1
|
Arppo A, Barker H, Parkkila S. Bioinformatic characterization of ENPEP, the gene encoding a potential cofactor for SARS-CoV-2 infection. PLoS One 2024; 19:e0307731. [PMID: 39661628 PMCID: PMC11633960 DOI: 10.1371/journal.pone.0307731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/21/2024] [Indexed: 12/13/2024] Open
Abstract
Research on SARS-CoV-2, the viral pathogen that causes COVID-19, has identified angiotensin converting enzyme 2 (ACE2) as the primary viral receptor. Several genes that encode viral cofactors, such as TMPRSS2, NRP1, CTSL, and possibly KIM1, have since been discovered. Glutamyl aminopeptidase (APA), encoded by the gene ENPEP, is another cofactor candidate due to similarities in its biological role and high correlation with ACE2 and other human coronavirus receptors, such as aminopeptidase N (APN) and dipeptidyl peptidase 4 (DPP4). Recent studies have proposed a role for ENPEP as a viral receptor in humans, and ENPEP and ACE2 are both closely involved in the renin-angiotensin-aldosterone system proposed to play an important role in SARS-CoV-2 pathophysiology. We performed bioinformatic analyses using publicly available bulk (>17,000 samples from 49 distinct tissues) and single-cell (>2.5 million cells) RNA-Seq gene expression datasets to evaluate the expression and function of the ENPEP gene. We also investigated age- and sex-related changes in ENPEP expression. Overall, expression of ENPEP was highest in the small intestine enterocyte brush border and the kidney cortex. ENPEP is widely expressed in a subset of vascular smooth muscle cells (likely pericytes) in systemic vasculature, the heart, and the brain. ENPEP is expressed at low levels in the lower respiratory epithelium. In the lung, ENPEP is most highly expressed in para-alveolar fibroblasts. Single-cell data revealed ENPEP expression in a substantial fraction of ependymal cells, a finding not reported before in humans. Age increases ENPEP expression in skeletal muscle and the prostate, while decreasing it in the heart and aorta. Angiogenesis was found to be a central biological function associated with the ENPEP gene. Tissue-specific roles, such as protein digestion and fat metabolism, were also identified in the intestine. In the liver, the gene is linked to the complement system, a connection that has not yet been thoroughly investigated. Expression of ENPEP and ACE2 is strongly correlated in the small intestine and renal cortex. Both overall and in blood vessels, ENPEP and ACE2 have a stronger correlation than many other genes associated with SARS-CoV-2, such as TMPRSS2, CTSL, and NRP1. Possible interaction between glutamyl aminopeptidase and SARS-CoV-2 should be investigated experimentally.
Collapse
Affiliation(s)
- Antti Arppo
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Harlan Barker
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories PLC, Tampere University Hospital, Tampere, Finland
- Disease Networks Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories PLC, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
2
|
Balavoine F, Compere D, Miege F, De Mota N, Keck M, Fer M, Christen A, Martin E, Roche D, Llorens-Cortes C, Rodeschini V. Rational design, synthesis and pharmacological characterization of novel aminopeptidase A inhibitors. Bioorg Med Chem Lett 2024; 113:129940. [PMID: 39233188 DOI: 10.1016/j.bmcl.2024.129940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
Aminopeptidase A (APA) is a membrane-bound zinc metallopeptidase involved in the production of angiotensin III, one effector peptide of the brain renin-angiotensin system, making brain APA a relevant pharmacological target for the development of novel therapeutic treatments against hypertension and heart failure. The structure-based design of new APA inhibitors is described, based on previously developed thiol-containing inhibitors and APA crystal structure. Chemical synthesis, in vitro assessment against APA activity, pharmacological and pharmacokinetic profiling were performed, ultimately leading to a potent and selective APA inhibitor.
Collapse
Affiliation(s)
| | - Delphine Compere
- Quantum Genomics, 6 rue Cambacérès, F-75008 Paris, France; Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR7241, 11 place Marcelin Berthelot, F-75005 Paris, France
| | - Frédéric Miege
- Edelris, Bâtiment Bioserra 1 60 av Rockefeller, F-69003 Lyon, France
| | - Nadia De Mota
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR7241, 11 place Marcelin Berthelot, F-75005 Paris, France
| | - Mathilde Keck
- Quantum Genomics, 6 rue Cambacérès, F-75008 Paris, France; Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR7241, 11 place Marcelin Berthelot, F-75005 Paris, France
| | - Mickael Fer
- Edelris, Bâtiment Bioserra 1 60 av Rockefeller, F-69003 Lyon, France
| | - Aude Christen
- Edelris, Bâtiment Bioserra 1 60 av Rockefeller, F-69003 Lyon, France
| | - Emmeline Martin
- Edelris, Bâtiment Bioserra 1 60 av Rockefeller, F-69003 Lyon, France
| | - Didier Roche
- Edelris, Bâtiment Bioserra 1 60 av Rockefeller, F-69003 Lyon, France
| | - Catherine Llorens-Cortes
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR7241, 11 place Marcelin Berthelot, F-75005 Paris, France.
| | | |
Collapse
|
3
|
Popa IP, Clim A, Pînzariu AC, Lazăr CI, Popa Ș, Tudorancea IM, Moscalu M, Șerban DN, Șerban IL, Costache-Enache II, Tudorancea I. Arterial Hypertension: Novel Pharmacological Targets and Future Perspectives. J Clin Med 2024; 13:5927. [PMID: 39407987 PMCID: PMC11478071 DOI: 10.3390/jcm13195927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Arterial hypertension (HTN) is one of the major global contributors to cardiovascular diseases and premature mortality, particularly due to its impact on vital organs and the coexistence of various comorbidities such as chronic renal disease, diabetes, cerebrovascular diseases, and obesity. Regardless of the accessibility of several well-established pharmacological treatments, the percentage of patients achieving adequate blood pressure (BP) control is still significantly lower than recommended levels. Therefore, the pharmacological and non-pharmacological management of HTN is currently the major focus of healthcare systems. Various strategies are being applied, such as the development of new pharmacological agents that target different underlying physiopathological mechanisms or associated comorbidities. Additionally, a novel group of interventional techniques has emerged in recent years, specifically for situations when blood pressure is not properly controlled despite the use of multiple antihypertensives in maximum doses or when patients are unable to tolerate or desire not to receive antihypertensive medications. Nonetheless, reducing the focus on antihypertensive medication development by the pharmaceutical industry and increasing recognition of ineffective HTN control due to poor drug adherence demands ongoing research into alternative approaches to treatment. The aim of this review is to summarize the potential novel pharmacological targets for the treatment of arterial hypertension as well as the future perspectives of the treatment strategy.
Collapse
Affiliation(s)
- Irene Paula Popa
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Andreea Clim
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Alin Constantin Pînzariu
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Cristina Iuliana Lazăr
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Ștefan Popa
- 2nd Department of Surgery–Pediatric Surgery and Orthopedics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Ivona Maria Tudorancea
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Mihaela Moscalu
- Department of Preventive Medicine and Interdisciplinarity, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Dragomir N. Șerban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Ionela Lăcrămioara Șerban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Irina-Iuliana Costache-Enache
- Department of Internal Medicine I, Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania;
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Ionuț Tudorancea
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| |
Collapse
|
4
|
Schiffrin EL. New Kids on the Hypertension Block: Novel Agents With New Mechanisms of Action. Am J Hypertens 2024; 37:651-653. [PMID: 39138914 DOI: 10.1093/ajh/hpae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 08/15/2024] Open
Affiliation(s)
- Ernesto L Schiffrin
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research and Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Schiffrin EL, Fisher NDL. Diagnosis and management of resistant hypertension. BMJ 2024; 385:e079108. [PMID: 38897628 DOI: 10.1136/bmj-2023-079108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Resistant hypertension is defined as blood pressure that remains above the therapeutic goal despite concurrent use of at least three antihypertensive agents of different classes, including a diuretic, with all agents administered at maximum or maximally tolerated doses. Resistant hypertension is also diagnosed if blood pressure control requires four or more antihypertensive drugs. Assessment requires the exclusion of apparent treatment resistant hypertension, which is most often the result of non-adherence to treatment. Resistant hypertension is associated with major cardiovascular events in the short and long term, including heart failure, ischemic heart disease, stroke, and renal failure. Guidelines from several professional organizations recommend lifestyle modification and antihypertensive drugs. Medications typically include an angiotensin converting enzyme inhibitor or angiotensin receptor blocker, a calcium channel blocker, and a long acting thiazide-type/like diuretic; if a fourth drug is needed, evidence supports addition of a mineralocorticoid receptor antagonist. After a long pause since 2007 when the last antihypertensive class was approved, several novel agents are now under active development. Some of these may provide potent blood pressure lowering in broad groups of patients, such as aldosterone synthase inhibitors and dual endothelin receptor antagonists, whereas others may provide benefit by allowing treatment of resistant hypertension in special populations, such as non-steroidal mineralocorticoid receptor antagonists in patients with chronic kidney disease. Several device based approaches have been tested, with renal denervation being the best supported and only approved interventional device treatment for resistant hypertension.
Collapse
Affiliation(s)
- Ernesto L Schiffrin
- Lady Davis Institute for Medical Research and Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montréal, QC, Canada
| | - Naomi D L Fisher
- Department of Medicine, Brigham and Women's Hospital, Harvard University, Boston, MA, USA
| |
Collapse
|
6
|
Yuan X, Yang L, Gao J, Mao X, Zhang Y, Yuan W. Identification of a novel matrix metalloproteinases-related prognostic signature in hepatocellular carcinoma. Aging (Albany NY) 2024; 16:8667-8686. [PMID: 38761174 PMCID: PMC11164509 DOI: 10.18632/aging.205832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/03/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common primary liver cancer worldwide. Cancer cells' local infiltration, proliferation, and spread are mainly influenced by the protein hydrolyzing function of different matrix metalloproteinases (MMPs). However, no study has determined the relationship between MMPs and prognostic prediction in HCC. METHODS Expression profiles of mRNA and MMPs-related genes were obtained from publicly available databases. Cox regression and LASSO Cox regression analysis were used to identify and predict MMPs-related prognostic signature and construct predictive models for overall survival (OS). A nomogram was used to validate the accuracy of the prediction model. Drug prediction was performed using the Genomics of Drug Sensitivity in Cancer (GDSC) dataset, and single-cell clustering analysis was performed to further understand the significance of the MMPs-related signature. RESULTS A MMPs-related prognostic signature (including RNPEPL1, ADAM15, ADAM18, ADAMTS5, CAD, YME1L1, AMZ2, PSMD14, and COPS6) was identified. Using the median value, HCC patients in the high-risk group showed worse OS than those in the low-risk group. Immune microenvironment analysis showed that patients in the high-risk group had higher levels of M0 and M2 macrophages. Drug sensitivity analysis revealed that the IC50 values of sorafenib, cisplatin, and cytarabine were higher in the high-risk group. Finally, the single-cell cluster analysis results showed that YME1L1 and COPS6 were the major genes expressed in the monocyte cluster. CONCLUSIONS A novel MMPs-related signature can be used to predict the prognosis of HCC. The findings of this research could potentially impact the predictability of the prognosis and treatment of HCC.
Collapse
Affiliation(s)
- Xingxing Yuan
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Liuxin Yang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiawei Gao
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xu Mao
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yali Zhang
- Zhang Yali Famous Traditional Chinese Medicine Expert Studio, Harbin, China
| | - Wei Yuan
- Department of Hepatology, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| |
Collapse
|
7
|
Azzam O, Nejad SH, Carnagarin R, Nolde JM, Galindo-Kiuchi M, Schlaich MP. Taming resistant hypertension: The promise of novel pharmacologic approaches and renal denervation. Br J Pharmacol 2024; 181:319-339. [PMID: 37715452 DOI: 10.1111/bph.16247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/11/2023] [Accepted: 09/02/2023] [Indexed: 09/17/2023] Open
Abstract
Resistant hypertension is associated with an exceedingly high cardiovascular risk and there remains an unmet therapeutic need driven by pathophysiologic pathways unaddressed by guideline-recommended therapy. While spironolactone is widely considered as the preferable fourth-line drug, its broad application is limited by its side effect profile, especially off-target steroid receptor-mediated effects and hyperkalaemia in at-risk subpopulations. Recent landmark trials have reported promising safety and efficacy results for a number of novel compounds targeting relevant pathophysiologic pathways that remain unopposed by contemporary drugs. These include the dual endothelin receptor antagonist, aprocitentan, the aldosterone synthase inhibitor, baxdrostat and the nonsteroidal mineralocorticoid receptor antagonist finerenone. Furthermore, the evidence base for consideration of catheter-based renal denervation as a safe and effective adjunct therapeutic approach across the clinical spectrum of hypertension has been further substantiated. This review will summarise the recently published evidence on novel antihypertensive drugs and renal denervation in the context of resistant hypertension.
Collapse
Affiliation(s)
- Omar Azzam
- Dobney Hypertension Centre, Medical School-Royal Perth Hospital Unit, Royal Perth Hospital Medical Research Foundation, The University of Western Australia, Perth, Western Australia, Australia
- Department of Nephrology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Sayeh Heidari Nejad
- Dobney Hypertension Centre, Medical School-Royal Perth Hospital Unit, Royal Perth Hospital Medical Research Foundation, The University of Western Australia, Perth, Western Australia, Australia
| | - Revathy Carnagarin
- Dobney Hypertension Centre, Medical School-Royal Perth Hospital Unit, Royal Perth Hospital Medical Research Foundation, The University of Western Australia, Perth, Western Australia, Australia
| | - Janis M Nolde
- Dobney Hypertension Centre, Medical School-Royal Perth Hospital Unit, Royal Perth Hospital Medical Research Foundation, The University of Western Australia, Perth, Western Australia, Australia
| | - Marcio Galindo-Kiuchi
- Dobney Hypertension Centre, Medical School-Royal Perth Hospital Unit, Royal Perth Hospital Medical Research Foundation, The University of Western Australia, Perth, Western Australia, Australia
| | - Markus P Schlaich
- Dobney Hypertension Centre, Medical School-Royal Perth Hospital Unit, Royal Perth Hospital Medical Research Foundation, The University of Western Australia, Perth, Western Australia, Australia
- Department of Nephrology, Royal Perth Hospital, Perth, Western Australia, Australia
- Department of Cardiology, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
8
|
Lazartigues E, Llorens-Cortes C, Danser AHJ. New Approaches Targeting the Renin-Angiotensin System: Inhibition of Brain Aminopeptidase A, ACE2 Ubiquitination, and Angiotensinogen. Can J Cardiol 2023; 39:1900-1912. [PMID: 37348757 PMCID: PMC10730775 DOI: 10.1016/j.cjca.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023] Open
Abstract
Despite the availability of various therapeutic classes of antihypertensive drugs, hypertension remains poorly controlled, in part because of poor adherence. Hence, there is a need for the development of antihypertensive drugs acting on new targets to improve control of blood pressure. This review discusses novel insights (including the data of recent clinical trials) with regard to interference with the renin-angiotensin system, focusing on the enzymes aminopeptidase A and angiotensin-converting enzyme 2 (ACE2) in the brain, as well as the substrate of renin- angiotensinogen-in the liver. It raises the possibility that centrally acting amino peptidase A inhibitors (eg, firibastat), preventing the conversion of angiotensin II to angiotensin III in the brain, might be particularly useful in African Americans and patients with obesity. Firibastat additionally upregulates brain ACE2, allowing the conversion of angiotensin II to its protective metabolite angiotensin-(1-7). Furthermore, antisense oligonucleotides or small interfering ribonucleic acids suppress hepatic angiotensinogen for weeks to months after 1 injection and thus could potentially overcome adherence issues. Finally, interference with ACE2 ubiquitination is emerging as a future option for the treatment of neurogenic hypertension, given that ubiquitination resistance might upregulate ACE2 activity.
Collapse
Affiliation(s)
- Eric Lazartigues
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA; Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA; Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA; Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana, USA
| | - Catherine Llorens-Cortes
- Center for Interdisciplinary Research in Biology, College de France, Institut National de la Santé et de la Recherche Médicale, Paris, France; CEA, Medicines and Healthcare Technologies Department, SIMoS, Gif-sur-Yvette, France
| | - A H Jan Danser
- Division of Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
9
|
Karam S, Cohen DL, Jaoude PA, Dionne J, Ding FL, Garg A, Tannor EK, Chanchlani R. Approach to Diagnosis and Management of Hypertension: A Comprehensive and Combined Pediatric and Adult Perspective. Semin Nephrol 2023; 43:151438. [PMID: 37951795 DOI: 10.1016/j.semnephrol.2023.151438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The global prevalence of primary hypertension has been increasing both in children and in the adolescent and adult populations and can be attributed to changes in lifestyle factors with an obesity epidemic, increased salt consumption, and sedentary lifestyles. Childhood blood pressure is the strongest predictor of adult hypertension. Although hypertension in adults is associated strongly with an increased risk for cardiovascular disease, chronic kidney disease, and mortality, outcomes in children are defined less clearly. In adults, major guidelines agree on a threshold of less than 120/80 mm Hg as the optimal blood pressure (BP) and recommend a target of less than 130/80 mm Hg for treatment in most cases. In children, international pediatric guidelines recommend using thresholds based on the normative distribution of BP in healthy normal-weight children. Out-of-office BP assessment is extremely useful for confirming the diagnosis of hypertension and monitoring response to treatment. Lifestyle modifications are instrumental whether coupled or not with pharmacologic management. New agents such as nonsteroidal mineralocorticoid-receptor antagonists, aminopeptidase A inhibitors, aldosterone synthase inhibitors, and dual endothelin antagonists hold significant promise for resistant hypertension. The transition from pediatric to adult care can be challenging and requires careful planning and effective coordination within a multidisciplinary team that includes patients and their families, and pediatric and adult providers.
Collapse
Affiliation(s)
- Sabine Karam
- Division of Nephrology and Hypertension, University of Minnesota, Minneapolis, MN.
| | - Debbie L Cohen
- Renal, Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Pauline Abou Jaoude
- Division of Pediatric Nephrology, Hotel-Dieu de France-University Medical Center, Beirut, Lebanon
| | - Janis Dionne
- Division of Nephrology, Department of Pediatrics, University of British Columbia, British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | - FangChao Linda Ding
- Division of Nephrology, Department of Pediatrics, University of British Columbia, British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | - Anika Garg
- Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Elliot Koranteng Tannor
- Department of Medicine, Kwame Nkrumah University of Science and Technology, Ghana; Renal Unit, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Rahul Chanchlani
- Division of Pediatric Nephrology, Department of Pediatrics, McMaster Children's Hospital, Hamilton, Ontario, Canada; Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
10
|
Blazek O, Bakris GL. Novel Therapies on the Horizon of Hypertension Management. Am J Hypertens 2023; 36:73-81. [PMID: 36201204 DOI: 10.1093/ajh/hpac111] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The rates of uncontrolled hypertension, along with downstream cardiovascular outcomes, has been worsening in this country. Despite the plethora of antihypertensive medications on the market, the prevalence of resistant hypertension (RH) is estimated to be 13.7%. Therefore in addition to increased clinical education and focus on lifestyle management of hypertension and medication compliance, new therapies are needed to address this rise in hypertension. METHODS A systematic review of the available medical literature was performed to identify emerging treatment options for RH. RESULTS Six different pharmacologic classes and 2 procedural interventions were identified as being appropriate for review in this paper. The pharmacologic classes to be explored are non-steroidal mineralocorticoid receptor antagonists, aminopeptidase A inhibitors, dual endothelin antagonists, aldosterone synthetase inhibitors, atrial natriuretic peptide inhibitors, and attenuators of hepatic angiotensinogen. Discussion of procedural interventions to lower blood pressure will focus on renal denervation and devices that increase carotid baroreceptor activity. CONCLUSIONS Promising medication and procedural interventions are being developed and studied to expand our treatment arsenal for patients with uncontrolled essential hypertension and RH.
Collapse
Affiliation(s)
- Olivia Blazek
- Department of Medicine, American Heart Association Comprehensive Hypertension Center, University of Chicago Medicine, Chicago, IL 60637, USA
| | - George L Bakris
- Department of Medicine, American Heart Association Comprehensive Hypertension Center, University of Chicago Medicine, Chicago, IL 60637, USA
| |
Collapse
|
11
|
Salvador VD, Bakris GL. Novel antihypertensive agents for resistant hypertension: what does the future hold? Hypertens Res 2022; 45:1918-1928. [PMID: 36167808 DOI: 10.1038/s41440-022-01025-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 11/09/2022]
Abstract
Finding complementary compelling novel therapeutic agents for better control of blood pressure in people with resistant hypertension is moving into unchartered territory. The latest therapeutic developments explore approaches in the clinical arena that were either not examined or could only be examined in animal models two decades ago. Four main mechanisms have now been explored and operationalized in drug development: (a) mineralocorticoid receptor blockade using a nonsteroidal structure with many fewer side effects, (b) an aminopeptidase A inhibitor that has central effects on vasopressin, (c) a combined endothelin A and B receptor blocker and (d) an aldosterone synthase inhibitor devoid of glucocorticoid activity. All these agents are either completing Phase II development and starting Phase III or are involved in the ongoing recruitment of Phase III trials. Additionally, novel agents use antisense inhibition to block angiotensinogen development in the liver. These agents are discussed only for completeness, as they are still in Phase II trial development. Last, another agent that was initially being developed as an antihypertensive and once the data were reviewed by the company clearly showed efficacy as a heart failure agent was sacubitril/valsartan, which was ultimately approved. However, there are some discussions about reinvigorating the quest for an indication for hypertension, although no such steps have been formally initiated.
Collapse
Affiliation(s)
- Vincent D Salvador
- Department of Medicine, Am Heart Assoc. Comprehensive Hypertension Center, University of Chicago Medicine, Chicago, IL, USA
| | - George L Bakris
- Department of Medicine, Am Heart Assoc. Comprehensive Hypertension Center, University of Chicago Medicine, Chicago, IL, USA.
| |
Collapse
|
12
|
Gauto DF, Macek P, Malinverni D, Fraga H, Paloni M, Sučec I, Hessel A, Bustamante JP, Barducci A, Schanda P. Functional control of a 0.5 MDa TET aminopeptidase by a flexible loop revealed by MAS NMR. Nat Commun 2022; 13:1927. [PMID: 35395851 PMCID: PMC8993905 DOI: 10.1038/s41467-022-29423-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/14/2022] [Indexed: 02/07/2023] Open
Abstract
Large oligomeric enzymes control a myriad of cellular processes, from protein synthesis and degradation to metabolism. The 0.5 MDa large TET2 aminopeptidase, a prototypical protease important for cellular homeostasis, degrades peptides within a ca. 60 Å wide tetrahedral chamber with four lateral openings. The mechanisms of substrate trafficking and processing remain debated. Here, we integrate magic-angle spinning (MAS) NMR, mutagenesis, co-evolution analysis and molecular dynamics simulations and reveal that a loop in the catalytic chamber is a key element for enzymatic function. The loop is able to stabilize ligands in the active site and may additionally have a direct role in activating the catalytic water molecule whereby a conserved histidine plays a key role. Our data provide a strong case for the functional importance of highly dynamic - and often overlooked - parts of an enzyme, and the potential of MAS NMR to investigate their dynamics at atomic resolution.
Collapse
Affiliation(s)
- Diego F Gauto
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044, Grenoble, France
- ICSN, CNRS UPR2301, Univ. Paris-Saclay, Gif-sur-Yvette, France
| | - Pavel Macek
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044, Grenoble, France
- Celonic AG, Eulerstrasse 55, 4051, Basel, Switzerland
| | - Duccio Malinverni
- Department of Structural Biology and Center for Data Driven Discovery, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Hugo Fraga
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044, Grenoble, France
- Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- i3S, Instituto de Investigacao e Inovacao em Saude, Universidade do Porto, Porto, Portugal
| | - Matteo Paloni
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Iva Sučec
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044, Grenoble, France
| | - Audrey Hessel
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044, Grenoble, France
| | - Juan Pablo Bustamante
- Instituto de Bioingenieria y Bioinformatica, IBB (CONICET-UNER), Oro Verde, Entre Rios, Argentina
| | - Alessandro Barducci
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, INSERM, Montpellier, France.
| | - Paul Schanda
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044, Grenoble, France.
- Institute of Science and Technology Austria, Am Campus 1, A-3400, Klosterneuburg, Austria.
| |
Collapse
|
13
|
Annoni F, Moro F, Caruso E, Zoerle T, Taccone FS, Zanier ER. Angiotensin-(1-7) as a Potential Therapeutic Strategy for Delayed Cerebral Ischemia in Subarachnoid Hemorrhage. Front Immunol 2022; 13:841692. [PMID: 35355989 PMCID: PMC8959484 DOI: 10.3389/fimmu.2022.841692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/04/2022] [Indexed: 01/06/2023] Open
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) is a substantial cause of mortality and morbidity worldwide. Moreover, survivors after the initial bleeding are often subject to secondary brain injuries and delayed cerebral ischemia, further increasing the risk of a poor outcome. In recent years, the renin-angiotensin system (RAS) has been proposed as a target pathway for therapeutic interventions after brain injury. The RAS is a complex system of biochemical reactions critical for several systemic functions, namely, inflammation, vascular tone, endothelial activation, water balance, fibrosis, and apoptosis. The RAS system is classically divided into a pro-inflammatory axis, mediated by angiotensin (Ang)-II and its specific receptor AT1R, and a counterbalancing system, presented in humans as Ang-(1-7) and its receptor, MasR. Experimental data suggest that upregulation of the Ang-(1-7)/MasR axis might be neuroprotective in numerous pathological conditions, namely, ischemic stroke, cognitive disorders, Parkinson's disease, and depression. In the presence of SAH, Ang-(1-7)/MasR neuroprotective and modulating properties could help reduce brain damage by acting on neuroinflammation, and through direct vascular and anti-thrombotic effects. Here we review the role of RAS in brain ischemia, with specific focus on SAH and the therapeutic potential of Ang-(1-7).
Collapse
Affiliation(s)
- Filippo Annoni
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy.,Department of Intensive Care, Erasme Hospital, Free University of Brussels, Anderlecht, Belgium
| | - Federico Moro
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy
| | - Enrico Caruso
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy.,Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Tommaso Zoerle
- Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Fabio Silvio Taccone
- Department of Intensive Care, Erasme Hospital, Free University of Brussels, Anderlecht, Belgium
| | - Elisa R Zanier
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy
| |
Collapse
|
14
|
Current Knowledge about the New Drug Firibastat in Arterial Hypertension. Int J Mol Sci 2022; 23:ijms23031459. [PMID: 35163378 PMCID: PMC8836050 DOI: 10.3390/ijms23031459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
Hypertension significantly increases the risk of cardiovascular disease. Currently, effective standard pharmacological treatment is available in the form of diuretics, ACE inhibitors, angiotensin II receptor blockers and calcium channel blockers. These all help to decrease blood pressure in hypertensive patients, each with their own mechanism. Recently, firibastat, a new first-in-class antihypertensive drug has been developed. Firibastat is a prodrug that when crossing the blood-brain barrier, is cleaved into two active EC33 molecules. EC33 is the active molecule that inhibits the enzyme aminopeptidase A. Aminopeptidase A converts angiotensin II to angiotensin III. Angiotensin III usually has three central mechanisms that increase blood pressure, so by inhibiting this enzyme activity, a decrease in blood pressure is seen. Firibastat is an antihypertensive drug that affects the brain renin angiotensin system by inhibiting aminopeptidase A. Clinical trials with firibastat have been performed in animals and humans. No severe adverse effects related to firibastat treatment have been reported. Results from studies show that firibastat is generally well tolerated and safe to use in hypertensive patients. The aim of this review is to investigate the current knowledge about firibastat in the treatment of hypertension.
Collapse
|
15
|
Boitard SE, Keck M, Deloux R, Girault-Sotias PE, Marc Y, De Mota N, Compere D, Agbulut O, Balavoine F, Llorens-Cortes C. QGC606, a best-in-class orally active centrally acting aminopeptidase A inhibitor prodrug, for treating heart failure following myocardial infarction. Can J Cardiol 2022; 38:815-827. [DOI: 10.1016/j.cjca.2022.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/02/2022] Open
|
16
|
Recent Advances in the Endogenous Brain Renin-Angiotensin System and Drugs Acting on It. J Renin Angiotensin Aldosterone Syst 2021; 2021:9293553. [PMID: 34925551 PMCID: PMC8651430 DOI: 10.1155/2021/9293553] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/14/2021] [Accepted: 10/23/2021] [Indexed: 12/22/2022] Open
Abstract
The RAS (renin-angiotensin system) is the part of the endocrine system that plays a prime role in the control of essential hypertension. Since the discovery of brain RAS in the seventies, continuous efforts have been put by the scientific committee to explore it more. The brain has shown the presence of various components of brain RAS such as angiotensinogen (AGT), converting enzymes, angiotensin (Ang), and specific receptors (ATR). AGT acts as the precursor molecule for Ang peptides—I, II, III, and IV—while the enzymes such as prorenin, ACE, and aminopeptidases A and N synthesize it. AT1, AT2, AT4, and mitochondrial assembly receptor (MasR) are found to be plentiful in the brain. The brain RAS system exhibits pleiotropic properties such as neuroprotection and cognition along with regulation of blood pressure, CVS homeostasis, thirst and salt appetite, stress, depression, alcohol addiction, and pain modulation. The molecules acting through RAS predominantly ARBs and ACEI are found to be effective in various ongoing and completed clinical trials related to cognition, memory, Alzheimer's disease (AD), and pain. The review summarizes the recent advances in the brain RAS system highlighting its significance in pathophysiology and treatment of the central nervous system-related disorders.
Collapse
|
17
|
Flahault A, Keck M, Girault-Sotias PE, Esteoulle L, De Mota N, Bonnet D, Llorens-Cortes C. LIT01-196, a Metabolically Stable Apelin-17 Analog, Normalizes Blood Pressure in Hypertensive DOCA-Salt Rats via a NO Synthase-dependent Mechanism. Front Pharmacol 2021; 12:715095. [PMID: 34393794 PMCID: PMC8359812 DOI: 10.3389/fphar.2021.715095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/13/2021] [Indexed: 11/14/2022] Open
Abstract
Apelin is a neuro-vasoactive peptide that plays a major role in the control of cardiovascular functions and water balance, but has an in-vivo half-life in the minute range, limiting its therapeutic use. We previously developed LIT01-196, a systemically active metabolically stable apelin-17 analog, produced by chemical addition of a fluorocarbon chain to the N-terminal part of apelin-17. LIT01-196 behaves as a potent full agonist for the apelin receptor and has an in vivo half-life in the bloodstream of 28 min after intravenous (i.v.) and 156 min after subcutaneous (s.c.) administrations in conscious normotensive rats. We aimed to investigate the effects of LIT01-196 following systemic administrations on arterial blood pressure, heart rate, fluid balance and electrolytes in conscious normotensive and hypertensive deoxycorticosterone acetate (DOCA)-salt rats. Acute i.v. LIT01-196 administration, in increasing doses, dose-dependently decreases arterial blood pressure with ED50 values of 9.8 and 3.1 nmol/kg in normotensive and hypertensive rats, respectively. This effect occurs for both via a nitric oxide-dependent mechanism. Moreover, acute s.c. LIT01-196 administration (90 nmol/kg) normalizes arterial blood pressure in conscious hypertensive DOCA-salt rats for more than 7 h. The LIT01-196-induced blood pressure decrease remains unchanged after 4 consecutive daily s.c. administrations of 90 nmol/kg, and does not induce any alteration of plasma sodium and potassium levels and kidney function as shown by the lack of change in plasma creatinine and urea nitrogen levels. Activating the apelin receptor with LIT01-196 may constitute a novel approach for the treatment of hypertension.
Collapse
Affiliation(s)
- Adrien Flahault
- College de France, Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR7241, Paris, France
| | - Mathilde Keck
- College de France, Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR7241, Paris, France
| | - Pierre-Emmanuel Girault-Sotias
- College de France, Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR7241, Paris, France
| | - Lucie Esteoulle
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg, Labex MEDALIS, Faculté de Pharmacie, Illkirch, France
| | - Nadia De Mota
- College de France, Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR7241, Paris, France
| | - Dominique Bonnet
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg, Labex MEDALIS, Faculté de Pharmacie, Illkirch, France
| | - Catherine Llorens-Cortes
- College de France, Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR7241, Paris, France
| |
Collapse
|
18
|
Marc Y, Hmazzou R, De Mota N, Balavoine F, Llorens-Cortes C. Effects of firibastat in combination with enalapril and hydrochlorothiazide on blood pressure and vasopressin release in hypertensive DOCA-salt rats. Biomed Pharmacother 2021; 140:111682. [PMID: 34020248 DOI: 10.1016/j.biopha.2021.111682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/31/2022] Open
Abstract
In the brain, aminopeptidase A (APA) generates angiotensin III, one of the effector peptides of the brain renin-angiotensin system (RAS), exerting tonic stimulatory control over blood pressure (BP) in hypertensive rats. Oral administration of firibastat, an APA inhibitor prodrug, in hypertensive rats, inhibits brain APA activity, blocks brain angiotensin III formation and decreases BP. In this study, we evaluated the efficacy of firibastat in combination with enalapril, an angiotensin I-converting enzyme inhibitor, and hydrochlorothiazide (HCTZ), in conscious hypertensive deoxycorticosterone acetate (DOCA)-salt rats, which display high plasma arginine-vasopressin levels, low circulating renin levels and resistance to treatment by systemic RAS blockers. We determined mean arterial BP, heart rate, plasma arginine-vasopressin levels and renin activity in DOCA-salt rats orally treated with firibastat, enalapril or HCTZ administered alone or in combination. Acute oral firibastat administration (30 mg/kg) induced a significant decrease in BP, whereas enalapril (10 mg/kg) or HCTZ (10 mg/kg) administered alone induced no significant change in BP in conscious DOCA-salt rats. The BP decrease induced by acute and nine-day chronic tritherapy [Firibastat+Enalapril+HCTZ] was significantly greater than that observed after bitherapy [Enalapril+HCTZ]. Interestingly, the chronic administration of a combination of firibastat with [Enalapril+HCTZ] reduced plasma arginine-vasopressin levels by 62% relative to those measured in DOCA-salt rats receiving bitherapy. Our data show that tritherapy with firibastat, enalapril and HCTZ improves BP control and arginine-vasopressin release in an experimental salt-dependent model of hypertension, paving the way for the development of new treatments for patients with currently difficult-to-treat or resistant hypertension.
Collapse
Affiliation(s)
- Yannick Marc
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM U1050, Paris F-75231 France; Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris F-75231 France; Quantum Genomics SA, Paris F-75008, France
| | - Reda Hmazzou
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM U1050, Paris F-75231 France; Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris F-75231 France
| | - Nadia De Mota
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM U1050, Paris F-75231 France; Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris F-75231 France
| | | | - Catherine Llorens-Cortes
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM U1050, Paris F-75231 France; Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris F-75231 France.
| |
Collapse
|
19
|
Hmazzou R, Marc Y, Flahault A, Gerbier R, De Mota N, Llorens-Cortes C. Brain ACE2 activation following brain aminopeptidase A blockade by firibastat in salt-dependent hypertension. Clin Sci (Lond) 2021; 135:775-791. [PMID: 33683322 DOI: 10.1042/cs20201385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/02/2021] [Accepted: 03/08/2021] [Indexed: 12/31/2022]
Abstract
In the brain, aminopeptidase A (APA), a membrane-bound zinc metalloprotease, generates angiotensin III from angiotensin II. Brain angiotensin III exerts a tonic stimulatory effect on the control of blood pressure (BP) in hypertensive rats and increases vasopressin release. Blocking brain angiotensin III formation by the APA inhibitor prodrug RB150/firibastat normalizes arterial BP in hypertensive deoxycorticosterone acetate (DOCA)-salt rats without inducing angiotensin II accumulation. We therefore hypothesized that another metabolic pathway of brain angiotensin II, such as the conversion of angiotensin II into angiotensin 1-7 (Ang 1-7) by angiotensin-converting enzyme 2 (ACE2) might be activated following brain APA inhibition. We found that the intracerebroventricular (icv) administration of RB150/firibastat in conscious DOCA-salt rats both inhibited brain APA activity and induced an increase in brain ACE2 activity. Then, we showed that the decreases in BP and vasopressin release resulting from brain APA inhibition with RB150/firibastat were reduced if ACE2 was concomitantly inhibited by MLN4760, a potent ACE2 inhibitor, or if the Mas receptor (MasR) was blocked by A779, a MasR antagonist. Our findings suggest that in the brain, the increase in ACE2 activity resulting from APA inhibition by RB150/firibastat treatment, subsequently increasing Ang 1-7 and activating the MasR while blocking angiotensin III formation, contributes to the antihypertensive effect and the decrease in vasopressin release induced by RB150/firibastat. RB150/firibastat treatment constitutes an interesting therapeutic approach to improve BP control in hypertensive patients by inducing in the brain renin-angiotensin system, hyperactivity of the beneficial ACE2/Ang 1-7/MasR axis while decreasing that of the deleterious APA/Ang II/Ang III/ATI receptor axis.
Collapse
Affiliation(s)
- Reda Hmazzou
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM U1050, Paris F-75231 France
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris F-75231 France
- Université René Descartes, "Ecole doctorale MTCI n°563", Paris F-75270, France
| | - Yannick Marc
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM U1050, Paris F-75231 France
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris F-75231 France
- Quantum Genomics SA, Paris F-75015, France
| | - Adrien Flahault
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM U1050, Paris F-75231 France
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris F-75231 France
- Université René Descartes, "Ecole doctorale MTCI n°563", Paris F-75270, France
| | - Romain Gerbier
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM U1050, Paris F-75231 France
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris F-75231 France
| | - Nadia De Mota
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM U1050, Paris F-75231 France
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris F-75231 France
| | - Catherine Llorens-Cortes
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM U1050, Paris F-75231 France
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris F-75231 France
| |
Collapse
|
20
|
Alomar SA, Alghabban SA, Alharbi HA, Almoqati MF, Alduraibi Y, Abu-Zaid A. Firibastat, the first-in-class brain aminopeptidase a inhibitor, in the management of hypertension: A review of clinical trials. Avicenna J Med 2021; 11:1-7. [PMID: 33520782 PMCID: PMC7839263 DOI: 10.4103/ajm.ajm_117_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
An unfortunate subset of hypertensive patients develops resistant hypertension in which optimal doses of three or more first-line antihypertensive drugs fail to sufficiently control blood pressure. Patients with resistant hypertension represent a high-risk and difficult-to-treat group, and such patients are at amplified jeopardies for substantial hypertension-related multi-organ failure, morbidity, and mortality. Thus, there is a pressing requirement to better improve blood pressure control through the pharmaceutical generation of novel classes of antihypertensive drugs that act on newer and alternative therapeutic targets. The hyperactivity of the brain renin-angiotensin system (RAS) has been shown to play a role in the pathogenesis of hypertension in various experimental and genetic hypertensive animal models. In the brain, angiotensin-II is metabolized to angiotensin-III by aminopeptidase A (APA), a membrane-bound zinc metalloprotease enzyme. A large body of evidence has previously established that angiotensin-III is one of the main effector peptides of the brain RAS. Angiotensin-III exerts central stimulatory regulation over blood pressure through several proposed mechanisms. Accumulating evidence from preclinical studies demonstrated that the centrally acting APA inhibitor prodrugs (firibastat and NI956) are very safe and effective at reducing blood pressure in various hypertensive animal models. The primary purpose of this study is to narratively review the published phase I-II literature on the safety and efficacy of APA inhibitors in the management of patients with hypertension. Moreover, a summary of ongoing clinical trials and future perspectives are presented.
Collapse
Affiliation(s)
| | | | | | | | - Yazid Alduraibi
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Ahmed Abu-Zaid
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.,College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| |
Collapse
|
21
|
McFall A, Nicklin SA, Work LM. The counter regulatory axis of the renin angiotensin system in the brain and ischaemic stroke: Insight from preclinical stroke studies and therapeutic potential. Cell Signal 2020; 76:109809. [PMID: 33059037 PMCID: PMC7550360 DOI: 10.1016/j.cellsig.2020.109809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 01/01/2023]
Abstract
Stroke is the 2nd leading cause of death worldwide and the leading cause of physical disability and cognitive issues. Although we have made progress in certain aspects of stroke treatment, the consequences remain substantial and new treatments are needed. Hypertension has long been recognised as a major risk factor for stroke, both haemorrhagic and ischaemic. The renin angiotensin system (RAS) plays a key role in blood pressure regulation and this, plus local expression and signalling of RAS in the brain, both support the potential for targeting this axis therapeutically in the setting of stroke. While historically, focus has been on suppressing classical RAS signalling through the angiotensin type 1 receptor (AT1R), the identification of a counter-regulatory axis of the RAS signalling via the angiotensin type 2 receptor (AT2R) and Mas receptor has renewed interest in targeting the RAS. This review describes RAS signalling in the brain and the potential of targeting the Mas receptor and AT2R in preclinical models of ischaemic stroke. The animal and experimental models, and the route and timing of intervention, are considered from a translational perspective.
Collapse
Affiliation(s)
- Aisling McFall
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Stuart A Nicklin
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Lorraine M Work
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
22
|
Structural insight into the catalytic mechanism and inhibitor binding of aminopeptidase A. Biochem J 2020; 477:4133-4148. [PMID: 32955085 DOI: 10.1042/bcj20200307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 11/17/2022]
Abstract
Aminopeptidase A (APA) is a membrane-bound monozinc aminopeptidase. In the brain, APA generates angiotensin III which exerts a tonic stimulatory effect on the control of blood pressure (BP) in hypertensive animals. The oral administration of RB150 renamed firibastat by WHO, an APA inhibitor prodrug, targeting only the S1 subsite, decreases BP in hypertensive patients from various ethnic origins. To identify new families of potent and selective APA inhibitors, we explored the organization of the APA active site, especially the S2' subsite. By molecular modeling, docking, molecular dynamics simulations and site-directed mutagenesis, we revealed that Arg368 and Arg386, in the S2' subsite of human APA established various types of interactions in major part with the P2' residue but also with the P1' residue of APA inhibitors, required for their nanomolar inhibitory potency. We also demonstrated an important role for Arg368 in APA catalysis, in maintaining the structural integrity of the GAMEN motif, a conserved sequence involved in exopeptidase specificity and optimal positioning of the substrate in monozinc aminopeptidases. This arginine together with the GAMEN motif are key players for the catalytic mechanism of these enzymes.
Collapse
|
23
|
Abstract
Systemic hypertension is the leading cause of death and disability worldwide. The management of hypertension is challenging in the high-risk patient population with high salt-sensitivity and low serum renin levels. The renin-angiotensin system (RAS) plays a central role in blood pressure (BP) regulation. While we have effective medications to act on peripheral RAS, our understanding of brain RAS and its effect on BP regulation is still in an evolving stage. Brain RAS hyperactivity is associated with the development and maintenance of hypertension. In comparison to peripheral RAS, where angiotensin II is the most crucial component responsible for BP regulation, angiotensin III is likely the main active peptide in the brain RAS. Angiotensin II is metabolized by aminopeptidase A into angiotensin III in the brain. EC33 is a potent inhibitor of brain aminopeptidase A tested in animal models. The use of EC33 in conscious spontaneously hypertensive rats, hypertensive deoxycorticosterone acetate-salt rats, and conscious normotensive rat models leads to a reduction in BP. In order to facilitate the passage of EC33 through the blood-brain barrier, the 2 molecules of EC33 were linked by a disulfide bridge to form a prodrug called RB150. RB150, later renamed as QGC001 or firibastat, was found to be effective in animal models and well-tolerated when used in healthy participants. Firibastat was found to be safe and effective in phase 2 trials, and is now planned to undergo a phase 3 trial. Firibastat has the potential to be groundbreaking in the management of resistant hypertension.
Collapse
|
24
|
Blood-brain barrier dysfunction: the undervalued frontier of hypertension. J Hum Hypertens 2020; 34:682-691. [PMID: 32424144 DOI: 10.1038/s41371-020-0352-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023]
Abstract
The blood-brain barrier (BBB) constitutes the complex anatomic and physiologic interface between the intravascular compartment and the central nervous system, and its integrity is paramount for the maintenance of the very sensitive homeostasis of the central nervous system. Arterial hypertension is a leading cause of morbidity and mortality. The BBB has been shown to be disrupted in essential hypertension. BBB integrity is important for central autonomic control and this may be implicated in the pathophysiology of hypertension. On the other hand, evidence from experimental studies indicates that BBB disruption can be present in both hypertensive disease and dementia syndromes, suggesting a possibly key position of loss of BBB integrity in the pathophysiological pathways linking arterial hypertension with cognitive decline. Although much still remains to be elucidated with respect to the exact underlying mechanisms, the discovery of novel pathological pathways has changed our understanding of adult dementia and central nervous system disease overall, pointing out-in parallel-new potential therapeutic targets. The aim of this review is to summarize current scientific knowledge relevant to the pathophysiologic pathways that are involved in the disruption of the BBB function and potentially mediate hypertension-induced cognitive impairment. In parallel, we underline the differential cognition-preserving effect of several antihypertensive agents of similar blood pressure-lowering capacity, highlighting the presence of previously under-recognized BBB-protective actions of these drugs.
Collapse
|
25
|
Marc Y, Boitard SE, Balavoine F, Azizi M, Llorens-Cortes C. Targeting Brain Aminopeptidase A: A New Strategy for the Treatment of Hypertension and Heart Failure. Can J Cardiol 2020; 36:721-731. [PMID: 32389345 DOI: 10.1016/j.cjca.2020.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023] Open
Abstract
The pathophysiology of heart failure (HF) and hypertension are thought to involve brain renin-angiotensin system (RAS) hyperactivity. Angiotensin III, a key effector peptide in the brain RAS, provides tonic stimulatory control over blood pressure (BP) in hypertensive rats. Aminopeptidase A (APA), the enzyme responsible for generating brain angiotensin III, constitutes a potential therapeutic target for hypertension treatment. We focus here on studies of RB150/firibastat, the first prodrug of the specific and selective APA inhibitor EC33 able to cross the blood-brain barrier. We consider its development from therapeutic target discovery to clinical trials of the prodrug. After oral administration, firibastat crosses the gastrointestinal and blood-brain barriers. On arrival in the brain, it is cleaved to generate EC33, which inhibits brain APA activity, lowering BP in various experimental models of hypertension. Firibastat was clinically and biologically well tolerated, even at high doses, in phase I trials conducted in healthy human subjects. It was then shown to decrease BP effectively in patients of various ethnic origins with hypertension in phase II trials. Brain RAS hyperactivity leads to excessive sympathetic activity, which can contribute to HF after myocardial infarction (MI). Chronic treatment with oral firibastat (4 or 8 weeks after MI) has been shown to normalize brain APA activity in mice. This effect is accompanied by a normalization of brain RAS and sympathetic activities, reducing cardiac fibrosis and hypertrophy and preventing cardiac dysfunction. Firibastat may therefore represent a novel therapeutic advance in the clinical management of patients with hypertension and potentially with HF after MI.
Collapse
Affiliation(s)
- Yannick Marc
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; Quantum Genomics, Paris, France
| | - Solène Emmanuelle Boitard
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; Quantum Genomics, Paris, France
| | | | - Michel Azizi
- Centres d'Investigation Clinique 1418, Institut National de la Santé et de la Recherche Médicale, Paris, France; Hypertension Unit and Départements Médico-Universitaires Cardiovasculaire, Rénal, transplantation et neurovasculaire (DMU CARTE), l'Assistance Publique-Hôpitaux de Paris, Hôpital European Georges-Pompidou, Paris, France
| | - Catherine Llorens-Cortes
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Paris, France.
| |
Collapse
|
26
|
The Role of High Fat Diets and Liver Peptidase Activity in the Development of Obesity and Insulin Resistance in Wistar Rats. Nutrients 2020; 12:nu12030636. [PMID: 32121057 PMCID: PMC7146256 DOI: 10.3390/nu12030636] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 12/13/2022] Open
Abstract
High-fat diets (HFD) have been widely associated with an increased risk of metabolic disorders and overweight. However, a high intake of sources that are rich in monounsaturated fatty acids has been suggested as a dietary agent that is able to positively influence energy metabolism and vascular function. The main objective of this study was to analyze the role of dietary fats on hepatic peptidases activities and metabolic disorders. Three diets: standard (S), HFD supplemented with virgin olive oil (VOO), and HFD supplemented with butter plus cholesterol (Bch), were administered over six months to male Wistar rats. Plasma and liver samples were collected for clinical biochemistry and aminopeptidase activities (AP) analysis. The expression of inducible nitric oxide synthase (iNOS) was also determined by Western blot in liver samples. The diet supplement with VOO did not induce obesity, in contrast to the Bch group. Though the VOO diet increased the time that was needed to return to the basal levels of plasma glucose, the fasting insulin/glucose ratio and HOMA2-%B index (a homeostasis model index of insulin secretion and valuation of β-cell usefulness (% β-cell secretion)) were improved. An increase of hepatic membrane-bound dipeptidyl-peptidase 4 (DPP4) activity was found only in VOO rats, even if no differences in fasting plasma glucagon-like peptide 1 (GLP-1) were obtained. Both HFDs induced changes in hepatic pyroglutamyl-AP in the soluble fraction, but only the Bch diet increased the soluble tyrosyl-AP. Angiotensinase activities that are implicated in the metabolism of angiotensin II (AngII) to AngIV increased in the VOO diet, which was in agreement with the higher activity of insulin-regulated-AP (IRAP) in this group. Otherwise, the diet that was enriched with butter increased soluble gamma-glutamyl transferase (GGT) and Leucyl-AP, iNOS expression in the liver, and plasma NO. In summary, VOO increased the hepatic activity of AP that were related to glucose metabolism (DPP4, angiotensinases, and IRAP). However, the Bch diet increased activities that are implicated in the control of food intake (Tyrosine-AP), the index of hepatic damage (Leucine-AP and GGT), and the expression of hepatic iNOS and plasma NO. Taken together, these results support that the source of fat in the diet affects several peptidases activities in the liver, which could be related to alterations in feeding behavior and glucose metabolism.
Collapse
|
27
|
Abstract
The active hormone of the renin-angiotensin system (RAS), angiotensin II (Ang II), is involved in several human diseases, driving the development and clinical use of several therapeutic drugs, mostly angiotensin I converting enzyme (ACE) inhibitors and angiotensin receptor type I (AT1R) antagonists. However, angiotensin peptides can also bind to receptors different from AT1R, in particular, angiotensin receptor type II (AT2R), resulting in biological and physiological effects different, and sometimes antagonistic, of their binding to AT1R. In the present Perspective, the components of the RAS and the therapeutic tools developed to control it will be reviewed. In particular, the characteristics of AT2R and tools to modulate its functions will be discussed. Agonists or antagonists to AT2R are potential therapeutics in cardiovascular diseases, for agonists, and in the control of pain, for antagonists, respectively. However, controlling their binding properties and their targeting to the target tissues must be optimized.
Collapse
Affiliation(s)
- Lucienne Juillerat-Jeanneret
- Transplantation Center, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Chemin des Boveresses 155, CH1011 Lausanne, Switzerland
| |
Collapse
|
28
|
Abstract
Purpose of the Review The main goal of this article is to discuss how the development of state-of-the-art technology has made it possible to address fundamental questions related to how the renin-angiotensin system (RAS) operates within the brain from the neurophysiological and molecular perspective. Recent Findings The existence of the brain RAS remains surprisingly controversial. New sensitive in situ hybridization techniques and novel transgenic animals expressing reporter genes have provided pivotal information of the expression of RAS genes within the brain. We discuss studies using genetically engineered animals combined with targeted viral microinjections to study molecular mechanisms implicated in the regulation of the brain RAS. We also discuss novel drugs targeting the brain RAS that have shown promising results in clinical studies and trials. Summary Over the last 50 years, several new physiological roles of the brain RAS have been identified. In the coming years, efforts to incorporate cutting-edge technologies such as optogenetics, chemogenetics, and single-cell RNA sequencing will lead to dramatic advances in our full understanding of how the brain RAS operates at molecular and neurophysiological levels.
Collapse
|
29
|
Ferdinand KC, Harrison D, Johnson A. The NEW-HOPE study and emerging therapies for difficult-to-control and resistant hypertension. Prog Cardiovasc Dis 2020; 63:64-73. [DOI: 10.1016/j.pcad.2019.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 12/29/2019] [Indexed: 12/11/2022]
|
30
|
Llorens-Cortes C, Touyz RM. Evolution of a New Class of Antihypertensive Drugs: Targeting the Brain Renin-Angiotensin System. Hypertension 2019; 75:6-15. [PMID: 31786978 DOI: 10.1161/hypertensionaha.119.12675] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In addition to the circulating renin-angiotensin system, activation of the brain renin-angiotensin system plays an important role in the pathophysiology of hypertension. One of the major components of the brain renin-angiotensin system implicated in the development of hypertension is Ang III (angiotensin III). Brain Ang III, produced from Ang II (angiotensin II) by APA (aminopeptidase A), exerts a tonic stimulatory control over blood pressure in hypertensive rats. Targeting Ang III by inhibiting brain APA is now considered a potentially important target in the management of hypertension. This has led to development of RB150, an orally active prodrug of the specific and selective APA inhibitor, EC33. Orally administered RB150 crosses the gastrointestinal and blood-brain barriers, enters the brain where it generates 2 active molecules of EC33 that block brain APA activity. This results in decreased brain Ang III formation and reduced blood pressure in hypertensive rats. The RB150-induced blood pressure decrease is due to a reduced vasopressin release, which increases diuresis, reducing extracellular volume, a decrease in sympathetic tone, leading to a reduction of vascular resistances, and the improvement of the baroreflex function. RB150 was renamed firibastat by the World Health Organization. Phase Ia/Ib clinical trials showed that firibastat is clinically and biologically well tolerated in healthy volunteers. Clinical efficacy of firibastat in hypertensive patients was, therefore, demonstrated in 2 phase II studies. Accordingly, firibastat could represent the first drug of a novel class of antihypertensive drugs targeting the brain renin-angiotensin system.
Collapse
Affiliation(s)
- Catherine Llorens-Cortes
- From the Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology, INSERM U1050/CNRS UMR 7241, Paris (C.L.-C.)
| | - Rhian M Touyz
- British Heart Foundation Chair in Cardiovascular Medicine, and Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.M.T.)
| |
Collapse
|
31
|
Keck M, De Almeida H, Compère D, Inguimbert N, Flahault A, Balavoine F, Roques B, Llorens-Cortes C. NI956/QGC006, a Potent Orally Active, Brain-Penetrating Aminopeptidase A Inhibitor for Treating Hypertension. Hypertension 2019; 73:1300-1307. [PMID: 31067198 DOI: 10.1161/hypertensionaha.118.12499] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Brain renin-angiotensin system hyperactivity has been implicated in the development and maintenance of hypertension. We have shown that aminopeptidase A is involved in the formation of brain angiotensin III, which exerts tonic stimulatory control over blood pressure in hypertensive deoxycorticosterone acetate-salt rats and spontaneously hypertensive rats. We have also shown that injection of the specific and selective aminopeptidase A inhibitor, (3S)-3-amino-4-sulfanyl-butane-1-sulfonic acid (EC33), by central route or its prodrug, RB150/firibastat, by oral route inhibited brain aminopeptidase A activity and blocked the formation of brain angiotensin III, normalizing blood pressure in hypertensive rats. These findings identified brain aminopeptidase A as a potential new therapeutic target for hypertension. We report here the development of a new aminopeptidase A inhibitor prodrug, NI956/QGC006, obtained by the disulfide bridge-mediated dimerization of NI929. NI929 is 10× more efficient than EC33 at inhibiting recombinant mouse aminopeptidase A activity in vitro. After oral administration at a dose of 4 mg/kg in conscious deoxycorticosterone acetate-salt rats, NI956/QGC006 normalized brain aminopeptidase A activity and induced a marked decrease in blood pressure of -44±13 mm Hg 4 hours after treatment ( P<0.001), sustained over 10 hours (-21±12 mm Hg; P<0.05). Moreover, NI956/QGC006 decreased plasma arginine-vasopressin levels, and increased diuresis and natriuresis, that may participate to the blood pressure decrease. Finally, NI956/QGC006 did not affect plasma sodium and potassium concentrations. This study shows that NI956/QGC006 is a best-in-class central-acting aminopeptidase A inhibitor prodrug. Our results support the development of hypertension treatments targeting brain aminopeptidase A.
Collapse
Affiliation(s)
- Mathilde Keck
- From the Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR 7241, Paris (M.K., H.D.A., D.C., A.F., C.L.-C.).,Quantum Genomics, Tour Montparnasse, Paris, France (M.K., D.C., F.B.)
| | - Hugo De Almeida
- From the Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR 7241, Paris (M.K., H.D.A., D.C., A.F., C.L.-C.)
| | - Delphine Compère
- From the Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR 7241, Paris (M.K., H.D.A., D.C., A.F., C.L.-C.).,Quantum Genomics, Tour Montparnasse, Paris, France (M.K., D.C., F.B.)
| | - Nicolas Inguimbert
- USR 3278 CRIOBE, PSL Research University, EPHEUPVD-CNRS, Université de Perpignan Via Domitia, Laboratoire d'Excellence, France (N.I.)
| | - Adrien Flahault
- From the Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR 7241, Paris (M.K., H.D.A., D.C., A.F., C.L.-C.)
| | - Fabrice Balavoine
- Quantum Genomics, Tour Montparnasse, Paris, France (M.K., D.C., F.B.)
| | - Bernard Roques
- U1022 INSERM/UMR 8258 CNRS, Université Paris-Descartes (Paris V), France (B.R.)
| | - Catherine Llorens-Cortes
- From the Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR 7241, Paris (M.K., H.D.A., D.C., A.F., C.L.-C.)
| |
Collapse
|
32
|
Arendse LB, Danser AHJ, Poglitsch M, Touyz RM, Burnett JC, Llorens-Cortes C, Ehlers MR, Sturrock ED. Novel Therapeutic Approaches Targeting the Renin-Angiotensin System and Associated Peptides in Hypertension and Heart Failure. Pharmacol Rev 2019; 71:539-570. [PMID: 31537750 PMCID: PMC6782023 DOI: 10.1124/pr.118.017129] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite the success of renin-angiotensin system (RAS) blockade by angiotensin-converting enzyme (ACE) inhibitors and angiotensin II type 1 receptor (AT1R) blockers, current therapies for hypertension and related cardiovascular diseases are still inadequate. Identification of additional components of the RAS and associated vasoactive pathways, as well as new structural and functional insights into established targets, have led to novel therapeutic approaches with the potential to provide improved cardiovascular protection and better blood pressure control and/or reduced adverse side effects. The simultaneous modulation of several neurohumoral mediators in key interconnected blood pressure-regulating pathways has been an attractive approach to improve treatment efficacy, and several novel approaches involve combination therapy or dual-acting agents. In addition, increased understanding of the complexity of the RAS has led to novel approaches aimed at upregulating the ACE2/angiotensin-(1-7)/Mas axis to counter-regulate the harmful effects of the ACE/angiotensin II/angiotensin III/AT1R axis. These advances have opened new avenues for the development of novel drugs targeting the RAS to better treat hypertension and heart failure. Here we focus on new therapies in preclinical and early clinical stages of development, including novel small molecule inhibitors and receptor agonists/antagonists, less conventional strategies such as gene therapy to suppress angiotensinogen at the RNA level, recombinant ACE2 protein, and novel bispecific designer peptides.
Collapse
Affiliation(s)
- Lauren B Arendse
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - A H Jan Danser
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - Marko Poglitsch
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - Rhian M Touyz
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - John C Burnett
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - Catherine Llorens-Cortes
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - Mario R Ehlers
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - Edward D Sturrock
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| |
Collapse
|
33
|
A pilot double-blind randomized placebo-controlled crossover pharmacodynamic study of the centrally active aminopeptidase A inhibitor, firibastat, in hypertension. J Hypertens 2019; 37:1722-1728. [DOI: 10.1097/hjh.0000000000002092] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Ferdinand KC, Balavoine F, Besse B, Black HR, Desbrandes S, Dittrich HC, Nesbitt SD. Efficacy and Safety of Firibastat, A First-in-Class Brain Aminopeptidase A Inhibitor, in Hypertensive Overweight Patients of Multiple Ethnic Origins. Circulation 2019; 140:138-146. [DOI: 10.1161/circulationaha.119.040070] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | | | - Bruno Besse
- Quantum Genomics, Paris, France (F.B., B.B., S.D.)
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW To review the data supporting the use of aminopeptidase A (APA) inhibitor prodrugs as centrally acting antihypertensive agents. RECENT FINDINGS Brain renin-angiotensin system (RAS) hyperactivity has been implicated in the development and maintenance of hypertension. Angiotensin III, generated by APA, one of the main effector peptides of the brain RAS, exerts a tonic stimulatory control over blood pressure in hypertensive rats. This identified brain APA as a potential therapeutic target for the treatment of hypertension, leading to the development of RB150/firibastat, an orally active prodrug of the specific and selective APA inhibitor, EC33. When given orally, RB150/firibastat crosses the gastrointestinal and blood-brain barriers, enters the brain, and generates two active molecules of EC33 which inhibit brain APA activity, blocking brain angiotensin III formation, and decrease blood pressure for several hours in hypertensive rats. Orally active APA inhibitor prodrugs, by blocking brain RAS activity, represent promising novel strategy for treating hypertension.
Collapse
|
36
|
Mowry FE, Biancardi VC. Neuroinflammation in hypertension: the renin-angiotensin system versus pro-resolution pathways. Pharmacol Res 2019; 144:279-291. [PMID: 31039397 DOI: 10.1016/j.phrs.2019.04.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/31/2022]
Abstract
Overstimulation of the pro-inflammatory pathways within brain areas responsible for sympathetic outflow is well evidenced as a primary contributing factor to the establishment and maintenance of neurogenic hypertension. However, the precise mechanisms and stimuli responsible for promoting a pro-inflammatory state are not fully elucidated. Recent work has unveiled novel compounds derived from omega-3 polyunsaturated fatty acids (ω-3 PUFAs), termed specialized pro-resolving mediators (SPMs), which actively regulate the resolution of inflammation. Failure or dysregulation of the resolution process has been linked to a variety of chronic inflammatory and neurodegenerative diseases. Given the pathologic role of neuroinflammation in the hypertensive state, SPMs and their associated pathways may provide a link between hypertension and the long-standing association of dietary ω-3 PUFAs with cardioprotection. Herein, we review recent progress in understanding the RAS-driven pathophysiology of neurogenic hypertension, particularly in regards to the chronic low-grade neuroinflammatory response. In addition, we examine the potential for an impaired resolution of inflammation process in the context of hypertension.
Collapse
Affiliation(s)
- Francesca Elisabeth Mowry
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Alabama, USA
| | - Vinicia Campana Biancardi
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Alabama, USA; Center for Neurosciences Research Initiative, Auburn University, Alabama, USA.
| |
Collapse
|
37
|
Central antihypertensive effects of chronic treatment with RB150: an orally active aminopeptidase A inhibitor in deoxycorticosterone acetate-salt rats. J Hypertens 2019; 36:641-650. [PMID: 28968260 DOI: 10.1097/hjh.0000000000001563] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND OBJECTIVE Hyperactivity of the brain renin-angiotensin (Ang) system has been implicated in the development and maintenance of hypertension. AngIII, one of the main effector peptides of the brain renin-Ang system, exerts a tonic stimulatory control over blood pressure (BP) in hypertensive rats. Aminopeptidase A (APA), the enzyme generating brain AngIII, represents a new therapeutic target for the treatment of hypertension. We developed RB150, a prodrug of the specific and selective APA inhibitor, EC33. When given orally in acute treatment in hypertensive rats, RB150 crosses the gastrointestinal and blood-brain barriers, enters the brain, inhibits brain APA activity and decreases BP. We investigate, here, the antihypertensive effects of chronic oral RB150 (50 mg/kg per day) treatment over 24 days in alert hypertensive deoxycorticosterone acetate-salt rats. METHODS We measured variations in Brain APA enzymatic activity, SBP, plasma arginine vasopressin levels and metabolic parameters after RB150 chronic administration. RESULTS This resulted in a significant decrease in SBP over the 24-day treatment period showing that no tolerance to the antihypertensive RB150 effect was observed throughout the treatment period. Chronic RB150 treatment also significantly decreased plasma arginine vasopressin levels and increased diuresis, which participate to BP decrease by reducing the size of fluid compartment. Interestingly, we observed an increased natriuresis without modifying both plasma sodium and potassium levels. CONCLUSION Our results strengthen the interest of developing RB150 as a novel central-acting antihypertensive agent and evaluating its efficacy in salt-sensitive hypertension.
Collapse
|
38
|
Abstract
Purpose of Review Although an independent brain renin-angiotensin system is often assumed to exist, evidence for this concept is weak. Most importantly, renin is lacking in the brain, and both brain angiotensinogen and angiotensin (Ang) II levels are exceptionally low. In fact, brain Ang II levels may well represent uptake of circulating Ang II via Ang II type 1 (AT1) receptors. Recent Findings Nevertheless, novel drugs are now aimed at the brain RAS, i.e., aminopeptidase A inhibitors should block Ang III formation from Ang II, and hence diminish AT1 receptor stimulation by Ang III, while AT2 and Mas receptor agonists are reported to induce neuroprotection after stroke. The endogenous agonists of these receptors and their origin remain unknown. Summary This review addresses the questions whether independent angiotensin generation truly occurs in the brain, what its relationship with the kidney is, and how centrally acting RAS blockers/agonists might work.
Collapse
Affiliation(s)
- Liwei Ren
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
- AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Xifeng Lu
- AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - A H Jan Danser
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.
| |
Collapse
|
39
|
Specific Inhibition of Brain Angiotensin III Formation as a New Strategy for Prevention of Heart Failure After Myocardial Infarction. J Cardiovasc Pharmacol 2019; 73:82-91. [DOI: 10.1097/fjc.0000000000000638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Boitard SE, Marc Y, Keck M, Mougenot N, Agbulut O, Balavoine F, Llorens-Cortes C. Brain renin-angiotensin system blockade with orally active aminopeptidase A inhibitor prevents cardiac dysfunction after myocardial infarction in mice. J Mol Cell Cardiol 2018; 127:215-222. [PMID: 30599150 DOI: 10.1016/j.yjmcc.2018.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/16/2018] [Accepted: 12/17/2018] [Indexed: 11/25/2022]
Abstract
Brain renin-angiotensin system (RAS) hyperactivity has been implicated in sympathetic hyperactivity and progressive left ventricular (LV) dysfunction after myocardial infarction (MI). Angiotensin III, generated by aminopeptidase A (APA), is one of the main effector peptides of the brain RAS in the control of cardiac function. We hypothesized that orally administered firibastat (previously named RB150), an APA inhibitor prodrug, would attenuate heart failure (HF) development after MI in mice, by blocking brain RAS hyperactivity. Two days after MI, adult male CD1 mice were randomized to three groups, for four to eight weeks of oral treatment with vehicle (MI + vehicle), firibastat (150 mg/kg; MI + firibastat) or the angiotensin I converting enzyme inhibitor enalapril (1 mg/kg; MI + enalapril) as a positive control. From one to four weeks post-MI, brain APA hyperactivity occurred, contributing to brain RAS hyperactivity. Firibastat treatment normalized brain APA hyperactivity, with a return to the control values measured in sham group two weeks after MI. Four and six weeks after MI, MI + firibastat mice had a significant lower LV end-diastolic pressure, LV end-systolic diameter and volume, and a higher LV ejection fraction than MI + vehicle mice. Moreover, the mRNA levels of biomarkers of HF (Myh7, Bnp and Anf) were significantly lower following firibastat treatment. For a similar infarct size, the peri-infarct area of MI + firibastat mice displayed lower levels of mRNA for Ctgf and collagen types I and III (markers of fibrosis) than MI + vehicle mice. Thus, chronic oral firibastat administration after MI in mice prevents cardiac dysfunction by normalizing brain APA hyperactivity, and attenuates cardiac hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Solène Emmanuelle Boitard
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR7241, 11 place Marcelin Berthelot, Paris 75005, France; Quantum Genomics, Tour Montparnasse, 33 avenue du Maine, Paris 75015, France
| | - Yannick Marc
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR7241, 11 place Marcelin Berthelot, Paris 75005, France; Quantum Genomics, Tour Montparnasse, 33 avenue du Maine, Paris 75015, France
| | - Mathilde Keck
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR7241, 11 place Marcelin Berthelot, Paris 75005, France; Quantum Genomics, Tour Montparnasse, 33 avenue du Maine, Paris 75015, France
| | | | - Onnik Agbulut
- Biological Adaptation and Ageing, Sorbonne Universités, Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Paris 75005, France
| | - Fabrice Balavoine
- Quantum Genomics, Tour Montparnasse, 33 avenue du Maine, Paris 75015, France
| | - Catherine Llorens-Cortes
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR7241, 11 place Marcelin Berthelot, Paris 75005, France.
| |
Collapse
|
41
|
Involvement of arginine 878 together with Ca2+ in mouse aminopeptidase A substrate specificity for N-terminal acidic amino-acid residues. PLoS One 2017; 12:e0184237. [PMID: 28877217 PMCID: PMC5587309 DOI: 10.1371/journal.pone.0184237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/21/2017] [Indexed: 11/19/2022] Open
Abstract
Aminopeptidase A (APA) is a membrane-bound zinc metalloprotease cleaving, in the brain, the N-terminal aspartyl residue of angiotensin II to generate angiotensin III, which exerts a tonic stimulatory effect on the control of blood pressure in hypertensive animals. Using a refined APA structure derived from the human APA crystal structure, we docked the specific and selective APA inhibitor, EC33 in the presence of Ca2+. We report the presence in the S1 subsite of Arg-887 (Arg-878 in mouse APA), the guanidinium moiety of which established an interaction with the electronegative sulfonate group of EC33. Mutagenic replacement of Arg-878 with an alanine or a lysine residue decreased the affinity of the recombinant enzymes for the acidic substrate, α-L-glutamyl-β-naphthylamide, with a slight decrease in substrate hydrolysis velocity either with or without Ca2+. In the absence of Ca2+, the mutations modified the substrate specificity of APA for the acidic substrate, the mutated enzymes hydrolyzing more efficiently basic and neutral substrates, although the addition of Ca2+ partially restored the acidic substrate specificity. The analysis of the 3D models of the Arg-878 mutated APAs revealed a change in the volume of the S1 subsite, which may impair the binding and/or the optimal positioning of the substrate in the active site as well as its hydrolysis. These findings demonstrate the key role of Arg-878 together with Ca2 + in APA substrate specificity for N-terminal acidic amino acid residues by ensuring the optimal positioning of acidic substrates during catalysis.
Collapse
|
42
|
Huber G, Schuster F, Raasch W. Brain renin-angiotensin system in the pathophysiology of cardiovascular diseases. Pharmacol Res 2017; 125:72-90. [PMID: 28687340 DOI: 10.1016/j.phrs.2017.06.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/28/2017] [Accepted: 06/28/2017] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVD) are among the main causes of death globally and in this context hypertension represents one of the key risk factors for developing a CVD. It is well established that the peripheral renin-angiotensin system (RAS) plays an important role in regulating blood pressure (BP). All components of the classic RAS can also be found in the brain but, in contrast to the peripheral RAS, how the endogenous RAS is involved in modulating cardiovascular effects in the brain is not fully understood yet. It is a complex system that may work differently in diverse areas of the brain and is linked to the peripheral system by the circumventricular organs (CVO), which do not have a blood brain barrier (BBB). In this review, we focus on the brain angiotensin peptides, their interactions with each other, and the consequences in the central nervous system (CNS) concerning cardiovascular control. Additionally, we present potential drug targets in the brain RAS for the treatment of hypertension.
Collapse
Affiliation(s)
- Gianna Huber
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany; CBBM (Center of Brain, Behavior and Metabolism), Lübeck, Germany
| | - Franziska Schuster
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany; CBBM (Center of Brain, Behavior and Metabolism), Lübeck, Germany
| | - Walter Raasch
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany; CBBM (Center of Brain, Behavior and Metabolism), Lübeck, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany.
| |
Collapse
|
43
|
Excess of Aminopeptidase A in the Brain Elevates Blood Pressure via the Angiotensin II Type 1 and Bradykinin B2 Receptors without Dipsogenic Effect. Int J Hypertens 2017; 2017:3967595. [PMID: 28421141 PMCID: PMC5380851 DOI: 10.1155/2017/3967595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/20/2017] [Accepted: 02/27/2017] [Indexed: 01/19/2023] Open
Abstract
Aminopeptidase A (APA) cleaves angiotensin (Ang) II, kallidin, and other related peptides. In the brain, it activates the renin angiotensin system and causes hypertension. Limited data are available on the dipsogenic effect of APA and pressor effect of degraded peptides of APA such as bradykinin. Wistar-Kyoto rats received intracerebroventricular (icv) APA in a conscious, unrestrained state after pretreatment with (i) vehicle, (ii) 80 μg of telmisartan, an Ang II type-1 (AT1) receptor blocker, (iii) 800 nmol of amastatin, an aminopeptidase inhibitor, and (iv) 1 nmol of HOE-140, a bradykinin B2 receptor blocker. Icv administration of 400 and 800 ng of APA increased blood pressure by 12.6 ± 3.0 and 19.0 ± 3.1 mmHg, respectively. APA did not evoke drinking behavior. Pressor response to APA was attenuated on pretreatment with telmisartan (vehicle: 22.1 ± 2.2 mmHg versus telmisartan: 10.4 ± 3.2 mmHg). Pressor response to APA was also attenuated with amastatin and HOE-140 (vehicle: 26.5 ± 1.1 mmHg, amastatin: 14.4 ± 4.2 mmHg, HOE-140: 16.4 ± 2.2 mmHg). In conclusion, APA increase in the brain evokes a pressor response via enzymatic activity without dipsogenic effect. AT1 receptors and B2 receptors in the brain may contribute to the APA-induced pressor response.
Collapse
|
44
|
Ghazi L, Drawz P. Advances in understanding the renin-angiotensin-aldosterone system (RAAS) in blood pressure control and recent pivotal trials of RAAS blockade in heart failure and diabetic nephropathy. F1000Res 2017; 6. [PMID: 28413612 PMCID: PMC5365219 DOI: 10.12688/f1000research.9692.1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/13/2017] [Indexed: 12/11/2022] Open
Abstract
The renin-angiotensin-aldosterone system (RAAS) plays a fundamental role in the physiology of blood pressure control and the pathophysiology of hypertension (HTN) with effects on vascular tone, sodium retention, oxidative stress, fibrosis, sympathetic tone, and inflammation. Fortunately, RAAS blocking agents have been available to treat HTN since the 1970s and newer medications are being developed. In this review, we will (1) examine new anti-hypertensive medications affecting the RAAS, (2) evaluate recent studies that help provide a better understanding of which patients may be more likely to benefit from RAAS blockade, and (3) review three recent pivotal randomized trials that involve newer RAAS blocking agents and inform clinical practice.
Collapse
Affiliation(s)
- Lama Ghazi
- Division of Renal Disease and Hypertension, Department of Medicine, University of Minnesota, Minnesota, MN, USA
| | - Paul Drawz
- Division of Renal Disease and Hypertension, Department of Medicine, University of Minnesota, Minnesota, MN, USA
| |
Collapse
|
45
|
Morais RL, Hilzendeger AM, Visniauskas B, Todiras M, Alenina N, Mori MA, Araújo RC, Nakaie CR, Chagas JR, Carmona AK, Bader M, Pesquero JB. High aminopeptidase A activity contributes to blood pressure control in ob/ob mice by AT 2 receptor-dependent mechanism. Am J Physiol Heart Circ Physiol 2016; 312:H437-H445. [PMID: 27940965 DOI: 10.1152/ajpheart.00485.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 11/22/2022]
Abstract
Obesity is assumed to be a major cause of human essential hypertension; however, the mechanisms responsible for weight-related increase in blood pressure (BP) are not fully understood. The prevalence of hypertension induced by obesity has grown over the years, and the role of the renin-angiotensin-aldosterone system (RAAS) in this process continues to be elucidated. In this scenario, the ob/ob mice are a genetic obesity model generally used for metabolic disorder studies. These mice are normotensive even though they present several metabolic conditions that predispose them to hypertension. Although the normotensive trait in these mice is associated with the poor activation of sympathetic nervous system by the lack of leptin, we demonstrated that ob/ob mice present massively increased aminopeptidase A (APA) activity in the circulation. APA enzyme metabolizes angiotensin (ANG) II into ANG III, a peptide associated with intrarenal angiotensin type 2 (AT2) receptor activation and induction of natriuresis. In these mice, we found increased ANG-III levels in the circulation, high AT2 receptor expression in the kidney, and enhanced natriuresis. AT2 receptor blocking and APA inhibition increased BP, suggesting the ANG III-AT2 receptor axis as a complementary BP control mechanism. Circulating APA activity was significantly reduced by weight loss independently of leptin, indicating the role of fat tissue in APA production. Therefore, in this study we provide new data supporting the role of APA in BP control in ob/ob mouse strain. These findings improve our comprehension about obesity-related hypertension and suggest new tools for its treatment.NEW & NOTEWORTHY In this study, we reported an increased angiotensin III generation in the circulation of ob/ob mice caused by a high aminopeptidase A activity. These findings are associated with an increased natriuresis found in these mice and support the role of renin-angiotensin-aldosterone system as additional mechanism regulating blood pressure in this genetic obese strain.
Collapse
Affiliation(s)
- Rafael L Morais
- Departamento de Biofísica, Universidade Federal de São Paulo, Campus São Paulo, São Paulo, Brazil
| | - Aline M Hilzendeger
- Departamento de Biofísica, Universidade Federal de São Paulo, Campus São Paulo, São Paulo, Brazil
| | - Bruna Visniauskas
- Departamento de Psicobiologia, Universidade Federal de São Paulo, Campus São Paulo, São Paulo, Brazil
| | - Mihail Todiras
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | | | - Marcelo A Mori
- Departamento de Biofísica, Universidade Federal de São Paulo, Campus São Paulo, São Paulo, Brazil
| | - Ronaldo C Araújo
- Departamento de Biofísica, Universidade Federal de São Paulo, Campus São Paulo, São Paulo, Brazil
| | - Clovis R Nakaie
- Departamento de Biofísica, Universidade Federal de São Paulo, Campus São Paulo, São Paulo, Brazil
| | - Jair R Chagas
- Departamento de Psicobiologia, Universidade Federal de São Paulo, Campus São Paulo, São Paulo, Brazil
| | - Adriana K Carmona
- Departamento de Biofísica, Universidade Federal de São Paulo, Campus São Paulo, São Paulo, Brazil
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Charité University Medicine Berlin, Berlin, Germany.,German Center for Cardiovascular Research, Berlin, Germany; and.,Institute for Biology, University of Lübeck, Lübeck, Germany
| | - João B Pesquero
- Departamento de Biofísica, Universidade Federal de São Paulo, Campus São Paulo, São Paulo, Brazil;
| |
Collapse
|
46
|
Gerbier R, Alvear-Perez R, Margathe JF, Flahault A, Couvineau P, Gao J, De Mota N, Dabire H, Li B, Ceraudo E, Hus-Citharel A, Esteoulle L, Bisoo C, Hibert M, Berdeaux A, Iturrioz X, Bonnet D, Llorens-Cortes C. Development of original metabolically stable apelin-17 analogs with diuretic and cardiovascular effects. FASEB J 2016; 31:687-700. [PMID: 27815337 DOI: 10.1096/fj.201600784r] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/24/2016] [Indexed: 12/16/2022]
Abstract
Apelin, a (neuro)vasoactive peptide, plays a prominent role in controlling cardiovascular functions and water balance. Because the in vivo apelin half-life is in the minute range, we aimed to identify metabolically stable apelin-17 (K17F) analogs. We generated P92 by classic chemical substitutions and LIT01-196 by original addition of a fluorocarbon chain to the N terminus of K17F. Both analogs were much more stable in plasma (half-life >24 h for LIT01-196) than K17F (4.6 min). Analogs displayed a subnanomolar affinity for the apelin receptor and behaved as full agonists with regard to cAMP production, ERK phosphorylation, and apelin receptor internalization. Ex vivo, these compounds induced vasorelaxation of rat aortas and glomerular arterioles, respectively, precontracted with norepinephrine and angiotensin II, and increased cardiac contractility. In vivo, after intracerebroventricular administration in water-deprived mice, P92 and LIT01-196 were 6 and 160 times, respectively, more efficient at inhibiting systemic vasopressin release than K17F. Administered intravenously (nmol/kg range) in normotensive rats, these analogs potently increased urine output and induced a profound and sustained decrease in arterial blood pressure. In summary, these new compounds, which favor diuresis and improve cardiac contractility while reducing vascular resistances, represent promising candidates for the treatment of heart failure and water retention/hyponatremic disorders.-Gerbier, R., Alvear-Perez, R., Margathe, J.-F., Flahault, A., Couvineau, P., Gao, J., De Mota, N., Dabire, H., Li, B., Ceraudo, E., Hus-Citharel, A., Esteoulle, L., Bisoo, C., Hibert, M., Berdeaux, A., Iturrioz, X., Bonnet, D., Llorens-Cortes, C. Development of original metabolically stable apelin-17 analogs with diuretic and cardiovascular effects.
Collapse
Affiliation(s)
- Romain Gerbier
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology, INSERM Unité 1050, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241, College de France, Paris, France
| | - Rodrigo Alvear-Perez
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology, INSERM Unité 1050, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241, College de France, Paris, France
| | - Jean-Francois Margathe
- Laboratory of Therapeutic Innovation, Unité Mixte de Recherche 7200, Centre National de la Recherche Scientifique, Faculty of Pharmacy, University of Strasbourg, Illkirch, France; and
| | - Adrien Flahault
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology, INSERM Unité 1050, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241, College de France, Paris, France
| | - Pierre Couvineau
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology, INSERM Unité 1050, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241, College de France, Paris, France
| | - Ji Gao
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology, INSERM Unité 1050, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241, College de France, Paris, France
| | - Nadia De Mota
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology, INSERM Unité 1050, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241, College de France, Paris, France
| | - Hubert Dabire
- INSERM Unité 955, Faculty of Medicine, University of Paris Est, Créteil, France
| | - Bo Li
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology, INSERM Unité 1050, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241, College de France, Paris, France
| | - Emilie Ceraudo
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology, INSERM Unité 1050, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241, College de France, Paris, France
| | - Annette Hus-Citharel
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology, INSERM Unité 1050, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241, College de France, Paris, France
| | - Lucie Esteoulle
- Laboratory of Therapeutic Innovation, Unité Mixte de Recherche 7200, Centre National de la Recherche Scientifique, Faculty of Pharmacy, University of Strasbourg, Illkirch, France; and
| | - Cynthia Bisoo
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology, INSERM Unité 1050, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241, College de France, Paris, France
| | - Marcel Hibert
- Laboratory of Therapeutic Innovation, Unité Mixte de Recherche 7200, Centre National de la Recherche Scientifique, Faculty of Pharmacy, University of Strasbourg, Illkirch, France; and
| | - Alain Berdeaux
- INSERM Unité 955, Faculty of Medicine, University of Paris Est, Créteil, France
| | - Xavier Iturrioz
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology, INSERM Unité 1050, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241, College de France, Paris, France
| | - Dominique Bonnet
- Laboratory of Therapeutic Innovation, Unité Mixte de Recherche 7200, Centre National de la Recherche Scientifique, Faculty of Pharmacy, University of Strasbourg, Illkirch, France; and
| | - Catherine Llorens-Cortes
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology, INSERM Unité 1050, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241, College de France, Paris, France;
| |
Collapse
|
47
|
Pitra S, Feng Y, Stern JE. Mechanisms underlying prorenin actions on hypothalamic neurons implicated in cardiometabolic control. Mol Metab 2016; 5:858-868. [PMID: 27688999 PMCID: PMC5034613 DOI: 10.1016/j.molmet.2016.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 02/07/2023] Open
Abstract
Background Hypertension and obesity are highly interrelated diseases, being critical components of the metabolic syndrome. Despite the growing prevalence of this syndrome in the world population, efficient therapies are still missing. Thus, identification of novel targets and therapies are warranted. An enhanced activity of the hypothalamic renin-angiotensin system (RAS), including the recently discovered prorenin (PR) and its receptor (PRR), has been implicated as a common mechanism underlying aberrant sympatho-humoral activation that contributes to both metabolic and cardiovascular dysregulation in the metabolic syndrome. Still, the identification of precise neuronal targets, cellular mechanisms and signaling pathways underlying PR/PRR actions in cardiovascular- and metabolic related hypothalamic nuclei remain unknown. Methods and results Using a multidisciplinary approach including patch-clamp electrophysiology, live calcium imaging and immunohistochemistry, we aimed to elucidate cellular mechanisms underlying PR/PRR actions within the hypothalamic supraoptic (SON) and paraventricular nucleus (PVN), key brain areas previously involved in cardiometabolic regulation. We show for the first time that PRR is expressed in magnocellular neurosecretory cells (MNCs), and to a lesser extent, in presympathetic PVN neurons (PVNPS). Moreover, we show that while PRR activation efficiently stimulates the firing activity of both MNCs and PVNPS neurons, these effects involved AngII-independent and AngII-dependent mechanisms, respectively. In both cases however, PR excitatory effects involved an increase in intracellular Ca2+ levels and a Ca2+-dependent inhibition of a voltage-gated K+ current. Conclusions We identified novel neuronal targets and cellular mechanisms underlying PR/PRR actions in critical hypothalamic neurons involved in cardiometabolic regulation. This fundamental mechanistic information regarding central PR/PRR actions is essential for the development of novel RAS-based therapeutic targets for the treatment of cardiometabolic disorders in obesity and hypertension. PRR is expressed in SON and PVN neurosecretory and presympathetic neurons. PRR activation stimulates firing activity of SON and PVN neurons. PR/PRR effects on neurosecretory neurons are AngII-independent. PR/PRR effects on presympathetic neurons are AngII-dependent. PR inhibits a voltage-gated K+ current in a Ca2+-dependent manner.
Collapse
Affiliation(s)
- Soledad Pitra
- Department of Physiology, Medical College of Georgia, Augusta University, United States
| | - Yumei Feng
- Departments of Pharmacology, Physiology and Cell Biology, Center for Cardiovascular Research, University of Nevada School of Medicine, United States
| | - Javier E Stern
- Department of Physiology, Medical College of Georgia, Augusta University, United States.
| |
Collapse
|
48
|
Lijnen PJ, Petrov VV, Turner M, Fagard RH. Collagen Production in Cardiac Fibroblasts During Inhibition of Aminopeptidase B. J Renin Angiotensin Aldosterone Syst 2016; 6:69-77. [PMID: 16470485 DOI: 10.3317/jraas.2005.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Objective. To determine whether the aminopeptidase B inhibitor, arphamenine A, could affect collagen production and expression in control and TGF-ß1-treated cardiac fibroblasts. Design and Methods. Cardiac fibroblasts from passage 2 from normal male adult rats were cultured to confluency and incubated with and without 600 pmol/l TGF-ß1 for 2 days in serum-free Dulbecco's modified Eagle's medium and then incubated with 100 µmol/l arphamenine A for 1 day in this medium added ascorbic acid, ß-aminopropionitrile and titriated proline. Soluble collagen was measured in the conditioned medium and non-soluble collagen in the cell layer. Aminopeptidase activity was estimated by spectrophotometric determination of the liberation of p-nitroaniline from alanine- or arginine-p-nitroanilide. Matrix metalloproteinase (MMP) and lysyl oxidase activity were assayed in the conditioned medium. A semi-quantitative reverse transcriptase- polymerase chain reaction was used to examine the expression of lysyl oxidase and collagen type I and III. Results. Arphamenine A dose-dependently inhibited basal and TGF-ß 1-stimulated aminopeptidase activity. Arphamenine A reduced soluble and non-soluble collagen production in control and TGF-ß1-treated cardiac fibroblasts, while it decreased collagen type I and III expression only in TGF-ß1-treated fibroblasts. Lysyl oxidase, MMP-1 and MMP-2 activity were inhibited by arphamenine A in the conditioned media of control and TGF-ß1treated cardiac fibroblasts. Conclusions. Our data show that the specific aminopeptidase B inhibitor, arphamenine A, reduces collagen production in cardiac fibroblasts and that this reduction is accompanied by a pronounced inhibition of lysyl oxidase.
Collapse
Affiliation(s)
- Paul J Lijnen
- Department of Cardiovascular Diseases, Katholoke Universiteit Leuven (K.U.Leuven) Belgium.
| | | | | | | |
Collapse
|
49
|
Colombo M, Girard E, Franzetti B. Tuned by metals: the TET peptidase activity is controlled by 3 metal binding sites. Sci Rep 2016; 6:20876. [PMID: 26853450 PMCID: PMC4745047 DOI: 10.1038/srep20876] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 01/11/2016] [Indexed: 11/09/2022] Open
Abstract
TET aminopeptidases are dodecameric particles shared in the three life domains involved in various biological processes, from carbon source provider in archaea to eye-pressure regulation in humans. Each subunit contains a dinuclear metal site (M1 and M2) responsible for the enzyme catalytic activity. However, the role of each metal ion is still uncharacterized. Noteworthy, while mesophilic TETs are activated by Mn(2+), hyperthermophilic TETs prefers Co(2+). Here, by means of anomalous x-ray crystallography and enzyme kinetics measurements of the TET3 aminopeptidase from the hyperthermophilic organism Pyrococcus furiosus (PfTET3), we show that M2 hosts the catalytic activity of the enzyme, while M1 stabilizes the TET3 quaternary structure and controls the active site flexibility in a temperature dependent manner. A new third metal site (M3) was found in the substrate binding pocket, modulating the PfTET3 substrate preferences. These data show that TET activity is tuned by the molecular interplay among three metal sites.
Collapse
Affiliation(s)
- Matteo Colombo
- CNRS, IBS, F-38027 Grenoble, France.,CEA, DSV, IBS, F-38027 Grenoble, France.,Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France
| | - Eric Girard
- CNRS, IBS, F-38027 Grenoble, France.,CEA, DSV, IBS, F-38027 Grenoble, France.,Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France
| | - Bruno Franzetti
- CNRS, IBS, F-38027 Grenoble, France.,CEA, DSV, IBS, F-38027 Grenoble, France.,Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France
| |
Collapse
|
50
|
de Souza Mecawi A, Ruginsk SG, Elias LLK, Varanda WA, Antunes‐Rodrigues J. Neuroendocrine Regulation of Hydromineral Homeostasis. Compr Physiol 2015; 5:1465-516. [DOI: 10.1002/cphy.c140031] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|