1
|
Busceti CL, Di Menna L, Castaldi S, D'Errico G, Taddeucci A, Bruno V, Fornai F, Pittaluga A, Battaglia G, Nicoletti F. Adaptive Changes in Group 2 Metabotropic Glutamate Receptors Underlie the Deficit in Recognition Memory Induced by Methamphetamine in Mice. eNeuro 2024; 11:ENEURO.0523-23.2024. [PMID: 38969501 PMCID: PMC11298959 DOI: 10.1523/eneuro.0523-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 07/07/2024] Open
Abstract
Cognitive dysfunction is associated with methamphetamine use disorder (MUD). Here, we used genetic and pharmacological approaches to examine the involvement of either Group 2 metabotropic glutamate (mGlu2) or mGlu3 receptors in memory deficit induced by methamphetamine in mice. Methamphetamine treatment (1 mg/kg, i.p., once a day for 5 d followed by 7 d of withdrawal) caused an impaired performance in the novel object recognition test in wild-type mice, but not in mGlu2-/- or mGlu3-/- mice. Memory deficit in wild-type mice challenged with methamphetamine was corrected by systemic treatment with selectively negative allosteric modulators of mGlu2 or mGlu3 receptors (compounds VU6001966 and VU0650786, respectively). Methamphetamine treatment in wild-type mice caused large increases in levels of mGlu2/3 receptors, the Type 3 activator of G-protein signaling (AGS3), Rab3A, and the vesicular glutamate transporter, vGlut1, in the prefrontal cortex (PFC). Methamphetamine did not alter mGlu2/3-mediated inhibition of cAMP formation but abolished the ability of postsynaptic mGlu3 receptors to boost mGlu5 receptor-mediated inositol phospholipid hydrolysis in PFC slices. Remarkably, activation of presynaptic mGlu2/3 receptors did not inhibit but rather amplified depolarization-induced [3H]-D-aspartate release in synaptosomes prepared from the PFC of methamphetamine-treated mice. These findings demonstrate that exposure to methamphetamine causes changes in the expression and function of mGlu2 and mGlu3 receptors, which might alter excitatory synaptic transmission in the PFC and raise the attractive possibility that selective inhibitors of mGlu2 or mGlu3 receptors (or both) may be used to improve cognitive dysfunction in individuals affected by MUD.
Collapse
Affiliation(s)
| | - Luisa Di Menna
- Department of Molecular Pathology, IRCCS Neuromed, Pozzilli 86077, Italy
| | - Sonia Castaldi
- Department of Physiology and Pharmacology, University Sapienza, Roma 00185, Italy
| | - Giovanna D'Errico
- Department of Molecular Pathology, IRCCS Neuromed, Pozzilli 86077, Italy
| | - Alice Taddeucci
- Department of Pharmacy, University of Genova, Genova 16148, Italy
| | - Valeria Bruno
- Department of Molecular Pathology, IRCCS Neuromed, Pozzilli 86077, Italy
- Department of Physiology and Pharmacology, University Sapienza, Roma 00185, Italy
| | - Francesco Fornai
- Department of Molecular Pathology, IRCCS Neuromed, Pozzilli 86077, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56126, Italy
| | - Anna Pittaluga
- Department of Pharmacy, University of Genova, Genova 16148, Italy
- IRCCS Ospedale Policlinico San Martino, Genova 16145, Italy
| | - Giuseppe Battaglia
- Department of Molecular Pathology, IRCCS Neuromed, Pozzilli 86077, Italy
- Department of Physiology and Pharmacology, University Sapienza, Roma 00185, Italy
| | - Ferdinando Nicoletti
- Department of Molecular Pathology, IRCCS Neuromed, Pozzilli 86077, Italy
- Department of Physiology and Pharmacology, University Sapienza, Roma 00185, Italy
| |
Collapse
|
2
|
Thotamune W, Ubeysinghe S, Rajarathna C, Kankanamge D, Olupothage K, Chandu A, Copits BA, Karunarathne A. AGS3-based optogenetic GDI induces GPCR-independent Gβγ signaling and macrophage migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597473. [PMID: 38895415 PMCID: PMC11185739 DOI: 10.1101/2024.06.04.597473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
G protein-coupled receptors (GPCRs) are efficient Guanine nucleotide exchange factors (GEFs) and exchange GDP to GTP on the Gα subunit of G protein heterotrimers in response to various extracellular stimuli, including neurotransmitters and light. GPCRs primarily broadcast signals through activated G proteins, GαGTP, and free Gβγ, and are major disease drivers. Evidence shows that the ambient low threshold signaling required for cells is likely supplemented by signaling regulators such as non-GPCR GEFs and Guanine nucleotide Dissociation Inhibitors (GDIs). Activators of G protein Signaling 3 (AGS3) are recognized as a GDI involved in multiple health and disease-related processes. Nevertheless, understanding of AGS3 is limited, and no significant information is available on its structure-function relationship or signaling regulation in living cells. Here, we employed in silico structure-guided engineering of a novel optogenetic GDI, based on the AGS3's G protein regulatory (GPR) motif, to understand its GDI activity and induce standalone Gβγ signaling in living cells on optical command. Our results demonstrate that plasma membrane recruitment of OptoGDI efficiently releases Gβγ, and its subcellular targeting generated localized PIP3 and triggered macrophage migration. Therefore, we propose OptoGDI as a powerful tool for optically dissecting GDI-mediated signaling pathways and triggering GPCR-independent Gβγ signaling in cells and in vivo.
Collapse
Affiliation(s)
- Waruna Thotamune
- Department of Chemistry, Saint Louis University, Saint Louis, MO 63103, USA
- Institute for Drug and Biotherapeutic Innovation, Saint Louis University, Saint Louis, MO 63103, USA
| | - Sithurandi Ubeysinghe
- Department of Chemistry, Saint Louis University, Saint Louis, MO 63103, USA
- Institute for Drug and Biotherapeutic Innovation, Saint Louis University, Saint Louis, MO 63103, USA
| | - Chathuri Rajarathna
- Department of Chemistry, Saint Louis University, Saint Louis, MO 63103, USA
- Institute for Drug and Biotherapeutic Innovation, Saint Louis University, Saint Louis, MO 63103, USA
| | - Dinesh Kankanamge
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine; St. Louis, MO 63110 USA
| | - Koshala Olupothage
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Aditya Chandu
- Department of Chemistry, Saint Louis University, Saint Louis, MO 63103, USA
| | - Bryan A. Copits
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine; St. Louis, MO 63110 USA
| | - Ajith Karunarathne
- Department of Chemistry, Saint Louis University, Saint Louis, MO 63103, USA
- Institute for Drug and Biotherapeutic Innovation, Saint Louis University, Saint Louis, MO 63103, USA
| |
Collapse
|
3
|
Roy S, Sinha S, Silas AJ, Ghassemian M, Kufareva I, Ghosh P. Growth factor-dependent phosphorylation of Gα i shapes canonical signaling by G protein-coupled receptors. Sci Signal 2024; 17:eade8041. [PMID: 38833528 PMCID: PMC11328959 DOI: 10.1126/scisignal.ade8041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 05/17/2024] [Indexed: 06/06/2024]
Abstract
A long-standing question in the field of signal transduction is how distinct signaling pathways interact with each other to control cell behavior. Growth factor receptors and G protein-coupled receptors (GPCRs) are the two major signaling hubs in eukaryotes. Given that the mechanisms by which they signal independently have been extensively characterized, we investigated how they may cross-talk with each other. Using linear ion trap mass spectrometry and cell-based biophysical, biochemical, and phenotypic assays, we found at least three distinct ways in which epidermal growth factor affected canonical G protein signaling by the Gi-coupled GPCR CXCR4 through the phosphorylation of Gαi. Phosphomimicking mutations in two residues in the αE helix of Gαi (tyrosine-154/tyrosine-155) suppressed agonist-induced Gαi activation while promoting constitutive Gβγ signaling. Phosphomimicking mutations in the P loop (serine-44, serine-47, and threonine-48) suppressed Gi activation entirely, thus completely segregating growth factor and GPCR pathways. As expected, most of the phosphorylation events appeared to affect intrinsic properties of Gαi proteins, including conformational stability, nucleotide binding, and the ability to associate with and to release Gβγ. However, one phosphomimicking mutation, targeting the carboxyl-terminal residue tyrosine-320, promoted mislocalization of Gαi from the plasma membrane, a previously uncharacterized mechanism of suppressing GPCR signaling through G protein subcellular compartmentalization. Together, these findings elucidate not only how growth factor and chemokine signals cross-talk through the phosphorylation-dependent modulation of Gαi but also how such cross-talk may generate signal diversity.
Collapse
Affiliation(s)
- Suchismita Roy
- Department of Cellular and Molecular Medicine, University of California San Diego, CA 92093, USA
| | - Saptarshi Sinha
- Department of Cellular and Molecular Medicine, University of California San Diego, CA 92093, USA
| | - Ananta James Silas
- Department of Cellular and Molecular Medicine, University of California San Diego, CA 92093, USA
| | - Majid Ghassemian
- Department of Chemistry and Biochemistry, Biomolecular and Proteomics Mass Spectrometry Facility, University of California San Diego, San Diego, CA 92093, USA
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, CA 92093, USA
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, CA 92093, USA
- Department of Medicine, University of California San Diego, CA 92093, USA
- Moore’s Comprehensive Cancer Center, University of California San Diego, CA 92093, USA
| |
Collapse
|
4
|
Garcia-Marcos M. Heterotrimeric G protein signaling without GPCRs: The Gα-binding-and-activating (GBA) motif. J Biol Chem 2024; 300:105756. [PMID: 38364891 PMCID: PMC10943482 DOI: 10.1016/j.jbc.2024.105756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/18/2024] Open
Abstract
Heterotrimeric G proteins (Gαβγ) are molecular switches that relay signals from 7-transmembrane receptors located at the cell surface to the cytoplasm. The function of these receptors is so intimately linked to heterotrimeric G proteins that they are named G protein-coupled receptors (GPCRs), showcasing the interdependent nature of this archetypical receptor-transducer axis of transmembrane signaling in eukaryotes. It is generally assumed that activation of heterotrimeric G protein signaling occurs exclusively by the action of GPCRs, but this idea has been challenged by the discovery of alternative mechanisms by which G proteins can propagate signals in the cell. This review will focus on a general principle of G protein signaling that operates without the direct involvement of GPCRs. The mechanism of G protein signaling reviewed here is mediated by a class of G protein regulators defined by containing an evolutionarily conserved sequence named the Gα-binding-and-activating (GBA) motif. Using the best characterized proteins with a GBA motif as examples, Gα-interacting vesicle-associated protein (GIV)/Girdin and dishevelled-associating protein with a high frequency of leucine residues (DAPLE), this review will cover (i) the mechanisms by which extracellular cues not relayed by GPCRs promote the coupling of GBA motif-containing regulators with G proteins, (ii) the structural and molecular basis for how GBA motifs interact with Gα subunits to facilitate signaling, (iii) the relevance of this mechanism in different cellular and pathological processes, including cancer and birth defects, and (iv) strategies to manipulate GBA-G protein coupling for experimental therapeutics purposes, including the development of rationally engineered proteins and chemical probes.
Collapse
Affiliation(s)
- Mikel Garcia-Marcos
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA; Department of Biology, College of Arts & Sciences, Boston University, Boston, Massachusetts, USA.
| |
Collapse
|
5
|
Campagna CM, McMahon H, Nechipurenko I. The G protein alpha chaperone and guanine-nucleotide exchange factor RIC-8 regulates cilia morphogenesis in Caenorhabditis elegans sensory neurons. PLoS Genet 2023; 19:e1011015. [PMID: 37910589 PMCID: PMC10642896 DOI: 10.1371/journal.pgen.1011015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/13/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023] Open
Abstract
Heterotrimeric G (αβγ) proteins are canonical transducers of G-protein-coupled receptor (GPCR) signaling and play critical roles in communication between cells and their environment. Many GPCRs and heterotrimeric G proteins localize to primary cilia and modulate cilia morphology via mechanisms that are not well understood. Here, we show that RIC-8, a cytosolic guanine nucleotide exchange factor (GEF) and chaperone for Gα protein subunits, shapes cilia membrane morphology in a subset of Caenorhabditis elegans sensory neurons. Consistent with its role in ciliogenesis, C. elegans RIC-8 localizes to cilia in different sensory neuron types. Using domain mutagenesis, we demonstrate that while the GEF function alone is not sufficient, both the GEF and Gα-interacting chaperone motifs of RIC-8 are required for its role in cilia morphogenesis. We identify ODR-3 as the RIC-8 Gα client and demonstrate that RIC-8 functions in the same genetic pathway with another component of the non-canonical G protein signaling AGS-3 to shape cilia morphology. Notably, despite defects in AWC cilia morphology, ags-3 null mutants exhibit normal chemotaxis toward benzaldehyde unlike odr-3 mutant animals. Collectively, our findings describe a novel function for the evolutionarily conserved protein RIC-8 and non-canonical RIC-8-AGS-3-ODR-3 signaling in cilia morphogenesis and uncouple Gα ODR-3 functions in ciliogenesis and olfaction.
Collapse
Affiliation(s)
- Christina M. Campagna
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Hayley McMahon
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Inna Nechipurenko
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| |
Collapse
|
6
|
Campagna CM, McMahon H, Nechipurenko I. The G protein alpha Chaperone and Guanine-Nucleotide Exchange Factor RIC-8 Regulates Cilia Morphogenesis in Caenorhabditis elegans Sensory Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554856. [PMID: 37662329 PMCID: PMC10473713 DOI: 10.1101/2023.08.25.554856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Heterotrimeric G (αβγ) proteins are canonical transducers of G-protein-coupled receptor (GPCR) signaling and play critical roles in communication between cells and their environment. Many GPCRs and heterotrimeric G proteins localize to primary cilia and modulate cilia morphology via mechanisms that are not well understood. Here, we show that RIC-8, a cytosolic guanine nucleotide exchange factor (GEF) and chaperone for Gα protein subunits, shapes cilia membrane morphology in a subset of Caenorhabditis elegans sensory neurons. Consistent with its role in ciliogenesis, C. elegans RIC-8 localizes to cilia in different sensory neuron types. Using domain mutagenesis, we demonstrate that while the GEF function alone is not sufficient, both the GEF and Gα-interacting chaperone motifs of RIC-8 are required for its role in cilia morphogenesis. We identify ODR-3 as the RIC-8 Gα client and demonstrate that RIC-8 functions in the same genetic pathway with another component of the non-canonical G protein signaling AGS-3 to shape cilia morphology. Notably, despite severe defects in AWC cilia morphology, ags-3 null mutants exhibit normal chemotaxis toward benzaldehyde unlike odr-3 mutant animals. Collectively, our findings describe a novel function for the evolutionarily conserved protein RIC-8 and non-canonical RIC-8-AGS-3-ODR-3 signaling in cilia morphogenesis and uncouple Gα ODR-3 functions in ciliogenesis and olfaction.
Collapse
Affiliation(s)
- Christina M. Campagna
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Hayley McMahon
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Inna Nechipurenko
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| |
Collapse
|
7
|
Park JC, Luebbers A, Dao M, Semeano A, Nguyen AM, Papakonstantinou MP, Broselid S, Yano H, Martemyanov KA, Garcia-Marcos M. Fine-tuning GPCR-mediated neuromodulation by biasing signaling through different G protein subunits. Mol Cell 2023; 83:2540-2558.e12. [PMID: 37390816 PMCID: PMC10527995 DOI: 10.1016/j.molcel.2023.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/28/2023] [Accepted: 06/02/2023] [Indexed: 07/02/2023]
Abstract
G-protein-coupled receptors (GPCRs) mediate neuromodulation through the activation of heterotrimeric G proteins (Gαβγ). Classical models depict that G protein activation leads to a one-to-one formation of Gα-GTP and Gβγ species. Each of these species propagates signaling by independently acting on effectors, but the mechanisms by which response fidelity is ensured by coordinating Gα and Gβγ responses remain unknown. Here, we reveal a paradigm of G protein regulation whereby the neuronal protein GINIP (Gα inhibitory interacting protein) biases inhibitory GPCR responses to favor Gβγ over Gα signaling. Tight binding of GINIP to Gαi-GTP precludes its association with effectors (adenylyl cyclase) and, simultaneously, with regulator-of-G-protein-signaling (RGS) proteins that accelerate deactivation. As a consequence, Gαi-GTP signaling is dampened, whereas Gβγ signaling is enhanced. We show that this mechanism is essential to prevent the imbalances of neurotransmission that underlie increased seizure susceptibility in mice. Our findings reveal an additional layer of regulation within a quintessential mechanism of signal transduction that sets the tone of neurotransmission.
Collapse
Affiliation(s)
- Jong-Chan Park
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Alex Luebbers
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Maria Dao
- U.F. Scripps Biomedical Research, University of Florida, Jupiter, FL 33458, USA
| | - Ana Semeano
- Department of Pharmaceutical Sciences, Center for Drug Discovery, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| | - Anh Minh Nguyen
- Department of Pharmaceutical Sciences, Center for Drug Discovery, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| | - Maria P Papakonstantinou
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Stefan Broselid
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Hideaki Yano
- Department of Pharmaceutical Sciences, Center for Drug Discovery, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| | | | - Mikel Garcia-Marcos
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; Department of Biology, College of Arts & Sciences, Boston University, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Yang C, Yaolin S, Lu W, Wenwen R, Hailei S, Han Z, Xiaoming X. G-protein signaling modulator 1 promotes colorectal cancer metastasis by PI3K/AKT/mTOR signaling and autophagy. Int J Biochem Cell Biol 2023; 157:106388. [PMID: 36758790 DOI: 10.1016/j.biocel.2023.106388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/26/2022] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND Colorectal cancer is the second most common malignant tumor worldwide. A deeper insight into the mechanisms underlying colorectal cancer metastasis is urgently needed. G-protein signaling modulator 1 and autophagy play critical roles in tumor migration and invasion. However, the biological functions and regulatory networks of G-protein signaling modulator 1 and autophagy have not yet been fully studied. METHODS We performed immunohistochemistry and clinic-pathological characteristic analysis in 328 human colorectal cancer specimens to identify the clinical role of G-protein signaling modulator 1 in colorectal cancer. An in vitro coculture system and a tumor metastasis mouse model were used to explore the biological function of G-protein signaling modulator 1 on tumor metastasis. Autophagic flux detection like GFP-LC3B signal immunofluorescence and electron microscope observation of autophagic vesicles and confocal microscope detection were used to gain insights into the underlying role of G-protein signaling modulator 1 in autophagy. RESULTS We found that G-protein signaling modulator 1 was abundantly expressed in colorectal cancer tissues and was associated with lymph node metastasis and poor prognosis. Furthermore, our bioinformatic and functional studies demonstrated that G-protein signaling modulator 1 significantly promoted cell migration and invasion, both in vitro and in vivo. Mechanistically, we demonstrated that G-protein signaling modulator 1 could promote colorectal cancer cell migration and invasion and inhibit autophagy and by activating the PI3K/AKT/mTOR pathway. CONCLUSIONS We proposed that G-protein signaling modulator 1 promotes colorectal cancer metastasis by modulating autophagy through the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Chen Yang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, People's Republic of China
| | - Song Yaolin
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, People's Republic of China
| | - Wang Lu
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, People's Republic of China
| | - Ran Wenwen
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, People's Republic of China
| | - Shi Hailei
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, People's Republic of China
| | - Zhao Han
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, People's Republic of China
| | - Xing Xiaoming
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, People's Republic of China.
| |
Collapse
|
9
|
GPSM1 impairs metabolic homeostasis by controlling a pro-inflammatory pathway in macrophages. Nat Commun 2022; 13:7260. [PMID: 36434066 PMCID: PMC9700814 DOI: 10.1038/s41467-022-34998-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
G-protein-signaling modulator 1 (GPSM1) exhibits strong genetic association with Type 2 diabetes (T2D) and Body Mass Index in population studies. However, how GPSM1 carries out such control and in which types of cells are poorly understood. Here, we demonstrate that myeloid GPSM1 promotes metabolic inflammation to accelerate T2D and obesity development. Mice with myeloid-specific GPSM1 ablation are protected against high fat diet-induced insulin resistance, glucose dysregulation, and liver steatosis via repression of adipose tissue pro-inflammatory states. Mechanistically, GPSM1 deficiency mainly promotes TNFAIP3 transcription via the Gαi3/cAMP/PKA/CREB axis, thus inhibiting TLR4-induced NF-κB signaling in macrophages. In addition, we identify a small-molecule compound, AN-465/42243987, which suppresses the pro-inflammatory phenotype by inhibiting GPSM1 function, which could make it a candidate for metabolic therapy. Furthermore, GPSM1 expression is upregulated in visceral fat of individuals with obesity and is correlated with clinical metabolic traits. Overall, our findings identify macrophage GPSM1 as a link between metabolic inflammation and systemic homeostasis.
Collapse
|
10
|
Liccardo F, Luini A, Di Martino R. Endomembrane-Based Signaling by GPCRs and G-Proteins. Cells 2022; 11:528. [PMID: 35159337 PMCID: PMC8834376 DOI: 10.3390/cells11030528] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 12/14/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) and G-proteins have a range of roles in many physiological and pathological processes and are among the most studied signaling proteins. A plethora of extracellular stimuli can activate the GPCR and can elicit distinct intracellular responses through the activation of specific transduction pathways. For many years, biologists thought that GPCR signaling occurred entirely on the plasma membrane. However, in recent decades, many lines of evidence have proved that the GPCRs and G-proteins may reside on endomembranes and can start or propagate signaling pathways through the organelles that form the secretory route. How these alternative intracellular signaling pathways of the GPCR and G-proteins influence the physiological and pathological function of the endomembranes is still under investigation. Here, we review the general role and classification of GPCRs and G-proteins with a focus on their signaling pathways in the membrane transport apparatus.
Collapse
Affiliation(s)
- Federica Liccardo
- Cardiovascular Research Institute, University of California San Francisco (UCSF), 555 Mission Bay Blvd., San Francisco, CA 94158, USA;
| | - Alberto Luini
- Istituto per L’endocrinologia e L’oncologia Sperimentale “Gaetano Salvatore” (IEOS)—Sede Secondaria, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Rosaria Di Martino
- Istituto per L’endocrinologia e L’oncologia Sperimentale “Gaetano Salvatore” (IEOS)—Sede Secondaria, Via Pietro Castellino 111, 80131 Napoli, Italy
| |
Collapse
|
11
|
Garcia-Marcos M. Complementary biosensors reveal different G-protein signaling modes triggered by GPCRs and non-receptor activators. eLife 2021; 10:65620. [PMID: 33787494 PMCID: PMC8034979 DOI: 10.7554/elife.65620] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/30/2021] [Indexed: 01/14/2023] Open
Abstract
It has become evident that activation of heterotrimeric G-proteins by cytoplasmic proteins that are not G-protein-coupled receptors (GPCRs) plays a role in physiology and disease. Despite sharing the same biochemical guanine nucleotide exchange factor (GEF) activity as GPCRs in vitro, the mechanisms by which these cytoplasmic proteins trigger G-protein-dependent signaling in cells have not been elucidated. Heterotrimeric G-proteins can give rise to two active signaling species, Gα-GTP and dissociated Gβγ, with different downstream effectors, but how non-receptor GEFs affect the levels of these two species in cells is not known. Here, a systematic comparison of GPCRs and three unrelated non-receptor proteins with GEF activity in vitro (GIV/Girdin, AGS1/Dexras1, and Ric-8A) revealed high divergence in their contribution to generating Gα-GTP and free Gβγ in cells directly measured with live-cell biosensors. These findings demonstrate fundamental differences in how receptor and non-receptor G-protein activators promote signaling in cells despite sharing similar biochemical activities in vitro.
Collapse
Affiliation(s)
- Mikel Garcia-Marcos
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| |
Collapse
|
12
|
Nie ZW, Niu YJ, Zhou W, Zhou DJ, Kim JY, Cui XS. AGS3-dependent trans-Golgi network membrane trafficking is essential for compaction in mouse embryos. J Cell Sci 2020; 133:jcs.243238. [PMID: 33148610 DOI: 10.1242/jcs.243238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 10/26/2020] [Indexed: 11/20/2022] Open
Abstract
Activator of G-protein signaling 3 (AGS3, also known as GPSM1) regulates the trans-Golgi network. The AGS3 GoLoco motif binds to Gαi and thereby regulates the transport of proteins to the plasma membrane. Compaction of early embryos is based on the accumulation of E-cadherin (Cdh1) at cell-contacted membranes. However, how AGS3 regulates the transport of Cdh1 to the plasma membrane remains undetermined. To investigate this, AGS3 was knocked out using the Cas9-sgRNA system. Both trans-Golgi network protein 46 (TGN46, also known as TGOLN2) and transmembrane p24-trafficking protein 7 (TMED7) were tracked in early mouse embryos by tagging these proteins with a fluorescent protein label. We observed that the majority of the AGS3-edited embryos were developmentally arrested and were fragmented after the four-cell stage, exhibiting decreased accumulation of Cdh1 at the membrane. The trans-Golgi network and TMED7-positive vesicles were also dispersed and were not polarized near the membrane. Additionally, increased Gαi1 (encoded by GNAI1) expression could rescue AGS3-overexpressed embryos. In conclusion, AGS3 reinforces the dynamics of the trans-Golgi network and the transport of TMED7-positive cargo containing Cdh1 to the cell-contact surface during early mouse embryo development.
Collapse
Affiliation(s)
- Zheng-Wen Nie
- Department of Animal Sciences, Chungbuk National University, Chungbuk, Cheongju 361-763, Republic of Korea
| | - Ying-Jie Niu
- Department of Animal Sciences, Chungbuk National University, Chungbuk, Cheongju 361-763, Republic of Korea
| | - Wenjun Zhou
- Department of Animal Sciences, Chungbuk National University, Chungbuk, Cheongju 361-763, Republic of Korea
| | - Dong-Jie Zhou
- Department of Animal Sciences, Chungbuk National University, Chungbuk, Cheongju 361-763, Republic of Korea
| | - Ju-Yeon Kim
- Department of Animal Sciences, Chungbuk National University, Chungbuk, Cheongju 361-763, Republic of Korea
| | - Xiang-Shun Cui
- Department of Animal Sciences, Chungbuk National University, Chungbuk, Cheongju 361-763, Republic of Korea
| |
Collapse
|
13
|
Kawamura T, Futamura Y, Shang E, Muroi M, Janning P, Ueno M, Wilke J, Takeda S, Kondoh Y, Ziegler S, Watanabe N, Waldmann H, Osada H. Discovery of small-molecule modulator of heterotrimeric G i-protein by integrated phenotypic profiling and chemical proteomics. Biosci Biotechnol Biochem 2020; 84:2484-2490. [PMID: 32867616 DOI: 10.1080/09168451.2020.1812375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Discovery of small-molecule inducers of unique phenotypic changes combined with subsequent target identification often provides new insights into cellular functions. Here, we applied integrated profiling based on cellular morphological and proteomic changes to compound screening. We identified an indane derivative, NPD9055, which is mechanistically distinct from reference compounds with known modes of action. Employing a chemical proteomics approach, we then showed that NPD9055 binds subunits of heterotrimeric G-protein Gi. An in vitro [35S]GTPγS-binding assay revealed that NPD9055 inhibited GDP/GTP exchange on a Gαi subunit induced by a G-protein-coupled receptor agonist, but not on another G-protein from the Gαs family. In intact HeLa cells, NPD9055 induced an increase in intracellular Ca2+ levels and ERK/MAPK phosphorylation, both of which are regulated by Gβγ, following its dissociation from Gαi. Our observations suggest that NPD9055 targets Gαi and thus regulates Gβγ-dependent cellular processes, most likely by causing the dissociation of Gβγ from Gαi.
Collapse
Affiliation(s)
- Tatsuro Kawamura
- RIKEN-Max Planck Joint Research Division for Systems Chemical Biology, RIKEN Center for Sustainable Resource Science , Saitama, Japan.,Max Planck Institute of Molecular Physiology , Department of Chemical Biology, Dortmund, Germany
| | - Yushi Futamura
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science , Saitama, Japan
| | - Erchang Shang
- Max Planck Institute of Molecular Physiology , Department of Chemical Biology, Dortmund, Germany
| | - Makoto Muroi
- RIKEN-Max Planck Joint Research Division for Systems Chemical Biology, RIKEN Center for Sustainable Resource Science , Saitama, Japan.,Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science , Saitama, Japan
| | - Petra Janning
- Max Planck Institute of Molecular Physiology , Department of Chemical Biology, Dortmund, Germany
| | - Masayoshi Ueno
- Faculty of Science and Technology, Division of Molecular Science, Gunma University , Kiryu, Gunma, Japan
| | - Julian Wilke
- RIKEN-Max Planck Joint Research Division for Systems Chemical Biology, RIKEN Center for Sustainable Resource Science , Saitama, Japan.,Max Planck Institute of Molecular Physiology , Department of Chemical Biology, Dortmund, Germany.,Faculty of Chemistry and Chemical Biology, Technical University Dortmund , Dortmund, Germany
| | - Shigeki Takeda
- Faculty of Science and Technology, Division of Molecular Science, Gunma University , Kiryu, Gunma, Japan
| | - Yasumitsu Kondoh
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science , Saitama, Japan
| | - Slava Ziegler
- Max Planck Institute of Molecular Physiology , Department of Chemical Biology, Dortmund, Germany
| | - Nobumoto Watanabe
- RIKEN-Max Planck Joint Research Division for Systems Chemical Biology, RIKEN Center for Sustainable Resource Science , Saitama, Japan
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology , Department of Chemical Biology, Dortmund, Germany.,Faculty of Chemistry and Chemical Biology, Technical University Dortmund , Dortmund, Germany
| | - Hiroyuki Osada
- RIKEN-Max Planck Joint Research Division for Systems Chemical Biology, RIKEN Center for Sustainable Resource Science , Saitama, Japan.,Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science , Saitama, Japan
| |
Collapse
|
14
|
Wavreil FDM, Yajima M. Diversity of activator of G-protein signaling (AGS)-family proteins and their impact on asymmetric cell division across taxa. Dev Biol 2020; 465:89-99. [PMID: 32687894 DOI: 10.1016/j.ydbio.2020.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 11/18/2022]
Abstract
Asymmetric cell division (ACD) is a cellular process that forms two different cell types through a cell division and is thus critical for the development of all multicellular organisms. Not all but many of the ACD processes are mediated by proper orientation of the mitotic spindle, which segregates the fate determinants asymmetrically into daughter cells. In many cell types, the evolutionarily conserved protein complex of Gαi/AGS-family protein/NuMA-like protein appears to play critical roles in orienting the spindle and/or generating the polarized cortical forces to regulate ACD. Studies in various organisms reveal that this conserved protein complex is slightly modified in each phylum or even within species. In particular, AGS-family proteins appear to be modified with a variable number of motifs in their functional domains across taxa. This apparently creates different molecular interactions and mechanisms of ACD in each developmental program, ultimately contributing to developmental diversity across species. In this review, we discuss how a conserved ACD machinery has been modified in each phylum over the course of evolution with a major focus on the molecular evolution of AGS-family proteins and its impact on ACD regulation.
Collapse
Affiliation(s)
- Florence D M Wavreil
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02906, USA
| | - Mamiko Yajima
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02906, USA.
| |
Collapse
|
15
|
Adekoya TO, Smith N, Aladeniyi T, Blumer JB, Chen XL, Richardson RM. Activator of G protein signaling 3 modulates prostate tumor development and progression. Carcinogenesis 2020; 40:1504-1513. [PMID: 31215992 DOI: 10.1093/carcin/bgz076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/05/2019] [Accepted: 04/22/2019] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is a leading cause of cancer death among men, with greater prevalence of the disease among the African American population in the USA. Activator of G-protein signaling 3 (AGS3/G-protein signaling modulator 1) was shown to be overexpressed in prostate adenocarcinoma relative to the prostate gland. In this study, we investigated the correlation between AGS3 overexpression and PCa malignancy. Immunoblotting analysis and real-time quantitative-PCR showed increase in AGS3 expression in the metastatic cell lines LNCaP (~3-fold), MDA PCa 2b (~2-fold), DU 145 (~2-fold) and TRAMP-C1 (~20-fold) but not in PC3 (~1-fold), relative to control RWPE-1. Overexpression of AGS3 in PC3, LNCaP and MDA PCa 2b enhanced tumor growth. AGS3 contains seven tetratricopeptide repeats (TPR) and four G-protein regulatory (GPR) motifs. Overexpression of the TPR or the GPR motifs in PC3 cells had no effect in tumor growth. Depletion of AGS3 in the TRAMP-C1 cells (TRAMP-C1-AGS3-/-) decreased cell proliferation and delayed wound healing and tumor growth in both C57BL/6 (~3-fold) and nude mice xenografts, relative to control TRAMP-C1 cells. TRAMP-C1-AGS3-/- tumors also exhibited a marked increase (~5-fold) in both extracellular signal-regulated kinase (ERK) 1/2 and P38 mitogen-activated protein kinase (MAPK) activation, which correlated with a significant increase (~3-fold) in androgen receptor (AR) expression, relative to TRAMP-C1 xenografts. Interestingly, overexpression of AGS3 in TRAMP-C1-AGS3-/- cells inhibited ERK activation and AR overexpression as compared with control TRAMP-C1 cells. Taken together, the data indicate that the effect of AGS3 in prostate cancer development and progression is probably mediated via a MAPK/AR-dependent pathway.
Collapse
Affiliation(s)
- Timothy O Adekoya
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA.,Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC, USA
| | - Nikia Smith
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA
| | - Temilade Aladeniyi
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA
| | - Joe B Blumer
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Xiaoxin L Chen
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA.,Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC, USA
| | - Ricardo M Richardson
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA.,Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC, USA
| |
Collapse
|
16
|
Campla CK, Mast H, Dong L, Lei J, Halford S, Sekaran S, Swaroop A. Targeted deletion of an NRL- and CRX-regulated alternative promoter specifically silences FERM and PDZ domain containing 1 (Frmpd1) in rod photoreceptors. Hum Mol Genet 2020; 28:804-817. [PMID: 30445545 DOI: 10.1093/hmg/ddy388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/15/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023] Open
Abstract
Regulation of cell type-specific gene expression is critical for generating neuronal diversity. Transcriptome analyses have unraveled extensive heterogeneity of transcribed sequences in retinal photoreceptors because of alternate splicing and/or promoter usage. Here we show that Frmpd1 (FERM and PDZ domain containing 1) is transcribed from an alternative promoter specifically in the retina. Electroporation of Frmpd1 promoter region, -505 to +382 bp, activated reporter gene expression in mouse retina in vivo. A proximal promoter sequence (-8 to +33 bp) of Frmpd1 binds to neural retina leucine zipper (NRL) and cone-rod homeobox protein (CRX), two rod-specific differentiation factors, and is necessary for activating reporter gene expression in vitro and in vivo. Clustered regularly interspaced short palindromic repeats/Cas9-mediated deletion of the genomic region, including NRL and CRX binding sites, in vivo completely eliminated Frmpd1 expression in rods and dramatically reduced expression in rod bipolar cells, thereby overcoming embryonic lethality caused by germline Frmpd1 deletion. Our studies demonstrate that a cell type-specific regulatory control region is a credible target for creating loss-of-function alleles of widely expressed genes.
Collapse
Affiliation(s)
- Christie K Campla
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.,Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Hannah Mast
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jingqi Lei
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Sumathi Sekaran
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
17
|
Marivin A, Maziarz M, Zhao J, DiGiacomo V, Olmos Calvo I, Mann EA, Ear J, Blanco-Canosa JB, Ross EM, Ghosh P, Garcia-Marcos M. DAPLE protein inhibits nucleotide exchange on Gα s and Gα q via the same motif that activates Gαi. J Biol Chem 2020; 295:2270-2284. [PMID: 31949046 DOI: 10.1074/jbc.ra119.011648] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/08/2020] [Indexed: 01/03/2023] Open
Abstract
Besides being regulated by G-protein-coupled receptors, the activity of heterotrimeric G proteins is modulated by many cytoplasmic proteins. GIV/Girdin and DAPLE (Dvl-associating protein with a high frequency of leucine) are the best-characterized members of a group of cytoplasmic regulators that contain a Gα-binding and -activating (GBA) motif and whose dysregulation underlies human diseases, including cancer and birth defects. GBA motif-containing proteins were originally reported to modulate G proteins by binding Gα subunits of the Gi/o family (Gαi) over other families (such as Gs, Gq/11, or G12/13), and promoting nucleotide exchange in vitro However, some evidence suggests that this is not always the case, as phosphorylation of the GBA motif of GIV promotes its binding to Gαs and inhibits nucleotide exchange. The G-protein specificity of DAPLE and how it might affect nucleotide exchange on G proteins besides Gαi remain to be investigated. Here, we show that DAPLE's GBA motif, in addition to Gαi, binds efficiently to members of the Gs and Gq/11 families (Gαs and Gαq, respectively), but not of the G12/13 family (Gα12) in the absence of post-translational phosphorylation. We pinpointed Met-1669 as the residue in the GBA motif of DAPLE that diverges from that in GIV and enables better binding to Gαs and Gαq Unlike the nucleotide-exchange acceleration observed for Gαi, DAPLE inhibited nucleotide exchange on Gαs and Gαq These findings indicate that GBA motifs have versatility in their G-protein-modulating effect, i.e. they can bind to Gα subunits of different classes and either stimulate or inhibit nucleotide exchange depending on the G-protein subtype.
Collapse
Affiliation(s)
- Arthur Marivin
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Marcin Maziarz
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Jingyi Zhao
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Vincent DiGiacomo
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Isabel Olmos Calvo
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Emily A Mann
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Jason Ear
- Department of Medicine and Cellular and Molecular Medicine, University of California, San Diego, California 92093
| | - Juan B Blanco-Canosa
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain 08034
| | - Elliott M Ross
- Department of Pharmacology, Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Pradipta Ghosh
- Department of Medicine and Cellular and Molecular Medicine, University of California, San Diego, California 92093
| | - Mikel Garcia-Marcos
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118.
| |
Collapse
|
18
|
Lwin HP, Choi YH, Lee MW, Yu JH, Shin KS. RgsA Attenuates the PKA Signaling, Stress Response, and Virulence in the Human Opportunistic Pathogen Aspergillus fumigatus. Int J Mol Sci 2019; 20:ijms20225628. [PMID: 31717953 PMCID: PMC6888639 DOI: 10.3390/ijms20225628] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022] Open
Abstract
The regulator of G-protein signaling (RGS) proteins play an important role in upstream control of heterotrimeric G-protein signaling pathways. In the genome of the human opportunistic pathogenic fungus Aspergillus fumigatus, six RGS protein-encoding genes are present. To characterize the rgsA gene predicted to encode a protein with an RGS domain, we generated an rgsA null mutant and observed the phenotypes of the mutant. The deletion (Δ) of rgsA resulted in increased radial growth and enhanced asexual sporulation in both solid and liquid culture conditions. Accordingly, transcripts levels of the key asexual developmental regulators abaA, brlA, and wetA are elevated in the ΔrgsA mutant. Moreover, ΔrgsA resulted in elevated spore germination rates in the absence of a carbon source. The activity of cAMP-dependent protein kinase A (PKA) and mRNA levels of genes encoding PKA signaling elements are elevated by ΔrgsA. In addition, mRNA levels of genes associated with stress-response signaling increased with the lack of rgsA, and the ΔrgsA spores showed enhanced tolerance against oxidative stressors. Comparative transcriptomic analyses revealed that the ΔrgsA mutant showed higher mRNA levels of gliotoxin (GT) biosynthetic genes. Accordingly, the rgsA null mutant exhibited increased production of GT and elevated virulence in the mouse. Conversely, the majority of genes encoding glucan degrading enzymes were down-regulated by ΔrgsA, and endoglucanase activities were reduced. In summary, RgsA plays multiple roles, governing growth, development, stress responses, virulence, and external polymer degradation-likely by attenuating PKA signaling.
Collapse
Affiliation(s)
- Hnin Phyu Lwin
- Department of Microbiology, Graduate School, Daejeon University, Daejeon 34520, Korea; (H.P.L.); (Y.-H.C.)
| | - Yong-Ho Choi
- Department of Microbiology, Graduate School, Daejeon University, Daejeon 34520, Korea; (H.P.L.); (Y.-H.C.)
| | - Min-Woo Lee
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Chungcheongnam-do 31151, Korea;
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
- Correspondence: (J.-H.Y.); (K.-S.S.); Tel.: +1-608-262-4696 (J.-H.Y.); +82-42-280-2439 (K.-S.S.); Fax: +1-608-262-2976 (J.-H.Y.); +82-42-280-2608 (K.-S.S.)
| | - Kwang-Soo Shin
- Department of Microbiology, Graduate School, Daejeon University, Daejeon 34520, Korea; (H.P.L.); (Y.-H.C.)
- Correspondence: (J.-H.Y.); (K.-S.S.); Tel.: +1-608-262-4696 (J.-H.Y.); +82-42-280-2439 (K.-S.S.); Fax: +1-608-262-2976 (J.-H.Y.); +82-42-280-2608 (K.-S.S.)
| |
Collapse
|
19
|
Jiao Y, Srba M, Wang J, Chen W. Correlation of Autophagosome Formation with Degradation and Endocytosis Arabidopsis Regulator of G-Protein Signaling (RGS1) through ATG8a. Int J Mol Sci 2019; 20:ijms20174190. [PMID: 31461856 PMCID: PMC6747245 DOI: 10.3390/ijms20174190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 12/30/2022] Open
Abstract
Damaged or unwanted cellular proteins are degraded by either autophagy or the ubiquitin/proteasome pathway. In Arabidopsis thaliana, sensing of D-glucose is achieved by the heterotrimeric G protein complex and regulator of G-protein signaling 1 (AtRGS1). Here, we showed that starvation increases proteasome-independent AtRGS1 degradation, and it is correlated with increased autophagic flux. RGS1 promoted the production of autophagosomes and autophagic flux; RGS1-yellow fluorescent protein (YFP) was surrounded by vacuolar dye FM4-64 (red fluorescence). RGS1 and autophagosomes co-localized in the root cells of Arabidopsis and BY-2 cells. We demonstrated that the autophagosome marker ATG8a interacts with AtRGS1 and its shorter form with truncation of the seven transmembrane and RGS1 domains in planta. Altogether, our data indicated the correlation of autophagosome formation with degradation and endocytosis of AtRGS1 through ATG8a.
Collapse
Affiliation(s)
- Yue Jiao
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China
- College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Miroslav Srba
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12844 Prague, Czech Republic
| | - Jingchun Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China
- College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Wenli Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China.
- College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
20
|
RgsD negatively controls development, toxigenesis, stress response, and virulence in Aspergillus fumigatus. Sci Rep 2019; 9:811. [PMID: 30692551 PMCID: PMC6349852 DOI: 10.1038/s41598-018-37124-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/28/2018] [Indexed: 12/19/2022] Open
Abstract
The regulator of G protein signaling (RGS) domain proteins generally attenuate heterotrimeric G protein signaling, thereby fine-tune the duration and strength of signal transduction. In this study, we characterize the functions of RgsD, one of the six RGS domain proteins present in the human pathogenic fungus Aspergillus fumigatus. The deletion (Δ) of rgsD results in enhanced asexual sporulation coupled with increased mRNA levels of key developmental activators. Moreover, ΔrgsD leads to increased spore tolerance to UV and oxidative stress, which might be associated with the enhanced expression of melanin biosynthetic genes and increased amount of melanin. Yeast two-hybrid assays reveal that RgsD can interact with the three Gα proteins GpaB, GanA, and GpaA, showing the highest interaction potential with GpaB. Importantly, the ΔrgsD mutant shows elevated expression of genes in the cAMP-dependent protein kinase A (PKA) pathway and PKA catalytic activity. The ΔrgsD mutant also display increased gliotoxin production and elevated virulence toward Galleria mellonella wax moth larvae. Transcriptomic analyses using RNA-seq reveal the expression changes associated with the diverse phenotypic outcomes caused by ΔrgsD. Collectively, we conclude that RgsD attenuates cAMP-PKA signaling pathway and negatively regulates asexual development, toxigenesis, melanin production, and virulence in A. fumigatus.
Collapse
|
21
|
Maziarz M, Broselid S, DiGiacomo V, Park JC, Luebbers A, Garcia-Navarrete L, Blanco-Canosa JB, Baillie GS, Garcia-Marcos M. A biochemical and genetic discovery pipeline identifies PLCδ4b as a nonreceptor activator of heterotrimeric G-proteins. J Biol Chem 2018; 293:16964-16983. [PMID: 30194280 DOI: 10.1074/jbc.ra118.003580] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/21/2018] [Indexed: 02/06/2023] Open
Abstract
Recent evidence has revealed that heterotrimeric G-proteins can be activated by cytoplasmic proteins that share an evolutionarily conserved sequence called the Gα-binding-and-activating (GBA) motif. This mechanism provides an alternative to canonical activation by G-protein-coupled receptors (GPCRs) and plays important roles in cell function, and its dysregulation is linked to diseases such as cancer. Here, we describe a discovery pipeline that uses biochemical and genetic approaches to validate GBA candidates identified by sequence similarity. First, putative GBA motifs discovered in bioinformatics searches were synthesized on peptide arrays and probed in batch for Gαi3 binding. Then, cDNAs encoding proteins with Gαi3-binding sequences were expressed in a genetically-modified yeast strain that reports mammalian G-protein activity in the absence of GPCRs. The resulting GBA motif candidates were characterized by comparison of their biochemical, structural, and signaling properties with those of all previously described GBA motifs in mammals (GIV/Girdin, DAPLE, Calnuc, and NUCB2). We found that the phospholipase Cδ4 (PLCδ4) GBA motif binds G-proteins with high affinity, has guanine nucleotide exchange factor activity in vitro, and activates G-protein signaling in cells, as indicated by bioluminescence resonance energy transfer (BRET)-based biosensors of G-protein activity. Interestingly, the PLCδ4 isoform b (PLCδ4b), which lacks the domains required for PLC activity, bound and activated G-proteins more efficiently than the full-length isoform a, suggesting that PLCδ4b functions as a G-protein regulator rather than as a PLC. In summary, we have identified PLCδ4 as a nonreceptor activator of G-proteins and established an experimental pipeline to discover and characterize GBA motif-containing proteins.
Collapse
Affiliation(s)
- Marcin Maziarz
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, 02118
| | - Stefan Broselid
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, 02118
| | - Vincent DiGiacomo
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, 02118
| | - Jong-Chan Park
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, 02118
| | - Alex Luebbers
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, 02118
| | - Lucia Garcia-Navarrete
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, 02118
| | - Juan B Blanco-Canosa
- the Department of Biological Chemistry and Molecular Modelling, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain, and
| | - George S Baillie
- the Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Mikel Garcia-Marcos
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, 02118
| |
Collapse
|
22
|
Kim Y, Heo IB, Yu JH, Shin KS. Characteristics of a Regulator of G-Protein Signaling (RGS) rgsC in Aspergillus fumigatus. Front Microbiol 2017; 8:2058. [PMID: 29109714 PMCID: PMC5660106 DOI: 10.3389/fmicb.2017.02058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/06/2017] [Indexed: 12/12/2022] Open
Abstract
The regulator of G-protein signaling (RGS) proteins have a conserved RGS domain that facilitates the intrinsic GTPase activity of an activated Gα subunit of heterotrimeric G protein, thereby attenuating signal transduction. Among six predicted RGS proteins in the opportunistic human pathogenic fungus Aspergillus fumigatus, only three (FlbA, GprK, and Rax1) have been studied. The unexplored RgsC composed of the Phox-associated (PXA), RGS, Phox homology (PX), and Nexin_C superfamily domains is highly conserved in many ascomycete fungi, suggesting a crucial role of RgsC in fungal biology. To address this, we have investigated functions of the rgsC gene. The deletion (Δ) of rgsC causes impaired vegetative growth and asexual development coupled with reduced expression of key developmental regulators. Moreover, ΔrgsC results in accelerated and elevated conidial germination regardless of the presence or absence of an external carbon source. Furthermore, ΔrgsC causes reduced conidial tolerance to oxidative stress. In addition, activities and expression of catalases and superoxide dismutases (SODs) are severely decreased in the ΔrgsC mutant. The deletion of rgsC results in a slight reduction in conidial tolerance to cell wall damaging agents, yet significantly lowered mRNA levels of cell wall integrity/biogenesis transcription factors, indicating that RgsC may function in proper activation of cell wall stress response. The ΔrgsC mutant exhibits defective gliotoxin (GT) production and decreased virulence in the wax moth larvae, Galleria mellonella. Transcriptomic studies reveal that a majority of transporters is down-regulated by ΔrgsC and growth of the ΔrgsC mutant is reduced on inorganic and simple nitrogen medium, suggesting that RgsC may function in external nitrogen source sensing and/or transport. In summary, RgsC is necessary for proper growth, development, stress response, GT production, and external nutrients sensing.
Collapse
Affiliation(s)
- Young Kim
- Department of Biological Science, Daejeon University, Daejeon, South Korea
| | - In-Beom Heo
- Department of Biological Science, Daejeon University, Daejeon, South Korea
| | - Jae-Hyuk Yu
- Departments of Bacteriology and Genetics, University of Wisconsin-Madison, Madison, WI, United States
| | - Kwang-Soo Shin
- Department of Biological Science, Daejeon University, Daejeon, South Korea
| |
Collapse
|
23
|
Saadaoui M, Konno D, Loulier K, Goiame R, Jadhav V, Mapelli M, Matsuzaki F, Morin X. Loss of the canonical spindle orientation function in the Pins/LGN homolog AGS3. EMBO Rep 2017; 18:1509-1520. [PMID: 28684399 DOI: 10.15252/embr.201643048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 05/14/2017] [Accepted: 05/19/2017] [Indexed: 11/09/2022] Open
Abstract
In many cell types, mitotic spindle orientation relies on the canonical "LGN complex" composed of Pins/LGN, Mud/NuMA, and Gαi subunits. Membrane localization of this complex recruits motor force generators that pull on astral microtubules to orient the spindle. Drosophila Pins shares highly conserved functional domains with its two vertebrate homologs LGN and AGS3. Whereas the role of Pins and LGN in oriented divisions is extensively documented, involvement of AGS3 remains controversial. Here, we show that AGS3 is not required for planar divisions of neural progenitors in the mouse neocortex. AGS3 is not recruited to the cell cortex and does not rescue LGN loss of function. Despite conserved interactions with NuMA and Gαiin vitro, comparison of LGN and AGS3 functional domains in vivo reveals unexpected differences in the ability of these interactions to mediate spindle orientation functions. Finally, we find that Drosophila Pins is unable to substitute for LGN loss of function in vertebrates, highlighting that species-specific modulations of the interactions between components of the Pins/LGN complex are crucial in vivo for spindle orientation.
Collapse
Affiliation(s)
- Mehdi Saadaoui
- Cell Division and Neurogenesis Group, Ecole Normale Supérieure, CNRS, Inserm, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), PSL Research University, Paris, France
| | - Daijiro Konno
- Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan
| | - Karine Loulier
- UPMC Université Paris 06, Sorbonne Universités, CNRS, Inserm, Institut de la Vision, Paris, France
| | - Rosette Goiame
- Cell Division and Neurogenesis Group, Ecole Normale Supérieure, CNRS, Inserm, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), PSL Research University, Paris, France
| | - Vaibhav Jadhav
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Marina Mapelli
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Fumio Matsuzaki
- Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan
| | - Xavier Morin
- Cell Division and Neurogenesis Group, Ecole Normale Supérieure, CNRS, Inserm, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), PSL Research University, Paris, France
| |
Collapse
|
24
|
Regulation of Airway Inflammation by G-protein Regulatory Motif Peptides of AGS3 protein. Sci Rep 2016; 6:27054. [PMID: 27270970 PMCID: PMC4895231 DOI: 10.1038/srep27054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/12/2016] [Indexed: 12/21/2022] Open
Abstract
Respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), and lung infections have critical consequences on mortality and morbidity in humans. The aims of the present study were to examine the mechanisms by which CXCL12 affects MUC1 transcription and airway inflammation, which depend on activator of G-protein signaling (AGS) 3 and to identify specific molecules that suppress CXCL12-induced airway inflammation by acting on G-protein-coupled receptors. Herein, AGS3 suppresses CXCL12-mediated upregulation of MUC1 and TNFα by regulating Gαi. We found that the G-protein regulatory (GPR) motif peptide in AGS3 binds to Gαi and downregulates MUC1 expression; in contrast, this motif upregulates TNFα expression. Mutated GPR Q34A peptide increased the expression of MUC1 and TGFβ but decreased the expression of TNFα and IL-6. Moreover, CXCR4-induced dendritic extensions in 2D and 3D matrix cultures were inhibited by the GPR Q34A peptide compared with a wild-type GPR peptide. The GPR Q34A peptide also inhibited CXCL12-induced morphological changes and inflammatory cell infiltration in the mouse lung, and production of inflammatory cytokines in bronchoalveolar lavage (BAL) fluid and the lungs. Our data indicate that the GPR motif of AGS3 is critical for regulating MUC1/Muc1 expression and cytokine production in the inflammatory microenvironment.
Collapse
|
25
|
Kamp ME, Liu Y, Kortholt A. Function and Regulation of Heterotrimeric G Proteins during Chemotaxis. Int J Mol Sci 2016; 17:ijms17010090. [PMID: 26784171 PMCID: PMC4730333 DOI: 10.3390/ijms17010090] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 12/22/2015] [Accepted: 12/31/2015] [Indexed: 01/10/2023] Open
Abstract
Chemotaxis, or directional movement towards an extracellular gradient of chemicals, is necessary for processes as diverse as finding nutrients, the immune response, metastasis and wound healing. Activation of G-protein coupled receptors (GPCRs) is at the very base of the chemotactic signaling pathway. Chemotaxis starts with binding of the chemoattractant to GPCRs at the cell-surface, which finally leads to major changes in the cytoskeleton and directional cell movement towards the chemoattractant. Many chemotaxis pathways that are directly regulated by Gβγ have been identified and studied extensively; however, whether Gα is just a handle that regulates the release of Gβγ or whether Gα has its own set of distinct chemotactic effectors, is only beginning to be understood. In this review, we will discuss the different levels of regulation in GPCR signaling and the downstream pathways that are essential for proper chemotaxis.
Collapse
Affiliation(s)
- Marjon E Kamp
- Department of Cell Biochemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
| | - Youtao Liu
- Department of Cell Biochemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
| | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
26
|
Abstract
Activator of G-protein signaling 3 (AGS3) is an accessory protein that functions to regulate the activation status of heterotrimeric G-protein subunits. To date, however, the downstream signaling pathways regulated by AGS3 remain to be fully elucidated, particularly in renal epithelial cells. In the present study, normal rat kidney (NRK-52E) proximal tubular epithelial cells were genetically modified to regulate the expression of AGS3 to investigate its role on MAPK and mTOR signaling to control epithelial cell number. Knockdown of endogenous AGS3 protein was associated with a reduced phosphorylated form of ERK5 and increased apoptosis as determined by elevated cleaved caspase-3. In the presence of the ERK5 inhibitor, BIX02189, a significant 2-fold change (P < 0.05) in G2/M transition state was detected compared to control conditions. Neither of the other MAPK, ERK1/2 or p38 MAPK, nor another pro-survival pathway, mTOR, was significantly altered by the changes in AGS3 protein levels in the renal epithelial cells. The selective ERK5 inhibitor, BIX02189, was found to dose-dependently reduce NRK cell number by up to 41% (P < 0.05) compared to control cells. In summary, these findings demonstrated that cell viability was regulated by AGS3 and was associated with ERK5 activation in renal epithelial cells.
Collapse
|
27
|
Brown NE, Goswami D, Branch MR, Ramineni S, Ortlund EA, Griffin PR, Hepler JR. Integration of G protein α (Gα) signaling by the regulator of G protein signaling 14 (RGS14). J Biol Chem 2015; 290:9037-49. [PMID: 25666614 DOI: 10.1074/jbc.m114.634329] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Indexed: 11/06/2022] Open
Abstract
RGS14 contains distinct binding sites for both active (GTP-bound) and inactive (GDP-bound) forms of Gα subunits. The N-terminal regulator of G protein signaling (RGS) domain binds active Gαi/o-GTP, whereas the C-terminal G protein regulatory (GPR) motif binds inactive Gαi1/3-GDP. The molecular basis for how RGS14 binds different activation states of Gα proteins to integrate G protein signaling is unknown. Here we explored the intramolecular communication between the GPR motif and the RGS domain upon G protein binding and examined whether RGS14 can functionally interact with two distinct forms of Gα subunits simultaneously. Using complementary cellular and biochemical approaches, we demonstrate that RGS14 forms a stable complex with inactive Gαi1-GDP at the plasma membrane and that free cytosolic RGS14 is recruited to the plasma membrane by activated Gαo-AlF4(-). Bioluminescence resonance energy transfer studies showed that RGS14 adopts different conformations in live cells when bound to Gα in different activation states. Hydrogen/deuterium exchange mass spectrometry revealed that RGS14 is a very dynamic protein that undergoes allosteric conformational changes when inactive Gαi1-GDP binds the GPR motif. Pure RGS14 forms a ternary complex with Gαo-AlF4(-) and an AlF4(-)-insensitive mutant (G42R) of Gαi1-GDP, as observed by size exclusion chromatography and differential hydrogen/deuterium exchange. Finally, a preformed RGS14·Gαi1-GDP complex exhibits full capacity to stimulate the GTPase activity of Gαo-GTP, demonstrating that RGS14 can functionally engage two distinct forms of Gα subunits simultaneously. Based on these findings, we propose a working model for how RGS14 integrates multiple G protein signals in host CA2 hippocampal neurons to modulate synaptic plasticity.
Collapse
Affiliation(s)
| | - Devrishi Goswami
- the Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458
| | | | | | - Eric A Ortlund
- Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322 and
| | - Patrick R Griffin
- the Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458
| | | |
Collapse
|
28
|
Abstract
Heterotrimeric G proteins play a crucial role in regulating signal processing to maintain normal cellular homeostasis, and subtle perturbations in its activity can potentially lead to the pathogenesis of renal disorders or diseases. Cell-surface receptors and accessory proteins, which normally modify and organize the coupling of individual G protein subunits, contribute to the regulation of heterotrimeric G protein activity and their convergence and/or divergence of downstream signaling initiated by effector systems. Activators of G protein signaling (AGS) are a family of accessory proteins that intervene at multiple distinct points during the activation-inactivation cycle of G proteins, even in the absence of receptor stimulation. Perturbations in the expression of individual AGS proteins have been reported to modulate signal transduction pathways in a wide array of diseases and disorders within the brain, heart, immune system, and more recently, the kidney. This review will provide an overview of the expression profile, localization, and putative biologic role of the AGS family in the context of normal and diseased states of the kidney.
Collapse
Affiliation(s)
- Frank Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
29
|
Garcia-Marcos M, Ghosh P, Farquhar MG. GIV/Girdin transmits signals from multiple receptors by triggering trimeric G protein activation. J Biol Chem 2015; 290:6697-704. [PMID: 25605737 DOI: 10.1074/jbc.r114.613414] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Activation of trimeric G proteins has been traditionally viewed as the exclusive job of G protein-coupled receptors (GPCRs). This view has been challenged by the discovery of non-receptor activators of trimeric G proteins. Among them, GIV (a.k.a. Girdin) is the first for which a guanine nucleotide exchange factor (GEF) activity has been unequivocally associated with a well defined motif. Here we discuss how GIV assembles alternative signaling pathways by sensing cues from various classes of surface receptors and relaying them via G protein activation. We also describe the dysregulation of this mechanism in disease and how its targeting holds promise for novel therapeutics.
Collapse
Affiliation(s)
- Mikel Garcia-Marcos
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118 and
| | | | - Marilyn G Farquhar
- Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093-0651
| |
Collapse
|
30
|
Localization and expression profile of Group I and II Activators of G-protein Signaling in the kidney. J Mol Histol 2014; 46:123-36. [PMID: 25533045 DOI: 10.1007/s10735-014-9605-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/15/2014] [Indexed: 10/24/2022]
Abstract
Activators of G-protein Signaling (AGS) are a family of accessory proteins that were discovered as modulators of heterotrimeric G-protein subunits. The primary aim of the present study was to localize Group I and II AGS proteins and determine the renal expression profile using immunohistochemistry and quantitative RT-PCR, respectively, during normal and injured states of the kidney. Group I AGS1 was found to be predominantly localized to the proximal tubule, Group II AGS3 and AGS5 were exclusively localized to the distal tubular segments, and Group II AGS6 was ubiquitously expressed in every nephron segment of the rodent kidney. In rat kidneys following ischemia-reperfusion injury (IRI), Group I AGS1 mRNA was dramatically increased after 24 h by fivefold (P < 0.05), whereas Group II AGS3 and AGS4 mRNA was significantly decreased at the same time point (P < 0.05). No significant change in the transcript levels were detected at other time points for any of the AGS genes between control and IRI groups. In polycystic diseased kidneys, mRNA levels for AGS3, AGS4 and AGS6 was significantly increased (P < 0.05) by 75-80 % in PCK rat kidneys. The identification of Group I and II AGS mRNA and protein in the kidney may provide insight into the potential mechanism of action during normal and varying states of renal disease or injury.
Collapse
|
31
|
Tse MK, Morris CJ, Zhang M, Wong YH. Activator of G protein signaling 3 forms a complex with resistance to inhibitors of cholinesterase-8A without promoting nucleotide exchange on Gα(i3). Mol Cell Biochem 2014; 401:27-38. [PMID: 25480567 DOI: 10.1007/s11010-014-2289-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 11/26/2014] [Indexed: 01/04/2023]
Abstract
Activator of G protein signaling 3 (AGS3) is a guanine nucleotide dissociation inhibitor (GDI) which stabilizes the Gα(i/o) subunits as an AGS3/Gα(i/o)-GDP complex. It has recently been demonstrated in reconstitution experiments that the AGS3/Gα(i/o)-GDP complex may act as a substrate of resistance to inhibitors of cholinesterase 8A (Ric-8A), a guanine exchange factor (GEF) for heterotrimeric Gα proteins. Since the ability of Ric-8A to activate Gα(i/o) subunits that are bound to AGS3 in a cellular environment has not been confirmed, we thus examined the effect of Ric-8A on cAMP accumulation in HEK293 cells expressing different forms of AGS3 and Gα(i3). Co-immunoprecipitation assays indicate that full-length AGS3 and its N- and C-terminal truncated mutants can interact with Ric-8A in HEK293 cells. Yeast two-hybrid assay further confirmed that Ric-8A can directly bind to AGS3S, a short form of AGS3 which is endogenously expressed in heart. However, Ric-8A failed to facilitate Gα(i)-induced suppression of adenylyl cyclase, suggesting that it may not serve as a GEF for AGS3/Gα(i/o)-GDP complex in a cellular environment.
Collapse
Affiliation(s)
- Man K Tse
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | | | |
Collapse
|
32
|
A role for activator of G-protein signaling 3 (AGS3) in multiple myeloma. Int J Hematol 2013; 99:57-68. [DOI: 10.1007/s12185-013-1484-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 11/21/2013] [Accepted: 11/21/2013] [Indexed: 01/12/2023]
|
33
|
Conley JM, Watts VJ. Differential effects of AGS3 expression on D(2L) dopamine receptor-mediated adenylyl cyclase signaling. Cell Mol Neurobiol 2013; 33:551-8. [PMID: 23504261 PMCID: PMC3628818 DOI: 10.1007/s10571-013-9925-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/09/2013] [Indexed: 12/01/2022]
Abstract
Activator of G protein signaling 3 (AGS3) binds Gα(i) subunits in the GDP-bound state, implicating AGS3 as an important regulator of Gα(i)-linked receptor (e.g., D2 dopamine and μ-opioid) signaling. We examined the ability of AGS3 to modulate recombinant adenylyl cyclase (AC) type 1 and 2 signaling in HEK293 cells following both acute and persistent activation of the D(2L) dopamine receptor (D(2L)DR). AGS3 expression modestly enhanced the potency of acute quinpirole-induced D(2L)DR modulation of AC1 or AC2 activity. AGS3 also promoted desensitization of D(2L)DR-mediated inhibition of AC1, whereas desensitization of D(2L)DR-mediated AC2 activation was significantly attenuated. Additionally, AGS3 reduced D(2L)DR-mediated sensitization of AC1 and AC2. These data suggest that AGS3 is involved in altering G protein signaling in a complex fashion that is effector-specific and dependent on the duration of receptor activation.
Collapse
Affiliation(s)
- Jason M. Conley
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Val J. Watts
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
34
|
G-protein signaling modulator 1 deficiency accelerates cystic disease in an orthologous mouse model of autosomal dominant polycystic kidney disease. Proc Natl Acad Sci U S A 2012; 109:21462-7. [PMID: 23236168 DOI: 10.1073/pnas.1216830110] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Polycystic kidney diseases are the most common genetic diseases that affect the kidney. There remains a paucity of information regarding mechanisms by which G proteins are regulated in the context of polycystic kidney disease to promote abnormal epithelial cell expansion and cystogenesis. In this study, we describe a functional role for the accessory protein, G-protein signaling modulator 1 (GPSM1), also known as activator of G-protein signaling 3, to act as a modulator of cyst progression in an orthologous mouse model of autosomal dominant polycystic kidney disease (ADPKD). A complete loss of Gpsm1 in the Pkd1(V/V) mouse model of ADPKD, which displays a hypomorphic phenotype of polycystin-1, demonstrated increased cyst progression and reduced renal function compared with age-matched cystic Gpsm1(+/+) and Gpsm1(+/-) mice. Electrophysiological studies identified a role by which GPSM1 increased heteromeric polycystin-1/polycystin-2 ion channel activity via Gβγ subunits. In summary, the present study demonstrates an important role for GPSM1 in controlling the dynamics of cyst progression in an orthologous mouse model of ADPKD and presents a therapeutic target for drug development in the treatment of this costly disease.
Collapse
|
35
|
Oner SS, Maher EM, Gabay M, Tall GG, Blumer JB, Lanier SM. Regulation of the G-protein regulatory-Gαi signaling complex by nonreceptor guanine nucleotide exchange factors. J Biol Chem 2012; 288:3003-15. [PMID: 23212907 DOI: 10.1074/jbc.m112.418467] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Group II activators of G-protein signaling (AGS) serve as binding partners for Gα(i/o/t) via one or more G-protein regulatory (GPR) motifs. GPR-Gα signaling modules may be differentially regulated by cell surface receptors or by different nonreceptor guanine nucleotide exchange factors. We determined the effect of the nonreceptor guanine nucleotide exchange factors AGS1, GIV/Girdin, and Ric-8A on the interaction of two distinct GPR proteins, AGS3 and AGS4, with Gα(il) in the intact cell by bioluminescence resonance energy transfer (BRET) in human embryonic kidney 293 cells. AGS3-Rluc-Gα(i1)-YFP and AGS4-Rluc-Gα(i1)-YFP BRET were regulated by Ric-8A but not by Gα-interacting vesicle-associated protein (GIV) or AGS1. The Ric-8A regulation was biphasic and dependent upon the amount of Ric-8A and Gα(i1)-YFP. The inhibitory regulation of GPR-Gα(i1) BRET by Ric-8A was blocked by pertussis toxin. The enhancement of GPR-Gα(i1) BRET observed with Ric-8A was further augmented by pertussis toxin treatment. The regulation of GPR-Gα(i) interaction by Ric-8A was not altered by RGS4. AGS3-Rluc-Gα(i1)-YFP and AGS4-Rluc-G-Gα(i1)-YFP BRET were observed in both pellet and supernatant subcellular fractions and were regulated by Ric-8A in both fractions. The regulation of the GPR-Gα(i1) complex by Ric-8A, as well as the ability of Ric-8A to restore Gα expression in Ric8A(-/-) mouse embryonic stem cells, involved two helical domains at the carboxyl terminus of Ric-8A. These data indicate a dynamic interaction between GPR proteins, Gα(i1) and Ric-8A, in the cell that influences subcellular localization of the three proteins and regulates complex formation.
Collapse
Affiliation(s)
- Sukru Sadik Oner
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | |
Collapse
|
36
|
Blumer JB, Oner SS, Lanier SM. Group II activators of G-protein signalling and proteins containing a G-protein regulatory motif. Acta Physiol (Oxf) 2012; 204:202-18. [PMID: 21615707 DOI: 10.1111/j.1748-1716.2011.02327.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Beyond the core triad of receptor, Gαβγ and effector, there are multiple accessory proteins that provide alternative modes of signal input and regulatory adaptability to G-protein signalling systems. Such accessory proteins may segregate a signalling complex to microdomains of the cell, regulate the basal activity, efficiency and specificity of signal propagation and/or serve as alternative binding partners for Gα or Gβγ independent of the classical heterotrimeric Gαβγ complex. The latter concept led to the postulate that Gα and Gβγ regulate intracellular events distinct from their role as transducers for cell surface seven-transmembrane span receptors. One general class of such accessory proteins is defined by AGS proteins or activators of G-protein signalling that refer to mammalian cDNAs identified in a specific yeast-based functional screen. The discovery of AGS proteins and related entities revealed a number of unexpected mechanisms for regulation of G-protein signalling systems and expanded functional roles for this important signalling system.
Collapse
Affiliation(s)
- J B Blumer
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, 29425, USA
| | | | | |
Collapse
|
37
|
Xie K, Martemyanov KA. Control of striatal signaling by g protein regulators. Front Neuroanat 2011; 5:49. [PMID: 21852966 PMCID: PMC3151604 DOI: 10.3389/fnana.2011.00049] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Accepted: 07/23/2011] [Indexed: 12/03/2022] Open
Abstract
Signaling via heterotrimeric G proteins plays a crucial role in modulating the responses of striatal neurons that ultimately shape core behaviors mediated by the basal ganglia circuitry, such as reward valuation, habit formation, and movement coordination. Activation of G protein-coupled receptors (GPCRs) by extracellular signals activates heterotrimeric G proteins by promoting the binding of GTP to their α subunits. G proteins exert their effects by influencing the activity of key effector proteins in this region, including ion channels, second messenger enzymes, and protein kinases. Striatal neurons express a staggering number of GPCRs whose activation results in the engagement of downstream signaling pathways and cellular responses with unique profiles but common molecular mechanisms. Studies over the last decade have revealed that the extent and duration of GPCR signaling are controlled by a conserved protein family named regulator of G protein signaling (RGS). RGS proteins accelerate GTP hydrolysis by the α subunits of G proteins, thus promoting deactivation of GPCR signaling. In this review, we discuss the progress made in understanding the roles of RGS proteins in controlling striatal G protein signaling and providing integration and selectivity of signal transmission. We review evidence on the formation of a macromolecular complex between RGS proteins and other components of striatal signaling pathways, their molecular regulatory mechanisms and impacts on GPCR signaling in the striatum obtained from biochemical studies and experiments involving genetic mouse models. Special emphasis is placed on RGS9-2, a member of the RGS family that is highly enriched in the striatum and plays critical roles in drug addiction and motor control.
Collapse
Affiliation(s)
- Keqiang Xie
- The Scripps Research Institute Jupiter, FL, USA
| | | |
Collapse
|
38
|
Garcia-Marcos M, Kietrsunthorn PS, Wang H, Ghosh P, Farquhar MG. G Protein binding sites on Calnuc (nucleobindin 1) and NUCB2 (nucleobindin 2) define a new class of G(alpha)i-regulatory motifs. J Biol Chem 2011; 286:28138-49. [PMID: 21653697 DOI: 10.1074/jbc.m110.204099] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Heterotrimeric G proteins are molecular switches modulated by families of structurally and functionally related regulators. GIV (Gα-interacting vesicle-associated protein) is the first non-receptor guanine nucleotide exchange factor (GEF) that activates Gα(i) subunits via a defined, evolutionarily conserved motif. Here we found that Calnuc and NUCB2, two highly homologous calcium-binding proteins, share a common motif with GIV for Gα(i) binding and activation. Bioinformatics searches and structural analysis revealed that Calnuc and NUCB2 possess an evolutionarily conserved motif with sequence and structural similarity to the GEF sequence of GIV. Using in vitro pulldown and competition assays, we demonstrate that this motif binds preferentially to the inactive conformation of Gα(i1) and Gα(i3) over other Gα subunits and, like GIV, docks onto the α3/switch II cleft. Calnuc binding was impaired when Lys-248 in the α3 helix of Gα(i3) was replaced with M, the corresponding residue in Gα(o), which does not bind to Calnuc. Moreover, mutation of hydrophobic residues in the conserved motif predicted to dock on the α3/switch II cleft of Gα(i3) impaired the ability of Calnuc and NUCB2 to bind and activate Gα(i3) in vitro. We also provide evidence that calcium binding to Calnuc and NUCB2 abolishes their interaction with Gα(i3) in vitro and in cells, probably by inducing a conformational change that renders the Gα(i)-binding residues inaccessible. Taken together, our results identify a new type of Gα(i)-regulatory motif named the GBA motif (for Gα-binding and -activating motif), which is conserved across different proteins throughout evolution. These findings provide the structural basis for the properties of Calnuc and NUCB2 binding to Gα subunits and its regulation by calcium ions.
Collapse
Affiliation(s)
- Mikel Garcia-Marcos
- Department of Cellular and Molecular Medicine, University of California, San Diego,La Jolla, California 92093, USA
| | | | | | | | | |
Collapse
|
39
|
Regner KR, Nozu K, Lanier SM, Blumer JB, Avner ED, Sweeney WE, Park F. Loss of activator of G-protein signaling 3 impairs renal tubular regeneration following acute kidney injury in rodents. FASEB J 2011; 25:1844-55. [PMID: 21343176 DOI: 10.1096/fj.10-169797] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The intracellular mechanisms underlying renal tubular epithelial cell proliferation and tubular repair following ischemia-reperfusion injury (IRI) remain poorly understood. In this report, we demonstrate that activator of G-protein signaling 3 (AGS3), an unconventional receptor-independent regulator of heterotrimeric G-protein function, influences renal tubular regeneration following IRI. In rat kidneys exposed to IRI, there was a temporal induction in renal AGS3 protein expression that peaked 72 h after reperfusion and corresponded to the repair and recovery phase following ischemic injury. Renal AGS3 expression was localized predominantly to the recovering outer medullary proximal tubular cells and was highly coexpressed with Ki-67, a marker of cell proliferation. Kidneys from mice deficient in the expression of AGS3 exhibited impaired renal tubular recovery 7 d following IRI compared to wild-type AGS3-expressing mice. Mechanistically, genetic knockdown of endogenous AGS3 mRNA and protein in renal tubular epithelial cells reduced cell proliferation in vitro. Similar reductions in renal tubular epithelial cell proliferation were observed following incubation with gallein, a selective inhibitor of Gβγ subunit activity, and lentiviral overexpression of the carboxyl-terminus of G-protein-coupled receptor kinase 2 (GRK2ct), a scavenger of Gβγ subunits. In summary, these data suggest that AGS3 acts through a novel receptor-independent mechanism to facilitate renal tubular epithelial cell proliferation and renal tubular regeneration.
Collapse
Affiliation(s)
- Kevin R Regner
- Division of Nephrology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Garcia-Marcos M, Ear J, Farquhar MG, Ghosh P. A GDI (AGS3) and a GEF (GIV) regulate autophagy by balancing G protein activity and growth factor signals. Mol Biol Cell 2011; 22:673-86. [PMID: 21209316 PMCID: PMC3046063 DOI: 10.1091/mbc.e10-08-0738] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This work introduces a nonreceptor GEF for Gαi subunits as a regulator of autophagy. The authors reveal how growth factors reversibly regulate autophagy by a unique mechanism that involves reversible regulation of Gαi3 activity by AGS3, a GDI, and GIV, a GEF, during initiation and reversal of autophagy, respectively. Autophagy is the major catabolic process responsible for the removal of aggregated proteins and damaged organelles. Autophagy is regulated by both G proteins and growth factors, but the underlying mechanism of how they are coordinated during initiation and reversal of autophagy is unknown. Using protein–protein interaction assays, G protein enzymology, and morphological analysis, we demonstrate here that Gα-interacting, vesicle-associated protein (GIV, a. k. a. Girdin), a nonreceptor guanine nucleotide exchange factor for Gαi3, plays a key role in regulating autophagy and that dynamic interplay between Gαi3, activator of G-protein signaling 3 (AGS3, its guanine nucleotide dissociation inhibitor), and GIV determines whether autophagy is promoted or inhibited. We found that AGS3 directly binds light chain 3 (LC3), recruits Gαi3 to LC3-positive membranes upon starvation, and promotes autophagy by inhibiting the G protein. Upon growth factor stimulation, GIV disrupts the Gαi3–AGS3 complex, releases Gαi3 from LC3-positive membranes, enhances anti-autophagic signaling pathways, and inhibits autophagy by activating the G protein. These results provide mechanistic insights into how reversible modulation of Gαi3 activity by AGS3 and GIV maintains the delicate equilibrium between promotion and inhibition of autophagy.
Collapse
Affiliation(s)
- Mikel Garcia-Marcos
- Departments of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093 , USA.
| | | | | | | |
Collapse
|
41
|
Kapoor N, Gupta R, Menon ST, Folta-Stogniew E, Raleigh DP, Sakmar TP. Nucleobindin 1 is a calcium-regulated guanine nucleotide dissociation inhibitor of G{alpha}i1. J Biol Chem 2010; 285:31647-60. [PMID: 20679342 PMCID: PMC2951237 DOI: 10.1074/jbc.m110.148429] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Indexed: 01/06/2023] Open
Abstract
Nucleobindin 1 (NUCB1) is a widely expressed multidomain calcium-binding protein whose precise physiological and biochemical functions are not well understood. We engineered and heterologously expressed a soluble form of NUCB1 (sNUCB1) and characterized its biophysical and biochemical properties. We show that sNUCB1 exists as a dimer in solution and that each monomer binds two divalent calcium cations. Calcium binding causes conformational changes in sNUCB1 as judged by circular dichroism and fluorescence spectroscopy experiments. Earlier reports suggested that NUCB1 might interact with heterotrimeric G protein α subunits. We show that dimeric calcium-free sNUCB1 binds to expressed Gα(i1) and that calcium binding inhibits the interaction. The binding of sNUCB1 to Gα(i1) inhibits its basal rate of GDP release and slows its rate and extent of GTPγS uptake. Additionally, our tissue culture experiments show that sNUCB1 prevents receptor-mediated Gα(i)-dependent inhibition of adenylyl cyclase. Thus, we conclude that sNUCB1 is a calcium-dependent guanine nucleotide dissociation inhibitor (GDI) for Gα(i1). To our knowledge, sNUCB1 is the first example of a calcium-dependent GDI for heterotrimeric G proteins. We also show that the mechanism of GDI activity of sNUCB1 is unique and does not arise from the consensus GoLoco motif found in RGS proteins. We propose that cytoplasmic NUCB1 might function to regulate heterotrimeric G protein trafficking and G protein-coupled receptor-mediated signal transduction pathways.
Collapse
Affiliation(s)
- Neeraj Kapoor
- From the Laboratory of Biochemistry and Molecular Biology, Rockefeller University, New York, New York 10065
| | - Ruchi Gupta
- From the Laboratory of Biochemistry and Molecular Biology, Rockefeller University, New York, New York 10065
| | - Santosh T. Menon
- From the Laboratory of Biochemistry and Molecular Biology, Rockefeller University, New York, New York 10065
| | - Ewa Folta-Stogniew
- the W. M. Keck Foundation Biotechnology Resource Laboratory, Yale University School of Medicine, New Haven, Connecticut 06520, and
| | - Daniel P. Raleigh
- the Department of Chemistry and
- Graduate Program in Biochemistry and Structural Biology and Graduate Program in Biophysics, State University of New York, Stony Brook, New York 11794
| | - Thomas P. Sakmar
- From the Laboratory of Biochemistry and Molecular Biology, Rockefeller University, New York, New York 10065
| |
Collapse
|
42
|
Abstract
Drug addiction is marked by continued drug-seeking behavior despite deleterious consequences and a heightened propensity to relapse not withstanding long, drug-free periods. The enduring nature of addiction has been hypothesized to arise from perturbations in intracellular signaling, gene expression, and brain circuitry induced by substance abuse. Ameliorating some of these aberrations should abate behavioral and neurochemical markers associated with an 'addiction phenotype'. This review summarizes data showing that protein expression and signaling through the nonreceptor activator of G-protein signaling 3 (AGS3) are altered by commonly abused substances in rat and in in-vitro addiction models. AGS3 structure and function are unrelated to the more broadly studied regulator of G-protein signaling family. Thus, the unique role of AGS3 is the focus of this review. Intriguingly, AGS3 protein changes persist into drug abstinence. Accordingly, studies probing the role of AGS3 in the neurochemistry of drug-seeking behavior and relapse are studied in detail. To illuminate this study, AGS3 structure, cellular localization, and function are covered so that an idealized AGS3-targeted pharmacotherapy can be proposed.
Collapse
Affiliation(s)
- Michael Scott Bowers
- Department of Psychiatry, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| |
Collapse
|
43
|
Oner SS, An N, Vural A, Breton B, Bouvier M, Blumer JB, Lanier SM. Regulation of the AGS3·G{alpha}i signaling complex by a seven-transmembrane span receptor. J Biol Chem 2010; 285:33949-58. [PMID: 20716524 DOI: 10.1074/jbc.m110.138073] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
G-protein signaling modulators (GPSM) play diverse functional roles through their interaction with G-protein subunits. AGS3 (GPSM1) contains four G-protein regulatory motifs (GPR) that directly bind Gα(i) free of Gβγ providing an unusual scaffold for the "G-switch" and signaling complexes, but the mechanism by which signals track into this scaffold are not well understood. We report the regulation of the AGS3·Gα(i) signaling module by a cell surface, seven-transmembrane receptor. AGS3 and Gα(i1) tagged with Renilla luciferase or yellow fluorescent protein expressed in mammalian cells exhibited saturable, specific bioluminescence resonance energy transfer indicating complex formation in the cell. Activation of α(2)-adrenergic receptors or μ-opioid receptors reduced AGS3-RLuc·Gα(i1)-YFP energy transfer by over 30%. The agonist-mediated effects were inhibited by pertussis toxin and co-expression of RGS4, but were not altered by Gβγ sequestration with the carboxyl terminus of GRK2. Gα(i)-dependent and agonist-sensitive bioluminescence resonance energy transfer was also observed between AGS3 and cell-surface receptors typically coupled to Gα(i) and/or Gα(o) indicating that AGS3 is part of a larger signaling complex. Upon receptor activation, AGS3 reversibly dissociates from this complex at the cell cortex. Receptor coupling to both Gαβγ and GPR-Gα(i) offer additional flexibility for systems to respond and adapt to challenges and orchestrate complex behaviors.
Collapse
Affiliation(s)
- Sukru Sadik Oner
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Nadella R, Blumer JB, Jia G, Kwon M, Akbulut T, Qian F, Sedlic F, Wakatsuki T, Sweeney WE, Wilson PD, Lanier SM, Park F. Activator of G protein signaling 3 promotes epithelial cell proliferation in PKD. J Am Soc Nephrol 2010; 21:1275-80. [PMID: 20488951 DOI: 10.1681/asn.2009121224] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The activation of heterotrimeric G protein signaling is a key feature in the pathophysiology of polycystic kidney diseases (PKD). In this study, we report abnormal overexpression of activator of G protein signaling 3 (AGS3), a receptor-independent regulator of heterotrimeric G proteins, in rodents and humans with both autosomal recessive and autosomal dominant PKD. Increased AGS3 expression correlated with kidney size, which is an index of severity of cystic kidney disease. AGS3 expression localized exclusively to distal tubular segments in both normal and cystic kidneys. Short hairpin RNA-induced knockdown of endogenous AGS3 protein significantly reduced proliferation of cystic renal epithelial cells by 26 +/- 2% (P < 0.001) compared with vehicle-treated and control short hairpin RNA-expressing epithelial cells. In summary, this study suggests a relationship between aberrantly increased AGS3 expression in renal tubular epithelia affected by PKD and epithelial cell proliferation. AGS3 may play a receptor-independent role to regulate Galpha subunit function and control epithelial cell function in PKD.
Collapse
Affiliation(s)
- Rama Nadella
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Moussawi K, Kalivas PW. Group II metabotropic glutamate receptors (mGlu2/3) in drug addiction. Eur J Pharmacol 2010; 639:115-22. [PMID: 20371233 DOI: 10.1016/j.ejphar.2010.01.030] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 12/18/2009] [Accepted: 01/20/2010] [Indexed: 12/21/2022]
Abstract
Drug addiction is characterized by maladaptive decision-making and dysfunctional brain circuitry regulating motivated behaviors, resulting in loss of the behavioral flexibility needed to abstain from drug seeking. Hence, addicts face high risk of relapse even after prolonged periods of abstinence from drug use. This is thought to result from long-lasting drug-induced neuroadaptations of glutamate and dopaminergic transmission in the mesocorticolimbic and cortico-striatal circuits where group II metabotropic glutamate receptors (mGlu(2/3) receptors) are densely expressed. mGlu(2/3) receptors presynaptically control glutamate as well as dopamine release throughout the mesocorticolimbic structures involved in reward processing and drug seeking, and their function is reduced after prolonged exposure to drugs of abuse. In pre-clinical models, mGlu(2/3) receptors have been shown to regulate both reward processing and drug seeking, in part through the capacity to control release of dopamine and glutamate respectively. Specifically, mGlu(2/3) receptor agonists administered systemically or locally into certain brain structures reduce the rewarding value of commonly abused drugs and inhibit the reinstatement of drug seeking. Given the ability of mGlu(2/3) receptor agonists to compensate for and possibly reverse drug-induced neuroadaptations in mesocorticolimbic circuitry, this class of receptors emerges as a new therapeutic target for reducing relapse in drug addiction.
Collapse
Affiliation(s)
- Khaled Moussawi
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | |
Collapse
|
46
|
Identification of a deubiquitinating enzyme as a novel AGS3-interacting protein. PLoS One 2010; 5:e9725. [PMID: 20305814 PMCID: PMC2840025 DOI: 10.1371/journal.pone.0009725] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 02/22/2010] [Indexed: 11/19/2022] Open
Abstract
Activator of G protein Signaling 3 (AGS3) is a receptor-independent G protein activator that has been implicated in multiple biological events such as brain development, neuroplasticity and addiction, cardiac function, Golgi structure/function, macroautophagy and metabolism. However, how AGS3 is regulated is little known. We demonstrate here that AGS3 interacts with a ubiquitin specific protease USP9x, and this interaction is at least partially mediated through the C-terminal G protein regulatory domain of AGS3. Knockdown of USP9x causes a moderate reduction in the level of AGS3. In contrast, overexpression of either USP9x or its deubiquitinating domain UCH increases the amount of AGS3, whereas expression of the mutant UCH domain that lacks deubiquitinating activity does not have the same effect. As previously observed in AGS3 knockdown cells, the localization of several marker proteins of the late Golgi compartments is disturbed in cells depleted of USP9x. Taken together, our study suggests that USP9x can modulate the level of a subpopulation of AGS3, and this modulation plays a role in regulating the structure of the late Golgi compartments. Finally, we have found that levels of AGS3 and USP9x are co-regulated in the prefrontal cortex of rats withdrawn from repeated cocaine treatment. In conjunction with the above data, this observation indicates a potential role of USP9X in the regulation of the AGS3 level during cocaine-induced neuroplasticity.
Collapse
|
47
|
Garcia-Marcos M, Ghosh P, Ear J, Farquhar MG. A structural determinant that renders G alpha(i) sensitive to activation by GIV/girdin is required to promote cell migration. J Biol Chem 2010; 285:12765-77. [PMID: 20157114 DOI: 10.1074/jbc.m109.045161] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although several non-receptor activators of heterotrimeric G proteins have been identified, the structural features of G proteins that determine their interaction with such activators and the subsequent biological effects are poorly understood. Here we investigated the structural determinants in G alpha(i3) necessary for its regulation by GIV/girdin, a guanine-nucleotide exchange factor (GEF) that activates G alpha(i) subunits. Using G protein activity and in vitro pulldown assays we demonstrate that G alpha(i3) is a better substrate for GIV than the highly homologous G alpha(o). We identified Trp-258 in the G alpha(i) subunit as a novel structural determinant for GIV binding by comparing GIV binding to G alpha(i3)/G alpha(o) chimeras. Mutation of Trp-258 to the corresponding Phe in G alpha(o) decreased GIV binding in vitro and in cultured cells but did not perturb interaction with other G alpha-binding partners, i.e. G betagamma, AGS3 (a guanine nucleotide dissociation inhibitor), GAIP/RGS19 (a GTPase-activating protein), and LPAR1 (a G protein-coupled receptor). Activation of G alpha(i3) by GIV was also dramatically reduced when Trp-258 was replaced with Tyr, Leu, Ser, His, Asp, or Ala, highlighting that Trp is required for maximal activation. Moreover, when mutant G alpha(i3) W258F was expressed in HeLa cells they failed to undergo cell migration and to enhance Akt signaling after growth factor or G protein-coupled receptor stimulation. Thus activation of G alpha(i3) by GIV is essential for biological functions associated with G alpha(i3) activation. In conclusion, we have discovered a novel structural determinant on G alpha(i) that plays a key role in defining the selectivity and efficiency of the GEF activity of GIV on G alpha(i) and that represents an attractive target site for designing small molecules to disrupt the G alpha(i)-GIV interface for therapeutic purposes.
Collapse
Affiliation(s)
- Mikel Garcia-Marcos
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | |
Collapse
|
48
|
Abstract
Macroautophagy is a vacuolar degradation pathway that terminates in the lysosomal compartment. Macroautophagy is a multistep process involving: (1) signaling events that occur upstream of the molecular machinery of autophagy; (2) molecular machinery involved in the formation of the autophagosome, the initial multimembrane-bound compartment formed in the autophagic pathway; and (3) maturation of autophagosomes, which acquire acidic and degradative capacities. In this chapter we summarize what is known about the regulation of the different steps involved in autophagy, and we also discuss how macroautophagy can be manipulated using drugs or genetic approaches that affect macroautophagy signaling, and the subsequent formation and maturation of the autophagosomes. Modulating autophagy offers a promising new therapeutic approach to human diseases that involve macroautophagy.
Collapse
Affiliation(s)
- Audrey Esclatine
- INSERM U756, Université Paris-Sud 11, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92290 Châtenay-Malabry, France
| | | | | |
Collapse
|
49
|
An inhibitory role of the G-protein regulator AGS3 in mTOR-dependent macroautophagy. PLoS One 2010; 5:e8877. [PMID: 20126274 PMCID: PMC2811177 DOI: 10.1371/journal.pone.0008877] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Accepted: 01/04/2010] [Indexed: 12/19/2022] Open
Abstract
Macroautophagy is a cellular process whereby the cell sequesters and recycles cytosolic constituents in a lysosome-dependent manner. It has also been implicated in a number of disorders, including cancer and neurodegeneration. Although a previous report that AGS3 over-expression promotes macroautophagy suggests a stimulatory role of AGS3 in this process, we have found that knock-down of AGS3, unexpectedly, also induces macroautophagy, indicating an inhibitory function of endogenous AGS3 in macroautophagy. Interestingly, AGS3 phosphorylation is decreased upon induction of mammalian target of rapamycin (mTOR)-dependent macroautophagy. Moreover, unlike wild-type AGS3, over-expression of an AGS3 mutant lacking this modification fails to enhance macroautophagic activity. These observations imply that AGS3 phosphorylation may participate in the modulation of macroautophagy.
Collapse
|
50
|
Zhao P, Nguyen CH, Chidiac P. The proline-rich N-terminal domain of G18 exhibits a novel G protein regulatory function. J Biol Chem 2010; 285:9008-17. [PMID: 20097748 DOI: 10.1074/jbc.m109.057174] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The protein G18 (also known as AGS4 or GPSM3) contains three conserved GoLoco/GPR domains in its central and C-terminal regions that bind to inactive Galpha(i), whereas the N-terminal region has not been previously characterized. We investigated whether this domain might itself regulate G protein activity by assessing the abilities of G18 and mutants thereof to modulate the nucleotide binding and hydrolytic properties of Galpha(i1) and Galpha(o). Surprisingly, in the presence of fluoroaluminate (AlF(4)(-)) both G proteins bound strongly to full-length G18 (G18wt) and to its isolated N-terminal domain (G18DeltaC) but not to its GoLoco region (DeltaNG18). Thus, it appears that its N-terminal domain promotes G18 binding to fluoroaluminate-activated Galpha(i/o). Neither G18wt nor any G18 mutant affected the GTPase activity of Galpha(i1) or Galpha(o). In contrast, complex effects were noted with respect to nucleotide binding. As inferred by the binding of [(35)S]GTPgammaS (guanosine 5'-O-[gamma-thio]triphosphate) to Galpha(i1), the isolated GoLoco region as expected acted as a guanine nucleotide dissociation inhibitor, whereas the N-terminal region exhibited a previously unknown guanine nucleotide exchange factor effect on this G protein. On the other hand, the N terminus inhibited [(35)S]GTPgammaS binding to Galpha(o), albeit to a lesser extent than the effect of the GoLoco region on Galpha(i1). Taken together, our results identify the N-terminal region of G18 as a novel G protein-interacting domain that may have distinct regulatory effects within the G(i/o) subfamily, and thus, it could potentially play a role in differentiating signals between these related G proteins.
Collapse
Affiliation(s)
- Peishen Zhao
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | |
Collapse
|