1
|
Goh FJ, Huang CY, Derevnina L, Wu CH. NRC Immune receptor networks show diversified hierarchical genetic architecture across plant lineages. THE PLANT CELL 2024; 36:3399-3418. [PMID: 38922300 PMCID: PMC11371147 DOI: 10.1093/plcell/koae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/28/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
Plants' complex immune systems include nucleotide-binding domain and leucine-rich repeat-containing (NLR) proteins, which help recognize invading pathogens. In solanaceous plants, the NRC (NLR required for cell death) family includes helper NLRs that form a complex genetic network with multiple sensor NLRs to provide resistance against pathogens. However, the evolution and function of NRC networks outside solanaceous plants are currently unclear. Here, we conducted phylogenomic and macroevolutionary analyses comparing NLRs identified from different asterid lineages and found that NRC networks expanded significantly in most lamiids but not in Ericales and campanulids. Using transient expression assays in Nicotiana benthamiana, we showed that NRC networks are simple in Ericales and campanulids, but have high complexity in lamiids. Phylogenetic analyses grouped the NRC helper NLRs into three NRC0 subclades that are conserved, and several family-specific NRC subclades of lamiids that show signatures of diversifying selection. Functional analyses revealed that members of the NRC0 subclades are partially interchangeable, whereas family-specific NRC members in lamiids lack interchangeability. Our findings highlight the distinctive evolutionary patterns of the NRC networks in asterids and provide potential insights into transferring disease resistance across plant lineages.
Collapse
Affiliation(s)
- Foong-Jing Goh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University and Academia Sinica, Taipei 115201, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402202, Taiwan
| | - Ching-Yi Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Lida Derevnina
- Crop Science Centre, Department of Plant Science, University of Cambridge, Cambridge CB3 0LE, UK
| | - Chih-Hang Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University and Academia Sinica, Taipei 115201, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 402202, Taiwan
| |
Collapse
|
2
|
Manzoor S, Nabi SU, Rather TR, Gani G, Mir ZA, Wani AW, Ali S, Tyagi A, Manzar N. Advancing crop disease resistance through genome editing: a promising approach for enhancing agricultural production. Front Genome Ed 2024; 6:1399051. [PMID: 38988891 PMCID: PMC11234172 DOI: 10.3389/fgeed.2024.1399051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/22/2024] [Indexed: 07/12/2024] Open
Abstract
Modern agriculture has encountered several challenges in achieving constant yield stability especially due to disease outbreaks and lack of long-term disease-resistant crop cultivars. In the past, disease outbreaks in economically important crops had a major impact on food security and the economy. On the other hand climate-driven emergence of new pathovars or changes in their host specificity further poses a serious threat to sustainable agriculture. At present, chemical-based control strategies are frequently used to control microbial pathogens and pests, but they have detrimental impact on the environment and also resulted in the development of resistant phyto-pathogens. As a replacement, cultivating engineered disease-resistant crops can help to minimize the negative impact of regular pesticides on agriculture and the environment. Although traditional breeding and genetic engineering have been instrumental in crop disease improvement but they have certain limitations such as labour intensity, time consumption, and low efficiency. In this regard, genome editing has emerged as one of the potential tools for improving disease resistance in crops by targeting multiple traits with more accuracy and efficiency. For instance, genome editing techniques, such as CRISPR/Cas9, CRISPR/Cas13, base editing, TALENs, ZFNs, and meganucleases, have proved successful in improving disease resistance in crops through targeted mutagenesis, gene knockouts, knockdowns, modifications, and activation of target genes. CRISPR/Cas9 is unique among these techniques because of its remarkable efficacy, low risk of off-target repercussions, and ease of use. Some primary targets for developing CRISPR-mediated disease-resistant crops are host-susceptibility genes (the S gene method), resistance genes (R genes) and pathogen genetic material that prevents their development, broad-spectrum disease resistance. The use of genome editing methods has the potential to notably ameliorate crop disease resistance and transform agricultural practices in the future. This review highlights the impact of phyto-pathogens on agricultural productivity. Next, we discussed the tools for improving disease resistance while focusing on genome editing. We provided an update on the accomplishments of genome editing, and its potential to improve crop disease resistance against bacterial, fungal and viral pathogens in different crop systems. Finally, we highlighted the future challenges of genome editing in different crop systems for enhancing disease resistance.
Collapse
Affiliation(s)
- Subaya Manzoor
- Division of Plant Pathology, FOA-SKUAST-K, Wadura, Srinagar, India
| | - Sajad Un Nabi
- ICAR-Central Institute of Temperate Horticulture, Srinagar, India
| | | | - Gousia Gani
- Division of Basic Science and Humanities, FOA-SKUAST-K, Wadura, Srinagar, India
| | - Zahoor Ahmad Mir
- Department of Plant Science and Agriculture, University of Manitoba, Winnipeg, MB, Canada
| | - Ab Waheed Wani
- Department of Horticulture, LPU, Jalander, Punjab, India
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Nazia Manzar
- Plant Pathology Lab, ICAR-National Bureau of Agriculturally Important Microorganism, Mau, Uttar Pradesh, India
| |
Collapse
|
3
|
Ro N, Lee GA, Ko HC, Oh H, Lee S, Haile M, Lee J. Exploring Disease Resistance in Pepper ( Capsicum spp.) Germplasm Collection Using Fluidigm SNP Genotyping. PLANTS (BASEL, SWITZERLAND) 2024; 13:1344. [PMID: 38794415 PMCID: PMC11125113 DOI: 10.3390/plants13101344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
This study utilized a diverse Capsicum accessions (5658) sourced from various species and geographical regions, deposited at the National Agrobiodiversity Center, Genebank. We employed 19 SNP markers through a Fluidigm genotyping system and screened these accessions against eight prevalent diseases of pepper. This study revealed accessions resistant to individual diseases as well as those exhibiting resistance to multiple diseases, including bacterial spot, anthracnose, powdery mildew, phytophthora root rot, and potyvirus. The C. chacoense accessions were identified as resistant materials against bacterial spot, anthracnose, powdery mildew, and phytophthora root rot, underscoring the robust natural defense mechanisms inherent in the wild Capsicum species and its potential uses as sources of resistance for breeding. C. baccatum species also demonstrated to be a promising source of resistance to major pepper diseases. Generally, disease-resistant germplasm has been identified from various Capsicum species. Originating from diverse locations such as Argentina, Bolivia, and the United Kingdom, these accessions consistently demonstrated resistance, indicating the widespread prevalence of disease-resistant traits across varied environments. Additionally, we selected ten pepper accessions based on their resistance to multiple diseases, including CMV, Phytophthora root rot, potyviruses, and TSWV, sourced from diverse geographical regions like Hungary, Peru, the United States, and the Netherlands. This comprehensive analysis provides valuable insights into disease resistance in Capsicum, crucial for fostering sustainable agricultural practices and advancing crop improvement through breeding strategies.
Collapse
Affiliation(s)
- Nayoung Ro
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (N.R.); (G.-A.L.); (H.-C.K.); (H.O.)
| | - Gi-An Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (N.R.); (G.-A.L.); (H.-C.K.); (H.O.)
| | - Ho-Cheol Ko
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (N.R.); (G.-A.L.); (H.-C.K.); (H.O.)
| | - Hyeonseok Oh
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (N.R.); (G.-A.L.); (H.-C.K.); (H.O.)
| | - Sukyeung Lee
- International Technology Cooperation Center, Rural Development Administration, Jeonju 54875, Republic of Korea;
| | - Mesfin Haile
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (N.R.); (G.-A.L.); (H.-C.K.); (H.O.)
| | - Jundae Lee
- Department of Horticulture, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
4
|
Jones JDG, Staskawicz BJ, Dangl JL. The plant immune system: From discovery to deployment. Cell 2024; 187:2095-2116. [PMID: 38670067 DOI: 10.1016/j.cell.2024.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/08/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Plant diseases cause famines, drive human migration, and present challenges to agricultural sustainability as pathogen ranges shift under climate change. Plant breeders discovered Mendelian genetic loci conferring disease resistance to specific pathogen isolates over 100 years ago. Subsequent breeding for disease resistance underpins modern agriculture and, along with the emergence and focus on model plants for genetics and genomics research, has provided rich resources for molecular biological exploration over the last 50 years. These studies led to the identification of extracellular and intracellular receptors that convert recognition of extracellular microbe-encoded molecular patterns or intracellular pathogen-delivered virulence effectors into defense activation. These receptor systems, and downstream responses, define plant immune systems that have evolved since the migration of plants to land ∼500 million years ago. Our current understanding of plant immune systems provides the platform for development of rational resistance enhancement to control the many diseases that continue to plague crop production.
Collapse
Affiliation(s)
- Jonathan D G Jones
- Sainsbury Lab, University of East Anglia, Colney Lane, Norwich NR4 7UH, UK.
| | - Brian J Staskawicz
- Department of Plant and Microbial Biology and Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina at Chapel Hill and Howard Hughes Medical Institute, Chapel Hill, NC 27599, USA
| |
Collapse
|
5
|
Meziadi C, Alvarez-Diaz JC, Thareau V, Gratias A, Marande W, Soler-Garzon A, Miklas PN, Pflieger S, Geffroy V. Fine-mapping and evolutionary history of R-BPMV, a dominant resistance gene to Bean pod mottle virus in Phaseolus vulgaris L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 137:8. [PMID: 38092992 DOI: 10.1007/s00122-023-04513-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023]
Abstract
KEY MESSAGE R-BPMV is located within a recently expanded TNL cluster in the Phaseolus genus with suppressed recombination and known for resistance to multiple pathogens including potyviruses controlled by the I gene. Bean pod mottle virus (BPMV) is a comovirus that infects common bean and legumes in general. BPMV is distributed throughout the world and is a major threat on soybean, a closely related species of common bean. In common bean, BAT93 was reported to carry the R-BPMV resistance gene conferring resistance to BPMV and linked with the I resistance gene. To fine map R-BPMV, 182 recombinant inbred lines (RILs) derived from the cross BAT93 × JaloEEP558 were genotyped with polymerase chain reaction (PCR)-based markers developed using genome assemblies from G19833 and BAT93, as well as BAT93 BAC clone sequences. Analysis of RILs carrying key recombination events positioned R-BPMV to a target region containing at least 16 TIR-NB-LRR (TNL) sequences in BAT93. Because the I cluster presents a suppression of recombination and a large number of repeated sequences, none of the 16 TNLs could be excluded as R-BPMV candidate gene. The evolutionary history of the TNLs for the I cluster were reconstructed using microsynteny and phylogenetic analyses within the legume family. A single I TNL was present in Medicago truncatula and lost in soybean, mirroring the absence of complete BPMV resistance in soybean. Amplification of TNLs in the I cluster predates the divergence of the Phaseolus species, in agreement with the emergence of R-BPMV before the separation of the common bean wild centers of diversity. This analysis provides PCR-based markers useful in marker-assisted selection (MAS) and laid the foundation for cloning of R-BPMV resistance gene in order to transfer the resistance into soybean.
Collapse
Affiliation(s)
- Chouaïb Meziadi
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, 91190, Gif Sur Yvette, France
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Cité, CNRS, INRAE, 91190, Gif Sur Yvette, Rue Noetzlin, 91405, Orsay, France
| | - Juan-Camilo Alvarez-Diaz
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, 91190, Gif Sur Yvette, France
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Cité, CNRS, INRAE, 91190, Gif Sur Yvette, Rue Noetzlin, 91405, Orsay, France
| | - Vincent Thareau
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, 91190, Gif Sur Yvette, France
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Cité, CNRS, INRAE, 91190, Gif Sur Yvette, Rue Noetzlin, 91405, Orsay, France
| | - Ariane Gratias
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, 91190, Gif Sur Yvette, France
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Cité, CNRS, INRAE, 91190, Gif Sur Yvette, Rue Noetzlin, 91405, Orsay, France
| | | | - Alvaro Soler-Garzon
- Irrigated Agriculture Research and Extension Center, Washington State Univ, Prosser, WA, USA
| | - Phillip N Miklas
- Grain Legume Genetics and Physiology Research Unit, USDA ARS, Prosser, WA, USA
| | - Stéphanie Pflieger
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, 91190, Gif Sur Yvette, France
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Cité, CNRS, INRAE, 91190, Gif Sur Yvette, Rue Noetzlin, 91405, Orsay, France
| | - Valérie Geffroy
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, 91190, Gif Sur Yvette, France.
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Cité, CNRS, INRAE, 91190, Gif Sur Yvette, Rue Noetzlin, 91405, Orsay, France.
| |
Collapse
|
6
|
Adhikari P, Siddique MI, Louws FJ, Panthee DR. Identification of quantitative trait loci associated with bacterial spot race T4 resistance in intra-specific populations of tomato (Solanum lycopersicum L.). PLoS One 2023; 18:e0295551. [PMID: 38079392 PMCID: PMC10712892 DOI: 10.1371/journal.pone.0295551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Bacterial spot of tomato is a serious disease caused by at least four species and four races of Xanthomonas- X. euvesicatoria (race T1), X. vesicatoria (race T2), X. perforans (race T3 and T4), and X. gardneri, with X. perforans race T4 being predominant in the southeast USA. Practical management of this disease is challenging because of the need for more effective chemicals and commercially resistant cultivars. Identification of genetic resistance is the first step to developing a disease-resistant variety. The objective of this study was to identify quantitative trait loci (QTL) conferring resistance to race T4 in two independent recombinant inbred lines (RILs) populations NC 10204 (intra-specific) and NC 13666 (interspecific) developed by crossing NC 30P x NC22L-1(2008) and NC 1CELBR x PI 270443, respectively. Seven QTLs on chromosomes 2, 6, 7, 11, and 12 were identified in NC 10204. The QTL on chromosome 6 explained the highest percentage of phenotypic variance (up to 21.3%), followed by the QTL on chromosome 12 (up to 8.2%). On the other hand, the QTLs on chromosomes 1, 3, 4, 6, 7, 8, 9, and 11 were detected in NC 13666. The QTLs on chromosomes 6, 7, and 11 were co-located in NC 10204 and NC 13666 populations. The donor of the resistance associated with these QTL in NC 10204 is a released breeding line with superior horticultural traits. Therefore, both the donor parent and the QTL information will be useful in tomato breeding programs as there will be minimal linkage drag associated with the bacterial spot resistance.
Collapse
Affiliation(s)
- Pragya Adhikari
- Department of Horticultural Science, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, Mills River, North Carolina, United States of America
- Bayer Crop Science, Huxley, Iowa, United States of America
| | - Muhammad Irfan Siddique
- Department of Horticultural Science, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, Mills River, North Carolina, United States of America
| | - Frank J. Louws
- Department of Horticultural Science, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, Mills River, North Carolina, United States of America
- Department of Horticultural Science and Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Dilip R. Panthee
- Department of Horticultural Science, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, Mills River, North Carolina, United States of America
| |
Collapse
|
7
|
Contreras MP, Lüdke D, Pai H, Toghani A, Kamoun S. NLR receptors in plant immunity: making sense of the alphabet soup. EMBO Rep 2023; 24:e57495. [PMID: 37602936 PMCID: PMC10561179 DOI: 10.15252/embr.202357495] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/22/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023] Open
Abstract
Plants coordinately use cell-surface and intracellular immune receptors to perceive pathogens and mount an immune response. Intracellular events of pathogen recognition are largely mediated by immune receptors of the nucleotide binding and leucine rich-repeat (NLR) classes. Upon pathogen perception, NLRs trigger a potent broad-spectrum immune reaction, usually accompanied by a form of programmed cell death termed the hypersensitive response. Some plant NLRs act as multifunctional singleton receptors which combine pathogen detection and immune signaling. However, NLRs can also function in higher order pairs and networks of functionally specialized interconnected receptors. In this article, we cover the basic aspects of plant NLR biology with an emphasis on NLR networks. We highlight some of the recent advances in NLR structure, function, and activation and discuss emerging topics such as modulator NLRs, pathogen suppression of NLRs, and NLR bioengineering. Multi-disciplinary approaches are required to disentangle how these NLR immune receptor pairs and networks function and evolve. Answering these questions holds the potential to deepen our understanding of the plant immune system and unlock a new era of disease resistance breeding.
Collapse
Affiliation(s)
| | - Daniel Lüdke
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| | - Hsuan Pai
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| | | | - Sophien Kamoun
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| |
Collapse
|
8
|
Szabó Z, Balogh M, Domonkos Á, Csányi M, Kaló P, Kiss GB. The bs5 allele of the susceptibility gene Bs5 of pepper (Capsicum annuum L.) encoding a natural deletion variant of a CYSTM protein conditions resistance to bacterial spot disease caused by Xanthomonas species. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:64. [PMID: 36943531 PMCID: PMC10030403 DOI: 10.1007/s00122-023-04340-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/02/2023] [Indexed: 05/09/2023]
Abstract
KEY MESSAGE The bs5 resistance gene against bacterial spot was identified by map-based cloning. The recessive bs5 gene of pepper (Capsicum annuum L.) conditions a non-hypersensitive resistance trait, characterized by a slightly swollen, pale green, photosynthetically active leaf tissue, following Xanthomonas euvesicatoria infection. The isolation of the bs5 gene by map-based cloning revealed that the bs5 protein was shorter by 2 amino acids as compared to the wild type Bs5 protein. The natural 2 amino acid deletion occurred in the cysteine-rich transmembrane domain of the tail-anchored (TA) protein, Ca_CYSTM1. The protein products of the wild type Bs5 and mutant bs5 genes were shown to be located in the cell membrane, indicating an unknown function in this membrane compartment. Successful infection of the Bs5 pepper lines was abolished by the 6 bp deletion in the TM encoding domain of the Ca_CYSTM1 gene in bs5 homozygotes, suggesting, that the resulting resistance might be explained by the lack of entry of the Xanthomonas specific effector molecules into the plant cells.
Collapse
Affiliation(s)
- Zoltán Szabó
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. U. 4., 2100, Gödöllő, Hungary.
| | - Márta Balogh
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. U. 4., 2100, Gödöllő, Hungary
| | - Ágota Domonkos
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. U. 4., 2100, Gödöllő, Hungary
| | - Márta Csányi
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. U. 4., 2100, Gödöllő, Hungary
| | - Péter Kaló
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. U. 4., 2100, Gödöllő, Hungary
- Institute of Plant Biology, Biological Research Center, Eötvös Lóránd Research Network, Szeged, Hungary
| | - György B Kiss
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. U. 4., 2100, Gödöllő, Hungary
- AMBIS Biotechnology Research and Development Ltd., Budapest, Hungary
| |
Collapse
|
9
|
Oh S, Kim S, Park HJ, Kim MS, Seo MK, Wu CH, Lee HA, Kim HS, Kamoun S, Choi D. Nucleotide-binding leucine-rich repeat network underlies nonhost resistance of pepper against the Irish potato famine pathogen Phytophthora infestans. PLANT BIOTECHNOLOGY JOURNAL 2023. [PMID: 36912620 DOI: 10.1111/pbi.14039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Nonhost resistance (NHR) is a robust plant immune response against non-adapted pathogens. A number of nucleotide-binding leucine-rich repeat (NLR) proteins that recognize non-adapted pathogens have been identified, although the underlying molecular mechanisms driving robustness of NHR are still unknown. Here, we screened 57 effectors of the potato late blight pathogen Phytophthora infestans in nonhost pepper (Capsicum annuum) to identify avirulence effector candidates. Selected effectors were tested against 436 genome-wide cloned pepper NLRs, and we identified multiple functional NLRs that recognize P. infestans effectors and confer disease resistance in the Nicotiana benthamiana as a surrogate system. The identified NLRs were homologous to known NLRs derived from wild potatoes that recognize P. infestans effectors such as Avr2, Avrblb1, Avrblb2, and Avrvnt1. The identified CaRpi-blb2 is a homologue of Rpi-blb2, recognizes Avrblb2 family effectors, exhibits feature of lineage-specifically evolved gene in microsynteny and phylogenetic analyses, and requires pepper-specific NRC (NLR required for cell death)-type helper NLR for proper function. Moreover, CaRpi-blb2-mediated hypersensitive response and blight resistance were more tolerant to suppression by the PITG_15 278 than those mediated by Rpi-blb2. Combined results indicate that pepper has stacked multiple NLRs recognizing effectors of non-adapted P. infestans, and these NLRs could be more tolerant to pathogen-mediated immune suppression than NLRs derived from the host plants. Our study suggests that NLRs derived from nonhost plants have potential as untapped resources to develop crops with durable resistance against fast-evolving pathogens by stacking the network of nonhost NLRs into susceptible host plants.
Collapse
Affiliation(s)
- Soohyun Oh
- Plant Immunity Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Sejun Kim
- Plant Immunity Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Hyo-Jeong Park
- Plant Immunity Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Myung-Shin Kim
- Plant Immunity Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Min-Ki Seo
- Plant Immunity Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Chih-Hang Wu
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Hyun-Ah Lee
- Department of Horticulture, Division of Smart Horticulture, Yonam University, Cheonan, South Korea
| | - Hyun-Soon Kim
- Korean Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, South Korea
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Doil Choi
- Plant Immunity Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
10
|
Ahn H, Lin X, Olave‐Achury AC, Derevnina L, Contreras MP, Kourelis J, Wu C, Kamoun S, Jones JDG. Effector-dependent activation and oligomerization of plant NRC class helper NLRs by sensor NLR immune receptors Rpi-amr3 and Rpi-amr1. EMBO J 2023; 42:e111484. [PMID: 36592032 PMCID: PMC9975942 DOI: 10.15252/embj.2022111484] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 01/03/2023] Open
Abstract
Plant pathogens compromise crop yields. Plants have evolved robust innate immunity that depends in part on intracellular Nucleotide-binding, Leucine rich-Repeat (NLR) immune receptors that activate defense responses upon detection of pathogen-derived effectors. Most "sensor" NLRs that detect effectors require the activity of "helper" NLRs, but how helper NLRs support sensor NLR function is poorly understood. Many Solanaceae NLRs require NRC (NLR-Required for Cell death) class of helper NLRs. We show here that Rpi-amr3, a sensor NLR from Solanum americanum, detects AVRamr3 from the potato late blight pathogen, Phytophthora infestans, and activates oligomerization of helper NLRs NRC2 and NRC4 into high-molecular-weight resistosomes. In contrast, recognition of P. infestans effector AVRamr1 by another sensor NLR Rpi-amr1 induces formation of only the NRC2 resistosome. The activated NRC2 oligomer becomes enriched in membrane fractions. ATP-binding motifs of both Rpi-amr3 and NRC2 are required for NRC2 resistosome formation, but not for the interaction of Rpi-amr3 with its cognate effector. NRC2 resistosome can be activated by Rpi-amr3 upon detection of AVRamr3 homologs from other Phytophthora species. Mechanistic understanding of NRC resistosome formation will underpin engineering crops with durable disease resistance.
Collapse
Affiliation(s)
- Hee‐Kyung Ahn
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| | - Xiao Lin
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| | | | - Lida Derevnina
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
- Present address:
Department of Plant Sciences, Crop Science CentreUniversity of CambridgeCambridgeUK
| | | | | | - Chih‐Hang Wu
- Institute of Plant and Microbial BiologyAcademia SinicaTaipeiTaiwan
| | - Sophien Kamoun
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| | | |
Collapse
|
11
|
Hussain A, Farooq M, Naqvi RZ, Aslam MQ, Siddiqui HA, Amin I, Liu C, Liu X, Scheffler J, Asif M, Mansoor S. Whole-Genome Resequencing Deciphers New Insight Into Genetic Diversity and Signatures of Resistance in Cultivated Cotton Gossypium hirsutum. Mol Biotechnol 2023; 65:34-51. [PMID: 35778659 DOI: 10.1007/s12033-022-00527-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/07/2022] [Indexed: 01/11/2023]
Abstract
Cotton is an important crop that produces fiber and cottonseed oil for the textile and oil industry. However, cotton leaf curl virus disease (CLCuD) stress is limiting its yield in several Asian countries. In this study, we have sequenced Mac7 accession, a Gossypium hirsutum resistance source against several biotic stresses. By aligning with the Gossypium hirsutum (AD1) 'TM-1' genome, a total of 4.7 and 1.2 million SNPs and InDels were identified in the Mac7 genome. The gene ontology and metabolic pathway enrichment indicated SNPs and InDels role in nucleotide bindings, secondary metabolite synthesis, and plant-pathogen interaction pathways. Furthermore, the RNA-seq data in different tissues and qPCR expression profiling under CLCuD provided individual gene roles in resistant and susceptible accessions. Interestingly, the differential NLR genes demonstrated higher expression in resistant plants rather than in susceptible plants expression. The current resequencing results may provide primary data to identify DNA resistance markers which will be helpful in marker-assisted breeding for development of Mac7-derived resistance lines.
Collapse
Affiliation(s)
- Athar Hussain
- National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Muhammad Farooq
- National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan.,Bioinformatics Group, Wageningen University & Research (WUR), Wageningen, Netherlands
| | - Rubab Zahra Naqvi
- National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Muhammad Qasim Aslam
- National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Hamid Anees Siddiqui
- National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Imran Amin
- National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | | | - Xin Liu
- Beijing Genomics Institute (BGI), Shenzhen, China
| | - Jodi Scheffler
- Genomics and Bioinformatics Research Unit, United States Department of Agriculture-Agricultural Research Service, USDA-ARS), 141 Experimental Station Road, Stoneville, MS, USA
| | - Muhammad Asif
- National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan.
| |
Collapse
|
12
|
Bozsó Z, Krüzselyi D, Szatmári Á, Csilléry G, Szarka J, Ott PG. Two Non-Necrotic Disease Resistance Types Distinctly Affect the Expression of Key Pathogenic Determinants of Xanthomonas euvesicatoria in Pepper. PLANTS (BASEL, SWITZERLAND) 2022; 12:89. [PMID: 36616218 PMCID: PMC9824575 DOI: 10.3390/plants12010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Pepper (Capsicum annuum L.) carrying the gds (corresponding to bs5) gene can prevent the development of bacterial leaf spot disease without HR. However, little is known regarding the development of the resistance mechanism encoded by gds, especially its influence on the bacterium. Here, the effect of gds was compared with pattern-triggered immunity (PTI), another form of asymptomatic resistance, to reveal the interactions and differences between these two defense mechanisms. The level of resistance was examined by its effect on the bacterial growth and in planta expression of the stress and pathogenicity genes of Xanthomonas euvesicatoria. PTI, which was activated with a Pseudomonas syringae hrcC mutant pretreatment, inhibited the growth of Xanthomonas euvesicatoria to a greater extent than gds, and the effect was additive when PTI was activated in gds plants. The stronger influence of PTI was further supported by the expression pattern of the dpsA bacterial stress gene, which reached its highest expression level in PTI-induced plants. PTI inhibited the hrp/hrc expression, but unexpectedly, in gds plant leaves, the hrp/hrc genes were generally expressed at a higher level than in the susceptible one. These results imply that different mechanisms underlie the gds and PTI to perform the symptomless defense reaction.
Collapse
Affiliation(s)
- Zoltán Bozsó
- Plant Protection Institute, ELKH Centre for Agricultural Research, Herman Ottó Str. 15, H-1022 Budapest, Hungary
| | - Dániel Krüzselyi
- Plant Protection Institute, ELKH Centre for Agricultural Research, Herman Ottó Str. 15, H-1022 Budapest, Hungary
| | - Ágnes Szatmári
- Institute of Organic Chemistry, ELKH Research Centre for Natural Sciences, Magyar Tudósok Krt 2, H-1117 Budapest, Hungary
| | | | | | - Péter G. Ott
- Plant Protection Institute, ELKH Centre for Agricultural Research, Herman Ottó Str. 15, H-1022 Budapest, Hungary
| |
Collapse
|
13
|
Cardoso JLS, Souza AA, Vieira MLC. Molecular basis for host responses to Xanthomonas infection. PLANTA 2022; 256:84. [PMID: 36114308 DOI: 10.1007/s00425-022-03994-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
This review highlights the most relevant and recent updated information available on the defense responses of selected hosts against Xanthomonas spp. Xanthomonas is one of the most important genera of Gram-negative phytopathogenic bacteria, severely affecting the productivity of economically important crops worldwide, colonizing either the vascular system or the mesophyll tissue of the host. Due to its rapid propagation, Xanthomonas poses an enormous challenge to farmers, because it is usually controlled using huge quantities of copper-based chemicals, adversely impacting the environment. Thus, developing new ways of preventing colonization by these bacteria has become essential. Advances in genomic and transcriptomic technologies have significantly elucidated at molecular level interactions between various crops and Xanthomonas species. Understanding how these hosts respond to the infection is crucial if we are to exploit potential approaches for improving crop breeding and cutting productivity losses. This review focuses on our current knowledge of the defense response mechanisms in agricultural crops after Xanthomonas infection. We describe the molecular basis of host-bacterium interactions over a broad spectrum with the aim of improving our fundamental understanding of which genes are involved and how they work in this interaction, providing information that can help to speed up plant breeding programs, namely using gene editing approaches.
Collapse
Affiliation(s)
- Jéssica L S Cardoso
- Genetics Department, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Alessandra A Souza
- Citrus Research Center "Sylvio Moreira", Agronomic Institute (IAC), Cordeirópolis, SP, 13490-000, Brazil
| | - Maria Lucia C Vieira
- Genetics Department, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, 13418-900, Brazil.
| |
Collapse
|
14
|
Lin X, Olave-Achury A, Heal R, Pais M, Witek K, Ahn HK, Zhao H, Bhanvadia S, Karki HS, Song T, Wu CH, Adachi H, Kamoun S, Vleeshouwers VGAA, Jones JDG. A potato late blight resistance gene protects against multiple Phytophthora species by recognizing a broadly conserved RXLR-WY effector. MOLECULAR PLANT 2022; 15:1457-1469. [PMID: 35915586 DOI: 10.1016/j.molp.2022.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/15/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Species of the genus Phytophthora, the plant killer, cause disease and reduce yields in many crop plants. Although many Resistance to Phytophthora infestans (Rpi) genes effective against potato late blight have been cloned, few have been cloned against other Phytophthora species. Most Rpi genes encode nucleotide-binding domain, leucine-rich repeat-containing (NLR) immune receptor proteins that recognize RXLR (Arg-X-Leu-Arg) effectors. However, whether NLR proteins can recognize RXLR effectors from multiple Phytophthora species has rarely been investigated. Here, we identified a new RXLR-WY effector AVRamr3 from P. infestans that is recognized by Rpi-amr3 from a wild Solanaceae species Solanum americanum. Rpi-amr3 associates with AVRamr3 in planta. AVRamr3 is broadly conserved in many different Phytophthora species, and the recognition of AVRamr3 homologs by Rpi-amr3 activates resistance against multiple Phytophthora pathogens, including the tobacco black shank disease and cacao black pod disease pathogens P. parasitica and P. palmivora. Rpi-amr3 is thus the first characterized resistance gene that acts against P. parasitica or P. palmivora. These findings suggest a novel path to redeploy known R genes against different important plant pathogens.
Collapse
Affiliation(s)
- Xiao Lin
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - Andrea Olave-Achury
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - Robert Heal
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - Marina Pais
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - Kamil Witek
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - Hee-Kyung Ahn
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - He Zhao
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - Shivani Bhanvadia
- Wageningen UR Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Hari S Karki
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - Tianqiao Song
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - Chih-Hang Wu
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - Hiroaki Adachi
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - Vivianne G A A Vleeshouwers
- Wageningen UR Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK.
| |
Collapse
|
15
|
A Pan-Global Study of Bacterial Leaf Spot of Chilli Caused by Xanthomonas spp. PLANTS 2022; 11:plants11172291. [PMID: 36079673 PMCID: PMC9460788 DOI: 10.3390/plants11172291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022]
Abstract
Bacterial Leaf Spot (BLS) is a serious bacterial disease of chilli (Capsicum spp.) caused by at least four different Xanthomonas biotypes: X. euvesicatoria pv. euvesicatoria, X. euvesicatoria pv. perforans, X. hortorum pv. gardneri, and X. vesicatoria. Symptoms include black lesions and yellow halos on the leaves and fruits, resulting in reports of up to 66% losses due to unsalable and damaged fruits. BLS pathogens are widely distributed in tropical and subtropical regions. Xanthomonas is able to survive in seeds and crop residues for short periods, leading to the infections in subsequent crops. The pathogen can be detected using several techniques, but largely via a combination of traditional and molecular approaches. Conventional detection is based on microscopic and culture observations, while a suite of Polymerase Chain Reaction (PCR) and Loop-Mediated Isothermal Amplification (LAMP) assays are available. Management of BLS is challenging due to the broad genetic diversity of the pathogens, a lack of resilient host resistance, and poor efficacy of chemical control. Some biological control agents have been reported, including bacteriophage deployment. Incorporating stable host resistance is a critical component in ongoing integrated management for BLS. This paper reviews the current status of BLS of chilli, including its distribution, pathogen profiles, diagnostic options, disease management, and the pursuit of plant resistance.
Collapse
|
16
|
Sharma A, Abrahamian P, Carvalho R, Choudhary M, Paret ML, Vallad GE, Jones JB. Future of Bacterial Disease Management in Crop Production. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:259-282. [PMID: 35790244 DOI: 10.1146/annurev-phyto-021621-121806] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bacterial diseases are a constant threat to crop production globally. Current management strategies rely on an array of tactics, including improved cultural practices; application of bactericides, plant activators, and biocontrol agents; and use of resistant varieties when available. However, effective management remains a challenge, as the longevity of deployed tactics is threatened by constantly changing bacterial populations. Increased scrutiny of the impact of pesticides on human and environmental health underscores the need for alternative solutions that are durable, sustainable, accessible to farmers, and environmentally friendly. In this review, we discuss the strengths and shortcomings of existing practices and dissect recent advances that may shape the future of bacterial disease management. We conclude that disease resistance through genome modification may be the most effective arsenal against bacterial diseases. Nonetheless, more research is necessary for developing novel bacterial disease management tactics to meet the food demand of a growing global population.
Collapse
Affiliation(s)
- Anuj Sharma
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
| | - Peter Abrahamian
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
- Gulf Coast Research and Education Center, University of Florida, Wimauma, Florida, USA
- Plant Pathogen Confirmatory Diagnostic Laboratory, USDA-APHIS, Beltsville, Maryland, USA
| | - Renato Carvalho
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
| | - Manoj Choudhary
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
| | - Mathews L Paret
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
- North Florida Research and Education Center, University of Florida, Quincy, Florida, USA
| | - Gary E Vallad
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
- Gulf Coast Research and Education Center, University of Florida, Wimauma, Florida, USA
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
| |
Collapse
|
17
|
Jibrin MO, Timilsina S, Minsavage GV, Vallad GE, Roberts PD, Goss EM, Jones JB. Bacterial Spot of Tomato and Pepper in Africa: Diversity, Emergence of T5 Race, and Management. Front Microbiol 2022; 13:835647. [PMID: 35509307 PMCID: PMC9058171 DOI: 10.3389/fmicb.2022.835647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial spot disease was first reported from South Africa by Ethel M. Doidge in 1920. In the ensuing century after the initial discovery, the pathogen has gained global attention in plant pathology research, providing insights into host-pathogen interactions, pathogen evolution, and effector discovery, such as the first discovery of transcription activation-like effectors, among many others. Four distinct genetic groups, including Xanthomonas euvesicatoria (proposed name: X. euvesicatoria pv. euvesicatoria), Xanthomonas perforans (proposed name: X. euvesicatoria pv. perforans), Xanthomonas gardneri (proposed name: Xanthomonas hortorum pv. gardneri), and Xanthomonas vesicatoria, are known to cause bacterial spot disease. Recently, a new race of a bacterial spot pathogen, race T5, which is a product of recombination between at least two Xanthomonas species, was reported in Nigeria. In this review, our focus is on the progress made on the African continent, vis-à-vis progress made in the global bacterial spot research community to provide a body of information useful for researchers in understanding the diversity, evolutionary changes, and management of the disease in Africa.
Collapse
Affiliation(s)
- Mustafa Ojonuba Jibrin
- Tree Fruit Research and Extension Center, Washington State University, Wenatchee, WA, United States
- Department of Crop Protection, Ahmadu Bello University, Zaria, Nigeria
| | - Sujan Timilsina
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
| | - Gerald V. Minsavage
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
| | - Garry E. Vallad
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, United States
| | - Pamela D. Roberts
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
- UF/IFAS Southwest Florida Research and Education Center, Immokalee, FL, United States
| | - Erica M. Goss
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Jeffrey B. Jones
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
| |
Collapse
|
18
|
Ali Q, Yu C, Hussain A, Ali M, Ahmar S, Sohail MA, Riaz M, Ashraf MF, Abdalmegeed D, Wang X, Imran M, Manghwar H, Zhou L. Genome Engineering Technology for Durable Disease Resistance: Recent Progress and Future Outlooks for Sustainable Agriculture. FRONTIERS IN PLANT SCIENCE 2022; 13:860281. [PMID: 35371164 PMCID: PMC8968944 DOI: 10.3389/fpls.2022.860281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/22/2022] [Indexed: 05/15/2023]
Abstract
Crop production worldwide is under pressure from multiple factors, including reductions in available arable land and sources of water, along with the emergence of new pathogens and development of resistance in pre-existing pathogens. In addition, the ever-growing world population has increased the demand for food, which is predicted to increase by more than 100% by 2050. To meet these needs, different techniques have been deployed to produce new cultivars with novel heritable mutations. Although traditional breeding continues to play a vital role in crop improvement, it typically involves long and laborious artificial planting over multiple generations. Recently, the application of innovative genome engineering techniques, particularly CRISPR-Cas9-based systems, has opened up new avenues that offer the prospects of sustainable farming in the modern agricultural industry. In addition, the emergence of novel editing systems has enabled the development of transgene-free non-genetically modified plants, which represent a suitable option for improving desired traits in a range of crop plants. To date, a number of disease-resistant crops have been produced using gene-editing tools, which can make a significant contribution to overcoming disease-related problems. Not only does this directly minimize yield losses but also reduces the reliance on pesticide application, thereby enhancing crop productivity that can meet the globally increasing demand for food. In this review, we describe recent progress in genome engineering techniques, particularly CRISPR-Cas9 systems, in development of disease-resistant crop plants. In addition, we describe the role of CRISPR-Cas9-mediated genome editing in sustainable agriculture.
Collapse
Affiliation(s)
- Qurban Ali
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, College of Plant Protection, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Chenjie Yu
- Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, College of Plant Protection, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Amjad Hussain
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mohsin Ali
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sunny Ahmar
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Muhammad Aamir Sohail
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Riaz
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Muhammad Furqan Ashraf
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Dyaaaldin Abdalmegeed
- Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, College of Plant Protection, Ministry of Education, Nanjing Agricultural University, Nanjing, China
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Xiukang Wang
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Muhammad Imran
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agriculture University, Guangzhou, China
| | - Hakim Manghwar
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Lei Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
19
|
Tamisier L, Szadkowski M, Girardot G, Djian‐Caporalino C, Palloix A, Hirsch J, Moury B. Concurrent evolution of resistance and tolerance to potato virus Y in Capsicum annuum revealed by genome-wide association. MOLECULAR PLANT PATHOLOGY 2022; 23:254-264. [PMID: 34729890 PMCID: PMC8743019 DOI: 10.1111/mpp.13157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 05/21/2023]
Abstract
We performed a genome-wide association study of pepper (Capsicum annuum) tolerance to potato virus Y (PVY). For 254 pepper accessions, we estimated the tolerance to PVY as the coefficient of regression of the fresh weight (or height) of PVY-infected and mock-inoculated plants against within-plant virus load. Small (strongly negative) coefficients of regression indicate low tolerance because plant biomass or growth decreases sharply as virus load increases. The tolerance level varied largely, with some pepper accessions showing no symptoms or fairly mild mosaics, whereas about half (48%) of the accessions showed necrotic symptoms. We found two adjacent single-nucleotide polymorphisms (SNPs) at one extremity of chromosome 9 that were significantly associated with tolerance to PVY. Similarly, in three biparental pepper progenies, we showed that the induction of necrosis on PVY systemic infection segregated as a monogenic trait determined by a locus on chromosome 9. Our results also demonstrate the existence of a negative correlation between resistance and tolerance among the cultivated pepper accessions at both the phenotypic and genetic levels. By comparing the distributions of the tolerance-associated SNP alleles and previously identified PVY resistance-associated SNP alleles, we showed that cultivated pepper accessions possess favourable alleles for both resistance and tolerance less frequently than expected under random associations, while the minority of wild pepper accessions frequently combined resistance and tolerance alleles. This divergent evolution of PVY resistance and tolerance could be related to pepper domestication or farmer's selection.
Collapse
Affiliation(s)
- Lucie Tamisier
- Pathologie VégétaleINRAEMontfavetFrance
- GAFLINRAEMontfavetFrance
| | | | | | | | | | | | | |
Collapse
|
20
|
QTL Mapping of Resistance to Bacterial Wilt in Pepper Plants (Capsicum annuum) Using Genotyping-by-Sequencing (GBS). HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020115] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Bacterial wilt (BW) disease, which is caused by Ralstonia solanacearum, is one globally prevalent plant disease leading to significant losses of crop production and yield with the involvement of a diverse variety of monocot and dicot host plants. In particular, the BW of the soil-borne disease seriously influences solanaceous crops, including peppers (sweet and chili peppers), paprika, tomatoes, potatoes, and eggplants. Recent studies have explored genetic regions that are associated with BW resistance for pepper crops. However, owing to the complexity of BW resistance, the identification of the genomic regions controlling BW resistance is poorly understood and still remains to be unraveled in the pepper cultivars. In this study, we performed the quantitative trait loci (QTL) analysis to identify genomic loci and alleles, which play a critical role in the resistance to BW in pepper plants. The disease symptoms and resistance levels for BW were assessed by inoculation with R. solanacearum. Genotyping-by-sequencing (GBS) was utilized in 94 F2 segregating populations originated from a cross between a resistant line, KC352, and a susceptible line, 14F6002-14. A total of 628,437 single-nucleotide polymorphism (SNP) was obtained, and a pepper genetic linkage map was constructed with putative 1550 SNP markers via the filtering criteria. The linkage map exhibited 16 linkage groups (LG) with a total linkage distance of 828.449 cM. Notably, QTL analysis with CIM (composite interval mapping) method uncovered pBWR-1 QTL underlying on chromosome 01 and explained 20.13 to 25.16% by R2 (proportion of explained phenotyphic variance by the QTL) values. These results will be valuable for developing SNP markers associated with BW-resistant QTLs as well as for developing elite BW-resistant cultivars in pepper breeding programs.
Collapse
|
21
|
Osdaghi E, Jones JB, Sharma A, Goss EM, Abrahamian P, Newberry EA, Potnis N, Carvalho R, Choudhary M, Paret ML, Timilsina S, Vallad GE. A centenary for bacterial spot of tomato and pepper. MOLECULAR PLANT PATHOLOGY 2021; 22:1500-1519. [PMID: 34472193 PMCID: PMC8578828 DOI: 10.1111/mpp.13125] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 05/08/2023]
Abstract
DISEASE SYMPTOMS Symptoms include water-soaked areas surrounded by chlorosis turning into necrotic spots on all aerial parts of plants. On tomato fruits, small, water-soaked, or slightly raised pale-green spots with greenish-white halos are formed, ultimately becoming dark brown and slightly sunken with a scabby or wart-like surface. HOST RANGE Main and economically important hosts include different types of tomatoes and peppers. Alternative solanaceous and nonsolanaceous hosts include Datura spp., Hyoscyamus spp., Lycium spp., Nicotiana rustica, Physalis spp., Solanum spp., Amaranthus lividus, Emilia fosbergii, Euphorbia heterophylla, Nicandra physaloides, Physalis pubescens, Sida glomerata, and Solanum americanum. TAXONOMIC STATUS OF THE PATHOGEN Domain, Bacteria; phylum, Proteobacteria; class, Gammaproteobacteria; order, Xanthomonadales; family, Xanthomonadaceae; genus, Xanthomonas; species, X. euvesicatoria, X. hortorum, X. vesicatoria. SYNONYMS (NONPREFERRED SCIENTIFIC NAMES) Bacterium exitiosum, Bacterium vesicatorium, Phytomonas exitiosa, Phytomonas vesicatoria, Pseudomonas exitiosa, Pseudomonas gardneri, Pseudomonas vesicatoria, Xanthomonas axonopodis pv. vesicatoria, Xanthomonas campestris pv. vesicatoria, Xanthomonas cynarae pv. gardneri, Xanthomonas gardneri, Xanthomonas perforans. MICROBIOLOGICAL PROPERTIES Colonies are gram-negative, oxidase-negative, and catalase-positive and have oxidative metabolism. Pale-yellow domed circular colonies of 1-2 mm in diameter grow on general culture media. DISTRIBUTION The bacteria are widespread in Africa, Brazil, Canada and the USA, Australia, eastern Europe, and south-east Asia. Occurrence in western Europe is restricted. PHYTOSANITARY CATEGORIZATION A2 no. 157, EU Annex designation II/A2. EPPO CODES XANTEU, XANTGA, XANTPF, XANTVE.
Collapse
Affiliation(s)
- Ebrahim Osdaghi
- Department of Plant ProtectionCollege of AgricultureUniversity of TehranKarajIran
| | - Jeffrey B. Jones
- Plant Pathology DepartmentUniversity of FloridaGainesvilleFloridaUSA
| | - Anuj Sharma
- Plant Pathology DepartmentUniversity of FloridaGainesvilleFloridaUSA
| | - Erica M. Goss
- Plant Pathology DepartmentUniversity of FloridaGainesvilleFloridaUSA
- Emerging Pathogens InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Peter Abrahamian
- Plant Pathology DepartmentUniversity of FloridaGainesvilleFloridaUSA
- Gulf Coast Research and Education CenterUniversity of FloridaWimaumaFloridaUSA
| | - Eric A. Newberry
- Department of Entomology and Plant PathologyAuburn UniversityAuburnAlabamaUSA
| | - Neha Potnis
- Department of Entomology and Plant PathologyAuburn UniversityAuburnAlabamaUSA
| | - Renato Carvalho
- Plant Pathology DepartmentUniversity of FloridaGainesvilleFloridaUSA
| | - Manoj Choudhary
- Plant Pathology DepartmentUniversity of FloridaGainesvilleFloridaUSA
| | - Mathews L. Paret
- Department of Plant PathologyNorth Florida Research and Education CenterUniversity of FloridaQuincyFloridaUSA
| | - Sujan Timilsina
- Plant Pathology DepartmentUniversity of FloridaGainesvilleFloridaUSA
| | - Gary E. Vallad
- Gulf Coast Research and Education CenterUniversity of FloridaWimaumaFloridaUSA
| |
Collapse
|
22
|
Alam M, Tahir J, Siddiqui A, Magzoub M, Shahzad-Ul-Hussan S, Mackey D, Afzal AJ. RIN4 homologs from important crop species differentially regulate the Arabidopsis NB-LRR immune receptor, RPS2. PLANT CELL REPORTS 2021; 40:2341-2356. [PMID: 34486076 DOI: 10.1007/s00299-021-02771-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE RIN4 homologs from important crop species differ in their ability to prevent ectopic activity of the nucleotide binding-leucine rich repeat resistance protein, RPS2. Pathogens deploy virulence effectors to perturb host processes. Plants utilize intracellular resistance (R) proteins to recognize pathogen effectors either by direct interaction or indirectly via effector-mediated perturbations of host components. RPM1-INTERACTING PROTEIN4 (RIN4) is a plant immune regulator that mediates the indirect activation of multiple, independently evolved R-proteins by multiple, unrelated effector proteins. One of these, RPS2 (RESISTANT TO P. SYRINGAE2), is activated upon cleavage of Arabidopsis (At)RIN4 by the Pseudomonas syringae effector AvrRpt2. To gain insight into the AvrRpt2-RIN4-RPS2 defense-activation module, we compared the function of AtRIN4 with RIN4 homologs present in a diverse range of plant species. We selected seven homologs containing conserved features of AtRIN4, including two NOI (Nitrate induced) domains, each containing a predicted cleavage site for AvrRpt2, and a C-terminal palmitoylation site predicted to mediate membrane tethering of the proteins. Palmitoylation-mediated tethering of AtRIN4 to the plasma membrane and cleavage by AvrRpt2 are required for suppression and activation of RPS2, respectively. While all seven homologs are localized at the plasma membrane, only four suppress RPS2 when transiently expressed in Nicotiana benthamiana. All seven homologs are cleaved by AvrRpt2 and, for those homologs that are able to suppress RPS2, cleavage relieves suppression of RPS2. Further, we demonstrate that the membrane-tethered, C-terminal AvrRpt2-generated cleavage fragment is sufficient for the suppression of RPS2. Lastly, we show that the membrane localization of RPS2 is unaffected by its suppression or activation status.
Collapse
Affiliation(s)
- Maheen Alam
- Department of Biology, Lahore University of Management Sciences, Sector U, DHA, Lahore, Pakistan
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, 43210, USA
| | - Jibran Tahir
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92-169, Auckland, 1025, New Zealand
| | - Anam Siddiqui
- Department of Plant Sciences, Rothamsted Research, West Common, Harpenden, AL52JQ, UK
| | - Mazin Magzoub
- Biology Program, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Syed Shahzad-Ul-Hussan
- Department of Biology, Lahore University of Management Sciences, Sector U, DHA, Lahore, Pakistan
| | - David Mackey
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, 43210, USA
- Department of Molecular Genetics and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - A J Afzal
- Biology Program, New York University Abu Dhabi, Abu Dhabi, UAE.
| |
Collapse
|
23
|
Kahveci E, Devran Z, Özkaynak E, Hong Y, Studholme DJ, Tör M. Genomic-Assisted Marker Development Suitable for CsCvy-1 Selection in Cucumber Breeding. FRONTIERS IN PLANT SCIENCE 2021; 12:691576. [PMID: 34489994 PMCID: PMC8416629 DOI: 10.3389/fpls.2021.691576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/22/2021] [Indexed: 06/02/2023]
Abstract
Cucumber is a widely grown vegetable crop plant and a host to many different plant pathogens. Cucumber vein yellowing virus (CVYV) causes economic losses on cucumber crops in Mediterranean countries and in some part of India such as West Bengal and in African countries such as Sudan. CVYV is an RNA potyvirus transmitted mechanically and by whitefly (Bemisia tabaci) in a semipersistent manner. Control of this virus is heavily dependent on the management of the insect vector and breeding virus-resistant lines. DNA markers have been used widely in conventional plant breeding programs via marker-assisted selection (MAS). However, very few resistance sources against CVYV in cucumber exist, and also the lack of tightly linked molecular markers to these sources restricts the rapid generation of resistant lines. In this work, we used genomics coupled with the bulked segregant analysis method and generated the MAS-friendly Kompetitive allele specific PCR (KASP) markers suitable for CsCvy-1 selection in cucumber breeding using a segregating F2 mapping population and commercial plant lines. Variant analysis was performed to generate single-nucleotide polymorphism (SNP)-based markers for mapping the population and genotyping the commercial lines. We fine-mapped the region by generating new markers down to 101 kb with eight genes. We provided SNP data for this interval, which could be useful for breeding programs and cloning the candidate genes.
Collapse
Affiliation(s)
- Erdem Kahveci
- M.Y. Genetik Tarim Tek. Lab. Tic. Ltd. Sti., Antalya, Turkey
| | - Zübeyir Devran
- Department of Plant Protection, Faculty of Agriculture, University of Akdeniz, Antalya, Turkey
| | | | - Yiguo Hong
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Department of Biology, School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| | - David J. Studholme
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Mahmut Tör
- Department of Biology, School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| |
Collapse
|
24
|
Schultink A, Steinbrenner AD. A playbook for developing disease-resistant crops through immune receptor identification and transfer. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102089. [PMID: 34333377 DOI: 10.1016/j.pbi.2021.102089] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/08/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Plants are resistant to most pathogens because of an immune system that perceives invading microbes and activates defense. A large repertoire of innate immune receptors mediates specific direct or indirect recognition of pathogen-derived molecules. Disease is often a consequence of insufficient immune surveillance, and the transfer of immune receptor genes from resistant plants to susceptible crop varieties is an effective strategy for combating disease outbreaks. We discuss approaches for identifying intracellular and cell surface immune receptors, with particular focus on recently developed and emerging methodologies. We also review considerations for the transfer of immune receptor genes into crop species, including additional host factors that may be required for immune receptor function. Together, these concepts lay out a broadly applicable playbook for developing crop varieties with durable disease resistance.
Collapse
|
25
|
Martel A, Ruiz-Bedoya T, Breit-McNally C, Laflamme B, Desveaux D, Guttman DS. The ETS-ETI cycle: evolutionary processes and metapopulation dynamics driving the diversification of pathogen effectors and host immune factors. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102011. [PMID: 33677388 DOI: 10.1016/j.pbi.2021.102011] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 05/13/2023]
Abstract
The natural diversity of pathogen effectors and host immune components represents a snapshot of the underlying evolutionary processes driving the host-pathogen arms race. In plants, this arms race is manifested by an ongoing cycle of disease and resistance driven by pathogenic effectors that promote disease (effector-triggered susceptibility; ETS) and plant resistance proteins that recognize effector activity to trigger immunity (effector-triggered immunity; ETI). Here we discuss how this ongoing ETS-ETI cycle has shaped the natural diversity of both plant resistance proteins and pathogen effectors. We focus on the evolutionary forces that drive the diversification of the molecules that determine the outcome of plant-pathogen interactions and introduce the concept of metapopulation dynamics (i.e., the introduction of genetic variation from conspecific organisms in different populations) as an alternative mechanism that can introduce and maintain diversity in both host and pathogen populations.
Collapse
Affiliation(s)
- Alexandre Martel
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M6S2Y1, Canada
| | - Tatiana Ruiz-Bedoya
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M6S2Y1, Canada
| | - Clare Breit-McNally
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M6S2Y1, Canada
| | - Bradley Laflamme
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M6S2Y1, Canada
| | - Darrell Desveaux
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M6S2Y1, Canada; Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario M6S2Y1, Canada.
| | - David S Guttman
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M6S2Y1, Canada; Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario M6S2Y1, Canada.
| |
Collapse
|
26
|
Palanikumar L, Karpauskaite L, Al-Sayegh M, Chehade I, Alam M, Hassan S, Maity D, Ali L, Kalmouni M, Hunashal Y, Ahmed J, Houhou T, Karapetyan S, Falls Z, Samudrala R, Pasricha R, Esposito G, Afzal AJ, Hamilton AD, Kumar S, Magzoub M. Protein mimetic amyloid inhibitor potently abrogates cancer-associated mutant p53 aggregation and restores tumor suppressor function. Nat Commun 2021; 12:3962. [PMID: 34172723 PMCID: PMC8233319 DOI: 10.1038/s41467-021-23985-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 05/26/2021] [Indexed: 02/05/2023] Open
Abstract
Missense mutations in p53 are severely deleterious and occur in over 50% of all human cancers. The majority of these mutations are located in the inherently unstable DNA-binding domain (DBD), many of which destabilize the domain further and expose its aggregation-prone hydrophobic core, prompting self-assembly of mutant p53 into inactive cytosolic amyloid-like aggregates. Screening an oligopyridylamide library, previously shown to inhibit amyloid formation associated with Alzheimer's disease and type II diabetes, identified a tripyridylamide, ADH-6, that abrogates self-assembly of the aggregation-nucleating subdomain of mutant p53 DBD. Moreover, ADH-6 targets and dissociates mutant p53 aggregates in human cancer cells, which restores p53's transcriptional activity, leading to cell cycle arrest and apoptosis. Notably, ADH-6 treatment effectively shrinks xenografts harboring mutant p53, while exhibiting no toxicity to healthy tissue, thereby substantially prolonging survival. This study demonstrates the successful application of a bona fide small-molecule amyloid inhibitor as a potent anticancer agent.
Collapse
Affiliation(s)
- L Palanikumar
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Laura Karpauskaite
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Mohamed Al-Sayegh
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Ibrahim Chehade
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Maheen Alam
- Department of Biology, SBA School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Sarah Hassan
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Debabrata Maity
- Department of Chemistry, New York University, New York, NY, USA
| | - Liaqat Ali
- Core Technology Platforms, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Mona Kalmouni
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Yamanappa Hunashal
- Chemistry Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates.,DAME, Università di Udine, Udine, Italy
| | - Jemil Ahmed
- Department of Chemistry and Biochemistry and Knoebel Institute for Healthy Aging, The University of Denver, Denver, CO, USA
| | - Tatiana Houhou
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Shake Karapetyan
- Physics Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Zackary Falls
- Department of Biomedical Informatics, School of Medicine and Biomedical Sciences, State University of New York (SUNY), Buffalo, NY, USA
| | - Ram Samudrala
- Department of Biomedical Informatics, School of Medicine and Biomedical Sciences, State University of New York (SUNY), Buffalo, NY, USA
| | - Renu Pasricha
- Core Technology Platforms, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Gennaro Esposito
- Chemistry Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates.,INBB, Rome, Italy
| | - Ahmed J Afzal
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | | | - Sunil Kumar
- Department of Chemistry and Biochemistry and Knoebel Institute for Healthy Aging, The University of Denver, Denver, CO, USA.
| | - Mazin Magzoub
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
27
|
Frailie TB, Innes RW. Engineering healthy crops: molecular strategies for enhancing the plant immune system. Curr Opin Biotechnol 2021; 70:151-157. [PMID: 34030033 DOI: 10.1016/j.copbio.2021.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 11/19/2022]
Abstract
Crop diseases caused by viruses, bacteria, fungi, oomycetes and nematodes constitute major costs for farmers in terms of control measures and yield losses. Enhancing resistance to these pathogens via genetic modification or genome editing represents an economically and environmentally attractive path forward. Recent advances in our understanding of how plants detect pathogens and activate immune responses is now enabling enhancement of disease resistance traits. In particular, the recent determination of structures of both cell surface and intracellular immune receptors in plants in their activated states is providing new insights into how recognition complexes can be modified to expand recognition specificities to confer resistance to otherwise virulent pathogens. By expanding the repertoire of both cell surface and intracellular recognition systems, and combining them, it is expected that resistance to numerous diseases will be enhanced and will be more durable.
Collapse
Affiliation(s)
- Tyler B Frailie
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Roger W Innes
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
28
|
Liu X, Ao K, Yao J, Zhang Y, Li X. Engineering plant disease resistance against biotrophic pathogens. CURRENT OPINION IN PLANT BIOLOGY 2021; 60:101987. [PMID: 33434797 DOI: 10.1016/j.pbi.2020.101987] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/29/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Breeding for disease resistance against microbial pathogens is essential for food security in modern agriculture. Conventional breeding, although widely accepted, is time consuming. An alternative approach is generating crop plants with desirable traits through genetic engineering. The collective efforts of many labs in the past 30 years have led to a comprehensive understanding of how plant immunity is achieved, enabling the application of genetic engineering to enhance disease resistance in crop plants. Here, we briefly review the engineering of disease resistance against biotrophic pathogens using various components of the plant immune system. Recent breakthroughs in immune receptors signaling and systemic acquired resistance (SAR), along with innovations in precise gene editing methods, provide exciting new opportunities for the development of improved environmentally friendly crop varieties that are disease resistant and high-yield.
Collapse
Affiliation(s)
- Xueru Liu
- Michael Smith Laboratories, University of British Columbia, Rm 301, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; Department of Botany, University of British Columbia, Rm 3156, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada
| | - Kevin Ao
- Michael Smith Laboratories, University of British Columbia, Rm 301, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; Department of Botany, University of British Columbia, Rm 3156, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada
| | - Jia Yao
- College of Life Science, Chongqing University, 55 University Town South Road, Shapingba District, Chongqing, China
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Rm 3156, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Rm 301, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; Department of Botany, University of British Columbia, Rm 3156, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
29
|
Li D, Qian J, Li W, Yu N, Gan G, Jiang Y, Li W, Liang X, Chen R, Mo Y, Lian J, Niu Y, Wang Y. A high-quality genome assembly of the eggplant provides insights into the molecular basis of disease resistance and chlorogenic acid synthesis. Mol Ecol Resour 2021; 21:1274-1286. [PMID: 33445226 DOI: 10.1111/1755-0998.13321] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/19/2020] [Accepted: 01/06/2021] [Indexed: 11/28/2022]
Abstract
The eggplant (Solanum melongena L.) is one of the most important Solanaceae crops, ranking third for total production and economic value in its genus. Herein, we report a high-quality, chromosome-scale eggplant reference genome sequence of 1155.8 Mb, with an N50 of 93.9 Mb, which was assembled by combining PacBio long reads and Hi-C sequencing data. Repetitive sequences occupied 70.1% of the assembly length, and 35,018 high-confidence protein-coding genes were annotated based on multiple sources. Comparative analysis revealed 646 species-specific families and 364 positive selection genes, conferring distinguishing traits on the eggplant. We performed genome-wide comparative identification of disease resistance genes and discovered an expanded gene family of bacterial spot resistance in eggplant and pepper, but not in tomato and potato. The genes involved in chlorogenic acid synthesis were comprehensively characterized. Highly similar chromosomal distribution patterns of polyphenol oxidase genes were observed in the eggplant, tomato, and potato genomes. The eggplant reference genome sequence will not only facilitate evolutionary studies of the Solanaceae but also facilitate their breeding and improvement.
Collapse
Affiliation(s)
- Dandan Li
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Jun Qian
- Biozeron Shenzhen, Inc, Shenzhen, China
| | - Weiliu Li
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Ning Yu
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Guiyun Gan
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yaqin Jiang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Wenjia Li
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xuyu Liang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Riyuan Chen
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yongcheng Mo
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | | | | | - Yikui Wang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
30
|
Hatta MAM, Arora S, Ghosh S, Matny O, Smedley MA, Yu G, Chakraborty S, Bhatt D, Xia X, Steuernagel B, Richardson T, Mago R, Lagudah ES, Patron NJ, Ayliffe M, Rouse MN, Harwood WA, Periyannan S, Steffenson BJ, Wulff BB. The wheat Sr22, Sr33, Sr35 and Sr45 genes confer resistance against stem rust in barley. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:273-284. [PMID: 32744350 PMCID: PMC7868974 DOI: 10.1111/pbi.13460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 06/17/2020] [Indexed: 05/16/2023]
Abstract
In the last 20 years, stem rust caused by the fungus Puccinia graminis f. sp. tritici (Pgt), has re-emerged as a major threat to wheat and barley production in Africa and Europe. In contrast to wheat with 60 designated stem rust (Sr) resistance genes, barley's genetic variation for stem rust resistance is very narrow with only ten resistance genes genetically identified. Of these, only one complex locus consisting of three genes is effective against TTKSK, a widely virulent Pgt race of the Ug99 tribe which emerged in Uganda in 1999 and has since spread to much of East Africa and parts of the Middle East. The objective of this study was to assess the functionality, in barley, of cloned wheat Sr genes effective against race TTKSK. Sr22, Sr33, Sr35 and Sr45 were transformed into barley cv. Golden Promise using Agrobacterium-mediated transformation. All four genes were found to confer effective stem rust resistance. The barley transgenics remained susceptible to the barley leaf rust pathogen Puccinia hordei, indicating that the resistance conferred by these wheat Sr genes was specific for Pgt. Furthermore, these transgenic plants did not display significant adverse agronomic effects in the absence of disease. Cloned Sr genes from wheat are therefore a potential source of resistance against wheat stem rust in barley.
Collapse
Affiliation(s)
- M. Asyraf Md Hatta
- John Innes CentreNorwich Research ParkNorwichUK
- Department of Agriculture TechnologyFaculty of AgricultureUniversiti Putra MalaysiaSerdangMalaysia
| | - Sanu Arora
- John Innes CentreNorwich Research ParkNorwichUK
| | - Sreya Ghosh
- John Innes CentreNorwich Research ParkNorwichUK
| | - Oadi Matny
- Department of Plant PathologyStakman Borlaug Center for Sustainable Plant HealthUniversity of MinnesotaSt. PaulMNUSA
| | | | - Guotai Yu
- John Innes CentreNorwich Research ParkNorwichUK
| | - Soma Chakraborty
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | - Dhara Bhatt
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | - Xiaodi Xia
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | | | - Terese Richardson
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | - Rohit Mago
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | - Evans S. Lagudah
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | | | - Michael Ayliffe
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | - Matthew N. Rouse
- Department of Plant PathologyStakman Borlaug Center for Sustainable Plant HealthUniversity of MinnesotaSt. PaulMNUSA
- USDA‐ARS Cereal Disease LaboratorySt. PaulMNUSA
| | | | - Sambasivam Periyannan
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | - Brian J. Steffenson
- Department of Plant PathologyStakman Borlaug Center for Sustainable Plant HealthUniversity of MinnesotaSt. PaulMNUSA
| | | |
Collapse
|
31
|
Li Q, Wang B, Yu J, Dou D. Pathogen-informed breeding for crop disease resistance. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:305-311. [PMID: 33095498 DOI: 10.1111/jipb.13029] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
The development of durable and broad-spectrum resistance is an economical and eco-friendly approach to control crop diseases for sustainable agricultural production. Emerging knowledge of the molecular basis of pathogenesis and plant-pathogen interactions has contributed to the development of novel pathogen-informed breeding strategies beyond the limits imposed by conventional breeding. Here, we review the current status of pathogen-assisted resistance-related gene cloning. We also describe how pathogen effector proteins can be used to identify resistance resources and to inform cultivar deployment. Finally, we summarize the main approaches for pathogen-directed plant improvement, including transgenesis and genome editing. Thus, we describe the emerging role of pathogen-related studies in the breeding of disease-resistant varieties, and propose innovative pathogen-informed strategies for future applications.
Collapse
Affiliation(s)
- Qi Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bi Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Jinping Yu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
32
|
Andolfo G, D’Agostino N, Frusciante L, Ercolano MR. The Tomato Interspecific NB-LRR Gene Arsenal and Its Impact on Breeding Strategies. Genes (Basel) 2021; 12:genes12020184. [PMID: 33514027 PMCID: PMC7911644 DOI: 10.3390/genes12020184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/16/2022] Open
Abstract
Tomato (Solanum lycopersicum L.) is a model system for studying the molecular basis of resistance in plants. The investigation of evolutionary dynamics of tomato resistance (R)-loci provides unique opportunities for identifying factors that promote or constrain genome evolution. Nucleotide-binding domain and leucine-rich repeat (NB-LRR) receptors belong to one of the most plastic and diversified families. The vast amount of genomic data available for Solanaceae and wild tomato relatives provides unprecedented insights into the patterns and mechanisms of evolution of NB-LRR genes. Comparative analysis remarked a reshuffling of R-islands on chromosomes and a high degree of adaptive diversification in key R-loci induced by species-specific pathogen pressure. Unveiling NB-LRR natural variation in tomato and in other Solanaceae species offers the opportunity to effectively exploit genetic diversity in genomic-driven breeding programs with the aim of identifying and introducing new resistances in tomato cultivars. Within this motivating context, we reviewed the repertoire of NB-LRR genes available for tomato improvement with a special focus on signatures of adaptive processes. This issue is still relevant and not thoroughly investigated. We believe that the discovery of mechanisms involved in the generation of a gene with new resistance functions will bring great benefits to future breeding strategies.
Collapse
|
33
|
Wang J, Dhroso A, Liu X, Baum TJ, Hussey RS, Davis EL, Wang X, Korkin D, Mitchum MG. Phytonematode peptide effectors exploit a host post-translational trafficking mechanism to the ER using a novel translocation signal. THE NEW PHYTOLOGIST 2021; 229:563-574. [PMID: 32569394 DOI: 10.1111/nph.16765] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/02/2020] [Indexed: 05/26/2023]
Abstract
Cyst nematodes induce a multicellular feeding site within roots called a syncytium. It remains unknown how root cells are primed for incorporation into the developing syncytium. Furthermore, it is unclear how CLAVATA3/EMBRYO SURROUNDING REGION (CLE) peptide effectors secreted into the cytoplasm of the initial feeding cell could have an effect on plant cells so distant from where the nematode is feeding as the syncytium expands. Here we describe a novel translocation signal within nematode CLE effectors that is recognized by plant cell secretory machinery to redirect these peptides from the cytoplasm to the apoplast of plant cells. We show that the translocation signal is functionally conserved across CLE effectors identified in nematode species spanning three genera and multiple plant species, operative across plant cell types, and can traffic other unrelated small peptides from the cytoplasm to the apoplast of host cells via a previously unknown post-translational mechanism of endoplasmic reticulum (ER) translocation. Our results uncover a mechanism of effector trafficking that is unprecedented in any plant pathogen to date, andthey illustrate how phytonematodes can deliver effector proteins into host cells and then hijack plant cellular processes for their export back out of the cell to function as external signaling molecules to distant cells.
Collapse
Affiliation(s)
- Jianying Wang
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Andi Dhroso
- Department of Computer Science and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Xunliang Liu
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602, USA
| | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Richard S Hussey
- Department of Plant Pathology, University of Georgia, Athens, GA, 30602, USA
| | - Eric L Davis
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Xiaohong Wang
- Robert W. Holley Center for Agriculture and Health, US Department of Agriculture, Agricultural Research Service and School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Dmitry Korkin
- Department of Computer Science and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Melissa G Mitchum
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
34
|
Montenegro Alonso AP, Ali S, Song X, Linning R, Bakkeren G. UhAVR1, an HR-Triggering Avirulence Effector of Ustilago hordei, Is Secreted via the ER-Golgi Pathway, Localizes to the Cytosol of Barley Cells during in Planta-Expression, and Contributes to Virulence Early in Infection. J Fungi (Basel) 2020; 6:E178. [PMID: 32961976 PMCID: PMC7559581 DOI: 10.3390/jof6030178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 12/19/2022] Open
Abstract
The basidiomycete Ustilago hordei causes covered smut disease of barley and oats. Virulence effectors promoting infection and supporting pathogen lifestyle have been described for this fungus. Genetically, six avirulence genes are known and one codes for UhAVR1, the only proven avirulence effector identified in smuts to date that triggers complete immunity in barley cultivars carrying resistance gene Ruh1. A prerequisite for resistance breeding is understanding the host targets and molecular function of UhAVR1. Analysis of this effector upon natural infection of barley coleoptiles using teliospores showed that UhAVR1 is expressed during the early stages of fungal infection where it leads to HR triggering in resistant cultivars or performs its virulence function in susceptible cultivars. Fungal secretion of UhAVR1 is directed by its signal peptide and occurs via the BrefeldinA-sensitive ER-Golgi pathway in cell culture away from its host. Transient in planta expression of UhAVR1 in barley and a nonhost, Nicotiana benthamiana, supports a cytosolic localization. Delivery of UhAVR1 via foxtail mosaic virus or Pseudomonas species in both barley and N. benthamiana reveals a role in suppressing components common to both plant systems of Effector- and Pattern-Triggered Immunity, including necrosis triggered by Agrobacterium-delivered cell death inducers.
Collapse
Affiliation(s)
- Ana Priscilla Montenegro Alonso
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, BC V0H 1Z0, Canada;
| | - Shawkat Ali
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, NS B4N 1J5, Canada;
| | - Xiao Song
- Sandstone Pharmacies Glenmore Landing Calgary-Compounding, 167D, 1600–90 Ave SW Calgary, AB T2V 5A8, Canada;
| | - Rob Linning
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, BC V0H 1Z0, Canada;
| | - Guus Bakkeren
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, BC V0H 1Z0, Canada;
| |
Collapse
|
35
|
Pottinger SE, Innes RW. RPS5-Mediated Disease Resistance: Fundamental Insights and Translational Applications. ANNUAL REVIEW OF PHYTOPATHOLOGY 2020; 58:139-160. [PMID: 32284014 DOI: 10.1146/annurev-phyto-010820-012733] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Focusing on the discovery and characterization of the Arabidopsis disease resistance protein RPS5 and its guardee PBS1, this review discusses work done in the Innes laboratory from the initial identification of the RPS5 gene in 1995 to the recent deployment of the PBS1 decoy system in crops. This is done through discussion of the structure, function, and signaling environment of RPS5 and PBS1, highlighting collaborations and influential ideas along the way. RPS5, a nucleotide-binding leucine-rich repeat (NLR) protein, is activated by the proteolytic cleavage of PBS1. We have shown that the cleavage site within PBS1 can be altered to contain cleavage sites for other proteases, enabling RPS5 activation by these proteases, thereby conferring resistance to different pathogens. This decoy approach has since been translated into crop species using endogenous PBS1 orthologs and holds strong potential for GMO-free development of new genetic resistance against important crop pathogens.
Collapse
Affiliation(s)
- Sarah E Pottinger
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA;
| | - Roger W Innes
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA;
| |
Collapse
|
36
|
Timilsina S, Potnis N, Newberry EA, Liyanapathiranage P, Iruegas-Bocardo F, White FF, Goss EM, Jones JB. Xanthomonas diversity, virulence and plant-pathogen interactions. Nat Rev Microbiol 2020; 18:415-427. [PMID: 32346148 DOI: 10.1038/s41579-020-0361-8] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2020] [Indexed: 12/19/2022]
Abstract
Xanthomonas spp. encompass a wide range of plant pathogens that use numerous virulence factors for pathogenicity and fitness in plant hosts. In this Review, we examine recent insights into host-pathogen co-evolution, diversity in Xanthomonas populations and host specificity of Xanthomonas spp. that have substantially improved our fundamental understanding of pathogen biology. We emphasize the virulence factors in xanthomonads, such as type III secreted effectors including transcription activator-like effectors, type II secretion systems, diversity resulting in host specificity, evolution of emerging strains, activation of susceptibility genes and strategies of host evasion. We summarize the genomic diversity in several Xanthomonas spp. and implications for disease outbreaks, management strategies and breeding for disease resistance.
Collapse
Affiliation(s)
- Sujan Timilsina
- Plant Pathology Department, University of Florida, Gainesville, FL, USA
| | - Neha Potnis
- Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Eric A Newberry
- Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | | | | | - Frank F White
- Plant Pathology Department, University of Florida, Gainesville, FL, USA
| | - Erica M Goss
- Plant Pathology Department, University of Florida, Gainesville, FL, USA. .,Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.
| | - Jeffrey B Jones
- Plant Pathology Department, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
37
|
Thomas NC, Hendrich CG, Gill US, Allen C, Hutton SF, Schultink A. The Immune Receptor Roq1 Confers Resistance to the Bacterial Pathogens Xanthomonas, Pseudomonas syringae, and Ralstonia in Tomato. FRONTIERS IN PLANT SCIENCE 2020; 11:463. [PMID: 32391034 PMCID: PMC7192161 DOI: 10.3389/fpls.2020.00463] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/30/2020] [Indexed: 05/22/2023]
Abstract
Xanthomonas species, Pseudomonas syringae and Ralstonia species are bacterial plant pathogens that cause significant yield loss in many crop species. Generating disease-resistant crop varieties can provide a more sustainable solution to control yield loss compared to chemical methods. Plant immune receptors encoded by nucleotide-binding, leucine-rich repeat (NLR) genes typically confer resistance to pathogens that produce a cognate elicitor, often an effector protein secreted by the pathogen to promote virulence. The diverse sequence and presence/absence variation of pathogen effector proteins within and between pathogen species usually limits the utility of a single NLR gene to protecting a plant from a single pathogen species or particular strains. The NLR protein Recognition of XopQ 1 (Roq1) was recently identified from the plant Nicotiana benthamiana and mediates perception of the effector proteins XopQ and HopQ1 from Xanthomonas and P. syringae respectively. Unlike most recognized effectors, alleles of XopQ/HopQ1 are highly conserved and present in most plant pathogenic strains of Xanthomonas and P. syringae. A homolog of XopQ/HopQ1, named RipB, is present in most Ralstonia strains. We found that Roq1 confers immunity to Xanthomonas, P. syringae, and Ralstonia when expressed in tomato. Strong resistance to Xanthomonas perforans was observed in three seasons of field trials with both natural and artificial inoculation. The Roq1 gene can therefore be used to provide safe, economical, and effective control of these pathogens in tomato and other crop species and reduce or eliminate the need for traditional chemical controls.
Collapse
Affiliation(s)
- Nicholas C. Thomas
- Fortiphyte Inc., Berkeley, CA, United States
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Connor G. Hendrich
- Department of Plant Pathology, University of Wisconsin–Madison, Madison, WI, United States
| | - Upinder S. Gill
- IFAS, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, United States
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin–Madison, Madison, WI, United States
| | - Samuel F. Hutton
- IFAS, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, United States
| | - Alex Schultink
- Fortiphyte Inc., Berkeley, CA, United States
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
38
|
Kim JH, Castroverde CDM. Diversity, Function and Regulation of Cell Surface and Intracellular Immune Receptors in Solanaceae. PLANTS 2020; 9:plants9040434. [PMID: 32244634 PMCID: PMC7238418 DOI: 10.3390/plants9040434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/14/2020] [Accepted: 03/23/2020] [Indexed: 12/29/2022]
Abstract
The first layer of the plant immune system comprises plasma membrane-localized receptor proteins and intracellular receptors of the nucleotide-binding leucine-rich repeat protein superfamily. Together, these immune receptors act as a network of surveillance machines in recognizing extracellular and intracellular pathogen invasion-derived molecules, ranging from conserved structural epitopes to virulence-promoting effectors. Successful pathogen recognition leads to physiological and molecular changes in the host plants, which are critical for counteracting and defending against biotic attack. A breadth of significant insights and conceptual advances have been derived from decades of research in various model plant species regarding the structural complexity, functional diversity, and regulatory mechanisms of these plant immune receptors. In this article, we review the current state-of-the-art of how these host surveillance proteins function and how they are regulated. We will focus on the latest progress made in plant species belonging to the Solanaceae family, because of their tremendous importance as model organisms and agriculturally valuable crops.
Collapse
Affiliation(s)
- Jong Hum Kim
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Howard Hughes Medical Institute, Michigan State University, East Lansing, MI 48824, USA
- Correspondence: (J.H.K.); (C.D.M.C.)
| | | |
Collapse
|
39
|
Adhikari P, Adhikari TB, Louws FJ, Panthee DR. Advances and Challenges in Bacterial Spot Resistance Breeding in Tomato ( Solanum lycopersicum L.). Int J Mol Sci 2020; 21:E1734. [PMID: 32138355 PMCID: PMC7084486 DOI: 10.3390/ijms21051734] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 12/21/2022] Open
Abstract
Bacterial spot is a serious disease of tomato caused by at least four species of Xanthomonas. These include X. euvesicatoria (race T1), X. vesicatoria (race T2), X. perforans (races T3 and T4), and X. gardneri, with the distinct geographical distribution of each group. Currently, X. gardneri and X. perforans are two major bacterial pathogens of tomato in North America, with X. perforans (race T4) dominating in east-coast while X. gardneri dominating in the Midwest. The disease causes up to 66% yield loss. Management of this disease is challenging due to the lack of useful chemical control measures and commercial resistant cultivars. Although major genes for resistance (R) and quantitative resistance have been identified, breeding tomato for resistance to bacterial spot has been impeded by multiple factors including the emergence of new races of the pathogen that overcome the resistance, multigenic control of the resistance, linkage drag, non-additive components of the resistance and a low correlation between seedling assays and field resistance. Transgenic tomato with Bs2 and EFR genes was effective against multiple races of Xanthomonas. However, it has not been commercialized because of public concerns and complex regulatory processes. The genomics-assisted breeding, effectors-based genomics breeding, and genome editing technology could be novel approaches to achieve durable resistance to bacterial spot in tomato. The main goal of this paper is to understand the current status of bacterial spot of tomato including its distribution and pathogen diversity, challenges in disease management, disease resistance sources, resistance genetics and breeding, and future prospectives with novel breeding approaches.
Collapse
Affiliation(s)
- Pragya Adhikari
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA; (P.A.); (F.J.L.)
| | - Tika B. Adhikari
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA;
| | - Frank J. Louws
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA; (P.A.); (F.J.L.)
| | - Dilip R. Panthee
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA; (P.A.); (F.J.L.)
| |
Collapse
|
40
|
van Wersch S, Tian L, Hoy R, Li X. Plant NLRs: The Whistleblowers of Plant Immunity. PLANT COMMUNICATIONS 2020; 1:100016. [PMID: 33404540 PMCID: PMC7747998 DOI: 10.1016/j.xplc.2019.100016] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 05/19/2023]
Abstract
The study of plant diseases is almost as old as agriculture itself. Advancements in molecular biology have given us much more insight into the plant immune system and how it detects the many pathogens plants may encounter. Members of the primary family of plant resistance (R) proteins, NLRs, contain three distinct domains, and appear to use several different mechanisms to recognize pathogen effectors and trigger immunity. Understanding the molecular process of NLR recognition and activation has been greatly aided by advancements in structural studies, with ZAR1 recently becoming the first full-length NLR to be visualized. Genetic and biochemical analysis identified many critical components for NLR activation and homeostasis control. The increased study of helper NLRs has also provided insights into the downstream signaling pathways of NLRs. This review summarizes the progress in the last decades on plant NLR research, focusing on the mechanistic understanding that has been achieved.
Collapse
Affiliation(s)
- Solveig van Wersch
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Labs, University of British Columbia, Vancouver, BC, Canada
| | - Lei Tian
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Labs, University of British Columbia, Vancouver, BC, Canada
| | - Ryan Hoy
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Xin Li
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Labs, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
41
|
Jiménez‐Guerrero I, Pérez‐Montaño F, Da Silva GM, Wagner N, Shkedy D, Zhao M, Pizarro L, Bar M, Walcott R, Sessa G, Pupko T, Burdman S. Show me your secret(ed) weapons: a multifaceted approach reveals a wide arsenal of type III-secreted effectors in the cucurbit pathogenic bacterium Acidovorax citrulli and novel effectors in the Acidovorax genus. MOLECULAR PLANT PATHOLOGY 2020; 21:17-37. [PMID: 31643123 PMCID: PMC6913199 DOI: 10.1111/mpp.12877] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The cucurbit pathogenic bacterium Acidovorax citrulli requires a functional type III secretion system (T3SS) for pathogenicity. In this bacterium, as with Xanthomonas and Ralstonia spp., an AraC-type transcriptional regulator, HrpX, regulates expression of genes encoding T3SS components and type III-secreted effectors (T3Es). The annotation of a sequenced A. citrulli strain revealed 11 T3E genes. Assuming that this could be an underestimation, we aimed to uncover the T3E arsenal of the A. citrulli model strain, M6. Thorough sequence analysis revealed 51 M6 genes whose products are similar to known T3Es. Furthermore, we combined machine learning and transcriptomics to identify novel T3Es. The machine-learning approach ranked all A. citrulli M6 genes according to their propensity to encode T3Es. RNA-Seq revealed differential gene expression between wild-type M6 and a mutant defective in HrpX: 159 and 28 genes showed significantly reduced and increased expression in the mutant relative to wild-type M6, respectively. Data combined from these approaches led to the identification of seven novel T3E candidates that were further validated using a T3SS-dependent translocation assay. These T3E genes encode hypothetical proteins that seem to be restricted to plant pathogenic Acidovorax species. Transient expression in Nicotiana benthamiana revealed that two of these T3Es localize to the cell nucleus and one interacts with the endoplasmic reticulum. This study places A. citrulli among the 'richest' bacterial pathogens in terms of T3E cargo. It also revealed novel T3Es that appear to be involved in the pathoadaptive evolution of plant pathogenic Acidovorax species.
Collapse
Affiliation(s)
- Irene Jiménez‐Guerrero
- Department of Plant Pathology and MicrobiologyThe Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Francisco Pérez‐Montaño
- Department of Plant Pathology and MicrobiologyThe Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
- Department of MicrobiologyUniversity of SevilleSevilleSpain
| | - Gustavo Mateus Da Silva
- Department of Plant Pathology and MicrobiologyThe Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Naama Wagner
- The School of Molecular Cell Biology and BiotechnologyThe George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
| | - Dafna Shkedy
- The School of Molecular Cell Biology and BiotechnologyThe George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
| | - Mei Zhao
- Department of Plant PathologyUniversity of GeorgiaAthensGAUSA
| | - Lorena Pizarro
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationThe Volcani CenterBet DaganIsrael
| | - Maya Bar
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationThe Volcani CenterBet DaganIsrael
| | - Ron Walcott
- Department of Plant PathologyUniversity of GeorgiaAthensGAUSA
| | - Guido Sessa
- School of Plant Sciences and Food SecurityThe George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
| | - Tal Pupko
- The School of Molecular Cell Biology and BiotechnologyThe George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
| | - Saul Burdman
- Department of Plant Pathology and MicrobiologyThe Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| |
Collapse
|
42
|
van Esse HP, Reuber TL, van der Does D. Genetic modification to improve disease resistance in crops. THE NEW PHYTOLOGIST 2020; 225:70-86. [PMID: 31135961 PMCID: PMC6916320 DOI: 10.1111/nph.15967] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/08/2019] [Indexed: 05/19/2023]
Abstract
Plant pathogens are a significant challenge in agriculture despite our best efforts to combat them. One of the most effective and sustainable ways to manage plant pathogens is to use genetic modification (GM) and genome editing, expanding the breeder's toolkit. For use in the field, these solutions must be efficacious, with no negative effect on plant agronomy, and deployed thoughtfully. They must also not introduce a potential allergen or toxin. Expensive regulation of biotech crops is prohibitive for local solutions. With 11-30% average global yield losses and greater local impacts, tackling plant pathogens is an ethical imperative. We need to increase world food production by at least 60% using the same amount of land, by 2050. The time to act is now and we cannot afford to ignore the new solutions that GM provides to manage plant pathogens.
Collapse
Affiliation(s)
- H. Peter van Esse
- 2Blades Foundation1630 Chicago AvenueEvanstonIL 60201USA
- The Sainsbury LaboratoryUniversity of East AngliaNorwich Research ParkNR4 7UHUK
| | | | | |
Collapse
|
43
|
Kim JG, Mudgett MB. Tomato bHLH132 Transcription Factor Controls Growth and Defense and Is Activated by Xanthomonas euvesicatoria Effector XopD During Pathogenesis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1614-1622. [PMID: 31322482 DOI: 10.1094/mpmi-05-19-0122-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Effector-dependent manipulation of host transcription is a key virulence mechanism used by Xanthomonas species causing bacterial spot disease in tomato and pepper. Transcription activator-like (TAL) effectors employ novel DNA-binding domains to directly activate host transcription, whereas the non-TAL effector XopD uses a small ubiquitin-like modifier (SUMO) protease activity to represses host transcription. The targets of TAL and non-TAL effectors provide insight to the genes governing susceptibility and resistance during Xanthomonas infection. In this study, we investigated the extent to which the X. euvesicatoria non-TAL effector strain Xe85-10 activates tomato transcription to gain new insight to the transcriptional circuits and virulence mechanisms associated with Xanthomonas euvesicatoria pathogenesis. Using transcriptional profiling, we identified a putative basic helix-loop-helix (bHLH) transcription factor, bHLH132, as a pathogen-responsive gene that is moderately induced by microbe-associated molecular patterns and defense hormones and is highly induced by XopD during X. euvesicatoria infection. We also found that activation of bHLH132 transcription requires the XopD SUMO protease activity. Silencing bHLH132 mRNA expression results in stunted tomato plants with enhanced susceptibility to X. euvesicatoria infection. Our work suggests that bHLH132 is required for normal vegetative growth and development as well as resistance to X. euvesicatoria. It also suggests new transcription-based models describing XopD virulence and recognition in tomato.
Collapse
Affiliation(s)
- Jung-Gun Kim
- Department of Biology, Stanford University, Stanford, CA 94305-5020, U.S.A
| | - Mary Beth Mudgett
- Department of Biology, Stanford University, Stanford, CA 94305-5020, U.S.A
| |
Collapse
|
44
|
Du H, Wen C, Zhang X, Xu X, Yang J, Chen B, Geng S. Identification of a Major QTL ( qRRs-10.1) That Confers Resistance to Ralstonia solanacearum in Pepper ( Capsicum annuum) Using SLAF-BSA and QTL Mapping. Int J Mol Sci 2019; 20:ijms20235887. [PMID: 31771239 PMCID: PMC6928630 DOI: 10.3390/ijms20235887] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/04/2019] [Accepted: 11/21/2019] [Indexed: 11/24/2022] Open
Abstract
The soilborne pathogen Ralstonia solanacearum is the causal agent of bacterial wilt (BW), a major disease of pepper (Capsicum annuum). The genetic basis of resistance to this disease in pepper is not well known. This study aimed to identify BW resistance markers in pepper. Analysis of the dynamics of bioluminescent R. solanacearum colonization in reciprocal grafts of a resistant (BVRC 1) line and a susceptible (BVRC 25) line revealed that the resistant rootstock effectively suppressed the spreading of bacteria into the scion. The two clear-cut phenotypic distributions of the disease severity index in 440 F2 plants derived from BVRC 25 × BVRC 1 indicated that a major genetic factor as well as a few minor factors that control BW resistance. By specific-locus amplified fragment sequencing combined with bulked segregant analysis, two adjacent resistance-associated regions on chromosome 10 were identified. Quantitative trait (QTL) mapping revealed that these two regions belong to a single QTL, qRRs-10.1. The marker ID10-194305124, which reached a maximum log-likelihood value at 9.79 and accounted for 19.01% of the phenotypic variation, was located the closest to the QTL peak. A cluster of five predicted R genes and three defense-related genes, which are located in close proximity to the significant markers ID10-194305124 or ID10-196208712, are important candidate genes that may confer BW resistance in pepper.
Collapse
|
45
|
Khoury CK, Carver D, Barchenger DW, Barboza GE, Zonneveld M, Jarret R, Bohs L, Kantar M, Uchanski M, Mercer K, Nabhan GP, Bosland PW, Greene SL. Modelled distributions and conservation status of the wild relatives of chile peppers (
Capsicum
L.). DIVERS DISTRIB 2019. [DOI: 10.1111/ddi.13008] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Colin K. Khoury
- National Laboratory for Genetic Resources Preservation United States Department of Agriculture, Agricultural Research Service Fort Collins CO USA
- International Center for Tropical Agriculture (CIAT) Cali Colombia
- Department of Biology Saint Louis University St. Louis MO USA
| | - Daniel Carver
- Natural Resource Ecology Laboratory Colorado State University Fort Collins CO USA
| | | | - Gloria E. Barboza
- Instituto Multidisciplinario de Biología Vegetal (IMBIV) CONICET Córdoba Argentina
- Facultad de Ciencias Químicas Universidad Nacional de Córdoba Córdoba Argentina
| | | | - Robert Jarret
- Plant Genetic Resources Conservation Unit United States Department of Agriculture Agricultural Research Service Griffin GA USA
| | - Lynn Bohs
- Biology Department University of Utah Salt Lake City UT USA
| | - Michael Kantar
- Department of Tropical Plant and Soil Science University of Hawaii at Manoa Honolulu HI USA
| | - Mark Uchanski
- Department of Horticulture and Landscape Architecture Colorado State University Fort Collins CO USA
| | - Kristin Mercer
- Department of Horticulture and Crop Science The Ohio State University Columbus OH USA
| | - Gary Paul Nabhan
- Southwest Center and Institute of the Environment University of Arizona Tucson AZ USA
| | - Paul W. Bosland
- Department of Plant and Environmental Sciences New Mexico State University Las Cruces NM USA
| | - Stephanie L. Greene
- National Laboratory for Genetic Resources Preservation United States Department of Agriculture, Agricultural Research Service Fort Collins CO USA
| |
Collapse
|
46
|
Tomato Natural Resistance Genes in Controlling the Root-Knot Nematode. Genes (Basel) 2019; 10:genes10110925. [PMID: 31739481 PMCID: PMC6896013 DOI: 10.3390/genes10110925] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 02/01/2023] Open
Abstract
The root-knot nematode (RKN) is one of the most dangerous and widespread types of nematodes affecting tomatoes. There are few methods for controlling nematodes in tomatoes. Nature resistance genes (R-genes) are important in conferring resistance against nematodes. These genes that confer resistance to the RKN have already been identified as Mi-1, Mi-2, Mi-3, Mi-4, Mi-5, Mi-6, Mi-7, Mi-8, Mi-9, and Mi-HT. Only five of these genes have been mapped. The major problem is that their resistance breaks down at high temperatures. Some of these genes still work at high temperatures. In this paper, the mechanism and characteristics of these natural resistance genes are summarized. Other difficulties in using these genes in the resistance and how to improve them are also mentioned.
Collapse
|
47
|
Sun L, Ke F, Nie Z, Wang P, Xu J. Citrus Genetic Engineering for Disease Resistance: Past, Present and Future. Int J Mol Sci 2019; 20:E5256. [PMID: 31652763 PMCID: PMC6862092 DOI: 10.3390/ijms20215256] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 11/16/2022] Open
Abstract
Worldwide, citrus is one of the most important fruit crops and is grown in more than 130 countries, predominantly in tropical and subtropical areas. The healthy progress of the citrus industry has been seriously affected by biotic and abiotic stresses. Several diseases, such as canker and huanglongbing, etc., rigorously affect citrus plant growth, fruit quality, and yield. Genetic engineering technologies, such as genetic transformation and genome editing, represent successful and attractive approaches for developing disease-resistant crops. These genetic engineering technologies have been widely used to develop citrus disease-resistant varieties against canker, huanglongbing, and many other fungal and viral diseases. Recently, clustered regularly interspaced short palindromic repeats (CRISPR)-based systems have made genome editing an indispensable genetic manipulation tool that has been applied to many crops, including citrus. The improved CRISPR systems, such as CRISPR/CRISPR-associated protein (Cas)9 and CRISPR/Cpf1 systems, can provide a promising new corridor for generating citrus varieties that are resistant to different pathogens. The advances in biotechnological tools and the complete genome sequence of several citrus species will undoubtedly improve the breeding for citrus disease resistance with a much greater degree of precision. Here, we attempt to summarize the recent successful progress that has been achieved in the effective application of genetic engineering and genome editing technologies to obtain citrus disease-resistant (bacterial, fungal, and virus) crops. Furthermore, we also discuss the opportunities and challenges of genetic engineering and genome editing technologies for citrus disease resistance.
Collapse
Affiliation(s)
- Lifang Sun
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China.
- National Center for Citrus Variety Improvement, Zhejiang Branch, Taizhou 318026, China.
| | - Fuzhi Ke
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China.
- National Center for Citrus Variety Improvement, Zhejiang Branch, Taizhou 318026, China.
| | - Zhenpeng Nie
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China.
- National Center for Citrus Variety Improvement, Zhejiang Branch, Taizhou 318026, China.
| | - Ping Wang
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China.
- National Center for Citrus Variety Improvement, Zhejiang Branch, Taizhou 318026, China.
| | - Jianguo Xu
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China.
- National Center for Citrus Variety Improvement, Zhejiang Branch, Taizhou 318026, China.
| |
Collapse
|
48
|
Bagga S, Lucero Y, Apodaca K, Rajapakse W, Lujan P, Ortega JL, Sengupta-Gopalan C. Chile (Capsicum annuum) plants transformed with the RB gene from Solanum bulbocastanum are resistant to Phytophthora capsici. PLoS One 2019; 14:e0223213. [PMID: 31589629 PMCID: PMC6779293 DOI: 10.1371/journal.pone.0223213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/15/2019] [Indexed: 01/04/2023] Open
Abstract
Phytophthora capsici is a soil borne pathogen, and is among the most destructive pathogens for Capsicum annuum (chile). P. capsici is known to cause diseases on all parts of the chile plants. Therefore, it requires independent resistance genes to control disease symptoms that are induced by each of the P. capsici strains. This requirement of multiple resistance genes to confer resistance to P. capsici, in chile makes breeding for resistance a daunting pursuit. Against this backdrop, a genetic engineering approach would be to introduce a broad host resistance gene into chile in order to protect it from different races of P. capsici. Notably, a broad host resistance gene RB from Solanum bulbocastanum has been shown to confer resistance to P. infestans in both S. tuberosum and S. lycopersicum. We agroinfiltrated the RB gene into the leaves of susceptible chile plants, demonstrating that the gene is also capable of lending resistance to P. capsici in chile. We introduced the RB gene into chile by developing an Agrobacterium tumefaciens mediated transformation system. The integration of the RB gene into the genome of the primary transformants and its subsequent transfer to the F1 generation was confirmed by genomic PCR using primers specific for the RB gene. A 3:1 ratio for the presence and absence of the RB gene was observed in the F1 progeny. In addition to showing resistance to P. capsici in a leaf inoculation experiment, about 30% of the F1 progeny also exhibited resistance to root inoculation. Our data, when taken together, suggests that the RB gene from S. bulbocastanum confers resistance against P. capsici in C. annuum, thereby demonstrating that the RB gene has an even broader host range than reported in the literature–both in terms of the host and the pathogen.
Collapse
Affiliation(s)
- Suman Bagga
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States of America
| | - Yvonne Lucero
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States of America
| | - Kimberly Apodaca
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States of America
| | - Wathsala Rajapakse
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States of America
| | - Phillip Lujan
- Department of Entomology, Plant Pathology, Weed Science, New Mexico State University, Las Cruces, NM, United States of America
| | - Jose Luis Ortega
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States of America
| | - Champa Sengupta-Gopalan
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States of America
- * E-mail:
| |
Collapse
|
49
|
Ayliffe M, Sørensen CK. Plant nonhost resistance: paradigms and new environments. CURRENT OPINION IN PLANT BIOLOGY 2019; 50:104-113. [PMID: 31075541 DOI: 10.1016/j.pbi.2019.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/08/2019] [Accepted: 03/25/2019] [Indexed: 05/25/2023]
Abstract
Nonhost resistance (NHR) protects plants from a large and diverse array of potential phytopathogens. Each phytopathogen can parasitise some plant species, but most plant species are nonhosts that are innately immune due to a series of physical, chemical and inducible defenses these nonadapted pathogens cannot overcome. New evidence supports the NHR paradigm that posits the inability of potential pathogens to colonise nonhost plants is frequently due to molecular incompatibility between pathogen virulence factors and plant cellular targets. While NHR is durable, it is not insurmountable. Environmental changes can facilitate pathogen host jumps or alternatively result in new encounters between previously isolated plant species and pathogens. Climate change is predicted to substantially alter the current distribution of plants and their pathogens which could result in parasitism of new plant species.
Collapse
Affiliation(s)
- Michael Ayliffe
- CSIRO Agriculture and Food, Box 1700, Clunies Ross Street, Canberra, ACT 2601, Australia.
| | - Chris K Sørensen
- Department of Agroecology, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| |
Collapse
|
50
|
Adachi H, Derevnina L, Kamoun S. NLR singletons, pairs, and networks: evolution, assembly, and regulation of the intracellular immunoreceptor circuitry of plants. CURRENT OPINION IN PLANT BIOLOGY 2019; 50:121-131. [PMID: 31154077 DOI: 10.1016/j.pbi.2019.04.007] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/26/2019] [Accepted: 04/20/2019] [Indexed: 05/20/2023]
Abstract
NLRs are modular plant and animal proteins that are intracellular sensors of pathogen-associated molecules. Upon pathogen perception, NLRs trigger a potent broad-spectrum immune reaction known as the hypersensitive response. An emerging paradigm is that plant NLR immune receptors form networks with varying degrees of complexity. NLRs may have evolved from multifunctional singleton receptors, which combine pathogen detection (sensor activity) and immune signalling (helper or executor activity) into a single protein, to functionally specialized interconnected receptor pairs and networks. In this article, we highlight some of the recent advances in plant NLR biology by discussing models of NLR evolution, NLR complex formation, and how NLR (mis)regulation modulates immunity and autoimmunity. Multidisciplinary approaches are required to dissect the evolution, assembly, and regulation of the immune receptor circuitry of plants. With the new conceptual framework provided by the elucidation of the structure and activation mechanism of a plant NLR resistosome, this field is entering an exciting era of research.
Collapse
Affiliation(s)
- Hiroaki Adachi
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Lida Derevnina
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|