1
|
Stitz J. Development of HIV-1 vectors pseudotyped with envelope proteins of other retroviruses. Virology 2025; 602:110300. [PMID: 39577275 DOI: 10.1016/j.virol.2024.110300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/25/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
In the past three decades, human immunodeficiency virus type 1 (HIV-1)-derived vectors were evolved and became indispensable to transduce therapeutic genes into a range of different target cell types to facilitate a variety of gene therapeutic strategies. To achieve this, i) the biosafety profile of the vectors was incrementally enhanced and ii) the CD4-restricted tropism mediated by the envelope proteins (Env) of the parental virus needed to be directed towards recruitment of other receptors expressed on the desired target cells. Here, a closer look is first taken at the development of vector components and the mechanisms of Env incorporation into particles. While envelope proteins originating from a broad range of very diverse virus species were successfully utilized, members of the Retroviridae family most frequently provided Env or further engineered variants thereof to form transduction-competent HIV-1 pseudotype vector particles. The development of these vectors is reviewed and anticipated to further contribute to the future progression of somatic gene therapy.
Collapse
Affiliation(s)
- Jörn Stitz
- Research Group Medical Biotechnology & Bioengineering, Faculty of Applied Natural Sciences, TH Köln - University of Applied Sciences, Campusplatz 1, 51379, Leverkusen, Germany.
| |
Collapse
|
2
|
Komamura T, Nishimura T, Ohta N, Takado M, Matsumoto T, Takeda K. The putative polyamine transporter Shp2 facilitates phosphate export in an Xpr1-independent manner and contributes to high phosphate tolerance. J Biol Chem 2024; 301:108056. [PMID: 39662831 DOI: 10.1016/j.jbc.2024.108056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/09/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024] Open
Abstract
Phosphate (Pi) homeostasis at the cellular level is crucial, requiring coordinated Pi uptake, storage, and export. However, the regulatory mechanisms, particularly those governing Pi export, remain elusive, despite their relevance to human diseases like primary familial brain calcification. While Xpr1, conserved across eukaryotes, is the only known Pi exporter, the existence of additional Pi exporting factors is evident; however, these factors have been poorly characterized. Using the fission yeast Schizosaccharomyces pombe as a model, we have aimed to better understand cellular Pi homeostasis mechanisms. Previously, we showed three Pi regulators with SPX domains to be critical: Pqr1 (Pi uptake restrictor), Xpr1/Spx2, and the VTC complex (polyphosphate synthase). SPX domains bind to inositol pyrophosphate, modulating Pi regulator functions. The double mutant Δpqr1Δxpr1 hyper-accumulates Pi and undergoes cell death under high Pi conditions, indicating the necessity of both Pi uptake restriction and export. Notably, Δpqr1Δxpr1 exhibits residual Pi export activity independent of Xpr1, suggesting the presence of unidentified Pi exporters. To uncover these cryptic Pi exporters and regulators of Pi homeostasis, we conducted suppressor screening for high Pi hypersensitivity in Δpqr1Δxpr1. Among the eight suppressors identified, Shp2, a plasma-membrane protein, showed Pi export-facilitating activity in an Xpr1-independent manner, supporting cell proliferation at high Pi. The present results provide the first evidence for Pi export facilitator other than the established Xpr1, unprecedented in eukaryotes. As Shp2 is orthologous to the budding yeast Tpo1, a spermidine/polyamine transporter, a potential link between Pi homeostasis and polyamine metabolism can be speculated.
Collapse
Affiliation(s)
- Tochi Komamura
- Faculty of Science and Engineering, Department of Biology, Konan University, Kobe, Japan
| | - Tomoki Nishimura
- Faculty of Science and Engineering, Department of Biology, Konan University, Kobe, Japan
| | - Naoki Ohta
- Faculty of Science and Engineering, Department of Biology, Konan University, Kobe, Japan
| | - Masahiro Takado
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tomohiro Matsumoto
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kojiro Takeda
- Faculty of Science and Engineering, Department of Biology, Konan University, Kobe, Japan; Institute of Integrative Neurobiology, Konan University, Kobe, Japan.
| |
Collapse
|
3
|
Liao ZQ, Lv YF, Kang MD, Ji YL, Liu Y, Wang LR, Tang JL, Deng ZQ, Yi Y, Tang Q. Inhibition of XPR1-dependent phosphate efflux induces mitochondrial dysfunction: A potential molecular target therapy for hepatocellular carcinoma? Mol Carcinog 2024; 63:2332-2345. [PMID: 39136583 DOI: 10.1002/mc.23812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 11/16/2024]
Abstract
Xenotropic and polytropic retrovirus receptor 1 (XPR1) is the only known transporter associated with Pi efflux in mammals, and its impact on tumor progression is gradually being revealed. However, the role of XPR1 in hepatocellular carcinoma (HCC) is unknown. A bioinformatics screen for the phosphate exporter XPR1 was performed in HCC patients. The expression of XPR1 in clinical specimens was analyzed using quantitative real-time PCR, Western blot analysis, and immunohistochemical assays. Knockdown of the phosphate exporter XPR1 was performed by shRNA transfection to investigate the cellular phenotype and phosphate-related cytotoxicity of the Huh7 and HLF cell lines. In vivo tests were conducted to investigate the tumorigenicity of HCC cells xenografted into immunocompromised mice after silencing XPR1. Compared with that in paracancerous tissue, XPR1 expression in HCC tissues was markedly upregulated. High XPR1 expression significantly correlated with poor patient survival. Silencing of XPR1 leads to decreased proliferation, migration, invasion, and colony formation in HCC cells. Mechanistically, knockdown of XPR1 causes an increase in intracellular phosphate levels; mitochondrial dysfunction characterized by reduced mitochondrial membrane potential and adenosine triphosphate levels; increased reactive oxygen species levels; abnormal mitochondrial morphology; and downregulation of key mitochondrial fusion, fission, and inner membrane genes. This ultimately results in mitochondria-dependent apoptosis. These findings reveal the prognostic value of XPR1 in HCC progression and, more importantly, suggest that XPR1 might be a potential therapeutic target.
Collapse
Affiliation(s)
- Zi-Qiang Liao
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, College of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute for Advanced Study, Nanchang University, Nanchang, China
| | - Yang-Feng Lv
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, College of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute for Advanced Study, Nanchang University, Nanchang, China
| | - Mei-Diao Kang
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yu-Long Ji
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yue Liu
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Le-Ran Wang
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | | | - Zhi-Qiang Deng
- Department of Oncology, The First People's Hospital of Fuzhou, Fuzhou, China
| | - Yun Yi
- Biobank Center, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qun Tang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, College of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute for Advanced Study, Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Lu Y, Yue CX, Zhang L, Yao D, Xia Y, Zhang Q, Zhang X, Li S, Shen Y, Cao M, Guo CR, Qin A, Zhao J, Zhou L, Yu Y, Cao Y. Structural basis for inositol pyrophosphate gating of the phosphate channel XPR1. Science 2024; 386:eadp3252. [PMID: 39325866 DOI: 10.1126/science.adp3252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/12/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
Precise regulation of intracellular phosphate (Pi) is critical for cellular function, with xenotropic and polytropic retrovirus receptor 1 (XPR1) serving as the sole Pi exporter in humans. The mechanism of Pi efflux, activated by inositol pyrophosphates (PP-IPs), has remained unclear. This study presents cryo-electron microscopy structures of XPR1 in multiple conformations, revealing a transmembrane pathway for Pi export and a dual-binding activation pattern for PP-IPs. A canonical binding site is located at the dimeric interface of Syg1/Pho81/XPR1 (SPX) domains, and a second site, biased toward PP-IPs, is found between the transmembrane and SPX domains. By integrating structural studies with electrophysiological analyses, we characterized XPR1 as an inositol phosphates (IPs)/PP-IPs-activated phosphate channel. The interplay among its transmembrane domains, SPX domains, and IPs/PP-IPs orchestrates the conformational transition between its closed and open states.
Collapse
Affiliation(s)
- Yi Lu
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Chen-Xi Yue
- School of Basic Medicine and Clinical Pharmacy and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Li Zhang
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Deqiang Yao
- Institute of Aging & Tissue Regeneration, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ying Xia
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Qing Zhang
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xinchen Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shaobai Li
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Yafeng Shen
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Mi Cao
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Chang-Run Guo
- School of Basic Medicine and Clinical Pharmacy and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - An Qin
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jie Zhao
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Lu Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ye Yu
- School of Basic Medicine and Clinical Pharmacy and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yu Cao
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
5
|
Su Y, Mei L, Wu Y, Li C, Jiang T, Zhao Y, Feng X, Sun T, Li Y, Wang Z, Ji Y. Xenotropic and polytropic retrovirus receptor 1 (XPR1) promotes progression of papillary thyroid carcinoma via the BRAF-ERK1/2-P53 signaling pathway. J Endocrinol Invest 2024:10.1007/s40618-024-02481-5. [PMID: 39487939 DOI: 10.1007/s40618-024-02481-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer. Xenotropic and polytropic retrovirus receptor 1 (XPR1), identified as a cellular receptor, plays roles in many pathophysiological processes. However, the underlying function and molecular mechanisms of XPR1 in PTC remain unclear. Therefore, this study aimed to elucidate the role of XPR1 in the process of PTC and the potential mechanisms. METHODS RNA-sequencing was performed for gene differential expression analysis in PTC patients' tissues. Immunohistochemical assay, real-time PCR, and western blotting assay were used to determine the expression of XPR1, BRAF, and P53 in PTC tissues. The function of XPR1 on the progression of PTC was explored using in vitro and in vivo experiments. The molecular mechanism of XPR1 was investigated using gene silencing, ELISA, immunofluorescence, western blotting, and real-time PCR assays. RESULTS We found that XPR1 was markedly upregulated in PTC tissues compared to adjacent noncancerous tissues, suggesting that high expression of XPR1 could be correlated with poor patient disease-free survival in PTC. In addition, the expression of BRAF and P53 in PTC tissues was substantially higher than in adjacent noncancerous tissues. Silencing of XPR1 reduced the proliferation, migration, and invasion capacities of TPC-1 cells in vitro and effectively inhibited the tumorigenecity of PTC in vivo. More importantly, silencing of XPR1 in TPC-1 cells significantly decreased the expression of XPR1, BRAF, and P53 both in vitro and in vivo. Interestingly, we demonstrated that XPR1 may positively activate the BRAF-ERK-P53 signaling pathway, further promoting PTC progression. CONCLUSION The findings reveal a crucial role of XPR1 in PTC progression and prognosis via the BRAF-ERK1/2-P53 signaling pathway, providing potential therapeutic targets for treating PTC.
Collapse
Affiliation(s)
- Yuanhao Su
- Department of Geriatric General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Lin Mei
- Scientific Research Center and Precision Medical Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, 157 West 5th Road, Xi'an, 710004, Shaanxi, China
| | - Yongke Wu
- Department of Geriatric General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Cheng Li
- Department of Geriatric General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Tiantian Jiang
- Department of Geriatric General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Yiyuan Zhao
- Department of Geriatric General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Xin Feng
- Department of Geriatric General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Tingkai Sun
- Department of Geriatric General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Yunhao Li
- Department of Geriatric General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Zhidong Wang
- Department of Geriatric General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China.
| | - Yuanyuan Ji
- Scientific Research Center and Precision Medical Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, 157 West 5th Road, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
6
|
Kubo Y, Hans MB, Nakamura T, Hayashi H. The Furin Protease Dependence and Antiviral GBP2 Sensitivity of Murine Leukemia Virus Infection Are Determined by the Amino Acid Sequence at the Envelope Glycoprotein Cleavage Site. Int J Mol Sci 2024; 25:9987. [PMID: 39337476 PMCID: PMC11432233 DOI: 10.3390/ijms25189987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Host restriction factor GBP2 suppresses the replication of the ecotropic Moloney murine leukemia virus (E-MLV) by inhibiting furin protease, which cleaves the viral envelope glycoprotein (Env) into surface (SU) and transmembrane (TM) subunits. We analyzed the impacts of GBP2 on the infection efficiency mediated by MLV Envs of different strains of ecotropic Moloney, polytropic Friend, amphotropic, and xenotropic MLV-related (XMRV) viruses. Interestingly, the Envs of ecotropic Moloney and polytropic Friend MLV were sensitive to the antiviral activity of GBP2, while XMRV and amphotropic Envs showed resistance. Consistent with the sensitivity to GBP2, the amino acid sequences of the sensitive Envs at the SU-TM cleavage site were similar, as were the sequences of the resistant Envs. SU-TM cleavage of the GBP2-sensitive Env protein was inhibited by furin silencing, whereas that of GBP2-resistant Env was not. The substitution of the ecotropic Moloney cleavage site sequence with that of XMRV conferred resistance to both GBP2 and furin silencing. Reciprocally, the substitution of the XMRV cleavage site sequence with that of the ecotropic sequence conferred sensitivity to GBP2 and furin silencing. According to the SU-TM cleavage site sequence, there were sensitive and resistant variants among ecotropic, polytropic, and xenotropic MLVs. This study found that the dependence of MLV Env proteins on furin cleavage and GBP2-mediated restriction is determined by the amino acid sequences at the SU-TM cleavage site.
Collapse
Affiliation(s)
- Yoshinao Kubo
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (M.B.H.); (T.N.)
- Program for Nurturing Global Leaders in Tropical Medicine and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Manya Bakatumana Hans
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (M.B.H.); (T.N.)
- Program for Nurturing Global Leaders in Tropical Medicine and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Taisuke Nakamura
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (M.B.H.); (T.N.)
| | - Hideki Hayashi
- Medical University Research Administration, Nagasaki University School of Medicine, Nagasaki 852-8523, Japan;
| |
Collapse
|
7
|
Yan R, Chen H, Liu C, Zhao J, Wu D, Jiang J, Gong J, Jiang D. Human XPR1 structures reveal phosphate export mechanism. Nature 2024; 633:960-967. [PMID: 39169184 DOI: 10.1038/s41586-024-07852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 07/18/2024] [Indexed: 08/23/2024]
Abstract
Inorganic phosphate (Pi) is a fundamental macronutrient for all living organisms, the homeostasis of which is critical for numerous biological activities1-3. As the only known human Pi exporter to date, XPR1 has an indispensable role in cellular Pi homeostasis4,5. Dysfunction of XPR1 is associated with neurodegenerative disease6-8. However, the mechanisms underpinning XPR1-mediated Pi efflux and regulation by the intracellular inositol polyphosphate (InsPP) sensor SPX domain remain poorly understood. Here we present cryo-electron microscopy structures of human XPR1 in Pi-bound closed, open and InsP6-bound forms, revealing the structural basis for XPR1 gating and regulation by InsPPs. XPR1 consists of an N-terminal SPX domain, a dimer-formation core domain and a Pi transport domain. Within the transport domain, three basic clusters are responsible for Pi binding and transport, and a conserved W573 acts as a molecular switch for gating. In addition, the SPX domain binds to InsP6 and facilitates Pi efflux by liberating the C-terminal loop that limits Pi entry. This study provides a conceptual framework for the mechanistic understanding of Pi homeostasis by XPR1 homologues in fungi, plants and animals.
Collapse
Affiliation(s)
- Rui Yan
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, China
| | - Huiwen Chen
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Xiangfang District, Harbin, China
| | - Chuanyu Liu
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Zhao
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | - Di Wu
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Juquan Jiang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Xiangfang District, Harbin, China
| | - Jianke Gong
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, China
| | - Daohua Jiang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Coffin JM, Kearney MF. False Alarm: XMRV, Cancer, and Chronic Fatigue Syndrome. Annu Rev Virol 2024; 11:261-281. [PMID: 38976866 DOI: 10.1146/annurev-virology-111821-125122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Xenotropic murine leukemia virus (MLV)-related virus (XMRV) was first described in 2006 in some human prostate cancers. But it drew little attention until 2009, when it was also found, as infectious virus and as MLV-related DNA, in samples from people suffering from myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). This discovery was rapidly followed by efforts of the international research community to understand the significance of the association and its potential to spread widely as an important human pathogen. Within a few years, efforts by researchers worldwide failed to repeat these findings, and mounting evidence for laboratory contamination with mouse-derived virus and viral DNA sequences became accepted as the explanation for the initial findings. As researchers engaged in these studies, we present here a historical review of the rise and fall of XMRV as a human pathogen, and we discuss the lessons learned from these events.
Collapse
Affiliation(s)
- John M Coffin
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA;
| | | |
Collapse
|
9
|
Hernando N. Is XPR1 mediating phosphate efflux? Pflugers Arch 2024; 476:717-719. [PMID: 38512477 DOI: 10.1007/s00424-024-02946-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Affiliation(s)
- Nati Hernando
- Institute of Physiology, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
10
|
Takahashi Ueda M. Retrotransposon-derived transcripts and their functions in immunity and disease. Genes Genet Syst 2024; 98:305-319. [PMID: 38199240 DOI: 10.1266/ggs.23-00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
Retrotransposons, which account for approximately 42% of the human genome, have been increasingly recognized as "non-self" pathogen-associated molecular patterns (PAMPs) due to their virus-like sequences. In abnormal conditions such as cancer and viral infections, retrotransposons that are aberrantly expressed due to impaired epigenetic suppression display PAMPs, leading to their recognition by pattern recognition receptors (PRRs) of the innate immune system and triggering inflammation. This viral mimicry mechanism has been observed in various human diseases, including aging and autoimmune disorders. However, recent evidence suggests that retrotransposons possess highly regulated immune reactivity and play important roles in the development and function of the immune system. In this review, I discuss a wide range of retrotransposon-derived transcripts, their role as targets in immune recognition, and the diseases associated with retrotransposon activity. Furthermore, I explore the implications of chimeric transcripts formed between retrotransposons and known gene mRNAs, which have been previously underestimated, for the increase of immune-related gene isoforms and their influence on immune function. Retrotransposon-derived transcripts have profound and multifaceted effects on immune system function. The aim of this comprehensive review is to provide a better understanding of the complex relationship between retrotransposon transcripts and immune defense.
Collapse
Affiliation(s)
- Mahoko Takahashi Ueda
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University
| |
Collapse
|
11
|
Maheshwari U, Mateos JM, Weber‐Stadlbauer U, Ni R, Tamatey V, Sridhar S, Restrepo A, de Jong PA, Huang S, Schaffenrath J, Stifter SA, Szeri F, Greter M, Koek HL, Keller A. Inorganic phosphate exporter heterozygosity in mice leads to brain vascular calcification, microangiopathy, and microgliosis. Brain Pathol 2023; 33:e13189. [PMID: 37505935 PMCID: PMC10580014 DOI: 10.1111/bpa.13189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Calcification of the cerebral microvessels in the basal ganglia in the absence of systemic calcium and phosphate imbalance is a hallmark of primary familial brain calcification (PFBC), a rare neurodegenerative disorder. Mutation in genes encoding for sodium-dependent phosphate transporter 2 (SLC20A2), xenotropic and polytropic retrovirus receptor 1 (XPR1), platelet-derived growth factor B (PDGFB), platelet-derived growth factor receptor beta (PDGFRB), myogenesis regulating glycosidase (MYORG), and junctional adhesion molecule 2 (JAM2) are known to cause PFBC. Loss-of-function mutations in XPR1, the only known inorganic phosphate exporter in metazoans, causing dominantly inherited PFBC was first reported in 2015 but until now no studies in the brain have addressed whether loss of one functional allele leads to pathological alterations in mice, a commonly used organism to model human diseases. Here we show that mice heterozygous for Xpr1 (Xpr1WT/lacZ ) present with reduced inorganic phosphate levels in the cerebrospinal fluid and age- and sex-dependent growth of vascular calcifications in the thalamus. Vascular calcifications are surrounded by vascular basement membrane and are located at arterioles in the smooth muscle layer. Similar to previously characterized PFBC mouse models, vascular calcifications in Xpr1WT/lacZ mice contain bone matrix proteins and are surrounded by reactive astrocytes and microglia. However, microglial activation is not confined to calcified vessels but shows a widespread presence. In addition to vascular calcifications, we observed vessel tortuosity and transmission electron microscopy analysis revealed microangiopathy-endothelial swelling, phenotypic alterations in vascular smooth muscle cells, and thickening of the basement membrane.
Collapse
Affiliation(s)
- Upasana Maheshwari
- Department of Neurosurgery, Clinical Neuroscience CenterUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| | - José M. Mateos
- Center for Microscopy and Image analysisUniversity of ZurichZurichSwitzerland
| | - Ulrike Weber‐Stadlbauer
- Institute of Veterinary Pharmacology and ToxicologyUniversity of Zurich‐Vetsuisse, University of ZurichZurichSwitzerland
- Neuroscience Center ZurichUniversity of Zurich and ETH ZurichZurichSwitzerland
| | - Ruiqing Ni
- Neuroscience Center ZurichUniversity of Zurich and ETH ZurichZurichSwitzerland
- Institute for Biomedical EngineeringUniversity of Zurich and ETH ZurichZurichSwitzerland
| | - Virgil Tamatey
- Research Centre for Natural SciencesInstitute of EnzymologyBudapestHungary
- Doctoral School of BiologyELTE Eotvos Lorand UniversityBudapestHungary
| | - Sucheta Sridhar
- Department of Neurosurgery, Clinical Neuroscience CenterUniversity Hospital Zurich, University of ZurichZurichSwitzerland
- Neuroscience Center ZurichUniversity of Zurich and ETH ZurichZurichSwitzerland
| | - Alejandro Restrepo
- Department of Neurosurgery, Clinical Neuroscience CenterUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| | - Pim A. de Jong
- Department of RadiologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Sheng‐Fu Huang
- Department of Neurosurgery, Clinical Neuroscience CenterUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| | - Johanna Schaffenrath
- Department of Neurosurgery, Clinical Neuroscience CenterUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| | | | - Flora Szeri
- Research Centre for Natural SciencesInstitute of EnzymologyBudapestHungary
| | - Melanie Greter
- Institute of Experimental ImmunologyUniversity of ZurichZurichSwitzerland
| | - Huiberdina L. Koek
- Department of Geriatric MedicineUniversity Medical Centre Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Annika Keller
- Department of Neurosurgery, Clinical Neuroscience CenterUniversity Hospital Zurich, University of ZurichZurichSwitzerland
- Neuroscience Center ZurichUniversity of Zurich and ETH ZurichZurichSwitzerland
| |
Collapse
|
12
|
Wang L. Bioinformatics analyses proposed xenotropic and polytropic retrovirus receptor 1 as a potential diagnostic and prognostic biomarker and immunotherapeutic target in head and neck squamous cell carcinoma. Auris Nasus Larynx 2023; 50:134-150. [PMID: 35690506 DOI: 10.1016/j.anl.2022.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 01/28/2023]
Abstract
OBJECTIVE The role of Xenotropic and polytropic retrovirus receptor 1 (XPR1), a cell surface receptor for certain types of murine leukemia viruses, in human cancers has been rarely studied. We aimed to evaluate the values of XPR1 as a biomarker and therapeutic target in head and neck squamous cell carcinoma (HNSCC). METHODS Bioinformatics tools and online databases, including R packages, ONCOMINE, The Cancer Genome Atlas (TCGA), Human Protein Atlas (HPA), UALCAN, MethSurv, cBioPortal, and TIMER2.0 were applied in this study. RESULTS The mRNA and protein expression of XPR1 is significantly up-regulated in HNSCC tissues compared with normal tissues. The receiver operating characteristic (ROC) curve shows XPR1 has high specificity and accuracy in the diagnosis of HNSCC (AUC = 0.883). Patients with high-level expression of XPR1 have poorer overall survival (OS, P = 0.002), disease-specific survival (DSS, P = 0.014), and progress-free interval (PFI, P = 0.017). UALCAN analysis indicates that the methylation of XPR1 promoter in HNSCC is significantly down-regulated. MethSurve was used to investigate the impact of individual CpG islands on the prognosis of HNSCC patients. Low DNA methylation levels of cg11538848 and cg20948051 and high DNA methylation levels of cg23675362, cg18440470, and cg22026687 are significantly related to poor prognosis. The Gene Set Enrichment Analysis (GSEA), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis indicate that XPR1 is involved in various important biological functions and signaling pathways closely related to cancer. The co-expression analysis of XPR1 and N6-methyladenosine (m6A) RNA methylation regulators shows that XPR1 is significantly related to the expression of main m6A regulators. Immune infiltration analysis shows that the expression of XPR1 is related to certain types of immune infiltrating cells and has a positive correlation with the expression of four immune checkpoint genes, PDCD1LG2, CD274, HAVCR2, and SIGLEC15. CONCLUSION In summary, these results indicate that XPR1 is a potential diagnostic and prognostic biomarker and immunotherapy target for HNSCC. This study sheds new light on understanding the formation and development of HNSCC and sets the basis for further studying the role of XPR1 in HNSCC and other types of cancers.
Collapse
Affiliation(s)
- Lin Wang
- Department of Stomatology, Xi'an Medical University, 1 Xinwang Road, Weiyang District, Xi'an, Shaanxi 710021, China.
| |
Collapse
|
13
|
Hogan V, Johnson WE. Unique Structure and Distinctive Properties of the Ancient and Ubiquitous Gamma-Type Envelope Glycoprotein. Viruses 2023; 15:v15020274. [PMID: 36851488 PMCID: PMC9967133 DOI: 10.3390/v15020274] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
After the onset of the AIDS pandemic, HIV-1 (genus Lentivirus) became the predominant model for studying retrovirus Env glycoproteins and their role in entry. However, HIV Env is an inadequate model for understanding entry of viruses in the Alpharetrovirus, Gammaretrovirus and Deltaretrovirus genera. For example, oncogenic model system viruses such as Rous sarcoma virus (RSV, Alpharetrovirus), murine leukemia virus (MLV, Gammaretrovirus) and human T-cell leukemia viruses (HTLV-I and HTLV-II, Deltaretrovirus) encode Envs that are structurally and functionally distinct from HIV Env. We refer to these as Gamma-type Envs. Gamma-type Envs are probably the most widespread retroviral Envs in nature. They are found in exogenous and endogenous retroviruses representing a broad spectrum of vertebrate hosts including amphibians, birds, reptiles, mammals and fish. In endogenous form, gamma-type Envs have been evolutionarily coopted numerous times, most notably as placental syncytins (e.g., human SYNC1 and SYNC2). Remarkably, gamma-type Envs are also found outside of the Retroviridae. Gp2 proteins of filoviruses (e.g., Ebolavirus) and snake arenaviruses in the genus Reptarenavirus are gamma-type Env homologs, products of ancient recombination events involving viruses of different Baltimore classes. Distinctive hallmarks of gamma-type Envs include a labile disulfide bond linking the surface and transmembrane subunits, a multi-stage attachment and fusion mechanism, a highly conserved (but poorly understood) "immunosuppressive domain", and activation by the viral protease during virion maturation. Here, we synthesize work from diverse retrovirus model systems to illustrate these distinctive properties and to highlight avenues for further exploration of gamma-type Env structure and function.
Collapse
|
14
|
The Pathology of Primary Familial Brain Calcification: Implications for Treatment. Neurosci Bull 2022; 39:659-674. [PMID: 36469195 PMCID: PMC10073384 DOI: 10.1007/s12264-022-00980-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/10/2022] [Indexed: 12/08/2022] Open
Abstract
AbstractPrimary familial brain calcification (PFBC) is an inherited neurodegenerative disorder mainly characterized by progressive calcium deposition bilaterally in the brain, accompanied by various symptoms, such as dystonia, ataxia, parkinsonism, dementia, depression, headaches, and epilepsy. Currently, the etiology of PFBC is largely unknown, and no specific prevention or treatment is available. During the past 10 years, six causative genes (SLC20A2, PDGFRB, PDGFB, XPR1, MYORG, and JAM2) have been identified in PFBC. In this review, considering mechanistic studies of these genes at the cellular level and in animals, we summarize the pathogenesis and potential preventive and therapeutic strategies for PFBC patients. Our systematic analysis suggests a classification for PFBC genetic etiology based on several characteristics, provides a summary of the known composition of brain calcification, and identifies some potential therapeutic targets for PFBC.
Collapse
|
15
|
Akasu-Nagayoshi Y, Hayashi T, Kawabata A, Shimizu N, Yamada A, Yokota N, Nakato R, Shirahige K, Okamoto A, Akiyama T. The phosphate exporter XPR1/SLC53A1 is required for the tumorigenicity of epithelial ovarian cancer. Cancer Sci 2022; 113:2034-2043. [PMID: 35377528 PMCID: PMC9207365 DOI: 10.1111/cas.15358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/02/2022] Open
Abstract
Ovarian cancer is the fifth most common cause of cancer‐related death in women. Ovarian clear cell carcinoma (OCCC) is a chemotherapy‐resistant epithelial ovarian cancer with poor prognosis. As a basis for the development of therapeutic agents that could improve the prognosis of OCCC, we performed a screen for proteins critical for the tumorigenicity of OCCC using the CRISPR/Cas9 system. Here we show that knockdown of the phosphate exporter XPR1/SLC53A1 induces the growth arrest and apoptosis of OCCC cells in vitro. Moreover, we show that knockdown of XPR1/SLC53A1 inhibits the proliferation of OCCC cells xenografted into immunocompromised mice. These results suggest that XPR1/SLC53A1 plays a critical role in the tumorigenesis of OCCC cells. We speculate that XPR1/SLC53A1 might be a promising molecular target for the therapeutic treatment of OCCC.
Collapse
Affiliation(s)
- Yoko Akasu-Nagayoshi
- Laboratory of Molecular and Genetic Information, Institute of Quantitative Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.,Department of Obstetrics and Gynecology, Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo, Japan
| | - Tomoatsu Hayashi
- Laboratory of Molecular and Genetic Information, Institute of Quantitative Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Ayako Kawabata
- Laboratory of Molecular and Genetic Information, Institute of Quantitative Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.,Department of Obstetrics and Gynecology, Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo, Japan
| | - Naomi Shimizu
- Laboratory of Molecular and Genetic Information, Institute of Quantitative Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Ai Yamada
- Laboratory of Molecular and Genetic Information, Institute of Quantitative Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Naoko Yokota
- Laboratory of Computational Genetics, Institute of Quantitative Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Ryuichiro Nakato
- Laboratory of Computational Genetics, Institute of Quantitative Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure and Function, Institute of Quantitative Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Aikou Okamoto
- Department of Obstetrics and Gynecology, Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo, Japan
| | - Tetsu Akiyama
- Laboratory of Molecular and Genetic Information, Institute of Quantitative Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| |
Collapse
|
16
|
van Heuvel Y, Berg K, Hirch T, Winn K, Modlich U, Stitz J. Establishment of a novel stable human suspension packaging cell line producing ecotropic retroviral MLV(PVC-211) vectors efficiently transducing murine hematopoietic stem and progenitor cells. J Virol Methods 2021; 297:114243. [PMID: 34314749 DOI: 10.1016/j.jviromet.2021.114243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/30/2021] [Accepted: 07/15/2021] [Indexed: 12/29/2022]
Abstract
Retroviral vectors derived from murine leukemia virus (MLV) are amongst the most frequently utilized vectors in gene therapy approaches such as the genetic modification of hematopoietic cells. Currently, vector particles are mostly produced employing adherent viral packaging cell lines (VPCs) rendering the scale up of production laborious, and thus cost-intensive. Here, we describe the rapid establishment of a human suspension 293-F cell line derived ecotropic MLV VPC. Using transposon vector technology, a packaging and envelope expression cassette as well as a transfer vector facilitated the establishment of a stable VPC yielding high titers of up to 5.2 × 106 transducing units/mL (TU/mL). Vectors were concentrated using ultrafiltration devices and upon one freeze-thaw-cycle still routinely yielded titers of > 1 × 106 TU/mL. Formation of replication-competent retroviruses was not detected. However and as a first generation transfer vector was used in this proof-of-concept (POC) study, gag gene sequences were transduced into target cells within a range of 1-10 copies per 1000 genomes indicating the homologous recombination of packaging construct elements with the transfer vector. High yield VPC vector productivity was stable over a couple of months and unintended integration of the transposase gene was not observed. Ecotropic MLV vector particles were demonstrated to efficiently transduce primary murine hematopoietic stem and progenitor cells. This novel concept should foster the future establishment of suspension VPCs.
Collapse
Affiliation(s)
- Yasemin van Heuvel
- Research Group Pharmaceutical Biotechnology, Faculty of Applied Natural Sciences, TH Köln - University of Applied Sciences, Chempark Leverkusen E28, Kaiser-Wilhelm-Allee, 51368, Leverkusen, Germany; Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße, 530167, Hannover, Germany
| | - Karen Berg
- Research Group Pharmaceutical Biotechnology, Faculty of Applied Natural Sciences, TH Köln - University of Applied Sciences, Chempark Leverkusen E28, Kaiser-Wilhelm-Allee, 51368, Leverkusen, Germany; Research Group Translational Hepatology and Stem Cell Biology, Cluster of Excellence REBIRTH, Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Tanja Hirch
- Research Group for Gene Modification in Stem Cells, Paul-Ehrlich-Institute, Division of Veterinary Medicine, Paul-Ehrlich-Str. 51-59, 63225, Langen, Germany
| | - Kristina Winn
- Research Group Pharmaceutical Biotechnology, Faculty of Applied Natural Sciences, TH Köln - University of Applied Sciences, Chempark Leverkusen E28, Kaiser-Wilhelm-Allee, 51368, Leverkusen, Germany
| | - Ute Modlich
- Research Group for Gene Modification in Stem Cells, Paul-Ehrlich-Institute, Division of Veterinary Medicine, Paul-Ehrlich-Str. 51-59, 63225, Langen, Germany
| | - Jörn Stitz
- Research Group Pharmaceutical Biotechnology, Faculty of Applied Natural Sciences, TH Köln - University of Applied Sciences, Chempark Leverkusen E28, Kaiser-Wilhelm-Allee, 51368, Leverkusen, Germany.
| |
Collapse
|
17
|
Moritoh Y, Abe SI, Akiyama H, Kobayashi A, Koyama R, Hara R, Kasai S, Watanabe M. The enzymatic activity of inositol hexakisphosphate kinase controls circulating phosphate in mammals. Nat Commun 2021; 12:4847. [PMID: 34381031 PMCID: PMC8358040 DOI: 10.1038/s41467-021-24934-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 07/15/2021] [Indexed: 12/20/2022] Open
Abstract
Circulating phosphate levels are tightly controlled within a narrow range in mammals. By using a novel small-molecule inhibitor, we show that the enzymatic activity of inositol hexakisphosphate kinases (IP6K) is essential for phosphate regulation in vivo. IP6K inhibition suppressed XPR1, a phosphate exporter, thereby decreasing cellular phosphate export, which resulted in increased intracellular ATP levels. The in vivo inhibition of IP6K decreased plasma phosphate levels without inhibiting gut intake or kidney reuptake of phosphate, demonstrating a pivotal role of IP6K-regulated cellular phosphate export on circulating phosphate levels. IP6K inhibition-induced decrease in intracellular inositol pyrophosphate, an enzymatic product of IP6K, was correlated with phosphate changes. Chronic IP6K inhibition alleviated hyperphosphataemia, increased kidney ATP, and improved kidney functions in chronic kidney disease rats. Our results demonstrate that the enzymatic activity of IP6K regulates circulating phosphate and intracellular ATP and suggest that IP6K inhibition is a potential novel treatment strategy against hyperphosphataemia. Inositol hexakisphosphate kinase (IP6K) is involved in diverse cellular signalling pathways, but the physiological roles of IP6K in vivo remain unknown in mammals. Here, the authors show that the enzymatic activity of IP6K is essential for phosphate regulation in vivo.
Collapse
Affiliation(s)
| | - Shin-Ichi Abe
- Research Division, SCOHIA PHARMA Inc, Kanagawa, Japan
| | | | | | | | - Ryoma Hara
- Research Division, SCOHIA PHARMA Inc, Kanagawa, Japan
| | - Shizuo Kasai
- Research Division, SCOHIA PHARMA Inc, Kanagawa, Japan
| | | |
Collapse
|
18
|
Retroviral Restriction Factors and Their Viral Targets: Restriction Strategies and Evolutionary Adaptations. Microorganisms 2020; 8:microorganisms8121965. [PMID: 33322320 PMCID: PMC7764263 DOI: 10.3390/microorganisms8121965] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022] Open
Abstract
The evolutionary conflict between retroviruses and their vertebrate hosts over millions of years has led to the emergence of cellular innate immune proteins termed restriction factors as well as their viral antagonists. Evidence accumulated in the last two decades has substantially increased our understanding of the elaborate mechanisms utilized by these restriction factors to inhibit retroviral replication, mechanisms that either directly block viral proteins or interfere with the cellular pathways hijacked by the viruses. Analyses of these complex interactions describe patterns of accelerated evolution for these restriction factors as well as the acquisition and evolution of their virus-encoded antagonists. Evidence is also mounting that many restriction factors identified for their inhibition of specific retroviruses have broader antiviral activity against additional retroviruses as well as against other viruses, and that exposure to these multiple virus challenges has shaped their adaptive evolution. In this review, we provide an overview of the restriction factors that interfere with different steps of the retroviral life cycle, describing their mechanisms of action, adaptive evolution, viral targets and the viral antagonists that evolved to counter these factors.
Collapse
|
19
|
López-Sánchez U, Tury S, Nicolas G, Wilson MS, Jurici S, Ayrignac X, Courgnaud V, Saiardi A, Sitbon M, Battini JL. Interplay between primary familial brain calcification-associated SLC20A2 and XPR1 phosphate transporters requires inositol polyphosphates for control of cellular phosphate homeostasis. J Biol Chem 2020; 295:9366-9378. [PMID: 32393577 PMCID: PMC7363132 DOI: 10.1074/jbc.ra119.011376] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 05/09/2020] [Indexed: 12/19/2022] Open
Abstract
Solute carrier family 20 member 2 (SLC20A2) and xenotropic and polytropic retrovirus receptor 1 (XPR1) are transporters with phosphate uptake and efflux functions, respectively. Both are associated with primary familial brain calcification (PFBC), a genetic disease characterized by cerebral calcium-phosphate deposition and associated with neuropsychiatric symptoms. The association of the two transporters with the same disease suggests that they jointly regulate phosphate fluxes and cellular homeostasis, but direct evidence is missing. Here, we found that cross-talk between SLC20A2 and XPR1 regulates phosphate homeostasis, and we identified XPR1 as a key inositol polyphosphate (IP)-dependent regulator of this process. We found that overexpression of WT SLC20A2 increased phosphate uptake, as expected, but also unexpectedly increased phosphate efflux, whereas PFBC-associated SLC20A2 variants did not. Conversely, SLC20A2 depletion decreased phosphate uptake only slightly, most likely compensated for by the related SLC20A1 transporter, but strongly decreased XPR1-mediated phosphate efflux. The SLC20A2-XPR1 axis maintained constant intracellular phosphate and ATP levels, which both increased in XPR1 KO cells. Elevated ATP levels are a hallmark of altered inositol pyrophosphate (PP-IP) synthesis, and basal ATP levels were restored after phosphate efflux rescue with WT XPR1 but not with XPR1 harboring a mutated PP-IP-binding pocket. Accordingly, inositol hexakisphosphate kinase 1-2 (IP6K1-2) gene inactivation or IP6K inhibitor treatment abolished XPR1-mediated phosphate efflux regulation and homeostasis. Our findings unveil an SLC20A2-XPR1 interplay that depends on IPs such as PP-IPs and controls cellular phosphate homeostasis via the efflux route, and alteration of this interplay likely contributes to PFBC.
Collapse
Affiliation(s)
- Uriel López-Sánchez
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, Montpellier, France.,Institut de Génétique Moléculaire de Montpellier (IGMM), Université de Montpellier, CNRS, Montpellier, France
| | - Sandrine Tury
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, Montpellier, France
| | - Gaël Nicolas
- Normandie Univ, UNIROUEN, Inserm U1245, and Rouen University Hospital, Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Miranda S Wilson
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Snejana Jurici
- Department of Neurology, Perpignan Hospital, Perpignan, France
| | - Xavier Ayrignac
- Department of Neurology, Montpellier University Hospital, Montpellier, France
| | - Valérie Courgnaud
- Institut de Génétique Moléculaire de Montpellier (IGMM), Université de Montpellier, CNRS, Montpellier, France
| | - Adolfo Saiardi
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Marc Sitbon
- Institut de Génétique Moléculaire de Montpellier (IGMM), Université de Montpellier, CNRS, Montpellier, France
| | - Jean-Luc Battini
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, Montpellier, France .,Institut de Génétique Moléculaire de Montpellier (IGMM), Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
20
|
Xu X, Li X, Sun H, Cao Z, Gao R, Niu T, Wang Y, Ma T, Chen R, Wang C, Yang Z, Liu JY. Murine Placental-Fetal Phosphate Dyshomeostasis Caused by an Xpr1 Deficiency Accelerates Placental Calcification and Restricts Fetal Growth in Late Gestation. J Bone Miner Res 2020; 35:116-129. [PMID: 31498925 DOI: 10.1002/jbmr.3866] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 11/09/2022]
Abstract
Phosphorus is a necessary component of all living organisms. This nutrient is mainly transported from the maternal blood to the fetus via the placenta, and insufficient phosphorus availability via the placenta disturbs the normal development of the fetus, especially fetal bone formation in late gestation. Key proteins (phosphate transporters and exporters) that are responsible for the maintenance of placental-fetal phosphorus homeostasis have been identified. A deficiency in the phosphate transporter Pit2 has been shown to result in placental calcification and the retardation of fetal development in mice. What roles does XPR1 (the only known phosphate exporter) play in maintaining placental-fetal phosphorus homeostasis? In this study, we found that Xpr1 expression is strong in the murine placenta and increases with age during gestation. We generated a global Xpr1 knockout mouse and found that heterozygous (Xpr1+/- ) and homozygous (Xpr1-/- ) fetuses have lower inorganic phosphate (Pi) levels in amniotic fluid and serum and a decreased skeletal mineral content. Xpr1-deficient placentas show abnormal Pi exchange during gestation. Therefore, Xpr1 deficiency in the placenta disrupts placental-fetal Pi homeostasis. We also discovered that the placentas of the Xpr1+/- and Xpr1-/- embryos are severely calcified. Mendelian inheritance statistics for offspring outcomes indicated that Xpr1-deficient embryos are significantly reduced in late gestation. In addition, Xpr1-/- mice die perinatally and a small proportion of Xpr1+/- mice die neonatally. RNA sequence (RNA-Seq) analysis of placental mRNA revealed that many of the transcripts are significantly differentially expressed due to Xpr1 deficiency and are linked to dysfunction of the placenta. This study is the first to reveal that XPR1 plays an important role in maintaining placental-fetal Pi homeostasis, disruption of which causes severe placental calcification, delays normal placental function, and restricts fetal growth. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Xuan Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiunan Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Sun
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhijian Cao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ruixi Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Niu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yanli Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Tingbin Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengang Yang
- State Key Laboratory of Medical Neurobiology, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Yu Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Lu X, Kassner J, Skorski M, Carley S, Shaffer E, Kozak CA. Mutational analysis and glycosylation sensitivity of restrictive XPR1 gammaretrovirus receptors in six mammalian species. Virology 2019; 535:154-161. [PMID: 31302509 PMCID: PMC11002975 DOI: 10.1016/j.virol.2019.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/29/2019] [Accepted: 07/02/2019] [Indexed: 01/04/2023]
Abstract
Most viruses infect only a few hosts, but the xenotropic and polytropic mouse leukemia viruses (X/P-MLVs) are broadly infectious in mammalian species. X/P-MLVs use the XPR1 receptor for cell entry, and tropism differences are due to polymorphisms in XPR1 and the viral envelope. To characterize these receptor variants and identify blocks to cross-species transmission, we examined the XPR1 receptors in six mammalian species that restrict different subsets of X/P-MLVs. These restrictive receptors have replacement mutations in regions implicated in receptor function, and some entry restrictions can be relieved by glycosylation inhibitors. Mutation of the cow and hamster XPR1 genes identified a shared, previously unrecognized receptor-critical site. This G/Q503N replacement dramatically improves receptor function. While this substitution introduces an N-linked glycosylation site, XPR1 receptors are not glycosylated indicating that this replacement alters the virus-receptor interface independently of glycosylation. Our data also suggest that an unidentified glycosylated cofactor may influence X/P-MLV entry.
Collapse
Affiliation(s)
- Xiaoyu Lu
- National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20854, USA
| | - Joshua Kassner
- National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20854, USA
| | - Matthew Skorski
- National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20854, USA
| | - Samuel Carley
- National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20854, USA
| | - Esther Shaffer
- National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20854, USA
| | - Christine A Kozak
- National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20854, USA.
| |
Collapse
|
22
|
Skorski M, Bamunusinghe D, Liu Q, Shaffer E, Kozak CA. Distribution of endogenous gammaretroviruses and variants of the Fv1 restriction gene in individual mouse strains and strain subgroups. PLoS One 2019; 14:e0219576. [PMID: 31291374 PMCID: PMC6619830 DOI: 10.1371/journal.pone.0219576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/26/2019] [Indexed: 01/16/2023] Open
Abstract
Inbred laboratory mouse strains carry endogenous retroviruses (ERVs) classed as ecotropic, xenotropic or polytropic mouse leukemia viruses (E-, X- or P-MLVs). Some of these MLV ERVs produce infectious virus and/or contribute to the generation of intersubgroup recombinants. Analyses of selected mouse strains have linked the appearance of MLVs and virus-induced disease to the strain complement of MLV E-ERVs and to host genes that restrict MLVs, particularly Fv1. Here we screened inbred strain DNAs and genome assemblies to describe the distribution patterns of 45 MLV ERVs and Fv1 alleles in 58 classical inbred strains grouped in two ways: by common ancestry to describe ERV inheritance patterns, and by incidence of MLV-associated lymphomagenesis. Each strain carries a unique set of ERVs, and individual ERVs are present in 5–96% of the strains, often showing lineage-specific distributions. Two ERVs are alternatively present as full-length proviruses or solo long terminal repeats. High disease incidence strains carry the permissive Fv1n allele, tested strains have highly expressed E-ERVs and most have the Bxv1 X-ERV; these three features are not present together in any low-moderate disease strain. The P-ERVs previously implicated in P-MLV generation are not preferentially found in high leukemia strains, but the three Fv1 alleles that restrict inbred strain E-MLVs are found only in low-moderate leukemia strains. This dataset helps define the genetic basis of strain differences in spontaneous lymphomagenesis, describes the distribution of MLV ERVs in strains with shared ancestry, and should help annotate sequenced strain genomes for these insertionally polymorphic and functionally important proviruses.
Collapse
Affiliation(s)
- Matthew Skorski
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Devinka Bamunusinghe
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Qingping Liu
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Esther Shaffer
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Christine A. Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
23
|
Chen WC, Li QL, Pan Q, Zhang HY, Fu XY, Yao F, Wang JN, Yang AK. Xenotropic and polytropic retrovirus receptor 1 (XPR1) promotes progression of tongue squamous cell carcinoma (TSCC) via activation of NF-κB signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:167. [PMID: 30995931 PMCID: PMC6469095 DOI: 10.1186/s13046-019-1155-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 03/27/2019] [Indexed: 01/15/2023]
Abstract
Background Xenotropic and polytropic retrovirus receptor 1 (XPR1), a previously identified cellular receptor for several murine leukemia viruses, plays a role in many pathophysiological processes. However, the role of XPR1 in human cancers has not yet been characterized. Methods Real-time PCR and western blotting assay were used to measure the expression of XPR1 in tongue squamous cell carcinoma (TSCC) tissues. Expression of XPR1 and p65 in clinical specimens was analyzed using immunohistochemical assay. The function of XPR1 on progression of TSCC was explored using in vitro and in vivo experiments. The molecular mechanism by which XPR1 helps to cancer progression was investigated by luciferase reporter activity, ELISA, PKA activity assay, immunofluorescence, western blotting and qPCR assay. Results Herein, we find that XPR1 is markedly upregulated in TSCC tissues compared to normal tongue tissues. High expression of XPR1 significantly correlates with the malignant features and poor patient survival in TSCC. Ectopic expression of XPR1 increases, while silencing of XPR1 reduces the proliferation, invasion and anti-apoptosis capacities of TSCC cells. Importantly, silencing of XPR1 effectively inhibits the tumorigenecity of TSCC cells. Moreover, we identified that XPR1 increased the concentration of intracellular cAMP and activated PKA. Thus, XPR1 promoted phosphorylation and activation of NF-κB signaling, which is required for XPR1-mediated oncogenic roles and significantly correlates with XPR1 expression in clinical specimens. Conclusions These findings uncover a critical role of XPR1 in TSCC progression via activation of NF-κB, and suggest that XPR1 might be a potential prognostic marker or therapeutic target. Electronic supplementary material The online version of this article (10.1186/s13046-019-1155-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei-Chao Chen
- Department of Head and Neck, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, 510060, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Qiu-Li Li
- Department of Head and Neck, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, 510060, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Qimei Pan
- Guangzhou Yousheng Biotech Co., Ltd., Guangzhou, Guangdong, 510060, People's Republic of China
| | - Hua-Yong Zhang
- Department of Head and Neck, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, 510060, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Xiao-Yan Fu
- Department of Head and Neck, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, 510060, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Fan Yao
- Department of Head and Neck, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, 510060, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Jian-Ning Wang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong Province, 510055, People's Republic of China.
| | - An-Kui Yang
- Department of Head and Neck, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China. .,State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, 510060, People's Republic of China. .,Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, People's Republic of China.
| |
Collapse
|
24
|
Michigami T, Kawai M, Yamazaki M, Ozono K. Phosphate as a Signaling Molecule and Its Sensing Mechanism. Physiol Rev 2018; 98:2317-2348. [DOI: 10.1152/physrev.00022.2017] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In mammals, phosphate balance is maintained by influx and efflux via the intestines, kidneys, bone, and soft tissue, which involves multiple sodium/phosphate (Na+/Pi) cotransporters, as well as regulation by several hormones. Alterations in the levels of extracellular phosphate exert effects on both skeletal and extra-skeletal tissues, and accumulating evidence has suggested that phosphate itself evokes signal transduction to regulate gene expression and cell behavior. Several in vitro studies have demonstrated that an elevation in extracellular Piactivates fibroblast growth factor receptor, Raf/MEK (mitogen-activated protein kinase/ERK kinase)/ERK (extracellular signal-regulated kinase) pathway and Akt pathway, which might involve the type III Na+/Picotransporter PiT-1. Excessive phosphate loading can lead to various harmful effects by accelerating ectopic calcification, enhancing oxidative stress, and dysregulating signal transduction. The responsiveness of mammalian cells to altered extracellular phosphate levels suggests that they may sense and adapt to phosphate availability, although the precise mechanism for phosphate sensing in mammals remains unclear. Unicellular organisms, such as bacteria and yeast, use some types of Pitransporters and other molecules, such as kinases, to sense the environmental Piavailability. Multicellular animals may need to integrate signals from various organs to sense the phosphate levels as a whole organism, similarly to higher plants. Clarification of the phosphate-sensing mechanism in humans may lead to the development of new therapeutic strategies to prevent and treat diseases caused by phosphate imbalance.
Collapse
Affiliation(s)
- Toshimi Michigami
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masanobu Kawai
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Miwa Yamazaki
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Keiichi Ozono
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
25
|
Bamunusinghe D, Skorski M, Buckler-White A, Kozak CA. Xenotropic Mouse Gammaretroviruses Isolated from Pre-Leukemic Tissues Include a Recombinant. Viruses 2018; 10:v10080418. [PMID: 30096897 PMCID: PMC6116186 DOI: 10.3390/v10080418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/28/2018] [Accepted: 08/03/2018] [Indexed: 11/16/2022] Open
Abstract
Naturally-occurring lymphomagenesis is induced by mouse leukemia viruses (MLVs) carried as endogenous retroviruses (ERVs). Replicating the ecotropic MLVs recombines with polytropic (P-ERVs) and xenotropic ERVs (X-ERVs) to generate pathogenic viruses with an altered host range. While most recovered nonecotropic recombinants have a polytropic host range, the X-MLVs are also present in the pre-leukemic tissues. We analyzed two such isolates from the AKR mice to identify their ERV progenitors and to look for evidence of recombination. AKR40 resembles the active X-ERV Bxv1, while AKR6 has a Bxv1-like backbone with substitutions that alter the long terminal repeat (LTR) enhancer and the envelope (env). AKR6 has a modified xenotropic host range, and its Env residue changes all lie outside of the domain that governs the receptor choice. The AKR6 segment spanning the two substitutions, but not the entire AKR6 env-LTR, exists as an ERV, termed Xmv67, in AKR, but not in the C57BL/6 mice. This suggests that AKR6 is the product of one, not two, recombination events. Xmv67 originated in the Asian mice. These data indicate that the recombinant X-MLVs that can be generated during lymphomagenesis, describe a novel X-ERV subtype found in the AKR genome, but not in the C57BL/6 reference genome, and identify residues in the envelope C-terminus that may influence the host range.
Collapse
Affiliation(s)
- Devinka Bamunusinghe
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892-0460, USA.
| | - Matthew Skorski
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892-0460, USA.
| | - Alicia Buckler-White
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892-0460, USA.
| | - Christine A Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892-0460, USA.
| |
Collapse
|
26
|
Robinson-McCarthy LR, McCarthy KR, Raaben M, Piccinotti S, Nieuwenhuis J, Stubbs SH, Bakkers MJG, Whelan SPJ. Reconstruction of the cell entry pathway of an extinct virus. PLoS Pathog 2018; 14:e1007123. [PMID: 30080900 PMCID: PMC6095630 DOI: 10.1371/journal.ppat.1007123] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/16/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022] Open
Abstract
Endogenous retroviruses (ERVs), remnants of ancient germline infections, comprise 8% of the human genome. The most recently integrated includes human ERV-K (HERV-K) where several envelope (env) sequences remain intact. Viral pseudotypes decorated with one of those Envs are infectious. Using a recombinant vesicular stomatitis virus encoding HERV-K Env as its sole attachment and fusion protein (VSV-HERVK) we conducted a genome-wide haploid genetic screen to interrogate the host requirements for infection. This screen identified 11 genes involved in heparan sulfate biosynthesis. Genetic inhibition or chemical removal of heparan sulfate and addition of excess soluble heparan sulfate inhibit infection. Direct binding of heparin to soluble HERV-K Env and purified VSV-HERVK defines it as critical for viral attachment. Cell surface bound VSV-HERVK particles are triggered to infect on exposure to acidic pH, whereas acid pH pretreatment of virions blocks infection. Testing of additional endogenous HERV-K env sequences reveals they bind heparin and mediate acid pH triggered fusion. This work reconstructs and defines key steps in the infectious entry pathway of an extinct virus.
Collapse
Affiliation(s)
- Lindsey R. Robinson-McCarthy
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kevin R. McCarthy
- Laboratory of Molecular Medicine, Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Matthijs Raaben
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Silvia Piccinotti
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joppe Nieuwenhuis
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sarah H. Stubbs
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mark J. G. Bakkers
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sean P. J. Whelan
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
27
|
Kawasaki J, Nishigaki K. Tracking the Continuous Evolutionary Processes of an Endogenous Retrovirus of the Domestic Cat: ERV-DC. Viruses 2018; 10:v10040179. [PMID: 29642384 PMCID: PMC5923473 DOI: 10.3390/v10040179] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/02/2018] [Accepted: 04/05/2018] [Indexed: 12/23/2022] Open
Abstract
An endogenous retrovirus (ERV) is a remnant of an ancient retroviral infection in the host genome. Although most ERVs have lost their viral productivity, a few ERVs retain their replication capacity. In addition, partially inactivated ERVs can present a potential risk to the host via their encoded virulence factors or the generation of novel viruses by viral recombination. ERVs can also eventually acquire a biological function, and this ability has been a driving force of host evolution. Therefore, the presence of an ERV can be harmful or beneficial to the host. Various reports about paleovirology have revealed each event in ERV evolution, but the continuous processes of ERV evolution over millions of years are mainly unknown. A unique ERV family, ERV-DC, is present in the domestic cat (Felis silvestriscatus) genome. ERV-DC proviruses are phylogenetically classified into three genotypes, and the specific characteristics of each genotype have been clarified: their capacity to produce infectious viruses; their recombination with other retroviruses, such as feline leukemia virus or RD-114; and their biological functions as host antiviral factors. In this review, we describe ERV-DC-related phenomena and discuss the continuous changes in the evolution of this ERV in the domestic cat.
Collapse
Affiliation(s)
- Junna Kawasaki
- Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan.
| | - Kazuo Nishigaki
- Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan.
| |
Collapse
|
28
|
Greenwood AD, Ishida Y, O'Brien SP, Roca AL, Eiden MV. Transmission, Evolution, and Endogenization: Lessons Learned from Recent Retroviral Invasions. Microbiol Mol Biol Rev 2018; 82:e00044-17. [PMID: 29237726 PMCID: PMC5813887 DOI: 10.1128/mmbr.00044-17] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Viruses of the subfamily Orthoretrovirinae are defined by the ability to reverse transcribe an RNA genome into DNA that integrates into the host cell genome during the intracellular virus life cycle. Exogenous retroviruses (XRVs) are horizontally transmitted between host individuals, with disease outcome depending on interactions between the retrovirus and the host organism. When retroviruses infect germ line cells of the host, they may become endogenous retroviruses (ERVs), which are permanent elements in the host germ line that are subject to vertical transmission. These ERVs sometimes remain infectious and can themselves give rise to XRVs. This review integrates recent developments in the phylogenetic classification of retroviruses and the identification of retroviral receptors to elucidate the origins and evolution of XRVs and ERVs. We consider whether ERVs may recurrently pressure XRVs to shift receptor usage to sidestep ERV interference. We discuss how related retroviruses undergo alternative fates in different host lineages after endogenization, with koala retrovirus (KoRV) receiving notable interest as a recent invader of its host germ line. KoRV is heritable but also infectious, which provides insights into the early stages of germ line invasions as well as XRV generation from ERVs. The relationship of KoRV to primate and other retroviruses is placed in the context of host biogeography and the potential role of bats and rodents as vectors for interspecies viral transmission. Combining studies of extant XRVs and "fossil" endogenous retroviruses in koalas and other Australasian species has broadened our understanding of the evolution of retroviruses and host-retrovirus interactions.
Collapse
Affiliation(s)
- Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Berlin, Germany
| | - Yasuko Ishida
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sean P O'Brien
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Alfred L Roca
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Maribeth V Eiden
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Berlin, Germany
| |
Collapse
|
29
|
Bamunusinghe D, Liu Q, Plishka R, Dolan MA, Skorski M, Oler AJ, Yedavalli VRK, Buckler-White A, Hartley JW, Kozak CA. Recombinant Origins of Pathogenic and Nonpathogenic Mouse Gammaretroviruses with Polytropic Host Range. J Virol 2017; 91:e00855-17. [PMID: 28794032 PMCID: PMC5640873 DOI: 10.1128/jvi.00855-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/26/2017] [Indexed: 01/06/2023] Open
Abstract
Ecotropic, xenotropic, and polytropic mouse leukemia viruses (E-, X-, and P-MLVs) exist in mice as infectious viruses and endogenous retroviruses (ERVs) inserted into mouse chromosomes. All three MLV subgroups are linked to leukemogenesis, which involves generation of recombinants with polytropic host range. Although P-MLVs are deemed to be the proximal agents of disease induction, few biologically characterized infectious P-MLVs have been sequenced for comparative analysis. We analyzed the complete genomes of 16 naturally occurring infectious P-MLVs, 12 of which were typed for pathogenic potential. We sought to identify ERV progenitors, recombinational hot spots, and segments that are always replaced, never replaced, or linked to pathogenesis or host range. Each P-MLV has an E-MLV backbone with P- or X-ERV replacements that together cover 100% of the recombinant genomes, with different substitution patterns for X- and P-ERVs. Two segments are always replaced, both coding for envelope (Env) protein segments: the N terminus of the surface subunit and the cytoplasmic tail R peptide. Viral gag gene replacements are influenced by host restriction genes Fv1 and Apobec3 Pathogenic potential maps to the env transmembrane subunit segment encoding the N-heptad repeat (HR1). Molecular dynamics simulations identified three novel interdomain salt bridges in the lymphomagenic virus HR1 that could affect structural stability, entry or sensitivity to host immune responses. The long terminal repeats of lymphomagenic P-MLVs are differentially altered by recombinations, duplications, or mutations. This analysis of the naturally occurring, sometimes pathogenic P-MLV recombinants defines the limits and extent of intersubgroup recombination and identifies specific sequence changes linked to pathogenesis and host interactions.IMPORTANCE During virus-induced leukemogenesis, ecotropic mouse leukemia viruses (MLVs) recombine with nonecotropic endogenous retroviruses (ERVs) to produce polytropic MLVs (P-MLVs). Analysis of 16 P-MLV genomes identified two segments consistently replaced: one at the envelope N terminus that alters receptor choice and one in the R peptide at the envelope C terminus, which is removed during virus assembly. Genome-wide analysis shows that nonecotropic replacements in the progenitor ecotropic MLV genome are more extensive than previously appreciated, covering 100% of the genome; contributions from xenotropic and polytropic ERVs differentially alter the regions responsible for receptor determination or subject to APOBEC3 and Fv1 restriction. All pathogenic viruses had modifications in the regulatory elements in their long terminal repeats and differed in a helical segment of envelope involved in entry and targeted by the host immune system. Virus-induced leukemogenesis thus involves generation of complex recombinants, and specific replacements are linked to pathogenesis and host restrictions.
Collapse
Affiliation(s)
- Devinka Bamunusinghe
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Qingping Liu
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Ronald Plishka
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Michael A Dolan
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Matthew Skorski
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Andrew J Oler
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Venkat R K Yedavalli
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Alicia Buckler-White
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Janet W Hartley
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Christine A Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| |
Collapse
|
30
|
Zhang H, Cheng F, Xiao Y, Kang X, Wang X, Kuang R, Ni M. Global analysis of canola genes targeted by SHORT HYPOCOTYL UNDER BLUE 1 during endosperm and embryo development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:158-171. [PMID: 28332746 DOI: 10.1111/tpj.13542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 03/13/2017] [Indexed: 06/06/2023]
Abstract
Seed development in dicots includes early endosperm proliferation followed by growth of the embryo to replace the endosperm. Endosperm proliferation in dicots not only provides nutrient supplies for subsequent embryo development but also enforces a space limitation, influencing final seed size. Overexpression of Arabidopsis SHORT HYPOCOTYL UNDER BLUE1::uidA (SHB1:uidA) in canola produces large seeds. We performed global analysis of the canola genes that were expressed and influenced by SHB1 during early endosperm proliferation at 8 days after pollination (DAP) and late embryo development at 13 DAP. Overexpression of SHB1 altered the expression of 973 genes at 8 DAP and 1035 genes at 13 DAP. We also surveyed the global SHB1 association sites, and merging of these sites with the RNA sequencing data identified a set of canola genes targeted by SHB1. The 8-DAP list includes positive and negative genes that influence endosperm proliferation and are homologous to Arabidopsis MINI3, IKU2, SHB1, AGL62, FIE and AP2. We revealed a major role for SHB1 in canola endosperm development based on the dynamics of SHB1-altered gene expression, the magnitude of SHB1 chromatin immunoprecipitation enrichment and the over-representation of eight regulatory genes for endosperm development. Our studies focus on an important agronomic trait in a major crop for global agriculture. The datasets on stage-specific and SHB1-induced gene expression and genes targeted by SHB1 also provide a useful resource in the field of endosperm development and seed size engineering. Our practices in an allotetraploid species will impact similar studies in other crop species.
Collapse
Affiliation(s)
- Huanan Zhang
- Department of Computer Science and Engineering, University of Minnesota at Twin Cities, Minneapolis, MN, 55455, USA
| | - Feng Cheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuguo Xiao
- Department of Plant Biology, University of Minnesota at Twin Cities, Saint Paul, MN, 55108, USA
| | - Xiaojun Kang
- Department of Plant Biology, University of Minnesota at Twin Cities, Saint Paul, MN, 55108, USA
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Rui Kuang
- Department of Computer Science and Engineering, University of Minnesota at Twin Cities, Minneapolis, MN, 55455, USA
| | - Min Ni
- Department of Plant Biology, University of Minnesota at Twin Cities, Saint Paul, MN, 55108, USA
| |
Collapse
|
31
|
Plachý J, Reinišová M, Kučerová D, Šenigl F, Stepanets V, Hron T, Trejbalová K, Elleder D, Hejnar J. Identification of New World Quails Susceptible to Infection with Avian Leukosis Virus Subgroup J. J Virol 2017; 91:e02002-16. [PMID: 27881654 PMCID: PMC5244330 DOI: 10.1128/jvi.02002-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/10/2016] [Indexed: 12/18/2022] Open
Abstract
The J subgroup of avian leukosis virus (ALV-J) infects domestic chickens, jungle fowl, and turkeys. This virus enters the host cell through a receptor encoded by the tvj locus and identified as Na+/H+ exchanger 1. The resistance to avian leukosis virus subgroup J in a great majority of galliform species has been explained by deletions or substitutions of the critical tryptophan 38 in the first extracellular loop of Na+/H+ exchanger 1. Because there are concerns of transspecies virus transmission, we studied natural polymorphisms and susceptibility/resistance in wild galliforms and found the presence of tryptophan 38 in four species of New World quails. The embryo fibroblasts of New World quails are susceptible to infection with avian leukosis virus subgroup J, and the cloned Na+/H+ exchanger 1 confers susceptibility on the otherwise resistant host. New World quails are also susceptible to new avian leukosis virus subgroup J variants but resistant to subgroups A and B and weakly susceptible to subgroups C and D of avian sarcoma/leukosis virus due to obvious defects of the respective receptors. Our results suggest that the avian leukosis virus subgroup J could be transmitted to New World quails and establish a natural reservoir of circulating virus with a potential for further evolution. IMPORTANCE Since its spread in broiler chickens in China and Southeast Asia in 2000, ALV-J remains a major enzootic challenge for the poultry industry. Although the virus diversifies rapidly in the poultry, its spillover and circulation in wild bird species has been prevented by the resistance of most species to ALV-J. It is, nevertheless, important to understand the evolution of the virus and its potential host range in wild birds. Because resistance to avian retroviruses is due particularly to receptor incompatibility, we studied Na+/H+ exchanger 1, the receptor for ALV-J. In New World quails, we found a receptor compatible with virus entry, and we confirmed the susceptibilities of four New World quail species in vitro We propose that a prospective molecular epidemiology study be conducted to identify species with the potential to become reservoirs for ALV-J.
Collapse
Affiliation(s)
- Jiří Plachý
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Markéta Reinišová
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Dana Kučerová
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Filip Šenigl
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Volodymyr Stepanets
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Tomáš Hron
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Kateřina Trejbalová
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Daniel Elleder
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jiří Hejnar
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
32
|
Functional Interplay Between Murine Leukemia Virus Glycogag, Serinc5, and Surface Glycoprotein Governs Virus Entry, with Opposite Effects on Gammaretroviral and Ebolavirus Glycoproteins. mBio 2016; 7:mBio.01985-16. [PMID: 27879338 PMCID: PMC5120145 DOI: 10.1128/mbio.01985-16] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gammaretroviruses, such as murine leukemia viruses (MLVs), encode, in addition to the canonical Gag, Pol, and Env proteins that will form progeny virus particles, a protein called “glycogag” (glycosylated Gag). MLV glycogag contains the entire Gag sequence plus an 88-residue N-terminal extension. It has recently been reported that glycogag, like the Nef protein of HIV-1, counteracts the antiviral effects of the cellular protein Serinc5. We have found, in agreement with prior work, that glycogag strongly enhances the infectivity of MLVs with some Env proteins but not those with others. In contrast, however, glycogag was detrimental to MLVs carrying Ebolavirus glycoprotein. Glycogag could be replaced, with respect to viral infectivity, by the unrelated S2 protein of equine infectious anemia virus. We devised an assay for viral entry in which virus particles deliver the Cre recombinase into cells, leading to the expression of a reporter. Data from this assay showed that both the positive and the negative effects of glycogag and S2 upon MLV infectivity are exerted at the level of virus entry. Moreover, transfection of the virus-producing cells with a Serinc5 expression plasmid reduced the infectivity and entry capability of MLV carrying xenotropic MLV Env, particularly in the absence of glycogag. Conversely, Serinc5 expression abrogated the negative effects of glycogag upon the infectivity and entry capability of MLV carrying Ebolavirus glycoprotein. As Serinc5 may influence cellular phospholipid metabolism, it seems possible that all of these effects on virus entry derive from changes in the lipid composition of viral membranes. Many murine leukemia viruses (MLVs) encode a protein called “glycogag.” The function of glycogag is not fully understood, but it can assist HIV-1 replication in the absence of the HIV-1 protein Nef under some circumstances. In turn, Nef counteracts the cellular protein Serinc5. Glycogag enhances the infectivity of MLVs with some but not all MLV Env proteins (which mediate viral entry into the host cell upon binding to cell surface receptors). We now report that glycogag acts by enhancing viral entry and that, like Nef, glycogag antagonizes Serinc5. Surprisingly, the effects of glycogag and Serinc5 upon the entry and infectivity of MLV particles carrying an Ebolavirus glycoprotein are the opposite of those observed with the MLV Env proteins. The unrelated S2 protein of equine infectious anemia virus (EIAV) is functionally analogous to glycogag in our experiments. Thus, three retroviruses (HIV-1, MLV, and EIAV) have independently evolved accessory proteins that counteract Serinc5.
Collapse
|
33
|
Liu Q, Yan Y, Kozak CA. Permissive XPR1 gammaretrovirus receptors in four mammalian species are functionally distinct in interference tests. Virology 2016; 497:53-58. [PMID: 27423269 DOI: 10.1016/j.virol.2016.06.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 01/29/2023]
Abstract
Xenotropic/polytropic mouse leukemia viruses (X/P-MLVs) use the XPR1 gammaretrovirus receptor for entry. X/P-MLV host range is defined by usage of naturally occurring restrictive XPR1 receptors, and is governed by polymorphisms in the virus envelope glycoprotein and in XPR1. Here, we examined receptors of four mammalian species permissive to all X/P-MLVs (Mus dunni, human, rabbit, mink). Interference assays showed the four to be functionally distinct. Preinfection with X-MLVs consistently blocked all nine XPR1-dependent viruses, while preinfection with P-MLVs and wild mouse X/P-MLVs produced distinctive interference patterns in the four cells. These patterns indicate shared usage of independent, but not always fully functional, receptor sites. XPR1 sequence comparisons identified candidate sites in receptor-determining regions that correlate with some interference patterns. The evolutionary record suggests that the X/P-MLV tropism variants evolved to adapt to host receptor polymorphisms, to circumvent blocks by competing viruses or to avoid host-encoded envelope glycoproteins acquired for defense.
Collapse
Affiliation(s)
- Qingping Liu
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Yuhe Yan
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Christine A Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA.
| |
Collapse
|
34
|
Hanke K, Hohn O, Bannert N. HERV-K(HML-2), a seemingly silent subtenant - but still waters run deep. APMIS 2016; 124:67-87. [PMID: 26818263 DOI: 10.1111/apm.12475] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/12/2015] [Indexed: 01/26/2023]
Abstract
A large proportion of the human genome consists of endogenous retroviruses, some of which are well preserved, showing transcriptional activity, and expressing retroviral proteins. The HERV-K(HML-2) family represents the most intact members of these elements, with some having open and intact reading frames for viral proteins and the ability to form virus-like particles. Although generally suppressed in most healthy tissues by a variety of epigenetic processes and antiviral mechanisms, there is evidence that some members of this family are (at least partly) still active - particularly in certain stem cells and various tumors. This raises the possibility of their involvement in tumor induction or in developmental processes. In recent years, many new insights into this fascinating field have been attained, and this review focuses on new discoveries about coevolutionary events and intracellular defense mechanisms against HERV-K(HML-2) activity. We also describe what might occur when these mechanisms fail or become modulated by viral proteins or other viruses and discuss the new vistas opened up by the reconstitution of ancestral viral proteins and even complete HML-2 viruses.
Collapse
Affiliation(s)
- Kirsten Hanke
- Department HIV and Other Retroviruses, Robert Koch Institute, Berlin, Germany
| | - Oliver Hohn
- Department HIV and Other Retroviruses, Robert Koch Institute, Berlin, Germany
| | - Norbert Bannert
- Department HIV and Other Retroviruses, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
35
|
Tatsumi S, Miyagawa A, Kaneko I, Shiozaki Y, Segawa H, Miyamoto KI. Regulation of renal phosphate handling: inter-organ communication in health and disease. J Bone Miner Metab 2016; 34:1-10. [PMID: 26296817 DOI: 10.1007/s00774-015-0705-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/16/2015] [Indexed: 01/18/2023]
Abstract
In this review, we focus on the interconnection of inorganic phosphate (Pi) homeostasis in the network of the bone-kidney, parathyroid-kidney, intestine-kidney, and liver-kidney axes. Such a network of organ communication is important for body Pi homeostasis. Normalization of serum Pi levels is a clinical target in patients with chronic kidney disease (CKD). Particularly, disorders of the fibroblast growth factor 23/klotho system are observed in early CKD. Identification of phosphaturic factors from the intestine and liver may enhance our understanding of body Pi homeostasis and Pi metabolism disturbances in CKD patients.
Collapse
Affiliation(s)
- Sawako Tatsumi
- Department of Molecular Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Atsumi Miyagawa
- Department of Molecular Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Ichiro Kaneko
- Department of Molecular Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yuji Shiozaki
- Department of Molecular Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Hiroko Segawa
- Department of Molecular Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Ken-Ichi Miyamoto
- Department of Molecular Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan.
| |
Collapse
|
36
|
Hasenkamp N, Solomon T, Tautz D. Selective sweeps versus introgression - population genetic dynamics of the murine leukemia virus receptor Xpr1 in wild populations of the house mouse (Mus musculus). BMC Evol Biol 2015; 15:248. [PMID: 26555287 PMCID: PMC4641351 DOI: 10.1186/s12862-015-0528-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/30/2015] [Indexed: 12/13/2022] Open
Abstract
Background The interaction between viruses and their receptors in the host can be expected to lead to an evolutionary arms race resulting in cycles of rapid adaptations. We focus here on the receptor gene Xpr1 (xenotropic and polytropic retrovirus receptor 1) for murine leukemia viruses (MLVs). In a previous screen for selective sweeps in mouse populations we discovered that a population from Germany was almost monomorphic for Xpr1 haplotypes, while a population from France was polymorphic. Results Here we analyze Xpr1 sequences and haplotypes from a broad sample of wild mouse populations of two subspecies, M. m. domesticus and M. m. musculus, to trace the origins of this distinctive polymorphism pattern. We show that the high polymorphism in the population in France is caused by a relatively recent invasion of a haplotype from a population in Iran, rather than a selective sweep in Germany. The invading haplotype codes for a novel receptor variant, which has itself undergone a recent selective sweep in the Iranian population. Conclusions Our data support a scenario in which Xpr1 is frequently subject to positive selection, possibly as a response to resistance development against recurrently emerging infectious viruses. During such an infection cycle, receptor variants that may convey viral resistance can be captured from another population and quickly introgress into populations actively dealing with the infectious virus. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0528-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Terry Solomon
- Max-Planck Institute for Evolutionary Biology, 24306, Plön, Germany. .,Biomedical Sciences Graduate Program, School of Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Diethard Tautz
- Max-Planck Institute for Evolutionary Biology, 24306, Plön, Germany.
| |
Collapse
|
37
|
Hartmann S, Hasenkamp N, Mayer J, Michaux J, Morand S, Mazzoni CJ, Roca AL, Greenwood AD. Endogenous murine leukemia retroviral variation across wild European and inbred strains of house mouse. BMC Genomics 2015; 16:613. [PMID: 26282858 PMCID: PMC4538763 DOI: 10.1186/s12864-015-1766-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 07/10/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Endogenous murine leukemia retroviruses (MLVs) are high copy number proviral elements difficult to comprehensively characterize using standard low throughput sequencing approaches. However, high throughput approaches generate data that is challenging to process, interpret and present. RESULTS Next generation sequencing (NGS) data was generated for MLVs from two wild caught Mus musculus domesticus (from mainland France and Corsica) and for inbred laboratory mouse strains C3H, LP/J and SJL. Sequence reads were grouped using a novel sequence clustering approach as applied to retroviral sequences. A Markov cluster algorithm was employed, and the sequence reads were queried for matches to specific xenotropic (Xmv), polytropic (Pmv) and modified polytropic (Mpmv) viral reference sequences. CONCLUSIONS Various MLV subtypes were more widespread than expected among the mice, which may be due to the higher coverage of NGS, or to the presence of similar sequence across many different proviral loci. The results did not correlate with variation in the major MLV receptor Xpr1, which can restrict exogenous MLVs, suggesting that endogenous MLV distribution may reflect gene flow more than past resistance to infection.
Collapse
Affiliation(s)
- Stefanie Hartmann
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str 22-24, Potsdam, 14476, Germany.
| | - Natascha Hasenkamp
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Biology, August-Thienemann-Str. 2, Plön, 24306, Germany.
| | - Jens Mayer
- Department of Human Genetics, Center of Human and Molecular Biology, Medical Faculty, University of Saarland, Building 60, Homburg, 66421, Germany.
| | - Johan Michaux
- Centre de Biologie et de Gestion des Populations, Campus International de Baillarguet, CS 30016, Montferrier-le-Lez, 34988, France.
| | - Serge Morand
- Conservation Genetics Unit, Institute of Botany (B. 22), University Liège, Liège, 4000, Belgium. .,CIRAD TA C- 22 / E - Campus international de Baillarguet, Montpellier Cedex 5, 34398, France.
| | - Camila J Mazzoni
- Berlin Center for Genomics in Biodiversity Research, Königin-Luise-Str. 6-8, Berlin, 14195, Germany. .,Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, Berlin, 10315, Germany.
| | - Alfred L Roca
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 W. Gregory, Urbana, 61801, IL, USA.
| | - Alex D Greenwood
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, Berlin, 10315, Germany.
| |
Collapse
|
38
|
Affiliation(s)
- A Dusty Miller
- Fred Hutchinson Cancer Research Center , Seattle, WA 98109
| |
Collapse
|
39
|
XPR1: a Gene Linked to Primary Familial Brain Calcification Might Help Explain a Spectrum of Neuropsychiatric Disorders. J Mol Neurosci 2015; 57:519-21. [PMID: 26231937 DOI: 10.1007/s12031-015-0631-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 07/23/2015] [Indexed: 01/30/2023]
Abstract
Primary familial brain calcifications (PFBC) compose a rare neurologic condition characterized by a bilateral pattern of hydroxyapatite deposits in basal ganglia, dentate nuclei, and thalamus. PFBC is identified through neuroimaging screenings such as computerized tomography. Patients with PFBC might present a wide variety of neurological symptoms such as mental and motor impairments, often misdiagnosed as Parkinson's disease, schizophrenia, Alzheimer's disease, and migraine. Four genes were confirmed as causative of PFBC: SLC20A2, PDGFB, PDGFRB, and XPR1. Curiously, other studies made occasional links between XPR1 variations or expression changes, in a few neuropsychiatric models. This letter is an assembly on XPR1 variants and expression change pattern data that were published in recent scientific reports, even before the current connection between that gene and brain calcification.
Collapse
|
40
|
Legati A, Giovannini D, Nicolas G, López-Sánchez U, Quintáns B, Oliveira JRM, Sears RL, Ramos EM, Spiteri E, Sobrido MJ, Carracedo Á, Castro-Fernández C, Cubizolle S, Fogel BL, Goizet C, Jen JC, Kirdlarp S, Lang AE, Miedzybrodzka Z, Mitarnun W, Paucar M, Paulson H, Pariente J, Richard AC, Salins NS, Simpson SA, Striano P, Svenningsson P, Tison F, Unni VK, Vanakker O, Wessels MW, Wetchaphanphesat S, Yang M, Boller F, Campion D, Hannequin D, Sitbon M, Geschwind DH, Battini JL, Coppola G. Mutations in XPR1 cause primary familial brain calcification associated with altered phosphate export. Nat Genet 2015; 47:579-81. [PMID: 25938945 PMCID: PMC4516721 DOI: 10.1038/ng.3289] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/06/2015] [Indexed: 12/17/2022]
Abstract
Primary familial brain calcification (PFBC) is a neurological disease characterized by calcium phosphate deposits in the basal ganglia and other brain regions and has thus far been associated with SLC20A2, PDGFB or PDGFRB mutations. We identified in multiple families with PFBC mutations in XPR1, a gene encoding a retroviral receptor with phosphate export function. These mutations alter phosphate export, implicating XPR1 and phosphate homeostasis in PFBC.
Collapse
Affiliation(s)
- Andrea Legati
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Donatella Giovannini
- 1] Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, Montpellier, France. [2] Université de Montpellier, Montpellier, France. [3] Laboratory of Excellence GR-Ex, Paris, France. [4] Laboratory of Excellence EpiGenMed, Montpellier, France
| | - Gaël Nicolas
- 1] INSERM U1079, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, Rouen, France. [2] Centre National de Référence pour les Malades Alzheimer Jeunes (CNR-MAJ), Rouen University Hospital, Rouen, France. [3] Department of Genetics, Rouen University Hospital, Rouen, France
| | - Uriel López-Sánchez
- 1] Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, Montpellier, France. [2] Université de Montpellier, Montpellier, France. [3] Laboratory of Excellence GR-Ex, Paris, France. [4] Laboratory of Excellence EpiGenMed, Montpellier, France
| | - Beatriz Quintáns
- 1] Fundación Pública Galega de Medicina Xenómica, Servizo Galego de Saúde (SERGAS), Instituto de Investigación Sanitaria (IDIS, Hospital Clínico Universitario), Santiago de Compostela, Spain. [2] Grupo de Medicina Xenómica, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, Universidad de Santiago de Compostela), Santiago de Compostela, Spain
| | - João R M Oliveira
- Keizo Asami Laboratory, Federal University of Pernambuco, Recife, Brazil
| | - Renee L Sears
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Eliana Marisa Ramos
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Elizabeth Spiteri
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - María-Jesús Sobrido
- 1] Fundación Pública Galega de Medicina Xenómica, Servizo Galego de Saúde (SERGAS), Instituto de Investigación Sanitaria (IDIS, Hospital Clínico Universitario), Santiago de Compostela, Spain. [2] Grupo de Medicina Xenómica, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, Universidad de Santiago de Compostela), Santiago de Compostela, Spain
| | - Ángel Carracedo
- 1] Fundación Pública Galega de Medicina Xenómica, Servizo Galego de Saúde (SERGAS), Instituto de Investigación Sanitaria (IDIS, Hospital Clínico Universitario), Santiago de Compostela, Spain. [2] Grupo de Medicina Xenómica, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, Universidad de Santiago de Compostela), Santiago de Compostela, Spain
| | - Cristina Castro-Fernández
- 1] Fundación Pública Galega de Medicina Xenómica, Servizo Galego de Saúde (SERGAS), Instituto de Investigación Sanitaria (IDIS, Hospital Clínico Universitario), Santiago de Compostela, Spain. [2] Grupo de Medicina Xenómica, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, Universidad de Santiago de Compostela), Santiago de Compostela, Spain
| | - Stéphanie Cubizolle
- Neurology and Institute for Neurodegenerative Diseases, Bordeaux University Hospital and Bordeaux University, Bordeaux, France
| | - Brent L Fogel
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Cyril Goizet
- Service de Génétique Médicale, Bordeaux Hospital University Center, Bordeaux, France
| | - Joanna C Jen
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | | | - Anthony E Lang
- 1] Morton and Gloria Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada. [2] Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Zosia Miedzybrodzka
- Medical Genetics Group, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | | | - Martin Paucar
- 1] Translational Neuropharmacology, Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden. [2] Department of Neurology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Henry Paulson
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jérémie Pariente
- 1] INSERM, Imagerie Cérébrale et Handicaps Neurologiques, UMR 825, Pole Neurosciences, Centre Hospitalier Universitaire (CHU) Purpan, Toulouse, France. [2] CHU de Toulouse, Université de Toulouse, Toulouse, France
| | - Anne-Claire Richard
- 1] INSERM U1079, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, Rouen, France. [2] Centre National de Référence pour les Malades Alzheimer Jeunes (CNR-MAJ), Rouen University Hospital, Rouen, France
| | | | - Sheila A Simpson
- Medical Genetics Group, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health, University of Genoa 'G. Gaslini' Institute, Genoa, Italy
| | - Per Svenningsson
- 1] Translational Neuropharmacology, Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden. [2] Department of Neurology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - François Tison
- Neurology and Institute for Neurodegenerative Diseases, Bordeaux University Hospital and Bordeaux University, Bordeaux, France
| | - Vivek K Unni
- Department of Neurology, Oregon Health and Science University, Portland, Oregon, USA
| | - Olivier Vanakker
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Marja W Wessels
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Michele Yang
- Department of Pediatrics, Children's Hospital Colorado and University of Colorado Denver, Aurora, Colorado, USA
| | - Francois Boller
- Department of Neurology, George Washington University Medical School, Washington, DC, USA
| | - Dominique Campion
- 1] INSERM U1079, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, Rouen, France. [2] Centre National de Référence pour les Malades Alzheimer Jeunes (CNR-MAJ), Rouen University Hospital, Rouen, France. [3] Department of Research, Rouvray Psychiatric Hospital, Sotteville-lès-Rouen, France
| | - Didier Hannequin
- 1] INSERM U1079, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, Rouen, France. [2] Centre National de Référence pour les Malades Alzheimer Jeunes (CNR-MAJ), Rouen University Hospital, Rouen, France. [3] Department of Genetics, Rouen University Hospital, Rouen, France. [4] Department of Neurology, Rouen University Hospital, Rouen, France
| | - Marc Sitbon
- 1] Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, Montpellier, France. [2] Université de Montpellier, Montpellier, France. [3] Laboratory of Excellence GR-Ex, Paris, France. [4] Laboratory of Excellence EpiGenMed, Montpellier, France
| | - Daniel H Geschwind
- 1] Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA. [2] Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Jean-Luc Battini
- 1] Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, Montpellier, France. [2] Université de Montpellier, Montpellier, France. [3] Laboratory of Excellence GR-Ex, Paris, France. [4] Laboratory of Excellence EpiGenMed, Montpellier, France
| | - Giovanni Coppola
- 1] Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA. [2] Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
41
|
Kozak CA. Origins of the endogenous and infectious laboratory mouse gammaretroviruses. Viruses 2014; 7:1-26. [PMID: 25549291 PMCID: PMC4306825 DOI: 10.3390/v7010001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 12/18/2014] [Indexed: 01/07/2023] Open
Abstract
The mouse gammaretroviruses associated with leukemogenesis are found in the classical inbred mouse strains and in house mouse subspecies as infectious exogenous viruses (XRVs) and as endogenous retroviruses (ERVs) inserted into their host genomes. There are three major mouse leukemia virus (MuLV) subgroups in laboratory mice: ecotropic, xenotropic, and polytropic. These MuLV subgroups differ in host range, pathogenicity, receptor usage and subspecies of origin. The MuLV ERVs are recent acquisitions in the mouse genome as demonstrated by the presence of many full-length nondefective MuLV ERVs that produce XRVs, the segregation of these MuLV subgroups into different house mouse subspecies, and by the positional polymorphism of these loci among inbred strains and individual wild mice. While some ecotropic and xenotropic ERVs can produce XRVs directly, others, especially the pathogenic polytropic ERVs, do so only after recombinations that can involve all three ERV subgroups. Here, I describe individual MuLV ERVs found in the laboratory mice, their origins and geographic distribution in wild mouse subspecies, their varying ability to produce infectious virus and the biological consequences of this expression.
Collapse
|
42
|
The phosphate exporter xpr1b is required for differentiation of tissue-resident macrophages. Cell Rep 2014; 8:1659-1667. [PMID: 25220463 DOI: 10.1016/j.celrep.2014.08.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/23/2014] [Accepted: 08/08/2014] [Indexed: 12/23/2022] Open
Abstract
Phosphate concentration is tightly regulated at the cellular and organismal levels. The first metazoan phosphate exporter, XPR1, was recently identified, but its in vivo function remains unknown. In a genetic screen, we identified a mutation in a zebrafish ortholog of human XPR1, xpr1b. xpr1b mutants lack microglia, the specialized macrophages that reside in the brain, and also displayed an osteopetrotic phenotype characteristic of defects in osteoclast function. Transgenic expression studies indicated that xpr1b acts autonomously in developing macrophages. xpr1b mutants display no gross developmental defects that may arise from phosphate imbalance. We constructed a targeted mutation of xpr1a, a duplicate of xpr1b in the zebrafish genome, to determine whether Xpr1a and Xpr1b have redundant functions. Single mutants for xpr1a were viable, and double mutants for xpr1b;xpr1a were similar to xpr1b single mutants. Our genetic analysis reveals a specific role for the phosphate exporter Xpr1 in the differentiation of tissue macrophages.
Collapse
|
43
|
Wang C, Wei Q, Zhang K, Wang L, Liu F, Zhao L, Tan Y, Di C, Yan H, Yu J, Sun C, Chen WJ, Xu W, Su Z. Down-regulation of OsSPX1 causes high sensitivity to cold and oxidative stresses in rice seedlings. PLoS One 2013; 8:e81849. [PMID: 24312593 PMCID: PMC3849359 DOI: 10.1371/journal.pone.0081849] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/20/2013] [Indexed: 11/18/2022] Open
Abstract
Rice SPX domain gene, OsSPX1, plays an important role in the phosphate (Pi) signaling network. Our previous work showed that constitutive overexpression of OsSPX1 in tobacco and Arabidopsis plants improved cold tolerance while also decreasing total leaf Pi. In the present study, we generated rice antisense and sense transgenic lines of OsSPX1 and found that down-regulation of OsSPX1 caused high sensitivity to cold and oxidative stresses in rice seedlings. Compared to wild-type and OsSPX1-sense transgenic lines, more hydrogen peroxide accumulated in seedling leaves of OsSPX1-antisense transgenic lines for controls, cold and methyl viologen (MV) treatments. Glutathione as a ROS scavenger could protect the antisense transgenic lines from cold and MV stress. Rice whole genome GeneChip analysis showed that some oxidative-stress marker genes (e.g. glutathione S-transferase and P450s) and Pi-signaling pathway related genes (e.g. OsPHO2) were significantly down-regulated by the antisense of OsSPX1. The microarray results were validated by real-time RT-PCR. Our study indicated that OsSPX1 may be involved in cross-talks between oxidative stress, cold stress and phosphate homeostasis in rice seedling leaves.
Collapse
Affiliation(s)
- Chunchao Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qiang Wei
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Kang Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ling Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Fengxia Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- Department of Plant Genetic and Breeding and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Linna Zhao
- State Key Laboratory for Agricultural Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yuanjun Tan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chao Di
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hong Yan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jingjuan Yu
- State Key Laboratory for Agricultural Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chuanqing Sun
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- Department of Plant Genetic and Breeding and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Wenqiong J. Chen
- Biology Department, San Diego State University, San Diego, California, United States of America
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- * E-mail: (ZS); (WX)
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- * E-mail: (ZS); (WX)
| |
Collapse
|
44
|
Kozak CA. Evolution of different antiviral strategies in wild mouse populations exposed to different gammaretroviruses. Curr Opin Virol 2013; 3:657-63. [PMID: 23992668 DOI: 10.1016/j.coviro.2013.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/31/2013] [Accepted: 08/01/2013] [Indexed: 01/28/2023]
Abstract
Laboratory mice carry three host range groups of gammaretroviruses all of which are linked to leukemia induction. Although polytropic mouse leukemia viruses (P-MLVs) are generally recognized as the proximate cause of MLV-induced leukemias in laboratory mice, wild mice that carry only endogenous P-MLVs do not produce infectious virus and are not prone to disease; these mice carry the permissive XPR1 retroviral receptor and an attenuated variant of the retroviral restriction factor, APOBEC3. In contrast, Eurasian mice carrying ecotropic and xenotropic MLVs have evolved multiple restrictive XPR1 variants, other factors that interfere with MLV entry, and more effectively antiviral variants of APOBEC3. These different antiviral restrictions in Mus musculus subspecies suggest that the different virus types found in these natural populations may pose different but largely uncharacterized survival risks in their host subspecies.
Collapse
Affiliation(s)
- Christine A Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, United States.
| |
Collapse
|
45
|
The avian XPR1 gammaretrovirus receptor is under positive selection and is disabled in bird species in contact with virus-infected wild mice. J Virol 2013; 87:10094-104. [PMID: 23843647 DOI: 10.1128/jvi.01327-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Xenotropic mouse leukemia viruses (X-MLVs) are broadly infectious for mammals except most of the classical strains of laboratory mice. These gammaretroviruses rely on the XPR1 receptor for entry, and the unique resistance of laboratory mice is due to two mutations in different putative XPR1 extracellular loops. Cells from avian species differ in susceptibility to X-MLVs, and 2 replacement mutations in the virus-resistant chicken XPR1 (K496Q and Q579E) distinguish it from the more permissive duck and quail receptors. These substitutions align with the two mutations that disable the laboratory mouse XPR1. Mutagenesis of the chicken and duck genes confirms that residues at both sites are critical for virus entry. Among 32 avian species, the 2 disabling XPR1 mutations are found together only in the chicken, an omnivorous, ground-dwelling fowl that was domesticated in India and/or Southeast Asia, which is also where X-MLV-infected house mice evolved. The receptor-disabling mutations are also present separately in 5 additional fowl and raptor species, all of which are native to areas of Asia populated by the virus-infected subspecies Mus musculus castaneus. Phylogenetic analysis showed that the avian XPR1 gene is under positive selection at sites implicated in receptor function, suggesting a defensive role for XPR1 in the avian lineage. Contact between bird species and virus-infected mice may thus have favored selection of mouse virus-resistant receptor orthologs in the birds, and our data suggest that similar receptor-disabling mutations were fixed in mammalian and avian species exposed to similar virus challenges.
Collapse
|
46
|
Endogenous gammaretrovirus acquisition in Mus musculus subspecies carrying functional variants of the XPR1 virus receptor. J Virol 2013; 87:9845-55. [PMID: 23824809 DOI: 10.1128/jvi.01264-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The xenotropic and polytropic mouse leukemia viruses (X-MLVs and P-MLVs, respectively) have different host ranges but use the same functionally polymorphic receptor, XPR1, for entry. Endogenous retroviruses (ERVs) of these 2 gammaretrovirus subtypes are largely segregated in different house mouse subspecies, but both MLV types are found in the classical strains of laboratory mice, which are genetic mosaics of 3 wild mouse subspecies. To describe the subspecies origins of laboratory mouse XP-MLV ERVs and their coevolutionary trajectory with their XPR1 receptor, we screened the house mouse subspecies for known and novel Xpr1 variants and for the individual full-length XP-MLV ERVs found in the sequenced C57BL mouse genome. The 12 X-MLV ERVs predate the origins of laboratory mice; they were all traced to Japanese wild mice and are embedded in the 5% of the laboratory mouse genome derived from the Asian Mus musculus musculus and, in one case, in the <1% derived from M. m. castaneus. While all 31 P-MLV ERVs map to the 95% of the laboratory mouse genome derived from P-MLV-infected M. m. domesticus, no C57BL P-MLV ERVs were found in wild M. m. domesticus. All M. m. domesticus mice carry the fully permissive XPR1 receptor allele, but all of the various restrictive XPR1 receptors, including the X-MLV-restricting laboratory mouse Xpr1(n) and a novel M. m. castaneus allele, originated in X-MLV-infected Asian mice. Thus, P-MLV ERVs show more insertional polymorphism than X-MLVs, and these differences in ERV acquisition and fixation are linked to subspecies-specific and functionally distinct XPR1 receptor variants.
Collapse
|
47
|
Mazari PM, Roth MJ. Library screening and receptor-directed targeting of gammaretroviral vectors. Future Microbiol 2013; 8:107-21. [PMID: 23252496 DOI: 10.2217/fmb.12.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gene- and cell-based therapies hold great potential for the advancement of the personalized medicine movement. Gene therapy vectors have made dramatic leaps forward since their inception. Retroviral-based vectors were the first to gain clinical attention and still offer the best hope for the long-term correction of many disorders. The fear of nonspecific transduction makes targeting a necessary feature for most clinical applications. However, this remains a difficult feature to optimize, with specificity often coming at the expense of efficiency. The aim of this article is to discuss the various methods employed to retarget retroviral entry. Our focus will lie on the modification of gammaretroviral envelope proteins with an in-depth discussion of the creation and screening of envelope libraries.
Collapse
Affiliation(s)
- Peter M Mazari
- University of Medicine & Dentistry of NJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | |
Collapse
|
48
|
Giovannini D, Touhami J, Charnet P, Sitbon M, Battini JL. Inorganic Phosphate Export by the Retrovirus Receptor XPR1 in Metazoans. Cell Rep 2013; 3:1866-73. [DOI: 10.1016/j.celrep.2013.05.035] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/05/2013] [Accepted: 05/22/2013] [Indexed: 12/11/2022] Open
|
49
|
Kang X, Li W, Zhou Y, Ni M. A WRKY transcription factor recruits the SYG1-like protein SHB1 to activate gene expression and seed cavity enlargement. PLoS Genet 2013; 9:e1003347. [PMID: 23505389 PMCID: PMC3591269 DOI: 10.1371/journal.pgen.1003347] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 01/13/2013] [Indexed: 11/23/2022] Open
Abstract
Seed development in Arabidopsis and in many dicots involves an early proliferation of the endosperm to form a large embryo sac or seed cavity close to the size of the mature seed, followed by a second phase during which the embryo grows and replaces the endosperm. SHORT HYPOCOTYL UNDER BLUE1 (SHB1) is a member of the SYG1 protein family in fungi, Caenorhabditis elegans, flies, and mammals. SHB1 gain-of-function enhances endosperm proliferation, increases seed size, and up-regulates the expression of the WRKY transcription factor gene MINISEED3 (MINI3) and the LRR receptor kinase gene HAIKU2 (IKU2). Mutations in either IKU2 or MINI3 retard endosperm proliferation and reduce seed size. However, the molecular mechanisms underlying the establishment of the seed cavity and hence the seed size remain largely unknown. Here, we show that the expression of MINI3 and IKU2 is repressed before fertilization and after 4 days after pollination (DAP), but is activated by SHB1 from 2 to 4 DAP prior to the formation of the seed cavity. SHB1 associates with their promoters but without a recognizable DNA binding motif, and this association is abolished in mini3 mutant. MINI3 binds to W-boxes in, and recruits SHB1 to, its own and IKU2 promoters. Interestingly, SHB1, but not MINI3, activates transcription of pMINI3::GUS or pIKU2::GUS. We reveal a critical developmental switch through the activation of MINI3 expression by SHB1. The recruitment of SHB1 by MINI3 to its own and IKU2 promoters represents a novel two-step amplification to counter the low expression level of IKU2, which is a trigger for endosperm proliferation and seed cavity enlargement. Seed development in many dicots is characterized by a rapid proliferation of the endosperm and growth of integument to form a large embryo sac or seed cavity. In Arabidopsis, the seed cavity is generated at the globular stage or 4 days after pollination. The subsequent growth of the embryo replaces the endosperm during the second phase. Therefore, the volume of the initial seed cavity correlates closely with the final seed size. In shb1-D, an even larger seed cavity is created at 4 DAP due to an up-regulated expression of MINI3 and IKU2 by SHB1. We report that the expression of MINI3 and IKU2 coincides with the formation of the seed cavity. SHB1 is anchored to these promoters by MINI3 to activate their expression in a W-box-dependent manner. Spatiotemporal regulation of gene expression is a crucial mechanism that controls embryo development in many organisms. This interaction of SHB1 with MINI3 should impact studies of their homologs in many other organisms, including humans. Seed development in major seed crops, such as soybean and canola, follows a very similar path to that of Arabidopsis. Our results should lead to an increase in agricultural yields and concomitant increases in the proteins and oil content per seed.
Collapse
Affiliation(s)
- Xiaojun Kang
- Department of Plant Biology, University of Minnesota at Twin Cities, Saint Paul, Minnesota, United States of America
| | - Wei Li
- Department of Plant Biology, University of Minnesota at Twin Cities, Saint Paul, Minnesota, United States of America
| | - Yun Zhou
- Department of Plant Biology, University of Minnesota at Twin Cities, Saint Paul, Minnesota, United States of America
| | - Min Ni
- Department of Plant Biology, University of Minnesota at Twin Cities, Saint Paul, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
50
|
Lee YJ, Jeong BH, Choi EK, Carp RI, Kim YS. Complete genome sequences of new xenotropic murine leukemia viruses from the senescence-accelerated mouse (SAM): molecular and phylogenetic analyses. PLoS One 2013; 8:e55669. [PMID: 23393596 PMCID: PMC3564811 DOI: 10.1371/journal.pone.0055669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 12/28/2012] [Indexed: 01/18/2023] Open
Abstract
Approximately 10% of the mouse genome is constituted by endogenous retroviruses (ERVs), and a number of mouse ERVs remain active. Many copies of endogenous murine leukemia viruses (MuLVs) are detected in the genomes of inbred mouse strains. Some of these MuLVs are transcriptionally active or produce infectious virus particles. Previously, we identified partial env sequences of new xenotropic MuLVs (X-MuLVs) from a senescence-accelerated mouse (SAM) strain. In the present study, we investigated and characterized the complete sequences of the X-MuLVs. The complete genomes and open reading frames (ORFs) of two X-MuLVs, designated xmlv15 and xmlv18 (accession nos. HQ154630 and HQ154631, respectively), were molecularly cloned from the genome of the SAM mice. We confirmed that the xmlv15 and xmlv18 sequences are distinct from all known MuLV genomes and are most similar to DG-75 MuLV. Moreover, we found that common strains of laboratory mice carry our newly identified xmlvs. Additionally, the expression levels of xmlv15-related sequences were much higher in C57BL and ICR mice than in the SAM strains without any stimulators. Our findings suggest that a specific group of endogenous MuLVs is constitutively expressed in the brain and that they may participate in normal functions and/or pathogenic conditions.
Collapse
Affiliation(s)
- Yun-Jung Lee
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do, Republic of Korea
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Kangwon-do, Republic of Korea
| | - Byung-Hoon Jeong
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do, Republic of Korea
| | - Eun-Kyoung Choi
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do, Republic of Korea
| | - Richard I. Carp
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Yong-Sun Kim
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do, Republic of Korea
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Kangwon-do, Republic of Korea
- * E-mail:
| |
Collapse
|