1
|
Moutuou MM, Gauthier SD, Chen N, Leboeuf D, Guimond M. Studying Peripheral T Cell Homeostasis in Mice: A Concise Technical Review. Methods Mol Biol 2020; 2111:267-283. [PMID: 31933214 DOI: 10.1007/978-1-0716-0266-9_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
For several years, it was believed that the thymus was entirely responsible for maintaining T cell homeostasis. Today, it is well-known that homeostatic peripheral mechanisms are essential in order to maintain T cell numbers and diversity constant in the periphery. Naïve and memory T cells require continual access to self-peptide MHC class I and II molecules and/or cytokines to survive in the periphery. Under normal conditions, homeostatic resources are low, and lymphocytes undergo very slow proliferation and survive. Following T cell depletion, the bioavailability of homeostatic resources is significantly increased, and T cell proliferation is dramatically augmented. The development of lymphopenic mouse models has helped our current understanding of factors involved in the regulation of peripheral T cell homeostasis. In this minireview, we will give a brief overview about basic techniques used to study peripheral T cell homeostasis in mice.
Collapse
Affiliation(s)
- Moutuaata M Moutuou
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Simon-David Gauthier
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Nicolas Chen
- Département de Biochimie et médecine moléculaire, Université de Montréal, Montréal, QC, Canada
| | | | - Martin Guimond
- Division Immunologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
2
|
Differentiation into an Effector Memory Phenotype Potentiates HIV-1 Latency Reversal in CD4 + T Cells. J Virol 2019; 93:JVI.00969-19. [PMID: 31578289 PMCID: PMC6880164 DOI: 10.1128/jvi.00969-19] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/15/2019] [Indexed: 12/12/2022] Open
Abstract
By performing phenotypic analysis of latency reversal in CD4+ T cells from virally suppressed individuals, we identify the TEM subset as the largest contributor to the inducible HIV reservoir. Differential responses of memory CD4+ T cell subsets to latency-reversing agents (LRAs) demonstrate that HIV gene expression is associated with heightened expression of transcriptional pathways associated with differentiation, acquisition of effector function, and cell cycle entry. In vitro modeling of the latent HIV reservoir in memory CD4+ T cell subsets identify LRAs that reverse latency with ranges of efficiency and specificity. We found that therapeutic induction of latency reversal is associated with upregulation of identical sets of TEM-associated genes and cell surface markers shown to be associated with latency reversal in our ex vivo and in vitro models. Together, these data support the idea that the effector memory phenotype supports HIV latency reversal in CD4+ T cells. During antiretroviral therapy (ART), human immunodeficiency virus type 1 (HIV-1) persists as a latent reservoir in CD4+ T cell subsets in central memory (TCM), transitional memory (TTM), and effector memory (TEM) CD4+ T cells. We have identified differences in mechanisms underlying latency and responses to latency-reversing agents (LRAs) in ex vivo CD4+ memory T cells from virally suppressed HIV-infected individuals and in an in vitro primary cell model of HIV-1 latency. Our ex vivo and in vitro results demonstrate the association of transcriptional pathways of T cell differentiation, acquisition of effector function, and cell cycle entry in response to LRAs. Analyses of memory cell subsets showed that effector memory pathways and cell surface markers of activation and proliferation in the TEM subset are predictive of higher frequencies of cells carrying an inducible reservoir. Transcriptional profiling also demonstrated that the epigenetic machinery (known to control latency and reactivation) in the TEM subset is associated with frequencies of cells with HIV-integrated DNA and inducible HIV multispliced RNA. TCM cells were triggered to differentiate into TEM cells when they were exposed to LRAs, and this increase of TEM subset frequencies upon LRA stimulation was positively associated with higher numbers of p24+ cells. Together, these data highlight differences in underlying biological latency control in different memory CD4+ T cell subsets which harbor latent HIV in vivo and support a role for differentiation into a TEM phenotype in facilitating latency reversal. IMPORTANCE By performing phenotypic analysis of latency reversal in CD4+ T cells from virally suppressed individuals, we identify the TEM subset as the largest contributor to the inducible HIV reservoir. Differential responses of memory CD4+ T cell subsets to latency-reversing agents (LRAs) demonstrate that HIV gene expression is associated with heightened expression of transcriptional pathways associated with differentiation, acquisition of effector function, and cell cycle entry. In vitro modeling of the latent HIV reservoir in memory CD4+ T cell subsets identify LRAs that reverse latency with ranges of efficiency and specificity. We found that therapeutic induction of latency reversal is associated with upregulation of identical sets of TEM-associated genes and cell surface markers shown to be associated with latency reversal in our ex vivo and in vitro models. Together, these data support the idea that the effector memory phenotype supports HIV latency reversal in CD4+ T cells.
Collapse
|
3
|
Dostert C, Grusdat M, Letellier E, Brenner D. The TNF Family of Ligands and Receptors: Communication Modules in the Immune System and Beyond. Physiol Rev 2019; 99:115-160. [DOI: 10.1152/physrev.00045.2017] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The tumor necrosis factor (TNF) and TNF receptor (TNFR) superfamilies (TNFSF/TNFRSF) include 19 ligands and 29 receptors that play important roles in the modulation of cellular functions. The communication pathways mediated by TNFSF/TNFRSF are essential for numerous developmental, homeostatic, and stimulus-responsive processes in vivo. TNFSF/TNFRSF members regulate cellular differentiation, survival, and programmed death, but their most critical functions pertain to the immune system. Both innate and adaptive immune cells are controlled by TNFSF/TNFRSF members in a manner that is crucial for the coordination of various mechanisms driving either co-stimulation or co-inhibition of the immune response. Dysregulation of these same signaling pathways has been implicated in inflammatory and autoimmune diseases, highlighting the importance of their tight regulation. Investigation of the control of TNFSF/TNFRSF activities has led to the development of therapeutics with the potential to reduce chronic inflammation or promote anti-tumor immunity. The study of TNFSF/TNFRSF proteins has exploded over the last 30 yr, but there remains a need to better understand the fundamental mechanisms underlying the molecular pathways they mediate to design more effective anti-inflammatory and anti-cancer therapies.
Collapse
Affiliation(s)
- Catherine Dostert
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark; and Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, Belvaux, Luxembourg
| | - Melanie Grusdat
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark; and Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, Belvaux, Luxembourg
| | - Elisabeth Letellier
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark; and Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, Belvaux, Luxembourg
| | - Dirk Brenner
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark; and Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
4
|
Milger K, Yu Y, Brudy E, Irmler M, Skapenko A, Mayinger M, Lehmann M, Beckers J, Reichenberger F, Behr J, Eickelberg O, Königshoff M, Krauss-Etschmann S. Pulmonary CCR2 +CD4 + T cells are immune regulatory and attenuate lung fibrosis development. Thorax 2017; 72:1007-1020. [PMID: 28780502 DOI: 10.1136/thoraxjnl-2016-208423] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 05/09/2017] [Accepted: 05/15/2017] [Indexed: 11/04/2022]
Abstract
BACKGROUND Animal models have suggested that CCR2-dependent signalling contributes to the pathogenesis of pulmonary fibrosis, but global blockade of CCL2 failed to improve the clinical course of patients with lung fibrosis. However, as levels of CCR2+CD4+ T cells in paediatric lung fibrosis had previously been found to be increased, correlating with clinical symptoms, we hypothesised that distinct CCR2+ cell populations might either increase or decrease disease pathogenesis depending on their subtype. OBJECTIVE To investigate the role of CCR2+CD4+ T cells in experimental lung fibrosis and in patients with idiopathic pulmonary fibrosis and other fibrosis. METHODS Pulmonary CCR2+CD4+ T cells were analysed using flow cytometry and mRNA profiling, followed by in silico pathway analysis, in vitro assays and adoptive transfer experiments. RESULTS Frequencies of CCR2+CD4+ T cells were increased in experimental fibrosis-specifically the CD62L-CD44+ effector memory T cell phenotype, displaying a distinct chemokine receptor profile. mRNA profiling of isolated CCR2+CD4+ T cells from fibrotic lungs suggested immune regulatory functions, a finding that was confirmed in vitro using suppressor assays. Importantly, adoptive transfer of CCR2+CD4+ T cells attenuated fibrosis development. The results were partly corroborated in patients with lung fibrosis, by showing higher percentages of Foxp3+ CD25+ cells within bronchoalveolar lavage fluid CCR2+CD4+ T cells as compared with CCR2-CD4+ T cells. CONCLUSION Pulmonary CCR2+CD4+ T cells are immunosuppressive, and could attenuate lung inflammation and fibrosis. Therapeutic strategies completely abrogating CCR2-dependent signalling will therefore also eliminate cell populations with protective roles in fibrotic lung disease. This emphasises the need for a detailed understanding of the functions of immune cell subsets in fibrotic lung disease.
Collapse
Affiliation(s)
- Katrin Milger
- Comprehensive Pneumology Center, Helmholtz Center Munich Germany, Member of the German Center for Lung Research (DZL), Munich, Germany.,Department of Internal Medicine V, University of Munich, Munich, Germany
| | - Yingyan Yu
- Comprehensive Pneumology Center, Helmholtz Center Munich Germany, Member of the German Center for Lung Research (DZL), Munich, Germany.,Dr von Hauner Children Hospital, Ludwig Maximilians University of Munich, Munich, Germany
| | - Eva Brudy
- Comprehensive Pneumology Center, Helmholtz Center Munich Germany, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Center Munich, Munich, Germany
| | - Alla Skapenko
- Division of Rheumatology, Department of Internal Medicine IV, University of Munich, Germany, Munich, Germany
| | - Michael Mayinger
- Comprehensive Pneumology Center, Helmholtz Center Munich Germany, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Mareike Lehmann
- Comprehensive Pneumology Center, Helmholtz Center Munich Germany, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Center Munich, Munich, Germany.,Chair of Experimental Genetics, Technische Universität München, Freising, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | | | - Jürgen Behr
- Department of Internal Medicine V, University of Munich, Munich, Germany.,Asklepios Clinic Gauting, Munich, Germany
| | - Oliver Eickelberg
- Comprehensive Pneumology Center, Helmholtz Center Munich Germany, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Melanie Königshoff
- Comprehensive Pneumology Center, Helmholtz Center Munich Germany, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Susanne Krauss-Etschmann
- Comprehensive Pneumology Center, Helmholtz Center Munich Germany, Member of the German Center for Lung Research (DZL), Munich, Germany.,Dr von Hauner Children Hospital, Ludwig Maximilians University of Munich, Munich, Germany.,Asklepios Clinic Gauting, Munich, Germany.,Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany., Borstel, Germany.,Institute of Experimental Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
5
|
Targeting the Fas/FasL system in Rheumatoid Arthritis therapy: Promising or risky? Cytokine 2014; 75:228-33. [PMID: 25481649 DOI: 10.1016/j.cyto.2014.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/16/2014] [Accepted: 10/17/2014] [Indexed: 12/30/2022]
Abstract
Rheumatoid Arthritis (RA) is a chronic inflammatory disease affecting synovial joints. Tumor necrosis factor (TNF) α is a key component of RA pathogenesis and blocking this cytokine is the most common strategy to treat the disease. Though TNFα blockers are very efficient, one third of the RA patients are unresponsive or present side effects. Therefore, the development of novel therapeutic approaches is required. RA pathogenesis is characterized by the hyperplasia of the synovium, closely associated to the pseudo-tumoral expansion of fibroblast-like synoviocytes (FLS), which invade and destroy the joint structure. Hence, depletion of RA FLS has been proposed as an alternative therapeutic strategy. The TNF family member Fas ligand (FasL) was reported to trigger apoptosis in FLS of arthritic joints by binding to its receptor Fas and therefore suggested as a promising candidate for targeting the hyperplastic synovial tissue. However, this cytokine is pleiotropic and recent data from the literature indicate that Fas activation might have a disease-promoting role in RA by promoting cell proliferation. Therefore, a FasL-based therapy for RA requires careful evaluation before being applied. In this review we aim to overview what is known about the apoptotic and non-apoptotic effects of Fas/FasL system and discuss its relevance in RA.
Collapse
|
6
|
Yin Y, Zhang S, Luo H, Zhang X, Geng G, Li J, Guo X, Cai W, Li L, Liu C, Zhang H. Interleukin 7 up-regulates CD95 protein on CD4+ T cells by affecting mRNA alternative splicing: priming for a synergistic effect on HIV-1 reservoir maintenance. J Biol Chem 2014; 290:35-45. [PMID: 25411246 DOI: 10.1074/jbc.m114.598631] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin-7 (IL-7) has been used as an immunoregulatory and latency-reversing agent in human immunodeficiency virus type 1 (HIV-1) infection. Although IL-7 can restore circulating CD4(+) T cell counts in HIV-1-infected patients, the anti-apoptotic and proliferative effects of IL-7 appear to benefit survival and expansion of HIV-1-latently infected memory CD4(+) T lymphocytes. IL-7 has been shown to elevate CD95 on CD4(+) T cells in HIV-1-infected individuals and prime CD4(+) T lymphocytes to CD95-mediated proliferative or apoptotic signals. Here we observed that through increasing microRNA-124, IL-7 down-regulates the splicing regulator polypyrimidine tract binding protein (PTB), leading to inclusion of the transmembrane domain-encoding exon 6 of CD95 mRNA and, subsequently, elevation of CD95 on memory CD4(+) T cells. Moreover, IL-7 up-regulates cellular FLICE-like inhibitory protein (c-FLIP) and stimulates c-Jun N-terminal kinase (JNK) phosphorylation, which switches CD95 signaling to survival mode in memory CD4(+) T lymphocytes. As a result, co-stimulation through IL-7/IL-7R and FasL/CD95 signal pathways augments IL-7-mediated survival and expansion of HIV-1-latently infected memory CD4(+) T lymphocytes. Collectively, we have demonstrated a novel mechanism for IL-7-mediated maintenance of HIV-1 reservoir.
Collapse
Affiliation(s)
- Yue Yin
- From the Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China and
| | - Shaoying Zhang
- From the Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China and
| | - Haihua Luo
- From the Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China and
| | - Xu Zhang
- From the Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China and
| | - Guannan Geng
- From the Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China and
| | - Jun Li
- From the Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China and
| | - Xuemin Guo
- From the Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China and
| | - Weiping Cai
- Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510080, China
| | - Linghua Li
- Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510080, China
| | - Chao Liu
- From the Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China and
| | - Hui Zhang
- From the Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China and
| |
Collapse
|
7
|
Tassi I, Claudio E, Wang H, Tang W, Ha HL, Saret S, Ramaswamy M, Siegel R, Siebenlist U. The NF-κB regulator Bcl-3 governs dendritic cell antigen presentation functions in adaptive immunity. THE JOURNAL OF IMMUNOLOGY 2014; 193:4303-11. [PMID: 25246497 DOI: 10.4049/jimmunol.1401505] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bcl-3 is an atypical member of the IκB family and modulates gene expression via interaction with p50/NF-κB1 or p52/NF-κB2 homodimers. We report in the present study that Bcl-3 is required in dendritic cells (DCs) to assure effective priming of CD4 and CD8 T cells. Lack of Bcl-3 in bone marrow-derived DCs blunted their ability to expand and promote effector functions of T cells upon Ag/adjuvant challenge in vitro and after adoptive transfers in vivo. Importantly, the critical role of Bcl-3 for priming of T cells was exposed upon Ag/adjuvant challenge of mice specifically ablated of Bcl-3 in DCs. Furthermore, Bcl-3 in endogenous DCs was necessary for contact hypersensitivity responses. Bcl-3 modestly aided maturation of DCs, but most consequentially, Bcl-3 promoted their survival, partially inhibiting expression of several antiapoptotic genes. Loss of Bcl-3 accelerated apoptosis of bone marrow-derived DCs during Ag presentation to T cells, and DC survival was markedly impaired in the context of inflammatory conditions in mice specifically lacking Bcl-3 in these cells. Conversely, selective overexpression of Bcl-3 in DCs extended their lifespan in vitro and in vivo, correlating with increased capacity to prime T cells. These results expose a previously unidentified function for Bcl-3 in DC survival and the generation of adaptive immunity.
Collapse
Affiliation(s)
- Ilaria Tassi
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Estefania Claudio
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Hongshan Wang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Wanhu Tang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Hye-lin Ha
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Sun Saret
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Madhu Ramaswamy
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Richard Siegel
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ulrich Siebenlist
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| |
Collapse
|
8
|
Brint E, O’Callaghan G, Houston A. Life in the Fas lane: differential outcomes of Fas signaling. Cell Mol Life Sci 2013; 70:4085-99. [PMID: 23579628 PMCID: PMC11113183 DOI: 10.1007/s00018-013-1327-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 03/14/2013] [Accepted: 03/18/2013] [Indexed: 12/11/2022]
Abstract
Fas, also known as CD95 or APO-1, is a member of the tumor necrosis factor/nerve growth factor superfamily. Although best characterized in terms of its apoptotic function, recent studies have identified several other cellular responses emanating from Fas. These responses include migration, invasion, inflammation, and proliferation. In this review, we focus on the diverse cellular outcomes of Fas signaling and the molecular switches identified to date that regulate its pro- and anti-apoptotic functions. Such switches occur at different levels of signal transduction, ranging from the receptor through to cross-talk with other signaling pathways. Factors identified to date including other extracellular signals, proteins recruited to the death-inducing signaling complex, and the availability of different intracellular components of signal transduction pathways. The success of therapeutically targeting Fas will require a better understanding of these pathways, as well as the regulatory mechanisms that determine cellular outcome following receptor activation.
Collapse
Affiliation(s)
- Elizabeth Brint
- Department of Pathology, University College Cork, National University of Ireland, Cork, Ireland
| | - Grace O’Callaghan
- Department of Medicine, University College Cork, National University of Ireland, Cork, Ireland
| | - Aileen Houston
- Department of Medicine, University College Cork, National University of Ireland, Cork, Ireland
| |
Collapse
|
9
|
Abstract
The discovery of tumor necrosis factor (TNF) marked the beginning of one of the most fascinating journeys in modern biomedical research. For the moment, this journey has culminated in the development of drugs that inhibit TNF. TNF blockers have revolutionized the treatment of many chronic inflammatory diseases. Yet, the journey seems far from over. TNF is the founding member of a family of cytokines with crucial functions in cell death, inflammation, and cancer. Some of these factors, most prominently TNF, CD95L, and TRAIL, can induce cell death. The receptors that mediate this signal are therefore referred to as death receptors, even though they also activate other signals. Here I will take you on a journey into the discovery and study of death receptor-ligand systems and how this inspired new concepts in cancer therapy and our current understanding of the interplay between cell death and inflammation.
Collapse
Affiliation(s)
- Henning Walczak
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom.
| |
Collapse
|
10
|
Heo Y. In vitro model for modulation of helper T cell differentiation and activation. ACTA ACUST UNITED AC 2013; Chapter 18:Unit18.9. [PMID: 23045121 DOI: 10.1002/0471140856.tx1809s24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Influence of immunotoxicants on helper T cell reactivities can be investigated by assessing acquisition of IL-4- or IFN-γ-producing ability in vitro with antigen-primed naive or precursor helper T cells from the spleens of DO11.10 ovalbumin-specific transgenic mice. The in vitro differentiation model is believed to be close to the in vivo environmental conditions in which differentiation occurs. The effect of immunotoxicants on helper T cell activity can also be evaluated by antigen-specific activation of cloned type-1 or type-2 helper T cells in vitro, since the two subsets of helper T cells can be distinguished by patterns of cytokine secretion. This in vitro model will help investigators to examine the ability of toxicants to modulate helper T cell-mediated cellular or humoral immunity.
Collapse
Affiliation(s)
- Yong Heo
- Catholic University of Daegu, Kyongbuk Province Republic of Korea
| |
Collapse
|
11
|
Askenasy N, Mizrahi K, Ash S, Askenasy EM, Yaniv I, Stein J. Depletion of Naïve Lymphocytes with Fas Ligand Ex Vivo Prevents Graft-versus-Host Disease without Impairing T Cell Support of Engraftment or Graft-versus-Tumor Activity. Biol Blood Marrow Transplant 2013; 19:185-95. [DOI: 10.1016/j.bbmt.2012.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Accepted: 10/08/2012] [Indexed: 01/15/2023]
|
12
|
Purushothaman D, Marcel N, Garg M, Venkataraman R, Sarin A. Apoptotic programs are determined during lineage commitment of CD4+ T effectors: selective regulation of T effector-memory apoptosis by inducible nitric oxide synthase. THE JOURNAL OF IMMUNOLOGY 2012; 190:97-105. [PMID: 23225886 DOI: 10.4049/jimmunol.1103694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lineage-committed T effectors generated in response to Ag during the inflammatory phase are destined to die during termination of the immune response. We present evidence to suggest that molecular signatures of lineage commitment are reflected in apoptotic cascades activated in CD4(+) T effectors. Exemplifying this, ablation of inducible NO synthase (iNOS) protected effector-memory T (TEM) cells, but not T(Naive) or central-memory T cells, activated in vitro, from apoptosis triggered by cytokine deprivation. Furthermore, attrition of T effectors generated in the secondary, but not the primary, response to Ag was substantially reduced in mice, which received iNOS inhibitors. Distinct patterns of iNOS expression were revealed in wild-type TEM effectors undergoing apoptosis, and ablation of iNOS protein in primary and TEM wild-type effectors confirmed observations made in iNOS(-/-) cells. Describing molecular correlates of this dependence, mitochondrial damage, activation of the protein Bax, and release from mitochondria of the apoptosis-inducing factor were selectively abrogated in iNOS(-/-) TEM effectors. Suggesting that iNOS dependence was linked to the functional identity of T cell subsets, both iNOS induction and apoptosis were compromised in IFN-γ(-/-) TEM effectors, which mirrored the response patterns of iNOS(-)(/)(-) TEM. Collectively, these observations suggest that programs regulating deletion and differentiation are closely integrated and likely encoded during lineage commitment of T effectors.
Collapse
Affiliation(s)
- Divya Purushothaman
- National Centre for Biological Sciences, Bangalore 560065, Karnataka, India.
| | | | | | | | | |
Collapse
|
13
|
Ryoo HD, Bergmann A. The role of apoptosis-induced proliferation for regeneration and cancer. Cold Spring Harb Perspect Biol 2012; 4:a008797. [PMID: 22855725 DOI: 10.1101/cshperspect.a008797] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Genes dedicated to killing cells must have evolved because of their positive effects on organismal survival. Positive functions of apoptotic genes have been well established in a large number of biological contexts, including their role in eliminating damaged and potentially cancerous cells. More recently, evidence has suggested that proapoptotic proteins-mostly caspases-can induce proliferation of neighboring surviving cells to replace dying cells. This process, that we will refer to as "apoptosis-induced proliferation," may be critical for stem cell activity and tissue regeneration. Depending on the caspases involved, at least two distinct types of apoptosis-induced proliferation can be distinguished. One of these types have been studied using a model in which cells have initiated cell death, but are prevented from executing it because of effector caspase inhibition, thereby generating "undead" cells that emit persistent mitogen signaling and overgrowth. Such conditions are likely to contribute to certain forms of cancer. In this review, we summarize the current knowledge of apoptosis-induced proliferation and discuss its relevance for tissue regeneration and cancer.
Collapse
Affiliation(s)
- Hyung Don Ryoo
- Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | | |
Collapse
|
14
|
IL-2–Targeted Therapy Ameliorates the Severity of Graft-versus-Host Disease: Ex Vivo Selective Depletion of Host-Reactive T Cells and In Vivo Therapy. Biol Blood Marrow Transplant 2012; 18:523-35. [DOI: 10.1016/j.bbmt.2011.11.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Accepted: 11/08/2011] [Indexed: 11/24/2022]
|
15
|
McComb S, Mulligan R, Sad S. Caspase-3 is transiently activated without cell death during early antigen driven expansion of CD8(+) T cells in vivo. PLoS One 2010; 5:e15328. [PMID: 21203525 PMCID: PMC3008739 DOI: 10.1371/journal.pone.0015328] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 11/08/2010] [Indexed: 12/18/2022] Open
Abstract
Background CD8+ T cell responses develop rapidly during infection and are swiftly reduced during contraction, wherein >90% of primed CD8+ T cells are eliminated. The role of apoptotic mechanisms in controlling this rapid proliferation and contraction of CD8+ T cells remains unclear. Surprisingly, evidence has shown non-apoptotic activation of caspase-3 to occur during in vitro T-cell proliferation, but the relevance of these mechanisms to in vivo CD8+ T cell responses has yet to be examined. Methods and Findings We have evaluated the activity of caspase-3, a key downstream inducer of apoptosis, throughout the entirety of a CD8+ T cell response. We utilized two infection models that differ in the intensity, onset and duration of antigen-presentation and inflammation. Expression of cleaved caspase-3 in antigen specific CD8+ T cells was coupled to the timing and strength of antigen presentation in lymphoid organs. We also observed coordinated activation of additional canonical apoptotic markers, including phosphatidylserine exposure. Limiting dilution analysis directly showed that in the presence of IL7, very little cell death occurred in both caspase-3hi and caspase-3low CD8+ T cells. The expression of active caspase-3 peaked before effector phenotype (CD62Llow) CD8+ T cells emerged, and was undetectable in effector-phenotype cells. In addition, OVA-specific CD8+ cells remained active caspase-3low throughout the contraction phase. Conclusions Our results specifically implicate antigen and not inflammation in driving activation of apoptotic mechanisms without cell death in proliferating CD8+ T cells. Furthermore, the contraction of CD8+ T cell response following expansion is likely not mediated by the key downstream apoptosis inducer, caspase-3.
Collapse
Affiliation(s)
- Scott McComb
- NRC-Institute for Biological Sciences, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Rebecca Mulligan
- NRC-Institute for Biological Sciences, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Subash Sad
- NRC-Institute for Biological Sciences, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- * E-mail:
| |
Collapse
|
16
|
Yoshida T, Yoshida R, Ma BY, Mikolajczak S, Kelvin DJ, Ochi A. A novel mitogen fusion protein against CD40+ cells with potent vaccine adjuvant properties. Vaccine 2010; 28:3688-95. [PMID: 20359561 DOI: 10.1016/j.vaccine.2010.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 03/02/2010] [Accepted: 03/10/2010] [Indexed: 11/16/2022]
Abstract
A large number of infectious diseases caused by viral or bacterial infections are treatable and/or preventable by vaccination. In addition, ongoing research is aimed at the development of vaccines against other types of diseases, including almost all forms of cancer. The efficacy of a vaccine relies on the antigen-specific response by the entire repertoire of immune competent cells. Here, we have generated a powerful mitogen fusion protein, CD40L-FasL-IgFc, which stimulates CD40(+) cells robustly. We found that this specific cell activation is accompanied by increased expression of PRDI-BF1 (Blim-1) RNA, an indicator of terminal B-cell differentiation, in cultures stimulated with CD40L-FasL-IgFc. The addition of specific inhibitors of NF-kappaB and MEK1/2 partially suppressed the observed proliferative effects of CD40L-FasL-IgFc. When tested in vivo, the immune response to influenza HA vaccine was significantly increased by co-administration of CD40L-FasL-IgFc. Moreover, the co-administration of the cDNA expression plasmid encoding CD40L-FasL-IgFc significantly boosted the vaccine response. We now have a unique opportunity to evaluate our novel fusion protein adjuvant, and other similarly constructed fusion proteins, in both protein-based and genetic vaccines.
Collapse
Affiliation(s)
- Tetsuya Yoshida
- First Department of Internal Medicine, School of Medicine, Fukuoka University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Olson MR, Varga SM. Fas ligand is required for the development of respiratory syncytial virus vaccine-enhanced disease. THE JOURNAL OF IMMUNOLOGY 2009; 182:3024-31. [PMID: 19234198 DOI: 10.4049/jimmunol.0803585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Children immunized with a formalin-inactivated respiratory syncytial virus (RSV) vaccine experienced enhanced disease and exhibited pulmonary eosinophilia upon natural RSV infection. BALB/c mice immunized with either formalin-inactivated RSV or a recombinant vaccinia virus (vacv) expressing the RSV attachment (G) protein develop extensive pulmonary eosinophilia after RSV challenge that mimics the eosinophilic response observed in the children during the 1960s vaccine trials. Fas ligand (FasL) is a major immune effector molecule that can contribute to the clearance of respiratory viruses. However, the role of FasL in the development of RSV vaccine-enhanced disease has not been elucidated. RSV challenge of vacvG-immunized gld mice, that lack functional FasL, results in diminished systemic disease as well as pulmonary eosinophilia. The magnitude of the secondary RSV G-specific CD4 T cell response was diminished in gld mice as compared with wild-type controls. Furthermore, we show that CD4 T cells isolated after RSV challenge of vacvG-immunized gld mice exhibit enhanced expression of Annexin V and caspase 3/7 indicating that FasL is important for either the survival or the expansion of virus-specific secondary effector CD4 T cells. Taken together, these data identify a previously undefined role for FasL in the accumulation of secondary effector CD4 T cells and the development of RSV vaccine-enhanced disease.
Collapse
Affiliation(s)
- Matthew R Olson
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
18
|
Chidrawar S, Khan N, Wei W, McLarnon A, Smith N, Nayak L, Moss P. Cytomegalovirus-seropositivity has a profound influence on the magnitude of major lymphoid subsets within healthy individuals. Clin Exp Immunol 2009; 155:423-32. [PMID: 19220832 DOI: 10.1111/j.1365-2249.2008.03785.x] [Citation(s) in RCA: 197] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cytomegalovirus (CMV) infects most individuals and elicits a strong CMV-specific immune response. We have studied the influence of CMV-seropositivity on the size of lymphoid subsets in healthy donors and demonstrate that the virus substantially modulates the peripheral lymphoid pool. CD8(+) T cell numbers are increased in all CMV-seropositive individuals because of a striking 60% increment in the CD8(+) T cell memory pool. The CD45RA(+) resting memory pool is doubled after CMV infection and increases further with age. The magnitude of the naïve CD8(+) T cell pool is dramatically reduced in CMV-seropositive individuals at all ages, and this accelerates the physiological decline by approximately 40 years. The number of CD4(+) effector memory T cells is increased in CMV-seropositive individuals and is differentially accommodated by a reduction in the number of naïve and central memory CD4(+) T cells in young and elderly donors respectively. CMV-seropositivity also increases the total number of B cells in older donors and suppresses the number of CD5(+) B cells. These data reveal that CMV has a profound influence on the immune system of all healthy individuals and add to growing concern regarding the clinical and immunomodulatory significance of CMV infection in healthy donors.
Collapse
Affiliation(s)
- S Chidrawar
- CR UK Institute for Cancer Studies, University of Birmingham, Birmingham, UK
| | | | | | | | | | | | | |
Collapse
|
19
|
Yolcu ES, Ash S, Kaminitz A, Sagiv Y, Askenasy N, Yarkoni S. Apoptosis as a mechanism of T‐regulatory cell homeostasis and suppression. Immunol Cell Biol 2008; 86:650-8. [DOI: 10.1038/icb.2008.62] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Esma S Yolcu
- Department of Microbiology and Immunology, Institute for Cellular Therapeutics, University of LouisvilleLouisvilleKYUSA
| | - Shifra Ash
- Frankel Laboratory for Experimental Bone Marrow Transplantation, Center for Stem Cell Research, Schneider Children's Medical Center of IsraelPetach TikvaIsrael
| | - Ayelet Kaminitz
- Frankel Laboratory for Experimental Bone Marrow Transplantation, Center for Stem Cell Research, Schneider Children's Medical Center of IsraelPetach TikvaIsrael
| | | | - Nadir Askenasy
- Frankel Laboratory for Experimental Bone Marrow Transplantation, Center for Stem Cell Research, Schneider Children's Medical Center of IsraelPetach TikvaIsrael
| | | |
Collapse
|
20
|
Dudani R, Russell M, van Faassen H, Krishnan L, Sad S. Mutation in the Fas pathway impairs CD8+ T cell memory. THE JOURNAL OF IMMUNOLOGY 2008; 180:2933-41. [PMID: 18292515 DOI: 10.4049/jimmunol.180.5.2933] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fas death pathway is important for lymphocyte homeostasis, but the role of Fas pathway in T cell memory development is not clear. We show that whereas the expansion and contraction of CD8+ T cell response against Listeria monocytogenes were similar for wild-type (WT) and Fas ligand (FasL) mutant mice, the majority of memory CD8+ T cells in FasL mutant mice displayed an effector memory phenotype in the long-term in comparison with the mainly central memory phenotype displayed by memory CD8+ T cells in WT mice. Memory CD8+ T cells in FasL mutant mice expressed reduced levels of IFN-gamma and displayed poor homeostatic and Ag-induced proliferation. Impairment in CD8+ T cell memory in FasL mutant hosts was not due to defective programming or the expression of mutant FasL on CD8+ T cells, but was caused by perturbed cytokine environment in FasL mutant mice. Although adoptively transferred WT memory CD8+ T cells mediated protection against L. monocytogenes in either the WT or FasL mutant hosts, FasL mutant memory CD8+ T cells failed to mediate protection even in WT hosts. Thus, in individuals with mutation in Fas pathway, impairment in the function of the memory CD8+ T cells may increase their susceptibility to recurrent/latent infections.
Collapse
Affiliation(s)
- Renu Dudani
- National Research Council of Canada, Institute for Biological Sciences, Ottawa, Ontario, Canada
| | | | | | | | | |
Collapse
|
21
|
Ruan W, Lee CT, Desbarats J. A novel juxtamembrane domain in tumor necrosis factor receptor superfamily molecules activates Rac1 and controls neurite growth. Mol Biol Cell 2008; 19:3192-202. [PMID: 18508927 DOI: 10.1091/mbc.e08-02-0161] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Members of the tumor necrosis factor receptor (TNFR) superfamily control cell fate determination, including cell death and differentiation. Fas (CD95) is the prototypical "death receptor" of the TNFR superfamily and signals apoptosis through well established pathways. In the adult nervous system, Fas induces apoptosis in the context of neuropathology such as stroke or amyotrophic lateral sclerosis. However, during nervous system development, Fas promotes neurite growth and branching. The molecular mechanisms underlying Fas-induced process formation and branching have remained unknown to date. Here, we define the molecular pathway linking Fas to process growth and branching in cell lines and in developing neurons. We describe a new cytoplasmic membrane proximal domain (MPD) that is essential for Fas-induced process growth and that is conserved in members of the TNFR superfamily. We show that the Fas MPD recruits ezrin, a molecule that links transmembrane proteins to the cytoskeleton, and activates the small GTPase Rac1. Deletion of the MPD, but not the death domain, abolished Rac1 activation and process growth. Furthermore, an ezrin-derived inhibitory peptide prevented Fas-induced neurite growth in primary neurons. Our results define a new domain, topologically and functionally distinct from the death domain, which regulates neuritogenesis via recruitment of ezrin and activation of Rac1.
Collapse
Affiliation(s)
- Wenjing Ruan
- Department of Physiology, McGill University, Montréal, Québec H3G 1Y6, Canada
| | | | | |
Collapse
|
22
|
Waid DM, Vaitaitis GM, Pennock ND, Wagner DH. Disruption of the homeostatic balance between autoaggressive (CD4+CD40+) and regulatory (CD4+CD25+FoxP3+) T cells promotes diabetes. J Leukoc Biol 2008; 84:431-9. [PMID: 18469093 DOI: 10.1189/jlb.1207857] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Although regulatory T cells (Tregs) are well described, identifying autoaggressive effector T cells has proven more difficult. However, we identified CD4loCD40+ (Th40) cells as being necessary and sufficient for diabetes in the NOD mouse model. Importantly, these cells are present in pancreata of prediabetic and diabetic NOD mice, and Th40 cells but not CD4+CD40(-) T cells transfer progressive insulitis and diabetes to NOD.scid recipients. Nonobese-resistant (NOR) mice have the identical T cell developmental background as NOD mice, yet they are diabetes-resistant. The seminal issue is how NOR mice remain tolerant to diabetogenic self-antigens. We show here that autoaggressive T cells develop in NOR mice and are confined to the Th40 subset. However, NOR mice maintain Treg numbers equivalent to their Th40 numbers. NOD mice have statistically equal numbers of CD4+CD25+forkhead box P3+intrinsic Tregs compared with NOR or nonautoimmune BALB/c mice, and NOD Tregs are equally as suppressive as NOR Tregs. A critical difference is that NOD mice develop expanded numbers of Th40 cells. We suggest that a determinant factor for autoimmunity includes the Th40:Treg ratio. Mechanistically, NOD Th40 cells have low susceptibility to Fas-induced cell death and unlike cells from NOR and BALB/c mice, have predominantly low Fas expression. CD40 engagement of Th40 cells induces Fas expression but further confers resistance to Fas-mediated cell death in NOD mice. A second fundamental difference is that NOD Th40 cells undergo much more rapid homeostatic expansion than Th40 cells from NOR mice.
Collapse
Affiliation(s)
- Dan M Waid
- Webb-Waring Institute and Department of Medicine, University of Colorado Denver School of Medicine, 4200 East 9th Ave., Denver, CO 80262, USA
| | | | | | | |
Collapse
|
23
|
Li B, VanRoey MJ, Jooss K. Recombinant IL-7 enhances the potency of GM-CSF-secreting tumor cell immunotherapy. Clin Immunol 2007; 123:155-65. [PMID: 17320482 DOI: 10.1016/j.clim.2007.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 12/16/2006] [Accepted: 01/06/2007] [Indexed: 10/23/2022]
Abstract
IL-7 is known for its role in lymphopoiesis and T-cell homeostasis. In addition, its capacity to augment the immune response to weak or low affinity antigens makes it an ideal candidate to evaluate in combination with a GM-CSF-secreting tumor cell immunotherapy, which has been shown to elicit broad humoral and cellular immune responses. The studies reported here show that IL-7, when combined with a GM-CSF-secreting tumor cell immunotherapy, significantly prolonged the survival of tumor-bearing mice. The enhanced anti-tumor protection correlated with an increased number of activated dendritic cells (DC) and T cells in lymphoid tissues, such as the draining lymph nodes (DLN) and spleen. Moreover, an increased number of activated effector T cells were found in the tumor microenvironment, correlating with a more potent systemic tumor-specific T-cell response than each monotherapy alone. Taken together, these studies demonstrate that IL-7 augments the anti-tumor response of a GM-CSF-secreting tumor cell immunotherapy in preclinical models.
Collapse
Affiliation(s)
- Betty Li
- Cell Genesys Inc., 500 Forbes Boulevard, South San Francisco, CA 94080, USA.
| | | | | |
Collapse
|
24
|
Rautajoki KJ, Marttila EM, Nyman TA, Lahesmaa R. Interleukin-4 Inhibits Caspase-3 by Regulating Several Proteins in the Fas Pathway during Initial Stages of Human T Helper 2 Cell Differentiation. Mol Cell Proteomics 2007; 6:238-51. [PMID: 17114647 DOI: 10.1074/mcp.m600290-mcp200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin-4 (IL-4) is the main cytokine that polarizes activated naïve CD4+ T cells in the T helper 2 (Th2) direction. IL-4 also regulates the subsequent stages of Th2 cell-mediated diseases, such as allergies. We conducted a proteomics study to identify IL-4-induced differences during the initial stages of T helper cell differentiation. Primary CD4+ T lymphocytes were isolated from human cord blood, activated through CD3 and CD28, and cultured in the presence or absence of IL-4. Soluble proteins were separated by two-dimensional electrophoresis and visualized by staining with autoradiography, which indicated that at least 20 proteins might be regulated by IL-4. From this minimum of 20 stained proteins, altogether 35 proteins were identified using tandem mass spectrometry. Interestingly the fragmented form of GDP dissociation inhibitor expressed in lymphocytes/Rho GDP dissociation inhibitor 2 (Ly-GDI), a known target of Caspase-3, was observed to be down-regulated in IL-4-treated cells. It was shown in further studies that IL-4 decreases Caspase-3 activity and cell death in these cells. Neutralizing Fas-Fas ligand interaction led to decreased Caspase-3 activity and lowered Ly-GDI fragmentation. We further characterized the effects of IL-4 on the expression of main regulators in the Fas-mediated pathway. We demonstrated that IL-4 decreases expression of Fas receptor and increases expression of Bid, Bcl-2, and Bcl-xL. Importantly IL-4 significantly up-regulated the short form of c-FLIP, although the levels of c-FLIP long were unaltered after IL-4 induction. Taken together, our results indicate that IL-4 inhibits caspase activity during the initial stages of human Th2 cell differentiation by regulating expression of several key players in the Fas-induced pathway.
Collapse
Affiliation(s)
- Kirsi J Rautajoki
- Turku Centre for Biotechnology, University of Turku and Abo Akademi, Tykistökatu 6A, 5th floor, FIN-20521 Turku, Finland.
| | | | | | | |
Collapse
|
25
|
Strauss G, Osen W, Knape I, Jacobsen EM, Müller SM, Debatin KM. Membrane-bound CD95 ligand expressed on human antigen-presenting cells prevents alloantigen-specific T cell response without impairment of viral and third-party T cell immunity. Cell Death Differ 2006; 14:480-8. [PMID: 16902496 DOI: 10.1038/sj.cdd.4402019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Genetically modified antigen-presenting cells (APC) represent an attractive strategy for in vitro immunomodulation. In the human system, APC expressing HLA-A1 and a membrane-bound form of CD95L (m-CD95L) were used for selective depletion of HLA-A1-specific T cells. In short-term assays, m-CD95L-expressing APC-induced apoptosis in activated T cells and the constitutive presence of m-CD95L and HLA-A1 expressing APC in long-term T cell cultures prevented the expansion of CD4(+) and CD8(+) HLA-A1-specific T cells and the development of HLA-A1-specific cytotoxicity. However, immunity towards third party, viral and bacterial antigens was maintained and T cells spared from depletion could be induced to develop cytotoxicity towards unrelated antigens. Interestingly, inhibition of HLA-A1-specific T cell response absolutely requires the coexpression of m-CD95L and HLA-A1 antigen on the same APC. Thus, m-CD95L expressing APC might be used in clinical settings to obtain tolerance induction in allogeneic transplantation systems or autoimmune diseases.
Collapse
Affiliation(s)
- G Strauss
- University Children's Hospital, Ulm, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Newell MK, Villalobos-Menuey E, Schweitzer SC, Harper ME, Camley RE. Cellular metabolism as a basis for immune privilege. JOURNAL OF IMMUNE BASED THERAPIES AND VACCINES 2006; 4:1. [PMID: 16545119 PMCID: PMC1456959 DOI: 10.1186/1476-8518-4-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Accepted: 03/17/2006] [Indexed: 11/10/2022]
Abstract
We hypothesize that the energy strategy of a cell is a key factor for determining how, or if, the immune system interacts with that cell. Cells have a limited number of metabolic states, in part, depending on the type of fuels the cell consumes. Cellular fuels include glucose (carbohydrates), lipids (fats), and proteins. We propose that the cell's ability to switch to, and efficiently use, fat for fuel confers immune privilege. Additionally, because uncoupling proteins are involved in the fat burning process and reportedly in protection from free radicals, we hypothesize that uncoupling proteins play an important role in immune privilege. Thus, changes in metabolism (caused by oxidative stresses, fuel availability, age, hormones, radiation, or drugs) will dictate and initiate changes in immune recognition and in the nature of the immune response. This has profound implications for controlling the symptoms of autoimmune diseases, for preventing graft rejection, and for targeting tumor cells for destruction.
Collapse
Affiliation(s)
- M Karen Newell
- The Institute for Bioenergetics, University of Colorado at Colorado Springs, Colorado Springs, CO 80933-7150, USA
| | - Elizabeth Villalobos-Menuey
- The Institute for Bioenergetics, University of Colorado at Colorado Springs, Colorado Springs, CO 80933-7150, USA
| | - Susan C Schweitzer
- The Institute for Bioenergetics, University of Colorado at Colorado Springs, Colorado Springs, CO 80933-7150, USA
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Robert E Camley
- The Institute for Bioenergetics, University of Colorado at Colorado Springs, Colorado Springs, CO 80933-7150, USA
| |
Collapse
|
27
|
Lamason R, Zhao P, Rawat R, Davis A, Hall JC, Chae JJ, Agarwal R, Cohen P, Rosen A, Hoffman EP, Nagaraju K. Sexual dimorphism in immune response genes as a function of puberty. BMC Immunol 2006; 7:2. [PMID: 16504066 PMCID: PMC1402325 DOI: 10.1186/1471-2172-7-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Accepted: 02/22/2006] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Autoimmune diseases are more prevalent in females than in males, whereas males have higher mortality associated with infectious diseases. To increase our understanding of this sexual dimorphism in the immune system, we sought to identify and characterize inherent differences in immune response programs in the spleens of male and female mice before, during and after puberty. RESULTS After the onset of puberty, female mice showed a higher expression of adaptive immune response genes, while males had a higher expression of innate immune genes. This result suggested a requirement for sex hormones. Using in vivo and in vitro assays in normal and mutant mouse strains, we found that reverse signaling through FasL was directly influenced by estrogen, with downstream consequences of increased CD8+ T cell-derived B cell help (via cytokines) and enhanced immunoglobulin production. CONCLUSION These results demonstrate that sexual dimorphism in innate and adaptive immune genes is dependent on puberty. This study also revealed that estrogen influences immunoglobulin levels in post-pubertal female mice via the Fas-FasL pathway.
Collapse
Affiliation(s)
- Rebecca Lamason
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Po Zhao
- Research Center for Genetic Medicine, Children's National Medical Center, 111 Michigan Ave, NW, Washington DC, 20010, USA
| | - Rashmi Rawat
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Adrian Davis
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John C Hall
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jae Jin Chae
- National Institutes of Health, Bethesda, MD, USA
| | | | | | - Antony Rosen
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eric P Hoffman
- Research Center for Genetic Medicine, Children's National Medical Center, 111 Michigan Ave, NW, Washington DC, 20010, USA
| | - Kanneboyina Nagaraju
- Research Center for Genetic Medicine, Children's National Medical Center, 111 Michigan Ave, NW, Washington DC, 20010, USA
| |
Collapse
|
28
|
Pajusto M, Tarkkanen J, Mattila PS. Human primary adenotonsillar naïve phenotype CD45RA CD4 T lymphocytes undergo apoptosis upon stimulation with a high concentration of CD3 antibody. Scand J Immunol 2006; 62:546-51. [PMID: 16316422 DOI: 10.1111/j.1365-3083.2005.01697.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Young children need to develop immune tolerance to harmless foreign antigens such as digested nutrients and various inhaled airborne antigens. Because of its anatomical location, pharyngeal adenotonsillar tissue is a potential site for the establishment of this immune tolerance. To characterize possible mechanisms of peripheral immune tolerance, we studied human primary adenotonsillar naïve phenotype CD45RA(+) CD4(+) T cells, which represent cells that have not previously encountered foreign antigens. It was found that these CD45RA(+) CD4(+) T cells expressed higher levels of the activation marker CD69 as compared with peripheral blood CD45RA(+) CD4(+) T cells. Upon stimulation with a high concentration of CD3 antibody, which mimics the encounter of a high antigen dose, adenotonsillar CD45RA(+) CD4(+) T lymphocytes, but not peripheral blood CD45RA(+) CD4(+) T cells, underwent apoptosis. After 6 h stimulation with a high concentration of CD3 antibody, over 25% of the cells were apoptotic. Interfering with the Fas-FasL interaction with recombinant Fas or an antibody against Fas-ligand partially inhibited apoptosis. Our study results suggest that high concentrations of antigens, such as various nutrients and airborne antigens, may induce peripheral immune tolerance by selectively deleting naïve phenotype CD45RA(+) CD4(+) T cells via T-cell receptor-triggered apoptosis in human adenotonsillar tissue.
Collapse
MESH Headings
- Adenoids/cytology
- Adenoids/immunology
- Adult
- Antibodies/pharmacology
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Antigens, Differentiation, T-Lymphocyte/biosynthesis
- Antigens, Differentiation, T-Lymphocyte/genetics
- Apoptosis/immunology
- Apoptosis/physiology
- CD3 Complex/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cells, Cultured
- Child, Preschool
- Dose-Response Relationship, Immunologic
- Fas Ligand Protein
- Humans
- Infant
- Lectins, C-Type
- Leukocyte Common Antigens/metabolism
- Membrane Glycoproteins/metabolism
- Palatine Tonsil/cytology
- Palatine Tonsil/immunology
- Receptors, Tumor Necrosis Factor/metabolism
- Tumor Necrosis Factors/metabolism
- fas Receptor
Collapse
Affiliation(s)
- M Pajusto
- Department of Otorhinolaryngology, Helsinki University Central Hospital, Finland
| | | | | |
Collapse
|
29
|
Maksimow M, Söderström TS, Jalkanen S, Eriksson JE, Hänninen A. Fas costimulation of naive CD4 T cells is controlled by NF-kappaB signaling and caspase activity. J Leukoc Biol 2005; 79:369-77. [PMID: 16330535 DOI: 10.1189/jlb.0505238] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Fas ligation induces apoptosis of activated T cells via the caspase cascade but can also mediate costimulatory signals to naïve T cells at the time of activation. We have previously shown that Fas ligation of naïve CD4 T cells activated by dendritic cells induces death or accelerates their proliferation and increases interferon-gamma (IFN-gamma) production. To understand this costimulation, we investigated the roles of caspases and nuclear factor (NF)-kappaB in survival and proliferation of responding T cells. Fas ligation increased caspase-3 and -8 activities during T cell activation, irrespective of cell fate. The accelerated proliferation induced by Fas ligation could be reduced by selective inhibition of both caspases. Inhibition of NF-kappaB simultaneously with Fas ligation inhibited the increased IFN-gamma production and caused uniform death of all responding T cells. Thus, Fas-mediated costimulation of naïve CD4 T cells is driven by active caspases, and NF-kappaB acts as a dominant survival-supporting factor of Fas-costimulated cells containing high levels of activated caspase-8 and -3.
Collapse
|
30
|
Revilla C, Alvarez B, López-Fraga M, Chamorro S, Martínez P, Ezquerra A, Alonso F, Domínguez J. Differential expression of chemokine receptors and CD95 in porcine CD4+ T cell subsets. Vet Immunol Immunopathol 2005; 106:295-301. [PMID: 15963826 DOI: 10.1016/j.vetimm.2005.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2004] [Revised: 02/22/2005] [Accepted: 03/14/2005] [Indexed: 11/25/2022]
Abstract
Among other differences, naïve and memory T cells show distinct migratory patterns and susceptibility to CD95-mediated cell death. We have recently characterised in the pig two subsets of CD4(+) T cells, based on the expression of the 2E3 marker, that display phenotypic and functional features of naïve (CD4(+)2E3(+)) and effector/memory (CD4(+)2E3(-)) T cells. In this study, we have analysed the expression of several chemokine receptors, as well as the distribution of CD95 antigen (APO-1/Fas) in these CD4(+) T cell subsets. CD4(+)2E3(-) T cells express high levels of CXCR3 and CCR4 transcripts but not of CCR7. On the contrary, CCR7 is clearly detected in CD4(+)2E3(+) T cells, whereas CXCR3 and CCR4 are negative or present at trace levels. These subsets also differ in the expression of CD95 antigen, being CD95 positive cells significantly more abundant in the CD4(+)2E3(-) cell subset. These findings, although based on a small number of animals, fit well with those reported for naïve and memory CD4(+) T cells in humans.
Collapse
Affiliation(s)
- C Revilla
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra, de la Coruña, Km. 7.5, 28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Managlia EZ, Landay A, Al-Harthi L. Interleukin-7 signalling is sufficient to phenotypically and functionally prime human CD4 naive T cells. Immunology 2005; 114:322-35. [PMID: 15720434 PMCID: PMC1782087 DOI: 10.1111/j.1365-2567.2004.02089.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Interleukin-7 (IL-7) is produced by bone marrow and lymphoid stromal cells and is involved in the synthesis, survival and homeostasis of T cells. These attributes are the basis for current strategies to utilize IL-7 as an immune modulator for several clinical conditions to replenish depleted T-cell numbers. Because we had previously determined that IL-7 can induce potent human immunodeficiency virus replication in the otherwise non-permissive CD4(+) naive T-cell compartment, we evaluated here the impact of IL-7 on the phenotype and functional potential of naive CD4(+) T cells in an attempt to understand the mechanism of this induction. We demonstrate that IL-7 mediated the up-regulation of CD25, CD95 and human leucocyte antigen-DR, while it did not alter the expression of CD45RO, CD69, CD40, or CD154. Examination of the cytokine profile of IL-7-treated naive T cells using a Type1/Type2 Proteome Array indicated a remarkable IL-7-mediated induction of interferon-gamma production, while the other cytokines evaluated (IL-2, IL-12, tumour necrosis factor-alpha, IL-4, IL-5, IL-10 and IL-13) were not affected. Intracellular staining of IL-7-treated naive T cells for interferon-gamma verified the Proteome data. IL-7 did not induce cell cycle proliferation of naive CD4(+) T cells, as evaluated by 7-AAD/pyronin immunostaining and carboxyfluorescein diacetate succinimidyl ester dye tracking. IL-7 treatment of naive CD4(+) T cells induced their ability to prime monocytes, as was indicated by induction of CD80 and CD86 expression on monocytes cocultured with IL-7-treated naive CD4(+) T cells. Collectively, these data indicate that IL-7 signalling is sufficient to phenotypically and functionally prime human CD4(+) naive T cells independent of antigen stimulation.
Collapse
Affiliation(s)
- Elizabeth Z Managlia
- Department of Immunology and Microbiology, Rush University Medical Center, Chicago, IL 60612, USA
| | | | | |
Collapse
|
32
|
Tourneur L, Buzyn A, Chiocchia G. FADD adaptor in cancer. MEDICAL IMMUNOLOGY 2005; 4:1. [PMID: 15717929 PMCID: PMC550674 DOI: 10.1186/1476-9433-4-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Accepted: 02/17/2005] [Indexed: 12/30/2022]
Abstract
FADD (Fas Associated protein with Death Domain) is a key adaptor molecule transmitting the death signal mediated by death receptors. In addition, this multiple functional protein is implicated in survival/proliferation and cell cycle progression. FADD functions are regulated via cellular sublocalization, protein phosphorylation, and inhibitory molecules. In the present review, we focus on the role of the FADD adaptor in cancer. Increasing evidence shows that defects in FADD protein expression are associated with tumor progression both in mice and humans. Better knowledge of the mechanisms leading to regulation of FADD functions will improve understanding of tumor growth and the immune escape mechanisms, and could open a new field for therapeutic interventions.
Collapse
Affiliation(s)
- Léa Tourneur
- Département d'Immunologie, Institut Cochin, INSERM U 567, CNRS UMR 8104, IFR 116, Université René Descartes, Paris V, Paris, France
| | - Agnès Buzyn
- Département d'Immunologie, Institut Cochin, INSERM U 567, CNRS UMR 8104, IFR 116, Université René Descartes, Paris V, Paris, France
- Service d'Hématologie Adultes, Hôpital Necker-Enfants Malades, Paris, France
| | - Gilles Chiocchia
- Département d'Immunologie, Institut Cochin, INSERM U 567, CNRS UMR 8104, IFR 116, Université René Descartes, Paris V, Paris, France
| |
Collapse
|
33
|
Tseveleki V, Bauer J, Taoufik E, Ruan C, Leondiadis L, Haralambous S, Lassmann H, Probert L. Cellular FLIP (long isoform) overexpression in T cells drives Th2 effector responses and promotes immunoregulation in experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2005; 173:6619-26. [PMID: 15557152 DOI: 10.4049/jimmunol.173.11.6619] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cellular FLIP (c-FLIP) is an endogenous inhibitor of death receptor-induced apoptosis through the caspase 8 pathway. It is an NF-kappaB-inducible protein thought to promote the survival of T cells upon activation, and its down-regulation has been implicated in activation-induced cell death. We have generated transgenic mice overexpressing human c-FLIP long form (c-FLIP(L)) specifically in T cells using the CD2 promoter (TgFLIP(L)). TgFLIP(L) mice exhibit increased IgG1 production upon stimulation by a T cell-dependent Ag and a markedly enhanced contact hypersensitivity response to allergen. In addition to showing augmented Th2-type responses, TgFLIP(L) mice are resistant to the development of myelin oligodendrocyte glycoprotein 35-55 peptide-induced experimental autoimmune encephalomyelitis, a Th1-driven autoimmune disease. In vitro analyses revealed that T cells of TgFLIP(L) mice proliferate normally, but produce higher levels of IL-2 and show preferential maturation of Th2 cytokine-producing cells in response to antigenic stimulation. After adoptive transfer, these (Th2) cells protected wild-type recipient mice from experimental autoimmune encephalomyelitis induction. Our results show that the constitutive overexpression of c-FLIP(L) in T cells is sufficient to drive Th2 polarization of effector T cell responses and indicate that it might function as a key regulator of Th cell differentiation.
Collapse
MESH Headings
- Adjuvants, Immunologic/biosynthesis
- Adjuvants, Immunologic/genetics
- Adjuvants, Immunologic/physiology
- Adoptive Transfer
- Animals
- Antibodies, Monoclonal/pharmacology
- Autoantibodies/biosynthesis
- CASP8 and FADD-Like Apoptosis Regulating Protein
- CD3 Complex/immunology
- Cell Death/genetics
- Cell Death/immunology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Dermatitis, Contact/immunology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Glycoproteins/immunology
- Humans
- Immunity, Innate
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Intracellular Signaling Peptides and Proteins/physiology
- Lymphocyte Activation
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Transgenic
- Myelin-Oligodendrocyte Glycoprotein
- Peptide Fragments/immunology
- Protein Isoforms/biosynthesis
- Protein Isoforms/genetics
- Protein Isoforms/physiology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Th2 Cells/cytology
- Th2 Cells/immunology
- Th2 Cells/metabolism
- Th2 Cells/transplantation
- fas Receptor/physiology
Collapse
Affiliation(s)
- Vivian Tseveleki
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, National Center for Scientific Research Demokritos, Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Tourneur L, Delluc S, Lévy V, Valensi F, Radford-Weiss I, Legrand O, Vargaftig J, Boix C, Macintyre EA, Varet B, Chiocchia G, Buzyn A. Absence or Low Expression of Fas-Associated Protein with Death Domain in Acute Myeloid Leukemia Cells Predicts Resistance to Chemotherapy and Poor Outcome. Cancer Res 2004; 64:8101-8. [PMID: 15520222 DOI: 10.1158/0008-5472.can-04-2361] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In acute myeloid leukemia (AML), coexpression of death receptors and ligands of the tumor necrosis factor (TNF) receptor/TNF-alpha superfamily on leukemic cells after chemotherapy is not always accompanied by apoptosis, suggesting that the apoptotic death receptor signaling pathway is disrupted. Because Fas-associated protein with death domain (FADD) is the main adaptor for transmitting the Fas, TNF-related apoptosis-inducing ligand receptors, and TNF receptor 1 death signal, expression of FADD was analyzed by Western blot and immunocytochemistry in leukemic cells of 70 de novo AML patients treated with the European Organization of Research and Treatment of Cancer AML-10 randomized trial before initiation of induction chemotherapy. Thirty seven percent of patients (17 of 46) with FADD negative/low (FADD(-/low)) leukemic cells had a primary refractory disease compared with 12% of FADD(+) patients (3 of 24; P = 0.05). FADD(-/low) expression was significantly associated with a worse event-free survival [EFS (P = 0.04)] and overall survival (P = 0.04). In multivariate analysis, FADD(-/low) protein expression was independently associated with a poor EFS and overall survival (P = 0.002 and P = 0.026, respectively). Importantly, FADD(-/low) protein expression predicted poor EFS even in patients with standard- or good-risk AML (P = 0.009). Thus, we identified low or absent expression of the FADD protein in leukemic cells at diagnosis as a poor independent prognostic factor that can predict worse clinical outcome even for patients with standard- or good-risk AML.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/analysis
- Adolescent
- Adult
- Blotting, Western
- Caspases/physiology
- Cell Line, Tumor
- Drug Resistance, Neoplasm
- Fas-Associated Death Domain Protein
- Humans
- Immunohistochemistry
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/mortality
- Microscopy, Confocal
- Microscopy, Fluorescence
- Middle Aged
- Prognosis
- fas Receptor/analysis
Collapse
Affiliation(s)
- Léa Tourneur
- Département d'Immunologie, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U 567, Centre National de Recherche Scientifique UMR 8104, Institut Fédératif de Recherche 116, Université René Descartes, Paris V, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Vence L, Benoist C, Mathis D. Fas deficiency prevents type 1 diabetes by inducing hyporesponsiveness in islet beta-cell-reactive T-cells. Diabetes 2004; 53:2797-803. [PMID: 15504959 DOI: 10.2337/diabetes.53.11.2797] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Type 1 diabetes is an autoimmune disease wherein autoreactive T-cells promote the specific destruction of pancreatic islet beta-cells. Evidence for a crucial role for Fas/FasL interactions in this destruction has been highly controversial because of the pleiotropic effects of Fas deficiency on the lymphoid and other systems. Fas-deficient mice are protected from spontaneous development of diabetes not because Fas has a role in the destruction of beta-cells, but rather because insulitis is abrogated. Fas may somehow be involved in the series of events provoking insulitis; for example, it may play a role in the physiological wave of beta-cell death believed to result in the export of pancreatic antigens to the pancreatic lymph nodes and, thereby, to circulating, naive, diabetogenic T-cells for the first time. To explore the implication of Fas in these events, we crossed the lpr mutation into the BDC2.5 model of type 1 diabetes to make it easier to monitor direct effects on the pathogenic specificity. We demonstrated that BDC2.5/NOD(lpr/lpr) mice have qualitatively and quantitatively less aggressive insulitis than do BDC2.5/NOD mice. In vitro proliferation assays showed that BDC2.5/NOD(lpr/lpr) splenocytes proliferated less vigorously than those from control mice in the presence of islet extracts, which reflects their inability to produce interleukin-2, resulting in weaker pathogenicity.
Collapse
Affiliation(s)
- Luis Vence
- Section on Immunology and Immunogenetics, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA
| | | | | |
Collapse
|
36
|
Giver CR, Montes RO, Mittelstaedt S, Li JM, Jaye DL, Lonial S, Boyer MW, Waller EK. Ex vivo fludarabine exposure inhibits graft-versus-host activity of allogeneic T cells while preserving graft-versus-leukemia effects. Biol Blood Marrow Transplant 2004; 9:616-32. [PMID: 14569558 DOI: 10.1016/s1083-8791(03)00229-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Allogeneic donor T cells in bone marrow transplantation (BMT) can contribute to beneficial graft-versus-leukemia (GVL) effects but can also cause detrimental graft-versus-host disease (GVHD). A successful method for the ex vivo treatment of donor T cells to limit their GVHD potential while retaining GVL activity would have broad clinical applications for patients undergoing allogeneic hematopoietic cell transplantation for malignant diseases. We hypothesized that donor lymphocyte infusions treated with fludarabine, an immunosuppressive nucleoside analog, would have reduced GVHD potential in a fully major histocompatibility complex-mismatched C57BL/6 --> B10.BR mouse BMT model. Recipients of fludarabine-treated donor lymphocyte infusions (F-DLI) had significantly reduced GVHD mortality, reduced histopathologic evidence of GVHD, and lower inflammatory serum cytokine levels than recipients of untreated DLI. Combined comparisons of GVHD incidence and donor-derived hematopoietic chimerism indicated that F-DLI had a therapeutic index superior to that of untreated DLI. Furthermore, adoptive immunotherapy of lymphoblastic lymphoma using F-DLI in the C57BL/6 --> B10.BR model demonstrated a broad therapeutic index with markedly reduced GVHD activity and preservation of GVL activity compared with untreated allogeneic T cells. Fludarabine exposure markedly reduced the CD4+CD44(low)-naive donor T-cell population within 48 hours of transplantation and altered the relative representation of cytokine-producing CD4+ T cells, consistent with T-helper type 2 polarization. However, proliferation of fludarabine-treated T cells in allogeneic recipient spleens was equivalent to that of untreated T cells. The results suggest that fludarabine reduces the GVHD potential of donor lymphocytes through effects on a CD4+CD44(low) T-cell population, with less effect on alloreactive T cells and CD4+CD44(high) memory T cells that are able to mediate GVL effects. Thus, F-DLI represents a novel method of immune modulation that may be useful to enhance immune reconstitution among allograft recipients with reduced risk of GVHD while retaining beneficial GVL effects.
Collapse
Affiliation(s)
- Cynthia R Giver
- Hematology/Oncology Department, Winship Cancer Institute, Emory University, 1639 Pierce Drive, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Ivory K, Martin R, Hughes DA. Significant presence of terminally differentiated T cells and altered NF-κB and I-κBα interactions in healthy ageing. Exp Gerontol 2004; 39:567-76. [PMID: 15050292 DOI: 10.1016/j.exger.2003.09.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2003] [Revised: 09/10/2003] [Accepted: 09/16/2003] [Indexed: 10/26/2022]
Abstract
The risk of infection and cancer increases dramatically beyond middle age, when T-cell function is noticeably altered. Nevertheless, many elderly people remain in apparently good health. To identify immunological adaptations favouring longevity, a pilot study was undertaken to compare peripheral blood T cells from healthy volunteers aged 18-25 years with those >65 years. Instead of preserved immune function in the elderly, there was an emergence of haematopoietic space particularly affecting T- and B-cell numbers, together with early signs of immunoglobulin dysregulation. Age-associated proliferative defects were present irrespective of the stimuli used. A higher constitutive expression of NF-kappaB and I-kappaBalpha in the nuclei of peripheral lymphocytes from the elderly remained unaltered by activation stimuli, despite the presence of exogenous cytokines. Nevertheless, activation resulted in their higher CD95 upregulation and more intracellular bcl-2 (suggesting a survival advantage), but lower CD27, CD28 and CD45Rb expression. The presence of CD45RO(+) CD45Rb(-) populations was unique to the elderly and their lower replicative potential was not due to the presence of CD25(+) regulatory T cells. These data collectively suggest altered gene regulation and the accumulation of terminally differentiated T cells during healthy ageing.
Collapse
Affiliation(s)
- Kamal Ivory
- Immunology Group, Nutrition Division, Institute of Food Research, Norwich Research Park, Norwich, East Anglia, UK.
| | | | | |
Collapse
|
38
|
Ali M, Weinreich M, Balcaitis S, Cooper CJ, Fink PJ. Differential regulation of peripheral CD4+ T cell tolerance induced by deletion and TCR revision. THE JOURNAL OF IMMUNOLOGY 2004; 171:6290-6. [PMID: 14634147 DOI: 10.4049/jimmunol.171.11.6290] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In Vbeta5 transgenic mice, mature Vbeta5(+)CD4(+) T cells are tolerized upon recognition of a self Ag, encoded by a defective endogenous retrovirus, whose expression is confined to the lymphoid periphery. Cells are driven by the tolerogen to enter one of two tolerance pathways, deletion or TCR revision. CD4(+) T cells entering the former pathway are rendered anergic and then eliminated. In contrast, TCR revision drives gene rearrangement at the endogenous TCR beta locus and results in the appearance of Vbeta5(-), endogenous Vbeta(+), CD4(+) T cells that are both self-tolerant and functional. An analysis of the molecules that influence each of these pathways was conducted to understand better the nature of the interactions that control tolerance induction in the lymphoid periphery. These studies reveal that deletion is efficient in reconstituted radiation chimeras and is B cell, CD28, inducible costimulatory molecule, Fas, CD4, and CD8 independent. In contrast, TCR revision is radiosensitive, B cell, CD28, and inducible costimulatory molecule dependent, Fas and CD4 influenced, and CD8 independent. Our data demonstrate the differential regulation of these two divergent tolerance pathways, despite the fact that they are both driven by the same tolerogen and restricted to mature CD4(+) T cells.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/physiology
- Bone Marrow Transplantation/immunology
- CD4 Antigens/biosynthesis
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8 Antigens/biosynthesis
- Cell Aggregation/genetics
- Cell Aggregation/immunology
- Cell Death/genetics
- Cell Death/immunology
- Cell Division/genetics
- Cell Division/immunology
- Cell Lineage/genetics
- Cell Lineage/immunology
- Clonal Deletion/genetics
- Immune Tolerance/genetics
- Inducible T-Cell Co-Stimulator Protein
- Lymphocyte Depletion/methods
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Radiation Chimera/immunology
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- fas Receptor/biosynthesis
- fas Receptor/metabolism
- fas Receptor/physiology
Collapse
Affiliation(s)
- Mohamed Ali
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
39
|
Newell MK, Melamede R, Villalobos-Menuey E, Swartzendruber D, Trauger R, Camley RE, Crisp W. The effects of chemotherapeutics on cellular metabolism and consequent immune recognition. JOURNAL OF IMMUNE BASED THERAPIES AND VACCINES 2004; 2:3. [PMID: 14756899 PMCID: PMC368444 DOI: 10.1186/1476-8518-2-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Accepted: 02/02/2004] [Indexed: 11/10/2022]
Abstract
Awidely held view is that oncolytic agents induce death of tumor cells directly. In this report we review and discuss the apoptosis-inducing effects of chemotherapeutics, the effects of chemotherapeutics on metabolic function, and the consequent effects of metabolic function on immune recognition. Finally, we propose that effective chemotherapeutic and/or apoptosis-inducing agents, at concentrations that can be achieved physiologically, do not kill tumor cells directly. Rather, we suggest that effective oncolytic agents sensitize immunologically altered tumor cells to immune recognition and immune-directed cell death.
Collapse
Affiliation(s)
- M Karen Newell
- Department of Biology, University of Colorado at Colorado Springs, Colorado Springs, CO 80933-7150, USA
| | - Robert Melamede
- Department of Biology, University of Colorado at Colorado Springs, Colorado Springs, CO 80933-7150, USA
| | | | | | | | - Robert E Camley
- Department of Physics, University of Colorado at Colorado Springs, Colorado Ssprings, CO 80933-7150, USA
| | - William Crisp
- Cancer Research Institute, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
40
|
Yang BC, Lin HK, Hor WS, Hwang JY, Lin YP, Liu MY, Wang YJ. Mediation of enhanced transcription of the IL-10 gene in T cells, upon contact with human glioma cells, by Fas signaling through a protein kinase A-independent pathway. THE JOURNAL OF IMMUNOLOGY 2004; 171:3947-54. [PMID: 14530312 DOI: 10.4049/jimmunol.171.8.3947] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Elevated expression of IL-10 has been frequently observed in tumor tissues and tumor-infiltrating cells. We show herein that transcription of the IL-10 gene in primary peripheral T cells and T cell lines is up-regulated upon contact with glioma cells without an induction of apoptosis in those T cells. Glioma-associated IL-10 induction was suppressed by interrupting the engagement of Fas and its ligand (Fas-L) with the antagonistic Ab, ZB4, by reducing Fas-L expression of glioma cells using the Fas-L-specific ribozyme, or by preventing cell-to-cell contact in a Transwell culture setting. Cross-linking of Fas with the agonistic Ab, CH-11, triggered apoptosis and enhanced the expression of IL-10 in Jurkat cells at the transcriptional and translational levels. Inhibiting caspase activities by caspase inhibitors, Z-VAD (Z-Val-Ala-Asp(Ome)-fluoromethylketone) and Z-IETD (Z-Ile-Glu(Ome)-Thr(Ome)-Asp(Ome)-fluoromethylketone), abolished this IL-10 induction in Jurkat cells. Intracellular staining detected IL-10 proteins in Fas-cross-linked Jurkat cells and in PHA-activated T cells. However, few IL-10 proteins were detectable in Jurkat cells cocultured with glioma cells, indicating a requirement of other factors for IL-10 production. Direct activation of protein kinase A (PKA) by forskolin elevated the transcription of IL-10 in Jurkat cells. However, KT5720, a selective PKA inhibitor, reduced neither anti-Fas-triggered nor glioma-associated IL-10 expression. Phosphorylation of cAMP response element binding protein and activating transcription factor-1 in Jurkat cells was not affected by coculturing with glioma cells or by anti-Fas treatment, further suggesting a PKA-independent pathway. In summary, our results demonstrate nonlethal cross-talk between tumor and immune cells leading to IL-10 dysregulation in T cells, which might contribute to Fas-L(+) tumor-associated immunosuppression.
Collapse
Affiliation(s)
- Bei-Chang Yang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China.
| | | | | | | | | | | | | |
Collapse
|
41
|
Grassmé H, Cremesti A, Kolesnick R, Gulbins E. Ceramide-mediated clustering is required for CD95-DISC formation. Oncogene 2003; 22:5457-70. [PMID: 12934106 DOI: 10.1038/sj.onc.1206540] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Early events required for induction of apoptosis by CD95 are preassociation of CD95, the formation of the death-inducing signaling complex (DISC) and clustering of CD95 in distinct membrane domains. Here, we identify the molecular ordering of these events and show that the acid sphingomyelinase (ASM) functions upstream of the DISC to mediate CD95 clustering in ceramide-enriched membrane platforms, an event that is required for DISC formation. Experiments in ASM-deficient cells revealed that CD95 ligation, in the absence of ceramide generation, triggers <1% of full caspase 8 activation at the receptor. This event, however, is both necessary and sufficient to trigger translocation of ASM onto the outer leaflet of the plasma membrane, ASM activation and ceramide release, but insufficient for apoptosis induction. Ceramide-mediated CD95 clustering then amplifies the primary CD95 signaling and drives the second step of CD95 signaling, that is, formation of the DISC yielding 100% caspase activity and apoptosis. These studies suggest that the most parsimonious interpretation of the molecular ordering of the earliest events in CD95 signaling, at least in some cells, is: CD95 ligation-->1% of maximum caspase 8 activation-->ASM translocation-->ceramide generation-->CD95 clustering-->DISC formation-->100% of maximum caspase 8 activation-->apoptosis.
Collapse
Affiliation(s)
- Heike Grassmé
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | | | | | | |
Collapse
|
42
|
Jaleco S, Swainson L, Dardalhon V, Burjanadze M, Kinet S, Taylor N. Homeostasis of naive and memory CD4+ T cells: IL-2 and IL-7 differentially regulate the balance between proliferation and Fas-mediated apoptosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:61-8. [PMID: 12816983 DOI: 10.4049/jimmunol.171.1.61] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cytokines play a crucial role in the maintenance of polyclonal naive and memory T cell populations. It has previously been shown that ex vivo, the IL-7 cytokine induces the proliferation of naive recent thymic emigrants (RTE) isolated from umbilical cord blood but not mature adult-derived naive and memory human CD4(+) T cells. We find that the combination of IL-2 and IL-7 strongly promotes the proliferation of RTE, whereas adult CD4(+) T cells remain relatively unresponsive. Immunological activity is controlled by a balance between proliferation and apoptotic cell death. However, the relative contributions of IL-2 and IL-7 in regulating these processes in the absence of MHC/peptide signals are not known. Following exposure to either IL-2 or IL-7 alone, RTE, as well as mature naive and memory CD4(+) T cells, are rendered only minimally sensitive to Fas-mediated cell death. However, in the presence of the two cytokines, Fas engagement results in a high level of caspase-dependent apoptosis in both RTE as well as naive adult CD4(+) T cells. In contrast, equivalently treated memory CD4(+) T cells are significantly less sensitive to Fas-induced cell death. The increased susceptibility of RTE and naive CD4(+) T cells to Fas-induced apoptosis correlates with a significantly higher IL-2/IL-7-induced Fas expression on these T cell subsets than on memory CD4(+) T cells. Thus, IL-2 and IL-7 regulate homeostasis by modulating the equilibrium between proliferation and apoptotic cell death in RTE and mature naive and memory T cell subsets.
Collapse
Affiliation(s)
- Sara Jaleco
- Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5535/Institut Fédératif de Recherche 122, Montpellier, France
| | | | | | | | | | | |
Collapse
|
43
|
Maksimow M, Santanen M, Jalkanen S, Hänninen A. Responding naive T cells differ in their sensitivity to Fas engagement: early death of many T cells is compensated by costimulation of surviving T cells. Blood 2003; 101:4022-8. [PMID: 12531803 DOI: 10.1182/blood-2002-06-1904] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Engagement of Fas (CD95) induces death of activated T cells but can also potentiate T-cell response to CD3 ligation. Yet, the effects of Fas-mediated signals on activation of naive T cells have remained controversial. We followed naive T cells responding under Fas ligation. Ligation of Fas simultaneously with activation by antigen-bearing dendritic cells promoted early death in half of the responding naive murine CD4 T cells. Surprisingly, it simultaneously accelerated cell division and interferon-gamma (IFN-gamma) production among surviving T cells. These cells developed quickly an activation-associated phenotype (CD44(hi), CD62L(lo)), responded vigorously to antigen rechallenge, were partially resistant to subsequent induction of cell death via Fas, and were long-lived in vivo. Compared with cells becoming apoptotic, the surviving cells expressed lower levels of Fas and higher levels of T-cell receptor (TCR), CD4, and interleukin-2 receptor (IL-2R). Their survival was associated with expression of antiapoptotic cellular FLICE-inhibitory protein (c-FLIP), Bcl-X(L), and Bcl-2. Thus, at the time of T-cell activation there is a subtle balance in the effects of Fas ligation that differs on a cell-to-cell basis. Factors that predict cell survival include expression levels of Fas, TCR, CD4, and IL-2R. Early death of some cells and a pronounced response of the surviving cells suggest that Fas ligation can both up- and down-regulate a primary T-cell response.
Collapse
|
44
|
Tourneur L, Mistou S, Michiels FM, Devauchelle V, Renia L, Feunteun J, Chiocchia G. Loss of FADD protein expression results in a biased Fas-signaling pathway and correlates with the development of tumoral status in thyroid follicular cells. Oncogene 2003; 22:2795-804. [PMID: 12743602 DOI: 10.1038/sj.onc.1206399] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Downregulation of proapoptotic molecules like Fas or caspase 8, or upregulation of antiapoptotic molecules like FLICE inhibitory protein has been suggested to be a regulatory mechanism set up by tumor cells to block the death signal received via death receptors. In an in-depth study of the Fas/FasL-signaling pathway in thyroid tumor development, we have demonstrated that tumor cells specifically downregulate the multideath receptor adapter Fas-associated death domain (FADD). The regulation of FADD expression occurred only at the protein level. Furthermore, in the absence of FADD, Fas-signaling resulted in accelerated growth of thyrocytes. Since thyrocytes also acquired FasL expression during tumor development, the absence of FADD protein could lead to greater resistance to numerous death receptor-mediated apoptosis, stimulation of their own proliferation through Fas/FasL interaction, and the capacity to counter-attack the infiltrating lymphocytes.
Collapse
Affiliation(s)
- Léa Tourneur
- Département d'Immunologie, Institut Cochin, INSERM U567, CNRS UMR 8104, IFR 116, Université René Descartes, 27 rue du fbg St-Jacques, 75014 Paris, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Pettersson FE, Grönvik KO. Long-term CD4+ and CD8+ memory T cells developed in severe combined immunodeficiency mice during homoeostasis exhibit differences in sensitivity to antigen. Scand J Immunol 2003; 57:311-8. [PMID: 12662293 DOI: 10.1046/j.1365-3083.2003.01239.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
T cells transferred in small numbers to lymphopenic hosts proliferate spontaneously, and naïve T cells turn into memory cells without complete cellular reconstitution of the lymphoid compartment. In this study, neonatal severe combined immunodeficiency mice were treated with peripheral CD4+ or CD8+ T cells purified from the spleen of syngeneic C.B-17 mice. At 2 weeks and more pronounced at 10 weeks post treatment, a majority of the residing donor T cells showed memory phenotype, with high expression of CD44 and an early onset of proliferation and cytokine production upon stimulation. These memory type of donor cells were sustained in numbers for at least 1.5 years post treatment in a homoeostatic fashion, recognized by normal CD4/CD8 ratio and no bias towards type 1 or type 2 immune response. Furthermore, amongst the memory type of cells, there was a striking difference in their response, where the CD8+ donor cells had higher threshold for stimulation than the CD4+ donor cells.
Collapse
Affiliation(s)
- F Ekholm Pettersson
- Department of Vaccine Research, National Veterinary Institute, Uppsala University, SE-751 89 Uppsala, Sweden
| | | |
Collapse
|
46
|
Buonocore S, Paulart F, Le Moine A, Braun M, Salmon I, Van Meirvenne S, Thielemans K, Goldman M, Flamand V. Dendritic cells overexpressing CD95 (Fas) ligand elicit vigorous allospecific T-cell responses in vivo. Blood 2003; 101:1469-76. [PMID: 12393481 DOI: 10.1182/blood-2002-07-2042] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Dendritic cells (DCs) genetically engineered to overexpress CD95 (Fas) ligand (CD95L-DC) were proposed as tools to induce peripheral tolerance to alloantigens. Herein, we observed that CD95L-DC obtained after retroviral gene transfer in bone marrow (BM) precursors derived from CD95-deficient (lpr/lpr) mice elicit much stronger allospecific type 1 helper T-cell and cytotoxic T-cell activities than control DCs upon injection in vivo, although they induce lower T-cell responses in vitro. Indeed, a single injection of CD95L-DC prepared from C57BL/6 mice was sufficient to prime bm13 recipients for acute rejection of C57BL/6 skin allografts that were otherwise tolerated in the context of this single weak major histocompatibility complex (MHC) class I incompatibility. Massive neutrophil infiltrates depending on interleukin (IL)-1 signaling were observed at sites of CD95L-DC injection. Experiments in IL-1 receptor-deficient mice or in animals injected with depleting anti-Gr1 monoclonal antibody (mAb) established that neutrophil recruitment is required for the development of vigorous T-cell responses after injection of CD95L-DC in vivo.
Collapse
Affiliation(s)
- Sofia Buonocore
- Laboratory of Experimental Immunology, Université Libre de Bruxelles, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Fas (Apo-1, CD95) and Fas-Ligand (FasL, CD95L) are typical members of the TNF receptor and TNF ligand family, respectively, with a pivotal role in the regulation of apoptotic processes, including activation-induced cell death, T-cell-induced cytotoxicity, immune privilege and tumor surveillance. Impairment of the FasL/Fas system has been implicated in liver failure, autoimmune diseases and immune deficiency. Thus, the FasL/Fas system was mainly appreciated with respect to its death-inducing capabilities. However, there is increasing evidence that activation of Fas can also result in non-apoptotic responses like cell proliferation or NF-kappaB activation. While the apoptotic features of the FasL/Fas system and the pathways involved are comparably well investigated, the pathways that are utilized by Fas to transduce proliferative and activating signals are poorly understood. This review is focused on the non-apoptotic functions of the FasL/Fas system. In particular, the similarities and differences of the molecular mechanisms of apoptotic and non-apoptotic Fas signaling are addressed.
Collapse
Affiliation(s)
- Harald Wajant
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, Germany.
| | | | | |
Collapse
|
48
|
Desbarats J, Birge RB, Mimouni-Rongy M, Weinstein DE, Palerme JS, Newell MK. Fas engagement induces neurite growth through ERK activation and p35 upregulation. Nat Cell Biol 2003; 5:118-25. [PMID: 12545171 DOI: 10.1038/ncb916] [Citation(s) in RCA: 233] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2002] [Revised: 11/14/2002] [Accepted: 12/09/2002] [Indexed: 11/09/2022]
Abstract
Fas (also known as CD95), a member of the tumour-necrosis receptor factor family of 'death receptors', can induce apoptosis or, conversely, can deliver growth stimulatory signals. Here we report that crosslinking Fas on primary sensory neurons induces neurite growth through sustained activation of the extracellular-signal regulated kinase (ERK) pathway and the consequent upregulation of p35, a mediator of neurite outgrowth. In addition, functional recovery after sciatic nerve injury is delayed in Fas-deficient lpr mice and accelerated by local administration of antibodies against Fas, which indicates that Fas engagement may contribute to nerve regeneration in vivo. Our findings define a role for Fas as an inducer of both neurite growth in vitro and accelerated recovery after nerve injury in vivo.
Collapse
Affiliation(s)
- Julie Desbarats
- Department of Physiology, McGill University, Montréal, Quebec, Canada, H3G 1Y6.
| | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Chen A, Zheng G, Tykocinski ML. Quantitative interplay between activating and pro-apoptotic signals dictates T cell responses. Cell Immunol 2003; 221:128-37. [PMID: 12747954 DOI: 10.1016/s0008-8749(03)00069-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Antigen-presenting cells (APC) can express surface ligands with both T cell activating and inhibitory capacities, prompting the question of how responding T cells integrate opposing trans signals concurrently delivered by APC. To address this question in a quantitative fashion, we turned to protein transfer as a unique experimental approach that is well-suited for addressing such questions from a quantitative standpoint. Costimulatory (either B7-1*Fc(gamma1) or Fc(gamma1)*4-1BBL) and pro-apoptotic (Fc(gamma1)*FasL) Fc fusion proteins were quantitatively "painted" in varying ratios onto surrogate APC pre-coated with palmitated-protein A, the latter serving as a surface anchor. Evaluating the signaling potential of these various painted cells in a standard in vitro T cell proliferation assay, we demonstrated that at a given level of TCR triggering, the quantitative balance between costimulator (B7-1 or 4-1BBL) and FasL dictates the magnitude of the proliferative T cell response. Furthermore, when the costimulator density is kept constant, there is also a quantitative balance between TCR-directed and FasL signals. Interesting species-specific nai;ve versus memory T cell subset differences emerged with regard to susceptibility to Fas-mediated apoptosis and costimulator:FasL opposition. Taken together, these data demonstrate for the first time a quantitative interplay between activating and pro-apoptotic trans signals that dictates the magnitude of T cell responses.
Collapse
Affiliation(s)
- Aoshuang Chen
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, 6 Gates Building, 3400 Spruce Street, Philadelphia, PA 19104-4283, USA
| | | | | |
Collapse
|