1
|
Donis C, Fauste E, Pérez-Armas M, Otero P, Panadero MI, Bocos C. Cardiac Hypertrophy in Pregnant Rats, Descendants of Fructose-Fed Mothers, an Effect That Worsens with Fructose Supplementation. Foods 2024; 13:2944. [PMID: 39335874 PMCID: PMC11431301 DOI: 10.3390/foods13182944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The role of fructose consumption in the development of obesity, MetS, and CVD epidemic has been widely documented. Notably, among other effects, fructose consumption has been demonstrated to induce cardiac hypertrophy. Moreover, fructose intake during pregnancy can cause hypertrophy of the maternal heart. Our previous research has demonstrated that maternal fructose intake has detrimental effects on fetuses, which persist into adulthood and are exacerbated upon re-exposure to fructose. Additionally, we found that maternal fructose consumption produces changes in female progeny that alter their own pregnancy. Despite these findings, fructose intake during pregnancy is not currently discouraged. Given that cardiac hypertrophy is a prognostic marker for heart disease and heart failure, this study aimed to determine whether metabolic changes occurring during pregnancy in the female progeny of fructose-fed mothers could provoke a hypertrophic heart. To test this hypothesis, pregnant rats from fructose-fed mothers, with (FF) and without (FC) fructose supplementation, were studied and compared to pregnant control rats (CC). Maternal hearts were analyzed. Although both FF and FC mothers exhibited heart hypertrophy compared to CC rats, cardiac DNA content was more diminished in the hearts of FF dams than in those of FC rats, suggesting a lower number of heart cells. Accordingly, changes associated with cardiac hypertrophy, such as HIF1α activation and hyperosmolality, were observed in both the FC and FF dams. However, FF dams also exhibited higher oxidative stress, lower autophagy, and decreased glutamine protection against hypertrophy than CC dams. In conclusion, maternal fructose intake induces changes in female progeny that alter their own pregnancy, leading to cardiac hypertrophy, which is further exacerbated by subsequent fructose intake.
Collapse
Affiliation(s)
- Cristina Donis
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain
| | - Elena Fauste
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain
| | - Madelín Pérez-Armas
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain
| | - Paola Otero
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain
| | - María I Panadero
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain
| | - Carlos Bocos
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain
| |
Collapse
|
2
|
Paul B, Buchholz DR. Minireview: Glucocorticoid-Leptin Crosstalk: Role of Glucocorticoid-Leptin Counterregulation in Metabolic Homeostasis and Normal Development. Integr Comp Biol 2023; 63:1127-1139. [PMID: 37708034 DOI: 10.1093/icb/icad119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
Glucocorticoids and leptin are two important hormones that regulate metabolic homeostasis by controlling appetite and energy expenditure in adult mammals. Also, glucocorticoids and leptin strongly counterregulate each other, such that chronic stress-induced glucocorticoids upregulate the production of leptin and leptin suppresses glucocorticoid production directly via action on endocrine organs and indirectly via action on food intake. Altered glucocorticoid or leptin levels during development can impair organ development and increase the risk of chronic diseases in adults, but there are limited studies depicting the significance of glucocorticoid-leptin interaction during development and its impact on developmental programming. In mammals, leptin-induced suppression of glucocorticoid production is critical during development, where leptin prevents stress-induced glucocorticoid production by inducing a period of short-hyporesponsiveness when the adrenal glands fail to respond to certain mild to moderate stressors. Conversely, reduced or absent leptin signaling increases glucocorticoid levels beyond what is appropriate for normal organogenesis. The counterregulatory interactions between leptin and glucocorticoids suggest the potential significant involvement of leptin in disorders that occur from stress during development.
Collapse
Affiliation(s)
- Bidisha Paul
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Daniel R Buchholz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
3
|
Chen H, Xie C, Chen Q, Zhuang S. HDAC11, an emerging therapeutic target for metabolic disorders. Front Endocrinol (Lausanne) 2022; 13:989305. [PMID: 36339432 PMCID: PMC9631211 DOI: 10.3389/fendo.2022.989305] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
Abstract
Histone deacetylase 11 (HDAC11) is the only member of the class IV HDAC, and the latest member identified. It is highly expressed in brain, heart, kidney and some other organs, and located in mitochondria, cytoplasm and nuclei, depending on the tissue and cell types. Although studies in HDAC11 total knockout mice suggest its dispensable features for tissue development and life, it participates in diverse pathophysiological processes, such as DNA replication, tumor growth, immune regulation, oxidant stress injury and neurological function of cocaine. Recent studies have shown that HDAC11 is also critically involved in the pathogenesis of some metabolic diseases, including obesity, diabetes and complications of diabetes. In this review, we summarize the recent progress on the role and mechanism of HDAC11 in the regulation of metabolic disorders, with the focus on its regulation on adipogenesis, lipid metabolism, metabolic inflammation, glucose tolerance, immune responses and energy consumption. We also discuss the property and selectivity of HDAC11 inhibitors and their applications in a variety of in vitro and in vivo models of metabolic disorders. Given that pharmacological and genetic inhibition of HDAC11 exerts a beneficial effect on various metabolic disorders, HDAC11 may be a potential therapeutic target to treat chronic metabolic diseases.
Collapse
Affiliation(s)
- Huizhen Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunguang Xie
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiu Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| |
Collapse
|
4
|
Gu Y, Bai J, Zhang J, Zhao Y, Pan R, Dong Y, Cui H, Xiao X. Transcriptomics reveals the anti-obesity mechanism of Lactobacillus plantarum fermented barley extract. Food Res Int 2022; 157:111285. [DOI: 10.1016/j.foodres.2022.111285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022]
|
5
|
Häussler S, Sadri H, Ghaffari MH, Sauerwein H. Symposium review: Adipose tissue endocrinology in the periparturient period of dairy cows. J Dairy Sci 2022; 105:3648-3669. [PMID: 35181138 DOI: 10.3168/jds.2021-21220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/05/2022] [Indexed: 12/17/2022]
Abstract
The involvement of adipose tissue (AT) in metabolism is not limited to energy storage but turned out to be much more complex. We now know that in addition to lipid metabolism, AT is important in glucose homeostasis and AA metabolism and also has a role in inflammatory processes. With the discovery of leptin in 1994, the concept of AT being able to secrete messenger molecules collectively termed as adipokines, and acting in an endo-, para-, and autocrine manner emerged. Moreover, based on its asset of receptors, many stimuli from other tissues reaching AT via the bloodstream can also elicit distinct responses and thus integrate AT as a control element in the regulatory circuits of the whole body's functions. The protein secretome of human differentiated adipocytes was described to comprise more than 400 different proteins. However, in dairy cows, the characterization of the physiological time course of adipokines in AT during the transition from pregnancy to lactation is largely limited to the mRNA level; for the protein level, the analytical methods are limited and available assays often lack sound validation. In addition to proteinaceous adipokines, small compounds such as steroids can also be secreted from AT. Due to the lipophilic nature of steroids, they are stored in AT, but during the past years, AT became also known as being able to metabolize and even to generate steroid hormones de novo. In high-yielding dairy cows, AT is substantially mobilized due to increased energy requirements related to lactation. As to whether the steroidogenic system in AT is affected and may change during the common loss of body fat is largely unknown. Moreover, most research about AT in transition dairy cows is based on subcutaneous AT, whereas other depots have scarcely been investigated. This contribution aims to review the changes in adipokine mRNA and-where available-protein expression with time relative to calving in high-yielding dairy cows at different conditions, including parity, body condition, diet, specific feed supplements, and health disorders. In addition, the review provides insights into steroidogenic pathways in dairy cows AT, and addresses differences between fat depots where possible.
Collapse
Affiliation(s)
- Susanne Häussler
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany.
| | - Hassan Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 516616471 Tabriz, Iran
| | - Morteza H Ghaffari
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| | - Helga Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
6
|
Abstract
Leptin is a hormone primarily produced by the adipose tissue in proportion to the size of fat stores, with a primary function in the control of lipid reserves. Besides adipose tissue, leptin is also produced by other tissues, such as the stomach, placenta, and mammary gland. Altogether, leptin exerts a broad spectrum of short, medium, and long-term regulatory actions at the central and peripheral levels, including metabolic programming effects that condition the proper development and function of the adipose organ, which are relevant for its main role in energy homeostasis. Comprehending how leptin regulates adipose tissue may provide important clues to understand the pathophysiology of obesity and related diseases, such as type 2 diabetes, as well as its prevention and treatment. This review focuses on the physiological and long-lasting regulatory effects of leptin on adipose tissue, the mechanisms and pathways involved, its main outcomes on whole-body physiological homeostasis, and its consequences on chronic diseases.
Collapse
Affiliation(s)
- Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands. CIBER de Fisiopatología de La Obesidad Y Nutrición (CIBEROBN). Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Mariona Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands. CIBER de Fisiopatología de La Obesidad Y Nutrición (CIBEROBN). Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Catalina Amadora Pomar
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands. CIBER de Fisiopatología de La Obesidad Y Nutrición (CIBEROBN). Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Ana María Rodríguez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands. CIBER de Fisiopatología de La Obesidad Y Nutrición (CIBEROBN). Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands. CIBER de Fisiopatología de La Obesidad Y Nutrición (CIBEROBN). Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| |
Collapse
|
7
|
Fauste E, Panadero MI, Donis C, Otero P, Bocos C. Pregnancy Is Enough to Provoke Deleterious Effects in Descendants of Fructose-Fed Mothers and Their Fetuses. Nutrients 2021; 13:3667. [PMID: 34684668 PMCID: PMC8539712 DOI: 10.3390/nu13103667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/06/2023] Open
Abstract
The role of fructose in the global obesity and metabolic syndrome epidemic is widely recognized. However, its consumption is allowed during pregnancy. We have previously demonstrated that maternal fructose intake in rats induces detrimental effects in fetuses. However, these effects only appeared in adult descendants after a re-exposure to fructose. Pregnancy is a physiological state that leads to profound changes in metabolism and hormone response. Therefore, we wanted to establish if pregnancy in the progeny of fructose-fed mothers was also able to provoke an unhealthy situation. Pregnant rats from fructose-fed mothers (10% w/v) subjected (FF) or not (FC) to a fructose supplementation were studied and compared to pregnant control rats (CC). An OGTT was performed on the 20th day of gestation, and they were sacrificed on the 21st day. Plasma and tissues from mothers and fetuses were analyzed. Although FF mothers showed higher AUC insulin values after OGTT in comparison to FC and CC rats, ISI was lower and leptinemia was higher in FC and FF rats than in the CC group. Accordingly, lipid accretion was observed both in liver and placenta in the FC and FF groups. Interestingly, fetuses from FC and FF mothers also showed the same profile observed in their mothers on lipid accumulation, leptinemia, and ISI. Moreover, hepatic lipid peroxidation was even more augmented in fetuses from FC dams than those of FF mothers. Maternal fructose intake produces in female progeny changes that alter their own pregnancy, leading to deleterious effects in their fetuses.
Collapse
Affiliation(s)
| | | | | | | | - Carlos Bocos
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain; (E.F.); (M.I.P.); (C.D.); (P.O.)
| |
Collapse
|
8
|
Qian H, Zhao J, Yang X, Wu S, An Y, Qu Y, Li Z, Ge H, Li E, Qi W. TET1 promotes RXRα expression and adipogenesis through DNA demethylation. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158919. [PMID: 33684567 DOI: 10.1016/j.bbalip.2021.158919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/15/2021] [Accepted: 03/03/2021] [Indexed: 11/24/2022]
Abstract
Adipose tissue is important for systemic metabolic homeostasis in response to environmental changes, and adipogenesis involves dynamic transcriptional regulation. Ten-eleven translocation (TET) enzymes (TET1, 2 and 3) oxidize the 5-methylcytosine (5mC) in DNA to 5-hydroxylmethylcytosine (5hmC), which associates with transcriptional activation. Step by step, 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) are further generated by TETs and the cytosine can be restored through base-excision repair. It is still unclear how DNA demethylation is involved in adipogenesis. Through a phenotypic screen, we found TET inhibition decreased adipocyte differentiation from mesenchymal stem cells (MSCs). Comparing with the undifferentiated MSCs, the differentiated adipocytes exhibited much higher levels of 5hmC and slightly increased 5fC and 5caC. Higher 5hmC was associated with better differentiation at single-cell level by image analysis. TET1 is upregulated in differentiation and depletion of it significantly impaired the gain of 5hmC. Furthermore, Tet1 depletion significantly hampered the adipocyte differentiation. Using RNA-seq, 5mC and 5hmC-DNA immunoprecipitation, we found that Tet1 knockout led to lower expression of genes associated with lipid metabolism and fat cell differentiation. Genes with loss of 5mC or gain of 5hmC in adipocytes include Lipe, Bmp4 and Rxra, etc. RXRα agonist partially rescued the inhibitory effect of Tet1 knockout for adipogenesis. So, Rxra is one of the critical TET1 modulated genes. Together, TET1-mediated active DNA demethylation plays an important role in adipogenesis.
Collapse
Affiliation(s)
- Hui Qian
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China; China Novartis Institutes for BioMedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - Jiaqi Zhao
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Xinyi Yang
- China Novartis Institutes for BioMedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - Sujuan Wu
- China Novartis Institutes for BioMedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - Yang An
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Yuxiu Qu
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Zhen Li
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Hui Ge
- China Novartis Institutes for BioMedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - En Li
- China Novartis Institutes for BioMedical Research, 4218 Jinke Road, Shanghai 201203, China
| | - Wei Qi
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China.
| |
Collapse
|
9
|
Yang H, Chen L, Sun Q, Yao F, Muhammad S, Sun C. The role of HDAC11 in obesity-related metabolic disorders: A critical review. J Cell Physiol 2021; 236:5582-5591. [PMID: 33481312 DOI: 10.1002/jcp.30286] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/15/2020] [Accepted: 01/07/2021] [Indexed: 12/22/2022]
Abstract
At present, metabolic diseases, such as obesity and diabetes, have become the world's top health threats. These diseases are closely related to the abnormal development and function of adipocytes and metabolic inflammation associated with obesity. Histone deacetylase 11 (HDAC11), with a relatively unique structure and function in the HDAC family, plays a vital role in regulating cell growth, migration, and cell death. Currently, research on new key regulatory functions of HDAC11 in metabolic homeostasis is receiving more and more attention, and HDAC11 has also become a potential therapeutic target in the treatment of obesity and obesity-related diseases. Here, we summarized the latest literature on the role of HDAC11 in regulating the progress of obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Hong Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Lingling Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qian Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Fangyao Yao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Saeed Muhammad
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,Department of Poultry Science, Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Chao Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
10
|
Martínez-Sánchez N. There and Back Again: Leptin Actions in White Adipose Tissue. Int J Mol Sci 2020; 21:ijms21176039. [PMID: 32839413 PMCID: PMC7503240 DOI: 10.3390/ijms21176039] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Leptin is a hormone discovered almost 30 years ago with important implications in metabolism. It is primarily produced by white adipose tissue (WAT) in proportion to the amount of fat. The discovery of leptin was a turning point for two principle reasons: on one hand, it generated promising expectations for the treatment of the obesity, and on the other, it changed the classical concept that white adipose tissue was simply an inert storage organ. Thus, adipocytes in WAT produce the majority of leptin and, although its primary role is the regulation of fat stores by controlling lipolysis and lipogenesis, this hormone also has implications in other physiological processes within WAT, such as apoptosis, browning and inflammation. Although a massive number of questions related to leptin actions have been answered, the necessity for further clarification facilitates constantly renewing interest in this hormone and its pathways. In this review, leptin actions in white adipose tissue will be summarized in the context of obesity.
Collapse
|
11
|
Luo G, Hu S, Lai T, Wang J, Wang L, Lai S. MiR-9-5p promotes rabbit preadipocyte differentiation by suppressing leptin gene expression. Lipids Health Dis 2020; 19:126. [PMID: 32503618 PMCID: PMC7273680 DOI: 10.1186/s12944-020-01294-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/20/2020] [Indexed: 12/17/2022] Open
Abstract
Background MicroRNAs (miRNAs) are a class of small non-coding RNAs, which participate in the regulation of cell differentiation. Previous studies have demonstrated that miR-9-5p plays a key role in cancer cell development, but the mechanisms by which miR-9-5p regulates adipogenesis remain poorly understood. The present study intended to investigate its significance in producing rabbits with high-quality meat by observing the regulatory effect of miR-9-5p in preadipocytes and finding the related targets. Methods In this study, a dual-luciferase reporter assay was employed to validate the targeting relationship between miR-9-5p and leptin gene. We also utilized quantitative reverse transcription PCR (qRT-PCR), western blot, oil red-O staining assay, and determination of triglyceride content to analyze the regulation of miR-9-5p and leptin gene during adipocyte differentiation. Results The analysis demonstrated that during preadipocyte differentiation, miR-9-5p was up-regulated and the fat formation related biomarkers, i.e., fatty acid-binding protein 4 (FABP4), CCAAT-enhancer binding protein α (C/EBPα), and peroxisome proliferator activated receptor γ (PPARγ) were also up-regulated. Meanwhile, the oil red-O staining assay revealed that the accumulation of lipid droplets increased. We also explored the expression pattern and role of miR-9-5p in adipogenesis using white pre-adipocytes. The results showed that miR-9-5p was up-regulated during preadipocyte differentiation, and overexpression of miR-9-5p enhanced lipid accumulation. Furthermore, we found that the overexpression of miR-9-5p significantly up- regulated the expression of marker genes, PPARγ, C/EBPα and FABP4, and increased the protein levels of PPARγ and triglyceride content. The results suggest that miR-9-5p might be involved in the regulation of rabbit preadipocyte differentiation. We predicted that leptin is the target gene of miR-9-5p, by using bioinformatics tools and the conclusion was validated by a luciferase reporter assay. Finally, we verified that the knock-down of leptin by si-leptin promoted preadipocyte differentiation in rabbits. Conclusion The results of the present study indicate that miR-9-5p regulates white preadipocyte differentiation in rabbits by targeting the leptin gene.
Collapse
Affiliation(s)
- Gang Luo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211#Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211#Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Tianfu Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211#Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Jie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211#Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Li Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211#Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Songjia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211#Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
12
|
Nagasaka R, Nakachi H, Onodera Y, Ishikawa Y, Ohshima T. Leptin promotes the fat preference associated with low-temperature acclimation in mice. Biosci Biotechnol Biochem 2020; 84:1250-1258. [PMID: 32093588 DOI: 10.1080/09168451.2020.1732186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Although fluctuations in energy metabolism are known to influence intake as well as nutrient selection, there are no definitive reports on how food preferences change with changes in habitat temperature. We investigated the effects of habitat temperature on appetite and food preference and elucidated the underlying mechanism by conducting a feeding experiment and a leptin administration test on mice reared at low temperatures. Our results showed that the increased food intake and HFD preference observed in the 10°C group were induced by decrease in plasma leptin concentration. Then, a leptin administration experiment was conducted to clarify the relationship between leptin and food preference with low-temperature acclimation. The control group reared in 10°C significantly preferred the HFD, but the leptin-administered group did not. These results show that the peripheral system appetite-regulating hormone leptin not only acts to suppress appetite but also might inhibit preference for lipids in low-temperature acclimation.
Collapse
Affiliation(s)
- Reiko Nagasaka
- Department of Food Science and Technology, Graduate School of Marine Science and Technology, Tokyo, Japan
| | - Hazuki Nakachi
- Department of Food Science and Technology, Graduate School of Marine Science and Technology, Tokyo, Japan
| | - Yuka Onodera
- Department of Food Science and Technology, Graduate School of Marine Science and Technology, Tokyo, Japan
| | - Yuki Ishikawa
- Department of Food Science and Technology, Graduate School of Marine Science and Technology, Tokyo, Japan
| | - Toshiaki Ohshima
- Department of Food Science and Technology, Graduate School of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
13
|
Plaza A, Antonazzi M, Blanco-Urgoiti J, Del Olmo N, Ruiz-Gayo M. Potential Role of Leptin in Cardiac Steatosis Induced by Highly Saturated Fat Intake during Adolescence. Mol Nutr Food Res 2019; 63:e1900110. [PMID: 31298470 DOI: 10.1002/mnfr.201900110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/16/2019] [Indexed: 01/06/2023]
Abstract
SCOPE To identify the age-dependent effect of diets containing elevated amounts of either saturated or unsaturated fatty acids on cardiac steatosis in mice. METHODS AND RESULTS Five- and eight-week-old C57BL/6J mice cohorts are given free access to either a saturated or an unsaturated fatty-acid-enriched diet during 8 weeks. Body weight (BW) and food intake are monitored during this period. Cardiac lipid content, carnitine palmitoyltransferase-I (CPT-I) activity, and the amount of uncoupling proteins 2 and 3 (UCP2 and UCP3) are analyzed and correlated with blood leptin concentration. Leptin and PPARγ gene expression is quantified in white adipose tissue (WAT). Both diets have a similar effect on food intake, BW, and adiposity, independently of the age. Nevertheless, cardiac steatosis is specifically identified in adolescent mice consuming the saturated diet. These animals also display lower activity of cardiac CPT-I, a down-regulation of cardiac UCP2, together with lower concentration of plasma leptin. Accordingly, leptin gene expression is reduced in the visceral WAT. CONCLUSION Consumption of diets containing elevated amounts of saturated fat during adolescence and early adult life promotes cardiac steatosis in mice. An insufficient endocrine activity of WAT, in terms of leptin production, may account for such an effect.
Collapse
Affiliation(s)
- Adrián Plaza
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, 28925, Madrid, Spain
| | - Marco Antonazzi
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, 28925, Madrid, Spain
| | | | - Nuria Del Olmo
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, 28925, Madrid, Spain
| | - Mariano Ruiz-Gayo
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, 28925, Madrid, Spain
| |
Collapse
|
14
|
Yasmeen R, Shen Q, Lee A, Leung JH, Kowdley D, DiSilvestro DJ, Xu L, Yang K, Maiseyeu A, Bal NC, Periasamy M, Fadda P, Ziouzenkova O. Epiregulin induces leptin secretion and energy expenditure in high-fat diet-fed mice. J Endocrinol 2018; 239:377-388. [PMID: 30400011 PMCID: PMC6226053 DOI: 10.1530/joe-18-0289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/19/2018] [Indexed: 01/30/2023]
Abstract
Adipokine leptin regulates neuroendocrine circuits that control energy expenditure, thermogenesis and weight loss. However, canonic regulators of leptin secretion, such as insulin and malonyl CoA, do not support these processes. We hypothesize that epiregulin (EREG), a growth factor that is secreted from fibroblasts under thermogenic and cachexia conditions, induces leptin secretion associated with energy dissipation. The effects of EREG on leptin secretion were studied ex vivo, in the intra-abdominal white adipose tissue (iAb WAT) explants, as well as in vivo, in WT mice with diet-induced obesity (DIO) and in ob/ob mice. These mice were pair fed a high-fat diet and treated with intraperitoneal injections of EREG. EREG increased leptin production and secretion in a dose-dependent manner in iAb fat explants via the EGFR/MAPK pathway. After 2 weeks, the plasma leptin concentration was increased by 215% in the EREG-treated group compared to the control DIO group. EREG-treated DIO mice had an increased metabolic rate and core temperature during the active dark cycle and displayed cold-induced thermogenesis. EREG treatment reduced iAb fat mass, the major site of leptin protein production and secretion, but did not reduce the mass of the other fat depots. In the iAb fat, expression of genes supporting mitochondrial oxidation and thermogenesis was increased in EREG-treated mice vs control DIO mice. All metabolic and gene regulation effects of EREG treatment were abolished in leptin-deficient ob/ob mice. Our data revealed a new role of EREG in induction of leptin secretion leading to the energy expenditure state. EREG could be a potential target protein to regulate hypo- and hyperleptinemia, underlying metabolic and immune diseases.
Collapse
Affiliation(s)
- Rumana Yasmeen
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Qiwen Shen
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Aejin Lee
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Jacob H. Leung
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Devan Kowdley
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, 43210, USA
| | - David J. DiSilvestro
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Lu Xu
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, 43210, USA
- Department of Minimally Invasive Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Kefeng Yang
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, 43210, USA
- Department of Nutrition, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. 200025
| | - Andrei Maiseyeu
- Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Naresh C. Bal
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Muthu Periasamy
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Paolo Fadda
- Nucleic Acid Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Ouliana Ziouzenkova
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, 43210, USA
- Correspondence Ouliana Ziouzenkova, PhD, 1787 Neil Avenue, 331A Campbell Hall; Columbus, OH 43210, ; Telephone: 001 614 292 5034; Fax: 001 614 292 8880
| |
Collapse
|
15
|
Li Z, Ji L, Su S, Zhu X, Cheng F, Jia X, Zhou Q, Zhou Y. Leptin up-regulates microRNA-27a/b-3p level in hepatic stellate cells. Exp Cell Res 2018; 366:63-70. [PMID: 29548749 DOI: 10.1016/j.yexcr.2018.03.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022]
Abstract
Obese patients, often accompanied by hyperleptinemia, are prone to liver fibrogenesis. Leptin is an adipocyte-derived hormone and plays a promotion role in liver fibrosis. Sterol regulatory element binding protein-1c (SREBP1c) exerts a crucial role in inhibiting hepatic stellate cell (HSC) activation, a key step in liver fibrogenesis. Our previous studies indicated that leptin inhibited SREBP1c expression, contributing to leptin-induced HSC activation and liver fibrosis. microRNAs (miR) have emerged as important layers of regulatory control and regulate gene expression, and are implicated in numerous diseases. The present study revealed leptin up-regulation of miR-27a/b-3p levels in HSCs in vitro and in vivo. Three signaling pathways were required for leptin regulation of miR-27a/b-3p levels. miR-27a/b-3p could reduce SREBP1c and liver x receptor α (LXRα) levels, increased α-smooth muscle actin (α-SMA, a marker for HSC activation) and α1(I)collagen levels in cultured HSCs. miR-27a/b-3p regulation of SREBP1c and LXRα were independent of 3'-untranslated region of SREBP1c and LXRα mRNA. In vivo experiments further demonstrated the miR-27a/b-3p involved in leptin-associated decrease in SREBP1 level in HSCs, HSC activation, and liver fibrosis. These data might have potential implications for our understanding of molecular mechanisms underlying leptin roles in liver fibrogenesis of obese patients with hyperleptinaemia.
Collapse
Affiliation(s)
- Ziqiang Li
- Department of Biochemistry & Molecular Biology, Medical College, Nantong University, Qi xiou road 19, Nantong 226001, Jiangsu, China
| | - Li Ji
- Department of Biochemistry & Molecular Biology, Medical College, Nantong University, Qi xiou road 19, Nantong 226001, Jiangsu, China
| | - Shengyan Su
- Department of Biochemistry & Molecular Biology, Medical College, Nantong University, Qi xiou road 19, Nantong 226001, Jiangsu, China
| | - Xiaofei Zhu
- Department of Biochemistry & Molecular Biology, Medical College, Nantong University, Qi xiou road 19, Nantong 226001, Jiangsu, China
| | - Fangyun Cheng
- Department of Biochemistry & Molecular Biology, Medical College, Nantong University, Qi xiou road 19, Nantong 226001, Jiangsu, China
| | - Xin Jia
- Department of Biochemistry & Molecular Biology, Medical College, Nantong University, Qi xiou road 19, Nantong 226001, Jiangsu, China
| | - Qian Zhou
- Department of Biochemistry & Molecular Biology, Medical College, Nantong University, Qi xiou road 19, Nantong 226001, Jiangsu, China
| | - Yajun Zhou
- Department of Biochemistry & Molecular Biology, Medical College, Nantong University, Qi xiou road 19, Nantong 226001, Jiangsu, China.
| |
Collapse
|
16
|
Nielsen KN, Peics J, Ma T, Karavaeva I, Dall M, Chubanava S, Basse AL, Dmytriyeva O, Treebak JT, Gerhart-Hines Z. NAMPT-mediated NAD + biosynthesis is indispensable for adipose tissue plasticity and development of obesity. Mol Metab 2018; 11:178-188. [PMID: 29551635 PMCID: PMC6001355 DOI: 10.1016/j.molmet.2018.02.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/21/2018] [Accepted: 02/26/2018] [Indexed: 12/11/2022] Open
Abstract
Objective The ability of adipose tissue to expand and contract in response to fluctuations in nutrient availability is essential for the maintenance of whole-body metabolic homeostasis. Given the nutrient scarcity that mammals faced for millions of years, programs involved in this adipose plasticity were likely evolved to be highly efficient in promoting lipid storage. Ironically, this previously advantageous feature may now represent a metabolic liability given the caloric excess of modern society. We speculate that nicotinamide adenine dinucleotide (NAD+) biosynthesis exemplifies this concept. Indeed NAD+/NADH metabolism in fat tissue has been previously linked with obesity, yet whether it plays a causal role in diet-induced adiposity is unknown. Here we investigated how the NAD+ biosynthetic enzyme nicotinamide phosphoribosyltransferase (NAMPT) supports adipose plasticity and the pathological progression to obesity. Methods We utilized a newly generated Nampt loss-of-function model to investigate the tissue-specific and systemic metabolic consequences of adipose NAD+ deficiency. Energy expenditure, glycemic control, tissue structure, and gene expression were assessed in the contexts of a high dietary fat burden as well as the transition back to normal chow diet. Results Fat-specific Nampt knockout (FANKO) mice were completely resistant to high fat diet (HFD)-induced obesity. This was driven in part by reduced food intake. Furthermore, HFD-fed FANKO mice were unable to undergo healthy expansion of adipose tissue mass, and adipose depots were rendered fibrotic with markedly reduced mitochondrial respiratory capacity. Yet, surprisingly, HFD-fed FANKO mice exhibited improved glucose tolerance compared to control littermates. Removing the HFD burden largely reversed adipose fibrosis and dysfunction in FANKO animals whereas the improved glucose tolerance persisted. Conclusions These findings indicate that adipose NAMPT plays an essential role in handling dietary lipid to modulate fat tissue plasticity, food intake, and systemic glucose homeostasis. Fat-specific Nampt knockout (FANKO) does not alter body composition on chow diet. NAMPT is essential for adipose expansion and weight gain from high dietary fat. Loss of adipose NAD+ decreases food intake and improves glucose tolerance. High fat diet-induced metabolic dysfunction in FANKO mice is reversible.
Collapse
Affiliation(s)
- Karen Nørgaard Nielsen
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Julia Peics
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Tao Ma
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Iuliia Karavaeva
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Morten Dall
- Section for Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sabina Chubanava
- Section for Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Astrid L Basse
- Section for Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Oksana Dmytriyeva
- Laboratory of Neural Plasticity, Institute of Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark; Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, Copenhagen University Hospital, 2400 Copenhagen, Denmark
| | - Jonas T Treebak
- Section for Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Zachary Gerhart-Hines
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
17
|
Cheng Y, Zhu X, Cheng F, Ji L, Zhou Y. Delta-like homolog1/GATA binding protein 2 axis mediates leptin inhibition of PPARγ2 expression in hepatic stellate cells in vitro. Life Sci 2018; 192:183-189. [DOI: 10.1016/j.lfs.2017.11.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 11/19/2017] [Accepted: 11/28/2017] [Indexed: 02/06/2023]
|
18
|
Cao Q, Zhu X, Zhai X, Ji L, Cheng F, Zhu Y, Yu P, Zhou Y. Leptin suppresses microRNA-122 promoter activity by phosphorylation of foxO1 in hepatic stellate cell contributing to leptin promotion of mouse liver fibrosis. Toxicol Appl Pharmacol 2018; 339:143-150. [DOI: 10.1016/j.taap.2017.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/05/2017] [Accepted: 12/13/2017] [Indexed: 01/08/2023]
|
19
|
Zhai X, Cheng F, Ji L, Zhu X, Cao Q, Zhang Y, Jia X, Zhou Q, Guan W, Zhou Y. Leptin reduces microRNA-122 level in hepatic stellate cells in vitro and in vivo. Mol Immunol 2017; 92:68-75. [PMID: 29054053 DOI: 10.1016/j.molimm.2017.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/09/2017] [Accepted: 10/09/2017] [Indexed: 12/13/2022]
Abstract
Obese patients, often accompanied by hyperleptinemia, are more likely to develop liver fibrosis. Leptin, an adipocyte-derived hormone, augments inflammatory in liver and promotes hepatic stellate cell (HSC) activation (a key step for liver fibrogenesis) and liver fibrosis. microRNA-122 (miR-122) is the most abundant liver-specific miRNA and can attenuate liver fibrosis. This study examined the effect of leptin on miR-122 level in HSCs in vivo and in vitro. Results demonstrated that leptin reduced the levels of both miR-122 (mature miR-122) and primary miR-122 (pri-miR-122). The effects of leptin on the levels of miR-122 and pri-miR-122 were through at least hedgehog pathway. Leptin-induced decrease in sterol regulatory element-binding protein-1c (SREBP-1c) has been shown to contribute to leptin-induced HSC activation. We revealed a mutual promotional effect between SREBP-1c and miR-122. Further experiments indicated that miR-122 inhibited leptin-induced liver fibrosis in leptin-deficient mouse model. These data have potential implications for clarifying the mechanisms of hepatic fibrogenesis associated with elevated leptin level in human such as obese patients.
Collapse
Affiliation(s)
- Xuguang Zhai
- Department of Biochemistry & Molecular Biology, Medical College, Nantong University, Qi xiou road 19, Nantong 226001, Jiangsu, China
| | - Fangyun Cheng
- Department of Biochemistry & Molecular Biology, Medical College, Nantong University, Qi xiou road 19, Nantong 226001, Jiangsu, China
| | - Li Ji
- Department of Pharmacology, School of Pharmacy, Nantong University, Qi xiou road 19, Nantong 226001, Jiangsu, China
| | - Xiaofei Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, Qi xiou road 19, Nantong 226001, Jiangsu, China
| | - Qing Cao
- Department of Pharmacology, School of Pharmacy, Nantong University, Qi xiou road 19, Nantong 226001, Jiangsu, China
| | - Yali Zhang
- Department of Biochemistry & Molecular Biology, Medical College, Nantong University, Qi xiou road 19, Nantong 226001, Jiangsu, China
| | - Xin Jia
- Department of Biochemistry & Molecular Biology, Medical College, Nantong University, Qi xiou road 19, Nantong 226001, Jiangsu, China
| | - Qian Zhou
- Department of Pharmacology, School of Pharmacy, Nantong University, Qi xiou road 19, Nantong 226001, Jiangsu, China
| | - Wei Guan
- Department of Biochemistry & Molecular Biology, Medical College, Nantong University, Qi xiou road 19, Nantong 226001, Jiangsu, China
| | - Yajun Zhou
- Department of Biochemistry & Molecular Biology, Medical College, Nantong University, Qi xiou road 19, Nantong 226001, Jiangsu, China.
| |
Collapse
|
20
|
Barbagallo I, Li Volti G, Galvano F, Tettamanti G, Pluchinotta FR, Bergante S, Vanella L. Diabetic human adipose tissue-derived mesenchymal stem cells fail to differentiate in functional adipocytes. Exp Biol Med (Maywood) 2017; 242:1079-1085. [PMID: 27909015 PMCID: PMC5444636 DOI: 10.1177/1535370216681552] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/17/2016] [Indexed: 12/16/2022] Open
Abstract
Adipose tissue dysfunction represents a hallmark of diabetic patients and is a consequence of the altered homeostasis of this tissue. Mesenchymal stem cells (MSCs) and their differentiation into adipocytes contribute significantly in maintaining the mass and function of adult adipose tissue. The aim of this study was to evaluate the differentiation of MSCs from patients suffering type 2 diabetes (dASC) and how such process results in hyperplasia or rather a stop of adipocyte turnover resulting in hypertrophy of mature adipocytes. Our results showed that gene profile of all adipogenic markers is not expressed in diabetic cells after differentiation indicating that diabetic cells fail to differentiate into adipocytes. Interestingly, delta like 1, peroxisome proliferator-activated receptor alpha, and interleukin 1β were upregulated whereas Sirtuin 1 and insulin receptor substrate 1 gene expression were found downregulated in dASC compared to cells obtained from healthy subjects. Taken together our data indicate that dASC lose their ability to differentiate into mature and functional adipocytes. In conclusion, our in vitro study is the first to suggest that diabetic patients might develop obesity through a hypertrophy of existing mature adipocytes due to failure turnover of adipose tissue. Impact statement In the present manuscript, we evaluated the differentiative potential of mesenchymal stem cells (MSCs) in adipocytes obtained from healthy and diabetic patients. This finding could be of great potential interest for the field of obesity in order to exploit such results to further understand the pathophysiological processes underlying metabolic syndrome. In particular, inflammation in diabetic patients causes a dysfunction in MSCs differentiation and a decrease in adipocytes turnover leading to insulin resistance.
Collapse
Affiliation(s)
- Ignazio Barbagallo
- Department of Drug Sciences, University of Catania, Catania 95125, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95125, Italy
| | - Fabio Galvano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95125, Italy
| | - Guido Tettamanti
- IRCCS “S. Donato” Hospital, San Donato Milanese, Milan 20097, Italy
| | | | - Sonia Bergante
- IRCCS “S. Donato” Hospital, San Donato Milanese, Milan 20097, Italy
| | - Luca Vanella
- Department of Drug Sciences, University of Catania, Catania 95125, Italy
| |
Collapse
|
21
|
Viecili PRN, da Silva B, Hirsch GE, Porto FG, Parisi MM, Castanho AR, Wender M, Klafke JZ. Triglycerides Revisited to the Serial. Adv Clin Chem 2017; 80:1-44. [PMID: 28431638 DOI: 10.1016/bs.acc.2016.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review discusses the role of triglycerides (TGs) in the normal cardiovascular system as well as in the development and clinical manifestation of cardiovascular diseases. Regulation of TGs at the enzymatic and genetic level, in addition to their possible relevance as preclinical and clinical biomarkers, is discussed, culminating with a description of available and emerging treatments. Due to the high complexity of the subject and the vast amount of material in the literature, the objective of this review was not to exhaust the subject, but rather to compile the information to facilitate and improve the understanding of those interested in this topic. The main publications on the topic were sought out, especially those from the last 5 years. The data in the literature still give reason to believe that there is room for doubt regarding the use of TG as disease biomarkers; however, there is increasing evidence for the role of hypertriglyceridemia on the atherosclerotic inflammatory process, cardiovascular outcomes, and mortality.
Collapse
|
22
|
Escudero NL, Zirulnik F, Gomez NN, Mucciarelli SI, Giménez MS. Influence of a Protein Concentrate from Amaranthus cruentus Seeds on Lipid Metabolism. Exp Biol Med (Maywood) 2016; 231:50-9. [PMID: 16380644 DOI: 10.1177/153537020623100106] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
It is widely known that elevated cholesterol and triglycerides levels favor the development of heart disease. In this paper we studied the effect of a protein concentrate from Amaranthus cruentus (Ac) on the lipid content in serum and liver tissue of male Wistar rats. The animals were separated into two groups, each group with 16 rats. The control diet had casein as protein source (CD), and the experimental one had Ac protein concentrate (PCAcD). The diets contained 1% cholesterol. Parameters of oxidative stress in liver with CD and PCAcD were also evaluated. No significant differences were observed in serum total cholesterol, whereas LDL decreased and HDL increased (P < 0.001), and the amount of triglycerides decreased in PCAcD as compared to CD. In liver, a decrease of total cholesterol and triglycerides (P < 0.001) was observed in the experimental group in relation to control. Fatty acid synthase (FAS) activity decreased significantly in the experimental group. The mRNA of HMG-CoA reductase did not change, and mRNA of FAS decreased in rat liver fed with PCAcD compared with CD. The excretion of total lipids in feces increased with PCAcD compared to CD (P < 0.001). The activity of reactive substances to thiobarbituric acid in liver showed no significant differences between the control and experimental diets. However, total glutathione and reduced glutathione increased in PCAcD compared to CD (P < 0.001). It can be concluded that PCAcD has a hypotriglyceridemic effect, affects the metabolism of liver lipids, and increases parameters of antioxidant protection in male Wistar rats.
Collapse
Affiliation(s)
- N L Escudero
- Department of Biochemistry and Biological Sciences, National University of San Luis, Chacabuco and Pedernera, 5700 San Luis, Argentina
| | | | | | | | | |
Collapse
|
23
|
Abstract
Background: Peroxisomes are small cellular organelles that were almost ignored for years because they were believed to play only a minor role in cellular functions. However, it is now known that peroxisomes play an important role in regulating cellular proliferation and differentiation as well as in the modulation of inflammatory mediators. In addition, peroxisomes have broad effects on the metabolism of lipids, hormones, and xenobiotics. Through their effects on lipid metabolism, peroxisomes also affect cellular membranes and adipocyte formation, as well as insulin sensitivity, and peroxisomes play a role in aging and tumorigenesis through their effects on oxidative stress. Objective: To review genetically determined peroxisomal disorders, especially those that particularly affect the skin, and some recent information on the specific genetic defects that lead to some of these disorders. In addition, we present some of the emerging knowledge of peroxisomal proliferator activator receptors (PPARs) and how ligands for these receptors modulate different peroxisomal functions. We also present information on how the discovery of PPARs, and the broad and diverse group of ligands that activate these members of the superfamily of nuclear binding transcription factors, has led to development of new drugs that modulate the function of peroxisomes. Conclusion: PPAR expression and ligand modulation within the skin have shown potential uses for these ligands in a number of inflammatory cutaneous disorders, including acne vulgaris, cutaneous disorders with barrier dysfunction, cutaneous effects of aging, and poor wound healing associated with altered signal transduction, as well as for side effects induced by the metabolic dysregulation of other drugs.
Collapse
|
24
|
Zhou X, Li R, Liu X, Wang L, Hui P, Chan L, Saha PK, Hu Z. ROCK1 reduces mitochondrial content and irisin production in muscle suppressing adipocyte browning and impairing insulin sensitivity. Sci Rep 2016; 6:29669. [PMID: 27411515 PMCID: PMC4944137 DOI: 10.1038/srep29669] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/21/2016] [Indexed: 01/19/2023] Open
Abstract
Irisin reportedly promotes the conversion of preadipocytes into "brown-like" adipocytes within subcutaneous white adipose tissue (WAT) via a mechanism that stimulates UCP-1 expression. An increase in plasma irisin has been associated with improved obesity and insulin resistance in mice with type 2 diabetes. But whether a low level of irisin stimulates the development of obesity has not been determined. In studying mice with muscle-specific constitutive ROCK1 activation (mCaROCK1), we found that irisin production was down-regulated and the mice developed obesity and insulin resistance. Therefore, we studied the effects of irisin deficiency on energy metabolism in mCaROCK1 mice. Constitutively activation of ROCK1 in muscle suppressed irisin expression in muscle resulting in a low level of irisin in circulation. Irisin deficiency reduced heat production and decreased the expression of uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) and subcutaneous WAT. Moreover, mCaROCK1 mice also displayed impaired glucose tolerance. Notably, irisin replenishment in mCaROCK1 mice partially reversed insulin resistance and obesity and these changes were associated with increased expression of UCP1 and Pref-1 in subcutaneous WAT. These results demonstrate that irisin mediates muscle-adipose tissue communication and regulates energy and glucose homeostasis. Irisin administration can correct obesity and insulin resistance in mice.
Collapse
Affiliation(s)
- Xiaoshuang Zhou
- Nephrology Division, Shanxi Province People’s Hospital of Shanxi Medical University, Taiyuan, China
| | - Rongshan Li
- Nephrology Division, Shanxi Province People’s Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinyan Liu
- Nephrology Division, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Lihua Wang
- Nephrology Division, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Peng Hui
- Nephrology Division, The third affiliated hospital of Sun Yat-sen University, Guangzhou, China
| | - Lawrence Chan
- Endocrinology Division, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Pradip K. Saha
- Endocrinology Division, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Zhaoyong Hu
- Nephrology Division, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
25
|
Germinated waxy black rice extract inhibits lipid accumulation with regulation of multiple gene expression in 3T3-L1 adipocytes. Food Sci Biotechnol 2016; 25:821-827. [PMID: 30263341 DOI: 10.1007/s10068-016-0137-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/25/2016] [Accepted: 03/14/2016] [Indexed: 12/19/2022] Open
Abstract
The aim of this study was to investigate the anti-obesity effects of germinated waxy black rice (GWBR) extract in 3T3-L1 adipocytes. The inhibitory effect of GWBR extract against adipocyte differentiation was evaluated using Oil Red O staining and glycerol-3-phosphate dehydrogenase (GPDH) assay. GWBR extract inhibited adipocyte differentiation, but was not found to elicit any cytotoxicity. The mRNA levels of adipogenic transcriptional factors such as C/EBP-α and -β, PPAR-γ, and SREBP-1c, as well as adipogenic enzymes, including aP2, LPL, and FAS were significantly downregulated by treatment with GWBR extract compared to untreated control cells. However, mRNA levels of lipolytic genes such as HSL and ATGL, β-oxidation related genes CPT1, and UCP2 involved in thermogenesis were significantly up-regulated by treatment with GWBR extract. These data suggest that GWBR extract may be a potential functional food, and may have pharmacological applications in both the prevention and treatment of obesity.
Collapse
|
26
|
Stec DE, John K, Trabbic CJ, Luniwal A, Hankins MW, Baum J, Hinds TD. Bilirubin Binding to PPARα Inhibits Lipid Accumulation. PLoS One 2016; 11:e0153427. [PMID: 27071062 PMCID: PMC4829185 DOI: 10.1371/journal.pone.0153427] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/29/2016] [Indexed: 01/31/2023] Open
Abstract
Numerous clinical and population studies have demonstrated that increased serum bilirubin levels protect against cardiovascular and metabolic diseases such as obesity and diabetes. Bilirubin is a potent antioxidant, and the beneficial actions of moderate increases in plasma bilirubin have been thought to be due to the antioxidant effects of this bile pigment. In the present study, we found that bilirubin has a new function as a ligand for PPARα. We show that bilirubin can bind directly to PPARα and increase transcriptional activity. When we compared biliverdin, the precursor to bilirubin, on PPARα transcriptional activation to known PPARα ligands, WY 14,643 and fenofibrate, it showed that fenofibrate and biliverdin have similar activation properties. Treatment of 3T3-L1 adipocytes with biliverdin suppressed lipid accumulation and upregulated PPARα target genes. We treated wild-type and PPARα KO mice on a high fat diet with fenofibrate or bilirubin for seven days and found that both signal through PPARα dependent mechanisms. Furthermore, the effect of bilirubin on lowering glucose and reducing body fat percentage was blunted in PPARα KO mice. These data demonstrate a new function for bilirubin as an agonist of PPARα, which mediates the protection from adiposity afforded by moderate increases in bilirubin.
Collapse
Affiliation(s)
- David E. Stec
- Cardiovascular-Renal Research Center, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State St, Jackson, Mississippi, 39216, United States of America
| | - Kezia John
- Center for Hypertension and Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine, Toledo, OH, 43614, United States of America
| | - Christopher J. Trabbic
- Center for Drug Design and Development, University of Toledo College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, 43614, United States of America
| | - Amarjit Luniwal
- Center for Drug Design and Development, University of Toledo College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, 43614, United States of America
- North American Science Associates, Inc. (NAMSA), 6750 Wales Rd, Northwood, Ohio, 43619, United States of America
| | - Michael W. Hankins
- Cardiovascular-Renal Research Center, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State St, Jackson, Mississippi, 39216, United States of America
| | - Justin Baum
- Center for Hypertension and Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine, Toledo, OH, 43614, United States of America
| | - Terry D. Hinds
- Center for Hypertension and Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine, Toledo, OH, 43614, United States of America
- * E-mail:
| |
Collapse
|
27
|
Jiao Y, Zhang J, Lu L, Xu J, Qin L. The Fto Gene Regulates the Proliferation and Differentiation of Pre-Adipocytes in Vitro. Nutrients 2016; 8:102. [PMID: 26907332 PMCID: PMC4772064 DOI: 10.3390/nu8020102] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/22/2016] [Accepted: 02/15/2016] [Indexed: 12/17/2022] Open
Abstract
The highly regulated differentiation and proliferation of pre-adipocytes play a key role in the initiation of obesity. Fat mass and obesity associated (FTO) is a novel gene strongly associated with the risk of obesity. A deficiency of FTO may cause growth retardation in addition to fat mass and adipocyte size reduction in vivo. To investigate the potential role of Fto gene on the proliferation and differentiation of pre-adipocytes, we generated Fto-knockdown and overexpressed 3T3-L1 cells. Using numerous proliferation assays our results suggest that Fto knockdown leads to suppression of proliferation, lower mitochondrial membrane potential, less cellular ATP, and decreased and smaller intracellular lipid droplets compared with controls (p < 0.05). Western blot analysis demonstrated that Fto knockdown can significantly suppress peroxisome proliferator-activated receptor gamma (PPARγ) and glucose transporter type 4 (GLUT4) expression and inhibit Akt phosphorylation. By contrast, overexpression of Fto had the opposing effect on proliferation, mitochondrial membrane potential, ATP generation, in vitro differentiation, Akt phosphorylation, and PPARγ and GLUT4 expression. Moreover, we demonstrated that Wortmannin, a phosphoinositide 3-kinase (PI3K) inhibitor, could inhibit phospho-Akt in Fto overexpressed 3T3-L1 cells. Taken together, the results suggest that Fto regulates the proliferation and differentiation of 3T3-L1 cells via multiple mechanisms, including PPARγ and PI3K/Akt signaling.
Collapse
Affiliation(s)
- Yang Jiao
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Medical College of Soochow University, Suzhou 215123, China.
- Department of Radiation Genetics, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.
| | - Jingying Zhang
- Department of Radiation Genetics, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.
| | - Lunjie Lu
- Department of Radiation Genetics, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.
| | - Jiaying Xu
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Medical College of Soochow University, Suzhou 215123, China.
| | - Liqiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, Suzhou 215123, China.
| |
Collapse
|
28
|
Su Y, Foppen E, Zhang Z, Fliers E, Kalsbeek A. Effects of 6-meals-a-day feeding and 6-meals-a-day feeding combined with adrenalectomy on daily gene expression rhythms in rat epididymal white adipose tissue. Genes Cells 2015; 21:6-24. [DOI: 10.1111/gtc.12315] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/05/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Yan Su
- Hypothalamic Integration Mechanisms; Netherlands Institute for Neuroscience; Meibergdreef 47 1105 BA Amsterdam The Netherlands
| | - Ewout Foppen
- Department of Endocrinology and Metabolism; Academic Medical Center (AMC); University of Amsterdam; Meibergdreef 9 1105 AZ Amsterdam The Netherlands
| | - Zhi Zhang
- Department of Endocrinology and Metabolism; Academic Medical Center (AMC); University of Amsterdam; Meibergdreef 9 1105 AZ Amsterdam The Netherlands
| | - Eric Fliers
- Department of Endocrinology and Metabolism; Academic Medical Center (AMC); University of Amsterdam; Meibergdreef 9 1105 AZ Amsterdam The Netherlands
| | - Andries Kalsbeek
- Hypothalamic Integration Mechanisms; Netherlands Institute for Neuroscience; Meibergdreef 47 1105 BA Amsterdam The Netherlands
- Department of Endocrinology and Metabolism; Academic Medical Center (AMC); University of Amsterdam; Meibergdreef 9 1105 AZ Amsterdam The Netherlands
| |
Collapse
|
29
|
Li H, Kang JH, Han JM, Cho MH, Chung YJ, Park KH, Shin DH, Park HY, Choi MS, Jeong TS. Anti-Obesity Effects of Soy Leaf via Regulation of Adipogenic Transcription Factors and Fat Oxidation in Diet-Induced Obese Mice and 3T3-L1 Adipocytes. J Med Food 2015; 18:899-908. [PMID: 25826408 DOI: 10.1089/jmf.2014.3388] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The anti-obesity effects of extracts from soy leaves (SLE) cultivated for 8 weeks (8W) or 16 weeks (16W) were investigated in diet-induced obese mice. The effects of kaempferol, an aglycone of the kaempferol glycosides that are the major component of 8W-SLE, and coumestrol, the major component of 16W-SLE, were also investigated in 3T3-L1 adipocytes. Eight-week-old male C57BL/6J mice were randomly divided into normal diet, high-fat diet (HFD), 8W-SLE (HFD+8W-SLE 50 mg kg(-1) day(-1)), 16W-SLE (HFD+16W-SLE 50 mg kg(-1) day(-1)), and Garcinia cambogia extracts (GE) (HFD+GE 50 mg kg(-1) day(-1)) groups. Body weight gain and fat accumulation of white adipose tissue (WAT) were highly suppressed by daily oral administration of 8W-SLE and 16W-SLE for 10 weeks. Supplementing a HFD with 8W-SLE and 16W-SLE regulated the mRNA expression of peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer-binding protein alpha (c/EBPα), sterol regulatory element-binding protein-1 (SREBP-1), adipocyte protein 2, and fatty acid synthase (FAS), which are related to adipogenesis, in addition to hormone-sensitive lipase (HSL), carnitine palmitoyl transferase 1 (CPT-1), and uncoupling protein 2 (UCP2), which are related to fat oxidation in WAT. In 3T3-L1 adipocytes, kaempferol and coumestrol exhibited anti-adipogenic effects via downregulation of PPARγ, c/EBPα, SREBP-1, and FAS. Kaempferol and coumestrol increased the expression of HSL, CPT-1, and UCP2.
Collapse
Affiliation(s)
- Hua Li
- 1 National Research Laboratory of Lipid Metabolism and Atherosclerosis, Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon, Korea
- 2 Department of Biomolecular Science, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Korea University of Science and Technology , Daejeon, Korea
| | - Ji-Hyun Kang
- 1 National Research Laboratory of Lipid Metabolism and Atherosclerosis, Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon, Korea
- 3 Department of Food and Nutrition, Chungnam National University , Daejeon, Korea
| | - Jong-Min Han
- 1 National Research Laboratory of Lipid Metabolism and Atherosclerosis, Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon, Korea
| | - Moon-Hee Cho
- 1 National Research Laboratory of Lipid Metabolism and Atherosclerosis, Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon, Korea
| | - Young-Jin Chung
- 3 Department of Food and Nutrition, Chungnam National University , Daejeon, Korea
| | - Ki Hun Park
- 4 Division of Applied Life Science, Gyeongsang National University , Jinju, Korea
| | | | - Ho-Yong Park
- 6 Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon, Korea
| | - Myung-Sook Choi
- 7 Center for Food and Nutritional Genomics Research, Kyungpook National University , Daegu, Korea
| | - Tae-Sook Jeong
- 1 National Research Laboratory of Lipid Metabolism and Atherosclerosis, Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon, Korea
- 2 Department of Biomolecular Science, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Korea University of Science and Technology , Daejeon, Korea
- 6 Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon, Korea
| |
Collapse
|
30
|
Gao Q, Jia Y, Yang G, Zhang X, Boddu PC, Petersen B, Narsingam S, Zhu YJ, Thimmapaya B, Kanwar YS, Reddy JK. PPARα-Deficient ob/ob Obese Mice Become More Obese and Manifest Severe Hepatic Steatosis Due to Decreased Fatty Acid Oxidation. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1396-408. [PMID: 25773177 DOI: 10.1016/j.ajpath.2015.01.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/05/2015] [Accepted: 01/12/2015] [Indexed: 02/06/2023]
Abstract
Obesity poses an increased risk of developing metabolic syndrome and closely associated nonalcoholic fatty liver disease, including liver cancer. Satiety hormone leptin-deficient (ob/ob) mice, considered paradigmatic of nutritional obesity, develop hepatic steatosis but are less prone to developing liver tumors. Sustained activation of peroxisome proliferator-activated receptor α (PPARα) in ob/ob mouse liver increases fatty acid oxidation (FAO), which contributes to attenuation of obesity but enhances liver cancer risk. To further evaluate the role of PPARα-regulated hepatic FAO and energy burning in the progression of fatty liver disease, we generated PPARα-deficient ob/ob (PPARα(Δ)ob/ob) mice. These mice become strikingly more obese compared to ob/ob littermates, with increased white and brown adipose tissue content and severe hepatic steatosis. Hepatic steatosis becomes more severe in fasted PPARα(Δ)ob/ob mice as they fail to up-regulate FAO systems. PPARα(Δ)ob/ob mice also do not respond to peroxisome proliferative and mitogenic effects of PPARα agonist Wy-14,643. Although PPARα(Δ)ob/ob mice are severely obese, there was no significant increase in liver tumor incidence, even when maintained on a diet containing Wy-14,643. We conclude that sustained PPARα activation-related increase in FAO in fatty livers of obese ob/ob mice increases liver cancer risk, whereas deletion of PPARα in ob/ob mice aggravates obesity and hepatic steatosis. However, it does not lead to liver tumor development because of reduction in FAO and energy burning.
Collapse
Affiliation(s)
- Qian Gao
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Yuzhi Jia
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Gongshe Yang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Xiaohong Zhang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Prajwal C Boddu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Bryon Petersen
- Department of Pediatrics, Child Health Research Institute, College of Medicine, University of Florida, Gainesville, Florida
| | - Saiprasad Narsingam
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Yi-Jun Zhu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Bayar Thimmapaya
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Yashpal S Kanwar
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Janardan K Reddy
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.
| |
Collapse
|
31
|
Zhou Q, Guan W, Qiao H, Cheng Y, Li Z, Zhai X, Zhou Y. GATA binding protein 2 mediates leptin inhibition of PPARγ1 expression in hepatic stellate cells and contributes to hepatic stellate cell activation. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2367-77. [PMID: 25305367 DOI: 10.1016/j.bbadis.2014.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 09/15/2014] [Accepted: 10/01/2014] [Indexed: 02/06/2023]
Abstract
Hepatic stellate cell (HSC) activation is a crucial step in the development of liver fibrosis. Peroxisome-proliferator activated receptor γ (PPARγ) exerts a key role in the inhibition of HSC activation. Leptin reduces PPARγ expression in HSCs and plays a unique role in promoting liver fibrosis. The present studies aimed to investigate the mechanisms underlying leptin regulation of PPARγ1 (a major subtype of PPARγ) in HSCs in vivo and in vitro. Results revealed a leptin response region in mouse PPARγ1 promoter and indicated that the region included a GATA binding protein binding site around position -2323. GATA binding protein-2 (GATA-2) could bind to the site and inhibit PPARγ1 promoter activity in HSCs. Leptin induced GATA-2 expression in HSCs in vitro and in vivo. GATA-2 mediated leptin inhibition of PPARγ1 expression by its binding site in PPARγ1 promoter in HSCs and GATA-2 promoted HSC activation. Leptin upregulated GATA-2 expression through β-catenin and sonic hedgehog pathways in HSCs. Leptin-induced increase in GATA-2 was accompanied by the decrease in PPARγ expression in HSCs and by the increase in the activated HSC number and liver fibrosis in vivo. Our data might suggest a possible new explanation for the promotion effect of leptin on liver fibrogenesis.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Pharmacology, School of Pharmacy, Nantong University, Qi Xiou Road 19, Nantong 226001, Jiangsu, China
| | - Wei Guan
- Department of Pharmacology, School of Pharmacy, Nantong University, Qi Xiou Road 19, Nantong 226001, Jiangsu, China
| | - Haowen Qiao
- Department of Biochemistry & Molecular Biology, Medical College, Nantong University, Qi Xiou Road 19, Nantong, 226001, Jiangsu, China
| | - Yuanyuan Cheng
- Department of Pharmacology, School of Pharmacy, Nantong University, Qi Xiou Road 19, Nantong 226001, Jiangsu, China
| | - Ziqiang Li
- Department of Biochemistry & Molecular Biology, Medical College, Nantong University, Qi Xiou Road 19, Nantong, 226001, Jiangsu, China
| | - Xuguang Zhai
- Department of Biochemistry & Molecular Biology, Medical College, Nantong University, Qi Xiou Road 19, Nantong, 226001, Jiangsu, China
| | - Yajun Zhou
- Department of Biochemistry & Molecular Biology, Medical College, Nantong University, Qi Xiou Road 19, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
32
|
Su Y, van der Spek R, Foppen E, Kwakkel J, Fliers E, Kalsbeek A. Effects of adrenalectomy on daily gene expression rhythms in the rat suprachiasmatic and paraventricular hypothalamic nuclei and in white adipose tissue. Chronobiol Int 2014; 32:211-24. [DOI: 10.3109/07420528.2014.963198] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
33
|
Zhai X, Yan K, Fan J, Niu M, Zhou Q, Zhou Y, Chen H, Zhou Y. The β-catenin pathway contributes to the effects of leptin on SREBP-1c expression in rat hepatic stellate cells and liver fibrosis. Br J Pharmacol 2014; 169:197-212. [PMID: 23347184 DOI: 10.1111/bph.12114] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 12/11/2012] [Accepted: 01/09/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Liver fibrosis is commonly associated with obesity and most obese patients develop hyperleptinaemia. The adipocytokine leptin has a unique role in the development of liver fibrosis. Activation of hepatic stellate cells (HSCs) is a key step in hepatic fibrogenesis and sterol regulatory element-binding protein-1c (SREBP-1c) can inhibit HSC activation. We have shown that leptin strongly inhibits SREBP-1c expression in rat HSCs. Hence, we aimed to clarify whether the β-catenin pathway, the crucial negative regulator of adipocyte differentiation, mediates the effects of leptin on SREBP-1c expression in HSCs and in mouse liver fibrosis. EXPERIMENTAL APPROACH HSCs were prepared from rats and mice. Gene expressions were analysed by real-time PCR, Western blot analysis, immunostaining and transient transfection assays. KEY RESULTS Leptin increased β-catenin protein but not mRNA levels in cultured HSCs. Leptin induced phosphorylation of glycogen synthase kinase-3β at Ser(9) and subsequent stabilization of β-catenin protein was mediated, at least in part, by ERK and p38 MAPK pathways. The leptin-induced β-catenin pathway reduced SREBP-1c expression and activity but did not affect protein levels of key regulators controlling SREBP-1c activity, and was not involved in leptin inhibition of liver X receptor α. In a mouse model of liver injury, the β-catenin pathway was shown to be involved in leptin-induced liver fibrosis. CONCLUSIONS AND IMPLICATIONS The β-catenin pathway contributes to leptin regulation of SREBP-1c expression in HSCs and leptin-induced liver fibrosis in mice. These results have potential implications for clarifying the mechanisms of liver fibrogenesis associated with elevated leptin levels.
Collapse
Affiliation(s)
- Xuguang Zhai
- Department of Biochemistry and Molecular Biology, Medical College, Nantong University, Nantong, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Lei MM, Wu SQ, Li XW, Wang CL, Chen Z, Shi ZD. Leptin receptor signaling inhibits ovarian follicle development and egg laying in chicken hens. Reprod Biol Endocrinol 2014; 12:25. [PMID: 24650216 PMCID: PMC3976635 DOI: 10.1186/1477-7827-12-25] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 03/12/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Nutrition intake during growth strongly influences ovarian follicle development and egg laying in chicken hens, yet the underlying endocrine regulatory mechanism is still poorly understood. The relevant research progress is hindered by difficulties in detection of leptin gene and its expression in the chicken. However, a functional leptin receptor (LEPR) is present in the chicken which has been implicated to play a regulatory role in ovarian follicle development and egg laying. The present study targeted LEPR by immunizing against its extracellular domain (ECD), and examined the resultant ovarian follicle development and egg-laying rate in chicken hens. METHODS Hens that have been immunized four times with chicken LEPR ECD were assessed for their egg laying rate and feed intake, numbers of ovarian follicles, gene expression profiles, serum lipid parameters, as well as STAT3 signaling pathway. RESULTS Administrations of cLEPR ECD antigen resulted in marked reductions in laying rate that over time eventually recovered to the levels exhibited by the Control hens. Together with the decrease in egg laying rate, cLEPR-immunized hens also exhibited significant reductions in feed intake, plasma concentrations of glucose, triglyceride, high-density lipoprotein, and low-density lipoprotein. Parallelled by reductions in feed intake, mRNA gene expression levels of AgRP, orexin, and NPY were down regulated, but of POMC, MC4R and lepR up-regulated in Immunized hen hypothalamus. cLEPR-immunization also promoted expressions of apoptotic genes such as caspase3 in theca and fas in granulosa layer, but severely depressed IGF-I expression in both theca and granulosa layers. CONCLUSIONS Immunization against cLEPR ECD in egg-laying hens generated antibodies that mimic leptin bioactivity by enhancing leptin receptor transduction. This up-regulated apoptotic gene expression in ovarian follicles, negatively regulated the expression of genes that promote follicular development and hormone secretion, leading to follicle atresia and interruption of egg laying. The inhibition of progesterone secretion due to failure of follicle development also lowered feed intake. These results also demonstrate that immunization against cLEPR ECD may be utilized as a tool for studying bio-functions of cLEPR.
Collapse
Affiliation(s)
- Ming M Lei
- Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Si Q Wu
- College of Animal Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiao W Li
- College of Animal Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Cong L Wang
- College of Animal Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhe Chen
- Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhen D Shi
- Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
35
|
Angevine K, Wuescher L, Mensah-Osman E. Loss of menin mediated by endothelial cells treated with CoPP is associated with increased maturation of adipocytes. Adipocyte 2013; 2:207-16. [PMID: 24052896 PMCID: PMC3774696 DOI: 10.4161/adip.24722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 12/16/2022] Open
Abstract
Oxidative stress is caused by an increase in reactive oxygen species (ROS) relative to the antioxidant defense system. An increase in ROS is known to decrease vascular function, increase inflammatory cytokines, and promote adipocyte hypertrophy. A known regulator of the oxidative stress response is the heat shock protein, heme-oxygenase 1 (HO-1), which is induced by cobalt protoporphyrin IX (CoPP). Menin was recently found to promote the sustained expression of heat shock proteins and is implicated in the regulation of oxidative stress. In this study, we investigated how changes in menin expression affected adipogenesis via the interaction between endothelial cells and adipocytes in response to CoPP treatment during oxidative stress. Using angiotensin II (Ang II) to induce oxidative stress in endothelial cells and adipocytes, we observed the induction of various cytokines including EGF, VEGF, angiogenin, IL-6, and MCP-1. Preadipocytes cultured in endothelial cell conditioned media treated with Ang II showed no changes in differentiation markers. Preadipocytes treated with the endothelial cell-conditioned media pretreated with CoPP resulted in an increase in the number of adipocytes, which expressed higher levels of adipocyte differentiation markers in direct correlation with the complete downregulation of the stress response regulator, menin. This change was not detected in adipocytes directly treated with CoPP alone. Therefore, we concluded that loss of menin is associated with the maturation of adipocytes induced by conditioned media from endothelial cells treated with CoPP.
Collapse
|
36
|
Garratt ES, Vickers MH, Gluckman PD, Hanson MA, Burdge GC, Lillycrop KA. Tissue-specific 5' heterogeneity of PPARα transcripts and their differential regulation by leptin. PLoS One 2013; 8:e67483. [PMID: 23825665 PMCID: PMC3692471 DOI: 10.1371/journal.pone.0067483] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 05/19/2013] [Indexed: 11/18/2022] Open
Abstract
The genes encoding nuclear receptors comprise multiple 5'untranslated exons, which give rise to several transcripts encoding the same protein, allowing tissue-specific regulation of expression. Both human and mouse peroxisome proliferator activated receptor (PPAR) α genes have multiple promoters, although their function is unknown. Here we have characterised the rat PPARα promoter region and have identified three alternative PPARα transcripts, which have different transcription start sites owing to the utilisation of distinct first exons. Moreover these alternative PPARα transcripts were differentially expressed between adipose tissue and liver. We show that while the major adipose (P1) and liver (P2) transcripts were both induced by dexamethasone, they were differentially regulated by the PPARα agonist, clofibric acid, and leptin. Leptin had no effect on the adipose-specific P1 transcript, but induced liver-specific P2 promoter activity via a STAT3/Sp1 mechanism. Moreover in Wistar rats, leptin treatment between postnatal day 3-13 led to an increase in P2 but not P1 transcription in adipose tissue which was sustained into adulthood. This suggests that the expression of the alternative PPARα transcripts are in part programmed by early life exposure to leptin leading to persistent change in adipose tissue fatty acid metabolism through specific activation of a quiescent PPARα promoter. Such complexity in the regulation of PPARα may allow the expression of PPARα to be finely regulated in response to environmental factors.
Collapse
Affiliation(s)
- Emma S. Garratt
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Mark H. Vickers
- Liggins Institute and the National Research Centre for Growth and Development, University of Auckland, Auckland, New Zealand
| | - Peter D. Gluckman
- Liggins Institute and the National Research Centre for Growth and Development, University of Auckland, Auckland, New Zealand
| | - Mark A. Hanson
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Graham C. Burdge
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Karen A. Lillycrop
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
37
|
The Effects of Caffeine Ingestion Before Passive Heat Loading on Serum Leptin Levels in Humans. Appl Biochem Biotechnol 2013; 171:1253-61. [DOI: 10.1007/s12010-013-0296-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 05/08/2013] [Indexed: 12/22/2022]
|
38
|
Harris RBS. Direct and indirect effects of leptin on adipocyte metabolism. Biochim Biophys Acta Mol Basis Dis 2013; 1842:414-23. [PMID: 23685313 DOI: 10.1016/j.bbadis.2013.05.009] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/18/2013] [Accepted: 05/06/2013] [Indexed: 12/22/2022]
Abstract
Leptin is hypothesized to function as a negative feedback signal in the regulation of energy balance. It is produced primarily by adipose tissue and circulating concentrations correlate with the size of body fat stores. Administration of exogenous leptin to normal weight, leptin responsive animals inhibits food intake and reduces the size of body fat stores whereas mice that are deficient in either leptin or functional leptin receptors are hyperphagic and obese, consistent with a role for leptin in the control of body weight. This review discusses the effect of leptin on adipocyte metabolism. Because adipocytes express leptin receptors there is the potential for leptin to influence adipocyte metabolism directly. Adipocytes also are insulin responsive and receive sympathetic innervation, therefore leptin can also modify adipocyte metabolism indirectly. Studies published to date suggest that direct activation of adipocyte leptin receptors has little effect on cell metabolism in vivo, but that leptin modifies adipocyte sensitivity to insulin to inhibit lipid accumulation. In vivo administration of leptin leads to a suppression of lipogenesis, an increase in triglyceride hydrolysis and an increase in fatty acid and glucose oxidation. Activation of central leptin receptors also contributes to the development of a catabolic state in adipocytes, but this may vary between different fat depots. Leptin reduces the size of white fat depots by inhibiting cell proliferation both through induction of inhibitory circulating factors and by contributing to sympathetic tone which suppresses adipocyte proliferation. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.
Collapse
Affiliation(s)
- Ruth B S Harris
- Department of Physiology, Medical College of Georgia, Georgia Regents University, USA.
| |
Collapse
|
39
|
Rodríguez L, Panadero MI, Roglans N, Otero P, Alvarez-Millán JJ, Laguna JC, Bocos C. Fructose during pregnancy affects maternal and fetal leptin signaling. J Nutr Biochem 2013; 24:1709-16. [PMID: 23643523 DOI: 10.1016/j.jnutbio.2013.02.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/21/2013] [Accepted: 02/26/2013] [Indexed: 12/31/2022]
Abstract
Fructose intake from added sugars correlates with the epidemic rise in obesity, metabolic syndrome and cardiovascular diseases. Fructose intake also causes features of metabolic syndrome in laboratory animals. Therefore, we have investigated whether fructose modifies lipidemia in pregnant rats and produces changes in their fetuses. Thus, fructose administration (10% wt/vol.) in the drinking water of rats throughout gestation leads to maternal hypertriglyceridemia. This change was not observed in glucose-fed rats, although both carbohydrates produced similar changes in liver triglycerides and in the expression of transcription factors and enzymes involved in lipogenesis. After fasting overnight, mothers fed with carbohydrates were found to be hyperleptinemic. However, after a bolus of glucose, leptinemia in fructose-fed mothers showed no response, whereas it increased in parallel in glucose-fed and control mothers. Fetuses from fructose-fed mothers showed hypotriglyceridemia and a higher hepatic triglyceride content than fetuses from control or glucose-fed mothers. A higher expression of genes related to lipogenesis and a lower expression of fatty acid catabolism genes were also found in fetuses from fructose-fed mothers. Moreover, although hyperleptinemic, these fetuses exhibited increased tyrosine phosphorylation of the signal transducer and activator of transcription-3 (STAT-3) protein, without a parallel increase in the serine phosphorylation of STAT-3 nor in the suppressor of cytokine signaling-3 protein levels whose expression is regulated by leptin through STAT-3 activation. Thus, fructose intake during gestation provoked a diminished maternal leptin response to fasting and refeeding and an impairment in the transduction of the leptin signal in the fetuses, which could be responsible for their hepatic steatosis.
Collapse
Affiliation(s)
- Lourdes Rodríguez
- Facultades de Farmacia y Medicina, Universidad San Pablo-CEU, Montepríncipe, Boadilla del Monte, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
40
|
Bonet ML, Oliver P, Palou A. Pharmacological and nutritional agents promoting browning of white adipose tissue. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:969-85. [DOI: 10.1016/j.bbalip.2012.12.002] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 11/29/2022]
|
41
|
Pagano C, Dorigo A, Nisoli E, Tonello C, Calcagno A, Tami V, Granzotto M, Carruba MO, Federspil G, Vettor R. Role of Insulin and Free Fatty Acids in the Regulation ofobGene Expression and Plasma Leptin in Normal Rats. ACTA ACUST UNITED AC 2012; 12:2062-9. [PMID: 15687408 DOI: 10.1038/oby.2004.257] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE It is under debate whether free fatty acids (FFAs) play an independent role in the regulation of adipose cell functions. In this study, we evaluated whether leptin secretion induced by FFA is due directly to an increased FFA availability or whether it is mediated by insulin levels. RESEARCH METHODS AND PROCEDURES To test this hypothesis, we compared the effects of six different experimental designs, with different FFA and insulin levels, on plasma leptin: euglycemic clamp, euglycemic clamp + FFA infusion, FFA infusion alone, FFA + somatostatin infusion, somatostatin infusion alone, and saline infusion. RESULTS Our results showed that euglycemic clamp, FFA infusion, or both in combination induced a similar increment of circulating leptin (3.31 +/- 0.30, 3.40 +/- 0.90, and 3.35 +/- 0.80 ng/mL, respectively). Moreover, the inhibition of FFA-induced insulin increase by means of somatostatin infusion completely abolished the rise of leptin in response to FFA (1.05 +/- 0.30 vs. 3.40 +/- 0.90 ng/mL, p < 0.001). DISCUSSION In conclusion, our data showed that the effects of high FFA levels on plasma leptin were mediated by the rise of insulin concentration. These data confirm a major role for insulin in the regulation of leptin secretion from rat adipose tissue and support the hypothesis that leptin secretion is coupled to net triglyceride synthesis in adipose tissue.
Collapse
Affiliation(s)
- Claudio Pagano
- Endocrine Metabolic Library, Department of Medical and Surgical Sciences, University of Padova, Padova, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Rossmeisl M, Kovar J, Syrovy I, Flachs P, Bobkova D, Kolar F, Poledne R, Kopecky J. Triglyceride-lowering Effect of Respiratory Uncoupling in White Adipose Tissue. ACTA ACUST UNITED AC 2012; 13:835-44. [PMID: 15919836 DOI: 10.1038/oby.2005.96] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Hypolipidemic drugs such as bezafibrate and thiazolidinediones are known to induce the expression of mitochondrial uncoupling proteins (UCPs) in white adipose tissue. To analyze the potential triglyceride (TG)-lowering effect of respiratory uncoupling in white fat, we evaluated systemic lipid metabolism in aP2-Ucp1 transgenic mice with ectopic expression of UCP1 in adipose tissue. RESEARCH METHODS AND PROCEDURES Hemizygous and homozygous transgenic mice and their nontransgenic littermates were fed chow or a high-fat diet for up to 3 months. Total TGs, nonesterified fatty acids, and the composition of plasma lipoproteins were analyzed. Hepatic TG production was measured in mice injected with Triton WR1339. Uptake and the use of fatty acids were estimated by measuring adipose tissue lipoprotein lipase activity and fatty acid oxidation, respectively. Adipose tissue gene expression was assessed by quantitative reverse transcriptase-polymerase chain reaction. RESULTS Transgene dosage and the high-fat diet interacted to markedly reduce plasma TGs. This was reflected by decreased concentrations of very-low-density lipoprotein particles in the transgenic mice. Despite normal hepatic TG secretion, the activity of lipoprotein lipase in epididymal fat was enhanced by the high-fat diet in the transgenic mice in a setting of decreased re-esterification and increased in situ fatty acid oxidation. DISCUSSION Respiratory uncoupling in white fat may lower plasma lipids by enhancing their in situ clearance and catabolism.
Collapse
Affiliation(s)
- Martin Rossmeisl
- Department of Adipose Tissue Biology, Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Zhang H, Chen X, Sairam MR. Novel genes of visceral adiposity: identification of mouse and human mesenteric estrogen-dependent adipose (MEDA)-4 gene and its adipogenic function. Endocrinology 2012; 153:2665-76. [PMID: 22510272 DOI: 10.1210/en.2011-2008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Visceral adiposity represents a high risk factor for type 2 diabetes, metabolic syndrome, and cardiovascular disease as well as various cancers. While studying sex hormone imbalance-induced early obesity and late onset of insulin resistance in FSH receptor knock out female mice, we identified a novel mesenteric estrogen-dependent adipose gene (MEDA-4) selectively up-regulated in a depot-specific manner in mesenteric adipose tissue. Meda-4 cloned from both mouse and human adipose tissue codes for a 34-kDa cytosolic protein with 91% homology. Mouse Meda-4 mRNA is expressed highest in visceral adipose tissue and localizes predominantly in the adipocyte fraction. Human MEDA-4 is also more abundant in omental fat than sc depot in obese patients. In 3T3-L1 cells endogenous Meda-4 expression increases early during differentiation, and its overexpression promotes differentiation of preadipocytes into adipocytes and enhances glucose uptake. Conversely, short hairpin RNA-mediated knockdown of Meda-4 reduces both adipogenic and glucose uptake potential. In promoting adipogenesis, Meda-4 up-regulates transcription factor peroxisome proliferator-activated receptor-γ2. Meda-4 promotes lipid accumulation in adipocytes, regulating adipocyte fatty acid-binding protein 2, CD36, lipoprotein lipase, hormone-sensitive lipase, acyl-Coenzyme A oxidase-1, perilipin-1, and fatty acid synthase expression. 17β-Estradiol reduced Meda-4 expression in mesenteric adipose tissue of ovariectomized mice and in 3T3-L1 adipocytes. Thus our study identifies Meda-4 as a novel adipogenic gene, capable of promoting differentiation of preadipocytes into adipocytes, increasing lipid content and glucose uptake in adipocytes. Therefore it might play an important role in adipose tissue expansion in normal and aberrant hormonal conditions and pathophysiological states.
Collapse
Affiliation(s)
- H Zhang
- Molecular Endocrinology Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, Quebec, Canada H2W 1R7
| | | | | |
Collapse
|
44
|
Ye F, Zhang H, Yang YX, Hu HD, Sze SK, Meng W, Qian J, Ren H, Yang BL, Luo MY, Wu X, Zhu W, Cai WJ, Tong JB. Comparative proteome analysis of 3T3-L1 adipocyte differentiation using iTRAQ-coupled 2D LC-MS/MS. J Cell Biochem 2012; 112:3002-14. [PMID: 21678470 DOI: 10.1002/jcb.23223] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Adipose tissue is critical in obesity and type II diabetes. Blocking of adipocyte differentiation is one of the anti-obesity strategies targeting on strong rise in fat storage and secretion of adipokine(s). However, the molecular basis of adipocyte differentiation and its regulation remains obscure. Therefore, we exposed 3T3-L1 cell line to appropriate hormonal inducers as adipocyte differentiation model. Using iTRAQ-coupled 2D LC-MS/MS, a successfully exploited high-throughput proteomic technology, we nearly quantitated 1,000 protein species and found 106 significantly altered proteins during adipocyte differentiation. The great majority of differentially expressed proteins were related to metabolism enzymes, structural molecules, and proteins involved in signal transduction. In addition to previously reported differentially expressed molecules, more than 20 altered proteins previously unknown to be involved with adipogenic process were firstly revealed (e.g., HEXB, DPP7, PTTG1IP, PRDX5, EPDR1, SPNB2, STEAP3, TPP1, etc.). The partially differential proteins were verified by Western blot and/or real-time PCR analysis. Furthermore, the association of PCX and VDAC2, two altered proteins, with adipocyte conversion was analyzed using siRNA method, and the results showed that they could contribute considerably to adipogenesis. In conclusion, our data provide valuable information for further understanding of adipogenesis.
Collapse
Affiliation(s)
- Feng Ye
- Department of Histology & Embryology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Yan K, Deng X, Zhai X, Zhou M, Jia X, Luo L, Niu M, Zhu H, Qiang H, Zhou Y. p38 mitogen-activated protein kinase and liver X receptor-α mediate the leptin effect on sterol regulatory element binding protein-1c expression in hepatic stellate cells. Mol Med 2012; 18:10-8. [PMID: 21979752 DOI: 10.2119/molmed.2011.00243] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 09/30/2011] [Indexed: 12/26/2022] Open
Abstract
Leptin, a key hormone in regulating energy homeostasis, is mainly produced by adipocytes. Cogent evidence indicates a unique role of leptin in the promotion of liver fibrosis. Hepatic stellate cell (HSC) activation is a pivotal step in the process of liver fibrosis. Sterol regulatory element binding protein (SREBP)-1c, a critical transcription factor for lipid synthesis and adipocyte differentiation, functions as a key transcription factor in inhibition of HSC activation. SREBP-1c is highly expressed in quiescent HSCs and downregulated upon HSC activation. The aim of this study is to examine the effect of leptin on SREBP-1c gene expression in HSCs in vitro and in vivo and elucidate the underlying mechanisms. The results of the present study demonstrated that leptin strongly inhibited SREBP-1c expression in HSCs in vivo and in vitro. p38 MAPK was involved in leptin regulation of SREBP-1c expression in cultured HSCs. Leptin-induced activation of p38 MAPK led to the decreases in liver X receptor (LXR)-α protein level, activity and its binding to the SREBP-1c promoter, which caused the downregulation of SREBP-1c expression. Moreover, leptin inhibition of SREBP-1c expression via p38 MAPK increased the expression of alpha1(I) collagen in HSCs. Our results might provide new insights into the mechanisms of the unique role of leptin in the development of liver fibrosis and might have potential implications for clarifying the molecular mechanisms underlying liver fibrosis in diseases in which circulating leptin levels are elevated such as nonalcoholic steatohepatitis, type 2 diabetes mellitus and alcoholic cirrhosis.
Collapse
Affiliation(s)
- Kunfeng Yan
- Department of Biochemistry and Molecular Biology, Medical College, Nantong University, Jiangsu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Klaus S, Keipert S, Rossmeisl M, Kopecky J. Augmenting energy expenditure by mitochondrial uncoupling: a role of AMP-activated protein kinase. GENES AND NUTRITION 2011; 7:369-86. [PMID: 22139637 DOI: 10.1007/s12263-011-0260-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 11/18/2011] [Indexed: 11/28/2022]
Abstract
Strategies to prevent and treat obesity aim to decrease energy intake and/or increase energy expenditure. Regarding the increase of energy expenditure, two key intracellular targets may be considered (1) mitochondrial oxidative phosphorylation, the major site of ATP production, and (2) AMP-activated protein kinase (AMPK), the master regulator of cellular energy homeostasis. Experiments performed mainly in transgenic mice revealed a possibility to ameliorate obesity and associated disorders by mitochondrial uncoupling in metabolically relevant tissues, especially in white adipose tissue (WAT), skeletal muscle (SM), and liver. Thus, ectopic expression of brown fat-specific mitochondrial uncoupling protein 1 (UCP1) elicited major metabolic effects both at the cellular/tissue level and at the whole-body level. In addition to expected increases in energy expenditure, surprisingly complex phenotypic effects were detected. The consequences of mitochondrial uncoupling in WAT and SM are not identical, showing robust and stable obesity resistance accompanied by improvement of lipid metabolism in the case of ectopic UCP1 in WAT, while preservation of insulin sensitivity in the context of high-fat feeding represents the major outcome of muscle UCP1 expression. These complex responses could be largely explained by tissue-specific activation of AMPK, triggered by a depression of cellular energy charge. Experimental data support the idea that (1) while being always activated in response to mitochondrial uncoupling and compromised intracellular energy status in general, AMPK could augment energy expenditure and mediate local as well as whole-body effects; and (2) activation of AMPK alone does not lead to induction of energy expenditure and weight reduction.
Collapse
Affiliation(s)
- Susanne Klaus
- German Institute of Human Nutrition, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | | | | | | |
Collapse
|
47
|
Vila-Bedmar R, Fernández-Veledo S. A new era for brown adipose tissue: New insights into brown adipocyte function and differentiation. Arch Physiol Biochem 2011; 117:195-208. [PMID: 21428723 DOI: 10.3109/13813455.2011.560951] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Until quite recently, brown adipose tissue was considered of metabolic significance only in small mammals and human newborns, since it was thought to disappear rapidly after birth in humans. However, nowadays this tissue is known to play a role in the regulation of energy balance not only in rodents, but also in humans. In this review we highlight new features regarding brown adipose tissue origin and function and revise old paradigms about brown adipocyte differentiation.
Collapse
Affiliation(s)
- Rocio Vila-Bedmar
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Complutense University, 28040 Madrid, Spain
| | | |
Collapse
|
48
|
Dietary fructo-oligosaccharides improve insulin sensitivity along with the suppression of adipocytokine secretion from mesenteric fat cells in rats. Br J Nutr 2011; 106:1190-7. [PMID: 21736797 DOI: 10.1017/s000711451100167x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Short-chain fructo-oligosaccharides (FOS) are known to have beneficial effects on health. However, the effects of FOS on insulin resistance have not been fully clarified. We observed the effects of FOS feeding on insulin sensitivity and adipocytokine release from abdominal adipocytes in weaning rats. Male Sprague-Dawley rats, 3 weeks old, were divided into three groups and fed a sucrose-based American Institute of Nutrition (AIN)-93 growth diet (control), the control diet containing 5 % FOS for 5 weeks (FOS-5wk) or the control diet for 2 weeks followed by the 5 % FOS diet for 3 weeks (FOS-3wk). Tail blood was collected after fasting for 9 h on day 33 of feeding, and glucose and insulin levels were measured. On the last day, rats were anaesthetised and killed after the collection of aortic blood. Small- and large-intestinal mesenteric fat tissues were immediately excised, and the release of adiponectin, leptin and TNF-α was evaluated from the subsequently isolated adipocytes. The weight of the large-intestinal mesenteric fat, fasting blood insulin level and homeostatic model assessment for insulin resistance decreased in a time-dependent manner, and were much lower in the FOS-5wk group than in the control group. These values were correlated with aortic blood leptin levels. The secretion rate of leptin from the isolated mesenteric adipocytes in the small intestine, but not in the large intestine, was lower in the FOS-fed groups than in the control group. In conclusion, FOS feeding improved insulin sensitivity accompanied by the reduction in large-intestinal fat mass and leptin secretion from the mesenteric adipocytes of the small intestine.
Collapse
|
49
|
Kim KY, Kim JY, Sung YY, Jung WH, Kim HY, Park JS, Cheon HG, Rhee SD. Inhibitory effect of leptin on rosiglitazone-induced differentiation of primary adipocytes prepared from TallyHO/Jng mice. Biochem Biophys Res Commun 2011; 406:584-9. [PMID: 21352814 DOI: 10.1016/j.bbrc.2011.02.095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 02/19/2011] [Indexed: 11/25/2022]
Abstract
The effects of leptin on rosiglitazone-induced adipocyte differentiation were investigated in the primary adipocytes prepared from subcutaneous fat of TallyHO/Jng (TallyHO) mouse, a recently developed model animal for type 2 diabetes mellitus (T2DM). The treatment of leptin inhibited the rosiglitazone-induced adipocyte differentiation with a decreased expression of peroxisome proliferator-activated receptor γ (PPARγ) a key adipogenic transcription factor, both in mRNA and protein levels. Leptin (10 nM) was sufficient to inhibit the adipocyte differentiation, which seemed to come from increased expression of leptin receptor genes in the fat of TallyHO mice. The inhibition of adipogenesis by leptin was restored by the treatment of inhibitors for extracellular-signal-regulated kinase (ERK) (PD98059) and signal transducer and activator of transcription-1 (STAT1) (fludarabine). Furthermore, in vivo intraperitoneal administration of PD98059 and fludarabine increased the PPARγ expression in the subcutaneous fat of TallyHO mice. These data suggest that leptin could inhibit the PPARγ expression and adipocyte differentiation in its physiological concentration in TallyHO mice.
Collapse
Affiliation(s)
- Ki Young Kim
- Medicinal Science Division, Korea Research Institute of Chemical Technology, 100 Jang-dong, Yuseong, 305-600 Daejon, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Niang F, Benelli C, Ribière C, Collinet M, Mehebik-Mojaat N, Penot G, Forest C, Jaubert AM. Leptin induces nitric oxide-mediated inhibition of lipolysis and glyceroneogenesis in rat white adipose tissue. J Nutr 2011; 141:4-9. [PMID: 21068181 DOI: 10.3945/jn.110.125765] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Leptin is secreted by white adipose tissue (WAT) and induces lipolysis and nonesterified fatty acid (NEFA) oxidation. During lipolysis, NEFA efflux is the result of triglyceride breakdown, NEFA oxidation, and re-esterification via glyceroneogenesis. Leptin's effects on glyceroneogenesis remain unexplored. We investigated the effect of a long-term treatment with leptin at a physiological concentration (10 μg/L) on lipolysis and glyceroneogenesis in WAT explants and analyzed the underlying mechanisms. Exposure of rat WAT explants to leptin for 2 h resulted in increased NEFA and glycerol efflux. However, a longer treatment with leptin (18 h) did not affect NEFA release and reduced glycerol output. RT-qPCR showed that leptin significantly downregulated the hormone-sensitive lipase (HSL), cytosolic phosphoenolpyruvate carboxykinase (Pck1), and PPARγ genes. In agreement with its effect on mRNA, leptin also decreased the levels of PEPCK-C and HSL proteins. Glyceroneogenesis, monitored by [1-(14) C] pyruvate incorporation into lipids, was reduced. Because leptin increases nitric oxide (NO) production in adipocytes, we explored the role of NO in the leptin signaling pathway. Pretreatment of explants with the NO synthase inhibitor Nω-nitro-l-arginine methyl ester eliminated the effect of leptin on lipolysis, glyceroneogenesis, and expression of the HSL, Pck1, and PPARγ genes. The NO donor S-nitroso-N-acetyl-DL penicillamine mimicked leptin effects, thus demonstrating the role of NO in these pathways. The inverse time-dependent action of leptin on WAT is consistent with a process that limits NEFA re-esterification and energy storage while reducing glycerol release, thus preventing hypertriglyceridemia.
Collapse
Affiliation(s)
- Fatoumata Niang
- Institut National de la Santé et de la Recherche Médicale UMR-S 747, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|