | - Reto Burri
- Department of Population Ecology, Institute of Ecology & Evolution, Friedrich Schiller University Jena, Jena, Germany
| | - Luis M San-Jose
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland.,Laboratoire Évolution & Diversité Biologique, UMR 5174, CNRS, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Alexandre Roulin
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Luca Fumagalli
- Department of Ecology and Evolution, Laboratory for Conservation Biology, Biophore, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
35
|
Sparks AM, Watt K, Sinclair R, Pilkington JG, Pemberton JM, McNeilly TN, Nussey DH, Johnston SE. The genetic architecture of helminth-specific immune responses in a wild population of Soay sheep (Ovis aries). PLoS Genet 2019; 15:e1008461. [PMID: 31697674 PMCID: PMC6863570 DOI: 10.1371/journal.pgen.1008461] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/19/2019] [Accepted: 10/04/2019] [Indexed: 12/22/2022] Open
Abstract
Much of our knowledge of the drivers of immune variation, and how these responses vary over time, comes from humans, domesticated livestock or laboratory organisms. While the genetic basis of variation in immune responses have been investigated in these systems, there is a poor understanding of how genetic variation influences immunity in natural, untreated populations living in complex environments. Here, we examine the genetic architecture of variation in immune traits in the Soay sheep of St Kilda, an unmanaged population of sheep infected with strongyle gastrointestinal nematodes. We assayed IgA, IgE and IgG antibodies against the prevalent nematode Teladorsagia circumcincta in the blood plasma of > 3,000 sheep collected over 26 years. Antibody levels were significantly heritable (h2 = 0.21 to 0.57) and highly stable over an individual’s lifespan. IgA levels were strongly associated with a region on chromosome 24 explaining 21.1% and 24.5% of heritable variation in lambs and adults, respectively. This region was adjacent to two candidate loci, Class II Major Histocompatibility Complex Transactivator (CIITA) and C-Type Lectin Domain Containing 16A (CLEC16A). Lamb IgA levels were also associated with the immunoglobulin heavy constant loci (IGH) complex, and adult IgE levels and lamb IgA and IgG levels were associated with the major histocompatibility complex (MHC). This study provides evidence of high heritability of a complex immunological trait under natural conditions and provides the first evidence from a genome-wide study that large effect genes located outside the MHC region exist for immune traits in the wild. Understanding how immune responses vary in natural populations can give an insight into how infection affects the ability of hosts and parasites to survive and reproduce, and how this drives evolutionary and ecological dynamics. Yet, very little is known about how immune responses vary over an individual’s lifetime and how genes contribute to this variation under natural conditions. Our study investigates the genetic architecture of variation in three antibody types, IgA, IgE and IgG in a wild population of Soay sheep on the St Kilda archipelago in North-West Scotland. Using data collected over 26 years, we show that antibody levels have a heritable basis in lambs and adults and are stable over an individual’s lifetime. We also identify several genomic regions with large effects on immune responses. Our study offers the first insights into the genetic control of immunity in a wild population, which is essential to understand how immune profiles vary in challenging natural conditions and how natural selection maintains genetic variation in complex immune traits.
Collapse
Affiliation(s)
- Alexandra M. Sparks
- Institutes of Evolutionary Biology and Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, United Kingdom
- * E-mail:
| | - Kathryn Watt
- Institutes of Evolutionary Biology and Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Rona Sinclair
- Institutes of Evolutionary Biology and Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jill G. Pilkington
- Institutes of Evolutionary Biology and Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Josephine M. Pemberton
- Institutes of Evolutionary Biology and Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Tom N. McNeilly
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian, United Kingdom
| | - Daniel H. Nussey
- Institutes of Evolutionary Biology and Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Susan E. Johnston
- Institutes of Evolutionary Biology and Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
36
|
Manlik O, Krützen M, Kopps AM, Mann J, Bejder L, Allen SJ, Frère C, Connor RC, Sherwin WB. Is MHC diversity a better marker for conservation than neutral genetic diversity? A case study of two contrasting dolphin populations. Ecol Evol 2019; 9:6986-6998. [PMID: 31380027 PMCID: PMC6662329 DOI: 10.1002/ece3.5265] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022] Open
Abstract
Genetic diversity is essential for populations to adapt to changing environments. Measures of genetic diversity are often based on selectively neutral markers, such as microsatellites. Genetic diversity to guide conservation management, however, is better reflected by adaptive markers, including genes of the major histocompatibility complex (MHC). Our aim was to assess MHC and neutral genetic diversity in two contrasting bottlenose dolphin (Tursiops aduncus) populations in Western Australia-one apparently viable population with high reproductive output (Shark Bay) and one with lower reproductive output that was forecast to decline (Bunbury). We assessed genetic variation in the two populations by sequencing the MHC class II DQB, which encompasses the functionally important peptide binding regions (PBR). Neutral genetic diversity was assessed by genotyping twenty-three microsatellite loci. We confirmed that MHC is an adaptive marker in both populations. Overall, the Shark Bay population exhibited greater MHC diversity than the Bunbury population-for example, it displayed greater MHC nucleotide diversity. In contrast, the difference in microsatellite diversity between the two populations was comparatively low. Our findings are consistent with the hypothesis that viable populations typically display greater genetic diversity than less viable populations. The results also suggest that MHC variation is more closely associated with population viability than neutral genetic variation. Although the inferences from our findings are limited, because we only compared two populations, our results add to a growing number of studies that highlight the usefulness of MHC as a potentially suitable genetic marker for animal conservation. The Shark Bay population, which carries greater adaptive genetic diversity than the Bunbury population, is thus likely more robust to natural or human-induced changes to the coastal ecosystem it inhabits.
Collapse
Affiliation(s)
- Oliver Manlik
- Biology Department, College of ScienceUnited Arab Emirates UniversityAl AinUnited Arab Emirates
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Michael Krützen
- Department of AnthropologyUniversity of ZurichZurichSwitzerland
| | - Anna M. Kopps
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Janet Mann
- Department of Biology and Department of PsychologyGeorgetown UniversityWashingtonDistrict of Columbia
| | - Lars Bejder
- Marine Mammal Research Program, Hawai'i Institute of Marine BiologyUniversity of Hawai'i at ManoaKaneoheHonolulu
- Aquatic Megafauna Research Unit, School of Veterinary and Life SciencesMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Simon J. Allen
- School of Biological SciencesUniversity of BristolBristolUnited Kingdom
| | - Celine Frère
- Faculty of Science, Health, Education and EngineeringUniversity of the Sunshine CoastSippy DownsQueenslandAustralia
| | | | - William B. Sherwin
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
- Aquatic Megafauna Research Unit, School of Veterinary and Life SciencesMurdoch UniversityMurdochWestern AustraliaAustralia
| |
Collapse
|
37
|
Dicks KL, Pemberton JM, Ballingall KT. Characterisation of major histocompatibility complex class IIa haplotypes in an island sheep population. Immunogenetics 2019; 71:383-393. [PMID: 30796497 PMCID: PMC6525122 DOI: 10.1007/s00251-019-01109-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/08/2019] [Indexed: 12/11/2022]
Abstract
The ovine MHC class IIa is known to consist of six to eight loci located in close proximity on chromosome 20, forming haplotypes that are typically inherited without recombination. Here, we characterise the class IIa haplotypes within the Soay sheep (Ovis aries) on St. Kilda to assess the diversity present within this unmanaged island population. We used a stepwise sequence-based genotyping strategy to identify alleles at seven polymorphic MHC class IIa loci in a sample of 118 Soay sheep from four cohorts spanning 15 years of the long-term study on St. Kilda. DRB1, the most polymorphic MHC class II locus, was characterised first in all 118 sheep and identified six alleles. Using DRB1 homozygous animals, the DQA (DQA1, DQA2 and DQA2-like) and DQB (DQB1, DQB2 and DQB2-like) loci were sequenced, revealing eight haplotypes. Both DQ1/DQ2 and DQ2/DQ2-like haplotype configurations were identified and a single haplotype carrying three DQB alleles. A test sample of 94 further individuals typed at the DRB1 and DQA loci found no exceptions to the eight identified haplotypes and a haplotype homozygosity of 21.3%. We found evidence of historic positive selection at DRB1, DQA and DQB. The limited variation at MHC class IIa loci in Soay sheep enabled haplotype characterisation but showed that no single locus could capture the full extent of the expressed variation in the region.
Collapse
Affiliation(s)
- Kara L Dicks
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK.
| | - Josephine M Pemberton
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Keith T Ballingall
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, EH26 OPZ, UK
| |
Collapse
|
38
|
Gao FY, Zhang D, Lu MX, Cao JM, Liu ZG, Ke XL, Wang M, Zhang DF. MHC Class IIB gene polymorphisms associated with resistance/susceptibility to Streptococcus agalactiae in Nile tilapia Oreochromis niloticus. DISEASES OF AQUATIC ORGANISMS 2019; 133:253-261. [PMID: 31187732 DOI: 10.3354/dao03349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Genetic variation in the major histocompatibility complex (MHC) Class IIB was tested in Nile tilapia Oreochromis niloticus, and the association between the MHC IIB alleles and disease resistance was also studied. F3 fry offspring (n = 1200) from 12 full-sib families were challenged with Streptococcus agalactiae, which caused significantly different mortalities in different Nile tilapia families (11.00-81.10%). Twenty fry (F1) from each of the 12 families were selected to study the polymorphisms of the MHC Class IIB gene using PCR followed by cloning and sequencing methods. The results showed that the size of the amplified fragment was 770-797 bp. Thirty-seven sequences from 240 individuals revealed 22 different alleles, which belonged to 9 major allele types. Up to 63.58% of nucleotide positions were variable, while the proportion of the amino acid variable positions was up to 68.73%. According to the survival rate of offspring (F3) from 12 full-sib families, we deduced that the alleles Orni-DAB*0107, Orni-DAB*0201 and Orni-DAB*0302 were highly associated with resistance to S. agalactiae, while the allele Orni-DAB*0701 was associated with susceptibility to S. agalactiae. In addition, our previous study found that the allele Orni-DAB*0201 was more frequently distributed in the disease-resistant groups. Therefore, the allele Orni-DAB*0201 could be used as an S. agalactiae resistance-related MHC marker in molecular marker-assisted selective breeding programs for S. agalactiae-resistant Nile tilapia.
Collapse
Affiliation(s)
- Feng-Ying Gao
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, PR China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Sahoo NR, Kumar P, Khan MF, Mourya R, Ravikumar GVPPS, Tiwari AK. Sequence diversity of major histo-compatibility complex class II DQA1 in Indian Tharparkar cattle: novel alleles and in-silico analysis. HLA 2019; 93:451-461. [PMID: 30868742 DOI: 10.1111/tan.13521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 01/29/2023]
Abstract
Exon 2 of MHC class II gene codes for the first domain of the molecule that forms the peptide-binding groove and its polymorphism partly explains functional MHC diversity. A 850 bp DQA1 gene fragment spanning from intron I to exon III was typed by sequencing of 40 Tharparkar cattle of various agro-climatic zones of northern India along with 10 Tharparkar crossbreds. On analysis of nucleotide sequences, a total of 30 polymorphic sites (1 insertion and 29 SNPs) were identified in 14 MHC alleles leading to amino acid changes in 5 places in 249 bp (exon 2). Five new BoLa DQA1 alleles were identified and reported. The within group mean distance was highest in Tharparkar herd of Bikaner (0.045) and lowest (0.020) in that of Surathgarh (breeding tract) whereas, between groups mean distance was highest in Bikaner Tharparkar-Suratgarh Tharparkar pair. There was excess of nonsynonymous over synonymous nucleotide substitutions in the present study. The effects of these substitutions were predicted using I-Mutant and Panther online resources. The mean ratio of dN/dS was found to be >1.0 at 12 codons with two mutation hotspots at 13th codon (P = 0.002) and 64th codon (P = 0.01). The phylo-geographic analysis revealed that alleles 5, 7 and 13 formed a different cluster with alleles 7 and 13 grouped by the most frequent allele (BoLa-DQA*1401).
Collapse
Affiliation(s)
- Nihar R Sahoo
- Central Instrumentation Facility, Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Pushpendra Kumar
- Central Instrumentation Facility, Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Mohd F Khan
- Central Instrumentation Facility, Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Ranjeeta Mourya
- Central Instrumentation Facility, Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - G V P P S Ravikumar
- Central Instrumentation Facility, Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India.,National Institute of Animal Biotechnology, Hyderabad, Telangana, India
| | - Ashok K Tiwari
- Central Instrumentation Facility, Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| |
Collapse
|
40
|
Portanier E, Garel M, Devillard S, Maillard D, Poissant J, Galan M, Benabed S, Poirel MT, Duhayer J, Itty C, Bourgoin G. Both candidate gene and neutral genetic diversity correlate with parasite resistance in female Mediterranean mouflon. BMC Ecol 2019; 19:12. [PMID: 30836982 PMCID: PMC6402107 DOI: 10.1186/s12898-019-0228-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 02/23/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Parasite infections can have substantial impacts on population dynamics and are accordingly a key challenge for wild population management. Here we studied genetic mechanisms driving parasite resistance in a large herbivore through a comprehensive approach combining measurements of neutral (16 microsatellites) and adaptive (MHC DRB1 exon 2) genetic diversity and two types of gastrointestinal parasites (nematodes and coccidia). RESULTS While accounting for other extrinsic and intrinsic predictors known to impact parasite load, we show that both neutral genetic diversity and DRB1 are associated with resistance to gastrointestinal nematodes. Intermediate levels of multi-locus heterozygosity maximized nematodes resistance, suggesting that both in- and outbreeding depression might occur in the population. DRB1 heterozygosity and specific alleles effects were detected, suggesting the occurrence of heterozygote advantage, rare-allele effects and/or fluctuating selection. On the contrary, no association was detected between genetic diversity and resistance to coccidia, indicating that different parasite classes are impacted by different genetic drivers. CONCLUSIONS This study provides important insights for large herbivores and wild sheep pathogen management, and in particular suggests that factors likely to impact genetic diversity and allelic frequencies, including global changes, are also expected to impact parasite resistance.
Collapse
Affiliation(s)
- Elodie Portanier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive, 69100 Villeurbanne, France
- Office National de la Chasse et de la Faune Sauvage, Unité Ongulés Sauvages, 5 allée de Bethléem, Z.I. Mayencin, 38610 Gières, France
- Université de Lyon, VetAgro Sup, Campus Vétérinaire de Lyon, 1 Avenue Bourgelat, BP 83, 69280 Marcy l’Etoile, France
| | - Mathieu Garel
- Office National de la Chasse et de la Faune Sauvage, Unité Ongulés Sauvages, 5 allée de Bethléem, Z.I. Mayencin, 38610 Gières, France
| | - Sébastien Devillard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive, 69100 Villeurbanne, France
| | - Daniel Maillard
- Office National de la Chasse et de la Faune Sauvage, Unité Ongulés Sauvages, 5 allée de Bethléem, Z.I. Mayencin, 38610 Gières, France
| | - Jocelyn Poissant
- Department of Ecosystem and Public Health, University of Calgary, Calgary, Canada
| | - Maxime Galan
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, 34980 Montferrier Sur Lez, France
| | - Slimania Benabed
- Université de Lyon, VetAgro Sup, Campus Vétérinaire de Lyon, 1 Avenue Bourgelat, BP 83, 69280 Marcy l’Etoile, France
| | - Marie-Thérèse Poirel
- Université de Lyon, VetAgro Sup, Campus Vétérinaire de Lyon, 1 Avenue Bourgelat, BP 83, 69280 Marcy l’Etoile, France
| | - Jeanne Duhayer
- Office National de la Chasse et de la Faune Sauvage, Unité Ongulés Sauvages, 5 allée de Bethléem, Z.I. Mayencin, 38610 Gières, France
| | - Christian Itty
- Office National de la Chasse et de la Faune Sauvage, Unité Ongulés Sauvages, 5 allée de Bethléem, Z.I. Mayencin, 38610 Gières, France
| | - Gilles Bourgoin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive, 69100 Villeurbanne, France
- Université de Lyon, VetAgro Sup, Campus Vétérinaire de Lyon, 1 Avenue Bourgelat, BP 83, 69280 Marcy l’Etoile, France
| |
Collapse
|
41
|
Pérez-Espona S, Goodall-Copestake WP, Savirina A, Bobovikova J, Molina-Rubio C, Pérez-Barbería FJ. First assessment of MHC diversity in wild Scottish red deer populations. EUR J WILDLIFE RES 2019. [DOI: 10.1007/s10344-019-1254-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Gahr CL, Boehm T, Milinski M. Female assortative mate choice functionally validates synthesized male odours of evolving stickleback river-lake ecotypes. Biol Lett 2018; 14:20180730. [PMID: 30958253 PMCID: PMC6303515 DOI: 10.1098/rsbl.2018.0730] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/22/2018] [Indexed: 12/16/2022] Open
Abstract
During mate choice decisions, females of many vertebrates use male olfactory cues to achieve immunogenetic optimality of their offspring. Three-spined sticklebacks ( Gasterosteus aculeatus) populating habitats that differ in their parasite communities evolve locally adapted combinations of genetic variants encoded at the major histocompatibility complex (MHC). Such adaptation confers optimal resistance to the local parasite fauna. Immunogenetic signatures co-evolved with local parasites favour population-specific assortative mate choice behaviour. Previous studies have shown that female sticklebacks evaluate male MHC-associated olfactory cues during the process of mate choice, but how habitat-specific information is exchanged between males and females has remained elusive. Here, we directly demonstrate the molecular nature of the olfactory cue providing habitat-specific information. Under controlled laboratory conditions, females that are ready to mate prefer mixtures of synthetic MHC peptide ligands mimicking the optimal allele number of their original population. These results imply that female sticklebacks can determine the number of MHC alleles of their prospective mates, compare it to their own immunogenetic status, and, if optimal with respect to the immunogenetic complementarity, accept the male as mate. Our results suggest a potentially common mechanism of ecological speciation in vertebrates that is based on the olfactory assessment of habitat-specific immunogenetic diversity.
Collapse
Affiliation(s)
- Christoph L. Gahr
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Plön, Germany
| | - Thomas Boehm
- Department of Developmental Immunology, Max-Planck-Institute for Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Manfred Milinski
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Plön, Germany
| |
Collapse
|
43
|
Heimeier D, Alexander A, Hamner RM, Pichler F, Baker CS. The Influence of Selection on MHC DQA and DQB Haplotypes in the Endemic New Zealand Hector’s and Māui Dolphins. J Hered 2018; 109:744-756. [DOI: 10.1093/jhered/esy050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 09/19/2018] [Indexed: 01/15/2023] Open
Affiliation(s)
- Dorothea Heimeier
- School of Biological Sciences, University of Auckland, Private Bag, Auckland, New Zealand
| | - Alana Alexander
- Biodiversity Institute, University of Kansas, Jayhawk Boulevard, Lawrence, KS
| | - Rebecca M Hamner
- Marine Mammal Institute and Department of Fisheries and Wildlife, Hatfield Marine Science Center, Oregon State University, SE Marine Science Drive, Newport, OR
- School of Biological Sciences, University of Auckland, Private Bag, Auckland, New Zealand
| | - Franz Pichler
- School of Biological Sciences, University of Auckland, Private Bag, Auckland, New Zealand
| | - C Scott Baker
- Marine Mammal Institute and Department of Fisheries and Wildlife, Hatfield Marine Science Center, Oregon State University, SE Marine Science Drive, Newport, OR
- School of Biological Sciences, University of Auckland, Private Bag, Auckland, New Zealand
| |
Collapse
|
44
|
Sequence diversity of MHC class-II DRB gene in gazelles (Gazella subgutturosa) raised in Sanliurfa of Turkey. J Genet 2018. [DOI: 10.1007/s12041-018-0974-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
45
|
Bozkaya F, Gürler S. Sequence diversity of MHC class-II DRB gene in gazelles ( Gazella subgutturosa) raised in Sanliurfa of Turkey. J Genet 2018; 97:897-903. [PMID: 30262701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, we aimed to assess the sequence diversity of major histocompatibility complex (MHC) class-II DRB gene at exon 2 in gazelles raised in Sanliurfa Province of Turkey. Twenty DNA samples isolated from gazelles (Gazella subgutturosa) were used for sequencing exon 2 of MHC class-II DRB gene. Target region was amplified by polymerase chain reaction (PCR) and their products were directly sequenced. Nine of these 20 samples yielded unambiguously readable sequences. Three of the nine samples were homozygotes and each showed different sequences. A 262-bp sequence obtained from the three homozygote samples were submitted to GenBank (accession numbers: KC309405, KC309406 and KC309407). Using an allele specific PCR, we detected 10 additional haplotypes. Among 13 haplotypes, 45 nucleotide positions were polymorphic and most of the polymorphic nucleotide positions localized at peptide-binding region (PBR). Rates of nonsynonymous substitutions were significantly higher than synonymous substitutions at PBR. Phylogenetic analysis of the haplotypes showed that 10 haplotypes of the gazelles were clustered together while three were clustered with ovine and bovine haplotypes. The results indicated that at least 13 haplotypes at exon 2 of MHC class-II DRB gene were showing high degree of nucleotide and amino acid diversity, and certain haplotypes of G. subgutturosa were more similar to haplotypes from sheep or cattle than to each other. Rates of synonymous and nonsynonymous substitutions suggested that positive selection was a driving force for diversity at this locus in G. subgutturosa.
Collapse
Affiliation(s)
- Faruk Bozkaya
- Faculty of Veterinary Medicine, Department of Genetics, Harran University, 63200 Eyyubiye, Sanliurfa, Turkey.
| | | |
Collapse
|
46
|
Brambilla A, Keller L, Bassano B, Grossen C. Heterozygosity-fitness correlation at the major histocompatibility complex despite low variation in Alpine ibex ( Capra ibex). Evol Appl 2018; 11:631-644. [PMID: 29875807 PMCID: PMC5979623 DOI: 10.1111/eva.12575] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/30/2017] [Indexed: 01/06/2023] Open
Abstract
Crucial for the long-term survival of wild populations is their ability to fight diseases. Disease outbreaks can lead to severe population size reductions, which makes endangered and reintroduced species especially vulnerable. In vertebrates, the major histocompatibility complex (MHC) plays an important role in determining the immune response. Species that went through severe bottlenecks often show very low levels of genetic diversity at the MHC. Due to the known link between the MHC and immune response, such species are expected to be at particular risk in case of disease outbreaks. However, so far, only few studies have shown that low MHC diversity is correlated with increased disease susceptibility in species after severe bottlenecks. We investigated genetic variation at the MHC and its correlations with disease resistance and other fitness-related traits in Alpine ibex (Capra ibex), a wild goat species that underwent a strong bottleneck in the last century and that is known to have extremely low genetic variability, both genome-wide and at the MHC. We studied MHC variation in male ibex of Gran Paradiso National Park, the population used as a source for all postbottleneck reintroductions. We found that individual MHC heterozygosity (based on six microsatellites) was not correlated with genome-wide neutral heterozygosity. MHC heterozygosity, but not genome-wide heterozygosity, was positively correlated with resistance to infectious keratoconjunctivitis and with body mass. Our results show that genetic variation at the MHC plays an important role in disease resistance and, hence, should be taken into account for successfully managing species conservation.
Collapse
Affiliation(s)
- Alice Brambilla
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurich (ZH)Switzerland
- Alpine Wildlife Research CentreGran Paradiso National ParkNoasca (TO)Italy
| | - Lukas Keller
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurich (ZH)Switzerland
| | - Bruno Bassano
- Alpine Wildlife Research CentreGran Paradiso National ParkNoasca (TO)Italy
| | - Christine Grossen
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurich (ZH)Switzerland
| |
Collapse
|
47
|
Garamszegi LZ, Zagalska-Neubauer M, Canal D, Blázi G, Laczi M, Nagy G, Szöllősi E, Vaskuti É, Török J, Zsebők S. MHC-mediated sexual selection on birdsong: Generic polymorphism, particular alleles and acoustic signals. Mol Ecol 2018; 27:2620-2633. [PMID: 29693314 DOI: 10.1111/mec.14703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 04/03/2018] [Accepted: 04/11/2018] [Indexed: 01/06/2023]
Abstract
Several hypotheses predict that the major histocompatibility complex (MHC) drives mating preference in females. Olfactory, colour or morphological traits are often found as reliable signals of the MHC profile, but the role of avian song mediating MHC-based female choice remains largely unexplored. We investigated the relationship between several MHC and acoustic features in the collared flycatcher (Ficedula albicollis), a European passerine with complex songs. We screened a fragment of the class IIB second exon of the MHC molecule, of which individuals harbour 4-15 alleles, while considerable sequence diversity is maintained at the population level. To make statistical inferences from a large number of comparisons, we adopted both null-hypothesis testing and effect size framework in combination with randomization procedures. After controlling for potential confounding factors, neither MHC allelic diversity nor the presence of particular alleles was associated remarkably with the investigated qualitative and quantitative song traits. Furthermore, genetic similarity among males based on MHC sequences was not reflected by the similarity in their song based on syllable content. Overall, these results suggest that the relationship between features of song and the allelic composition and diversity of MHC is not strong in the studied species. However, a biologically motivated analysis revealed that individuals that harbour an MHC allele that impairs survival perform songs with broader frequency range. This finding suggests that certain aspects of the song may bear reliable information concerning the MHC profile of the individuals, which can be used by females to optimize mate choice.
Collapse
Affiliation(s)
- László Zsolt Garamszegi
- Department of Evolutionary Ecology, Estación Biológica de Doñana-CSIC, Seville, Spain.,Department of Plant Systematics, Ecology and Theoretical Biology, MTA-ELTE, Theoretical Biology and Evolutionary Ecology Research Group, Eötvös Loránd University, Budapest, Hungary
| | | | - David Canal
- Department of Evolutionary Ecology, Estación Biológica de Doñana-CSIC, Seville, Spain.,Centro para el Estudio y Conservación de las Aves Rapaces en Argentina (CECARA-UNLPam) & Instituto de las Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Rosa, Argentina
| | - György Blázi
- Department of Systematic Zoology and Ecology, Behavioural Ecology Group, Eötvös Loránd University, Budapest, Hungary
| | - Miklós Laczi
- Department of Systematic Zoology and Ecology, Behavioural Ecology Group, Eötvös Loránd University, Budapest, Hungary
| | - Gergely Nagy
- Department of Systematic Zoology and Ecology, Behavioural Ecology Group, Eötvös Loránd University, Budapest, Hungary
| | - Eszter Szöllősi
- Department of Systematic Zoology and Ecology, Behavioural Ecology Group, Eötvös Loránd University, Budapest, Hungary
| | - Éva Vaskuti
- Department of Systematic Zoology and Ecology, Behavioural Ecology Group, Eötvös Loránd University, Budapest, Hungary
| | - János Török
- Department of Systematic Zoology and Ecology, Behavioural Ecology Group, Eötvös Loránd University, Budapest, Hungary.,Ecology Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Sándor Zsebők
- Department of Systematic Zoology and Ecology, Behavioural Ecology Group, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
48
|
The Evolutionary Biology, Ecology and Epidemiology of Coccidia of Passerine Birds. ADVANCES IN PARASITOLOGY 2018. [PMID: 29530310 DOI: 10.1016/bs.apar.2018.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Coccidia are intracellular parasites of the phylum Apicomplexa that cause a range of pathologies collectively termed coccidiosis. Species of coccidia of commercial importance have been well studied, with the effect of other species on passerine birds receiving increasing attention. In this chapter, we review the literature on coccidia in passerines, with a particular focus on wild populations. The taxonomy and life cycle of passerine coccidia are covered, as is their impact on the health of passerines, their epidemiology and their role in parasite-mediated natural and sexual selection. Coccidia can pose a significant threat to the health of wild passerine populations, and high rates of mortality have been observed in some studies. We examine some of the genetic factors that influence host resistance to coccidia and discuss how these parasites may be important in relation to sexually selected traits. General patterns are beginning to emerge with regard to the epidemiology of the parasites, and the influence of different aspects of the host's ecology on the prevalence and intensity of coccidia is being revealed. We examine these, as well exceptions, in addition to the phenomenon of diurnal oocyst shedding that can bias studies if not accounted for. Finally, we discuss potential future directions for research on coccidia in passerines and the importance of understanding parasite ecology in the management of threatened species.
Collapse
|
49
|
Sweeney T, Hanrahan JP, Ryan MT, Good B. Immunogenomics of gastrointestinal nematode infection in ruminants - breeding for resistance to produce food sustainably and safely. Parasite Immunol 2017; 38:569-86. [PMID: 27387842 DOI: 10.1111/pim.12347] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 06/16/2016] [Indexed: 12/20/2022]
Abstract
Gastrointestinal nematode (GIN) infection of ruminants represents a major health and welfare challenge for livestock producers worldwide. The emergence of anthelmintic resistance in important GIN species and the associated animal welfare concerns have stimulated interest in the development of alternative and more sustainable strategies aimed at the effective management of the impact of GINs. These integrative strategies include selective breeding using genetic/genomic tools, grazing management, biological control, nutritional supplementation, vaccination and targeted selective treatment. In this review, the logic of selecting for "resistance" to GIN infection as opposed to "resilience" or "tolerance" is discussed. This is followed by a review of the potential application of immunogenomics to genetic selection for animals that have the capacity to withstand the impact of GIN infection. Advances in relevant genomic technologies are highlighted together with how these tools can be advanced to support the integration of immunogenomic information into ruminant breeding programmes.
Collapse
Affiliation(s)
- T Sweeney
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland.
| | | | - M T Ryan
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - B Good
- Animal & Grassland Research & Innovation Centre, Athenry, Co. Galway, Ireland
| |
Collapse
|
50
|
Plowright RK, Manlove KR, Besser TE, Páez DJ, Andrews KR, Matthews PE, Waits LP, Hudson PJ, Cassirer EF. Age-specific infectious period shapes dynamics of pneumonia in bighorn sheep. Ecol Lett 2017; 20:1325-1336. [PMID: 28871636 DOI: 10.1111/ele.12829] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/23/2017] [Accepted: 07/23/2017] [Indexed: 01/21/2023]
Abstract
Superspreading, the phenomenon where a small proportion of individuals contribute disproportionately to new infections, has profound effects on disease dynamics. Superspreading can arise through variation in contacts, infectiousness or infectious periods. The latter has received little attention, yet it drives the dynamics of many diseases of critical public health, livestock health and conservation concern. Here, we present rare evidence of variation in infectious periods underlying a superspreading phenomenon in a free-ranging wildlife system. We detected persistent infections of Mycoplasma ovipneumoniae, the primary causative agent of pneumonia in bighorn sheep (Ovis canadensis), in a small number of older individuals that were homozygous at an immunologically relevant genetic locus. Interactions among age-structure, genetic composition and infectious periods may drive feedbacks in disease dynamics that determine the magnitude of population response to infection. Accordingly, variation in initial conditions may explain divergent population responses to infection that range from recovery to catastrophic decline and extirpation.
Collapse
Affiliation(s)
- Raina K Plowright
- Department of Microbiology and Immunology, Montana State University, 109 Lewis Hall, Bozeman, MT, 59717, USA
| | - Kezia R Manlove
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164, USA
| | - Thomas E Besser
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164, USA
| | - David J Páez
- Department of Microbiology and Immunology, Montana State University, 109 Lewis Hall, Bozeman, MT, 59717, USA
| | - Kimberly R Andrews
- Department of Fish and Wildlife Sciences, University of Idaho, 875 Perimeter Drive MS 1136, Moscow, ID, 83844, USA
| | - Patrick E Matthews
- Oregon Department of Fish and Wildlife, 65495 Alder Slope Road, Enterprise, OR, 97828, USA
| | - Lisette P Waits
- Department of Fish and Wildlife Sciences, University of Idaho, 875 Perimeter Drive MS 1136, Moscow, ID, 83844, USA
| | - Peter J Hudson
- Center for Infectious Disease Dynamics, 201, Life Sciences Building, Pennsylvania State University, University Park, PA, 16802, USA
| | - E Frances Cassirer
- Idaho Department of Fish and Game, 3316 16th Street, Lewiston, ID, 83501, USA
| |
Collapse
|