1
|
Zhang YW, Lin NP, Guo X, Szabo-Fresnais N, Ortoleva PJ, Chou DHC. Omniligase-1-Mediated Phage-Peptide Library Modification and Insulin Engineering. ACS Chem Biol 2024; 19:506-515. [PMID: 38266161 DOI: 10.1021/acschembio.3c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Chemical and enzymatic modifications of peptide-displayed libraries have been successfully employed to expand the phage display library. However, the requirement of specific epitopes and scaffolds has limited the scope of protein engineering using phage display. In this study, we present a novel approach utilizing omniligase-1-mediated selective and specific ligation on the phage pIII protein, offering a high conversion rate and compatibility with commercially available phage libraries. We applied this method to perform high-throughput engineering of insulin analogues with randomized B chain C-terminal regions. Insulin analogues with different B chain C-terminal segments were selected and exhibited biological activity equivalent to that of human insulin. Molecular dynamics studies of insulin analogues revealed a novel interaction between the insulin B27 residue and insulin receptor L1 domain. In summary, our findings highlight the potential of omniligase-1-mediated phage display in the development and screening of disulfide-rich peptides and proteins. This approach holds promise for the creation of novel insulin analogues with enhanced therapeutic properties and exhibits potential for the development of other therapeutic compounds.
Collapse
Affiliation(s)
- Yi Wolf Zhang
- Department of Pediatrics, Division of Diabetes and Endocrinology, Stanford University, Palo Alto, California 94304, United States
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Nai-Pin Lin
- Department of Pediatrics, Division of Diabetes and Endocrinology, Stanford University, Palo Alto, California 94304, United States
| | - Xu Guo
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Nicolas Szabo-Fresnais
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Peter J Ortoleva
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Danny Hung-Chieh Chou
- Department of Pediatrics, Division of Diabetes and Endocrinology, Stanford University, Palo Alto, California 94304, United States
| |
Collapse
|
2
|
Abstract
The ability to manipulate the chemical composition of proteins and peptides has been central to the development of improved polypeptide-based therapeutics and has enabled researchers to address fundamental biological questions that would otherwise be out of reach. Protein ligation, in which two or more polypeptides are covalently linked, is a powerful strategy for generating semisynthetic products and for controlling polypeptide topology. However, specialized tools are required to efficiently forge a peptide bond in a chemoselective manner with fast kinetics and high yield. Fortunately, nature has addressed this challenge by evolving enzymatic mechanisms that can join polypeptides using a diverse set of chemical reactions. Here, we summarize how such nature-inspired protein ligation strategies have been repurposed as chemical biology tools that afford enhanced control over polypeptide composition.
Collapse
Affiliation(s)
- Rasmus Pihl
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, USA.
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA.
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Morgan HE, Turnbull WB, Webb ME. Challenges in the use of sortase and other peptide ligases for site-specific protein modification. Chem Soc Rev 2022; 51:4121-4145. [PMID: 35510539 PMCID: PMC9126251 DOI: 10.1039/d0cs01148g] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Site-specific protein modification is a widely-used biochemical tool. However, there are many challenges associated with the development of protein modification techniques, in particular, achieving site-specificity, reaction efficiency and versatility. The engineering of peptide ligases and their substrates has been used to address these challenges. This review will focus on sortase, peptidyl asparaginyl ligases (PALs) and variants of subtilisin; detailing how their inherent specificity has been utilised for site-specific protein modification. The review will explore how the engineering of these enzymes and substrates has led to increased reaction efficiency mainly due to enhanced catalytic activity and reduction of reversibility. It will also describe how engineering peptide ligases to broaden their substrate scope is opening up new opportunities to expand the biochemical toolkit, particularly through the development of techniques to conjugate multiple substrates site-specifically onto a protein using orthogonal peptide ligases. We highlight chemical and biochemical strategies taken to optimise peptide and protein modification using peptide ligases.![]()
Collapse
Affiliation(s)
- Holly E Morgan
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| | - W Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| | - Michael E Webb
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| |
Collapse
|
4
|
Narayanan KB, Han SS. Peptide ligases: A Novel and potential enzyme toolbox for catalytic cross-linking of protein/peptide-based biomaterial scaffolds for tissue engineering. Enzyme Microb Technol 2022; 155:109990. [PMID: 35030384 DOI: 10.1016/j.enzmictec.2022.109990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/17/2021] [Accepted: 01/05/2022] [Indexed: 11/20/2022]
Abstract
The fabrication of novel biomaterial scaffolds with improved biological interactions and mechanical properties is an important aspect of tissue engineering. The three-dimensional (3D) protein/peptide-based polymeric scaffolds are promising in vitro biomaterials to replicate the in vivo microenvironment mimicking the extracellular matrix (ECM) for cell differentiation and subsequent tissue formation. Among different strategies in the fabrication of scaffolds, bioorthogonal enzymatic reactions for rapid in situ zero-length cross-linking are advantageous. Peptide ligases as a novel toolbox have the potentiality to enzymatically cross-link natural/synthetic protein/peptide-based polymeric chains for a wide range of biomedical applications. Although natural peptide ligases, such as sortases and butelase 1 are known cysteine proteases with ligase activity, some serine proteases, such as trypsin and subtilisin, are protein engineered to form trypsiligase and subtiligase, respectively, which exhibited efficient ligase activity by linking proteins/peptides with a great variety of molecules. Peptide ligase activity by these engineered proteases is more efficient than the hydrolysis of peptide bonds (peptidase activity). Peptide esters form acyl-enzyme intermediate with serine/cysteine residues of these proteases, with subsequent aminolysis forming covalent peptide bond with N-terminal residue of another polymeric chain. In addition, peptide ligases have the potential to conjugate with cell-adhesive ECM proteins or motifs and growth factors to (bio)polymeric networks to enhance cell attachment, growth, and differentiation. Here, we review the potential and limitations of natural and engineered peptide ligases as an enzyme toolbox with a focus on sortases (classes A-D), butelase 1, trypsiligase, and subtilisin variants, and the mechanisms for their zero-length cross-linking of (bio)polymeric scaffolds for various tissue engineering and regenerative applications.
Collapse
Affiliation(s)
- Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
5
|
Toplak A, Teixeira de Oliveira EF, Schmidt M, Rozeboom HJ, Wijma HJ, Meekels LKM, de Visser R, Janssen DB, Nuijens T. From thiol-subtilisin to omniligase: Design and structure of a broadly applicable peptide ligase. Comput Struct Biotechnol J 2021; 19:1277-1287. [PMID: 33717424 PMCID: PMC7921005 DOI: 10.1016/j.csbj.2021.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 11/05/2022] Open
Abstract
Omniligase-1 is a broadly applicable enzyme for peptide bond formation between an activated acyl donor peptide and a non-protected acyl acceptor peptide. The enzyme is derived from an earlier subtilisin variant called peptiligase by several rounds of protein engineering aimed at increasing synthetic yields and substrate range. To examine the contribution of individual mutations on S/H ratio and substrate scope in peptide synthesis, we selected peptiligase variant M222P/L217H as a starting enzyme and introduced successive mutations. Mutation A225N in the S1′ pocket and F189W of the S2′ pocket increased the synthesis to hydrolysis (S/H) ratio and overall coupling efficiency, whereas the I107V mutation was added to S4 pocket to increase the reaction rate. The final omniligase variants appeared to have a very broad substrate range, coupling more than 250 peptides in a 400-member library of acyl acceptors, as indicated by a high-throughput FRET assay. Crystal structures and computational modelling could rationalize the exceptional properties of omniligase-1 in peptide synthesis
Collapse
Affiliation(s)
- Ana Toplak
- EnzyPep B.V., Brightlands Campus Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Eduardo F Teixeira de Oliveira
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marcel Schmidt
- EnzyPep B.V., Brightlands Campus Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Henriëtte J Rozeboom
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hein J Wijma
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Linda K M Meekels
- EnzyPep B.V., Brightlands Campus Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Rowin de Visser
- EnzyPep B.V., Brightlands Campus Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Dick B Janssen
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Timo Nuijens
- EnzyPep B.V., Brightlands Campus Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| |
Collapse
|
6
|
Abstract
Historically, ligase activity by proteases was theoretically derived due to their catalyst nature, and it was experimentally observed as early as around 1900. Initially, the digestive proteases, such as pepsin, chymotrypsin, and trypsin were employed to perform in vitro syntheses of small peptides. Protease-catalyzed ligation is more efficient than peptide bond hydrolysis in organic solvents, representing control of the thermodynamic equilibrium. Peptide esters readily form acyl intermediates with serine and cysteine proteases, followed by peptide bond synthesis at the N-terminus of another residue. This type of reaction is under kinetic control, favoring aminolysis over hydrolysis. Although only a few natural peptide ligases are known, such as ubiquitin ligases, sortases, and legumains, the principle of proteases as general catalysts could be adapted to engineer some proteases accordingly. In particular, the serine proteases subtilisin and trypsin were converted to efficient ligases, which are known as subtiligase and trypsiligase. Together with sortases and legumains, they turned out to be very useful in linking peptides and proteins with a great variety of molecules, including biomarkers, sugars or building blocks with non-natural amino acids. Thus, these engineered enzymes are a promising branch for academic research and for pharmaceutical progress.
Collapse
|
7
|
Radziwon K, Weeks AM. Protein engineering for selective proteomics. Curr Opin Chem Biol 2020; 60:10-19. [PMID: 32768891 DOI: 10.1016/j.cbpa.2020.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022]
Abstract
Post-translational modifications, complex formation, subcellular localization, and cell-type-specific expression create functionally distinct protein subpopulations that enable living systems to execute rapid and precise responses to changing conditions. Systems-level analysis of these subproteomes remains challenging, requiring preservation of spatial information or enrichment of species that are transient and present at low abundance. Engineered proteins have emerged as important tools for selective proteomics based on their capacity for highly specific molecular recognition and their genetic targetability. Here, we focus on new developments in protein engineering for selective proteomics of post-translational modifications, protein complexes, subcellular compartments, and cell types. We also address remaining challenges and future opportunities to integrate engineered protein tools across different subproteome scales to map the proteome with unprecedented depth and detail.
Collapse
Affiliation(s)
- Katarzyna Radziwon
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Amy M Weeks
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
8
|
Hemu X, El Sahili A, Hu S, Zhang X, Serra A, Goh BC, Darwis DA, Chen MW, Sze SK, Liu CF, Lescar J, Tam JP. Turning an Asparaginyl Endopeptidase into a Peptide Ligase. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02078] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xinya Hemu
- Synzymes and Natural Products Center (SYNC), School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Abbas El Sahili
- Synzymes and Natural Products Center (SYNC), School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
- NTU Institute of Structural Biology, Nanyang Technological University, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| | - Side Hu
- Synzymes and Natural Products Center (SYNC), School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
- NTU Institute of Structural Biology, Nanyang Technological University, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| | - Xiaohong Zhang
- Synzymes and Natural Products Center (SYNC), School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Aida Serra
- Synzymes and Natural Products Center (SYNC), School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
- IMDEA Food Research Institute, Carr. de Canto Blanco, 8, Madrid 28049, Spain
| | - Boon Chong Goh
- NTU Institute of Structural Biology, Nanyang Technological University, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
- Antimicrobial Resistance Interdisciplinary Research Group, SMART, 1 CREATE Way, Singapore 138602
| | - Dina A. Darwis
- Synzymes and Natural Products Center (SYNC), School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
- Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, 14 Medical Drive, Singapore 117599
| | - Ming Wei Chen
- Synzymes and Natural Products Center (SYNC), School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Siu Kwan Sze
- Synzymes and Natural Products Center (SYNC), School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Chuan-fa Liu
- Synzymes and Natural Products Center (SYNC), School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Julien Lescar
- Synzymes and Natural Products Center (SYNC), School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
- NTU Institute of Structural Biology, Nanyang Technological University, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| | - James P. Tam
- Synzymes and Natural Products Center (SYNC), School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| |
Collapse
|
9
|
Frazier CL, Weeks AM. Engineered peptide ligases for cell signaling and bioconjugation. Biochem Soc Trans 2020; 48:1153-1165. [PMID: 32539119 PMCID: PMC8350744 DOI: 10.1042/bst20200001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 11/17/2022]
Abstract
Enzymes that catalyze peptide ligation are powerful tools for site-specific protein bioconjugation and the study of cellular signaling. Peptide ligases can be divided into two classes: proteases that have been engineered to favor peptide ligation, and protease-related enzymes with naturally evolved peptide ligation activity. Here, we provide a review of key natural peptide ligases and proteases engineered to favor peptide ligation activity. We cover the protein engineering approaches used to generate and improve these tools, along with recent biological applications, advantages, and limitations associated with each enzyme. Finally, we address future challenges and opportunities for further development of peptide ligases as tools for biological research.
Collapse
Affiliation(s)
- Clara L. Frazier
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Amy M. Weeks
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
10
|
Marmelstein AM, Lobba MJ, Mogilevsky CS, Maza JC, Brauer DD, Francis MB. Tyrosinase-Mediated Oxidative Coupling of Tyrosine Tags on Peptides and Proteins. J Am Chem Soc 2020; 142:5078-5086. [PMID: 32093466 DOI: 10.1021/jacs.9b12002] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxidative coupling (OC) through o-quinone intermediates has been established as an efficient and site-selective way to modify protein N-termini and the unnatural amino acid p-aminophenylalanine (paF). Recently, we reported that the tyrosinase-mediated oxidation of phenol-tagged cargo molecules is a particularly convenient method of generating o-quinones in situ. The coupling partners can be easily prepared and stored, the reaction takes place under mild conditions (phosphate buffer, pH 6.5, 4 to 23 °C), and dissolved oxygen is the only oxidant required. Here, we show an important extension of this chemistry for the activation of tyrosine residues that project into solution from the N or C-termini of peptide and protein substrates. Generating the o-quinone electrophiles from tyrosine allows greater flexibility in choosing the nucleophilic coupling partner and expands the scope of the reaction to include C-terminal positions. We also introduce a new bacterial tyrosinase enzyme that shows improved activation for some tyrosine substrates. The efficacy of several secondary amines and aniline derivatives was evaluated in the coupling reactions, providing important information for coupling partner design. This strategy was used to modify the C-termini of an antibody scFv construct and of Protein L, a human IgG kappa light chain binding protein. The use of the modified proteins as immunolabeling agents was also demonstrated.
Collapse
Affiliation(s)
- Alan M Marmelstein
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
| | - Marco J Lobba
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
| | - Casey S Mogilevsky
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
| | - Johnathan C Maza
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
| | - Daniel D Brauer
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
| | - Matthew B Francis
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, United States
| |
Collapse
|
11
|
Abstract
Subtiligase-catalyzed peptide ligation is a powerful approach for site-specific protein bioconjugation, synthesis and semisynthesis of proteins and peptides, and chemoproteomic analysis of cellular N termini. Here, we provide a comprehensive review of the subtiligase technology, including its development, applications, and impacts on protein science. We highlight key advantages and limitations of the tool and compare it to other peptide ligase enzymes. Finally, we provide a perspective on future applications and challenges and how they may be addressed.
Collapse
Affiliation(s)
- Amy M Weeks
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143, United States
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143, United States.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California 94143, United States
| |
Collapse
|
12
|
Hemu X, Zhang X, Bi X, Liu CF, Tam JP. Butelase 1-Mediated Ligation of Peptides and Proteins. Methods Mol Biol 2019; 2012:83-109. [PMID: 31161505 DOI: 10.1007/978-1-4939-9546-2_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Structurally, butelase 1 is a cysteine protease of the asparaginyl endoprotease (AEP) family, but functionally, it displays intense Asn/Asp-specific (Asx) ligase activity and is virtually devoid of protease activity. Butelase 1 recognizes specifically a C-terminal Asx-containing tripeptide motif, Asx-His-Val, to form an Asx-Xaa peptide bond (Xaa = any amino acid), either intramolecularly or intermolecularly, resulting in cyclic peptides or site-specific modified peptides/proteins, respectively. Our work in the past 4 years has validated that butelase 1 is a potent and versatile tool for peptide and protein modification. Here we describe our protocols using butelase 1 for efficient and site-specific peptide and protein ligation, N-terminal labeling, preparation of thioesters, and bioconjugation of dendrimers. Additionally, we provide an example using butelase 1 for protein cyclization in combination with genetic code expansion in order to incorporate unnatural building blocks.
Collapse
Affiliation(s)
- Xinya Hemu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Xiaohong Zhang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Xiaobao Bi
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Chuan-Fa Liu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
13
|
|
14
|
Dorau R, Görbe T, Svedendahl Humble M. Improved Enantioselectivity of Subtilisin Carlsberg towards Secondary Alcohols by Protein Engineering. Chembiochem 2018; 19:338-346. [PMID: 29105250 DOI: 10.1002/cbic.201700408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Indexed: 11/07/2022]
Abstract
Generally, the catalytic activity of subtilisin Carlsberg (SC) for transacylation reactions with secondary alcohols in organic solvent is low. Enzyme immobilization and protein engineering was performed to improve the enantioselectivity of SC towards secondary alcohols. Possible amino-acid residues for mutagenesis were found by combining available literature data with molecular modeling. SC variants were created by site-directed mutagenesis and were evaluated for a model transacylation reaction containing 1-phenylethanol in THF. Variants showing high E values (>100) were found. However, the conversions were still low. A second mutation was made, and both the E values and conversions were increased. Relative to that shown by the wild type, the most successful variant, G165L/M221F, showed increased conversion (up to 36 %), enantioselectivity (E values up to 400), substrate scope, and stability in THF.
Collapse
Affiliation(s)
- Robin Dorau
- Division of Industrial Biotechnology, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center, 106 91, Stockholm, Sweden
- Division of Microbiology and Production, National Food Institute, Technical University of Denmark, Kemitorvet, Bygning 201, 2800, Kgs. Lyngby, Denmark
| | - Tamás Görbe
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory, 106 91, Stockholm, Sweden
| | - Maria Svedendahl Humble
- Division of Industrial Biotechnology, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center, 106 91, Stockholm, Sweden
- Pharem Biotech AB, Biovation Park, Forskargatan 20 J, 151 36, Stockholm, Sweden
| |
Collapse
|
15
|
Enzyme-Based Labeling Strategies for Antibody-Drug Conjugates and Antibody Mimetics. Antibodies (Basel) 2018; 7:antib7010004. [PMID: 31544857 PMCID: PMC6698867 DOI: 10.3390/antib7010004] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 01/25/2023] Open
Abstract
Strategies for site-specific modification of proteins have increased in number, complexity, and specificity over the last years. Such modifications hold the promise to broaden the use of existing biopharmaceuticals or to tailor novel proteins for therapeutic or diagnostic applications. The recent quest for next-generation antibody–drug conjugates (ADCs) sparked research into techniques with site selectivity. While purely chemical approaches often impede control of dosage or locus of derivatization, naturally occurring enzymes and proteins bear the ability of co- or post-translational protein modifications at particular residues, thus enabling unique coupling reactions or protein fusions. This review provides a general overview and focuses on chemo-enzymatic methods including enzymes such as formylglycine-generating enzyme, sortase, and transglutaminase. Applications for the conjugation of antibodies and antibody mimetics are reported.
Collapse
|
16
|
Komatsu T. Potential of Enzymomics Methodologies to Characterize Disease-Related Protein Functions. Chem Pharm Bull (Tokyo) 2017; 65:605-610. [PMID: 28674330 DOI: 10.1248/cpb.c17-00144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Enzymatic functions are often altered during disease onset and progression, and therefore chemical-biological studies, which utilize chemical knowledge to discover novel protein functions, are often employed to find proteins with functions closely related to disease phenotypes. Such studies are known as forward chemical-biological approaches and form part of the emerging field of enzymomics (omics of enzymes). This review provides an overview of methodologies available for discovering and characterizing disease-related alterations of enzymatic functions and prospects for the future.
Collapse
Affiliation(s)
- Toru Komatsu
- The University of Tokyo Graduate School of Pharmaceutical Sciences.,Precursory Research for Embryonic Science and Technology (PRESTO) Investigator
| |
Collapse
|
17
|
Sunderland KS, Yang M, Mao C. Phage-Enabled Nanomedicine: From Probes to Therapeutics in Precision Medicine. Angew Chem Int Ed Engl 2017; 56:1964-1992. [PMID: 27491926 PMCID: PMC5311110 DOI: 10.1002/anie.201606181] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Indexed: 01/08/2023]
Abstract
Both lytic and temperate bacteriophages (phages) can be applied in nanomedicine, in particular, as nanoprobes for precise disease diagnosis and nanotherapeutics for targeted disease treatment. Since phages are bacteria-specific viruses, they do not naturally infect eukaryotic cells and are not toxic to them. They can be genetically engineered to target nanoparticles, cells, tissues, and organs, and can also be modified with functional abiotic nanomaterials for disease diagnosis and treatment. This Review will summarize the current use of phage structures in many aspects of precision nanomedicine, including ultrasensitive biomarker detection, enhanced bioimaging for disease diagnosis, targeted drug and gene delivery, directed stem cell differentiation, accelerated tissue formation, effective vaccination, and nanotherapeutics for targeted disease treatment. We will also propose future directions in the area of phage-based nanomedicines, and discuss the state of phage-based clinical trials.
Collapse
Affiliation(s)
- Kegan S Sunderland
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma, 73019, USA
| | - Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang, 310058, China
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma, 73019, USA
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
18
|
Sunderland KS, Yang M, Mao C. Nanomedizin auf Phagenbasis: von Sonden zu Therapeutika für eine Präzisionsmedizin. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201606181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kegan S. Sunderland
- Department of Chemistry and Biochemistry Stephenson Life Sciences Research Center University of Oklahoma 101 Stephenson Parkway Norman Oklahoma 73019 USA
| | - Mingying Yang
- Institute of Applied Bioresource Research College of Animal Science Zhejiang University Yuhangtang Road 866 Hangzhou Zhejiang 310058 China
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry Stephenson Life Sciences Research Center University of Oklahoma 101 Stephenson Parkway Norman Oklahoma 73019 USA
- School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang 310027 China
| |
Collapse
|
19
|
Hill ME, MacPherson DJ, Wu P, Julien O, Wells JA, Hardy JA. Reprogramming Caspase-7 Specificity by Regio-Specific Mutations and Selection Provides Alternate Solutions for Substrate Recognition. ACS Chem Biol 2016; 11:1603-12. [PMID: 27032039 DOI: 10.1021/acschembio.5b00971] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The ability to routinely engineer protease specificity can allow us to better understand and modulate their biology for expanded therapeutic and industrial applications. Here, we report a new approach based on a caged green fluorescent protein (CA-GFP) reporter that allows for flow-cytometry-based selection in bacteria or other cell types enabling selection of intracellular protease specificity, regardless of the compositional complexity of the protease. Here, we apply this approach to introduce the specificity of caspase-6 into caspase-7, an intracellular cysteine protease important in cellular remodeling and cell death. We found that substitution of substrate-contacting residues from caspase-6 into caspase-7 was ineffective, yielding an inactive enzyme, whereas saturation mutagenesis at these positions and selection by directed evolution produced active caspases. The process produced a number of nonobvious mutations that enabled conversion of the caspase-7 specificity to match caspase-6. The structures of the evolved-specificity caspase-7 (esCasp-7) revealed alternate binding modes for the substrate, including reorganization of an active site loop. Profiling the entire human proteome of esCasp-7 by N-terminomics demonstrated that the global specificity toward natural protein substrates is remarkably similar to that of caspase-6. Because the esCasp-7 maintained the core of caspase-7, we were able to identify a caspase-6 substrate, lamin C, that we predict relies on an exosite for substrate recognition. These reprogrammed proteases may be the first tool built with the express intent of distinguishing exosite dependent or independent substrates. This approach to specificity reprogramming should also be generalizable across a wide range of proteases.
Collapse
Affiliation(s)
- Maureen E. Hill
- Department
of Chemistry, 104 LGRT,
710 N. Pleasant St., University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Derek J. MacPherson
- Department
of Chemistry, 104 LGRT,
710 N. Pleasant St., University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Peng Wu
- Department
of Chemistry, 104 LGRT,
710 N. Pleasant St., University of Massachusetts, Amherst, Massachusetts 01003, United States
| | | | | | - Jeanne A. Hardy
- Department
of Chemistry, 104 LGRT,
710 N. Pleasant St., University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
20
|
Jordal PL, Dyrlund TF, Winge K, Larsen MR, Danielsen EH, Wells JA, Otzen DE, Enghild JJ. Detection of proteolytic signatures for Parkinson's disease. FUTURE NEUROLOGY 2016. [DOI: 10.2217/fnl.16.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: To investigate if idiopathic Parkinson's disease (IPD) is associated with distinct proteolytic signatures relative to non-neurodegenerative controls (NND) and patients with multiple system atrophy (MSA). Materials & methods: A subtiligase-based N-terminomics screening method was exploited for semiquantitative comparison of protein N-termini in cerebrospinal fluid for pooled samples of IPD (n = 6) and NND (n = 8) individuals. Subsequently, targeted selected reaction monitoring mass spectrometry measured the relative concentration of the proteolytic signature peptides in individual IPD (n = 22), NND (n = 11) and MSA (n = 18) samples. Results: The discovery screen detected 300 N-termini for 156 proteins. Selected reaction monitoring analysis revealed that two of these peptides differentiate IPD from NND while three peptides differentiate IPD from MSA. Conclusion: IPD is associated with distinct proteolytic signatures.
Collapse
Affiliation(s)
- Peter Lüttge Jordal
- Section for Medical Biotechnology, Danish Technological Institute, 8000 Aarhus C, Denmark
- Department of Molecular Biology & Genetics, Aarhus University, 8000 Aarhus C, Denmark
- iNANO, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Thomas F Dyrlund
- Department of Molecular Biology & Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Kristian Winge
- Bispebjerg Movement Disorders Biobank, Department of Neurology, Bispebjerg University Hospital, 2400, Copenhagen NV, Denmark
| | - Martin R Larsen
- Department of Biochemistry & Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Erik H Danielsen
- Department of Neurology, Aarhus University Hospital, 8000 Aarhus C, Denmark
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Daniel E Otzen
- Department of Molecular Biology & Genetics, Aarhus University, 8000 Aarhus C, Denmark
- iNANO, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Jan J Enghild
- Department of Molecular Biology & Genetics, Aarhus University, 8000 Aarhus C, Denmark
- iNANO, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| |
Collapse
|
21
|
Delespaul W, Peeters Y, Herdewijn P, Robben J. A novel helper phage for HaloTag-mediated co-display of enzyme and substrate on phage. Biochem Biophys Res Commun 2015; 460:245-9. [PMID: 25772618 DOI: 10.1016/j.bbrc.2015.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/04/2015] [Indexed: 10/23/2022]
Abstract
Phage display is an established technique for the molecular evolution of peptides and proteins. For the selection of enzymes based on catalytic activity however, simultaneous coupling of an enzyme and its substrate to the phage surface is required. To facilitate this process of co-display, we developed a new helper phage displaying HaloTag, a modified haloalkane dehalogenase that binds specifically and covalently to functionalized haloalkane ligands. The display of functional HaloTag was demonstrated by capture on streptavidin-coated magnetic beads, after coupling a biotinylated haloalkane ligand, or after on-phage extension of a DNA oligonucleotide primer with a biotinylated nucleotide by phi29 DNA polymerase. We also achieved co-display of HaloTag and phi29 DNA polymerase, thereby opening perspectives for the molecular evolution of this enzyme (and others) towards new substrate specificities.
Collapse
Affiliation(s)
- Wouter Delespaul
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, B-3001 Heverlee, Belgium.
| | - Yves Peeters
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, B-3001 Heverlee, Belgium.
| | - Piet Herdewijn
- Rega Institute for Medicinal Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| | - Johan Robben
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, B-3001 Heverlee, Belgium.
| |
Collapse
|
22
|
Li Z, Roccatano D, Lorenz M, Martinez R, Schwaneberg U. Insights on activity and stability of subtilisin E towards guanidinium chloride and sodium dodecylsulfate. J Biotechnol 2014; 169:87-94. [DOI: 10.1016/j.jbiotec.2013.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 10/17/2013] [Accepted: 11/03/2013] [Indexed: 11/25/2022]
|
23
|
Gasparian ME, Bobik TV, Kim YV, Ponomarenko NA, Dolgikh DA, Gabibov AG, Kirpichnikov MP. Heterogeneous catalysis on the phage surface: Display of active human enteropeptidase. Biochimie 2013; 95:2076-81. [PMID: 23917033 DOI: 10.1016/j.biochi.2013.07.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 07/27/2013] [Indexed: 01/25/2023]
Abstract
Enteropeptidase (EC 3.4.21.9) plays a key role in mammalian digestion as the enzyme that physiologically activates trypsinogen by highly specific cleavage of the trypsinogen activation peptide following the recognition sequence D4K. The high specificity of enteropeptidase makes it a powerful tool in modern biotechnology. Here we describe the application of phage display technology to express active human enteropeptidase catalytic subunits (L-HEP) on M13 filamentous bacteriophage. The L-HEP/C122S gene was cloned in the g3p-based phagemid vector pHEN2m upstream of the sequence encoding the phage g3p protein and downstream of the signal peptide-encoding sequence. Heterogeneous catalysis of the synthetic peptide substrate (GDDDDK-β-naphthylamide) cleavage by phage-bound L-HEP was shown to have kinetic parameters similar to those of soluble enzyme, with the respective Km values of 19 μM and 20 μM and kcat of 115 and 92 s(-1). Fusion proteins containing a D4K cleavage site were cleaved with phage-bound L-HEP/C122S as well as by soluble L-HEP/C122S, and proteolysis was inhibited by soybean trypsin inhibitor. Rapid large-scale phage production, one-step purification of phage-bound L-HEP, and easy removal of enzyme activity from reaction samples by PEG precipitation make our approach suitable for the efficient removal of various tag sequences fused to the target proteins. The functional phage display technology developed in this study can be instrumental in constructing libraries of mutants to analyze the effect of structural changes on the activity and specificity of the enzyme or generate its desired variants for biotechnological applications.
Collapse
Affiliation(s)
- Marine E Gasparian
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia.
| | | | | | | | | | | | | |
Collapse
|
24
|
Nilvebrant J, Dunlop DC, Sircar A, Wurch T, Falkowska E, Reichert JM, Helguera G, Piccione EC, Brack S, Berger S. IBC's 22nd Annual Antibody Engineering and 9th Annual Antibody Therapeutics International Conferences and the 2011 Annual Meeting of The Antibody Society, December 5-8, 2011, San Diego, CA. MAbs 2012; 4:153-81. [PMID: 22453091 DOI: 10.4161/mabs.4.2.19495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The 22nd Annual Antibody Engineering and 9th Annual Antibody Therapeutics international conferences, and the 2011 Annual Meeting of The Antibody Society, organized by IBC Life Sciences with contributions from The Antibody Society and two Scientific Advisory Boards, were held December 5-8, 2011 in San Diego, CA. The meeting drew ~800 participants who attended sessions on a wide variety of topics relevant to antibody research and development. As a preview to the main events, a pre-conference workshop held on December 4, 2011 focused on antibodies as probes of structure. The Antibody Engineering Conference comprised eight sessions: (1) structure and dynamics of antibodies and their membrane receptor targets; (2) model-guided generation of binding sites; (3) novel selection strategies; (4) antibodies in a complex environment: targeting intracellular and misfolded proteins; (5) rational vaccine design; (6) viral retargeting with engineered binding molecules; (7) the biology behind potential blockbuster antibodies and (8) antibodies as signaling modifiers: where did we go right, and can we learn from success? The Antibody Therapeutics session comprised five sessions: (1)Twenty-five years of therapeutic antibodies: lessons learned and future challenges; (2) preclinical and early stage development of antibody therapeutics; (3) next generation anti-angiogenics; (4) updates of clinical stage antibody therapeutics and (5) antibody drug conjugates and bispecific antibodies.
Collapse
Affiliation(s)
- Johan Nilvebrant
- School of Biotechnology; Department of Proteomics; Royal Institute of Technology (KTH); AlbaNova University Center; Stockholm, Sweden
| | | | - Aroop Sircar
- EMD Serono Research Institute; Billlerica, MA USA
| | - Thierry Wurch
- Oncology Research Division, Institut de Recherche SERVIER; Croissy sur Seine, France
| | | | | | - Gustavo Helguera
- Farmacotecnia I, Facultad de Farmacia y Bioquímica; University of Buenos Aires; Ciudad Autónoma de Buenos Aires, Argentina
| | - Emily C Piccione
- Standford Cancer Institute; Stanford University School of Medicine; Stanford, CA USA
| | | | - Sven Berger
- Institut de Recherche Pierre Fabre, Centre d'Immunologie Pierre Fabre; St Julien en Genevois, France
| |
Collapse
|
25
|
Piotukh K, Geltinger B, Heinrich N, Gerth F, Beyermann M, Freund C, Schwarzer D. Directed evolution of sortase A mutants with altered substrate selectivity profiles. J Am Chem Soc 2011; 133:17536-9. [PMID: 21978125 DOI: 10.1021/ja205630g] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ligation of two polypeptides in a chemoselective manner by the bacterial transpeptidase sortase A has become a versatile tool for protein engineering approaches. When sortase-mediated ligation is used for protein semisynthesis, up to four mutations resulting from the strict requirement of the LPxTG sorting motif are introduced into the target protein. Here we report the directed evolution of a mutant sortase A that possesses broad substrate selectivity. A phage-display screen of a mutant sortase library that was randomized in the substrate recognition loop was used to isolate this mutant. The altered substrate selectivity represents a gain-of-function that was exploited for the traceless semisynthesis of histone H3. Our report is a decisive step toward a platform of engineered sortases with distinct ligation properties that will conceivably allow for more versatile assemblies of modified proteins in biotechnological approaches.
Collapse
Affiliation(s)
- Kirill Piotukh
- Department of Protein Engineering, Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Wagner AM, Fegley MW, Warner JB, Grindley CLJ, Marotta NP, Petersson EJ. N-terminal protein modification using simple aminoacyl transferase substrates. J Am Chem Soc 2011; 133:15139-47. [PMID: 21894909 PMCID: PMC3189496 DOI: 10.1021/ja2055098] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Methods for synthetically manipulating protein structure enable greater flexibility in the study of protein function. Previous characterization of the Escherichia coli aminoacyl tRNA transferase (AaT) has shown that it can modify the N-terminus of a protein with an amino acid from a tRNA or a synthetic oligonucleotide donor. Here, we demonstrate that AaT can efficiently use a minimal adenosine substrate, which can be synthesized in one to two steps from readily available starting materials. We have characterized the enzymatic activity of AaT with aminoacyl adenosyl donors and found that reaction products do not inhibit AaT. The use of adenosyl donors removes the substrate limitations imposed by the use of synthetases for tRNA charging and avoids the complex synthesis of an oligonucleotide donor. Thus, our AaT donors increase the potential substrate scope and reaction scale for N-terminal protein modification under conditions that maintain folding.
Collapse
Affiliation(s)
- Anne M. Wagner
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323 USA
| | - Mark W. Fegley
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323 USA
| | - John B. Warner
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323 USA
| | - Christina L. J. Grindley
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323 USA
| | | | - E. James Petersson
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323 USA
| |
Collapse
|
27
|
Song J, Tan H, Boyd SE, Shen H, Mahmood K, Webb GI, Akutsu T, Whisstock JC, Pike RN. Bioinformatic approaches for predicting substrates of proteases. J Bioinform Comput Biol 2011; 9:149-78. [PMID: 21328711 DOI: 10.1142/s0219720011005288] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 10/08/2010] [Accepted: 10/09/2010] [Indexed: 11/18/2022]
Abstract
Proteases have central roles in "life and death" processes due to their important ability to catalytically hydrolyze protein substrates, usually altering the function and/or activity of the target in the process. Knowledge of the substrate specificity of a protease should, in theory, dramatically improve the ability to predict target protein substrates. However, experimental identification and characterization of protease substrates is often difficult and time-consuming. Thus solving the "substrate identification" problem is fundamental to both understanding protease biology and the development of therapeutics that target specific protease-regulated pathways. In this context, bioinformatic prediction of protease substrates may provide useful and experimentally testable information about novel potential cleavage sites in candidate substrates. In this article, we provide an overview of recent advances in developing bioinformatic approaches for predicting protease substrate cleavage sites and identifying novel putative substrates. We discuss the advantages and drawbacks of the current methods and detail how more accurate models can be built by deriving multiple sequence and structural features of substrates. We also provide some suggestions about how future studies might further improve the accuracy of protease substrate specificity prediction.
Collapse
Affiliation(s)
- Jiangning Song
- Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sunbul M, Emerson N, Yin J. Enzyme-catalyzed substrate attachment to phage surfaces for the selection of catalytic activities. Chembiochem 2011; 12:380-6. [PMID: 21290537 DOI: 10.1002/cbic.201000475] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Indexed: 11/10/2022]
Affiliation(s)
- Murat Sunbul
- Department of Chemistry, The University of Chicago, 929 E. 57th Street, GCIS E505, Chicago, IL 60637, USA
| | | | | |
Collapse
|
29
|
Characterisation of a DNA Polymerase Highly Mutated Along the Template Binding Interface. Mol Biotechnol 2010; 46:58-62. [DOI: 10.1007/s12033-010-9275-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Vichier-Guerre S, Jestin JL. Iterative Cycles ofIn VitroProtein Selection for DNA Polymerase Activity. BIOCATAL BIOTRANSFOR 2010. [DOI: 10.1080/102424203100011085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Jackrel ME, Cortajarena AL, Liu TY, Regan L. Screening libraries to identify proteins with desired binding activities using a split-GFP reassembly assay. ACS Chem Biol 2010; 5:553-62. [PMID: 20038141 DOI: 10.1021/cb900272j] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Designer protein modules, which bind specifically to a desired target, have numerous potential applications. One approach to creating such proteins is to construct and screen libraries. Here we present a detailed description of using a split-GFP reassembly assay to screen libraries and identify proteins with novel binding properties. Attractive features of the split-GFP based screen are the absence of false positives and the simplicity, robustness, and ease of automation of the screen. Here, we describe both the construction of a naive protein library, and screening of the library using the split-GFP assay to identify proteins that bind specifically to chosen peptide sequences.
Collapse
Affiliation(s)
| | | | - Tina Y. Liu
- Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Lynne Regan
- Departments of Chemistry
- Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
32
|
Affiliation(s)
- Susan L Deutscher
- Biochemistry Department, 117 Schweitzer Hall, University of Missouri, Columbia, Missouri 65211, USA.
| |
Collapse
|
33
|
Whitney M, Crisp JL, Olson ES, Aguilera TA, Gross LA, Ellies LG, Tsien RY. Parallel in vivo and in vitro selection using phage display identifies protease-dependent tumor-targeting peptides. J Biol Chem 2010; 285:22532-41. [PMID: 20460372 PMCID: PMC2903386 DOI: 10.1074/jbc.m110.138297] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We recently developed activatable cell-penetrating peptides (ACPPs) that target contrast agents to in vivo sites of matrix metalloproteinase activity, such as tumors. Here we use parallel in vivo and in vitro selection with phage display to identify novel tumor-homing ACPPs with no bias for primary sequence or target protease. Specifically, phage displaying a library of ACPPs were either injected into tumor-bearing mice, followed by isolation of cleaved phage from dissected tumor, or isolated based on selective cleavage by extracts of tumor versus normal tissue. Selected sequences were synthesized as fluorescently labeled peptides, and tumor-specific cleavage was confirmed by digestion with tissue extracts. The most efficiently cleaved peptide contained the substrate sequence RLQLKL and labeled tumors and metastases from several cancer models with up to 5-fold contrast. This uniquely identified ACPP was not cleaved by matrix metalloproteinases or various coagulation factors but was efficiently cleaved by plasmin and elastases, both of which have been shown to be aberrantly overexpressed in tumors. The identification of an ACPP that targets tumor expressed proteases without rational design highlights the value of unbiased selection schemes for the development of potential therapeutic agents.
Collapse
Affiliation(s)
- Mike Whitney
- Department of Pharmacology, University of California at San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Agard NJ, Maltby D, Wells JA. Inflammatory stimuli regulate caspase substrate profiles. Mol Cell Proteomics 2010; 9:880-93. [PMID: 20173201 PMCID: PMC2871421 DOI: 10.1074/mcp.m900528-mcp200] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 01/20/2010] [Indexed: 11/06/2022] Open
Abstract
The inflammatory caspases, human caspases-1, -4, and -5, proteolytically modulate diverse physiological outcomes in response to proinflammatory signals. Surprisingly, only a few substrates are known for these enzymes, including other caspases and the interleukin-1 family of cytokines. To more comprehensively characterize inflammatory caspase substrates, we combined an enzymatic N-terminal enrichment method with mass spectrometry-based proteomics to identify newly cleaved proteins. Analysis of THP-1 monocytic cell lysates treated with recombinant purified caspases identified 82 putative caspase-1 substrates, three putative caspase-4 substrates, and no substrates for caspase-5. By contrast, inflammatory caspases activated in THP-1 cells by mimics of gout (monosodium urate), bacterial infection (lipopolysaccharide and ATP), or viral infection (poly(dA.dT)) were found to cleave only 27, 16, and 22 substrates, respectively. Quantitative stable isotope labeling with amino acids in cell culture (SILAC) comparison of these three inflammatory stimuli showed that they induced largely overlapping substrate profiles but different extents of proteolysis. Interestingly, only half of the cleavages found in response to proinflammatory stimuli were contained within our set of 82 in vitro cleavage sites. These data provide the most comprehensive set of caspase-1-cleaved products reported to date and indicate that caspases-4 and -5 have far fewer substrates. Comparisons between the in vitro and in vivo data highlight the importance of localization in regulating inflammatory caspase activity. Finally, our data suggest that inducers of inflammation may subtly alter caspase-1 substrate profiles.
Collapse
Affiliation(s)
| | - David Maltby
- §UCSF Mass Spectrometry Facility, University of California, San Francisco, California 94158
| | - James A. Wells
- From the Departments of ‡Pharmaceutical Chemistry and
- ¶Cellular and Molecular Pharmacology and
| |
Collapse
|
35
|
Abstract
The proteomes of blood plasma and serum represent a potential gold mine of biological and diagnostic information, but challenges such as dynamic range of protein concentration have hampered efforts to unlock this resource. Here we present a method to label and isolate N-terminal peptides from human plasma and serum. This process dramatically reduces the complexity of the sample by eliminating internal peptides. We identify 772 unique N-terminal peptides in 222 proteins, ranging over six orders of magnitude in abundance. This approach is highly suited for studying natural proteolysis in plasma and serum. We find internal cleavages in plasma proteins created by endo- and exopeptidases, providing information about the activities of proteolytic enzymes in blood, which may be correlated with disease states. We also find signatures of signal peptide cleavage, coagulation and complement activation, and other known proteolytic processes, in addition to a large number of cleavages that have not been reported previously, including over 200 cleavages of blood proteins by aminopeptidases. Finally, we can identify substrates from specific proteases by exogenous addition of the protease combined with N-terminal isolation and quantitative mass spectrometry. In this way we identified proteins cleaved in human plasma by membrane-type serine protease 1, an enzyme linked to cancer progression. These studies demonstrate the utility of direct N-terminal labeling by subtiligase to identify and characterize endogenous and exogenous proteolysis in human plasma and serum.
Collapse
|
36
|
Monti D, Riva S. Natural and Artificial Microenzymes: Is It Possible to have Small and Efficient Biocatalysts? BIOCATAL BIOTRANSFOR 2009. [DOI: 10.3109/10242420109003643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
Sunbul M, Marshall NJ, Zou Y, Zhang K, Yin J. Catalytic turnover-based phage selection for engineering the substrate specificity of Sfp phosphopantetheinyl transferase. J Mol Biol 2009; 387:883-98. [PMID: 19340948 DOI: 10.1016/j.jmb.2009.02.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We report a high-throughput phage selection method to identify mutants of Sfp phosphopantetheinyl transferase with altered substrate specificities from a large library of the Sfp enzyme. In this method, Sfp and its peptide substrates are co-displayed on the M13 phage surface as fusions to the phage capsid protein pIII. Phage-displayed Sfp mutants that are active with biotin-conjugated coenzyme A (CoA) analogues would covalently transfer biotin to the peptide substrates anchored on the same phage particle. Affinity selection for biotin-labeled phages would enrich Sfp mutants that recognize CoA analogues for carrier protein modification. We used this method to successfully change the substrate specificity of Sfp and identified mutant enzymes with more than 300-fold increase in catalytic efficiency with 3'-dephospho CoA as the substrate. The method we developed in this study provides a useful platform to display enzymes and their peptide substrates on the phage surface and directly couples phage selection with enzyme catalysis. We envision this method to be applied to engineering the catalytic activities of other protein posttranslational modification enzymes.
Collapse
Affiliation(s)
- Murat Sunbul
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
38
|
Ma A, Hu Q, Bai Z, Qu Y, Liu W, Zhuang G. Functional display of fungal cellulases from Trichoderma reesei on phage M13. World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9702-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Yang Y, Zhou Y. Ab initio folding of terminal segments with secondary structures reveals the fine difference between two closely related all-atom statistical energy functions. Protein Sci 2008; 17:1212-9. [PMID: 18469178 DOI: 10.1110/ps.033480.107] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
One of the common methods for assessing energy functions of proteins is selection of native or near-native structures from decoys. This is an efficient but indirect test of the energy functions because decoy structures are typically generated either by sampling procedures or by a separate energy function. As a result, these decoys may not contain the global minimum structure that reflects the true folding accuracy of the energy functions. This paper proposes to assess energy functions by ab initio refolding of fully unfolded terminal segments with secondary structures while keeping the rest of the proteins fixed in their native conformations. Global energy minimization of these short unfolded segments, a challenging yet tractable problem, is a direct test of the energy functions. As an illustrative example, refolding terminal segments is employed to assess two closely related all-atom statistical energy functions, DFIRE (distance-scaled, finite, ideal-gas reference state) and DOPE (discrete optimized protein energy). We found that a simple sequence-position dependence contained in the DOPE energy function leads to an intrinsic bias toward the formation of helical structures. Meanwhile, a finer statistical treatment of short-range interactions yields a significant improvement in the accuracy of segment refolding by DFIRE. The updated DFIRE energy function yields success rates of 100% and 67%, respectively, for its ability to sample and fold fully unfolded terminal segments of 15 proteins to within 3.5 A global root-mean-squared distance from the corresponding native structures. The updated DFIRE energy function is available as DFIRE 2.0 upon request.
Collapse
Affiliation(s)
- Yuedong Yang
- Indiana University School of Informatics, Indiana University-Purdue University, Indianapolis, Indiana 46202, USA
| | | |
Collapse
|
40
|
Keillor JW, Chica RA, Chabot N, Vinci V, Pardin C, Fortin E, Gillet SM, Nakano Y, Kaartinen MT, Pelletier JN, Lubell WD. The bioorganic chemistry of transglutaminase — from mechanism to inhibition and engineering. CAN J CHEM 2008. [DOI: 10.1139/v08-024] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Through a multidisciplinary approach comprising organic synthesis, molecular biology, and physical organic kinetic studies, we have studied the mechanism of transglutaminase-mediated transamidation. More recently, we have applied our understanding of the mechanism to the design of reversible inhibitors and affinity labels for biological application. We have also undertaken the engineering of transglutaminase for its application as a “peptide synthase”. Herein, we present a brief overview of previously published work as well as recent results presented at the 2007 Merck–Frosst Centre for Therapeutic Research Award Lecture.Key words: transglutaminase, enzyme mechanism, enzyme inhibition, protein engineering
Collapse
|
41
|
Yang Y, Zhou Y. Specific interactions for ab initio folding of protein terminal regions with secondary structures. Proteins 2008; 72:793-803. [PMID: 18260109 DOI: 10.1002/prot.21968] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yuedong Yang
- Indiana University School of Informatics, Indianapolis, Indiana 46202, USA
| | | |
Collapse
|
42
|
Abstract
Molecular imaging is at the forefront in the advancement of in-vivo diagnosis and monitoring of cancer. New peptide-based molecular probes to facilitate cancer detection are rapidly evolving. Peptide-based molecular probes that target apoptosis, angiogenesis, cell signaling and cell adhesion events are in place. Bacteriophage (phage) display technology, a molecular genetic approach to ligand discovery, is commonly employed to identify peptides as tumor-targeting molecules. The peptide itself may perhaps have functional properties that diminish tumor growth or metastasis. More often, a selected peptide is chemically synthesized, coupled to a radiotracer or fluorescent probe, and utilized in the development of new noninvasive molecular imaging probes. A myriad of peptides that bind cancer cells and cancer-associated antigens have been reported from phage library selections. Phage selections have also been performed in live animals to obtain peptides with optimal stability and targeting properties in vivo. To this point, few in-vitro, in-situ, or in-vivo selected peptides have shown success in the molecular imaging of cancer, the notable exception being vascular targeting peptides identified via in-vivo selections. The success of vasculature targeting peptides, such as those with an RGD motif that bind alpha(v)beta(3)integrin, may be due to the abundance and expression patterns of integrins in tumors and supporting vasculature. The discovery of molecular probes that bind tumor-specific antigens has lagged considerably. One promising means to expedite discovery is through the implementation of selected phage themselves as tumor-imaging agents in animals.
Collapse
Affiliation(s)
- Jessica Newton
- Department of Biochemistry, University of Missouri, M743 Medical Sciences Bldg., Columbia, MO 65212, USA
| | | |
Collapse
|
43
|
Abstract
Enzymes have become an attractive alternative to conventional catalysts in numerous industrial processes. However, their properties do not always meet the criteria of the application of interest. Directed evolution is a powerful tool for adopting the characteristics of an enzyme. However, selection of the evolved variants is a critical step, and therefore new strategies to enable selection of the desired enzymatic activity have been developed. This review focuses on these novel strategies for selecting enzymes from large libraries, in particular those that are used in the synthesis of pharmaceutical intermediates and pharmaceuticals.
Collapse
Affiliation(s)
- Ykelien L Boersma
- Department of Pharmaceutical Biology, Groningen University Institute for Drug Exploration, the Netherlands
| | | | | |
Collapse
|
44
|
Boersma YL, Dröge MJ, Quax WJ. Selection strategies for improved biocatalysts. FEBS J 2007. [DOI: 10.1111/j.0014-2956.2007.05782.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Affiliation(s)
- John W Kehoe
- Biosciences Division, Argonne National Laboratory, Building 202, Argonne, Illinois 60439, USA
| | | |
Collapse
|
46
|
Dröge MJ, Boersma YL, van Pouderoyen G, Vrenken TE, Rüggeberg CJ, Reetz MT, Dijkstra BW, Quax WJ. Directed Evolution of Bacillus subtilis Lipase A by Use of Enantiomeric Phosphonate Inhibitors: Crystal Structures and Phage Display Selection. Chembiochem 2005; 7:149-57. [PMID: 16342303 DOI: 10.1002/cbic.200500308] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phage display can be used as a protein-engineering tool for the selection of proteins with desirable binding properties from a library of mutants. Here we describe the application of this method for the directed evolution of Bacillus subtilis lipase A, an enzyme that has important properties for the preparation of the pharmaceutically relevant chiral compound 1,2-O-isopropylidene-sn-glycerol (IPG). PCR mutagenesis with spiked oligonucleotides was employed for saturation mutagenesis of a stretch of amino acids near the active site. After expression of these mutants on bacteriophages, dual selection with (S)-(+)- and (R)-(-)-IPG stereoisomers covalently coupled to enantiomeric phosphonate suicide inhibitors (SIRAN Sc and Rc inhibitors, respectively) was used for the isolation of variants with inverted enantioselectivity. The mutants were further characterised by determination of their Michaelis-Menten parameters. The 3D structures of the Sc and Rc inhibitor-lipase complexes were determined and provided structural insight into the mechanism of enantioselectivity of the enzyme. In conclusion, we have used phage display as a fast and reproducible method for the selection of Bacillus lipase A mutant enzymes with inverted enantioselectivity.
Collapse
Affiliation(s)
- Melloney J Dröge
- Dept. of Pharmaceutical Biology, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Aharoni A, Griffiths AD, Tawfik DS. High-throughput screens and selections of enzyme-encoding genes. Curr Opin Chem Biol 2005; 9:210-6. [PMID: 15811807 DOI: 10.1016/j.cbpa.2005.02.002] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The availability of vast gene repertoires from both natural sources (genomic and cDNA libraries) and artificial sources (gene libraries) demands the development and application of novel technologies that enable the screening or selection of large libraries for a variety of enzymatic activities. We describe recent developments in the selection of enzyme-coding genes for directed evolution and functional genomics. We focus on HTS approaches that enable selection from large libraries (>10(6) gene variants) with relatively humble means (i.e. non-robotic systems), and on in vitro compartmentalization in particular.
Collapse
Affiliation(s)
- Amir Aharoni
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
48
|
Zakharova MY, Kozyr AV, Ignatova AN, Vinnikov IA, Shemyakin IG, Kolesnikov AV. Purification of filamentous bacteriophage for phage display using size-exclusion chromatography. Biotechniques 2005; 38:194, 196, 198. [PMID: 15727124 DOI: 10.2144/05382bm04] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
49
|
Fujita S, Taki T, Taira K. Selection of an Active Enzyme by Phage Display on the Basis of the Enzyme's Catalytic Activity in vivo. Chembiochem 2005; 6:315-21. [PMID: 15678423 DOI: 10.1002/cbic.200400215] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have developed a novel phage display method based on catalytic activity for the in vivo selection of an enzyme. To confirm the validity of our method and to demonstrate its potential utility, we used biotin protein ligase (BPL) from Escherichia coli as a model enzyme. We were able to demonstrate the potential value of our method by selective enrichment for the birA gene, which encodes BPL, in a mixed library. The presented method for in vivo selection should allow selection of various enzymes that catalyze modification of peptides or proteins, such as protein ligase, acetylase, kinase, phosphatase, ubiquitinase, and protease (including caspase). The method should be useful in efforts to analyze mechanisms of signal transduction, to find unidentified enzymes encoded by cDNA libraries, and to exploit artificial enzymes.
Collapse
Affiliation(s)
- Satoshi Fujita
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Tokyo 113-8656, Japan
| | | | | |
Collapse
|
50
|
Zou J, Dickerson MT, Owen NK, Landon LA, Deutscher SL. Biodistribution of filamentous phage peptide libraries in mice. Mol Biol Rep 2005; 31:121-9. [PMID: 15293788 DOI: 10.1023/b:mole.0000031459.14448.af] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In vivo phage display is a new approach to acquire peptide molecules that bind stably to a given target. Phage peptide display libraries have been selected in mice and humans and numerous vasculature-targeting peptides have been reported. However, in vivo phage display has not typically produced molecules that extravasate to target specific organ or tumor antigens. Phage selections in animals have been performed for very short times without optimization for biodistribution or clearance rates to a particular organ. It is hypothesized that peptides that home to a desired antigen/organ can be obtained from in vivo phage experiments by optimization of incubation times, phage extraction and propagation procedures. To accomplish this goal, one must first gain a better understanding of the in vivo biodistribution and rate of clearance of engineered phage peptide display libraries. While the fate of wild type phage in rodents has been reported, the in vivo biodistribution of the commonly used engineered fd-tet M13 phage peptide display libraries (such as in the fUSE5 vector system) have not been well established. Here we report the biodistribution and clearance properties of fd-tet fifteen amino acid random peptide display libraries in fUSE5 phage in three common mouse models employed for drug discovery - CF-1, nude, and SCID mice.
Collapse
Affiliation(s)
- Jun Zou
- Department of Biochemistry, M743 Medical Sciences Bldg., University of Missouri, Columbia, MO 65212; 2ABC Laboratories, Columbia, MO 65204, USA
| | | | | | | | | |
Collapse
|