1
|
Da Dalt L, Cabodevilla AG, Goldberg IJ, Norata GD. Cardiac lipid metabolism, mitochondrial function, and heart failure. Cardiovasc Res 2023; 119:1905-1914. [PMID: 37392421 PMCID: PMC10681665 DOI: 10.1093/cvr/cvad100] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/31/2023] [Accepted: 03/01/2023] [Indexed: 07/03/2023] Open
Abstract
A fine balance between uptake, storage, and the use of high energy fuels, like lipids, is crucial in the homeostasis of different metabolic tissues. Nowhere is this balance more important and more precarious than in the heart. This highly energy-demanding muscle normally oxidizes almost all the available substrates to generate energy, with fatty acids being the preferred source under physiological conditions. In patients with cardiomyopathies and heart failure, changes in the main energetic substrate are observed; these hearts often prefer to utilize glucose rather than oxidizing fatty acids. An imbalance between uptake and oxidation of fatty acid can result in cellular lipid accumulation and cytotoxicity. In this review, we will focus on the sources and uptake pathways used to direct fatty acids to cardiomyocytes. We will then discuss the intracellular machinery used to either store or oxidize these lipids and explain how disruptions in homeostasis can lead to mitochondrial dysfunction and heart failure. Moreover, we will also discuss the role of cholesterol accumulation in cardiomyocytes. Our discussion will attempt to weave in vitro experiments and in vivo data from mice and humans and use several human diseases to illustrate metabolism gone haywire as a cause of or accomplice to cardiac dysfunction.
Collapse
Affiliation(s)
- Lorenzo Da Dalt
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan, Italy
| | - Ainara G Cabodevilla
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, 550 1st Ave., New York, NY, USA
| | - Ira J Goldberg
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, 550 1st Ave., New York, NY, USA
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan, Italy
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Via Massimo Gorki 50, Cinisello Balsamo, Italy
| |
Collapse
|
2
|
Li X, Bi X. Integrated Control of Fatty Acid Metabolism in Heart Failure. Metabolites 2023; 13:615. [PMID: 37233656 PMCID: PMC10220550 DOI: 10.3390/metabo13050615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Disrupted fatty acid metabolism is one of the most important metabolic features in heart failure. The heart obtains energy from fatty acids via oxidation. However, heart failure results in markedly decreased fatty acid oxidation and is accompanied by the accumulation of excess lipid moieties that lead to cardiac lipotoxicity. Herein, we summarized and discussed the current understanding of the integrated regulation of fatty acid metabolism (including fatty acid uptake, lipogenesis, lipolysis, and fatty acid oxidation) in the pathogenesis of heart failure. The functions of many enzymes and regulatory factors in fatty acid homeostasis were characterized. We reviewed their contributions to the development of heart failure and highlighted potential targets that may serve as promising new therapeutic strategies.
Collapse
Affiliation(s)
| | - Xukun Bi
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China;
| |
Collapse
|
3
|
Monteiro BL, Santos RAS, Mario EG, Araujo TS, Savergnini SSQ, Santiago AF, Muzzi RAL, Castro IC, Teixeira LG, Botion LM, Marinho BM, Santos SHS, Porto LCJ. Genetic deletion of Mas receptor in FVB/N mice impairs cardiac use of glucose and lipids. Peptides 2022; 151:170764. [PMID: 35151766 DOI: 10.1016/j.peptides.2022.170764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/18/2022] [Accepted: 02/08/2022] [Indexed: 11/20/2022]
Abstract
Angiotensin-(1-7) is a biologically active product of the renin-angiotensin system cascade and exerts inhibitory effects on inflammation, vascular and cellular growth mechanisms signaling through the G protein-coupled Mas receptor. The major purpose of the present study was to investigate the use of glucose and fatty acids by cardiac tissue in Mas knockout mice models. Serum levels of glucose, lipids, and insulin were measured in Mas-deficient and wild-type FVB/N mice. To investigate the cardiac use of lipids, the lipoprotein lipase, the gene expression of peroxisome proliferator-activated receptor alpha; carnitine palmitoyltransferase I and acyl-CoA oxidase were evaluated. To investigate the cardiac use of glucose, the insulin signaling through Akt/GLUT4 pathway, glucose-6-phosphate (G-6-P) and fructose-6-phosphate (F-6-P) glycolytic intermediates, in addition to ATP, lactate and the glycogen content were measured. Despite normal body weight, cholesterol and insulin, Mas-Knockout mice presented hyperglycemia and hypertriglyceridemia, impaired insulin signaling, through reduced phosphorylation of AKT and decreased translocation of GLUT4 in response to insulin, with subsequent decrease of the cardiac G-6-P and F-6-P. Lactate production and glycogen content were not altered in Mas-KO hearts. Mas-KO presented reduced cardiac lipoprotein lipase activity and decreased translocation of CD36 in response to insulin. The expression of peroxisome proliferator-activated receptor alpha and carnitine palmitoyltransferase I genes were lower in Mas-KO animals compared to wild-type animals. The ATP content of Mas-KO hearts was smaller than in wild-type. The present results suggest that genetic deletion of Mas produced a devastating effect on cardiac use of glucose and lipids, leading to lower energy efficiency in the heart.
Collapse
Affiliation(s)
- Brenda L Monteiro
- Federal University of Lavras, Department of Nutrition, Av. Norte UFLA - Aquenta Sol, Lavras, MG, Brazil.
| | - Robson A S Santos
- Institute of Biological Sciences, Department of Physiology and Biophysics, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, Brazil.
| | - Erica G Mario
- Institute of Biological Sciences, Department of Physiology and Biophysics, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, Brazil.
| | - Thiago S Araujo
- Federal University of Lavras, Department of Nutrition, Av. Norte UFLA - Aquenta Sol, Lavras, MG, Brazil.
| | - Silvia S Q Savergnini
- Institute of Biological Sciences, Department of Physiology and Biophysics, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, Brazil.
| | - Andrezza F Santiago
- Federal University of Lavras, Department of Nutrition, Av. Norte UFLA - Aquenta Sol, Lavras, MG, Brazil.
| | - Ruthnea A L Muzzi
- Institute of Agricultural Sciences (ICA), Food Engineering, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil.
| | - Isabela C Castro
- Federal University of Lavras, Department of Nutrition, Av. Norte UFLA - Aquenta Sol, Lavras, MG, Brazil.
| | - Lilian G Teixeira
- Federal University of Lavras, Department of Nutrition, Av. Norte UFLA - Aquenta Sol, Lavras, MG, Brazil.
| | - Leida M Botion
- Institute of Biological Sciences, Department of Physiology and Biophysics, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, Brazil.
| | - Barbhara M Marinho
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil.
| | - Sergio H S Santos
- Institute of Agricultural Sciences (ICA), Food Engineering, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil; Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil.
| | - Laura C J Porto
- Federal University of Lavras, Department of Nutrition, Av. Norte UFLA - Aquenta Sol, Lavras, MG, Brazil; Institute of Biological Sciences, Department of Physiology and Biophysics, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, Brazil.
| |
Collapse
|
4
|
Basu D, Bornfeldt KE. Hypertriglyceridemia and Atherosclerosis: Using Human Research to Guide Mechanistic Studies in Animal Models. Front Endocrinol (Lausanne) 2020; 11:504. [PMID: 32849290 PMCID: PMC7423973 DOI: 10.3389/fendo.2020.00504] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
Human studies support a strong association between hypertriglyceridemia and atherosclerotic cardiovascular disease (CVD). However, whether a causal relationship exists between hypertriglyceridemia and increased CVD risk is still unclear. One plausible explanation for the difficulty establishing a clear causal role for hypertriglyceridemia in CVD risk is that lipolysis products of triglyceride-rich lipoproteins (TRLs), rather than the TRLs themselves, are the likely mediators of increased CVD risk. This hypothesis is supported by studies of rare mutations in humans resulting in impaired clearance of such lipolysis products (remnant lipoprotein particles; RLPs). Several animal models of hypertriglyceridemia support this hypothesis and have provided additional mechanistic understanding. Mice deficient in lipoprotein lipase (LPL), the major vascular enzyme responsible for TRL lipolysis and generation of RLPs, or its endothelial anchor GPIHBP1, are severely hypertriglyceridemic but develop only minimal atherosclerosis as compared with animal models deficient in apolipoprotein (APO) E, which is required to clear TRLs and RLPs. Likewise, animal models convincingly show that increased clearance of TRLs and RLPs by LPL activation (achieved by inhibition of APOC3, ANGPTL3, or ANGPTL4 action, or increased APOA5) results in protection from atherosclerosis. Mechanistic studies suggest that RLPs are more atherogenic than large TRLs because they more readily enter the artery wall, and because they are enriched in cholesterol relative to triglycerides, which promotes pro-atherogenic effects in lesional cells. Other mechanistic studies show that hepatic receptors (LDLR and LRP1) and APOE are critical for RLP clearance. Thus, studies in animal models have provided additional mechanistic insight and generally agree with the hypothesis that RLPs derived from TRLs are highly atherogenic whereas hypertriglyceridemia due to accumulation of very large TRLs in plasma is not markedly atherogenic in the absence of TRL lipolysis products.
Collapse
Affiliation(s)
- Debapriya Basu
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, NY, United States
| | - Karin E. Bornfeldt
- Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
- Department of Pathology, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
- *Correspondence: Karin E. Bornfeldt
| |
Collapse
|
5
|
Izumi R, Kusakabe T, Noguchi M, Iwakura H, Tanaka T, Miyazawa T, Aotani D, Hosoda K, Kangawa K, Nakao K. CRISPR/Cas9-mediated Angptl8 knockout suppresses plasma triglyceride concentrations and adiposity in rats. J Lipid Res 2018; 59:1575-1585. [PMID: 30042156 DOI: 10.1194/jlr.m082099] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 07/22/2018] [Indexed: 12/14/2022] Open
Abstract
Angiopoietin-like protein (ANGPTL)8 is a liver- and adipocyte-derived protein that controls plasma triglyceride (TG) levels. Most animal studies have used mouse models. Here, we generated an Angptl8 KO rat model using a clustered regulatory interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) (CRISPR/Cas9) system to clarify the roles of ANGPTL8 in glucose and lipid metabolism. Compared with WT rats, Angptl8 KO rats had lower body weight and fat content, associated with impaired lipogenesis in adipocytes; no differences existed between the groups in food intake or rectal temperature. Plasma TG levels in both the fasted and refed states were significantly lower in KO than in WT rats, and an oral fat tolerance test showed decreased plasma TG excursion in Angptl8 KO rats. Higher levels of lipase activity in the heart and greater expression of genes related to β-oxidation in heart and skeletal muscle were observed in Angptl8 KO rats. However, there were no significant differences between KO and WT rats in glucose metabolism or the histology of pancreatic β-cells on both standard and high-fat diets. In conclusion, we demonstrated that Angptl8 KO in rats resulted in lower body weight and plasma TG levels without affecting glucose metabolism. ANGPTL8 might be an important therapeutic target for obesity and dyslipidemia.
Collapse
Affiliation(s)
- Ryota Izumi
- Medical Innovation Center Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Diabetes, Endocrinology, and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toru Kusakabe
- Medical Innovation Center Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Endocrinology, Metabolism, and Hypertension, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan.
| | - Michio Noguchi
- Medical Innovation Center Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroshi Iwakura
- Medical Innovation Center Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomohiro Tanaka
- Medical Innovation Center Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Miyazawa
- Medical Innovation Center Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Daisuke Aotani
- Medical Innovation Center Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kiminori Hosoda
- Medical Innovation Center Kyoto University Graduate School of Medicine, Kyoto, Japan; Division of Endocrinology and Metabolism, Department of Lifestyle-Related Diseases, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kenji Kangawa
- Medical Innovation Center Kyoto University Graduate School of Medicine, Kyoto, Japan; National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Kazuwa Nakao
- Medical Innovation Center Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
6
|
Liu C, Han T, Stachura DL, Wang H, Vaisman BL, Kim J, Klemke RL, Remaley AT, Rana TM, Traver D, Miller YI. Lipoprotein lipase regulates hematopoietic stem progenitor cell maintenance through DHA supply. Nat Commun 2018; 9:1310. [PMID: 29615667 PMCID: PMC5882990 DOI: 10.1038/s41467-018-03775-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 03/07/2018] [Indexed: 01/15/2023] Open
Abstract
Lipoprotein lipase (LPL) mediates hydrolysis of triglycerides (TGs) to supply free fatty acids (FFAs) to tissues. Here, we show that LPL activity is also required for hematopoietic stem progenitor cell (HSPC) maintenance. Knockout of Lpl or its obligatory cofactor Apoc2 results in significantly reduced HSPC expansion during definitive hematopoiesis in zebrafish. A human APOC2 mimetic peptide or the human very low-density lipoprotein, which carries APOC2, rescues the phenotype in apoc2 but not in lpl mutant zebrafish. Creating parabiotic apoc2 and lpl mutant zebrafish rescues the hematopoietic defect in both. Docosahexaenoic acid (DHA) is identified as an important factor in HSPC expansion. FFA-DHA, but not TG-DHA, rescues the HSPC defects in apoc2 and lpl mutant zebrafish. Reduced blood cell counts are also observed in Apoc2 mutant mice at the time of weaning. These results indicate that LPL-mediated release of the essential fatty acid DHA regulates HSPC expansion and definitive hematopoiesis.
Collapse
Affiliation(s)
- Chao Liu
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Tianxu Han
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - David L Stachura
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Huawei Wang
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Boris L Vaisman
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, 31 Center St, Bethesda, MD, 20892, USA
| | - Jungsu Kim
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Richard L Klemke
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, 31 Center St, Bethesda, MD, 20892, USA
| | - Tariq M Rana
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - David Traver
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Yury I Miller
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
7
|
Goldberg IJ. 2017 George Lyman Duff Memorial Lecture: Fat in the Blood, Fat in the Artery, Fat in the Heart: Triglyceride in Physiology and Disease. Arterioscler Thromb Vasc Biol 2018; 38:700-706. [PMID: 29419410 PMCID: PMC5864527 DOI: 10.1161/atvbaha.117.309666] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/10/2018] [Indexed: 12/31/2022]
Abstract
Cholesterol is not the only lipid that causes heart disease. Triglyceride supplies the heart and skeletal muscles with highly efficient fuel and allows for the storage of excess calories in adipose tissue. Failure to transport, acquire, and use triglyceride leads to energy deficiency and even death. However, overabundance of triglyceride can damage and impair tissues. Circulating lipoprotein-associated triglycerides are lipolyzed by lipoprotein lipase (LpL) and hepatic triglyceride lipase. We inhibited these enzymes and showed that LpL inhibition reduces high-density lipoprotein cholesterol by >50%, and hepatic triglyceride lipase inhibition shifts low-density lipoprotein to larger, more buoyant particles. Genetic variations that reduce LpL activity correlate with increased cardiovascular risk. In contrast, macrophage LpL deficiency reduces macrophage function and atherosclerosis. Therefore, muscle and macrophage LpL have opposite effects on atherosclerosis. With models of atherosclerosis regression that we used to study diabetes mellitus, we are now examining whether triglyceride-rich lipoproteins or their hydrolysis by LpL affect the biology of established plaques. Following our focus on triglyceride metabolism led us to show that heart-specific LpL hydrolysis of triglyceride allows optimal supply of fatty acids to the heart. In contrast, cardiomyocyte LpL overexpression and excess lipid uptake cause lipotoxic heart failure. We are now studying whether interrupting pathways for lipid uptake might prevent or treat some forms of heart failure.
Collapse
Affiliation(s)
- Ira J Goldberg
- From the Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, New York University School of Medicine.
| |
Collapse
|
8
|
Pollak NM, Hoffman M, Goldberg IJ, Drosatos K. Krüppel-like factors: Crippling and un-crippling metabolic pathways. JACC Basic Transl Sci 2018; 3:132-156. [PMID: 29876529 PMCID: PMC5985828 DOI: 10.1016/j.jacbts.2017.09.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/20/2022]
Abstract
Krüppel-like factors (KLFs) are DNA-binding transcriptional factors that regulate various pathways that control metabolism and other cellular mechanisms. Various KLF isoforms have been associated with cellular, organ or systemic metabolism. Altered expression or activation of KLFs has been linked to metabolic abnormalities, such as obesity and diabetes, as well as with heart failure. In this review article we summarize the metabolic functions of KLFs, as well as the networks of different KLF isoforms that jointly regulate metabolism in health and disease.
Collapse
Affiliation(s)
- Nina M. Pollak
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Matthew Hoffman
- Metabolic Biology Laboratory, Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Ira J. Goldberg
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, New York
| | - Konstantinos Drosatos
- Metabolic Biology Laboratory, Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
9
|
Abstract
The heart utilizes large amounts of fatty acids as energy providing substrates. The physiological balance of lipid uptake and oxidation prevents accumulation of excess lipids. Several processes that affect cardiac function, including ischemia, obesity, diabetes mellitus, sepsis, and most forms of heart failure lead to altered fatty acid oxidation and often also to the accumulation of lipids. There is now mounting evidence associating certain species of these lipids with cardiac lipotoxicity and subsequent myocardial dysfunction. Experimental and clinical data are discussed and paths to reduction of toxic lipids as a means to improve cardiac function are suggested.
Collapse
Affiliation(s)
- P Christian Schulze
- From the Divisions of Cardiology, Friedrich-Schiller-University Jena, Germany, and Columbia University, New York, NY (P.C.S.); Metabolic Biology Laboratory, Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (K.D.); and Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, NY (I.J.G.).
| | - Konstantinos Drosatos
- From the Divisions of Cardiology, Friedrich-Schiller-University Jena, Germany, and Columbia University, New York, NY (P.C.S.); Metabolic Biology Laboratory, Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (K.D.); and Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, NY (I.J.G.)
| | - Ira J Goldberg
- From the Divisions of Cardiology, Friedrich-Schiller-University Jena, Germany, and Columbia University, New York, NY (P.C.S.); Metabolic Biology Laboratory, Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (K.D.); and Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, NY (I.J.G.)
| |
Collapse
|
10
|
Evans RD, Hauton D. The role of triacylglycerol in cardiac energy provision. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1481-91. [DOI: 10.1016/j.bbalip.2016.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 02/07/2023]
|
11
|
Liu C, Gates KP, Fang L, Amar MJ, Schneider DA, Geng H, Huang W, Kim J, Pattison J, Zhang J, Witztum JL, Remaley AT, Dong PD, Miller YI. Apoc2 loss-of-function zebrafish mutant as a genetic model of hyperlipidemia. Dis Model Mech 2015; 8:989-98. [PMID: 26044956 PMCID: PMC4527288 DOI: 10.1242/dmm.019836] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 05/29/2015] [Indexed: 12/27/2022] Open
Abstract
Apolipoprotein C-II (APOC2) is an obligatory activator of lipoprotein lipase. Human patients with APOC2 deficiency display severe hypertriglyceridemia while consuming a normal diet, often manifesting xanthomas, lipemia retinalis and pancreatitis. Hypertriglyceridemia is also an important risk factor for development of cardiovascular disease. Animal models to study hypertriglyceridemia are limited, with no Apoc2-knockout mouse reported. To develop a genetic model of hypertriglyceridemia, we generated an apoc2 mutant zebrafish characterized by the loss of Apoc2 function. apoc2 mutants show decreased plasma lipase activity and display chylomicronemia and severe hypertriglyceridemia, which closely resemble the phenotype observed in human patients with APOC2 deficiency. The hypertriglyceridemia in apoc2 mutants is rescued by injection of plasma from wild-type zebrafish or by injection of a human APOC2 mimetic peptide. Consistent with a previous report of a transient apoc2 knockdown, apoc2 mutant larvae have a minor delay in yolk consumption and angiogenesis. Furthermore, apoc2 mutants fed a normal diet accumulate lipid and lipid-laden macrophages in the vasculature, which resemble early events in the development of human atherosclerotic lesions. In addition, apoc2 mutant embryos show ectopic overgrowth of pancreas. Taken together, our data suggest that the apoc2 mutant zebrafish is a robust and versatile animal model to study hypertriglyceridemia and the mechanisms involved in the pathogenesis of associated human diseases. Highlighted Article: Apoc2 loss-of-function zebrafish display severe hypertriglyceridemia, which is characteristic of human patients with defective lipoprotein lipase activity.
Collapse
Affiliation(s)
- Chao Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Keith P Gates
- Sanford Children's Health Research Center, Programs in Genetic Disease and Development and Aging, and Stem Cell and Regenerative Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Longhou Fang
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Marcelo J Amar
- Lipoprotein Metabolism Section, Cardiopulmonary Branch, NHLBI, NIH, Bethesda, MD, USA
| | - Dina A Schneider
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Honglian Geng
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Wei Huang
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jungsu Kim
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jennifer Pattison
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jian Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Joseph L Witztum
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Cardiopulmonary Branch, NHLBI, NIH, Bethesda, MD, USA
| | - P Duc Dong
- Sanford Children's Health Research Center, Programs in Genetic Disease and Development and Aging, and Stem Cell and Regenerative Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Yury I Miller
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
12
|
Savonen R, Hiden M, Hultin M, Zechner R, Levak-Frank S, Olivecrona G, Olivecrona T. The tissue distribution of lipoprotein lipase determines where chylomicrons bind. J Lipid Res 2015; 56:588-598. [PMID: 25589507 DOI: 10.1194/jlr.m056028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
To determine the role of LPL for binding of lipoproteins to the vascular endothelium, and for the distribution of lipids from lipoproteins, four lines of induced mutant mice were used. Rat chylomicrons labeled in vivo with [(14)C]oleic acid (primarily in TGs, providing a tracer for lipolysis) and [(3)H]retinol (primarily in ester form, providing a tracer for the core lipids) were injected. TG label was cleared more rapidly than core label. There were no differences between the mouse lines in the rate at which core label was cleared. Two minutes after injection, about 5% of the core label, and hence chylomicron particles, were in the heart of WT mice. In mice that expressed LPL only in skeletal muscle, and had much reduced levels of LPL in the heart, binding of chylomicrons was reduced to 1%, whereas in mice that expressed LPL only in the heart, the binding was increased to over 10%. The same patterns of distribution were evident at 20 min when most of the label had been cleared. Thus, the amount of LPL expressed in muscle and heart governed both the binding of chylomicron particles and the assimilation of chylomicron lipids in the tissue.
Collapse
Affiliation(s)
- Roger Savonen
- Department of Medical Biosciences, Physiological Chemistry, Umeå University, Umeå, Sweden
| | - Michaela Hiden
- Institut für Medizinische Biochemie, Abteilung für Molekülarbiologie, Karl Franzens Universität, Graz, Austria
| | - Magnus Hultin
- Department of Medical Biosciences, Physiological Chemistry, Umeå University, Umeå, Sweden
| | - Rudolf Zechner
- Institut für Medizinische Biochemie, Abteilung für Molekülarbiologie, Karl Franzens Universität, Graz, Austria
| | - Sanja Levak-Frank
- Department of Medical Biosciences, Physiological Chemistry, Umeå University, Umeå, Sweden
| | - Gunilla Olivecrona
- Department of Medical Biosciences, Physiological Chemistry, Umeå University, Umeå, Sweden
| | - Thomas Olivecrona
- Department of Medical Biosciences, Physiological Chemistry, Umeå University, Umeå, Sweden.
| |
Collapse
|
13
|
Intrinsic and extrinsic regulation of cardiac lipoprotein lipase following diabetes. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:163-71. [PMID: 25463481 DOI: 10.1016/j.bbalip.2014.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 02/07/2023]
Abstract
Cardiac lipoprotein lipase (LPL) is a pivotal enzyme controlling heart metabolism by providing the majority of fatty acids required by this organ. From activation in cardiomyocytes to secretion to the vascular lumen, cardiac LPL is regulated by multiple pathways, which are altered during diabetes. Hence, dimerization/activation of LPL is modified following diabetes, a process controlled by lipase maturation factor 1. The role of AMP-activated protein kinase, protein kinase D, and heparan sulfate proteoglycans, intrinsic factors that regulate the intracellular transport of LPL is also shifted, and is discussed. More recent studies have identified several exogenous factors released from endothelial cells (EC) and adipose tissue that are required for proper functioning of LPL. In response to hyperglycemia, both active and latent heparanase are released from EC to facilitate LPL secretion. Diabetes also increased the expression of glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1) in EC, which mediates the transport of LPL across EC. Angiopoietin-like protein 4 secreted from the adipose tissue has the potential to reduce coronary LPL activity. Knowledge of these intrinsic and extrinsic factors could be used develop therapeutic targets to normalize LPL function, and maintain cardiac energy homeostasis after diabetes.
Collapse
|
14
|
Ehrhardt N, Bedoya C, Péterfy M. Embryonic viability, lipase deficiency, hypertriglyceridemia and neonatal lethality in a novel LMF1-deficient mouse model. Nutr Metab (Lond) 2014; 11:37. [PMID: 25302068 PMCID: PMC4190935 DOI: 10.1186/1743-7075-11-37] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 08/12/2014] [Indexed: 11/22/2022] Open
Abstract
Background Lipase Maturation Factor 1 (LMF1) is an ER-chaperone involved in the post-translational maturation and catalytic activation of vascular lipases including lipoprotein lipase (LPL), hepatic lipase (HL) and endothelial lipase (EL). Mutations in LMF1 are associated with lipase deficiency and severe hypertriglyceridemia indicating the critical role of LMF1 in plasma lipid homeostasis. The currently available mouse model of LMF1 deficiency is based on a naturally occurring truncating mutation, combined lipase deficiency (cld), which may represent a hypomorphic allele. Thus, development of LMF1-null mice is needed to explore the phenotypic consequences of complete LMF1 deficiency. Findings In situ hybridization and qPCR analysis in the normal mouse embryo revealed ubiquitous and high-level LMF1 expression. To investigate if LMF1 was required for embryonic viability, a novel mouse model based on a null-allele of LMF1 was generated and characterized. LMF1-/- progeny were born at Mendelian ratios and exhibited combined lipase deficiency, hypertriglyceridemia and neonatal lethality. Conclusion Our results raise the possibility of a previously unrecognized role for LMF1 in embryonic development, but indicate that LMF1 is dispensable for the viability of mouse embryo. The novel mouse model developed in this study will be useful to investigate the full phenotypic spectrum of LMF1 deficiency.
Collapse
Affiliation(s)
- Nicole Ehrhardt
- Medical Genetics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Candy Bedoya
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Miklós Péterfy
- Medical Genetics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA ; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA ; Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
15
|
Abstract
Diabetes and obesity are both associated with lipotoxic cardiomyopathy exclusive of coronary artery disease and hypertension. Lipotoxicities have become a public health concern and are responsible for a significant portion of clinical cardiac disease. These abnormalities may be the result of a toxic metabolic shift to more fatty acid and less glucose oxidation with concomitant accumulation of toxic lipids. Lipids can directly alter cellular structures and activate downstream pathways leading to toxicity. Recent data have implicated fatty acids and fatty acyl coenzyme A, diacylglycerol, and ceramide in cellular lipotoxicity, which may be caused by apoptosis, defective insulin signaling, endoplasmic reticulum stress, activation of protein kinase C, MAPK activation, or modulation of PPARs.
Collapse
|
16
|
Rossmeisl M, Kovar J, Syrovy I, Flachs P, Bobkova D, Kolar F, Poledne R, Kopecky J. Triglyceride-lowering Effect of Respiratory Uncoupling in White Adipose Tissue. ACTA ACUST UNITED AC 2012; 13:835-44. [PMID: 15919836 DOI: 10.1038/oby.2005.96] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Hypolipidemic drugs such as bezafibrate and thiazolidinediones are known to induce the expression of mitochondrial uncoupling proteins (UCPs) in white adipose tissue. To analyze the potential triglyceride (TG)-lowering effect of respiratory uncoupling in white fat, we evaluated systemic lipid metabolism in aP2-Ucp1 transgenic mice with ectopic expression of UCP1 in adipose tissue. RESEARCH METHODS AND PROCEDURES Hemizygous and homozygous transgenic mice and their nontransgenic littermates were fed chow or a high-fat diet for up to 3 months. Total TGs, nonesterified fatty acids, and the composition of plasma lipoproteins were analyzed. Hepatic TG production was measured in mice injected with Triton WR1339. Uptake and the use of fatty acids were estimated by measuring adipose tissue lipoprotein lipase activity and fatty acid oxidation, respectively. Adipose tissue gene expression was assessed by quantitative reverse transcriptase-polymerase chain reaction. RESULTS Transgene dosage and the high-fat diet interacted to markedly reduce plasma TGs. This was reflected by decreased concentrations of very-low-density lipoprotein particles in the transgenic mice. Despite normal hepatic TG secretion, the activity of lipoprotein lipase in epididymal fat was enhanced by the high-fat diet in the transgenic mice in a setting of decreased re-esterification and increased in situ fatty acid oxidation. DISCUSSION Respiratory uncoupling in white fat may lower plasma lipids by enhancing their in situ clearance and catabolism.
Collapse
Affiliation(s)
- Martin Rossmeisl
- Department of Adipose Tissue Biology, Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Pôrto LCJ, de Castro CH, Savergnini SSQ, Santos SHS, Ferreira AVM, Cordeiro LMDS, Sobrinho DBDS, Santos RAS, de Almeida AP, Botion LM. Improvement of the energy supply and contractile function in normal and ischemic rat hearts by dietary orotic acid. Life Sci 2012; 90:476-83. [DOI: 10.1016/j.lfs.2011.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 11/24/2011] [Accepted: 12/13/2011] [Indexed: 10/14/2022]
|
18
|
Amelioration of hypertriglyceridemia with hypo-alpha-cholesterolemia in LPL deficient mice by hematopoietic cell-derived LPL. PLoS One 2011; 6:e25620. [PMID: 21980507 PMCID: PMC3183060 DOI: 10.1371/journal.pone.0025620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 09/08/2011] [Indexed: 11/20/2022] Open
Abstract
Background Macrophage-derived lipoprotein lipase (LPL) has been shown uniformly to promote atherosclerotic lesion formation while the extent to which it affects plasma lipid and lipoprotein levels varies in wild-type and hypercholesterolemic mice. It is known that high levels of LPL in the bulk of adipose tissue and skeletal muscle would certainly mask the contribution of macrophage LPL to metabolism of plasma lipoprotein. Therefore, we chose LPL deficient (LPL-/-) mice with severe hypertriglyceridemia as an alternative model to assess the role of macrophage LPL in plasma lipoprotein metabolism via bone marrow transplant, through which LPL will be produced mainly by hematopoietic cell-derived macrophages. Methods and Results Hypertriglyceridemic LPL-/- mice were lethally irradiated, then transplanted with bone marrow from wild-type (LPL+/+) or LPL-/- mice, respectively. Sixteen weeks later, LPL+/+ →LPL-/- mice displayed significant reduction in plasma levels of triglyceride and cholesterol (408±44.9 vs. 2.7±0.5×103 and 82.9±7.1 vs. 229.1±30.6 mg/dl, p<0.05, respectively), while a 2.7-fold increase in plasma high density lipoprotein- cholesterol (p<0.01) was observed, compared with LPL-/-→LPL-/- control mice. The clearance rate for the oral fat load test in LPL+/+ →LPL-/- mice was faster than that in LPL-/-→LPL-/- mice, but slower than that in wild-type mice. Liver triglyceride content in LPL+/+→LPL-/- mice was also significantly increased, compared with LPL-/-→LPL-/- mice (6.8±0.7 vs. 4.6±0.5 mg/g wet tissue, p<0.05, n = 6). However, no significant change was observed in the expression levels of genes involved in hepatic lipid metabolism between the two groups. Conclusions Hematopoietic cell-derived LPL could efficiently ameliorate severe hypertriglyceridemia and hypo-alpha-cholesterolemia at the compensation of increased triglyceride content of liver in LPL-/- mice.
Collapse
|
19
|
Very-low-density lipoprotein: complex particles in cardiac energy metabolism. J Lipids 2011; 2011:189876. [PMID: 21773049 PMCID: PMC3136095 DOI: 10.1155/2011/189876] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Accepted: 05/09/2011] [Indexed: 01/07/2023] Open
Abstract
The heart is a major consumer of energy and is able to utilise a wide range of substrates including lipids. Nonesterified fatty acids (NEFA) were thought to be a favoured carbon source, but their quantitative contribution is limited because of their relative histotoxicity. Circulating triacylglycerols (TAGs) in the form of chylomicrons (CMs) and very-low-density lipoprotein (VLDL) are an alternative source of fatty acids and are now believed to be important in cardiac metabolism. However, few studies on cardiac utilisation of VLDL have been performed and the role of VLDL in cardiac energy metabolism remains unclear. Hearts utilise VLDL to generate ATP, but the oxidation rate of VLDL-TAG is relatively low under physiological conditions; however, in certain pathological states switching of energy substrates occurs and VLDL may become a major energy source for hearts. We review research regarding myocardial utilisation of VLDL and suggest possible roles of VLDL in cardiac energy metabolism: metabolic regulator and extracardiac energy storage for hearts.
Collapse
|
20
|
Pôrto LCJ, Savergnini SSQ, de Castro CH, Mario EG, Ferreira AVM, Santos SHS, Andrade SP, Santos RAS, de Almeida AP, Botion LM. Carbohydrate-enriched diet impairs cardiac performance by decreasing the utilization of fatty acid and glucose. Ther Adv Cardiovasc Dis 2011; 5:11-22. [PMID: 21282201 DOI: 10.1177/1753944710386282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIMS We hypothesized that a high-carbohydrate diet affects the cardiac performance by interfering in the metabolic steps involved in energy transfer in this organ. To verify this, we investigated the myocardial utilization of different substrates and contractile function in rats fed a high-carbohydrate diet, under normal flow and ischemia. METHODS and RESULTS Male Wistar rats were fed over 9 days with standard (39.5% carbohydrate, 8% fiber) or high-carbohydrate diet (58% carbohydrate) and, afterwards, their cardiac function was examined using isolated heart preparations. The high-carbohydrate diet decreased the activity of the lipoprotein lipase, utilization of fatty acids, expression of the gene of peroxisome proliferator-activated receptor α and its target enzymes. In addition, decreased GLUT4 mass, glucose uptake, glycogen content and glycolytic intermediates were also observed. High-carbohydrate hearts displayed weaker activation of the glycolytic pathway during ischemia, according to minor production of lactate, in relation to control hearts. The functional impairment caused by high-carbohydrate diet shown by the decrease in the ventricular systolic strength, +dT/dt and -dT/dt was, at least in part, due to the low availability of adenosine triphosphate (ATP). CONCLUSION Our data suggest that a high-carbohydrate diet can damage myocardial contractile function by decreasing the cardiac utilization of glucose and fatty acids and, consequently, the ATP pool.
Collapse
Affiliation(s)
- Laura C J Pôrto
- Department of Food Science, Federal University of Lavras, Lavras, MG, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Contribution of adiponectin to the cardiometabolic risk of postmenopausal women with loss-of-function lipoprotein lipase gene mutations. Menopause 2011; 18:558-62. [DOI: 10.1097/gme.0b013e3181fca1d4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Goldberg IJ, Eckel RH, McPherson R. Triglycerides and heart disease: still a hypothesis? Arterioscler Thromb Vasc Biol 2011; 31:1716-25. [PMID: 21527746 DOI: 10.1161/atvbaha.111.226100] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The purpose of this article is to review the basic and clinical science relating plasma triglycerides and cardiovascular disease. Although many aspects of the basic physiology of triglyceride production, its plasma transport, and its tissue uptake have been known for several decades, the relationship of plasma triglyceride levels to vascular disease is uncertain. Are triglyceride-rich lipoproteins, their influence on high-density lipoprotein and low-density lipoprotein, or the underlying diseases that lead to defects in triglyceride metabolism the culprit? Animal models have failed to confirm that anything other than early fatty lesions can be produced by triglyceride-rich lipoproteins. Metabolic products of triglyceride metabolism can be toxic to arterial cells; however, these studies are primarily in vitro. Correlative studies of fasting and postprandial triglycerides and genetic diseases implicate very-low-density lipoprotein and their remnants and chylomicron remnants in atherosclerosis development, but the concomitant alterations in other lipoproteins and other risk factors obscure any conclusions about direct relationships between disease and triglycerides. Genes that regulate triglyceride levels also correlate with vascular disease. Human intervention trials, however, have lacked an appropriately defined population and have produced outcomes without definitive conclusions. The time is more than ripe for new and creative approaches to understanding the relationship of triglycerides and heart disease.
Collapse
Affiliation(s)
- Ira J Goldberg
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| | | | | |
Collapse
|
23
|
Comparative studies of vertebrate lipoprotein lipase: a key enzyme of very low density lipoprotein metabolism. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2011; 6:224-34. [PMID: 21561822 DOI: 10.1016/j.cbd.2011.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 04/13/2011] [Accepted: 04/18/2011] [Indexed: 11/24/2022]
Abstract
Lipoprotein lipase (LIPL or LPL; E.C.3.1.1.34) serves a dual function as a triglyceride lipase of circulating chylomicrons and very-low-density lipoproteins (VLDL) and facilitates receptor-mediated lipoprotein uptake into heart, muscle and adipose tissue. Comparative LPL amino acid sequences and protein structures and LPL gene locations were examined using data from several vertebrate genome projects. Mammalian LPL genes usually contained 9 coding exons on the positive strand. Vertebrate LPL sequences shared 58-99% identity as compared with 33-49% sequence identities with other vascular triglyceride lipases, hepatic lipase (HL) and endothelial lipase (EL). Two human LPL N-glycosylation sites were conserved among seven predicted sites for the vertebrate LPL sequences examined. Sequence alignments, key amino acid residues and conserved predicted secondary and tertiary structures were also studied. A CpG island was identified within the 5'-untranslated region of the human LPL gene which may contribute to the higher than average (×4.5 times) level of expression reported. Phylogenetic analyses examined the relationships and potential evolutionary origins of vertebrate lipase genes, LPL, LIPG (encoding EL) and LIPC (encoding HL) which suggested that these have been derived from gene duplication events of an ancestral neutral lipase gene, prior to the appearance of fish during vertebrate evolution. Comparative divergence rates for these vertebrate sequences indicated that LPL is evolving more slowly (2-3 times) than for LIPC and LIPG genes and proteins.
Collapse
|
24
|
Dubey P, Jayasooriya AP, Cheema SK. Diets Enriched in Fish-Oil or Seal-Oil have Distinct Effects on Lipid Levels and Peroxidation in BioF1B Hamsters. Nutr Metab Insights 2011; 4:7-17. [PMID: 23946657 PMCID: PMC3738469 DOI: 10.4137/nmi.s6728] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: Fish-oil omega-3 polyunsaturated fatty acids (n-3 PUFAs) are mostly esterified to the sn-2 position of triglycerides, while in seal-oil triglycerides, these are mostly esterified to the sn-1 and -3 positions. We investigated whether fish-oil and seal-oil feeding has a different effect on the regulation of lipid metabolism and oxidative stress in BioF1B hamsters. Methods: BioF1B hamsters were fed high fat diets rich in fish-oil or seal-oil for 4 weeks, and fasted for 14 hours prior to blood and tissue collection. Results: Plasma and hepatic lipids and lipid peroxidation levels were significantly lower in seal-oil-fed hamsters as compared to those fed fish-oil. There was a selective hindrance of clearance of lipids in fish-oil-fed hamsters as reflected by higher levels of plasma apoB48. Conclusion: Differences in the fatty acid composition and positional distribution of n-3 PUFAs in triglycerides of fish-oil and seal-oil are suggested to trigger metabolic differences.
Collapse
Affiliation(s)
- Pratibha Dubey
- Department of Biochemistry, Memorial University, St. John's, NL, A1B 3X9, Canada
| | | | | |
Collapse
|
25
|
Ganguly R, Schram K, Fang X, Kim M, Rodrigues B, Thong FSL, Sweeney G. Adiponectin increases LPL activity via RhoA/ROCK-mediated actin remodelling in adult rat cardiomyocytes. Endocrinology 2011; 152:247-54. [PMID: 21147877 DOI: 10.1210/en.2010-0530] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cardiomyocyte substrate utilization is important in maintaining optimal cardiac function. Adiponectin has been shown to confer cardioprotective effects in part via regulating glucose and fatty acid uptake and oxidation in cardiomyocytes. Here we investigated mechanisms whereby adiponectin mediates a particular metabolic effect by focusing on lipoprotein lipase (LPL), an enzyme that increases free fatty acid availability to the heart by breakdown of chylomicrons and very-low-density lipoproteins in circulation. We used primary adult rat cardiomyocytes and demonstrate that adiponectin increased LPL translocation to the cell surface where it could be released at least partly in its active form, as evidenced by measuring basal and heparin-releasable LPL activity. Furthermore, these effects of adiponectin were mediated via remodeling of the actin cytoskeleton. We quantitatively assessed the filamentous to globular actin ratio and show that increased stress fiber formation, visualized by rhodamine-phalloidin immunofluorescence, in response to adiponectin, is achieved via stimulating Ras homolog gene family A (RhoA) activity, determined using G-LISA RhoA activation assay kit. We also demonstrate that adiponectin induces phosphorylation and inhibition of cofilin, leading to a reduction in actin treadmilling. Increased cofilin phosphorylation and stress fiber formation in response to adiponectin were prevented by inhibition of either RhoA or its downstream kinase Rho-associated protein kinase. Importantly, inhibition of cytoskeletal remodeling prevented adiponectin-stimulated plasma membrane LPL content detected by immunofluorescence and also subsequent LPL activity. In summary, we show that adiponectin mediates actin cytoskeleton remodeling to translocate LPL and allow subsequent activation.
Collapse
Affiliation(s)
- Riya Ganguly
- Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3
| | | | | | | | | | | | | |
Collapse
|
26
|
Schoiswohl G, Schweiger M, Schreiber R, Gorkiewicz G, Preiss-Landl K, Taschler U, Zierler KA, Radner FPW, Eichmann TO, Kienesberger PC, Eder S, Lass A, Haemmerle G, Alsted TJ, Kiens B, Hoefler G, Zechner R, Zimmermann R. Adipose triglyceride lipase plays a key role in the supply of the working muscle with fatty acids. J Lipid Res 2009; 51:490-9. [PMID: 19965578 DOI: 10.1194/jlr.m001073] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FAs are mobilized from triglyceride (TG) stores during exercise to supply the working muscle with energy. Mice deficient for adipose triglyceride lipase (ATGL-ko) exhibit defective lipolysis and accumulate TG in adipose tissue and muscle, suggesting that ATGL deficiency affects energy availability and substrate utilization in working muscle. In this study, we investigated the effect of moderate treadmill exercise on blood energy metabolites and liver glycogen stores in mice lacking ATGL. Because ATGL-ko mice exhibit massive accumulation of TG in the heart and cardiomyopathy, we also investigated a mouse model lacking ATGL in all tissues except cardiac muscle (ATGL-ko/CM). In contrast to ATGL-ko mice, these mice did not accumulate TG in the heart and had normal life expectancy. Exercise experiments revealed that ATGL-ko and ATGL-ko/CM mice are unable to increase circulating FA levels during exercise. The reduced availability of FA for energy conversion led to rapid depletion of liver glycogen stores and hypoglycemia. Together, our studies suggest that ATGL-ko mice cannot adjust circulating FA levels to the increased energy requirements of the working muscle, resulting in an increased use of carbohydrates for energy conversion. Thus, ATGL activity is required for proper energy supply of the skeletal muscle during exercise.
Collapse
|
27
|
Kim MS, Wang F, Puthanveetil P, Kewalramani G, Innis S, Marzban L, Steinberg SF, Webber TD, Kieffer TJ, Abrahani A, Rodrigues B. Cleavage of protein kinase D after acute hypoinsulinemia prevents excessive lipoprotein lipase-mediated cardiac triglyceride accumulation. Diabetes 2009; 58:2464-75. [PMID: 19875622 PMCID: PMC2768155 DOI: 10.2337/db09-0681] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE During hypoinsulinemia, when cardiac glucose utilization is impaired, the heart rapidly adapts to using more fatty acids. One means by which this is achieved is through lipoprotein lipase (LPL). We determined the mechanisms by which the heart regulates LPL after acute hypoinsulinemia. RESEARCH DESIGN AND METHODS We used two different doses of streptozocin (55 [D-55] and 100 [D-100] mg/kg) to induce moderate and severe hypoinsulinemia, respectively, in rats. Isolated cardiomyocytes were also used for transfection or silencing of protein kinase D (PKD) and caspase-3. RESULTS There was substantial increase in LPL in D-55 hearts, an effect that was absent in severely hypoinsulinemic D-100 animals. Measurement of PKD, a key element involved in increasing LPL, revealed that only D-100 hearts showed an increase in proteolysis of PKD, an effect that required activation of caspase-3 together with loss of 14-3-3zeta, a binding protein that protects enzymes against degradation. In vitro, phosphomimetic PKD colocalized with LPL in the trans-golgi. PKD, when mutated to prevent its cleavage by caspase-3 and silencing of caspase-3, was able to increase LPL activity. Using a caspase inhibitor (Z-DEVD) in D-100 animals, we effectively lowered caspase-3 activity, prevented PKD cleavage, and increased LPL vesicle formation and translocation to the vascular lumen. This increase in cardiac luminal LPL was associated with a striking accumulation of cardiac triglyceride in Z-DEVD-treated D-100 rats. CONCLUSIONS After severe hypoinsulinemia, activation of caspase-3 can restrict LPL translocation to the vascular lumen. When caspase-3 is inhibited, this compensatory response is lost, leading to lipid accumulation in the heart.
Collapse
Affiliation(s)
- Min Suk Kim
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fang Wang
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Prasanth Puthanveetil
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Girish Kewalramani
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sheila Innis
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lucy Marzban
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Travis D. Webber
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Timothy J. Kieffer
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ashraf Abrahani
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Corresponding author: B. Rodrigues,
| |
Collapse
|
28
|
Abstract
Lipoprotein lipase (LPL) is a multifunctional enzyme produced by many tissues, including adipose tissue, cardiac and skeletal muscle, islets, and macrophages. LPL is the rate-limiting enzyme for the hydrolysis of the triglyceride (TG) core of circulating TG-rich lipoproteins, chylomicrons, and very low-density lipoproteins (VLDL). LPL-catalyzed reaction products, fatty acids, and monoacylglycerol are in part taken up by the tissues locally and processed differentially; e.g., they are stored as neutral lipids in adipose tissue, oxidized, or stored in skeletal and cardiac muscle or as cholesteryl ester and TG in macrophages. LPL is regulated at transcriptional, posttranscriptional, and posttranslational levels in a tissue-specific manner. Nutrient states and hormonal levels all have divergent effects on the regulation of LPL, and a variety of proteins that interact with LPL to regulate its tissue-specific activity have also been identified. To examine this divergent regulation further, transgenic and knockout murine models of tissue-specific LPL expression have been developed. Mice with overexpression of LPL in skeletal muscle accumulate TG in muscle, develop insulin resistance, are protected from excessive weight gain, and increase their metabolic rate in the cold. Mice with LPL deletion in skeletal muscle have reduced TG accumulation and increased insulin action on glucose transport in muscle. Ultimately, this leads to increased lipid partitioning to other tissues, insulin resistance, and obesity. Mice with LPL deletion in the heart develop hypertriglyceridemia and cardiac dysfunction. The fact that the heart depends increasingly on glucose implies that free fatty acids are not a sufficient fuel for optimal cardiac function. Overall, LPL is a fascinating enzyme that contributes in a pronounced way to normal lipoprotein metabolism, tissue-specific substrate delivery and utilization, and the many aspects of obesity and other metabolic disorders that relate to energy balance, insulin action, and body weight regulation.
Collapse
Affiliation(s)
- Hong Wang
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | | |
Collapse
|
29
|
Casanovas A, Carrascal M, Abián J, López-Tejero MD, Llobera M. Discovery of lipoprotein lipase pI isoforms and contributions to their characterization. J Proteomics 2009; 72:1031-9. [PMID: 19527804 DOI: 10.1016/j.jprot.2009.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 06/02/2009] [Accepted: 06/05/2009] [Indexed: 11/19/2022]
Abstract
Lipoprotein lipase (LPL) plays a pivotal role in lipid metabolism and is implicated in several pathophysiological conditions. A large number of LPL studies have been performed in rat, although the amount of information derived from direct study of the protein in this species is limited. Here we attempted to examine possible modifications of LPL using proteomic tools. By combining high-resolution two-dimensional gel electrophoresis and Western blot with biological mass spectrometry we demonstrate the coexistence of multiple LPL pI isoforms in rat heart. We studied the origin of this pI heterogeneity by: (1) comparison with the 2D pattern of LPL from post-heparin rat plasma (as a source of mature LPL); (2) protein dephosphorylation; (3) protein deglycosylation; and (4) partial sequencing of LPL isoforms. The results reveal that LPL pI heterogeneity does not correspond to different stages of intracellular maturation or protein phosphorylation. It can be partially explained by glycosylation, although other post-translational modifications must also be involved. We also report the first partial sequence to be obtained from direct study of rat LPL protein. These findings should be the basis for further research aimed at identifying the molecular differences between LPL isoforms and exploring their potential functional implications.
Collapse
Affiliation(s)
- Albert Casanovas
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
30
|
Zechner R, Kienesberger PC, Haemmerle G, Zimmermann R, Lass A. Adipose triglyceride lipase and the lipolytic catabolism of cellular fat stores. J Lipid Res 2008; 50:3-21. [PMID: 18952573 DOI: 10.1194/jlr.r800031-jlr200] [Citation(s) in RCA: 394] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Fatty acids (FAs) are essential components of all lipid classes and pivotal substrates for energy production in all vertebrates. Additionally, they act directly or indirectly as signaling molecules and, when bonded to amino acid side chains of peptides, anchor proteins in biological membranes. In vertebrates, FAs are predominantly stored in the form of triacylglycerol (TG) within lipid droplets of white adipose tissue. Lipid droplet-associated TGs are also found in most nonadipose tissues, including liver, cardiac muscle, and skeletal muscle. The mobilization of FAs from all fat depots depends on the activity of TG hydrolases. Currently, three enzymes are known to hydrolyze TG, the well-studied hormone-sensitive lipase (HSL) and monoglyceride lipase (MGL), discovered more than 40 years ago, as well as the relatively recently identified adipose triglyceride lipase (ATGL). The phenotype of HSL- and ATGL-deficient mice, as well as the disease pattern of patients with defective ATGL activity (due to mutation in ATGL or in the enzyme's activator, CGI-58), suggest that the consecutive action of ATGL, HSL, and MGL is responsible for the complete hydrolysis of a TG molecule. The complex regulation of these enzymes by numerous, partially uncharacterized effectors creates the "lipolysome," a complex metabolic network that contributes to the control of lipid and energy homeostasis. This review focuses on the structure, function, and regulation of lipolytic enzymes with a special emphasis on ATGL.
Collapse
Affiliation(s)
- Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Austria.
| | | | | | | | | |
Collapse
|
31
|
Kewalramani G, Puthanveetil P, Kim MS, Wang F, Lee V, Hau N, Beheshti E, Ng N, Abrahani A, Rodrigues B. Acute dexamethasone-induced increase in cardiac lipoprotein lipase requires activation of both Akt and stress kinases. Am J Physiol Endocrinol Metab 2008; 295:E137-47. [PMID: 18460599 DOI: 10.1152/ajpendo.00004.2008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Following dexamethasone (DEX), cardiac energy generation is mainly through utilization of fatty acids (FA), with DEX animals demonstrating an increase in coronary lipoprotein lipase (LPL), an enzyme that hydrolyzes lipoproteins to FA. We examined the mechanisms by which DEX augments cardiac LPL. DEX was injected in rats, and hearts were removed, or isolated cardiomyocytes were incubated with DEX (0-8 h), for measurement of LPL activity and Western blotting. Acute DEX induced whole body insulin resistance, likely an outcome of a decrease in insulin signaling in skeletal muscle, but not cardiac tissue. The increase in luminal LPL activity after DEX was preceded by rapid nongenomic alterations, which included phosphorylation of AMPK and p38 MAPK, that led to phosphorylation of heat shock protein (HSP)25 and actin cytoskeleton rearrangement, facilitating LPL translocation to the myocyte cell surface. Unlike its effects in vivo, although DEX activated AMPK and p38 MAPK in cardiomyocytes, there was no phosphorylation of HSP25, nor was there any evidence of F-actin polymerization or an augmentation of LPL activity up to 8 h after DEX. Combining DEX with insulin appreciably enhanced cardiomyocyte LPL activity, which closely mirrored a robust elevation in phosphorylation of HSP25 and F-actin polymerization. Silencing of p38 MAPK, inhibition of PI 3-kinase, or preincubation with cytochalasin D prevented the increases in LPL activity. Our data suggest that, following DEX, it is a novel, rapid, nongenomic phosphorylation of stress kinases that, together with insulin, facilitates LPL translocation to the myocyte cell surface.
Collapse
Affiliation(s)
- Girish Kewalramani
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Qiao L, Zou C, van der Westhuyzen DR, Shao J. Adiponectin reduces plasma triglyceride by increasing VLDL triglyceride catabolism. Diabetes 2008; 57:1824-33. [PMID: 18375436 PMCID: PMC2453618 DOI: 10.2337/db07-0435] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Adiponectin is an adipocyte-derived hormone that plays an important role in glucose and lipid metabolism. The main aims of this study are to investigate the effects of adiponectin on VLDL triglyceride (VLDL-TG) metabolism and the underlying mechanism. RESEARCH DESIGN AND METHODS Adenoviruses were used to generate a mouse model with elevated circulating adiponectin. HepG2 and C2C12 cells were treated with recombinant human adiponectin. RESULTS Three days after Ad-mACRP30 adenovirus injection, plasma adiponectin protein levels were increased 12-fold. All three main multimeric adiponectin molecules were proportionally elevated. Fasting plasma TG levels were significantly decreased (approximately 40%) in the mice with elevated adiponectin in circulation, as were the plasma levels of large and medium VLDL subclasses. Although apolipoprotein B mRNA levels were robustly suppressed in the livers of adiponectin-overexpressing mice and in cultured HepG2 cells treated with recombinant human adiponectin, hepatic VLDL-TG secretion rates were not altered by elevated plasma adiponectin. However, Ad-mACRP30-treated mice exhibited a significant increase of postheparin plasma lipoprotein lipase (LPL) activity compared with mice that received control viral vector. Skeletal muscle LPL activity and mRNA levels of LPL and VLDL receptor (VLDLr) were also increased in Ad-mACRP30-treated mice. Recombinant human adiponectin treatment increased LPL and VLDLr mRNA levels in differentiated C1C12 myotubes. CONCLUSIONS These results suggest that adiponectin decreases plasma TG levels by increasing skeletal muscle LPL and VLDLr expression and consequently VLDL-TG catabolism.
Collapse
Affiliation(s)
- Liping Qiao
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | |
Collapse
|
33
|
Lee J, Goldberg IJ. Lipoprotein lipase-derived fatty acids: Physiology and dysfunction. Curr Hypertens Rep 2008; 9:462-6. [DOI: 10.1007/s11906-007-0085-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Abstract
PURPOSE OF REVIEW This review highlights some recent findings regarding nutritional and endocrine regulators of mitochondrial mass and function and their association with insulin resistance. RECENT FINDINGS Insulin resistance is central to many chronic metabolic diseases, including obesity, type 2 diabetes, dyslipidemia, and hypertension. Insulin resistance in skeletal muscle is associated with lower mitochondrial mass and reduced oxidative phosphorylation. Part of the mitochondrial dysfunction can be triggered by adverse nutrition. Increased fatty acid exposure, resulting from high fats diets or overfeeding, is linked to both decreased mitochondrial number and markers of oxidative phosphorylation. Caloric restriction and the adiponectin signaling pathway, however, can stimulate mitochondrial biogenesis by elevating the transcriptional machinery that regulates mitochondrial mass, improving mitochondrial efficiency, activating the peroxisome proliferator-activated receptor coactivator 1alpha mediated reactive oxygen species scavenging mechanism, and lowering reactive oxygen species production. SUMMARY States of insulin resistance are characterized by defects in lipid and carbohydrate metabolism. Abnormalities in oxidative capacity, however, can be partially normalized by caloric restriction by modulating mitochondrial mass in an insulin sensitizing manner.
Collapse
|
35
|
Nelson RH, Prasad A, Lerman A, Miles JM. Myocardial uptake of circulating triglycerides in nondiabetic patients with heart disease. Diabetes 2007; 56:527-30. [PMID: 17259402 DOI: 10.2337/db06-1552] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Animal studies indicate that oversupply of fatty acids derived from the action of cardiac lipoprotein lipase (LPL) on plasma lipoproteins may contribute to myocardial dysfunction. However, the contribution of circulating triglycerides to myocardial fatty acid supply in humans is not known. Six postabsorptive nondiabetic subjects who were scheduled for diagnostic coronary angiography were studied. (14)C oleate and a lipid emulsion labeled with (3)H triolein were infused to assess myocardial uptake of free fatty acids (FFAs) and triglycerides, as well as myocardial spillover of LPL-generated fatty acids. Six paired blood samples were taken from the femoral artery and the coronary sinus. Coronary sinus concentrations of unlabeled triglycerides were slightly, but not significantly, lower than arterial (P = 0.12), whereas labeled triglyceride concentrations were significantly lower in the coronary sinus than in the artery (P < 0.05; extraction fraction congruent with 11%). Triglycerides and FFAs accounted for approximately 17% and approximately 83%, respectively, of myocardial fatty acid uptake. Systemic and myocardial fractional spillover of LPL-generated fatty acids was 49.0 +/- 7% and 34.7 +/- 13%, respectively. The myocardium was a minor contributor to systemic triglyceride uptake ( approximately 3%) and a trivial contributor to systemic FFA production ( approximately 0.5%). These results indicate that circulating triglycerides may be a significant source of fatty acids for myocardial respiration.
Collapse
Affiliation(s)
- Robert H Nelson
- Endocrine Research Unit, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
36
|
Ghosh S, Rodrigues B, Ren J. Rat Models of Cardiac Insulin Resistance. METHODS IN MOLECULAR MEDICINE™ 2007; 139:113-43. [DOI: 10.1007/978-1-59745-571-8_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
37
|
Noh HL, Yamashita H, Goldberg IJ. Cardiac Metabolism and Mechanics are Altered by Genetic Loss of Lipoprotein Triglyceride Lipolysis. Cardiovasc Drugs Ther 2006; 20:441-4. [PMID: 17139480 DOI: 10.1007/s10557-006-0633-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Most circulating fatty acids are contained in lipoprotein triglycerides. For the heart to acquire these lipids, they must be broken down into free fatty acids via the enzyme lipoprotein lipase (LpL). Although it has long been known that hearts primarily use esterified fatty acids as fuel, different sources of fatty acids were thought to be interchangeable. MATERIALS AND METHODS By creating mice with neonatal and acute LpL deletion we showed that lipoprotein-derived fatty acids could not be replaced by albumin-associated free fatty acids. Loss of cardiac LpL forces the heart to increase its uptake of glucose, reduce fatty acid oxidation, and eventually leads to cardiac dysfunction. In contrast, cardiomyocyte specific overexpression of an anchored form of LpL leads to excess lipid uptake, induction of fatty acid oxidation genes, and dilated cardiomyopathy. CONCLUSION Increasing lipid secretion from the heart or redirecting lipids to adipose tissue can alleviate this lipotoxic situation.
Collapse
Affiliation(s)
- Hye-Lim Noh
- Division of Preventive Medicine and Nutrition, Columbia University College of Physicians & Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | | | | |
Collapse
|
38
|
Pulawa LK, Jensen DR, Coates A, Eckel RH. Reduction of plasma triglycerides in apolipoprotein C-II transgenic mice overexpressing lipoprotein lipase in muscle. J Lipid Res 2006; 48:145-51. [PMID: 17018885 DOI: 10.1194/jlr.m600384-jlr200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
LPL and its specific physiological activator, apolipoprotein C-II (apoC-II), regulate the hydrolysis of triglycerides (TGs) from circulating TG-rich lipoproteins. Previously, we developed a skeletal muscle-specific LPL transgenic mouse that had lower plasma TG levels. ApoC-II transgenic mice develop hypertriglyceridemia attributed to delayed clearance. To investigate whether overexpression of LPL could correct this apoC-II-induced hypertriglyceridemia, mice with overexpression of human apoC-II (CII) were cross-bred with mice with two levels of muscle-specific human LPL overexpression (LPL-L or LPL-H). Plasma TG levels were 319 +/- 39 mg/dl in CII mice and 39 +/- 5 mg/dl in wild-type mice. Compared with CII mice, apoC-II transgenic mice with the higher level of LPL overexpression (CIILPL-H) had a 50% reduction in plasma TG levels (P = 0.013). Heart LPL activity was reduced by approximately 30% in mice with the human apoC-II transgene, which accompanied a more modest 10% decrease in total LPL protein. Overexpression of human LPL in skeletal muscle resulted in dose-dependent reduction of plasma TGs in apoC-II transgenic mice. Along with plasma apoC-II concentrations, heart and skeletal muscle LPL activities were predictors of plasma TGs. These data suggest that mice with the human apoC-II transgene may have alterations in the expression/activity of endogenous LPL in the heart. Furthermore, the decrease of LPL activity in the heart, along with the inhibitory effects of excess apoC-II, may contribute to the hypertriglyceridemia observed in apoC-II transgenic mice.
Collapse
Affiliation(s)
- Leslie K Pulawa
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado at Denver and Health Sciences Center, Aurora, CO, USA
| | | | | | | |
Collapse
|
39
|
Kratky D, Zimmermann R, Wagner EM, Strauss JG, Jin W, Kostner GM, Haemmerle G, Rader DJ, Zechner R. Endothelial lipase provides an alternative pathway for FFA uptake in lipoprotein lipase-deficient mouse adipose tissue. J Clin Invest 2005; 115:161-7. [PMID: 15630456 PMCID: PMC539186 DOI: 10.1172/jci15972] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2002] [Accepted: 11/09/2004] [Indexed: 11/17/2022] Open
Abstract
Lipoprotein lipase (LPL) is thought to be the only enzyme responsible for the catabolism of triglycerides (TGs) associated with TG-rich lipoproteins in adipose tissue (AT). However, LPL deficiency in humans and induced mutant mice is not associated with decreased fat mass. We investigated whether endothelial lipase (EL), a recently discovered phospholipase, might represent an alternative mechanism for the uptake of phospholipid-derived fatty acids in murine lipoprotein-deficient AT. When LPL was expressed in AT and isolated murine adipocytes, EL mRNA was not detectable. In contrast, mouse AT and isolated adipocytes that lacked LPL expressed large amounts of EL mRNA. The cellular phospholipase activity in LPL-deficient fat pads was increased 4-fold compared with control fat pads and could be inhibited to control levels by a specific EL antibody. Fatty acids produced by EL activity were absorbed by adipocytes and incorporated into the TG moiety of AT. Our results suggest that EL activity in AT and other peripheral tissues might contribute to the tissue uptake of free fatty acids, which could have important implications for the metabolism of plasma lipoproteins.
Collapse
Affiliation(s)
- Dagmar Kratky
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kratky D, Zimmermann R, Wagner EM, Strauss JG, Jin W, Kostner GM, Haemmerle G, Rader DJ, Zechner R. Endothelial lipase provides an alternative pathway for FFA uptake in lipoprotein lipase–deficient mouse adipose tissue. J Clin Invest 2005. [DOI: 10.1172/jci200515972] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
41
|
Ruge T, Neuger L, Sukonina V, Wu G, Barath S, Gupta J, Frankel B, Christophersen B, Nordstoga K, Olivecrona T, Olivecrona G. Lipoprotein lipase in the kidney: activity varies widely among animal species. Am J Physiol Renal Physiol 2004; 287:F1131-9. [PMID: 15292043 DOI: 10.1152/ajprenal.00089.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Much evidence points to a relationship among kidney disease, lipoprotein metabolism, and the enzyme lipoprotein lipase (LPL), but there is little information on LPL in the kidney. The range of LPL activity in the kidney in five species differed by >500-fold. The highest activity was in mink, followed by mice, Chinese hamsters, and rats, whereas the activity was low in guinea pigs. In contrast, the ranges for LPL activities in heart and adipose tissue were less than six- and fourfold, respectively. The activity in the kidney (in mice) decreased by >50% on food deprivation for 6 h without corresponding changes in mRNA or mass. This decrease in LPL activity did not occur when transcription was blocked with actinomycin D. Immunostaining for kidney LPL in mice and mink indicated that the enzyme is produced in tubular epithelial cells. To explore the previously suggested possibility that the negatively charged glomerular filter picks up LPL from the blood, bovine LPL was injected into rats and mice. This resulted in decoration of the glomerular capillary network with LPL. This study shows that in some species LPL is produced in the kidney and is subject to nutritional regulation by a posttranscriptional mechanism. In addition, LPL can be picked up from blood in the glomerulus.
Collapse
Affiliation(s)
- Toralph Ruge
- Department of Medical Biosciences, Physiological Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Qi D, Pulinilkunnil T, An D, Ghosh S, Abrahani A, Pospisilik JA, Brownsey R, Wambolt R, Allard M, Rodrigues B. Single-dose dexamethasone induces whole-body insulin resistance and alters both cardiac fatty acid and carbohydrate metabolism. Diabetes 2004; 53:1790-7. [PMID: 15220203 DOI: 10.2337/diabetes.53.7.1790] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Glucocorticoids impair insulin sensitivity. Because insulin resistance is closely linked to increased incidence of cardiovascular diseases and given that metabolic abnormalities have been linked to initiation of heart failure, we examined the acute effects of dexamethasone (DEX) on rat cardiac metabolism. Although injection of DEX for 4 h was not associated with hyperinsulinemia, the euglycemic-hyperinsulinemic clamp showed a decrease in glucose infusion rate. Rates of cardiac glycolysis were unaffected, whereas the rate of glucose oxidation following DEX was significantly decreased and could be associated with augmented expression of PDK4 mRNA and protein. Myocardial glycogen content in DEX hearts increased compared with control. Similar to hypoinsulinemia induced by streptozotocin (STZ), hearts from insulin-resistant DEX animals also demonstrated enlargement of the coronary lipoprotein lipase (LPL) pool. However, unlike STZ, DEX hearts showed greater basal release of LPL and were able to maintain their high heparin-releasable LPL in vitro. This effect could be explained by the enhanced LPL mRNA expression following DEX. Our data provide evidence that in a setting of insulin resistance, an increase in LPL could facilitate increased delivery of fatty acid to the heart, leading to excessive triglyceride storage. It has not been determined whether these acute effects of DEX on cardiac metabolism can be translated into increased cardiovascular risk.
Collapse
Affiliation(s)
- Dake Qi
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, The University of British Columbia, 2146 East Mall, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Niu YG, Hauton D, Evans RD. Utilization of triacylglycerol-rich lipoproteins by the working rat heart: routes of uptake and metabolic fates. J Physiol 2004; 558:225-37. [PMID: 15121801 PMCID: PMC1664916 DOI: 10.1113/jphysiol.2004.061473] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Very-low-density lipoprotein (VLDL) and chylomicrons (CMs) transport triacylglycerol (TAG) to peripheral tissues. Lipoprotein-TAG may gain access to target cells by lipoprotein lipase (LPL) hydrolysis or via receptor-mediated uptake; the principal routes of entry of VLDL and CM into heart are unknown, and different routes of entry may result in different metabolic fates. To examine this, isolated working rat hearts were perfused with rat VLDL and CMs, dual-labelled with [3H]TAG and [14C]cholesterol. Uptake and utilization of CM-TAG were significantly greater than VLDL-TAG, but both were decreased significantly (more than halved) by tetrahydrolipstatin (THL, an inhibitor of lipoprotein lipase). By contrast, uptake of VLDL-cholesterol was much higher than CM-cholesterol (P < 0.01), and suramin (a lipoprotein receptor antagonist) decreased cholesterol uptake of both forms. CM-TAG oxidation rate was more than 4-fold higher than VLDL-TAG oxidation. However, suramin decreased TAG oxidation from both VLDL and CM without affecting TAG uptake or total utilization, suggesting that the TAG gaining access through receptor-mediated pathways is preferentially 'channelled' towards oxidation. Most (79%) CM-TAG was oxidized whilst the proportion of VLDL-TAG oxidized was only about half (49%). In the presence of suramin, there was a significant increase in esterification (incorporation of assimilated [3H]TAG into myocardial tissue [3H]lipids, mainly TAG) of assimilated TAG from both VLDL and CMs, again suggesting that receptor-mediated TAG uptake is directed towards oxidation rather than esterification. The importance of this relatively small pool of TAG is indicated by the fact that cardiac mechanical function declined markedly when lipoprotein receptors were inhibited. These results suggest that CMs, most fatty acids of which gain access into cardiomyocytes through LPL-mediated hydrolysis, are the major supplier of TAG for hearts to oxidize; however, the metabolic fate of VLDL was split evenly between oxidation and deposition as myocardial tissue lipid. Most importantly, VLDL may play a regulatory role in heart lipid metabolism through a lipoprotein receptor-mediated mechanism.
Collapse
Affiliation(s)
- You-Guo Niu
- Nuffield Department of Anaesthetics, University of Oxford, Radcliffe Infirmary, Woodstock Road, Oxford OX2 6HE, UK
| | | | | |
Collapse
|
44
|
Augustus A, Yagyu H, Haemmerle G, Bensadoun A, Vikramadithyan RK, Park SY, Kim JK, Zechner R, Goldberg IJ. Cardiac-specific knock-out of lipoprotein lipase alters plasma lipoprotein triglyceride metabolism and cardiac gene expression. J Biol Chem 2004; 279:25050-7. [PMID: 15028738 DOI: 10.1074/jbc.m401028200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fatty acids are the primary energy source for the heart. The heart acquires fatty acids associated with albumin or derived from lipoprotein lipase (LpL)-mediated hydrolysis of lipoprotein triglyceride (TG). We generated heart-specific LpL knock-out mice (hLpL0) to determine whether cardiac LpL modulates the actions of peroxisome proliferator-activated receptors and affects whole body lipid metabolism. Male hLpL0 mice had significantly elevated plasma TG levels and decreased clearance of postprandial lipids despite normal postheparin plasma LpL activity. Very large density lipoprotein-TG uptake was decreased by 72% in hLpL0 hearts. However, heart uptake of albumin-bound free fatty acids was not altered. Northern blot analysis revealed a decrease in the expression of peroxisome proliferator-activated receptor alpha-response genes involved in fatty acid beta-oxidation. Surprisingly, the expression of glucose transporters 1 and 4 and insulin receptor substrate 2 was increased and that of pyruvate dehydrogenase kinase 4 and insulin receptor substrate 1 was reduced. Basal glucose uptake was increased markedly in hLpL0 hearts. Thus, the loss of LpL in the heart leads to defective plasma metabolism of TG. Moreover, fatty acids derived from lipoprotein TG and not just albumin-associated fatty acids are important for cardiac lipid metabolism and gene regulation.
Collapse
Affiliation(s)
- Ayanna Augustus
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wagner EM, Kratky D, Haemmerle G, Hrzenjak A, Kostner GM, Steyrer E, Zechner R. Defective uptake of triglyceride-associated fatty acids in adipose tissue causes the SREBP-1c-mediated induction of lipogenesis. J Lipid Res 2004; 45:356-65. [PMID: 14594997 DOI: 10.1194/jlr.m300293-jlr200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Lipoprotein lipase (LPL) is the only known enzyme in the capillary endothelium of peripheral tissues that hydrolizes plasma triglycerides and provides fatty acids (FAs) for their subsequent tissue uptake. Previously, we demonstrated that mice that express LPL exclusively in muscle develop essentially normal fat mass despite the absence of LPL and the deprivation of nutritionally derived FAs in adipose tissue (AT). Using this mouse model, we now investigated the metabolic response to LPL deficiency in AT that enables maintenance of normal AT mass. We show that the rate of FA production was 1.8-fold higher in LPL-deficient AT than in control AT. The levels of mRNA and enzymatic activities of important enzymes involved in FA and triglyceride biosynthesis were induced concomitantly. Increased plasma glucose clearing and (14)C-deoxyglucose uptake into LPL-deficient mouse fat pads indicated that glucose provided the carbon source for lipid synthesis. Leptin expression was decreased in LPL-deficient AT. Finally, the induction of de novo FA synthesis in LPL-deficient AT was associated with increased expression and processing of sterol regulatory element binding protein 1 (SREBP-1), together with an increase in INSIG-1 expression. These results suggest that in the absence of LPL in AT, lipogenesis is activated through increased SREBP-1 expression and processing triggered by decreased availability of nutrition-derived FAs, elevated insulin, and low leptin levels.
Collapse
Affiliation(s)
- Elke M Wagner
- Institute of Molecular Biology, Biochemistry, and Microbiology, University of Graz, Graz, Austria
| | | | | | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- Minghan Wang
- Department of Cardiovascular and Metabolic Diseases, Pharmacia Corporation, 800 North Lindbergh Boulevard, St Louis, Missouri 63167, USA.
| | | |
Collapse
|
47
|
Hensley LL, Ranganathan G, Wagner EM, Wells BD, Daniel JC, Vu D, Semenkovich CF, Zechner R, Kern PA. Transgenic mice expressing lipoprotein lipase in adipose tissue. Absence of the proximal 3'-untranslated region causes translational upregulation. J Biol Chem 2003; 278:32702-9. [PMID: 12796491 DOI: 10.1074/jbc.m304200200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipoprotein lipase (LPL) is a key enzyme in lipoprotein and adipocyte metabolism. Defects in LPL can lead to hypertriglyceridemia and the subsequent development of atherosclerosis. The mechanisms of regulation of this enzyme are complex and may occur at multiple levels of gene expression. Because the 3'-untranslated region (UTR) is involved in LPL translational regulation, transgenic mice were generated with adipose tissue expression of an LPL construct either with or without the proximal 3'-UTR and driven by the aP2 promoter. Both transgenic mouse colonies were viable and expressed the transgene, resulting in a 2-fold increase in LPL activity in white adipose tissue. Neither mouse colony exhibited any obvious phenotype in terms of body weight, plasma lipids, glucose, and non-esterified fatty acid levels. In the mice expressing hLPL with an intact 3'-UTR, hLPL mRNA expression approximately paralleled hLPL activity. However in the mice without the proximal 3'-UTR, hLPL mRNA was low in the setting of large amounts of hLPL protein and LPL activity. In previous studies, the 3'-UTR of LPL was critical for the inhibitory effects of constitutively expressed hormones, such as thyroid hormone and catecholamines. Therefore, these data suggest that the absence of the 3'-UTR results in a translationally unrepressed LPL, resulting in a moderate overexpression of adipose LPL activity.
Collapse
Affiliation(s)
- Lori L Hensley
- The Central Arkansas Veterans HealthCare System and Department of Medicine, Division of Endocrinology, University of Arkansas for Medicla Sciences, Little Rock, 72205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Esenabhalu VE, Schaeffer G, Graier WF. Free fatty acid overload attenuates Ca2+ signaling and NO production in endothelial cells. Antioxid Redox Signal 2003; 5:147-53. [PMID: 12716474 DOI: 10.1089/152308603764816505] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Hyperlipidemia represents a major risk factor for development of vascular dysfunction and atherosclerosis. Although the unfortunate role of low-density lipoprotein has been clearly demonstrated, the mechanistic pathways through which triglyceride-derived free fatty acids (FFAs) contribute to vascular disorders are not completely understood. Thus, the present study was designed to elucidate the effects of FFAs on cultured endothelial cells. The Ca(2+) signaling, endothelial nitric oxide synthase (eNOS) activity, and production of superoxide anions (.O(2)(-)) were monitored in cells treated with bovine serum albumin-conjugated FFA. FFA-loaded cells showed enhanced intracellular Ca(2+) release in response to ATP, histamine, or the SERCA inhibitor thapsigargin. This effect corresponded to an overall increase in intracellularly stored Ca(2+). In contrast, autacoid-triggered elevation of cytosolic free Ca(2+) concentration was blunted in FFA-loaded cells due to inhibition of capacitative Ca(2+) entry. In agreement with the reduced Ca(2+) signaling, the Ca(2+)-dependent activity of eNOS was reduced under basal conditions and if cells were stimulated with ATP, histamine, or thapsigargin. The attenuated eNOS activity was associated with.O(2)(-) release in FFA-loaded cells. These data indicate that FFAs significantly affect endothelial Ca(2+) signaling, eNOS activity, and.O(2)(-) release and, thus, might contribute to vascular dysfunction in atherogenesis.
Collapse
Affiliation(s)
- Victor E Esenabhalu
- Department of Medical Biochemistry and Medical Molecular Biology, Karl-Franzens University of Graz, Harrachgasse 21/211, A-8010 Graz, Austria
| | | | | |
Collapse
|
49
|
Nöhammer C, Brunner F, Wölkart G, Staber PB, Steyrer E, Gonzalez FJ, Zechner R, Hoefler G. Myocardial dysfunction and male mortality in peroxisome proliferator-activated receptor alpha knockout mice overexpressing lipoprotein lipase in muscle. J Transl Med 2003; 83:259-69. [PMID: 12594240 DOI: 10.1097/01.lab.0000053916.61772.ca] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Free fatty acids (FFA) are liberated from triglyceride-rich lipoproteins by lipoprotein lipase (LPL) and are considered to be a principal energy source for the heart. The peroxisome proliferator-activated receptor alpha (PPARalpha) is a key regulator of FFA catabolism. To investigate its role in cardiac muscle metabolism, transgenic mice overexpressing LPL in skeletal and cardiac muscle were bred on a PPARalpha knockout background. Fifty-five percent of male animals lacking PPARalpha and overexpressing LPL died within 4 months after birth. In contrast, females of this genotype stayed alive. Deceased animals exhibited cardiopulmonary congestion but had no increase of neutral lipids in the heart. Changes in plasma glucose, FFA, lactate, and triglycerides did not clearly account for gender-specific differences in mortality; however, they indicated a critical role for PPARalpha during fasting. Analysis of cardiac function revealed that in isolated perfused hearts, left ventricular developed pressure (a measure of contractility) was markedly lower in PPARalpha knockout mice overexpressing LPL compared with controls. Glucose uptake of isolated perfused hearts was significantly higher in PPARalpha knockout mice with both normal or increased LPL expression. However, uptake of FFA was not different among genotypes. In contrast, fasted FFA levels were significantly lower in cardiac muscle of PPARalpha knockout mice with normal LPL expression (-26%) and PPARalpha knockout mice overexpressing LPL (-38%) compared with controls. Our results indicate a critical role for PPARalpha in myocardial pump function and suggest that mouse models combining different genetic effects such as PPARalpha knockout mice overexpressing muscle LPL may be useful to study cardiomyopathies.
Collapse
Affiliation(s)
- Christa Nöhammer
- Department of Pathology, Pharmacology and Toxicology, University of Graz, Graz, Austria
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Augustus AS, Kako Y, Yagyu H, Goldberg IJ. Routes of FA delivery to cardiac muscle: modulation of lipoprotein lipolysis alters uptake of TG-derived FA. Am J Physiol Endocrinol Metab 2003; 284:E331-9. [PMID: 12388125 DOI: 10.1152/ajpendo.00298.2002] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Long-chain fatty acids (FA) supply 70-80% of the energy needs for normal cardiac muscle. To determine the sources of FA that supply the heart, [(14)C]palmitate complexed to bovine serum albumin and [(3)H]triolein [triglyceride (TG)] incorporated into Intralipid were simultaneously injected into fasted male C57BL/6 mice. The ratio of TG to FA uptake was much greater for hearts than livers. Using double-labeled Intralipid with [(3)H]cholesteryl oleoyl ether (CE) and [(14)C]TG, we observed that hearts also internalize intact core lipid. Inhibition of lipoprotein lipase (LPL) with tetrahydrolipstatin or dissociation of LPL from the heart with heparin reduced cardiac uptake of TG by 82 and 64%, respectively (P < 0.01). Palmitate uptake by the heart was not changed by either treatment. Uptake of TG was 88% less in hearts from LPL knockout mice that were rescued via LPL expression in the liver. Our data suggest that the heart is especially effective in removal of circulating TG and core lipids and that this is due to LPL hydrolysis and not its bridging function.
Collapse
Affiliation(s)
- Ayanna S Augustus
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | |
Collapse
|