1
|
Dumont R, Dowdell J, Song J, Li J, Wang S, Kang W, Li B. Control of charge transport in electronically active systems towards integrated biomolecular circuits (IbC). J Mater Chem B 2023; 11:8302-8314. [PMID: 37464922 DOI: 10.1039/d3tb00701d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The miniaturization of traditional silicon-based electronics will soon reach its limitation as quantum tunneling and heat become serious problems at the several-nanometer scale. Crafting integrated circuits via self-assembly of electronically active molecules using a "bottom-up" paradigm provides a potential solution to these technological challenges. In particular, integrated biomolecular circuits (IbC) offer promising advantages to achieve this goal, as nature offers countless examples of functionalities entailed by self-assembly and examples of controlling charge transport at the molecular level within the self-assembled structures. To this end, the review summarizes the progress in understanding how charge transport is regulated in biosystems and the key redox-active amino acids that enable the charge transport. In addition, charge transport mechanisms at different length scales are also reviewed, offering key insights for controlling charge transport in IbC in the future.
Collapse
Affiliation(s)
- Ryan Dumont
- Department of Mechanical Engineering, Kennesaw State University, Marietta, GA, USA.
| | - Juwaan Dowdell
- Department of Mechanical Engineering, Kennesaw State University, Marietta, GA, USA.
| | - Jisoo Song
- Department of Mechanical Engineering, Kennesaw State University, Marietta, GA, USA.
| | - Jiani Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Centre for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, China.
| | - Suwan Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Centre for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, China.
| | - Wei Kang
- State Key Laboratory of Fine Chemicals, Frontiers Science Centre for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, China.
- Ningbo Institute of Dalian University of Technology, Ningbo, China
| | - Bo Li
- Department of Mechanical Engineering, Kennesaw State University, Marietta, GA, USA.
| |
Collapse
|
2
|
Ledray AP, Dwaraknath S, Chakarawet K, Sponholtz MR, Merchen C, Van Stappen C, Rao G, Britt RD, Lu Y. Tryptophan Can Promote Oxygen Reduction to Water in a Biosynthetic Model of Heme Copper Oxidases. Biochemistry 2023; 62:388-395. [PMID: 36215733 DOI: 10.1021/acs.biochem.2c00300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Heme-copper oxidases (HCOs) utilize tyrosine (Tyr) to donate one of the four electrons required for the reduction of O2 to water in biological respiration, while tryptophan (Trp) is speculated to fulfill the same role in cyt bd oxidases. We previously engineered myoglobin into a biosynthetic model of HCOs and demonstrated the critical role that Tyr serves in the oxygen reduction reaction (ORR). To address the roles of Tyr and Trp in these oxidases, we herein report the preparation of the same biosynthetic model with the Tyr replaced by Trp and further demonstrate that Trp can also promote the ORR, albeit with lower activity. An X-ray crystal structure of the Trp variant shows a hydrogen-bonding network involving two water molecules that are organized by Trp, similar to that in the Tyr variant, which is absent in the crystal structure with the native Phe residue. Additional electron paramagnetic resonance measurements are consistent with the formation of a Trp radical species upon reacting with H2O2. We attribute the lower activity of the Trp variant to Trp's higher reduction potential relative to Tyr. Together, these findings demonstrate, for the first time, that Trp can indeed promote the ORR and provides a structural basis for the observation of varying activities. The results support a redox role for the conserved Trp in bd oxidase while suggesting that HCOs use Tyr instead of Trp to achieve higher reactivity.
Collapse
Affiliation(s)
- Aaron P Ledray
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Sudharsan Dwaraknath
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Khetpakorn Chakarawet
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Madeline R Sponholtz
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Claire Merchen
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Casey Van Stappen
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Guodong Rao
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - R David Britt
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Koo S. Flexible Heater Fabrication Using Amino Acid-Based Ink and Laser-Direct Writing. MICROMACHINES 2022; 13:2209. [PMID: 36557507 PMCID: PMC9783287 DOI: 10.3390/mi13122209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Nature's systems have evolved over a long period to operate efficiently, and this provides hints for metal nanoparticle synthesis, including the enhancement, efficient generation, and transport of electrons toward metal ions for nanoparticle synthesis. The organic material-based ink composed of the natural materials used in this study requires low laser power for sintering compared to conventional nanoparticle ink sintering. This suggests applicability in various and sophisticated pattern fabrication applications without incurring substrate damage. An efficient electron transfer mechanism between amino acids (e.g., tryptophan) enables silver patterning on flexible polymer substrates (e.g., PET) by laser-direct writing. The reduction of silver ions to nanoparticles was induced and sintered by simultaneous photo/thermalchemical reactions on substrates. Furthermore, it was possible to fabricate a stable, transparent, and flexible heater that operates under mechanical deformation.
Collapse
Affiliation(s)
- Sangmo Koo
- Department of Mechanical Engineering, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
4
|
Ramírez-Gamboa D, Díaz-Zamorano AL, Meléndez-Sánchez ER, Reyes-Pardo H, Villaseñor-Zepeda KR, López-Arellanes ME, Sosa-Hernández JE, Coronado-Apodaca KG, Gámez-Méndez A, Afewerki S, Iqbal HMN, Parra-Saldivar R, Martínez-Ruiz M. Photolyase Production and Current Applications: A Review. Molecules 2022; 27:molecules27185998. [PMID: 36144740 PMCID: PMC9505440 DOI: 10.3390/molecules27185998] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
The photolyase family consists of flavoproteins with enzyme activity able to repair ultraviolet light radiation damage by photoreactivation. DNA damage by the formation of a cyclobutane pyrimidine dimer (CPD) and a pyrimidine-pyrimidone (6-4) photoproduct can lead to multiple affections such as cellular apoptosis and mutagenesis that can evolve into skin cancer. The development of integrated applications to prevent the negative effects of prolonged sunlight exposure, usually during outdoor activities, is imperative. This study presents the functions, characteristics, and types of photolyases, their therapeutic and cosmetic applications, and additionally explores some photolyase-producing microorganisms and drug delivery systems.
Collapse
Affiliation(s)
- Diana Ramírez-Gamboa
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | | | | | - Humberto Reyes-Pardo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | | | | | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Karina G. Coronado-Apodaca
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Ana Gámez-Méndez
- Department of Basic Sciences, Universidad de Monterrey, Av. Ignacio Morones Prieto 4500 Pte, San Pedro Garza Garcia 66238, Mexico
| | - Samson Afewerki
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Division of Gastroenterology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Roberto Parra-Saldivar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
- Correspondence: (R.P.-S.); (M.M.-R.)
| | - Manuel Martínez-Ruiz
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
- Correspondence: (R.P.-S.); (M.M.-R.)
| |
Collapse
|
5
|
Zadeh-Haghighi H, Simon C. Magnetic field effects in biology from the perspective of the radical pair mechanism. J R Soc Interface 2022; 19:20220325. [PMID: 35919980 PMCID: PMC9346374 DOI: 10.1098/rsif.2022.0325] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/14/2022] [Indexed: 04/07/2023] Open
Abstract
Hundreds of studies have found that weak magnetic fields can significantly influence various biological systems. However, the underlying mechanisms behind these phenomena remain elusive. Remarkably, the magnetic energies implicated in these effects are much smaller than thermal energies. Here, we review these observations, and we suggest an explanation based on the radical pair mechanism, which involves the quantum dynamics of the electron and nuclear spins of transient radical molecules. While the radical pair mechanism has been studied in detail in the context of avian magnetoreception, the studies reviewed here show that magnetosensitivity is widespread throughout biology. We review magnetic field effects on various physiological functions, discussing static, hypomagnetic and oscillating magnetic fields, as well as isotope effects. We then review the radical pair mechanism as a potential unifying model for the described magnetic field effects, and we discuss plausible candidate molecules for the radical pairs. We review recent studies proposing that the radical pair mechanism provides explanations for isotope effects in xenon anaesthesia and lithium treatment of hyperactivity, magnetic field effects on the circadian clock, and hypomagnetic field effects on neurogenesis and microtubule assembly. We conclude by discussing future lines of investigation in this exciting new area of quantum biology.
Collapse
Affiliation(s)
- Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
6
|
Rishabh R, Zadeh-Haghighi H, Salahub D, Simon C. Radical pairs may explain reactive oxygen species-mediated effects of hypomagnetic field on neurogenesis. PLoS Comput Biol 2022; 18:e1010198. [PMID: 35653379 PMCID: PMC9197044 DOI: 10.1371/journal.pcbi.1010198] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 06/14/2022] [Accepted: 05/11/2022] [Indexed: 12/21/2022] Open
Abstract
Exposures to a hypomagnetic field can affect biological processes. Recently, it has been observed that hypomagnetic field exposure can adversely affect adult hippocampal neurogenesis and hippocampus-dependent cognition in mice. In the same study, the role of reactive oxygen species (ROS) in hypomagnetic field effects has been demonstrated. However, the mechanistic reasons behind this effect are not clear. This study proposes a radical pair mechanism based on a flavin-superoxide radical pair to explain the modulation of ROS production and the attenuation of adult hippocampal neurogenesis in a hypomagnetic field. The results of our calculations favor a singlet-born radical pair over a triplet-born radical pair. Our model predicts hypomagnetic field effects on the triplet/singlet yield of comparable strength as the effects observed in experimental studies on adult hippocampal neurogenesis. Our predictions are in qualitative agreement with experimental results on superoxide concentration and other observed ROS effects. We also predict the effects of applied magnetic fields and oxygen isotopic substitution on adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Rishabh Rishabh
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Dennis Salahub
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
- Centre for Molecular Simulation, University of Calgary, Calgary, Alberta, Canada
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
7
|
Salay LE, Blee AM, Raza MK, Gallagher KS, Chen H, Dorfeuille AJ, Barton JK, Chazin WJ. Modification of the 4Fe-4S Cluster Charge Transport Pathway Alters RNA Synthesis by Yeast DNA Primase. Biochemistry 2022; 61:1113-1123. [PMID: 35617695 DOI: 10.1021/acs.biochem.2c00100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA synthesis during replication begins with the generation of an ∼10-nucleotide primer by DNA primase. Primase contains a redox-active 4Fe-4S cluster in the C-terminal domain of the p58 subunit (p58C). The redox state of this 4Fe-4S cluster can be modulated via the transport of charge through the protein and the DNA substrate (redox switching); changes in the redox state of the cluster alter the ability of p58C to associate with its substrate. The efficiency of redox switching in p58C can be altered by mutating tyrosine residues that bridge the 4Fe-4S cluster and the nucleic acid binding site. Here, we report the effects of mutating bridging tyrosines to phenylalanines in yeast p58C. High-resolution crystal structures show that these mutations, even with six tyrosines simultaneously mutated, do not perturb the three-dimensional structure of the protein. In contrast, measurements of the electrochemical properties on DNA-modified electrodes of p58C containing multiple tyrosine to phenylalanine mutations reveal deficiencies in their ability to engage in DNA charge transport. Significantly, this loss of electrochemical activity correlates with decreased primase activity. While single-site mutants showed modest decreases in activity compared to that of the wild-type primase, the protein containing six mutations exhibited a 10-fold or greater decrease. Thus, many possible tyrosine-mediated pathways for charge transport in yeast p58C exist, but inhibiting these pathways together diminishes the ability of yeast primase to generate primers. These results support a model in which redox switching is essential for primase activity.
Collapse
Affiliation(s)
- Lauren E Salay
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States.,Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Alexandra M Blee
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States.,Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Md Kausar Raza
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Kaitlyn S Gallagher
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States.,Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Huiqing Chen
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Andrew J Dorfeuille
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Jacqueline K Barton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Walter J Chazin
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States.,Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States.,Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
8
|
Mathis P, Sage E, Byrdin M. Pushing the limits of flash photolysis to unravel the secrets of biological electron and proton transfer. Photochem Photobiol Sci 2022; 21:1533-1544. [DOI: 10.1007/s43630-021-00134-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2021] [Indexed: 11/25/2022]
|
9
|
Wong SY, Wei Y, Mouritsen H, Solov'yov IA, Hore PJ. Cryptochrome magnetoreception: four tryptophans could be better than three. J R Soc Interface 2021; 18:20210601. [PMID: 34753309 PMCID: PMC8580466 DOI: 10.1098/rsif.2021.0601] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/14/2021] [Indexed: 12/28/2022] Open
Abstract
The biophysical mechanism of the magnetic compass sensor in migratory songbirds is thought to involve photo-induced radical pairs formed in cryptochrome (Cry) flavoproteins located in photoreceptor cells in the eyes. In Cry4a-the most likely of the six known avian Crys to have a magnetic sensing function-four radical pair states are formed sequentially by the stepwise transfer of an electron along a chain of four tryptophan residues to the photo-excited flavin. In purified Cry4a from the migratory European robin, the third of these flavin-tryptophan radical pairs is more magnetically sensitive than the fourth, consistent with the smaller separation of the radicals in the former. Here, we explore the idea that these two radical pair states of Cry4a could exist in rapid dynamic equilibrium such that the key magnetic and kinetic properties are weighted averages. Spin dynamics simulations suggest that the third radical pair is largely responsible for magnetic sensing while the fourth may be better placed to initiate magnetic signalling particularly if the terminal tryptophan radical can be reduced by a nearby tyrosine. Such an arrangement could have allowed independent optimization of the essential sensing and signalling functions of the protein. It might also rationalize why avian Cry4a has four tryptophans while Crys from plants have only three.
Collapse
Affiliation(s)
- Siu Ying Wong
- Institut für Physik, Carl-von-Ossietzky Universität Oldenburg, Oldenburg 26111, Germany
| | - Yujing Wei
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Henrik Mouritsen
- Institut für Biologie und Umweltwissenschaften, Carl-von-Ossietzky Universität Oldenburg, Oldenburg 26111, Germany
- Research Centre for Neurosensory Science, University of Oldenburg, Oldenburg 26111, Germany
| | - Ilia A. Solov'yov
- Institut für Physik, Carl-von-Ossietzky Universität Oldenburg, Oldenburg 26111, Germany
| | - P. J. Hore
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| |
Collapse
|
10
|
Ru X, Crane BR, Zhang P, Beratan DN. Why Do Most Aromatics Fail to Support Hole Hopping in the Cytochrome c Peroxidase-Cytochrome c Complex? J Phys Chem B 2021; 125:7763-7773. [PMID: 34235935 DOI: 10.1021/acs.jpcb.1c05064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electron transport through aromatic species (especially tryptophan and tyrosine) plays a central role in water splitting, redox signaling, oxidative damage protection, and bioenergetics. The cytochrome c peroxidase (CcP)-cytochrome c (Cc) complex (CcP:Cc) is used widely to study interprotein electron transfer (ET) mechanisms. Tryptophan 191 (Trp191) of CcP supports hole hopping charge recombination in the CcP:Cc complex. Experimental studies find that when Trp191 is substituted by tyrosine, phenylalanine, or redox-active aniline derivatives bound in the W191G cavity, enzymatic activity and charge recombination rates both decrease. Theoretical analysis of these CcP:Cc complexes finds that the ET kinetics depend strongly on the chemistry of the modified Trp site. The computed electronic couplings in the W191F and W191G species are orders of magnitude smaller than in the native protein, due largely to the absence of a hopping intermediate and the large tunneling distance. Small molecules bound in the W191G cavity are weakly coupled electronically to the Cc heme, and the structural disorder of the guest molecule in the binding pocket may contribute further to the lack of enzymatic activity. The couplings in W191Y are not substantially weakened compared to the native species, but the redox potential difference for tyrosine vs tryptophan oxidation accounts for the slower rate in the Tyr mutant. Thus, theoretical analysis explains why only the native Trp supports rapid hole hopping in the CcP:Cc complex. Favorable free energies and electronic couplings are essential for establishing an efficient hole hopping relay in this protein-protein complex.
Collapse
Affiliation(s)
- Xuyan Ru
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States.,Department of Physics, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
11
|
Photochemical processes in flavo-enzymes as a probe for active site dynamics: TrmFO of Thermus thermophilus. Photochem Photobiol Sci 2021; 20:663-670. [PMID: 33977512 DOI: 10.1007/s43630-021-00052-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
Quenching of flavin fluorescence by electron transfer from neighboring aromatic residues is ubiquitous in flavoproteins. Apart from constituting a functional process in specific light-active systems, time-resolved spectral characterization of the process can more generally be employed as a probe for the active site configuration and dynamics. In the C51A variant of the bacterial RNA-transforming flavoenzyme TrmFO from the bacterium Thermus thermophilus, fluorescence is very short-lived (~ 1 ps), and close-by Tyr343 is known to act as the main quencher, as confirmed here by the very similar dynamics observed in protein variants with modified other potential quenchers, Trp283 and Trp214. When Tyr343 is modified to redox-inactive phenylalanine, slower and highly multiphasic kinetics are observed on the picosecond-nanosecond timescale, reflecting heterogeneous electron donor-acceptor configurations. We demonstrate that Trp214, which is located on a potentially functional flexible loop, contributes to electron donor quenching in this variant. Contrasting with observations in other nucleic acid-transforming enzymes, these kinetics are strikingly temperature-independent. This indicates (a) near-barrierless electron transfer reactions and (b) no exchange between different configurations on the timescale up to at least 2 ns, despite the presumed flexibility of Trp214. Results of extensive molecular dynamics simulations are presented to explain this unexpected finding in terms of slowly exchanging protein configurations.
Collapse
|
12
|
Lacombat F, Espagne A, Dozova N, Plaza P, Müller P, Emmerich HJ, Saft M, Essen LO. Ultrafast photoreduction dynamics of a new class of CPD photolyases. Photochem Photobiol Sci 2021; 20:733-746. [PMID: 33977513 DOI: 10.1007/s43630-021-00048-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/22/2021] [Indexed: 01/09/2023]
Abstract
NewPHL is a recently discovered subgroup of ancestral DNA photolyases. Its domain architecture displays pronounced differences from that of canonical photolyases, in particular at the level of the characteristic electron transfer chain, which is limited to merely two tryptophans, instead of the "classical" three or four. Using transient absorption spectroscopy, we show that the dynamics of photoreduction of the oxidized FAD cofactor in the NewPHL begins similarly as that in canonical photolyases, i.e., with a sub-ps primary reduction of the excited FAD cofactor by an adjacent tryptophan, followed by migration of the electron hole towards the second tryptophan in the tens of ps regime. However, the resulting tryptophanyl radical then undergoes an unprecedentedly fast deprotonation in less than 100 ps in the NewPHL. In spite of the stabilization effect of this deprotonation, almost complete charge recombination follows in two phases of ~ 950 ps and ~ 50 ns. Such a rapid recombination of the radical pair implies that the first FAD photoreduction step, i.e., conversion of the fully oxidized to the semi-quinone state, should be rather difficult in vivo. We hence suggest that the flavin chromophore likely switches only between its semi-reduced and fully reduced form in NewPHL under physiological conditions.
Collapse
Affiliation(s)
- Fabien Lacombat
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, CNRS, Sorbonne Université, 75005, Paris, France
| | - Agathe Espagne
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, CNRS, Sorbonne Université, 75005, Paris, France
| | - Nadia Dozova
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, CNRS, Sorbonne Université, 75005, Paris, France
| | - Pascal Plaza
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, CNRS, Sorbonne Université, 75005, Paris, France.
| | - Pavel Müller
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France.
| | - Hans-Joachim Emmerich
- Department of Chemistry, Center for Synthetic Microbiology, Philipps University, 35032, Marburg, Germany
| | - Martin Saft
- Department of Chemistry, Center for Synthetic Microbiology, Philipps University, 35032, Marburg, Germany
| | - Lars-Oliver Essen
- Department of Chemistry, Center for Synthetic Microbiology, Philipps University, 35032, Marburg, Germany.
| |
Collapse
|
13
|
da Silva FF, Cunha T, Rebelo A, Gil A, Calhorda MJ, García G, Ingólfsson O, Limão-Vieira P. Electron-Transfer-Induced Side-Chain Cleavage in Tryptophan Facilitated through Potassium-Induced Transition-State Stabilization in the Gas Phase. J Phys Chem A 2021; 125:2324-2333. [DOI: 10.1021/acs.jpca.1c00690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Filipe Ferreira da Silva
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Tiago Cunha
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Andre Rebelo
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Adrià Gil
- BioISI -Biosystems & Integrative Sciences Institute, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- CIC nanoGUNE BRTA, Tolosa Hiribidea, 76, E-20018 Donostia − San Sebastián, Euskadi, Spain
| | - Maria José Calhorda
- BioISI -Biosystems & Integrative Sciences Institute, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Gustavo García
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (CSIC), Serrano 113-bis, 28006 Madrid, Spain
| | - Oddur Ingólfsson
- Chemistry and Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland
| | - Paulo Limão-Vieira
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
14
|
Zhuang B, Seo D, Aleksandrov A, Vos MH. Characterization of Light-Induced, Short-Lived Interacting Radicals in the Active Site of Flavoprotein Ferredoxin-NADP + Oxidoreductase. J Am Chem Soc 2021; 143:2757-2768. [PMID: 33591179 DOI: 10.1021/jacs.0c09627] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Radicals of flavin adenine dinucleotide (FAD), as well as tyrosine and tryptophan, are widely involved as key reactive intermediates during electron-transfer (ET) reactions in flavoproteins. Due to the high reactivity of these species and their corresponding short lifetime, characterization of these intermediates in functional processes of flavoproteins is usually challenging but can be achieved by ultrafast spectroscopic studies of light-activatable flavoproteins. In ferredoxin-NADP+ oxidoreductase from Bacillus subtilis (BsFNR), fluorescence of the FAD cofactor that very closely interacts with a neighboring tyrosine residue (Tyr50) is strongly quenched. Here we study short-lived photoproducts of this enzyme and its variants, with Tyr50 replaced by tryptophan or glycine. Using time-resolved fluorescence and absorption spectroscopies, we show that, upon the excitation of WT BsFNR, ultrafast ET from Tyr50 to the excited FAD cofactor occurs in ∼260 fs, an order of magnitude faster than the decay by charge recombination, facilitating the characterization of the reaction intermediates in the charge-separated state with respect to other recently studied systems. These studies are corroborated by experiments on the Y50W mutant protein, which yield photoproducts qualitatively similar to those observed in other tryptophan-bearing flavoproteins. By combining the experimental results with molecular dynamics simulations and quantum mechanics calculations, we investigate in detail the effects of protein environment and relaxations on the spectral properties of those radical intermediates and demonstrate that the spectral features of radical anionic FAD are highly sensitive to its environment, and in particular to the dynamics and nature of the counterions formed in the photoproducts. Altogether, comprehensive characterizations are provided for important radical intermediates that are generally involved in functional processes of flavoproteins.
Collapse
Affiliation(s)
- Bo Zhuang
- LOB, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Daisuke Seo
- Division of Material Science, Graduate School of Natural Science and Technology, Kanazawa University, 920-1192 Kanazawa, Ishikawa, Japan
| | - Alexey Aleksandrov
- LOB, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Marten H Vos
- LOB, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| |
Collapse
|
15
|
Ramírez N, Serey M, Illanes A, Piumetti M, Ottone C. Immobilization strategies of photolyases: Challenges and perspectives for DNA repairing application. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 215:112113. [PMID: 33383556 DOI: 10.1016/j.jphotobiol.2020.112113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/27/2020] [Accepted: 12/19/2020] [Indexed: 02/08/2023]
Abstract
Photolyases are enzymes that repair DNA damage caused by solar radiation. Due to their photorepair potential, photolyases added in topical creams and used in medical treatments has allowed to reverse skin damage and prevent the development of different diseases, including actinic keratosis, premature photoaging and cancer. For this reason, research has been oriented to the study of new photolyases performing in extreme environments, where high doses of UV radiation may be a key factor for these enzymes to have perfected their photorepair potential. Generally, the extracted enzymes are first encapsulated and then added to the topical creams to increase their stability. However, other well consolidated immobilization methods are interesting strategies to be studied that may improve the biocatalyst performance. This review aims to go through the different Antarctic organisms that have exhibited photoreactivation activity, explaining the main mechanisms of photolyase DNA photorepair. The challenges of immobilizing these enzymes on porous and nanostructured supports is also discussed. The comparison of the most reported immobilization methods with respect to the structure of photolyases show that both covalent and ionic immobilization methods produced an increase in their stability. Moreover, the use of nanosized materials as photolyase support would permit the incorporation of the biocatalyst into the target cell, which is a technological requirement that photolyase based biocatalysts must fulfill.
Collapse
Affiliation(s)
- Nicolás Ramírez
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso, Chile
| | - Marcela Serey
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso, Chile
| | - Andrés Illanes
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso, Chile
| | - Marco Piumetti
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Carminna Ottone
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso, Chile.
| |
Collapse
|
16
|
Otsuka H, Mitsui H, Miura K, Okano K, Imamoto Y, Okano T. Rapid Oxidation Following Photoreduction in the Avian Cryptochrome4 Photocycle. Biochemistry 2020; 59:3615-3625. [PMID: 32915550 DOI: 10.1021/acs.biochem.0c00495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Avian magnetoreception is assumed to occur in the retina. Although its molecular mechanism is unclear, magnetic field-dependent formation and the stability of radical-containing photointermediate(s) are suggested to play key roles in a hypothesis called the radical pair mechanism. Chicken cryptochrome4 (cCRY4) has been identified as a candidate magnetoreceptive molecule due to its expression in the retina and its ability to form stable flavin neutral radicals (FADH●) upon blue light absorption. Herein, we used millisecond flash photolysis to investigate the cCRY4 photocycle, in both the presence and absence of dithiothreitol (DTT); detecting the anion radical form of FAD (FAD●-) under both conditions. Using spectral data obtained during flash photolysis and UV-visible photospectroscopy, we estimated the absolute absorbance spectra of the photointermediates, thus allowing us to decompose each spectrum into its individual components. Notably, in the absence of DTT, approximately 37% and 63% of FAD●- was oxidized to FADOX and protonated to form FADH●, respectively. Singular value decomposition analysis suggested the presence of two FAD●- molecular species, each of which was destined to be oxidized to FADOX or protonated to FADH●. A tyrosine neutral radical was also detected; however, it likely decayed concomitantly with the oxidation of FAD●-. On the basis of these results, we considered the occurrence of bifurcation prior to FAD●- generation, or during FAD●- oxidization, and discussed the potential role played by the tyrosine radical in the radical pair mechanism.
Collapse
Affiliation(s)
- Hiroaki Otsuka
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, Waseda University, TWIns, Wakamatsucho 2-2, Shinjuku-Ku, Tokyo 162-8480, Japan
| | - Hiromasa Mitsui
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, Waseda University, TWIns, Wakamatsucho 2-2, Shinjuku-Ku, Tokyo 162-8480, Japan
| | - Kota Miura
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, Waseda University, TWIns, Wakamatsucho 2-2, Shinjuku-Ku, Tokyo 162-8480, Japan
| | - Keiko Okano
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, Waseda University, TWIns, Wakamatsucho 2-2, Shinjuku-Ku, Tokyo 162-8480, Japan
| | - Yasushi Imamoto
- Department of Biophysics, Division of Biological Sciences, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Toshiyuki Okano
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, Waseda University, TWIns, Wakamatsucho 2-2, Shinjuku-Ku, Tokyo 162-8480, Japan
| |
Collapse
|
17
|
Fare C, Yuan L, Cordon-Preciado V, Michels JJ, Bearpark MJ, Rich P, van Thor JJ. Radical-Triggered Reaction Mechanism of the Green-to-Red Photoconversion of EosFP. J Phys Chem B 2020; 124:7765-7778. [PMID: 32805110 DOI: 10.1021/acs.jpcb.0c04587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reaction intermediates in the green-to-red photoconversion of the photochromic fluorescent protein EosFP have been observed using high-intensity continuous blue illumination. An intermediate was identified through light-induced accumulation that continues to convert the green form in subsequent darkness, putatively containing a tyrosyl radical, albeit with anomalously shifted features in both the electronic and FTIR spectra. Lowering the pH to 5.5 significantly delays the decay of this tyrosyl intermediate, which is accompanied by Stark-shifted features in the electronic spectra of reactants and products. Vibrational mode assignments for the high-frequency and fingerprint FTIR spectral regions of the reaction intermediates support a proposed sequence of events where the newly formed Cα═Cβ ethylenic bond precedes modifications on the His-62 imidazole ring and confirms a C═O(NH2) product group on Phe-61. We propose a reaction mechanism that involves tyrosyl generation via singlet excited-state-mediated oxidation which subsequently triggers the covalent reactions by oxidation of the green chromophore.
Collapse
Affiliation(s)
- Clyde Fare
- Molecular Biophysics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom.,Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 80 Wood Lane, London SW7 2AZ, United Kingdom
| | - Letong Yuan
- Molecular Biophysics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Violeta Cordon-Preciado
- Molecular Biophysics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Jasper J Michels
- Division of Molecular Electronics, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Michael J Bearpark
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 80 Wood Lane, London SW7 2AZ, United Kingdom
| | - Peter Rich
- Department of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Jasper J van Thor
- Molecular Biophysics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
18
|
Dozova N, Lacombat F, Bou-Nader C, Hamdane D, Plaza P. Ultrafast photoinduced flavin dynamics in the unusual active site of the tRNA methyltransferase TrmFO. Phys Chem Chem Phys 2019; 21:8743-8756. [PMID: 30968076 DOI: 10.1039/c8cp06072j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Flavoproteins often stabilize their flavin coenzyme by stacking interactions involving the isoalloxazine moiety of the flavin and an aromatic residue from the apoprotein. The bacterial FAD and folate-dependent tRNA methyltransferase TrmFO has the unique property of stabilizing its FAD coenzyme by an unusual H-bond-assisted π-π stacking interaction, involving a conserved tyrosine (Y346 in Bacillus subtilis TrmFO, BsTrmFO), the isoalloxazine of FAD and the backbone of a catalytic cysteine (C53). Here, the interaction between FAD and Y346 has been investigated by measuring the photoinduced flavin dynamics of BsTrmFO in the wild-type (WT) protein, C53A and several Y346 mutants by ultrafast transient absorption spectroscopy. In C53A, the excited FAD very rapidly (0.43 ps) abstracts an electron from Y346, yielding the FAD˙-/Y346OH˙+ radical pair, while relaxation of the local environment (1.3 ps) of the excited flavin produces a slight Stokes shift of its stimulated emission band. The radical pair then decays via charge recombination, mostly in 3-4 ps, without any deprotonation of the Y346OH˙+ radical. Presumably, the H-bond between Y346 and the amide group of C53 increases the pKa of Y346OH˙+ and slows down its deprotonation. The dynamics of WT BsTrmFO shows additional slow decay components (43 and 700 ps), absent in the C53A mutant, assigned to excited FADox populations not undergoing fast photoreduction. Their presence is likely due to a more flexible structure of the WT protein, favored by the presence of C53. Interestingly, mutations of Y346 canceling its electron donating character lead to multiple slower quenching channels in the ps-ns regime. These channels are proposed to be due to electron abstraction either (i) from the adenine moiety of FAD, a distribution of the isoalloxazine-adenine distance in the absence of Y346 explaining the multiexponential decay, or (ii) from the W286 residue, possibly accounting for one of the decays. This work supports the idea that H-bond-assisted π-π stacking controls TrmFO's active site dynamics, required for competent orientation of the reactive centers during catalysis.
Collapse
Affiliation(s)
- Nadia Dozova
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | | | | | | | | |
Collapse
|
19
|
Lacombat F, Espagne A, Dozova N, Plaza P, Müller P, Brettel K, Franz-Badur S, Essen LO. Ultrafast Oxidation of a Tyrosine by Proton-Coupled Electron Transfer Promotes Light Activation of an Animal-like Cryptochrome. J Am Chem Soc 2019; 141:13394-13409. [PMID: 31368699 DOI: 10.1021/jacs.9b03680] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The animal-like cryptochrome of Chlamydomonas reinhardtii (CraCRY) is a recently discovered photoreceptor that controls the transcriptional profile and sexual life cycle of this alga by both blue and red light. CraCRY has the uncommon feature of efficient formation and longevity of the semireduced neutral form of its FAD cofactor upon blue light illumination. Tyrosine Y373 plays a crucial role by elongating , as fourth member, the electron transfer (ET) chain found in most other cryptochromes and DNA photolyases, which comprises a conserved tryptophan triad. Here, we report the full mechanism of light-induced FADH• formation in CraCRY using transient absorption spectroscopy from hundreds of femtoseconds to seconds. Electron transfer starts from ultrafast reduction of excited FAD to FAD•- by the proximal tryptophan (0.4 ps) and is followed by delocalized migration of the produced WH•+ radical along the tryptophan triad (∼4 and ∼50 ps). Oxidation of Y373 by coupled ET to WH•+ and deprotonation then proceeds in ∼800 ps, without any significant kinetic isotope effect, nor a pH effect between pH 6.5 and 9.0. The FAD•-/Y373• pair is formed with high quantum yield (∼60%); its intrinsic decay by recombination is slow (∼50 ms), favoring reduction of Y373• by extrinsic agents and protonation of FAD•- to form the long-lived, red-light absorbing FADH• species. Possible mechanisms of tyrosine oxidation by ultrafast proton-coupled ET in CraCRY, a process about 40 times faster than the archetypal tyrosine-Z oxidation in photosystem II, are discussed in detail.
Collapse
Affiliation(s)
- Fabien Lacombat
- PASTEUR, Département de chimie , École normale supérieure, PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| | - Agathe Espagne
- PASTEUR, Département de chimie , École normale supérieure, PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| | - Nadia Dozova
- PASTEUR, Département de chimie , École normale supérieure, PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| | - Pascal Plaza
- PASTEUR, Département de chimie , École normale supérieure, PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| | - Pavel Müller
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS , Univ. Paris-Sud, Université Paris-Saclay , 91198 , Gif-sur-Yvette cedex , France
| | - Klaus Brettel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS , Univ. Paris-Sud, Université Paris-Saclay , 91198 , Gif-sur-Yvette cedex , France
| | - Sophie Franz-Badur
- Department of Chemistry, Center for Synthetic Microbiology , Philipps University , 35032 Marburg , Germany
| | - Lars-Oliver Essen
- Department of Chemistry, Center for Synthetic Microbiology , Philipps University , 35032 Marburg , Germany
| |
Collapse
|
20
|
Holub D, Lamparter T, Elstner M, Gillet N. Biological relevance of charge transfer branching pathways in photolyases. Phys Chem Chem Phys 2019; 21:17072-17081. [PMID: 31313765 DOI: 10.1039/c9cp01609k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The repair of sun-induced DNA lesions by photolyases is driven by a photoinduced electron transfer from a fully reduced FAD to the damaged DNA. A chain of several aromatic residues connecting FAD to solvent ensures the prior photoreduction of the FAD cofactor. In PhrA, a class III CPD photolyase, two branching tryptophan charge transfer pathways have been characterized. According to previous experiments, both pathways play a role in the FAD photoreduction. To provide a molecular insight to the charge transfer abilities of both pathways, we perform multiscales simulations where the protein motion and the positive charge are simultaneously propagated. Our computational approach reveals that one pathway drives a very fast charge transfer whereas the other pathway provides a very good thermodynamic stabilization of the positive charge. During the simulations, the positive charge firstly moves on the fast triad, while a reorganization of the close FAD˙- environment occurs. Then, backward transfers can lead to the propagation of the positive charge on the second pathway. After one nanosecond, we observe a nearly equal probability to find the charge at ending tryptophan of either pathway; eventually the charge distribution will likely evolve towards a charge stabilization on the last tryptophan of the slowest pathway. Our results highlight the role the protein environment, which manages the association of a kinetic and a thermodynamic pathways to trigger a fast and efficient FAD photoreduction.
Collapse
Affiliation(s)
- Daniel Holub
- Department for Theoretical Chemical Biology, Institute for Physical Chemistry, Karlsruhe Institute for Technology, Kaiserstr. 12, 76131, Karlsruhe, Germany.
| | - Tilman Lamparter
- Botanical Institute, Karlsruhe Institute of Technology, Fritz Haber Weg 4, 76131, Karlsruhe, Germany
| | - Marcus Elstner
- Department for Theoretical Chemical Biology, Institute for Physical Chemistry, Karlsruhe Institute for Technology, Kaiserstr. 12, 76131, Karlsruhe, Germany. and Institute of Biological Interfaces (IBG2), Karlsruhe Institute for Technology, Kaiserstr. 12, 76131, Karlsruhe, Germany
| | - Natacha Gillet
- Department for Theoretical Chemical Biology, Institute for Physical Chemistry, Karlsruhe Institute for Technology, Kaiserstr. 12, 76131, Karlsruhe, Germany.
| |
Collapse
|
21
|
Nag L, Lukacs A, Vos MH. Short-Lived Radical Intermediates in the Photochemistry of Glucose Oxidase. Chemphyschem 2019; 20:1793-1798. [PMID: 31081986 DOI: 10.1002/cphc.201900329] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/10/2019] [Indexed: 11/07/2022]
Abstract
Glucose oxidase is a flavoprotein that is relatively well-studied as a physico-chemical model system. The flavin cofactor is surrounded by several aromatic acid residues that can act as direct and indirect electron donors to photoexcited flavin. Yet, the identity of the photochemical product states is not well established. We present a detailed full spectral reinvestigation of this issue using femtosecond fluorescence and absorption spectroscopy. Based on a recent characterization of the unstable tyrosine cation radical TyrOH•+ , we now propose that the primary photoproduct involves this species, which was previously not considered. Formation of this product is followed by competing charge recombination and radical pair stabilization reactions that involve proton transfer and radical transfer to tryptophan. A minimal kinetic model is proposed, including a fraction of TyrOH.+ that is stabilized up to the tens of picoseconds timescale, suggesting a potential role of this species as intermediate in biochemical electron transfer reactions.
Collapse
Affiliation(s)
- Lipsa Nag
- LOB, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Andras Lukacs
- Department of Biophysics, Medical School, University of Pecs, Hungary
| | - Marten H Vos
- LOB, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France
| |
Collapse
|
22
|
Song X, Zhang F, Bu Y. Dynamic relaying properties of a β-turn peptide in long-range electron transfer. J Comput Chem 2019; 40:988-996. [PMID: 30451309 DOI: 10.1002/jcc.25541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/30/2018] [Accepted: 07/03/2018] [Indexed: 11/05/2022]
Abstract
The relay stations play a significant role in long-range charge hopping transfer in proteins. Although studies have clarified that many more protein structural motifs can function as relays in charge hopping transfers by acting as intermediate charge carriers, the relaying properties are still poorly understood. In this work, taking a β-turn oligopeptide as an example, we report a dynamic character of a relay with tunable relaying properties using the density functional theory calculations. Our main finding is that a β-turn peptide can serve as an effective electron relay in facilitating long-range electron migration and its relay properties is vibration-tunable. The vibration-induced structural transient distortions remarkably affect the lowest occupied molecular orbital (LUMO) energy, vertical electron affinity and electron-binding mode of the β-turn oligopeptide and the singly occupied molecular orbital (SOMO) energy of the corresponding electron adduct and thus the relaying properties. Different vibration modes lead to different structural distortions and thus have different effects on the relaying properties and ability of the β-turn peptide. For the relaying properties, there approximately is a linear negative correlation of electron affinity with the LUMO energy of the β-turn or the SOMO energy of its electron adduct. Besides, such relaying properties also vary in the vibration evolution process, and the electron-binding modes may be tunable. As an important addition to the known static charge relaying properties occurring in various protein structural motifs, this work reports the dynamic electron-relaying characteristics of a β-turn oligopeptide with variable relaying properties governed by molecular vibrations which can be applied to different proteins in mediating long-range charge transfers. Clearly, this work reveals molecular vibration effects on the electron relaying properties of protein structural motifs and provides new insights into the dynamics of long-range charge transfers in proteins. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiufang Song
- School of Chemistry &Chemical Engineering, Institute of Theoretical Chemistry, Shandong University, Jinan 250100, People's Republic of China
| | - Fengying Zhang
- School of Chemistry &Chemical Engineering, Institute of Theoretical Chemistry, Shandong University, Jinan 250100, People's Republic of China
| | - Yuxiang Bu
- School of Chemistry &Chemical Engineering, Institute of Theoretical Chemistry, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
23
|
McCaslin TG, Pagba CV, Chi SH, Hwang HJ, Gumbart JC, Perry JW, Olivieri C, Porcelli F, Veglia G, Guo Z, McDaniel M, Barry BA. Structure and Function of Tryptophan-Tyrosine Dyads in Biomimetic β Hairpins. J Phys Chem B 2019; 123:2780-2791. [PMID: 30888824 PMCID: PMC6463897 DOI: 10.1021/acs.jpcb.8b12452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
Tyrosine–tryptophan (YW) dyads
are ubiquitous
structural motifs in enzymes and play roles in proton-coupled electron
transfer (PCET) and, possibly, protection from oxidative stress. Here,
we describe the function of YW dyads in de novo designed 18-mer, β
hairpins. In Peptide M, a YW dyad is formed between W14 and Y5. A
UV hypochromic effect and an excitonic Cotton signal are observed,
in addition to singlet, excited state (W*) and fluorescence emission
spectral shifts. In a second Peptide, Peptide MW, a Y5–W13
dyad is formed diagonally across the strand and distorts the backbone.
On a picosecond timescale, the W* excited-state decay kinetics are
similar in all peptides but are accelerated relative to amino acids
in solution. In Peptide MW, the W* spectrum is consistent with increased
conformational flexibility. In Peptide M and MW, the electron paramagnetic
resonance spectra obtained after UV photolysis are characteristic
of tyrosine and tryptophan radicals at 160 K. Notably, at pH 9, the
radical photolysis yield is decreased in Peptide M and MW, compared
to that in a tyrosine and tryptophan mixture. This protective effect
is not observed at pH 11 and is not observed in peptides containing
a tryptophan–histidine dyad or tryptophan alone. The YW dyad
protective effect is attributed to an increase in the radical recombination
rate. This increase in rate can be facilitated by hydrogen-bonding
interactions, which lower the barrier for the PCET reaction at pH
9. These results suggest that the YW dyad structural motif promotes
radical quenching under conditions of reactive oxygen stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fernando Porcelli
- Department for Innovation in Biological, Agro-Food and Forest Systems , University of Tuscia , 01100 Viterbo , Italy
| | | | | | | | | |
Collapse
|
24
|
Mejias SH, Bahrami-Dizicheh Z, Liutkus M, Sommer DJ, Astashkin A, Kodis G, Ghirlanda G, Cortajarena AL. Repeat proteins as versatile scaffolds for arrays of redox-active FeS clusters. Chem Commun (Camb) 2019; 55:3319-3322. [PMID: 30829362 PMCID: PMC6484676 DOI: 10.1039/c8cc06827e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Molecular string of beads: modular extension of a protein backbone builds a chain of electroactive clusters.
Arrays of one, two and four electron-transfer active [4Fe–4S] clusters were constructed on modular tetratricopeptide repeat protein scaffolds, with the number of clusters determined solely by the size of the scaffold. The constructs show reversible redox activity and transient charge stabilization necessary to facilitate charge transfer.
Collapse
Affiliation(s)
- Sara H Mejias
- CIC biomaGUNE Paseo de Miramón 182, E-20014 Donostia-San Sebastian, Spain
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Portero LR, Alonso-Reyes DG, Zannier F, Vazquez MP, Farías ME, Gärtner W, Albarracín VH. Photolyases and Cryptochromes in UV-resistant Bacteria from High-altitude Andean Lakes. Photochem Photobiol 2019; 95:315-330. [DOI: 10.1111/php.13061] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/18/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Luciano Raúl Portero
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA); Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI); CCT; CONICET; Tucumán Argentina
- Centro de Investigaciones y Servicios de Microscopía Electrónica (CISME-CONICET-UNT); CCT, CONICET; Tucumán Argentina
| | - Daniel G. Alonso-Reyes
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA); Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI); CCT; CONICET; Tucumán Argentina
- Centro de Investigaciones y Servicios de Microscopía Electrónica (CISME-CONICET-UNT); CCT, CONICET; Tucumán Argentina
| | - Federico Zannier
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA); Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI); CCT; CONICET; Tucumán Argentina
- Centro de Investigaciones y Servicios de Microscopía Electrónica (CISME-CONICET-UNT); CCT, CONICET; Tucumán Argentina
| | - Martín P. Vazquez
- Instituto de Agrobiotecnología de Rosario (INDEAR); Predio CCT Rosario; Santa Fe Argentina
| | - María Eugenia Farías
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA); Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI); CCT; CONICET; Tucumán Argentina
| | - Wolfgang Gärtner
- Institute for Analytical Chemistry; University of Leipzig; Leipzig Germany
| | - Virginia Helena Albarracín
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA); Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI); CCT; CONICET; Tucumán Argentina
- Centro de Investigaciones y Servicios de Microscopía Electrónica (CISME-CONICET-UNT); CCT, CONICET; Tucumán Argentina
- Facultad de Ciencias Naturales; Instituto Miguel Lillo; Universidad Nacional de Tucumán; Tucumán Argentina
| |
Collapse
|
26
|
Lacombat F, Espagne A, Dozova N, Plaza P, Ignatz E, Kiontke S, Essen LO. Delocalized hole transport coupled to sub-ns tryptophanyl deprotonation promotes photoreduction of class II photolyases. Phys Chem Chem Phys 2018; 20:25446-25457. [PMID: 30272080 DOI: 10.1039/c8cp04548h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Class II photolyases utilize for the photoreduction of their flavin cofactor (FAD) a completely different tryptophan triad than most other photolyases and cryptochromes. To counter sped-up back electron transfer, they evolved an unusually fast deprotonation of the distal tryptophanyl radical cation (WH˙+) that is produced after excitation of the flavin. We studied the primary aspects of oxidized FAD photoreduction by ultrafast transient absorption spectroscopy, using the class II photolyase from Methanosarcina mazei. With a time constant of 9.2 ps, the initial reduction step of the excited flavin by the proximal W381 tryptophan proceeds almost twentyfold slower than in other photolyases carrying oxidized FAD, most likely because of the larger distance between the flavin and the proximal tryptophan. The thus formed W381H˙+ radical is tracked by transient anisotropy measurements to migrate in 29 ps with delocalization over several members of the tryptophan triad. This 29 ps phase also includes the decay of a small fraction of excited flavin, reacting on a slower timescale, and partial recombination of the FAD˙-/WH˙+ radical pair. A final kinetic phase in 230 ps is assigned to the deprotonation of W388H˙+ that occurs in competition with partial charge recombination. Interestingly, we show by comparison with the Y345F mutant that this last phase additionally involves oxidation of the Y345 phenolic group by W388H˙+, producing a small amount of neutral tyrosyl radical (YO˙). The rate of this electron transfer step is about six orders of magnitude faster than the corresponding oxidation of Y345 by the deprotonated W388˙ radical. Unlike conventional photolyases, where the electron hole accumulates on the distal tryptophan before the much slower tryptophanyl deprotonation, our data show that delocalized hole transport is concomitantly concluded by ultrafast deprotonation of W388H˙+.
Collapse
Affiliation(s)
- Fabien Lacombat
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
27
|
Holub D, Ma H, Krauß N, Lamparter T, Elstner M, Gillet N. Functional role of an unusual tyrosine residue in the electron transfer chain of a prokaryotic (6-4) photolyase. Chem Sci 2017; 9:1259-1272. [PMID: 29675172 PMCID: PMC5887102 DOI: 10.1039/c7sc03386a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/09/2017] [Indexed: 11/21/2022] Open
Abstract
Cryptochromes and photolyases form a flavoprotein family in which the FAD chromophore undergoes light induced changes of its redox state. During this process, termed photoreduction, electrons flow from the surface via conserved amino acid residues to FAD. The bacterial (6-4) photolyase PhrB belongs to a phylogenetically ancient group. Photoreduction of PhrB differs from the typical pattern because the amino acid of the electron cascade next to FAD is a tyrosine (Tyr391), whereas photolyases and cryptochromes of other groups have a tryptophan as direct electron donor of FAD. Mutagenesis studies have identified Trp342 and Trp390 as essential for charge transfer. Trp342 is located at the periphery of PhrB while Trp390 connects Trp342 and Tyr391. The role of Tyr391, which lies between Trp390 and FAD, is however unclear as its replacement by phenylalanine did not block photoreduction. Experiments reported here, which replace Tyr391 by Ala, show that photoreduction is blocked, underlining the relevance of Tyr/Phe at position 391 and indicating that charge transfer occurs via the triad 391-390-342. This raises the question, why PhrB positions a tyrosine at this location, having a less favourable ionisation potential than tryptophan, which occurs at this position in many proteins of the photolyase/cryptochrome family. Tunnelling matrix calculations show that tyrosine or phenylalanine can be involved in a productive bridged electron transfer between FAD and Trp390, in line with experimental findings. Since replacement of Tyr391 by Trp resulted in loss of FAD and DMRL chromophores, electron transfer cannot be studied experimentally in this mutant, but calculations on a mutant model suggest that Trp might participate in the electron transfer cascade. Charge transfer simulations reveal an unusual stabilization of the positive charge on site 391 compared to other photolyases or cryptochromes. Water molecules near Tyr391 offer a polar environment which stabilizes the positive charge on this site, thereby lowering the energetic barrier intrinsic to tyrosine. This opens a second charge transfer channel in addition to tunnelling through the tyrosine barrier, based on hopping and therefore transient oxidation of Tyr391, which enables a fast charge transfer similar to proteins utilizing a tryptophan-triad. Our results suggest that evolution of the first site of the redox chain has just been possible by tuning the protein structure and environment to manage a downhill hole transfer process from FAD to solvent.
Collapse
Affiliation(s)
- Daniel Holub
- Department for Theoretical Chemical Biology , Institute for Physical Chemistry , Karlsruhe Institute for Technology , Kaiserstr. 12 , 76131 , Karlsruhe , Germany .
| | - Hongju Ma
- Botanical Institute , Karlsruhe Institute for Technology , Fritz Haber Weg 4 , 76131 , Karlsruhe , Germany
| | - Norbert Krauß
- Botanical Institute , Karlsruhe Institute for Technology , Fritz Haber Weg 4 , 76131 , Karlsruhe , Germany
| | - Tilman Lamparter
- Botanical Institute , Karlsruhe Institute for Technology , Fritz Haber Weg 4 , 76131 , Karlsruhe , Germany
| | - Marcus Elstner
- Department for Theoretical Chemical Biology , Institute for Physical Chemistry , Karlsruhe Institute for Technology , Kaiserstr. 12 , 76131 , Karlsruhe , Germany . .,Institute of Biological Interfaces (IGB2) , Karlsruhe Institute for Technology , Kaiserstr. 12 , 76131 , Karlsruhe , Germany
| | - Natacha Gillet
- Department for Theoretical Chemical Biology , Institute for Physical Chemistry , Karlsruhe Institute for Technology , Kaiserstr. 12 , 76131 , Karlsruhe , Germany .
| |
Collapse
|
28
|
Kopka B, Magerl K, Savitsky A, Davari MD, Röllen K, Bocola M, Dick B, Schwaneberg U, Jaeger KE, Krauss U. Electron transfer pathways in a light, oxygen, voltage (LOV) protein devoid of the photoactive cysteine. Sci Rep 2017; 7:13346. [PMID: 29042655 PMCID: PMC5645311 DOI: 10.1038/s41598-017-13420-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/21/2017] [Indexed: 11/17/2022] Open
Abstract
Blue-light absorption by the flavin chromophore in light, oxygen, voltage (LOV) photoreceptors triggers photochemical reactions that lead to the formation of a flavin-cysteine adduct. While it has long been assumed that adduct formation is essential for signaling, it was recently shown that LOV photoreceptor variants devoid of the photoactive cysteine can elicit a functional response and that flavin photoreduction to the neutral semiquinone radical is sufficient for signal transduction. Currently, the mechanistic basis of the underlying electron- (eT) and proton-transfer (pT) reactions is not well understood. We here reengineered pT into the naturally not photoreducible iLOV protein, a fluorescent reporter protein derived from the Arabidopsis thaliana phototropin-2 LOV2 domain. A single amino-acid substitution (Q489D) enabled efficient photoreduction, suggesting that an eT pathway is naturally present in the protein. By using a combination of site-directed mutagenesis, steady-state UV/Vis, transient absorption and electron paramagnetic resonance spectroscopy, we investigate the underlying eT and pT reactions. Our study provides strong evidence that several Tyr and Trp residues, highly conserved in all LOV proteins, constitute the eT pathway for flavin photoreduction, suggesting that the propensity for photoreduction is evolutionary imprinted in all LOV domains, while efficient pT is needed to stabilize the neutral semiquinone radical.
Collapse
Affiliation(s)
- Benita Kopka
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, 52426, Jülich, Germany
| | - Kathrin Magerl
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93053, Regensburg, Germany
| | - Anton Savitsky
- Max Planck Institute for Chemical Energy Conversion, 45470, Mülheim an der Ruhr, Germany
| | - Mehdi D Davari
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Katrin Röllen
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, 52426, Jülich, Germany
| | - Marco Bocola
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Bernhard Dick
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93053, Regensburg, Germany
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany.,DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52056, Aachen, Germany
| | - Karl-Erich Jaeger
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, 52426, Jülich, Germany.,IBG-1: Biotechnologie, Forschungszentrum Jülich, 52426, Jülich, Germany
| | - Ulrich Krauss
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, 52426, Jülich, Germany.
| |
Collapse
|
29
|
Kottke T, Oldemeyer S, Wenzel S, Zou Y, Mittag M. Cryptochrome photoreceptors in green algae: Unexpected versatility of mechanisms and functions. JOURNAL OF PLANT PHYSIOLOGY 2017; 217:4-14. [PMID: 28619534 DOI: 10.1016/j.jplph.2017.05.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/29/2017] [Accepted: 05/29/2017] [Indexed: 06/07/2023]
Abstract
Green algae have a highly complex and diverse set of cryptochrome photoreceptor candidates including members of the following subfamilies: plant, plant-like, animal-like, DASH and cryptochrome photolyase family 1 (CPF1). While some green algae encode most or all of them, others lack certain members. Here we present an overview about functional analyses of so far investigated cryptochrome photoreceptors from the green algae Chlamydomonas reinhardtii (plant and animal-like cryptochromes) and Ostreococcus tauri (CPF1) with regard to their biological significance and spectroscopic properties. Cryptochromes of both algae have been demonstrated recently to be involved to various extents in circadian clock regulation and in Chlamydomonas additionally in life cycle control. Moreover, CPF1 even performs light-driven DNA repair. The plant cryptochrome and CPF1 are UVA/blue light receptors, whereas the animal-like cryptochrome responds to almost the whole visible spectrum including red light. Accordingly, plant cryptochrome, animal-like cryptochrome and CPF1 differ fundamentally in their structural response to light as revealed by their visible and infrared spectroscopic signatures, and in the role of the flavin neutral radical acting as dark form or signaling state.
Collapse
Affiliation(s)
- Tilman Kottke
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Sabine Oldemeyer
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Sandra Wenzel
- Institute of General Botany and Plant Physiology, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Yong Zou
- Institute of General Botany and Plant Physiology, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Maria Mittag
- Institute of General Botany and Plant Physiology, Friedrich Schiller University Jena, 07743 Jena, Germany.
| |
Collapse
|
30
|
König S, Juhas M, Jäger S, Kottke T, Büchel C. The cryptochrome-photolyase protein family in diatoms. JOURNAL OF PLANT PHYSIOLOGY 2017; 217:15-19. [PMID: 28720252 DOI: 10.1016/j.jplph.2017.06.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 06/07/2023]
Abstract
The cryptochrome - photolyase family (CPF) consists of homologous flavoproteins having completely different functions involving DNA repair, circadian rhythm and/or photoreception. From the original photolyases, working either as (6-4) or cyclobutane pyrimidine dimer photolyases, the animal- and plant-type cryptochromes, respectively, evolved and also the more intermediate DASH cryptochromes. Whereas animal cryptochromes work mostly in clock-related functions, plant cryptochromes are also directly involved in developmental processes such as hypocotyl elongation or flower induction. In diatoms, all types of cryptochromes and photolyases were predicted from genome sequences. However, up to now only two proteins have been characterised in more detail, CPF1 and CryP. CPF1 is related to animal-type cryptochromes, but works as a (6-4) photolyase in addition to having photoreceptor functions. It was shown to interact with the CLOCK:Bmal1 heterodimer in a heterologous system, and thus is probably involved in clock-related processes. Moreover, CPF1 directly influences transcription. The latter was also true for CryP, which is a cryptochrome distantly related to plant-type cryptochromes. In addition, CryP influences light-harvesting protein accumulation. For all diatom cryptochromes, down-stream signalling has to proceed via interaction partners different from the classical proteins involved in cryptochrome signalling in higher plants, because these candidates are missing in diatoms.
Collapse
Affiliation(s)
- Sarah König
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Matthias Juhas
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Stefanie Jäger
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Tilman Kottke
- Physical and Biophysical Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| | - Claudia Büchel
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany.
| |
Collapse
|
31
|
Nag L, Sournia P, Myllykallio H, Liebl U, Vos MH. Identification of the TyrOH •+ Radical Cation in the Flavoenzyme TrmFO. J Am Chem Soc 2017; 139:11500-11505. [PMID: 28745052 DOI: 10.1021/jacs.7b04586] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tyrosine (TyrOH) and tryptophan radicals play important roles as intermediates in biochemical charge-transfer reactions. Tryptophanyl radicals have been observed both in their protonated cation form and in their unprotonated neutral form, but to date, tyrosyl radicals have only been observed in their unprotonated form. With a genetically modified form of the flavoenzyme TrmFO as a suitable model system and using ultrafast fluorescence and absorption spectroscopy, we characterize its protonated precursor TyrOH•+, and we show this species to have a distinct visible absorption band and a transition moment that we suggest to lie close to the phenol symmetry axis. TyrOH•+ is formed in ∼1 ps by electron transfer to excited flavin and decays in ∼3 ps by charge recombination. These findings imply that TyrOH oxidation does not necessarily induce its concerted deprotonation. Our results will allow disentangling of photoproduct states in flavoproteins in often-encountered complex situations and more generally are important for understanding redox chains relying on tyrosyl intermediates.
Collapse
Affiliation(s)
- Lipsa Nag
- LOB, Ecole Polytechnique, CNRS, INSERM, Université Paris-Saclay , Palaiseau 91128 Cedex, France
| | - Pierre Sournia
- LOB, Ecole Polytechnique, CNRS, INSERM, Université Paris-Saclay , Palaiseau 91128 Cedex, France
| | - Hannu Myllykallio
- LOB, Ecole Polytechnique, CNRS, INSERM, Université Paris-Saclay , Palaiseau 91128 Cedex, France
| | - Ursula Liebl
- LOB, Ecole Polytechnique, CNRS, INSERM, Université Paris-Saclay , Palaiseau 91128 Cedex, France
| | - Marten H Vos
- LOB, Ecole Polytechnique, CNRS, INSERM, Université Paris-Saclay , Palaiseau 91128 Cedex, France
| |
Collapse
|
32
|
Characterization of a cold-adapted DNA photolyase from C. psychrerythraea 34H. Extremophiles 2017; 21:919-932. [PMID: 28726126 DOI: 10.1007/s00792-017-0953-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/09/2017] [Indexed: 10/19/2022]
Abstract
The phrB gene encoding a putative cold-adapted DNA photolyase was cloned from the bacterial genomic DNA of Colwellia psychrerythraea 34H, a psychrophilic bacterium. Recombinant DNA photolyase, rCpPL, was overexpressed and purified from three different vectors. rCpPL binds its DNA substrate by flipping a cyclobutane pyrimidine dimer (CPD) into its active site and repairs CPD-containing DNA in vitro. rCpPL contains one catalytic flavin adenine dinucleotide (FAD) cofactor, but displays promiscuity in cofactor binding, in which either a flavin mononucleotide (FMN) or a methenyltetrahydrofolate (MTHF) molecule is bound as an antenna molecule and found in sub-stoichiometric amounts. The UV/Vis spectrum of oxidized rCpPL shows that the FADOX absorption maximum is the most red-shifted reported for a PL, suggesting a unique cavity electrostatic environment. Modest FAD vibronic structure suggests that the binding pocket is more flexible than warmer PLs, corroborating the hypothesis that psychrophilic proteins must be highly flexible to function at low temperatures. Fluorescence excitation data show that the freshly purified flavin cofactor is in its fully reduced state (FADH¯). A homology analysis of PL protein structures spanning 70 °C in growth temperature supports the data that the structure of CpPL is quite different from its warmer cousins.
Collapse
|
33
|
Abstract
![]()
Electron-transfer kinetics have been
measured in four conjugates
of cytochrome P450 with surface-bound Ru-photosensitizers. The conjugates
are constructed with enzymes from Bacillus megaterium (CYP102A1) and Sulfolobus acidocaldarius (CYP119).
A W96 residue lies in the path between Ru and the heme in CYP102A1,
whereas H76 is present at the analogous location in CYP119. Two additional
conjugates have been prepared with (CYP102A1)W96H and (CYP119)H76W
mutant enzymes. Heme oxidation by photochemically generated Ru3+ leads to P450 compound II formation when a tryptophan residue
is in the path between Ru and the heme; no heme oxidation is observed
when histidine occupies this position. The data indicate that heme
oxidation proceeds via two-step tunneling through a tryptophan radical
intermediate. In contrast, heme reduction by photochemically generated
Ru+ proceeds in a single electron tunneling step with closely
similar rate constants for all four conjugates.
Collapse
Affiliation(s)
- Maraia E Ener
- Beckman Institute, California Institute of Technology , Pasadena, California 91125, United States
| | - Harry B Gray
- Beckman Institute, California Institute of Technology , Pasadena, California 91125, United States
| | - Jay R Winkler
- Beckman Institute, California Institute of Technology , Pasadena, California 91125, United States
| |
Collapse
|
34
|
Manbeck GF, Fujita E, Concepcion JJ. Proton-Coupled Electron Transfer in a Strongly Coupled Photosystem II-Inspired Chromophore–Imidazole–Phenol Complex: Stepwise Oxidation and Concerted Reduction. J Am Chem Soc 2016; 138:11536-49. [DOI: 10.1021/jacs.6b03506] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gerald F. Manbeck
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Etsuko Fujita
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Javier J. Concepcion
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| |
Collapse
|
35
|
Electron flow through biological molecules: does hole hopping protect proteins from oxidative damage? Q Rev Biophys 2016; 48:411-20. [PMID: 26537399 DOI: 10.1017/s0033583515000062] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Biological electron transfers often occur between metal-containing cofactors that are separated by very large molecular distances. Employing photosensitizer-modified iron and copper proteins, we have shown that single-step electron tunneling can occur on nanosecond to microsecond timescales at distances between 15 and 20 Å. We also have shown that charge transport can occur over even longer distances by hole hopping (multistep tunneling) through intervening tyrosines and tryptophans. In this perspective, we advance the hypothesis that such hole hopping through Tyr/Trp chains could protect oxygenase, dioxygenase, and peroxidase enzymes from oxidative damage. In support of this view, by examining the structures of P450 (CYP102A) and 2OG-Fe (TauD) enzymes, we have identified candidate Tyr/Trp chains that could transfer holes from uncoupled high-potential intermediates to reductants in contact with protein surface sites.
Collapse
|
36
|
Oldemeyer S, Franz S, Wenzel S, Essen LO, Mittag M, Kottke T. Essential Role of an Unusually Long-lived Tyrosyl Radical in the Response to Red Light of the Animal-like Cryptochrome aCRY. J Biol Chem 2016; 291:14062-14071. [PMID: 27189948 DOI: 10.1074/jbc.m116.726976] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Indexed: 11/06/2022] Open
Abstract
Cryptochromes constitute a group of flavin-binding blue light receptors in bacteria, fungi, plants, and insects. Recently, the response of cryptochromes to light was extended to nearly the entire visible spectral region on the basis of the activity of the animal-like cryptochrome aCRY in the green alga Chlamydomonas reinhardtii This finding was explained by the absorption of red light by the flavin neutral radical as the dark state of the receptor, which then forms the anionic fully reduced state. In this study, time-resolved UV-visible spectroscopy on the full-length aCRY revealed an unusually long-lived tyrosyl radical with a lifetime of 2.6 s, which is present already 1 μs after red light illumination of the flavin radical. Mutational studies disclosed the tyrosine 373 close to the surface to form the long-lived radical and to be essential for photoreduction. This residue is conserved exclusively in the sequences of other putative aCRY proteins distinguishing them from conventional (6-4) photolyases. Size exclusion chromatography showed the full-length aCRY to be a dimer in the dark at 0.5 mm injected concentration with the C-terminal extension as the dimerization site. Upon illumination, partial oligomerization was observed via disulfide bridge formation at cysteine 482 in close proximity to tyrosine 373. The lack of any light response in the C-terminal extension as evidenced by FTIR spectroscopy differentiates aCRY from plant and Drosophila cryptochromes. These findings imply that aCRY might have evolved a different signaling mechanism via a light-triggered redox cascade culminating in photooxidation of a yet unknown substrate or binding partner.
Collapse
Affiliation(s)
- Sabine Oldemeyer
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld
| | - Sophie Franz
- Structural Biochemistry, Department of Chemistry, Philipps University Marburg, Hans-Meerwein Straβe 4, 35039 Marburg
| | - Sandra Wenzel
- Institute of General Botany and Plant Physiology, Friedrich Schiller University, Am Planetarium 1, 07743 Jena, Germany
| | - Lars-Oliver Essen
- Structural Biochemistry, Department of Chemistry, Philipps University Marburg, Hans-Meerwein Straβe 4, 35039 Marburg
| | - Maria Mittag
- Institute of General Botany and Plant Physiology, Friedrich Schiller University, Am Planetarium 1, 07743 Jena, Germany
| | - Tilman Kottke
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld,.
| |
Collapse
|
37
|
Physiology, Biochemistry, and Applications of F420- and Fo-Dependent Redox Reactions. Microbiol Mol Biol Rev 2016; 80:451-93. [PMID: 27122598 DOI: 10.1128/mmbr.00070-15] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
5-Deazaflavin cofactors enhance the metabolic flexibility of microorganisms by catalyzing a wide range of challenging enzymatic redox reactions. While structurally similar to riboflavin, 5-deazaflavins have distinctive and biologically useful electrochemical and photochemical properties as a result of the substitution of N-5 of the isoalloxazine ring for a carbon. 8-Hydroxy-5-deazaflavin (Fo) appears to be used for a single function: as a light-harvesting chromophore for DNA photolyases across the three domains of life. In contrast, its oligoglutamyl derivative F420 is a taxonomically restricted but functionally versatile cofactor that facilitates many low-potential two-electron redox reactions. It serves as an essential catabolic cofactor in methanogenic, sulfate-reducing, and likely methanotrophic archaea. It also transforms a wide range of exogenous substrates and endogenous metabolites in aerobic actinobacteria, for example mycobacteria and streptomycetes. In this review, we discuss the physiological roles of F420 in microorganisms and the biochemistry of the various oxidoreductases that mediate these roles. Particular focus is placed on the central roles of F420 in methanogenic archaea in processes such as substrate oxidation, C1 pathways, respiration, and oxygen detoxification. We also describe how two F420-dependent oxidoreductase superfamilies mediate many environmentally and medically important reactions in bacteria, including biosynthesis of tetracycline and pyrrolobenzodiazepine antibiotics by streptomycetes, activation of the prodrugs pretomanid and delamanid by Mycobacterium tuberculosis, and degradation of environmental contaminants such as picrate, aflatoxin, and malachite green. The biosynthesis pathways of Fo and F420 are also detailed. We conclude by considering opportunities to exploit deazaflavin-dependent processes in tuberculosis treatment, methane mitigation, bioremediation, and industrial biocatalysis.
Collapse
|
38
|
Dongare P, Maji S, Hammarström L. Direct Evidence of a Tryptophan Analogue Radical Formed in a Concerted Electron−Proton Transfer Reaction in Water. J Am Chem Soc 2016; 138:2194-9. [DOI: 10.1021/jacs.5b08294] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Prateek Dongare
- Department of Chemistry,
Ångström Laboratory, Uppsala University, Box 523, Uppsala SE-751 20, Sweden
| | - Somnath Maji
- Department of Chemistry,
Ångström Laboratory, Uppsala University, Box 523, Uppsala SE-751 20, Sweden
| | - Leif Hammarström
- Department of Chemistry,
Ångström Laboratory, Uppsala University, Box 523, Uppsala SE-751 20, Sweden
| |
Collapse
|
39
|
Larson BC, Pomponio JR, Shafaat HS, Kim RH, Leigh BS, Tauber MJ, Kim JE. Photogeneration and Quenching of Tryptophan Radical in Azurin. J Phys Chem B 2015; 119:9438-49. [PMID: 25625660 PMCID: PMC5092234 DOI: 10.1021/jp511523z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tryptophan and tyrosine can form radical intermediates that enable long-range, multistep electron transfer (ET) reactions in proteins. This report describes the mechanisms of formation and quenching of a neutral tryptophan radical in azurin, a blue-copper protein that contains native tyrosine (Y108 and Y72) and tryptophan (W48) residues. A long-lived neutral tryptophan radical W48• is formed upon UV-photoexcitation of a zinc(II)-substituted azurin mutant in the presence of an external electron acceptor. The quantum yield of W48• formation (Φ) depends upon the tyrosine residues in the protein. A tyrosine-deficient mutant, Zn(II)Az48W, exhibited a value of Φ = 0.080 with a Co(III) electron acceptor. A nearly identical quantum yield was observed when the electron acceptor was the analogous tyrosine-free, copper(II) mutant; this result for the Zn(II)Az48W:Cu(II)Az48W mixture suggests there is an interprotein ET path. A single tyrosine residue at one of the native positions reduced the quantum yield to 0.062 (Y108) or 0.067 (Y72). Wild-type azurin with two tyrosine residues exhibited a quantum yield of Φ = 0.045. These data indicate that tyrosine is able to quench the tryptophan radical in azurin.
Collapse
Affiliation(s)
- Bethany C. Larson
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jennifer R. Pomponio
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | | | - Rachel H. Kim
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Brian S. Leigh
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Michael J. Tauber
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Judy E. Kim
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
40
|
Abstract
It was recently demonstrated that in ferric myoglobins (Mb) the fluorescence quenching of the photoexcited tryptophan 14 (*Trp(14)) residue is in part due to an electron transfer to the heme porphyrin (porph), turning it to the ferrous state. However, the invariance of *Trp decay times in ferric and ferrous Mbs raises the question as to whether electron transfer may also be operative in the latter. Using UV pump/visible probe transient absorption, we show that this is indeed the case for deoxy-Mb. We observe that the reduction generates (with a yield of about 30%) a low-valence Fe-porphyrin π [Fe(II)(porph(●-))] -anion radical, which we observe for the first time to our knowledge under physiological conditions. We suggest that the pathway for the electron transfer proceeds via the leucine 69 (Leu(69)) and valine 68 (Val(68)) residues. The results on ferric Mbs and the present ones highlight the generality of Trp-porphyrin electron transfer in heme proteins.
Collapse
|
41
|
Houée-Lévin C, Bobrowski K, Horakova L, Karademir B, Schöneich C, Davies MJ, Spickett CM. Exploring oxidative modifications of tyrosine: An update on mechanisms of formation, advances in analysis and biological consequences. Free Radic Res 2015; 49:347-73. [DOI: 10.3109/10715762.2015.1007968] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Scheerer P, Zhang F, Kalms J, von Stetten D, Krauß N, Oberpichler I, Lamparter T. The class III cyclobutane pyrimidine dimer photolyase structure reveals a new antenna chromophore binding site and alternative photoreduction pathways. J Biol Chem 2015; 290:11504-14. [PMID: 25784552 DOI: 10.1074/jbc.m115.637868] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Indexed: 11/06/2022] Open
Abstract
Photolyases are proteins with an FAD chromophore that repair UV-induced pyrimidine dimers on the DNA in a light-dependent manner. The cyclobutane pyrimidine dimer class III photolyases are structurally unknown but closely related to plant cryptochromes, which serve as blue-light photoreceptors. Here we present the crystal structure of a class III photolyase termed photolyase-related protein A (PhrA) of Agrobacterium tumefaciens at 1.67-Å resolution. PhrA contains 5,10-methenyltetrahydrofolate (MTHF) as an antenna chromophore with a unique binding site and mode. Two Trp residues play pivotal roles for stabilizing MTHF by a double π-stacking sandwich. Plant cryptochrome I forms a pocket at the same site that could accommodate MTHF or a similar molecule. The PhrA structure and mutant studies showed that electrons flow during FAD photoreduction proceeds via two Trp triads. The structural studies on PhrA give a clearer picture on the evolutionary transition from photolyase to photoreceptor.
Collapse
Affiliation(s)
- Patrick Scheerer
- From the Charité, University Medicine Berlin, Institute of Medical Physics and Biophysics (CC2), AG Protein X-ray Crystallography and Signal Transduction, Charitéplatz 1, D-10117 Berlin, Germany,
| | - Fan Zhang
- the Karlsruhe Institute of Technology (KIT), Botanical Institute, Kaiserstr. 2, D-76131 Karlsruhe, Germany
| | - Jacqueline Kalms
- From the Charité, University Medicine Berlin, Institute of Medical Physics and Biophysics (CC2), AG Protein X-ray Crystallography and Signal Transduction, Charitéplatz 1, D-10117 Berlin, Germany
| | - David von Stetten
- the Structural Biology Group, European Synchroton Radiation Facility, CS 40220, F-38043 Grenoble Cedex 9, France, and
| | - Norbert Krauß
- the Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, London E1 4NS, United Kingdom
| | - Inga Oberpichler
- the Karlsruhe Institute of Technology (KIT), Botanical Institute, Kaiserstr. 2, D-76131 Karlsruhe, Germany,
| | - Tilman Lamparter
- the Karlsruhe Institute of Technology (KIT), Botanical Institute, Kaiserstr. 2, D-76131 Karlsruhe, Germany,
| |
Collapse
|
43
|
Winkler JR, Gray HB. Could tyrosine and tryptophan serve multiple roles in biological redox processes? PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2015; 373:rsta.2014.0178. [PMID: 25666062 PMCID: PMC4342971 DOI: 10.1098/rsta.2014.0178] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Single-step electron tunnelling reactions can transport charges over distances of 15-20 Åin proteins. Longer-range transfer requires multi-step tunnelling processes along redox chains, often referred to as hopping. Long-range hopping via oxidized radicals of tryptophan and tyrosine, which has been identified in several natural enzymes, has been demonstrated in artificial constructs of the blue copper protein azurin. Tryptophan and tyrosine serve as hopping way stations in high-potential charge transport processes. It may be no coincidence that these two residues occur with greater-than-average frequency in O(2)- and H(2)O(2)-reactive enzymes. We suggest that appropriately placed tyrosine and/or tryptophan residues prevent damage from high-potential reactive intermediates by reduction followed by transfer of the oxidizing equivalent to less harmful sites or out of the protein altogether.
Collapse
Affiliation(s)
- Jay R Winkler
- Beckman Institute, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Harry B Gray
- Beckman Institute, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
44
|
Sun W, Shao M, Ren H, Xiao D, Qin X, Deng L, Chen X, Gao J. A New Type of Electron Relay Station in Proteins: Three-Piece S:Π∴S↔S∴Π:S Resonance Structure. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2015; 119:6998-7005. [PMID: 26113884 PMCID: PMC4476553 DOI: 10.1021/jp512628x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A type of relay station for electron transfer in proteins, three-piece five-electron bonding, is introduced in this paper, which is also first proposed here. The ab initio calculations predict the formation of S:Π∴S↔S∴Π:S resonance binding with an aromatic ring located in the middle of two sulfur-containing groups, which may participate in electron-hole transport in proteins. These special structures can lower the local ionization energies to capture electron holes efficiently and may be easily formed and broken because of their proper binding energies. In addition, the UV-vis spectra provide evidence of the formations of the three-piece five-electron binding. The cooperation of three adjacent pieces may be advantage to promote electron transfer a longer distance.
Collapse
Affiliation(s)
- Weichao Sun
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030, People’s Republic of China
| | - Mengyao Shao
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030, People’s Republic of China
| | - Haisheng Ren
- Department of Chemistry and Supercomputing Institute University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Dong Xiao
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030, People’s Republic of China
| | - Xin Qin
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030, People’s Republic of China
| | - Li Deng
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030, People’s Republic of China
| | - Xiaohua Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030, People’s Republic of China
- Department of Chemistry and Supercomputing Institute University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jiali Gao
- Department of Chemistry and Supercomputing Institute University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
45
|
Morozova OB, Yurkovskaya AV. Modulation of the Rate of Reversible Electron Transfer in Oxidized Tryptophan and Tyrosine Containing Peptides in Acidic Aqueous Solution. J Phys Chem B 2014; 119:140-9. [DOI: 10.1021/jp511068n] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Olga B. Morozova
- International Tomography Center, Institutskaya
3a, 630090 Novosibirsk, Russia
| | - Alexandra V. Yurkovskaya
- International Tomography Center, Institutskaya
3a, 630090 Novosibirsk, Russia
- Novosibirsk State University, Pirogova
2, 630090, Novosibirsk, Russia
| |
Collapse
|
46
|
Affiliation(s)
- Jay R. Winkler
- Beckman Institute, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125
| | - Harry B. Gray
- Beckman Institute, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125
| |
Collapse
|
47
|
Migliore A, Polizzi NF, Therien M, Beratan DN. Biochemistry and theory of proton-coupled electron transfer. Chem Rev 2014; 114:3381-465. [PMID: 24684625 PMCID: PMC4317057 DOI: 10.1021/cr4006654] [Citation(s) in RCA: 354] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Indexed: 02/01/2023]
Affiliation(s)
- Agostino Migliore
- Department
of Chemistry, Department of Biochemistry, and Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Nicholas F. Polizzi
- Department
of Chemistry, Department of Biochemistry, and Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Michael
J. Therien
- Department
of Chemistry, Department of Biochemistry, and Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - David N. Beratan
- Department
of Chemistry, Department of Biochemistry, and Department of Physics, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
48
|
Juhas M, von Zadow A, Spexard M, Schmidt M, Kottke T, Büchel C. A novel cryptochrome in the diatomPhaeodactylum tricornutuminfluences the regulation of light-harvesting protein levels. FEBS J 2014; 281:2299-311. [DOI: 10.1111/febs.12782] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 03/06/2014] [Accepted: 03/11/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Matthias Juhas
- Institute of Molecular Biosciences; University of Frankfurt; Germany
| | - Andrea von Zadow
- Institute of Molecular Biosciences; University of Frankfurt; Germany
| | - Meike Spexard
- Physical and Biophysical Chemistry; Bielefeld University; Germany
| | - Matthias Schmidt
- Institute of Molecular Biosciences; University of Frankfurt; Germany
| | - Tilman Kottke
- Physical and Biophysical Chemistry; Bielefeld University; Germany
| | - Claudia Büchel
- Institute of Molecular Biosciences; University of Frankfurt; Germany
| |
Collapse
|
49
|
Martinez A, Peluffo G, Petruk AA, Hugo M, Piñeyro D, Demicheli V, Moreno DM, Lima A, Batthyány C, Durán R, Robello C, Martí MA, Larrieux N, Buschiazzo A, Trujillo M, Radi R, Piacenza L. Structural and molecular basis of the peroxynitrite-mediated nitration and inactivation of Trypanosoma cruzi iron-superoxide dismutases (Fe-SODs) A and B: disparate susceptibilities due to the repair of Tyr35 radical by Cys83 in Fe-SODB through intramolecular electron transfer. J Biol Chem 2014; 289:12760-78. [PMID: 24616096 DOI: 10.1074/jbc.m113.545590] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease, contains exclusively iron-dependent superoxide dismutases (Fe-SODs) located in different subcellular compartments. Peroxynitrite, a key cytotoxic and oxidizing effector biomolecule, reacted with T. cruzi mitochondrial (Fe-SODA) and cytosolic (Fe-SODB) SODs with second order rate constants of 4.6 ± 0.2 × 10(4) M(-1) s(-1) and 4.3 ± 0.4 × 10(4) M(-1) s(-1) at pH 7.4 and 37 °C, respectively. Both isoforms are dose-dependently nitrated and inactivated by peroxynitrite. Susceptibility of T. cruzi Fe-SODA toward peroxynitrite was similar to that reported previously for Escherichia coli Mn- and Fe-SODs and mammalian Mn-SOD, whereas Fe-SODB was exceptionally resistant to oxidant-mediated inactivation. We report mass spectrometry analysis indicating that peroxynitrite-mediated inactivation of T. cruzi Fe-SODs is due to the site-specific nitration of the critical and universally conserved Tyr(35). Searching for structural differences, the crystal structure of Fe-SODA was solved at 2.2 Å resolution. Structural analysis comparing both Fe-SOD isoforms reveals differences in key cysteines and tryptophan residues. Thiol alkylation of Fe-SODB cysteines made the enzyme more susceptible to peroxynitrite. In particular, Cys(83) mutation (C83S, absent in Fe-SODA) increased the Fe-SODB sensitivity toward peroxynitrite. Molecular dynamics, electron paramagnetic resonance, and immunospin trapping analysis revealed that Cys(83) present in Fe-SODB acts as an electron donor that repairs Tyr(35) radical via intramolecular electron transfer, preventing peroxynitrite-dependent nitration and consequent inactivation of Fe-SODB. Parasites exposed to exogenous or endogenous sources of peroxynitrite resulted in nitration and inactivation of Fe-SODA but not Fe-SODB, suggesting that these enzymes play distinctive biological roles during parasite infection of mammalian cells.
Collapse
Affiliation(s)
- Alejandra Martinez
- From the Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Electrons have so little mass that in less than a second they can tunnel through potential energy barriers that are several electron-volts high and several nanometers wide. Electron tunneling is a critical functional element in a broad spectrum of applications, ranging from semiconductor diodes to the photosynthetic and respiratory charge transport chains. Prior to the 1970s, chemists generally believed that reactants had to collide in order to effect a transformation. Experimental demonstrations that electrons can transfer between reactants separated by several nanometers led to a revision of the chemical reaction paradigm. Experimental investigations of electron exchange between redox partners separated by molecular bridges have elucidated many fundamental properties of these reactions, particularly the variation of rate constants with distance. Theoretical work has provided critical insights into the superexchange mechanism of electronic coupling between distant redox centers. Kinetics measurements have shown that electrons can tunnel about 2.5 nm through proteins on biologically relevant time scales. Longer-distance biological charge flow requires multiple electron tunneling steps through chains of redox cofactors. The range of phenomena that depends on long-range electron tunneling continues to expand, providing new challenges for both theory and experiment.
Collapse
Affiliation(s)
- Jay R. Winkler
- Beckman Institute, California
Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Harry B. Gray
- Beckman Institute, California
Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|