1
|
Amado Costa L, Oliveira Amaral LB, Mourão FAG, Bader M, Santos RAS, Campagnole-Santos MJ, Kangussu LM. Anxiolytic effect of alamandine in male transgenic rats with low brain angiotensinogen is dependent on activation of MrgD receptors. Horm Behav 2024; 163:105551. [PMID: 38678724 DOI: 10.1016/j.yhbeh.2024.105551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/23/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Alamandine is a peptide hormone belonging to the renin-angiotensin system (RAS). It acts through the Mas-related G-protein coupled receptor type D, MrgD, which is expressed in different tissues, including the brain. In the present study, we hypothesize that a lack of alamandine, through MrgD, could cause the anxiety-like behavior in transgenic rats with low brain angiotensinogen [TGR(ASrAOGEN)680]. Adult male transgenic rats exhibited a significant increase in the latency to feeding time in the novelty suppressed feeding test and a decrease in the percentage of time and entries in the open arms in the elevated plus maze. These effects were reversed by intracerebroventricular infusion of alamandine. Pretreatment with D-Pro7-Ang-(1-7), a Mas and MrgD receptor antagonist, prevented the anxiolytic effects induced by this peptide. However, its effects were not altered by the selective Mas receptor antagonist, A779. In conclusion, our data indicates that alamandine, through MrgD, attenuates anxiety-like behavior in male TGR(ASrAOGEN)680, which reinforces the importance of the counter-regulatory RAS axis as promising target for the treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Laura Amado Costa
- Department of Morphology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Laura B Oliveira Amaral
- Department of Morphology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Flávio A G Mourão
- Department of Physiology and Biophysics, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Michael Bader
- National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar); Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Institute for Biology, University of Lübeck, Lübeck, Germany; Charité University Medicine Berlin, Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany
| | - Robson A S Santos
- Department of Physiology and Biophysics, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil; National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar)
| | - Maria José Campagnole-Santos
- Department of Physiology and Biophysics, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil; National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar)
| | - Lucas M Kangussu
- Department of Morphology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil; National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar).
| |
Collapse
|
2
|
Rodrigues AF, Bader M. The contribution of the AT1 receptor to erythropoiesis. Biochem Pharmacol 2023; 217:115805. [PMID: 37714274 DOI: 10.1016/j.bcp.2023.115805] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
The renin-angiotensin system (RAS) comprises a broad set of functional peptides and receptors that play a role in cardiovascular homeostasis and contribute to cardiovascular pathologies. Angiotensin II (Ang II) is the most potent peptide hormone produced by the RAS due to its high abundance and its strong and pleiotropic impact on the cardiovascular system. Formation of Ang II takes place in the bloodstream and additionally in tissues in the so-called local RAS. Of the two Ang II receptors (AT1 and AT2) that Ang II binds to, AT1 is the most expressed throughout the mammalian body. AT1 expression is not restricted to cells of the cardiovascular system but in fact AT1 protein is found in nearly all organs, hence, Ang II takes part in several modulatory physiological processes one of which is erythropoiesis. In this review, we present multiple evidence supporting that Ang II modulates physiological and pathological erythropoiesis processes trough the AT1 receptor. Cumulative evidence indicates that Ang II by three distinct mechanisms influences erythropoiesis: 1) stimulation of renal erythropoietin synthesis; 2) direct action on bone marrow precursor cells; and 3) modulation of sympathetic nerve activity to the bone marrow. The text highlights clinical and preclinical evidence focusing on mechanistic studies using rodent models.
Collapse
Affiliation(s)
- André F Rodrigues
- Max Delbrück Center (MDC), Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany.
| | - Michael Bader
- Max Delbrück Center (MDC), Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany; Charité Universitätsmedizin Berlin, Berlin, Germany; Institute for Biology, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
3
|
Peltekian L, Gasparini S, Fazan FS, Karthik S, Iverson G, Resch JM, Geerling JC. Sodium appetite and thirst do not require angiotensinogen production in astrocytes or hepatocytes. J Physiol 2023; 601:3499-3532. [PMID: 37291801 DOI: 10.1113/jp283169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/02/2023] [Indexed: 06/10/2023] Open
Abstract
In addition to its renal and cardiovascular functions, angiotensin signalling is thought to be responsible for the increases in salt and water intake caused by hypovolaemia. However, it remains unclear whether these behaviours require angiotensin production in the brain or liver. Here, we use in situ hybridization to identify tissue-specific expression of the genes required for producing angiotensin peptides, and then use conditional genetic deletion of the angiotensinogen gene (Agt) to test whether production in the brain or liver is necessary for sodium appetite and thirst. In the mouse brain, we identified expression of Agt (the precursor for all angiotensin peptides) in a large subset of astrocytes. We also identified Ren1 and Ace (encoding enzymes required to produce angiotensin II) expression in the choroid plexus, and Ren1 expression in neurons within the nucleus ambiguus compact formation. In the liver, we confirmed that Agt is widely expressed in hepatocytes. We next tested whether thirst and sodium appetite require angiotensinogen production in astrocytes or hepatocytes. Despite virtually eliminating expression in the brain, deleting astrocytic Agt did not reduce thirst or sodium appetite. Despite markedly reducing angiotensinogen in the blood, eliminating Agt from hepatocytes did not reduce thirst or sodium appetite, and in fact, these mice consumed the largest amounts of salt and water after sodium deprivation. Deleting Agt from both astrocytes and hepatocytes also did not prevent thirst or sodium appetite. Our findings suggest that angiotensin signalling is not required for sodium appetite or thirst and highlight the need to identify alternative signalling mechanisms. KEY POINTS: Angiotensin signalling is thought to be responsible for the increased thirst and sodium appetite caused by hypovolaemia, producing elevated water and sodium intake. Specific cells in separate brain regions express the three genes needed to produce angiotensin peptides, but brain-specific deletion of the angiotensinogen gene (Agt), which encodes the lone precursor for all angiotensin peptides, did not reduce thirst or sodium appetite. Double-deletion of Agt from brain and liver also did not reduce thirst or sodium appetite. Liver-specific deletion of Agt reduced circulating angiotensinogen levels without reducing thirst or sodium appetite. Instead, these angiotensin-deficient mice exhibited an enhanced sodium appetite. Because the physiological mechanisms controlling thirst and sodium appetite continued functioning without angiotensin production in the brain and liver, understanding these mechanisms requires a renewed search for the hypovolaemic signals necessary for activating each behaviour.
Collapse
Affiliation(s)
- Lila Peltekian
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | | | | | | | | | - Jon M Resch
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Joel C Geerling
- Department of Neurology, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
4
|
Renin-a in the Subfornical Organ Plays a Critical Role in the Maintenance of Salt-Sensitive Hypertension. Biomolecules 2022; 12:biom12091169. [PMID: 36139008 PMCID: PMC9496084 DOI: 10.3390/biom12091169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
The brain renin-angiotensin system plays important roles in blood pressure and cardiovascular regulation. There are two isoforms of prorenin in the brain: the classic secreted form (prorenin/sREN) encoded by renin-a, and an intracellular form (icREN) encoded by renin-b. Emerging evidence indicates the importance of renin-b in cardiovascular and metabolic regulation. However, the role of endogenous brain prorenin in the development of salt-sensitive hypertension remains undefined. In this study, we test the hypothesis that renin-a produced locally in the brain contributes to the pathogenesis of hypertension. Using RNAscope, we report for the first time that renin mRNA is expressed in several regions of the brain, including the subfornical organ (SFO), the paraventricular nucleus of the hypothalamus (PVN), and the brainstem, where it is found in glutamatergic, GABAergic, cholinergic, and tyrosine hydroxylase-positive neurons. Notably, we found that renin mRNA was significantly elevated in the SFO and PVN in a mouse model of DOCA-salt–induced hypertension. To examine the functional importance of renin-a in the SFO, we selectively ablated renin-a in the SFO in renin-a–floxed mice using a Cre-lox strategy. Importantly, renin-a ablation in the SFO attenuated the maintenance of DOCA-salt–induced hypertension and improved autonomic function without affecting fluid or sodium intake. Molecularly, ablation of renin-a prevented the DOCA-salt–induced elevation in NADPH oxidase 2 (NOX2) in the SFO without affecting NOX4 or angiotensin II type 1 and 2 receptors. Collectively, our findings demonstrate that endogenous renin-a within the SFO is important for the pathogenesis of salt-sensitive hypertension.
Collapse
|
5
|
Souza LA, Earley YF. (Pro)renin Receptor and Blood Pressure Regulation: A Focus on the Central Nervous System. Curr Hypertens Rev 2022; 18:101-116. [PMID: 35086455 PMCID: PMC9662243 DOI: 10.2174/1570162x20666220127105655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/02/2021] [Accepted: 12/06/2021] [Indexed: 01/27/2023]
Abstract
The renin-angiotensin system (RAS) is classically described as a hormonal system in which angiotensin II (Ang II) is one of the main active peptides. The action of circulating Ang II on its cognate Ang II type-1 receptor (AT1R) in circumventricular organs has important roles in regulating the autonomic nervous system, blood pressure (BP) and body fluid homeostasis, and has more recently been implicated in cardiovascular metabolism. The presence of a local or tissue RAS in various tissues, including the central nervous system (CNS), is well established. However, because the level of renin, the rate-limiting enzyme in the systemic RAS, is very low in the brain, how endogenous angiotensin peptides are generated in the CNS-the focus of this review-has been the subject of considerable debate. Notable in this context is the identification of the (pro)renin receptor (PRR) as a key component of the brain RAS in the production of Ang II in the CNS. In this review, we highlight cellular and anatomical locations of the PRR in the CNS. We also summarize studies using gain- and loss-of function approaches to elucidate the functional importance of brain PRR-mediated Ang II formation and brain RAS activation, as well as PRR-mediated Ang II-independent signaling pathways, in regulating BP. We further discuss recent developments in PRR involvement in cardiovascular and metabolic diseases and present perspectives for future directions.
Collapse
Affiliation(s)
- Lucas A.C. Souza
- Departments of Pharmacology and Physiology & Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, USA,Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, Reno, NV, USA
| | - Yumei Feng Earley
- Departments of Pharmacology and Physiology & Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, USA,Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, Reno, NV, USA
| |
Collapse
|
6
|
Alves DT, Mendes LF, Sampaio WO, Coimbra-Campos LMC, Vieira MAR, Ferreira AJ, Martins AS, Popova E, Todiras M, Qadri F, Alenina N, Bader M, Santos RAS, Campagnole-Santos MJ. Hemodynamic phenotyping of transgenic rats with ubiquitous expression of an angiotensin-(1-7)-producing fusion protein. Clin Sci (Lond) 2021; 135:2197-2216. [PMID: 34494083 DOI: 10.1042/cs20210599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022]
Abstract
Activation of the angiotensin (Ang)-converting enzyme (ACE) 2/Ang-(1-7)/MAS receptor pathway of the renin-angiotensin system (RAS) induces protective mechanisms in different diseases. Herein, we describe the cardiovascular phenotype of a new transgenic rat line (TG7371) that expresses an Ang-(1-7)-producing fusion protein. The transgene-specific mRNA and the corresponding protein were shown to be present in all evaluated tissues of TG7371 with the highest expression in aorta and brain. Plasma Ang-(1-7) levels, measured by radioimmunoassay (RIA) were similar to control Sprague-Dawley (SD) rats, however high Ang-(1-7) levels were found in the hypothalamus. TG7371 showed lower baseline mean arterial pressure (MAP), assessed in conscious or anesthetized rats by telemetry or short-term recordings, associated with increased plasma atrial natriuretic peptide (ANP) and higher urinary sodium concentration. Moreover, evaluation of regional blood flow and hemodynamic parameters with fluorescent microspheres showed a significant increase in blood flow in different tissues (kidneys, mesentery, muscle, spleen, brown fat, heart and skin), with a resulting decrease in total peripheral resistance (TPR). TG7371 rats, on the other hand, also presented increased cardiac and global sympathetic tone, increased plasma vasopressin (AVP) levels and decreased free water clearance. Altogether, our data show that expression of an Ang-(1-7)-producing fusion protein induced a hypotensive phenotype due to widespread vasodilation and consequent fall in peripheral resistance. This phenotype was associated with an increase in ANP together with an increase in AVP and sympathetic drive, which did not fully compensate the lower blood pressure (BP). Here we present the hemodynamic impact of long-term increase in tissue expression of an Ang-(1-7)-fusion protein and provide a new tool to investigate this peptide in different pathophysiological conditions.
Collapse
Affiliation(s)
- Daniele T Alves
- Department of Physiology and Biophysics and INCT-Nanobiopharmaceutics, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Max-Delbrück Center for Molecular Medicine-MDC, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Beriln, Germany
| | - Luiz Felipe Mendes
- Department of Physiology and Biophysics and INCT-Nanobiopharmaceutics, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Walkyria O Sampaio
- Department of Physiology and Biophysics and INCT-Nanobiopharmaceutics, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leda M C Coimbra-Campos
- Department of Physiology and Biophysics and INCT-Nanobiopharmaceutics, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria Aparecida R Vieira
- Department of Physiology and Biophysics and INCT-Nanobiopharmaceutics, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Anderson J Ferreira
- Department of Morphology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Almir S Martins
- Department of Physiology and Biophysics and INCT-Nanobiopharmaceutics, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Elena Popova
- Max-Delbrück Center for Molecular Medicine-MDC, Berlin, Germany
| | - Mihail Todiras
- Max-Delbrück Center for Molecular Medicine-MDC, Berlin, Germany
| | | | - Natalia Alenina
- Max-Delbrück Center for Molecular Medicine-MDC, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Beriln, Germany
| | - Michael Bader
- Max-Delbrück Center for Molecular Medicine-MDC, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Beriln, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
- Charité, University Medicine Berlin, Berlin, Germany
| | - Robson A S Santos
- Department of Physiology and Biophysics and INCT-Nanobiopharmaceutics, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria Jose Campagnole-Santos
- Department of Physiology and Biophysics and INCT-Nanobiopharmaceutics, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
7
|
Brain Renin-Angiotensin System as Novel and Potential Therapeutic Target for Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms221810139. [PMID: 34576302 PMCID: PMC8468637 DOI: 10.3390/ijms221810139] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
The activation of the brain renin-angiotensin system (RAS) plays a pivotal role in the pathophysiology of cognition. While the brain RAS has been studied before in the context of hypertension, little is known about its role and regulation in relation to neuronal function and its modulation. Adequate blood flow to the brain as well as proper clearing of metabolic byproducts become crucial in the presence of neurodegenerative disorders such as Alzheimer's disease (AD). RAS inhibition (RASi) drugs that can cross into the central nervous system have yielded unclear results in improving cognition in AD patients. Consequently, only one RASi therapy is under consideration in clinical trials to modify AD. Moreover, the role of non-genetic factors such as hypercholesterolemia in the pathophysiology of AD remains largely uncharacterized, even when evidence exists that it can lead to alteration of the RAS and cognition in animal models. Here we revise the evidence for the function of the brain RAS in cognition and AD pathogenesis and summarize the evidence that links it to hypercholesterolemia and other risk factors. We review existent medications for RASi therapy and show research on novel drugs, including small molecules and nanodelivery strategies that can target the brain RAS with potential high specificity. We hope that further research into the brain RAS function and modulation will lead to innovative therapies that can finally improve AD neurodegeneration.
Collapse
|
8
|
Rukavina Mikusic NL, Pineda AM, Gironacci MM. Angiotensin-(1-7) and Mas receptor in the brain. EXPLORATION OF MEDICINE 2021. [DOI: 10.37349/emed.2021.00046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The renin-angiotensin system (RAS) is a key regulator of blood pressure and electrolyte homeostasis. Besides its importance as regulator of the cardiovascular function, the RAS has also been associated to the modulation of higher brain functions, including cognition, memory, depression and anxiety. For many years, angiotensin II (Ang II) has been considered the major bioactive component of the RAS. However, the existence of many other biologically active RAS components has currently been recognized, with similar, opposite, or distinct effects to those exerted by Ang II. Today, it is considered that the RAS is primarily constituted by two opposite arms. The pressor arm is composed by Ang II and the Ang II type 1 (AT1) receptor (AT1R), which mediates the vasoconstrictor, proliferative, hypertensive, oxidative and pro-inflammatory effects of the RAS. The depressor arm is mainly composed by Ang-(1-7), its Mas receptor (MasR) which mediates the depressor, vasodilatory, antiproliferative, antioxidant and anti-inflammatory effects of Ang-(1-7) and the AT2 receptor (AT2R), which opposes to the effects mediated by AT1R activation. Central Ang-(1-7) is implicated in the control of the cardiovascular function, thus participating in the regulation of blood pressure. Ang-(1-7) also exerts neuroprotective actions through MasR activation by opposing to the harmful effects of the Ang II/AT1R axis. This review is focused on the expression and regulation of the Ang-(1-7)/MasR axis in the brain, its main neuroprotective effects and the evidence regarding its involvement in the pathophysiology of several diseases at cardiovascular and neurological level.
Collapse
Affiliation(s)
- Natalia L. Rukavina Mikusic
- Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Buenos Aires, Argentina
| | - Angélica M. Pineda
- Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Buenos Aires, Argentina
| | - Mariela M. Gironacci
- Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Buenos Aires, Argentina
| |
Collapse
|
9
|
Increased angiotensin II formation in the brain modulates cardiovascular homeostasis and erythropoiesis. Clin Sci (Lond) 2021; 135:1353-1367. [DOI: 10.1042/cs20210072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 11/17/2022]
Abstract
Abstract
In spite of the fact that the modulatory effects of angiotensin II (Ang II) on the sympathetic nerve activity to targeted organs involved in blood pressure (BP) regulation is well acknowledged, the local production of this peptide in the brain and the consequences of enhanced central Ang II beyond the cardiovascular system are not yet well comprehended. In the present study, we generated and validated a new transgenic mouse line overexpressing the rat full-length angiotensinogen (Agt) protein specifically in the brain (Agt-Tg). Adult Agt-Tg mice presented overall increased gene expression of total Agt in the brain including brainstem and hypothalamus. In addition, the excess of Agt led to abundantly detectable brain Ang II levels as well as increased circulating copeptin levels. Agt-Tg displayed raised BP in acute recordings, while long-term telemetrically measured basal BP was indistinguishable from wild-types. Agt-Tg has altered peripheral renin–angiotensin system and vasomotor sympathetic tone homeostasis because renal gene expression analysis, plasma Ang II measurements and ganglionic blockade experiments revealed suppressed renin expression and reduced Ang II and higher neurogenic pressure response, respectively. Plasma and urine screens revealed apparently normal fluid and electrolyte handling in Agt-Tg. Interestingly, hematological analyses showed increased hematocrit in Agt-Tg caused by enhanced erythropoiesis, which was reverted by submitting the transgenic mice to a long-term peripheral sympathectomy protocol. Collectively, our findings suggest that Agt-Tg is a valuable tool to study not only brain Ang II formation and its modulatory effects on cardiovascular homeostasis but also its role in erythropoiesis control via autonomic modulation.
Collapse
|
10
|
Almeida-Santos AF, de Melo LA, Gonçalves SCA, Oliveira Amaral LB, Santos RAS, Campagnole-Santos MJ, Kangussu LM. Alamandine through MrgD receptor induces antidepressant-like effect in transgenic rats with low brain angiotensinogen. Horm Behav 2021; 127:104880. [PMID: 33129833 DOI: 10.1016/j.yhbeh.2020.104880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/25/2020] [Accepted: 10/22/2020] [Indexed: 01/30/2023]
Abstract
Alamandine (Ala1-Arg2-Val3-Tyr4-Ile5-His6-Pro7), a heptapeptide hormone of the renin-angiotensin system (RAS), exerts its effects through the Mas-related G-protein coupled receptor of the type D, MrgD, which is expressed in different tissues, including the brain. In the present study, we tested the hypothesis that alamandine could attenuate the depression-like behavior observed in transgenic rats with low brain angiotensinogen, TGR (ASrAOGEN)680. Transgenic rats exhibited a significant increase in the immobility time in forced swim test, a phenotype reversed by intracerebroventricular infusion of alamandine. Pretreatment with D-Pro7-Ang-(1-7), a Mas/MrgD receptor antagonist, prevented the antidepressant-like effect induced by this peptide demonstrating, for the first time, that alamandine through MrgD receptor, can modulate depression-like behavior in TGR (ASrAOGEN)680. This result shows an action of alamandine which strengthens the importance of the counter-regulatory arms of the RAS in fight and treatment of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Ana F Almeida-Santos
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil; National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Leonardo A de Melo
- Department of Morphology of the Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Sthéfanie C A Gonçalves
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil; National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Laura B Oliveira Amaral
- Department of Morphology of the Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Robson A S Santos
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil; National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil.
| | - Maria José Campagnole-Santos
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil; National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil.
| | - Lucas M Kangussu
- National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil; Department of Morphology of the Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil.
| |
Collapse
|
11
|
Souza MM, Vechiato FMV, Debarba LK, Leao RM, Dias MVS, Pereira AA, Cruz JC, Elias LLK, Antunes-Rodrigues J, Ruginsk SG. Effects of Hyperosmolality on Hypothalamic Astrocytic Area, mRNA Expression and Glutamate Balance In Vitro. Neuroscience 2020; 442:286-295. [PMID: 32599125 DOI: 10.1016/j.neuroscience.2020.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 11/17/2022]
Abstract
During prolonged dehydration, body fluid homeostasis is challenged by extracellular fluid (ECF) hyperosmolality, which induce important functional changes in the hypothalamus, in parallel with other effector responses, such as the activation of the local renin-angiotensin system (RAS). Therefore, in the present study we investigated the role of sodium-driven ECF hyperosmolality on glial fibrillary acid protein (GFAP) immunoreactivity and protein expression, membrane capacitance, mRNA expression of RAS components and glutamate balance in cultured hypothalamic astrocytes. Our data show that hypothalamic astrocytes respond to increased hyperosmolality with a similar decrease in GFAP expression and membrane capacitance, indicative of reduced cellular area. Hyperosmolality also downregulates the transcript levels of angiotensinogen and both angiotensin-converting enzymes, whereas upregulates type 1a angiotensin II receptor mRNA. Incubation with hypertonic solution also decreases the immunoreactivity to the membrane glutamate/aspartate transporter (GLAST) as well as tritiated-aspartate uptake by astrocytes. This latter effect is completely restored to basal levels when astrocytes previously exposed to hypertonicity are incubated under isotonic conditions. Together with a direct effect on two important local signaling systems (glutamate and RAS), these synaptic rearrangements driven by astrocytes may accomplish for a coordinated increase in the excitatory drive onto the hypothalamic neurosecretory system, ultimately culminating with increased AVP release in response to hyperosmolality.
Collapse
Affiliation(s)
- M M Souza
- Department of Physiological Sciences, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - F M V Vechiato
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - L K Debarba
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - R M Leao
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - M V S Dias
- Natural Sciences Institute, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - A A Pereira
- Food and Drugs Department, Pharmaceutical Sciences Faculty, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - J C Cruz
- Biotechnology Center, Department of Biotechnology, Federal University of Paraiba, Joao Pessoa, Paraiba, Brazil
| | - L L K Elias
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - J Antunes-Rodrigues
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - S G Ruginsk
- Department of Physiological Sciences, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil.
| |
Collapse
|
12
|
Role of brain renin angiotensin system in neurodegeneration: An update. Saudi J Biol Sci 2020; 27:905-912. [PMID: 32127770 PMCID: PMC7042626 DOI: 10.1016/j.sjbs.2020.01.026] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 01/12/2023] Open
Abstract
Renin angiotensin system (RAS) is an endocrine system widely known for its physiological roles in electrolyte homeostasis, body fluid volume regulation and cardiovascular control in peripheral circulation. However, brain RAS is an independent form of RAS expressed locally in the brain, which is known to be involved in brain functions and disorders. There is strong evidence for a major involvement of excessive brain angiotensin converting enzyme (ACE)/Angiotensin II (Ang II)/Angiotensin type-1 receptor (AT-1R) axis in increased activation of oxidative stress, apoptosis and neuroinflammation causing neurodegeneration in several brain disorders. Numerous studies have demonstrated strong neuroprotective effects by blocking AT1R in these brain disorders. Additionally, the angiotensin converting enzyme 2 (ACE2)/Angiotensin (1–7)/Mas receptor (MASR), is another axis of brain RAS which counteracts the damaging effects of ACE/Ang II/AT1R axis on neurons in the brain. Thus, angiotensin II receptor blockers (ARBs) and activation of ACE2/Angiotensin (1–7)/MASR axis may serve as an exciting and novel method for neuroprotection in several neurodegenerative diseases. Here in this review article, we discuss the expression of RAS in the brain and highlight how altered RAS level may cause neurodegeneration. Understanding the pathophysiology of RAS and their links to neurodegeneration has enormous potential to identify potentially effective pharmacological tools to treat neurodegenerative diseases in the brain.
Collapse
|
13
|
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98:1627-1738. [PMID: 29873596 DOI: 10.1152/physrev.00038.2017] [Citation(s) in RCA: 714] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - George W Booz
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Curt D Sigmund
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thomas M Coffman
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
14
|
Angiotensin generation in the brain: a re-evaluation. Clin Sci (Lond) 2018; 132:839-850. [PMID: 29712882 DOI: 10.1042/cs20180236] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 02/06/2023]
Abstract
The existence of a so-called brain renin-angiotensin system (RAS) is controversial. Given the presence of the blood-brain barrier, angiotensin generation in the brain, if occurring, should depend on local synthesis of renin and angiotensinogen. Yet, although initially brain-selective expression of intracellular renin was reported, data in intracellular renin knockout animals argue against a role for this renin in angiotensin generation. Moreover, renin levels in brain tissue at most represented renin in trapped blood. Additionally, in neurogenic hypertension brain prorenin up-regulation has been claimed, which would generate angiotensin following its binding to the (pro)renin receptor. However, recent studies reported no evidence for prorenin expression in the brain, nor for its selective up-regulation in neurogenic hypertension, and the (pro)renin receptor rather displays RAS-unrelated functions. Finally, although angiotensinogen mRNA is detectable in the brain, brain angiotensinogen protein levels are low, and even these low levels might be an overestimation due to assay artefacts. Taken together, independent angiotensin generation in the brain is unlikely. Indeed, brain angiotensin levels are extremely low, with angiotensin (Ang) I levels corresponding to the small amounts of Ang I in trapped blood plasma, and Ang II levels at most representing Ang II bound to (vascular) brain Ang II type 1 receptors. This review concludes with a unifying concept proposing the blood origin of angiotensin in the brain, possibly resulting in increased levels following blood-brain barrier disruption (e.g. due to hypertension), and suggesting that interfering with either intracellular renin or the (pro)renin receptor has consequences in an RAS-independent manner.
Collapse
|
15
|
de Morais SDB, Shanks J, Zucker IH. Integrative Physiological Aspects of Brain RAS in Hypertension. Curr Hypertens Rep 2018; 20:10. [PMID: 29480460 DOI: 10.1007/s11906-018-0810-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW The renin-angiotensin system (RAS) plays an important role in modulating cardiovascular function and fluid homeostasis. While the systemic actions of the RAS are widely accepted, the role of the RAS in the brain, its regulation of cardiovascular function, and sympathetic outflow remain controversial. In this report, we discuss the current understanding of central RAS on blood pressure (BP) regulation, in light of recent literature and new experimental techniques. RECENT FINDINGS Studies using neuronal or glial-specifc mouse models have allowed for greater understanding into the site-specific expression and role centrally expressed RAS proteins have on BP regulation. While all components of the RAS have been identified in cardiovascular regulatory regions of the brain, their actions may be site specific. In a number of animal models of hypertension, reduction in Ang II-mediated signaling, or upregulation of the central ACE2/Ang 1-7 pathway, has been shown to reduce BP, via a reduction in sympathetic signaling and increase parasympathetic tone, respectively. Emerging evidence also suggests that, in part, the female protective phenotype against hypertension may be due to inceased ACE2 activity within cardiovascular regulatory regions of the brain, potentially mediated by estrogen. Increasing evidence suggests the importance of a central renin-angiotensin pathway, although its localization and the mechanisms involved in its expression and regulation still need to be clarified and more precisely defined. All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).
Collapse
Affiliation(s)
- Sharon D B de Morais
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Julia Shanks
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA.
| |
Collapse
|
16
|
Development of obesity can be prevented in rats by chronic icv infusions of AngII but less by Ang(1-7). Pflugers Arch 2018; 470:867-881. [PMID: 29430615 DOI: 10.1007/s00424-018-2117-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 02/07/2023]
Abstract
Considering that obesity is one of the leading risks for death worldwide, it should be noted that a brain-related mechanism is involved in AngII-induced and AT1-receptor-dependent weight loss. It is moreover established that activation of the Ang(1-7)/ACE2/Mas axis reduces weight, but it remains unclear whether this Ang(1-7) effect is also mediated via a brain-related mechanism. Additionally to Sprague Dawley (SD) rats, we used TGR(ASrAOGEN) selectively lacking brain angiotensinogen, the precursor to AngII, as we speculated that effects are more pronounced in a model with low brain RAS activity. Rats were fed with high-calorie cafeteria diet. We investigated weight regulation, food behavior, and energy balance in response to chronic icv.-infusions of AngII (200 ng•h-1), or Ang(1-7) (200/600 ng•h-1) or artificial cerebrospinal fluid. High- but not low-dose Ang(1-7) slightly decreased weight gain and energy intake in SD rats. AngII showed an anti-obese efficacy in SD rats by decreasing energy intake and increasing energy expenditure and also improved glucose control. TGR(ASrAOGEN) were protected from developing obesity. However, Ang(1-7) did not reveal any effects in TGR(ASrAOGEN) and those of AngII were minor compared to SD rats. Our results emphasize that brain AngII is a key contributor for regulating energy homeostasis and weight in obesity by serving as a negative brain-related feedback signal to alleviate weight gain. Brain-related anti-obese potency of Ang(1-7) is lower than AngII but must be further investigated by using other transgenic models as TGR(ASrAOGEN) proved to be less valuable for answering this question.
Collapse
|
17
|
Sapouckey SA, Deng G, Sigmund CD, Grobe JL. Potential mechanisms of hypothalamic renin-angiotensin system activation by leptin and DOCA-salt for the control of resting metabolism. Physiol Genomics 2017; 49:722-732. [PMID: 28986397 DOI: 10.1152/physiolgenomics.00087.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/22/2017] [Indexed: 02/07/2023] Open
Abstract
The renin-angiotensin system (RAS), originally described as a circulating hormone system, is an enzymatic cascade in which the final vasoactive peptide angiotensin II (ANG) regulates cardiovascular, hydromineral, and metabolic functions. The RAS is also synthesized locally in a number of tissues including the brain, where it can act in a paracrine fashion to regulate blood pressure, thirst, fluid balance, and resting energy expenditure/resting metabolic rate (RMR). Recent studies demonstrate that ANG AT1A receptors (Agtr1a) specifically in agouti-related peptide (AgRP) neurons of the arcuate nucleus (ARC) coordinate autonomic and energy expenditure responses to various stimuli including deoxycorticosterone acetate (DOCA)-salt, high-fat feeding, and leptin. It remains unclear, however, how these disparate stimuli converge upon and activate this specific population of AT1A receptors in AgRP neurons. We hypothesize that these stimuli may act to stimulate local expression of the angiotensinogen (AGT) precursor for ANG, or the expression of AT1A receptors, and thereby local activity of the RAS within the (ARC). Here we review mechanisms that may control AGT and AT1A expression within the central nervous system, with a particular focus on mechanisms activated by steroids, dietary fat, and leptin.
Collapse
Affiliation(s)
- Sarah A Sapouckey
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Molecular Medicine Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Guorui Deng
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Curt D Sigmund
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Molecular Medicine Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Center for Hypertension Research, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Fraternal Order of Eagles' Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Justin L Grobe
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa; .,Molecular Medicine Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Center for Hypertension Research, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Fraternal Order of Eagles' Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa; and.,Obesity Research & Education Initiative, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
18
|
Huber G, Schuster F, Raasch W. Brain renin-angiotensin system in the pathophysiology of cardiovascular diseases. Pharmacol Res 2017; 125:72-90. [PMID: 28687340 DOI: 10.1016/j.phrs.2017.06.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/28/2017] [Accepted: 06/28/2017] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVD) are among the main causes of death globally and in this context hypertension represents one of the key risk factors for developing a CVD. It is well established that the peripheral renin-angiotensin system (RAS) plays an important role in regulating blood pressure (BP). All components of the classic RAS can also be found in the brain but, in contrast to the peripheral RAS, how the endogenous RAS is involved in modulating cardiovascular effects in the brain is not fully understood yet. It is a complex system that may work differently in diverse areas of the brain and is linked to the peripheral system by the circumventricular organs (CVO), which do not have a blood brain barrier (BBB). In this review, we focus on the brain angiotensin peptides, their interactions with each other, and the consequences in the central nervous system (CNS) concerning cardiovascular control. Additionally, we present potential drug targets in the brain RAS for the treatment of hypertension.
Collapse
Affiliation(s)
- Gianna Huber
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany; CBBM (Center of Brain, Behavior and Metabolism), Lübeck, Germany
| | - Franziska Schuster
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany; CBBM (Center of Brain, Behavior and Metabolism), Lübeck, Germany
| | - Walter Raasch
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany; CBBM (Center of Brain, Behavior and Metabolism), Lübeck, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany.
| |
Collapse
|
19
|
Affiliation(s)
- Pablo Nakagawa
- From the Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City
| | - Curt D Sigmund
- From the Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City.
| |
Collapse
|
20
|
Affiliation(s)
- Curt D Sigmund
- From the Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (C.D.S.); and Department of Surgery, Hypertension and Vascular Research, Cardiovascular Sciences Center, Wake Forest School of Medicine, Winston-Salem, NC (D.I.D., M.C.C.).
| | - Debra I Diz
- From the Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (C.D.S.); and Department of Surgery, Hypertension and Vascular Research, Cardiovascular Sciences Center, Wake Forest School of Medicine, Winston-Salem, NC (D.I.D., M.C.C.)
| | - Mark C Chappell
- From the Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City (C.D.S.); and Department of Surgery, Hypertension and Vascular Research, Cardiovascular Sciences Center, Wake Forest School of Medicine, Winston-Salem, NC (D.I.D., M.C.C.)
| |
Collapse
|
21
|
van Thiel BS, Góes Martini A, Te Riet L, Severs D, Uijl E, Garrelds IM, Leijten FPJ, van der Pluijm I, Essers J, Qadri F, Alenina N, Bader M, Paulis L, Rajkovicova R, Domenig O, Poglitsch M, Danser AHJ. Brain Renin-Angiotensin System: Does It Exist? Hypertension 2017; 69:1136-1144. [PMID: 28396529 DOI: 10.1161/hypertensionaha.116.08922] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 01/12/2017] [Accepted: 01/29/2017] [Indexed: 12/14/2022]
Abstract
Because of the presence of the blood-brain barrier, brain renin-angiotensin system activity should depend on local (pro)renin synthesis. Indeed, an intracellular form of renin has been described in the brain, but whether it displays angiotensin (Ang) I-generating activity (AGA) is unknown. Here, we quantified brain (pro)renin, before and after buffer perfusion of the brain, in wild-type mice, renin knockout mice, deoxycorticosterone acetate salt-treated mice, and Ang II-infused mice. Brain regions were homogenized and incubated with excess angiotensinogen to detect AGA, before and after prorenin activation, using a renin inhibitor to correct for nonrenin-mediated AGA. Renin-dependent AGA was readily detectable in brain regions, the highest AGA being present in brain stem (>thalamus=cerebellum=striatum=midbrain>hippocampus=cortex). Brain AGA increased marginally after prorenin activation, suggesting that brain prorenin is low. Buffer perfusion reduced AGA in all brain areas by >60%. Plasma renin (per mL) was 40× to 800× higher than brain renin (per gram). Renin was undetectable in plasma and brain of renin knockout mice. Deoxycorticosterone acetate salt and Ang II suppressed plasma renin and brain renin in parallel, without upregulating brain prorenin. Finally, Ang I was undetectable in brains of spontaneously hypertensive rats, while their brain/plasma Ang II concentration ratio decreased by 80% after Ang II type 1 receptor blockade. In conclusion, brain renin levels (per gram) correspond with the amount of renin present in 1 to 20 μL of plasma. Brain renin disappears after buffer perfusion and varies in association with plasma renin. This indicates that brain renin represents trapped plasma renin. Brain Ang II represents Ang II taken up from blood rather than locally synthesized Ang II.
Collapse
Affiliation(s)
- Bibi S van Thiel
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - Alexandre Góes Martini
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - Luuk Te Riet
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - David Severs
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - Estrellita Uijl
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - Ingrid M Garrelds
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - Frank P J Leijten
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - Ingrid van der Pluijm
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - Jeroen Essers
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - Fatimunnisa Qadri
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - Natalia Alenina
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - Michael Bader
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - Ludovit Paulis
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - Romana Rajkovicova
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - Oliver Domenig
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - Marko Poglitsch
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - A H Jan Danser
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria.
| |
Collapse
|
22
|
Shinohara K, Liu X, Morgan DA, Davis DR, Sequeira-Lopez MLS, Cassell MD, Grobe JL, Rahmouni K, Sigmund CD. Selective Deletion of the Brain-Specific Isoform of Renin Causes Neurogenic Hypertension. Hypertension 2016; 68:1385-1392. [PMID: 27754863 DOI: 10.1161/hypertensionaha.116.08242] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/11/2016] [Accepted: 09/21/2016] [Indexed: 11/16/2022]
Abstract
The renin-angiotensin system (RAS) in the brain is a critical determinant of blood pressure, but the mechanisms regulating RAS activity in the brain remain unclear. Expression of brain renin (renin-b) occurs from an alternative promoter-first exon. The predicted translation product is a nonsecreted enzymatically active renin whose function is unknown. We generated a unique mouse model by selectively ablating the brain-specific isoform of renin (renin-b) while preserving the expression and function of the classical isoform expressed in the kidney (renin-a). Preservation of renal renin was confirmed by measurements of renin gene expression and immunohistochemistry. Surprisingly, renin-b-deficient mice exhibited hypertension, increased sympathetic nerve activity to the kidney and heart, and impaired baroreflex sensitivity. Whereas these mice displayed decreased circulating RAS activity, there was a paradoxical increase in brain RAS activity. Physiologically, renin-b-deficient mice exhibited an exaggerated depressor response to intracerebroventricular administration of losartan, captopril, or aliskiren. At the molecular level, renin-b-deficient mice exhibited increased expression of angiotensin-II type 1 receptor in the paraventricular nucleus, which correlated with an increased renal sympathetic nerve response to leptin, which was dependent on angiotensin-II type 1 receptor activity. Interestingly, despite an ablation of renin-b expression, expression of renin-a was significantly increased in rostral ventrolateral medulla. These data support a new paradigm for the genetic control of RAS activity in the brain by a coordinated regulation of the renin isoforms, with expression of renin-b tonically inhibiting expression of renin-a under baseline conditions. Impairment of this control mechanism causes neurogenic hypertension.
Collapse
Affiliation(s)
- Keisuke Shinohara
- From the Department of Pharmacology (K.S., X.L., D.A.M., D.R.D., J.L.G., K.R., C.D.S.), Department of Anatomy and Cell Biology (M.D.C.), and UIHC Center for Hypertension Research (J.L.G., K.R., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics (M.L.S.S.-L.), University of Virginia, Charlottesville
| | - Xuebo Liu
- From the Department of Pharmacology (K.S., X.L., D.A.M., D.R.D., J.L.G., K.R., C.D.S.), Department of Anatomy and Cell Biology (M.D.C.), and UIHC Center for Hypertension Research (J.L.G., K.R., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics (M.L.S.S.-L.), University of Virginia, Charlottesville
| | - Donald A Morgan
- From the Department of Pharmacology (K.S., X.L., D.A.M., D.R.D., J.L.G., K.R., C.D.S.), Department of Anatomy and Cell Biology (M.D.C.), and UIHC Center for Hypertension Research (J.L.G., K.R., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics (M.L.S.S.-L.), University of Virginia, Charlottesville
| | - Deborah R Davis
- From the Department of Pharmacology (K.S., X.L., D.A.M., D.R.D., J.L.G., K.R., C.D.S.), Department of Anatomy and Cell Biology (M.D.C.), and UIHC Center for Hypertension Research (J.L.G., K.R., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics (M.L.S.S.-L.), University of Virginia, Charlottesville
| | - Maria Luisa S Sequeira-Lopez
- From the Department of Pharmacology (K.S., X.L., D.A.M., D.R.D., J.L.G., K.R., C.D.S.), Department of Anatomy and Cell Biology (M.D.C.), and UIHC Center for Hypertension Research (J.L.G., K.R., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics (M.L.S.S.-L.), University of Virginia, Charlottesville
| | - Martin D Cassell
- From the Department of Pharmacology (K.S., X.L., D.A.M., D.R.D., J.L.G., K.R., C.D.S.), Department of Anatomy and Cell Biology (M.D.C.), and UIHC Center for Hypertension Research (J.L.G., K.R., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics (M.L.S.S.-L.), University of Virginia, Charlottesville
| | - Justin L Grobe
- From the Department of Pharmacology (K.S., X.L., D.A.M., D.R.D., J.L.G., K.R., C.D.S.), Department of Anatomy and Cell Biology (M.D.C.), and UIHC Center for Hypertension Research (J.L.G., K.R., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics (M.L.S.S.-L.), University of Virginia, Charlottesville
| | - Kamal Rahmouni
- From the Department of Pharmacology (K.S., X.L., D.A.M., D.R.D., J.L.G., K.R., C.D.S.), Department of Anatomy and Cell Biology (M.D.C.), and UIHC Center for Hypertension Research (J.L.G., K.R., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics (M.L.S.S.-L.), University of Virginia, Charlottesville
| | - Curt D Sigmund
- From the Department of Pharmacology (K.S., X.L., D.A.M., D.R.D., J.L.G., K.R., C.D.S.), Department of Anatomy and Cell Biology (M.D.C.), and UIHC Center for Hypertension Research (J.L.G., K.R., C.D.S.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City; and Department of Pediatrics (M.L.S.S.-L.), University of Virginia, Charlottesville.
| |
Collapse
|
23
|
Gowrisankar YV, Clark MA. Regulation of angiotensinogen expression by angiotensin II in spontaneously hypertensive rat primary astrocyte cultures. Brain Res 2016; 1643:51-8. [DOI: 10.1016/j.brainres.2016.04.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/07/2016] [Accepted: 04/25/2016] [Indexed: 01/26/2023]
|
24
|
Schaich CL, Grabenauer M, Thomas BF, Shaltout HA, Gallagher PE, Howlett AC, Diz DI. Medullary Endocannabinoids Contribute to the Differential Resting Baroreflex Sensitivity in Rats with Altered Brain Renin-Angiotensin System Expression. Front Physiol 2016; 7:207. [PMID: 27375489 PMCID: PMC4899471 DOI: 10.3389/fphys.2016.00207] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 05/22/2016] [Indexed: 11/13/2022] Open
Abstract
CB1 cannabinoid receptors are expressed on vagal afferent fibers and neurons within the solitary tract nucleus (NTS), providing anatomical evidence for their role in arterial baroreflex modulation. To better understand the relationship between the brain renin-angiotensin system (RAS) and endocannabinoid expression within the NTS, we measured dorsal medullary endocannabinoid tissue content and the effects of CB1 receptor blockade at this brain site on cardiac baroreflex sensitivity (BRS) in ASrAOGEN rats with low glial angiotensinogen, normal Sprague-Dawley rats and (mRen2)27 rats with upregulated brain RAS expression. Mass spectrometry revealed higher levels of the endocannabinoid 2-arachidonoylglycerol in (mRen2)27 compared to ASrAOGEN rats (2.70 ± 0.28 vs. 1.17 ± 0.09 ng/mg tissue; P < 0.01), while Sprague-Dawley rats had intermediate content (1.85 ± 0.27 ng/mg tissue). Microinjection of the CB1receptor antagonist SR141716A (36 pmol) into the NTS did not change cardiac BRS in anesthetized Sprague-Dawley rats (1.04 ± 0.05 ms/mmHg baseline vs. 1.17 ± 0.11 ms/mmHg after 10 min). However, SR141716A in (mRen2)27 rats dose-dependently improved BRS in this strain: 0.36 pmol of SR141716A increased BRS from 0.43 ± 0.03 to 0.71 ± 0.04 ms/mmHg (P < 0.001), and 36 pmol of SR141716A increased BRS from 0.47 ± 0.02 to 0.94 ± 0.10 ms/mmHg (P < 0.01). In contrast, 0.36 pmol (1.50 ± 0.12 vs. 0.86 ± 0.08 ms/mmHg; P < 0.05) and 36 pmol (1.38 ± 0.16 vs. 0.46 ± 0.003 ms/mmHg; P < 0.01) of SR141716A significantly reduced BRS in ASrAOGEN rats. These observations reveal differential dose-related effects of the brain endocannabinoid system that influence cardiovagal BRS in animals with genetic alterations in the brain RAS.
Collapse
Affiliation(s)
- Chris L Schaich
- Department of Physiology and Pharmacology and Hypertension and Vascular Research Center, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Megan Grabenauer
- Department of Physiology and Pharmacology and Hypertension and Vascular Research Center, Wake Forest School of MedicineWinston-Salem, NC, USA; Analytical Chemistry and Pharmaceutics, RTI InternationalResearch Triangle Park, NC, USA
| | - Brian F Thomas
- Department of Physiology and Pharmacology and Hypertension and Vascular Research Center, Wake Forest School of MedicineWinston-Salem, NC, USA; Analytical Chemistry and Pharmaceutics, RTI InternationalResearch Triangle Park, NC, USA
| | - Hossam A Shaltout
- Department of Physiology and Pharmacology and Hypertension and Vascular Research Center, Wake Forest School of MedicineWinston-Salem, NC, USA; Department of Obstetrics and Gynecology, Wake Forest School of MedicineWinston-Salem, NC, USA
| | - Patricia E Gallagher
- Department of Physiology and Pharmacology and Hypertension and Vascular Research Center, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Allyn C Howlett
- Department of Physiology and Pharmacology and Hypertension and Vascular Research Center, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Debra I Diz
- Department of Physiology and Pharmacology and Hypertension and Vascular Research Center, Wake Forest School of Medicine Winston-Salem, NC, USA
| |
Collapse
|
25
|
Winkler M, Schuchard J, Stölting I, Vogt FM, Barkhausen J, Thorns C, Bader M, Raasch W. The brain renin-angiotensin system plays a crucial role in regulating body weight in diet-induced obesity in rats. Br J Pharmacol 2016; 173:1602-17. [PMID: 26892671 DOI: 10.1111/bph.13461] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 02/04/2016] [Accepted: 02/14/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Reduced weight gain after treatment with AT1 receptor antagonists may involve a brain-related mechanism. Here, we investigated the role of the brain renin-angiotensin system on weight regulation and food behaviour, with or without additional treatment with telmisartan. METHODS Transgenic rats with a brain-specific deficiency in angiotensinogen (TGR(ASrAOGEN)) and the corresponding wild-type, Sprague Dawley (SD) rats were fed (3 months) with a high-calorie cafeteria diet (CD) or standard chow. SD and TGR(ASrAOGEN) rats on the CD diet were also treated with telmisartan (8 mg·kg(-1) ·d(-1) , 3 months). RESULTS Compared with SD rats, TGR(ASrAOGEN) rats (i) had lower weights during chow feeding, (ii) did not become obese during CD feeding, (iii) had normal baseline leptin plasma concentrations independent of the feeding regimen, whereas plasma leptin of SD rats was increased due to CD, (iv) showed a reduced energy intake, (v) had a higher, strain-dependent energy expenditure, which is additionally enhanced during CD feeding, (vi) had enhanced mRNA levels of pro-opiomelanocortin and (vii) showed improved glucose control. Weight gain and energy intake in rats fed the CD diet were markedly reduced by telmisartan in SD rats but only to a minor extent in TGR(ASrAOGEN) rats. CONCLUSIONS The brain renin-angiotensin system affects body weight regulation, feeding behaviour and metabolic disorders. When angiotensin II levels are low in brain, rats are protected from developing diet-induced obesity and obesity-related metabolic impairments. We further suggest that telmisartan at least partly lowers body weight via a CNS-driven mechanism.
Collapse
Affiliation(s)
- Martina Winkler
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Johanna Schuchard
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Ines Stölting
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Florian M Vogt
- Department for Radiology and Nuclear Medicine, University of Lübeck, Lübeck, Germany
| | - Jörg Barkhausen
- Department for Radiology and Nuclear Medicine, University of Lübeck, Lübeck, Germany
| | - Christoph Thorns
- Department of Pathology, University Clinic Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Center for Structural and Cell Biology in Medicine, Institute for Biology, University of Lübeck, Lübeck, Germany.,Charité - University Medicine Berlin, Berlin, Germany
| | - Walter Raasch
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany.,CBBM (Center of Brain, Behavior and Metabolism), Lübeck, Germany
| |
Collapse
|
26
|
Ogier M, Bricca G, Bader M, Bezin L. Locus Coeruleus Dysfunction in Transgenic Rats with Low Brain Angiotensinogen. CNS Neurosci Ther 2016; 22:230-7. [PMID: 26775713 DOI: 10.1111/cns.12488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 10/30/2015] [Accepted: 10/30/2015] [Indexed: 12/25/2022] Open
Abstract
AIMS Transgenic TGR(ASrAOGEN)680 (TGR) rats with specific downregulation of glial angiotensinogen (AOGEN) synthesis develop cardiovascular deficits, anxiety, altered response to stress, and depression. Here, we evaluated whether these deficits are associated with alteration of the integrity of the noradrenergic system originating from locus coeruleus (LC) neurons. METHODS Adult TGR rats were compared to control Sprague Dawley rats in terms of the following: tissue levels of transcripts encoding noradrenergic markers, tissue tyrosine hydroxylase (TH) protein level, in vivo TH activity, density of TH-containing fibers, behavioral response to novelty, locomotor activity, and polysomnography. RESULTS TH expression was increased in the LC of TGR rats compared to controls. In LC terminal fields, there was an increase in density of TH-containing fibers in TGR rats that was associated with an elevation of in vivo TH activity. TGR rats also displayed locomotor hyperactivity in response to novelty. Moreover, polysomnographic studies indicated that daily paradoxical sleep duration was increased in TGR rats and that the paradoxical sleep rebound triggered by total sleep deprivation was blunted in these rats. CONCLUSIONS Altogether, these results suggest that disruption of astroglial AOGEN synthesis leads to cardiovascular, cognitive, behavioral, and sleep disorders that might be partly due to LC dysfunction.
Collapse
Affiliation(s)
- Michael Ogier
- INSERM U1028, CNRS UMR5292, University Claude Bernard Lyon 1, Lyon Neuroscience Research Center, Team TIGER, Lyon, France.,Institute for Epilepsy, IDEE, Lyon, France.,French Armed Forces Biomedical Research Institute, Bretigny-sur-Orge, France
| | | | - Michael Bader
- Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Laurent Bezin
- INSERM U1028, CNRS UMR5292, University Claude Bernard Lyon 1, Lyon Neuroscience Research Center, Team TIGER, Lyon, France.,Institute for Epilepsy, IDEE, Lyon, France
| |
Collapse
|
27
|
Shattock MJ, Ottolia M, Bers DM, Blaustein MP, Boguslavskyi A, Bossuyt J, Bridge JHB, Chen-Izu Y, Clancy CE, Edwards A, Goldhaber J, Kaplan J, Lingrel JB, Pavlovic D, Philipson K, Sipido KR, Xie ZJ. Na+/Ca2+ exchange and Na+/K+-ATPase in the heart. J Physiol 2015; 593:1361-82. [PMID: 25772291 PMCID: PMC4376416 DOI: 10.1113/jphysiol.2014.282319] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/30/2014] [Indexed: 12/17/2022] Open
Abstract
This paper is the third in a series of reviews published in this issue resulting from the University of California Davis Cardiovascular Symposium 2014: Systems approach to understanding cardiac excitation–contraction coupling and arrhythmias: Na+ channel and Na+ transport. The goal of the symposium was to bring together experts in the field to discuss points of consensus and controversy on the topic of sodium in the heart. The present review focuses on cardiac Na+/Ca2+ exchange (NCX) and Na+/K+-ATPase (NKA). While the relevance of Ca2+ homeostasis in cardiac function has been extensively investigated, the role of Na+ regulation in shaping heart function is often overlooked. Small changes in the cytoplasmic Na+ content have multiple effects on the heart by influencing intracellular Ca2+ and pH levels thereby modulating heart contractility. Therefore it is essential for heart cells to maintain Na+ homeostasis. Among the proteins that accomplish this task are the Na+/Ca2+ exchanger (NCX) and the Na+/K+ pump (NKA). By transporting three Na+ ions into the cytoplasm in exchange for one Ca2+ moved out, NCX is one of the main Na+ influx mechanisms in cardiomyocytes. Acting in the opposite direction, NKA moves Na+ ions from the cytoplasm to the extracellular space against their gradient by utilizing the energy released from ATP hydrolysis. A fine balance between these two processes controls the net amount of intracellular Na+ and aberrations in either of these two systems can have a large impact on cardiac contractility. Due to the relevant role of these two proteins in Na+ homeostasis, the emphasis of this review is on recent developments regarding the cardiac Na+/Ca2+ exchanger (NCX1) and Na+/K+ pump and the controversies that still persist in the field.
Collapse
Affiliation(s)
- Michael J Shattock
- King's College London BHF Centre of Excellence, The Rayne Institute, St Thomas' Hospital, London, SE1 7EH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Tang Y, Purkayastha S, Cai D. Hypothalamic microinflammation: a common basis of metabolic syndrome and aging. Trends Neurosci 2014; 38:36-44. [PMID: 25458920 DOI: 10.1016/j.tins.2014.10.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 12/19/2022]
Abstract
Chronic microinflammation is a hallmark of many aging-related neurodegenerative diseases as well as metabolic syndrome-driven diseases. Recent research indicates that chronic caloric excess can lead to hypothalamic microinflammation, which in turn participates in the development and progression of metabolic syndrome disorders such as obesity, glucose intolerance, and hypertension. Additionally, it was recently shown that increasing age after young adulthood can cause hypothalamic microinflammation independently of nutritional status, mediating a central mechanism of systemic aging. Taken together, these findings suggest that the hypothalamus has a fundamental role, via hypothalamic microinflammation, in translating overnutrition and aging into complex outcomes. Here we summarize recent work and suggest a conceptual model in which hypothalamic microinflammation is a common mediator of metabolic syndrome and aging.
Collapse
Affiliation(s)
- Yizhe Tang
- Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Sudarshana Purkayastha
- Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Dongsheng Cai
- Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, New York, NY 10461, USA.
| |
Collapse
|
29
|
Eriguchi M, Tsuruya K, Haruyama N, Yamada S, Tanaka S, Suehiro T, Noguchi H, Masutani K, Torisu K, Kitazono T. Renal denervation has blood pressure-independent protective effects on kidney and heart in a rat model of chronic kidney disease. Kidney Int 2014; 87:116-27. [PMID: 24940798 DOI: 10.1038/ki.2014.220] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 05/05/2014] [Accepted: 05/08/2014] [Indexed: 12/21/2022]
Abstract
We elucidate the underlying mechanisms of bidirectional cardiorenal interaction, focusing on the sympathetic nerve driving disruption of the local renin-angiotensin system (RAS). A rat model of N(ω)-nitro-L-arginine methyl ester (L-NAME; a nitric oxide synthase inhibitor) administration was used to induce damage in the heart and kidney, similar to cardiorenal syndrome. L-NAME induced sympathetic nerve-RAS overactivity and cardiorenal injury accompanied by local RAS elevations. These were suppressed by bilateral renal denervation, but not by hydralazine treatment, despite the blood pressure being kept the same between the two groups. Although L-NAME induced angiotensinogen (AGT) protein augmentation in both organs, AGT mRNA decreased in the kidney and increased in the heart in a contradictory manner. Immunostaining for AGT suggested that renal denervation suppressed AGT onsite generation from activated resident macrophages of the heart and circulating AGT excretion from glomeruli of the kidney. We also examined rats treated with L-NAME plus unilateral denervation to confirm direct sympathetic regulation of intrarenal RAS. The levels of urinary AGT and renal angiotensin II content and the degrees of renal injury from denervated kidneys were less than those from contralateral innervated kidneys within the same rats. Thus, renal denervation has blood pressure-independent beneficial effects associated with local RAS inhibition.
Collapse
Affiliation(s)
- Masahiro Eriguchi
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhiko Tsuruya
- 1] Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan [2] Department of Integrated Therapy for Chronic Kidney Disease, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Haruyama
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shunsuke Yamada
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shigeru Tanaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takaichi Suehiro
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideko Noguchi
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kosuke Masutani
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kumiko Torisu
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
30
|
Kangussu LM, Almeida-Santos AF, Bader M, Alenina N, Fontes MAP, Santos RA, Aguiar DC, Campagnole-Santos MJ. Angiotensin-(1-7) attenuates the anxiety and depression-like behaviors in transgenic rats with low brain angiotensinogen. Behav Brain Res 2013; 257:25-30. [DOI: 10.1016/j.bbr.2013.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 08/27/2013] [Accepted: 09/01/2013] [Indexed: 10/26/2022]
|
31
|
Angiotensin as stress mediator: Role of its receptor and interrelationships among other stress mediators and receptors. Pharmacol Res 2013; 76:49-57. [DOI: 10.1016/j.phrs.2013.07.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 07/15/2013] [Indexed: 11/18/2022]
|
32
|
Littlejohn NK, Siel RB, Ketsawatsomkron P, Pelham CJ, Pearson NA, Hilzendeger AM, Buehrer BA, Weidemann BJ, Li H, Davis DR, Thompson AP, Liu X, Cassell MD, Sigmund CD, Grobe JL. Hypertension in mice with transgenic activation of the brain renin-angiotensin system is vasopressin dependent. Am J Physiol Regul Integr Comp Physiol 2013; 304:R818-28. [PMID: 23535460 DOI: 10.1152/ajpregu.00082.2013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An indispensable role for the brain renin-angiotensin system (RAS) has been documented in most experimental animal models of hypertension. To identify the specific efferent pathway activated by the brain RAS that mediates hypertension, we examined the hypothesis that elevated arginine vasopressin (AVP) release is necessary for hypertension in a double-transgenic model of brain-specific RAS hyperactivity (the "sRA" mouse model). sRA mice experience elevated brain RAS activity due to human angiotensinogen expression plus neuron-specific human renin expression. Total daily loss of the 4-kDa AVP prosegment (copeptin) into urine was grossly elevated (≥8-fold). Immunohistochemical staining for AVP was increased in the supraoptic nucleus of sRA mice (~2-fold), but no quantitative difference in the paraventricular nucleus was observed. Chronic subcutaneous infusion of a nonselective AVP receptor antagonist conivaptan (YM-087, Vaprisol, 22 ng/h) or the V(2)-selective antagonist tolvaptan (OPC-41061, 22 ng/h) resulted in normalization of the baseline (~15 mmHg) hypertension in sRA mice. Abdominal aortas and second-order mesenteric arteries displayed AVP-specific desensitization, with minor or no changes in responses to phenylephrine and endothelin-1. Mesenteric arteries exhibited substantial reductions in V(1A) receptor mRNA, but no significant changes in V(2) receptor expression in kidney were observed. Chronic tolvaptan infusion also normalized the (5 mmol/l) hyponatremia of sRA mice. Together, these data support a major role for vasopressin in the hypertension of mice with brain-specific hyperactivity of the RAS and suggest a primary role of V(2) receptors.
Collapse
Affiliation(s)
- Nicole K Littlejohn
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
O'Callaghan EL, Choong YT, Jancovski N, Allen AM. Central angiotensinergic mechanisms associated with hypertension. Auton Neurosci 2013; 175:85-92. [PMID: 23466041 DOI: 10.1016/j.autneu.2013.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/23/2013] [Accepted: 01/23/2013] [Indexed: 12/20/2022]
Abstract
Following its generation by both systemic and tissue-based renin-angiotensin systems, angiotensin II interacts with specific, G-protein coupled receptors to modulate multiple physiological systems, including the cardiovascular system. Genetic models in which the different components of the renin-angiotensin system have been deleted show large changes in resting blood pressure. Interruption of the generation of angiotensin II, or its interaction with these receptors, decreases blood pressure in hypertensive humans and experimental animal models of hypertension. Whilst the interaction of angiotensin II with the kidney is pivotal in this modulation of blood pressure, an involvement of the system in other tissues is important. Both systemic angiotensins, acting via the blood-brain barrier deficient circumventricular organs, and centrally-generated angiotensin modulate cardiovascular control by regulating fluid and electrolyte ingestion, autonomic activity and neuroendocrine function. This review discusses the pathways in the brain that are involved in this regulation of blood pressure as well as examining the sites in which altered angiotensin function might contribute to the development and maintenance of high blood pressure.
Collapse
Affiliation(s)
- Erin L O'Callaghan
- Department of Physiology, University of Melbourne, Vic., 3010, Australia
| | | | | | | |
Collapse
|
34
|
The brain Renin-Angiotensin system and mitochondrial function: influence on blood pressure and baroreflex in transgenic rat strains. Int J Hypertens 2013; 2013:136028. [PMID: 23401750 PMCID: PMC3564433 DOI: 10.1155/2013/136028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 12/23/2012] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial dysfunction is implicated in many cardiovascular diseases, including hypertension, and may be associated with an overactive renin-angiotensin system (RAS). Angiotensin (Ang) II, a potent vasoconstrictor hormone of the RAS, also impairs baroreflex and mitochondrial function. Most deleterious cardiovascular actions of Ang II are thought to be mediated by NADPH-oxidase- (NOX-) derived reactive oxygen species (ROS) that may also stimulate mitochondrial oxidant release and alter redox-sensitive signaling pathways in the brain. Within the RAS, the actions of Ang II are counterbalanced by Ang-(1–7), a vasodilatory peptide known to mitigate against increased oxidant stress. A balance between Ang II and Ang-(1–7) within the brain dorsal medulla contributes to maintenance of normal blood pressure and proper functioning of the arterial baroreceptor reflex for control of heart rate. We propose that Ang-(1–7) may negatively regulate the redox signaling pathways activated by Ang II to maintain normal blood pressure, baroreflex, and mitochondrial function through attenuating ROS (NOX-generated and/or mitochondrial).
Collapse
|
35
|
Expression of Renin–Angiotensin System Genes in Brain Structures of ISIAH Rats with Stress-Induced Arterial Hypertension. Bull Exp Biol Med 2013; 154:357-60. [DOI: 10.1007/s10517-013-1950-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
36
|
Campos LA, Cipolla-Neto J, Amaral FG, Michelini LC, Bader M, Baltatu OC. The Angiotensin-melatonin axis. Int J Hypertens 2013; 2013:521783. [PMID: 23365722 PMCID: PMC3556444 DOI: 10.1155/2013/521783] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/18/2012] [Accepted: 12/19/2012] [Indexed: 12/14/2022] Open
Abstract
Accumulating evidence indicates that various biological and neuroendocrine circadian rhythms may be disrupted in cardiovascular and metabolic disorders. These circadian alterations may contribute to the progression of disease. Our studies direct to an important role of angiotensin II and melatonin in the modulation of circadian rhythms. The brain renin-angiotensin system (RAS) may modulate melatonin synthesis, a hormone with well-established roles in regulating circadian rhythms. Angiotensin production in the central nervous system may not only influence hypertension but also appears to affect the circadian rhythm of blood pressure. Drugs acting on RAS have been proven effective in the treatment of cardiovascular and metabolic disorders including hypertension and diabetes mellitus (DM). On the other hand, since melatonin is capable of ameliorating metabolic abnormalities in DM and insulin resistance, the beneficial effects of RAS blockade could be improved through combined RAS blocker and melatonin therapy. Contemporary research is evidencing the existence of specific clock genes forming central and peripheral clocks governing circadian rhythms. Further research on the interaction between these two neurohormones and the clock genes governing circadian clocks may progress our understanding on the pathophysiology of disease with possible impact on chronotherapeutic strategies.
Collapse
Affiliation(s)
- Luciana A. Campos
- Center of Innovation, Technology and Education—(CITE), Camilo Castelo Branco University (UNICASTELO), São José dos Campos Technology Park, Presidente Dutra Road Km 138, 12247-004 São José dos Campos, SP, Brazil
| | - Jose Cipolla-Neto
- Department of Physiology, Institute of Biomedical Sciences, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Fernanda G. Amaral
- Department of Physiology, Institute of Biomedical Sciences, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Lisete C. Michelini
- Department of Physiology, Institute of Biomedical Sciences, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Michael Bader
- Cardiovascular Research, Max Delbruck Center for Molecular Medicine, 13125 Berlin, Germany
| | - Ovidiu C. Baltatu
- Center of Innovation, Technology and Education—(CITE), Camilo Castelo Branco University (UNICASTELO), São José dos Campos Technology Park, Presidente Dutra Road Km 138, 12247-004 São José dos Campos, SP, Brazil
| |
Collapse
|
37
|
Li W, Peng H, Seth DM, Feng Y. The Prorenin and (Pro)renin Receptor: New Players in the Brain Renin-Angiotensin System? Int J Hypertens 2012; 2012:290635. [PMID: 23316344 PMCID: PMC3536329 DOI: 10.1155/2012/290635] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/26/2012] [Accepted: 12/05/2012] [Indexed: 12/22/2022] Open
Abstract
It is well known that the brain renin-angiotensin (RAS) system plays an essential role in the development of hypertension, mainly through the modulation of autonomic activities and vasopressin release. However, how the brain synthesizes angiotensin (Ang) II has been a debate for decades, largely due to the low renin activity. This paper first describes the expression of the vasoconstrictive arm of RAS components in the brain as well as their physiological and pathophysiological significance. It then focus on the (pro)renin receptor (PRR), a newly discovered component of the RAS which has a high level in the brain. We review the role of prorenin and PRR in peripheral organs and emphasize the involvement of brain PRR in the pathogenesis of hypertension. Some future perspectives in PRR research are heighted with respect to novel therapeutic target for the treatment of hypertension and other cardiovascular diseases.
Collapse
Affiliation(s)
- Wencheng Li
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, 1430 Tulane Avenue SL-39, New Orleans, LA 70112, USA
| | - Hua Peng
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, 1430 Tulane Avenue SL-39, New Orleans, LA 70112, USA
| | - Dale M. Seth
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, 1430 Tulane Avenue SL-39, New Orleans, LA 70112, USA
| | - Yumei Feng
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, 1430 Tulane Avenue SL-39, New Orleans, LA 70112, USA
| |
Collapse
|
38
|
Renin-Angiotensin system and sympathetic neurotransmitter release in the central nervous system of hypertension. Int J Hypertens 2012; 2012:474870. [PMID: 23227311 PMCID: PMC3512297 DOI: 10.1155/2012/474870] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/18/2012] [Indexed: 02/07/2023] Open
Abstract
Many Studies suggest that changes in sympathetic nerve activity in the central nervous system might have a crucial role in blood pressure control. The present paper discusses evidence in support of the concept that the brain renin-angiotensin system (RAS) might be linked to sympathetic nerve activity in hypertension. The amount of neurotransmitter release from sympathetic nerve endings can be regulated by presynaptic receptors located on nerve terminals. It has been proposed that alterations in sympathetic nervous activity in the central nervous system of hypertension might be partially due to abnormalities in presynaptic modulation of neurotransmitter release. Recent evidence indicates that all components of the RAS have been identified in the brain. It has been proposed that the brain RAS may actively participate in the modulation of neurotransmitter release and influence the central sympathetic outflow to the periphery. This paper summarizes the results of studies to evaluate the possible relationship between the brain RAS and sympathetic neurotransmitter release in the central nervous system of hypertension.
Collapse
|
39
|
Abstract
Aging is associated with an imbalance in sympathetic and parasympathetic outflow to cardiovascular effector organs. This autonomic imbalance contributes to the decline in cardiovagal baroreceptor reflex function during aging, which allows for unrestrained activation of the sympathetic nervous system to negatively impact resting systolic blood pressure and its variability. Further, impaired baroreflex function can contribute to the development of insulin resistance and other features of the metabolic syndrome during aging through overlap in autonomic neural pathways that regulate both cardiovascular and metabolic functions. Increasing evidence supports a widespread influence of the renin-angiotensin system (RAS) on both sympathetic and parasympathetic activity through receptors distributed to peripheral and central sites of action. Indeed, therapeutic interventions to block the RAS are well established for the treatment of hypertension in elderly patients, and reduce the incidence of new-onset diabetes in clinical trials. Further, RAS blockade increases lifespan and improves numerous age-related pathologies in rodents, often independent of blood pressure. The beneficial effects of these interventions are at least in part attributed to suppression of angiotensin II formed locally within the brain. In particular, recent insights from transgenic rodents provide evidence that long-term alteration in the brain RAS modulates the balance between angiotensin II and angiotensin-(1-7), and related intracellular signaling pathways, to influence cardiovascular and metabolic function in the context of hypertension and aging.
Collapse
|
40
|
Arnold AC, Sakima A, Kasper SO, Vinsant S, Garcia-Espinosa MA, Diz DI. The brain renin-angiotensin system and cardiovascular responses to stress: insights from transgenic rats with low brain angiotensinogen. J Appl Physiol (1985) 2012; 113:1929-36. [PMID: 22984245 DOI: 10.1152/japplphysiol.00569.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin system (RAS) has been identified as an attractive target for the treatment of stress-induced cardiovascular disorders. The effects of angiotensin (ANG) peptides during stress responses likely result from an integration of actions by circulating peptides and brain peptides derived from neuronal and glial sources. The present review focuses on the contribution of endogenous brain ANG peptides to pathways involved in cardiovascular responses to stressors. During a variety of forms of stress, neuronal pathways in forebrain areas containing ANG II or ANG-(1-7) are activated to stimulate descending angiotensinergic pathways that increase sympathetic outflow to increase blood pressure. We provide evidence that glia-derived ANG peptides influence brain AT(1) receptors. This appears to result in modulation of the responsiveness of the neuronal pathways activated during stressors that elevate circulating ANG peptides to activate brain pathways involving descending hypothalamic projections. It is well established that increased cardiovascular reactivity to stress is a significant predictor of hypertension and other cardiovascular diseases. This review highlights the importance of understanding the impact of RAS components from the circulation, neurons, and glia on the integration of cardiovascular responses to stressors.
Collapse
Affiliation(s)
- Amy C Arnold
- The Hypertension & Vascular Research Center and the Departments of General Surgery and Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157-1032, USA
| | | | | | | | | | | |
Collapse
|
41
|
Low glial angiotensinogen improves body habitus, diastolic function, and exercise tolerance in aging male rats. Cardiovasc Endocrinol 2012; 1:49-58. [PMID: 23795309 DOI: 10.1097/xce.0b013e32835a2159] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Long-term systemic blockade of the renin-angiotensin system (RAS) with either an angiotensin (Ang) II type 1 receptor antagonist or an angiotensin-converting enzyme inhibitor attenuates age-related cardiac remodeling and oxidative damage, and improves myocardial relaxation. However, the role of the brain RAS in mediating the development of diastolic dysfunction during aging is not known. We hypothesized that low brain RAS protects against the development of age-related diastolic dysfunction and left ventricular remodeling. METHODS Sixty-week-old transgenic male ASrAOGEN rats (n =9), with normal circulating Ang II and functionally low brain Ang II, because of a GFAP promoter-linked angiotensinogen antisense targeted to glia, and age-matched and sex-matched Hannover Sprague-Dawley (SD; n= 9) rats, with normal levels of both circulating and brain Ang II, underwent echocardiograms to evaluate cardiac structure and function. Postmortem hearts were further compared for histological, molecular, and biochemical changes consistent with cardiac aging. RESULTS ASrAOGEN rats showed preserved systolic and diastolic function at mid-life and this was associated with a lower, more favorable ratio of the phospholamban-SERCA2 ratio, reduced incidence of histological changes in the left ventricle, and increased cardiac Ang-(1-7) when compared with the in-vivo functional, and ex-vivo structural and biochemical indices from age-matched SD rats. Moreover, ASrAOGEN rats had lower percent body fat and a superior exercise tolerance when compared with SD rats of the same age. CONCLUSION Our data indicate that the central RAS plays a role in the maintenance of diastolic function and exercise tolerance in mid-life and this may be related to effects on body habitus.
Collapse
|
42
|
Nautiyal M, Katakam PVG, Busija DW, Gallagher PE, Tallant EA, Chappell MC, Diz DI. Differences in oxidative stress status and expression of MKP-1 in dorsal medulla of transgenic rats with altered brain renin-angiotensin system. Am J Physiol Regul Integr Comp Physiol 2012; 303:R799-806. [PMID: 22914751 DOI: 10.1152/ajpregu.00566.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ANG II-stimulated production of reactive oxygen species (ROS) through NADPH oxidase is suggested to activate MAPK pathways, which are implicated in neurally mediated pressor effects of ANG II. Emerging evidence suggests that ANG-(1-7) up regulates MAPK phosphatases to reduce MAPK signaling and attenuate actions of ANG II. Whether angiotensin peptides participate in long-term regulation of these systems in the brain is not known. Therefore, we determined tissue and mitochondrial ROS, as well as expression and activity of MAPK phosphatase-1 (MKP-1) in brain dorsal medullary tissue of hypertensive transgenic (mRen2)27 rats exhibiting higher ANG II/ANG-(1-7) tone or hypotensive transgenic rats with targeted decreased glial expression of angiotensinogen, ASrAOGEN (AS) exhibiting lower ANG II/ANG-(1-7) tone compared with normotensive Sprague-Dawley (SD) rats that serve as the control strain. Transgenic (mRen2)27 rats showed higher medullary tissue NADPH oxidase activity and dihydroethidium fluorescence in isolated mitochondria vs. SD or AS rats. Mitochondrial uncoupling protein 2 was lower in AS and unchanged in (mRen2)27 compared with SD rats. MKP-1 mRNA and protein expression were higher in AS and unchanged in (mRen2)27 compared with SD rats. AS rats also had lower phosphorylated ERK1/2 and JNK consistent with higher MKP-1 activity. Thus, an altered brain renin-angiotensin system influences oxidative stress status and regulates MKP-1 expression. However, there is a dissociation between these effects and the hemodynamic profiles. Higher ROS was associated with hypertension in (mRen2)27 and normal MKP-1, whereas the higher MKP-1 was associated with hypotension in AS, where ROS was normal relative to SD rats.
Collapse
Affiliation(s)
- Manisha Nautiyal
- The Hypertension and Vascular Research Center, Wake Forest Univ. School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157-1032, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Renin inhibitor aliskiren exerts neuroprotection against amyloid beta-peptide toxicity in rat cortical neurons. Neurochem Int 2012; 61:369-77. [DOI: 10.1016/j.neuint.2012.05.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 04/24/2012] [Accepted: 05/09/2012] [Indexed: 12/20/2022]
|
44
|
Cardiovascular responses evoked by activation or blockade of GABAA receptors in the hypothalamic PVN are attenuated in transgenic rats with low brain angiotensinogen. Brain Res 2012; 1448:101-10. [DOI: 10.1016/j.brainres.2012.02.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 01/25/2012] [Accepted: 02/09/2012] [Indexed: 11/24/2022]
|
45
|
Yiannikouris F, Karounos M, Charnigo R, English VL, Rateri DL, Daugherty A, Cassis LA. Adipocyte-specific deficiency of angiotensinogen decreases plasma angiotensinogen concentration and systolic blood pressure in mice. Am J Physiol Regul Integr Comp Physiol 2011; 302:R244-51. [PMID: 22071160 DOI: 10.1152/ajpregu.00323.2011] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Previous studies demonstrated that overexpression of angiotensinogen (AGT) in adipose tissue increased blood pressure. However, the contribution of endogenous AGT in adipocytes to the systemic renin-angiotensin system (RAS) and blood pressure control is undefined. To define a role of adipocyte-derived AGT, mice with loxP sites flanking exon 2 of the AGT gene (Agt(fl/fl)) were bred to transgenic mice expressing Cre recombinase under the control of an adipocyte fatty acid-binding protein 4 promoter (aP2) promoter to generate mice with adipocyte AGT deficiency (Agt(aP2)). AGT mRNA abundance in adipose tissue and AGT secretion from adipocytes were reduced markedly in adipose tissues of Agt(aP2) mice. To determine the contribution of adipocyte-derived AGT to the systemic RAS and blood pressure control, mice were fed normal laboratory diet for 2 or 12 mo. In males and females of each genotype, body weight and fat mass increased with age. However, there was no effect of adipocyte AGT deficiency on body weight, fat mass, or adipocyte size. At 2 and 12 mo of age, mice with deficiency of AGT in adipocytes had reduced plasma concentrations of AGT (by 24-28%) compared with controls. Moreover, mice lacking AGT in adipocytes exhibited reduced systolic blood pressures compared with controls (Agt(fl/fl), 117 ± 2; Agt(aP2), 110 ± 2 mmHg; P < 0.05). These results demonstrate that adipocyte-derived AGT contributes to the systemic RAS and blood pressure control.
Collapse
|
46
|
Sigmund CD. Divergent mechanism regulating fluid intake and metabolism by the brain renin-angiotensin system. Am J Physiol Regul Integr Comp Physiol 2011; 302:R313-20. [PMID: 22049229 DOI: 10.1152/ajpregu.00575.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this review is two-fold. First, I will highlight recent advances in our understanding of the mechanisms regulating angiotensin II (ANG II) synthesis in the brain, focusing on evidence that renin is expressed in the brain and is expressed in two forms: a secreted form, which may catalyze extracellular ANG I generation from glial or neuronal angiotensinogen (AGT), and an intracellular form, which may generate intracellular ANG in neurons that may act as a neurotransmitter. Second, I will discuss recent studies that advance the concept that the renin-angiotensin system (RAS) in the brain not only is a potent regulator of blood pressure and fluid intake but may also regulate metabolism. The efferent pathways regulating the blood pressure/dipsogenic effects and the metabolic effects of elevated central RAS activity appear different, with the former being dependent upon the hypothalamic-pituitary-adrenal axis, and the latter being dependent upon an interaction between the brain and the systemic (or adipose) RAS.
Collapse
Affiliation(s)
- Curt D Sigmund
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, 52242, USA.
| |
Collapse
|
47
|
O’Callaghan EL, Bassi JK, Porrello ER, Delbridge LMD, Thomas WG, Allen AM. Regulation of angiotensinogen by angiotensin II in mouse primary astrocyte cultures. J Neurochem 2011; 119:18-26. [DOI: 10.1111/j.1471-4159.2011.07406.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Van Huysse JW, Dostanic I, Lingrel JB, Hou X, Wu H. Hypertension from chronic central sodium chloride in mice is mediated by the ouabain-binding site on the Na,K-ATPase α₂-isoform. Am J Physiol Heart Circ Physiol 2011; 301:H2147-53. [PMID: 21856907 DOI: 10.1152/ajpheart.01216.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A chronic increase in the concentration of sodium chloride in the cerebrospinal fluid (CSF) (↑CSF [NaCl]) appears to be critically important for the development of salt-dependent hypertension. In agreement with this concept, increasing CSF [NaCl] chronically by intracerebroventricular (icv) infusion of NaCl-rich artificial CSF (aCSF-HiNaCl) in rats produces hypertension by the same mechanisms (i.e., aldosterone-ouabain pathway in the brain) as that produced by dietary sodium in salt-sensitive strains. We first demonstrate here that icv aCSF-HiNaCl for 10 days also causes hypertension in wild-type (WT) mice. We then used both WT and gene-targeted mice to explore the mechanisms. In WT mice with a ouabain-sensitive Na,K-ATPase α(2)-isoform (α2(S/S)), mean arterial pressure rose by ~25 mmHg within 2 days of starting aCSF-HiNaCl (0.6 nmol Na/min) and remained elevated throughout the study. Ouabain (171 pmol/day icv) increased blood pressure to a similar extent. aCSF-HiNaCl or ouabain given at the same rates subcutaneously instead of intracerebroventricularly had no effect on blood pressure. The pressor response to icv aCSF-HiNaCl was abolished by an anti-ouabain antibody given intracerebroventricularly but not subcutaneously, indicating that it is mediated by an endogenous ouabain-like substance in the brain. We compared the effects of icv aCSF-HiNaCl or icv ouabain on blood pressure in α2(S/S) versus knockout/knockin mice with a ouabain-resistant endogenous α(2)-subunit (α2(R/R)). In α2(R/R), there was no pressor response to icv aCSF-HiNaCl in contrast to WT mice. The α2(R/R) genotype also lacked a pressor response to icv ouabain. These data demonstrate that chronic ↑CSF [NaCl] causes hypertension in mice and that the blood pressure response is mediated by the ouabain-like substance in the brain, specifically by its binding to the α(2)-isoform of the Na,K-ATPase.
Collapse
Affiliation(s)
- James W Van Huysse
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
| | | | | | | | | |
Collapse
|
49
|
Shaltout HA, Chappell MC, Rose JC, Diz DI. Exaggerated sympathetic mediated responses to behavioral or pharmacological challenges following antenatal betamethasone exposure. Am J Physiol Endocrinol Metab 2011; 300:E979-85. [PMID: 21386063 PMCID: PMC3118588 DOI: 10.1152/ajpendo.00636.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glucocorticoid administration to women at risk for preterm delivery is standard practice to enhance neonatal survival. However, antenatal betamethasone exposure (β-exposure) increases mean arterial pressure (MAP) in adult sheep (1.8 yr old) and results in impaired baroreflex sensitivity (BRS) for control of heart rate (HR). In the current studies we tested the hypothesis that enhanced sympathetic nervous system and hypothalamo-pituitary-adrenal (HPA) axis-mediated responses are evident at an early age in β-exposed sheep. Pregnant ewes were administered betamethasone (0.17 mg/kg twice over 24 h) or vehicle (Veh-control) on the 80th day of gestation, and offspring were delivered at full term. Female β-exposed and control offspring instrumented at age 42 ± 3 days for conscious continuous recording of MAP and HR had similar resting values at baseline. However, BRS was ~45% lower in β-exposed offspring. β-Exposed lambs allowed to suckle for 10 min had a greater elevation in MAP than Veh-control lambs (19 ± 1 vs 12 ± 2 mmHg; n = 4-5, P < 0.05). MAP was reduced by 20% from baseline via sodium nitroprusside infusion (SNP) over 10 min, which triggered a rebound increase in MAP only in β-exposed lambs. HR increased with the reduction in MAP during SNP infusion in Veh-control lambs, whereas there was no change in HR with the reduction in MAP in β-exposed lambs. Combined vasopressin-CRF injection caused greater increases in MAP in the β-exposed lambs. Cortisol and ACTH responses were higher in response to SNP hypotension in the β-exposed lambs. The data reveal enhanced sympathetic and HPA axis responses associated with impaired BRS preceding differences in resting MAP in preweanling female lambs exposed in utero to glucocorticoids. The consequences of these alterations at an early age include eventual development of higher blood pressure in this ovine model of fetal programming.
Collapse
Affiliation(s)
- Hossam A Shaltout
- Hypertension and Vascular Research Center, Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1032, USA.
| | | | | | | |
Collapse
|
50
|
Baltatu OC, Campos LA, Bader M. Local renin-angiotensin system and the brain--a continuous quest for knowledge. Peptides 2011; 32:1083-6. [PMID: 21333703 DOI: 10.1016/j.peptides.2011.02.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 02/10/2011] [Indexed: 01/22/2023]
Abstract
The ancient renin-angiotensin system (RAS) was discovered more than a hundred years ago by identifying the rate-limiting enzyme of the system and its relevance to blood pressure regulation. Forty years ago, Detlev Ganten et al. postulated the existence of a tissue RAS. In these forty years, he kept developing the knowledge of these systems either directly or by training or attracting the interest of many researchers. Through the present review, we try to highlight recent advancements that originated from the postulation of local brain RAS. Although a large amount of knowledge accumulated, this system continues to intrigue and stimulate the interest and imagination of many researchers.
Collapse
Affiliation(s)
- Ovidiu C Baltatu
- Center of Biomedical Engineering, University Camilo Castelo Branco, Rod. Presidente Dutra Km 138, SP, 12247-004 São José dos Campos, Brazil
| | | | | |
Collapse
|