1
|
Moezpoor MR, Stevenson M. Help or Hinder: Protein Host Factors That Impact HIV-1 Replication. Viruses 2024; 16:1281. [PMID: 39205255 PMCID: PMC11360189 DOI: 10.3390/v16081281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Interactions between human immunodeficiency virus type 1 (HIV-1) and the host factors or restriction factors of its target cells determine the cell's susceptibility to, and outcome of, infection. Factors intrinsic to the cell are involved at every step of the HIV-1 replication cycle, contributing to productive infection and replication, or severely attenuating the chances of success. Furthermore, factors unique to certain cell types contribute to the differences in infection between these cell types. Understanding the involvement of these factors in HIV-1 infection is a key requirement for the development of anti-HIV-1 therapies. As the list of factors grows, and the dynamic interactions between these factors and the virus are elucidated, comprehensive and up-to-date summaries that recount the knowledge gathered after decades of research are beneficial to the field, displaying what is known so that researchers can build off the groundwork of others to investigate what is unknown. Herein, we aim to provide a review focusing on protein host factors, both well-known and relatively new, that impact HIV-1 replication in a positive or negative manner at each stage of the replication cycle, highlighting factors unique to the various HIV-1 target cell types where appropriate.
Collapse
Affiliation(s)
- Michael Rameen Moezpoor
- Department of Microbiology and Immunology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Mario Stevenson
- Raymond F. Schinazi and Family Endowed Chair in Biomedicine; Professor of Medicine; Director, Institute of AIDS and Emerging Infectious Diseases; Department of Microbiology and Immunology, University of Miami Leonard M. Miller School of Medicine, Life Science Technology Park, 1951 NW 7th Avenue, Room 2331B, Suite 200, Miami, FL 33136, USA;
| |
Collapse
|
2
|
Zhou Z, Guo J, Hetrick B, Tiwari S, Haikerwal A, Han Y, Bond VC, Huang MB, Mankowski MK, Snyder BA, Hogan PA, Sharma SK, Liotta DC, Reid TE, Wilson LJ, Wu Y. Characterization of a CXCR4 antagonist TIQ-15 with dual tropic HIV entry inhibition properties. PLoS Pathog 2024; 20:e1012448. [PMID: 39146384 PMCID: PMC11349218 DOI: 10.1371/journal.ppat.1012448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/27/2024] [Accepted: 07/25/2024] [Indexed: 08/17/2024] Open
Abstract
The chemokine co-receptors CXCR4 and CCR5 mediate HIV entry and signal transduction necessary for viral infection. However, to date only the CCR5 antagonist maraviroc is approved for treating HIV-1 infection. Given that approximately 50% of late-stage HIV patients also develop CXCR4-tropic virus, clinical anti-HIV CXCR4 antagonists are needed. Here, we describe a novel allosteric CXCR4 antagonist TIQ-15 which inhibits CXCR4-tropic HIV-1 infection of primary and transformed CD4 T cells. TIQ-15 blocks HIV entry with an IC50 of 13 nM. TIQ-15 also inhibits SDF-1α/CXCR4-mediated cAMP production, cofilin activation, and chemotactic signaling. In addition, TIQ-15 induces CXCR4 receptor internalization without affecting the levels of the CD4 receptor, suggesting that TIQ-15 may act through a novel allosteric site on CXCR4 for blocking HIV entry. Furthermore, TIQ-15 did not inhibit VSV-G pseudotyped HIV-1 infection, demonstrating its specificity in blocking CXCR4-tropic virus entry, but not CXCR4-independent endocytosis or post-entry steps. When tested against a panel of clinical isolates, TIQ-15 showed potent inhibition against CXCR4-tropic and dual-tropic viruses, and moderate inhibition against CCR5-tropic isolates. This observation was followed by a co-dosing study with maraviroc, and TIQ-15 demonstrated synergistic activity. In summary, here we describe a novel HIV-1 entry inhibitor, TIQ-15, which potently inhibits CXCR4-tropic viruses while possessing low-level synergistic activities against CCR5-tropic viruses. TIQ-15 could potentially be co-dosed with the CCR5 inhibitor maraviroc to block viruses of mixed tropisms.
Collapse
Affiliation(s)
- Zheng Zhou
- Center for Infectious Disease Research, George Mason University, Manassas, Virginia, United States of America
| | - Jia Guo
- Center for Infectious Disease Research, George Mason University, Manassas, Virginia, United States of America
| | - Brian Hetrick
- Center for Infectious Disease Research, George Mason University, Manassas, Virginia, United States of America
| | - Sameer Tiwari
- Center for Infectious Disease Research, George Mason University, Manassas, Virginia, United States of America
| | - Amrita Haikerwal
- Center for Infectious Disease Research, George Mason University, Manassas, Virginia, United States of America
| | - Yang Han
- Center for Infectious Disease Research, George Mason University, Manassas, Virginia, United States of America
| | - Vincent C. Bond
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Ming B. Huang
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Marie K. Mankowski
- Department of Infectious Disease Research, Southern Research Institute, Frederick, Maryland, United States of America
| | - Beth A. Snyder
- Department of Infectious Disease Research, Southern Research Institute, Frederick, Maryland, United States of America
| | - Priscilla A. Hogan
- Department of Infectious Disease Research, Southern Research Institute, Frederick, Maryland, United States of America
| | - Savita K. Sharma
- Department of Chemistry, Emory University, Atlanta, Georgia, United States of America
| | - Dennis C. Liotta
- Department of Chemistry, Emory University, Atlanta, Georgia, United States of America
| | - Terry-Elinor Reid
- Center for Infectious Disease Research, George Mason University, Manassas, Virginia, United States of America
| | - Lawrence J. Wilson
- Department of Chemistry, Emory University, Atlanta, Georgia, United States of America
| | - Yuntao Wu
- Center for Infectious Disease Research, George Mason University, Manassas, Virginia, United States of America
| |
Collapse
|
3
|
Huerta L, Gamboa-Meraz A, Estrada-Ochoa PS. Relevance of the Entry by Fusion at the Cytoplasmic Membrane vs. Fusion After Endocytosis in the HIV and SARS-Cov-2 Infections. Results Probl Cell Differ 2024; 71:329-344. [PMID: 37996685 DOI: 10.1007/978-3-031-37936-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
HIV-1 and SARS-Cov-2 fuse at the cell surface or at endosomal compartments for entry into target cells; entry at the cell surface associates to productive infection, whereas endocytosis of low pH-independent viruses may lead to virus inactivation, slow replication, or alternatively, to productive infection. Endocytosis and fusion at the cell surface are conditioned by cell type-specific restriction factors and the presence of enzymes required for activation of the viral fusogen. Whereas fusion with the plasma membrane is considered the main pathway to productive infection of low pH-independent entry viruses, endocytosis is also productive and may be the main route of the highly efficient cell-to-cell dissemination of viruses. Alternative receptors, membrane cofactors, and the presence of enzymes processing the fusion protein at the cell membrane, determine the balance between fusion and endocytosis in specific target cells. Characterization of the mode of entry in particular cell culture conditions is desirable to better assess the effect of neutralizing and blocking agents and their mechanism of action. Whatever the pathway of virus internalization, production of the viral proteins into the cells can lead to the expression of the viral fusion protein on the cell surface; if this protein is able to induce membrane fusion at physiological pH, it promotes the fusion of the infected cell with surrounding uninfected cells, leading to the formation of syncytia or heterokaryons. Importantly, particular membrane proteins and lipids act as cofactors to support fusion. Virus-induced cell-cell fusion leads to efficient virus replication into fused cells, cell death, inflammation, and severe disease.
Collapse
Affiliation(s)
- Leonor Huerta
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, Mexico.
| | - Alejandro Gamboa-Meraz
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, Mexico
- Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Pablo Samuel Estrada-Ochoa
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, Mexico
- Facultad de Ciencias, Universidad Autónoma del Estado de México, Ciudad de México, México
| |
Collapse
|
4
|
Marichannegowda MH, Zemil M, Wieczorek L, Sanders-Buell E, Bose M, O'Sullivan AM, King D, Francisco L, Diaz-Mendez F, Setua S, Chomont N, Phanuphak N, Ananworanich J, Hsu D, Vasan S, Michael NL, Eller LA, Tovanabutra S, Tagaya Y, Robb ML, Polonis VR, Song H. Tracking coreceptor switch of the transmitted/founder HIV-1 identifies co-evolution of HIV-1 antigenicity, coreceptor usage and CD4 subset targeting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.21.525033. [PMID: 36712089 PMCID: PMC9882280 DOI: 10.1101/2023.01.21.525033] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The CCR5 (R5) to CXCR4 (X4) coreceptor switch in natural HIV-1 infection is associated with faster progression to AIDS, but the underlying mechanisms remain unclear. The difficulty in capturing the earliest moment of coreceptor switch in vivo limits our understanding of this phenomenon. Here, by tracking the evolution of the transmitted/founder (T/F) HIV-1 in a prospective cohort of individuals at risk for HIV-1 infection identified very early in acute infection, we investigated this process with high resolution. The earliest X4 variants evolved from the R5 tropic T/F strains. Strong X4 usage can be conferred by a single mutation. The mutations responsible for coreceptor switch can confer escape to neutralization and drive X4 variants to replicate mainly in the central memory and naïve CD4+ T cells. We propose a novel concept to explain the co-evolution of virus antigenicity and entry tropism termed "escape by shifting". This concept posits that for viruses with receptor or coreceptor flexibility, entry tropism alteration represents a mechanism of immune evasion in vivo .
Collapse
|
5
|
Weiser B, Shi B, Kemal K, Burger H, Minkoff H, Shi Q, Gao W, Robison E, Holman S, Schroeder T, Gormley A, Anastos K, Ramirez C. Long-term antiretroviral therapy mitigates mortality and morbidity independent of HIV tropism: 18 years follow-up in a women's cohort. AIDS 2022; 36:1979-1986. [PMID: 35848576 PMCID: PMC9617757 DOI: 10.1097/qad.0000000000003337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE CXCR4 (X4)-tropic HIV-1 was found previously to herald CD4 + cell depletion and disease progression in individuals who were antiretroviral-naive or took combination antiretroviral therapy (cART) for less than 5 years. We updated this finding by investigating whether the deleterious effect of X4-tropic strains is mitigated by long-term cART. DESIGN We examined morbidity and mortality in relation to HIV-1 tropism and cART in 529 participants followed up to 18 years in the Women's Interagency HIV Study; 91% were women of color. METHODS Plasma-derived HIV-1 tropism was determined genotypically. RESULTS We categorized participants according to the number of visits reported on cART after initiation. Group 1: three or less visits, 74% of these participants reporting no cART; group 2: at least four visits and less than 70% of visits on cART; group 3: at least 70% of visits on cART. AIDS mortality rates for participants in each group with X4 virus compared with those with R5 virus exclusively were, respectively: 62 vs. 40% ( P = 0.0088); 23% vs. 22% [nonsignificant (NS)]; 7% vs. 14% (NS). Kaplan-Meier curves showed accelerated progression to AIDS death or AIDS-defining illness in participants with three or less cART visits and X4 viruses ( P = 0.0028) but no difference in progression rates stratified by tropism in other groups. Logistic regression found that HIV-1 suppression for at least 10 semiannual visits (≥5 years total) mitigated X4 tropism's deleterious effect on mortality, controlling for maximal viral load, and CD4 + nadir. CONCLUSION Long-term cART markedly mitigated the deleterious effect of X4 viruses on AIDS morbidity and mortality. Mitigation was correlated with duration of viral suppression, supporting HIV-1 suppression as a crucial goal.
Collapse
Affiliation(s)
- Barbara Weiser
- Department of Medicine, University of California, Davis School of Medicine, Sacramento
- Department of Medicine, Veterans Affairs Northern California Healthcare System, Sacramento Medical Center, Mather, CA
| | - Binshan Shi
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences
| | - Kimdar Kemal
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Harold Burger
- Department of Medicine, University of California, Davis School of Medicine, Sacramento
- Department of Medicine, Veterans Affairs Northern California Healthcare System, Sacramento Medical Center, Mather, CA
| | - Howard Minkoff
- Department of Obstetrics/Gynecology, State University of New York Health Science Center at Brooklyn
| | - Qiuhu Shi
- Department of Statistics, School of Health Sciences and Practice, New York Medical College, Valhalla
| | - Wei Gao
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Health Systems, Bronx
| | - Esther Robison
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Health Systems, Bronx
| | - Susan Holman
- Department of Medicine, State University of New York Health Science Center at Brooklyn, NY
| | - Tamara Schroeder
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Alissa Gormley
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Kathryn Anastos
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Health Systems, Bronx
| | - Christina Ramirez
- Department of Biostatistics, University of California, Los Angeles, Fielding School of Public Health, Los Angeles, CA, USA
| |
Collapse
|
6
|
Maksoud S, Ortega JT, Hidalgo M, Rangel HR. Leishmania donovani and HIV co-infection in vitro: Identification and characterization of main molecular players. Acta Trop 2022; 228:106248. [PMID: 34822851 DOI: 10.1016/j.actatropica.2021.106248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022]
Abstract
The incidence of Leishmania/HIV co-infection is growing and few studies detail the cellular processes and macromolecules participating in co-infection. Thus, the goal of this study was to partially describe the Leishmania/HIV co-infection events by measuring molecular and functional parameters associated with both pathogens in vitro. MT-4 cells (human T-lymphocytes), primary monocytes, and peripheral blood mononuclear cells were exposed to HIV and/or Leishmania donovani. The cytopathic effects generated by the pathogens were observed through microscopy. Viral replication was assessed by monitoring p24 protein levels and parasitic proliferation/infectivity was determined using Giemsa staining. Changes in molecular markers were evaluated by ELISA and fluorescence assays. Our results showed that our system reassembles the main parameters previously described for Leishmania/HIV co-infection in patients in terms of potentiation of parasitic and viral replication/infectivity, amplification of syncytia induction, and alterations of cell viability. In addition, an amplification in NF-κB activation, changes in CXCR4/CCR5 surface expression, and a Th1→Th2 variation in cytokine/chemokine secretion were demonstrated. Altogether, this study could contribute to gain a deep understanding of the molecular events associated with Leishmania/HIV co-infection.
Collapse
Affiliation(s)
- S Maksoud
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - J T Ortega
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - M Hidalgo
- Laboratorio de Inmunoparasitología, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - H R Rangel
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela.
| |
Collapse
|
7
|
Jiménez M, Cervantes-García D, Córdova-Dávalos LE, Pérez-Rodríguez MJ, Gonzalez-Espinosa C, Salinas E. Responses of Mast Cells to Pathogens: Beneficial and Detrimental Roles. Front Immunol 2021; 12:685865. [PMID: 34211473 PMCID: PMC8240065 DOI: 10.3389/fimmu.2021.685865] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022] Open
Abstract
Mast cells (MCs) are strategically located in tissues close to the external environment, being one of the first immune cells to interact with invading pathogens. They are long living effector cells equipped with different receptors that allow microbial recognition. Once activated, MCs release numerous biologically active mediators in the site of pathogen contact, which induce vascular endothelium modification, inflammation development and extracellular matrix remodeling. Efficient and direct antimicrobial mechanisms of MCs involve phagocytosis with oxidative and non-oxidative microbial destruction, extracellular trap formation, and the release of antimicrobial substances. MCs also contribute to host defense through the attraction and activation of phagocytic and inflammatory cells, shaping the innate and adaptive immune responses. However, as part of their response to pathogens and under an impaired, sustained, or systemic activation, MCs may contribute to tissue damage. This review will focus on the current knowledge about direct and indirect contribution of MCs to pathogen clearance. Antimicrobial mechanisms of MCs are addressed with special attention to signaling pathways involved and molecular weapons implicated. The role of MCs in a dysregulated host response that can increase morbidity and mortality is also reviewed and discussed, highlighting the complexity of MCs biology in the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Mariela Jiménez
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Daniel Cervantes-García
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico.,Cátedras CONACYT, National Council of Science and Technology, Mexico City, Mexico
| | - Laura E Córdova-Dávalos
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Marian Jesabel Pérez-Rodríguez
- Department of Pharmacobiology, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur, Mexico City, Mexico
| | - Claudia Gonzalez-Espinosa
- Department of Pharmacobiology, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur, Mexico City, Mexico
| | - Eva Salinas
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| |
Collapse
|
8
|
Armani-Tourret M, Zhou Z, Gasser R, Staropoli I, Cantaloube-Ferrieu V, Benureau Y, Garcia-Perez J, Pérez-Olmeda M, Lorin V, Puissant-Lubrano B, Assoumou L, Delaugerre C, Lelièvre JD, Lévy Y, Mouquet H, Martin-Blondel G, Alcami J, Arenzana-Seisdedos F, Izopet J, Colin P, Lagane B. Mechanisms of HIV-1 evasion to the antiviral activity of chemokine CXCL12 indicate potential links with pathogenesis. PLoS Pathog 2021; 17:e1009526. [PMID: 33872329 PMCID: PMC8084328 DOI: 10.1371/journal.ppat.1009526] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/29/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023] Open
Abstract
HIV-1 infects CD4 T lymphocytes (CD4TL) through binding the chemokine receptors CCR5 or CXCR4. CXCR4-using viruses are considered more pathogenic, linked to accelerated depletion of CD4TL and progression to AIDS. However, counterexamples to this paradigm are common, suggesting heterogeneity in the virulence of CXCR4-using viruses. Here, we investigated the role of the CXCR4 chemokine CXCL12 as a driving force behind virus virulence. In vitro, CXCL12 prevents HIV-1 from binding CXCR4 and entering CD4TL, but its role in HIV-1 transmission and propagation remains speculative. Through analysis of thirty envelope glycoproteins (Envs) from patients at different stages of infection, mostly treatment-naïve, we first interrogated whether sensitivity of viruses to inhibition by CXCL12 varies over time in infection. Results show that Envs resistant (RES) to CXCL12 are frequent in patients experiencing low CD4TL levels, most often late in infection, only rarely at the time of primary infection. Sensitivity assays to soluble CD4 or broadly neutralizing antibodies further showed that RES Envs adopt a more closed conformation with distinct antigenicity, compared to CXCL12-sensitive (SENS) Envs. At the level of the host cell, our results suggest that resistance is not due to improved fusion or binding to CD4, but owes to viruses using particular CXCR4 molecules weakly accessible to CXCL12. We finally asked whether the low CD4TL levels in patients are related to increased pathogenicity of RES viruses. Resistance actually provides viruses with an enhanced capacity to enter naive CD4TL when surrounded by CXCL12, which mirrors their situation in lymphoid organs, and to deplete bystander activated effector memory cells. Therefore, RES viruses seem more likely to deregulate CD4TL homeostasis. This work improves our understanding of the pathophysiology and the transmission of HIV-1 and suggests that RES viruses' receptors could represent new therapeutic targets to help prevent CD4TL depletion in HIV+ patients on cART.
Collapse
Affiliation(s)
| | - Zhicheng Zhou
- Viral Pathogenesis Unit, Department of Virology, INSERM U1108, Institut Pasteur, Paris, France
| | - Romain Gasser
- Infinity, Université Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | - Isabelle Staropoli
- Viral Pathogenesis Unit, Department of Virology, INSERM U1108, Institut Pasteur, Paris, France
| | | | - Yann Benureau
- Viral Pathogenesis Unit, Department of Virology, INSERM U1108, Institut Pasteur, Paris, France
| | | | - Mayte Pérez-Olmeda
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, Madrid, Spain
| | - Valérie Lorin
- Laboratory of Humoral Immunology, Department of Immunology, INSERM U1222, Institut Pasteur, Paris, France
| | | | - Lambert Assoumou
- INSERM, Sorbonne Université, Institut Pierre Louis d’Epidémiologie et de Santé Publique (IPLESP), Paris, France
| | | | | | - Yves Lévy
- Vaccine Research Institute, INSERM and APHP, Hôpital H. Mondor, Créteil, France
| | - Hugo Mouquet
- Laboratory of Humoral Immunology, Department of Immunology, INSERM U1222, Institut Pasteur, Paris, France
| | - Guillaume Martin-Blondel
- Infinity, Université Toulouse, CNRS, INSERM, UPS, Toulouse, France
- CHU de Toulouse, Service des Maladies Infectieuses et Tropicales, Toulouse, France
| | - Jose Alcami
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Jacques Izopet
- Infinity, Université Toulouse, CNRS, INSERM, UPS, Toulouse, France
- CHU de Toulouse, Laboratoire de virologie, Toulouse, France
| | - Philippe Colin
- Infinity, Université Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | - Bernard Lagane
- Infinity, Université Toulouse, CNRS, INSERM, UPS, Toulouse, France
- * E-mail:
| |
Collapse
|
9
|
He S, Wu Y. Relationships Between HIV-Mediated Chemokine Coreceptor Signaling, Cofilin Hyperactivation, Viral Tropism Switch and HIV-Mediated CD4 Depletion. Curr HIV Res 2021; 17:388-396. [PMID: 31702526 DOI: 10.2174/1570162x17666191106112018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/27/2019] [Accepted: 10/31/2019] [Indexed: 11/22/2022]
Abstract
HIV infection causes CD4 depletion and immune deficiency. The virus infects CD4 T cells through binding to CD4 and one of the chemokine coreceptors, CXCR4 (X4) or CCR5 (R5). It has also been known that HIV tropism switch, from R5 to X4, is associated with rapid CD4 depletion, suggesting a key role of viral factors in driving CD4 depletion. However, the virological driver for HIV-mediated CD4 depletion has not been fully elucidated. We hypothesized that HIV-mediated chemokine coreceptor signaling, particularly chronic signaling through CXCR4, plays a major role in CD4 dysfunction and depletion; we also hypothesized that there is an R5X4 signaling (R5X4sig) viral subspecies, evolving from the natural replication course of R5-utilizing viruses, that is responsible for CD4 T cell depletion in R5 virus infection. To gain traction for our hypothesis, in this review, we discuss a recent finding from Cui and co-authors who described the rapid tropism switch and high pathogenicity of an HIV-1 R5 virus, CRF01_AE. We speculate that CRF01_AE may be the hypothetical R5X4sig viral species that is rapidly evolving towards the X4 phenotype. We also attempt to discuss the intricate relationships between HIV-mediated chemokine coreceptor signaling, viral tropism switch and HIV-mediated CD4 depletion, in hopes of providing a deeper understanding of HIV pathogenesis in blood CD4 T cells.
Collapse
Affiliation(s)
- Sijia He
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, Virginia, United States
| | - Yuntao Wu
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, Virginia, United States
| |
Collapse
|
10
|
Fromentin R, Chomont N. HIV persistence in subsets of CD4+ T cells: 50 shades of reservoirs. Semin Immunol 2021; 51:101438. [PMID: 33272901 PMCID: PMC8164644 DOI: 10.1016/j.smim.2020.101438] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022]
Abstract
Antiretroviral therapy controls HIV replication but does not eliminate the virus from the infected host. The persistence of a small pool of cells harboring integrated and replication-competent HIV genomes impedes viral eradication efforts. The HIV reservoir was originally described as a relatively homogeneous pool of resting memory CD4+ T cells. Over the past 20 years, the identification of multiple cellular subsets of CD4+ T cells endowed with distinct biological properties shed new lights on the heterogeneity of HIV reservoirs. It is now clear that HIV persists in a large variety of CD4+ T cells, which contribute to HIV persistence through different mechanisms. In this review, we summarize recent findings indicating that specific biological features of well-characterized subsets of CD4+ T cells individually contribute to the persistence of HIV. These include an increased sensitivity to HIV infection, specific tissue locations, enhanced survival and heightened capacity to proliferate. We also discuss the relative abilities of these cellular reservoirs to contribute to viral rebound upon ART interruption. Together, these findings reveal that the HIV reservoir is not homogeneous and should be viewed as a mosaic of multiple cell types that all contribute to HIV persistence through different mechanisms.
Collapse
Affiliation(s)
- Rémi Fromentin
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Nicolas Chomont
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
11
|
MAVS Genetic Variation Is Associated with Decreased HIV-1 Replication In Vitro and Reduced CD4 + T Cell Infection in HIV-1-Infected Individuals. Viruses 2020; 12:v12070764. [PMID: 32708557 PMCID: PMC7412276 DOI: 10.3390/v12070764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
The mitochondrial antiviral protein MAVS is a key player in the induction of antiviral responses; however, human immunodeficiency virus 1 (HIV-1) is able to suppress these responses. Two linked single nucleotide polymorphisms (SNPs) in the MAVS gene render MAVS insensitive to HIV-1-dependent suppression, and have been shown to be associated with a lower viral load at set point and delayed increase of viral load during disease progression. Here, we studied the underlying mechanisms involved in the control of viral replication in individuals homozygous for this MAVS genotype. We observed that individuals with the MAVS minor genotype had more stable total CD4+ T cell counts during a 7-year follow up and had lower cell-associated proviral DNA loads. Genetic variation in MAVS did not affect immune activation levels; however, a significantly lower percentage of naïve CD4+ but not CD8+ T cells was observed in the MAVS minor genotype. In vitro HIV-1 infection of peripheral blood mononuclear cells (PBMCs) from healthy donors with the MAVS minor genotype resulted in decreased viral replication. Although the precise underlying mechanism remains unclear, our data suggest that the protective effect of the MAVS minor genotype may be exerted by the initiation of local innate responses affecting viral replication and CD4+ T cell susceptibility.
Collapse
|
12
|
Existence of Replication-Competent Minor Variants with Different Coreceptor Usage in Plasma from HIV-1-Infected Individuals. J Virol 2020; 94:JVI.00193-20. [PMID: 32295903 DOI: 10.1128/jvi.00193-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/04/2020] [Indexed: 12/20/2022] Open
Abstract
Cell entry by HIV-1 is mediated by its principal receptor, CD4, and a coreceptor, either CCR5 or CXCR4, with viral envelope glycoprotein gp120. Generally, CCR5-using HIV-1 variants, called R5, predominate over most of the course of infection, while CXCR4-using HIV-1 variants (variants that utilize both CCR5 and CXCR4 [R5X4, or dual] or CXCR4 alone [X4]) emerge at late-stage infection in half of HIV-1-infected individuals and are associated with disease progression. Although X4 variants also appear during acute-phase infection in some cases, these variants apparently fall to undetectable levels thereafter. In this study, replication-competent X4 variants were isolated from plasma of drug treatment-naive individuals infected with HIV-1 strain CRF01_AE, which dominantly carries viral RNA (vRNA) of R5 variants. Next-generation sequencing (NGS) confirmed that sequences of X4 variants were indeed present in plasma vRNA from these individuals as a minor population. On the other hand, in one individual with a mixed infection in which X4 variants were dominant, only R5 replication-competent variants were isolated from plasma. These results indicate the existence of replication-competent variants with different coreceptor usage as minor populations.IMPORTANCE The coreceptor switch of HIV-1 from R5 to CXCR4-using variants (R5X4 or X4) has been observed in about half of HIV-1-infected individuals at late-stage infection with loss of CD4 cell count and disease progression. However, the mechanisms that underlie the emergence of CXCR4-using variants at this stage are unclear. In the present study, CXCR4-using X4 variants were isolated from plasma samples of HIV-1-infected individuals that dominantly carried vRNA of R5 variants. The sequences of the X4 variants were detected as a minor population using next-generation sequencing. Taken together, CXCR4-using variants at late-stage infection are likely to emerge when replication-competent CXCR4-using variants are maintained as a minor population during the course of infection. The present study may support the hypothesis that R5-to-X4 switching is mediated by the expansion of preexisting X4 variants in some cases.
Collapse
|
13
|
CXCR4-Using HIV Strains Predominate in Naive and Central Memory CD4 + T Cells in People Living with HIV on Antiretroviral Therapy: Implications for How Latency Is Established and Maintained. J Virol 2020; 94:JVI.01736-19. [PMID: 31852784 DOI: 10.1128/jvi.01736-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/09/2019] [Indexed: 11/20/2022] Open
Abstract
HIV can persist in people living with HIV (PLWH) on antiretroviral therapy (ART) in multiple CD4+ T cell subsets, including naive cells, central memory (CM) cells, transitional (TM) cells, and effector memory (EM) cells. Since these cells express different levels of the viral coreceptors CXCR4 and CCR5 on their surface, we sought to determine whether the HIV envelope protein (Env) was genotypically and phenotypically different between CD4+ T cell subsets isolated from PLWH on suppressive ART (n = 8). Single genome amplification for the HIV env gene was performed on genomic DNA extracts from different CD4+ T cell subsets. We detected CXCR4-using (X4) strains in five of the eight participants studied, and in these participants, the prevalence of X4 strains was higher in naive CD4+ T cells than in the memory subsets. Conversely, R5 strains were mostly found in the TM and EM populations. Identical sets of env sequences, consistent with clonal expansion of some infected cells, were more frequent in EM cells. These expanded identical sequences could also be detected in multiple CD4+ T cell subsets, suggesting that infected cells can undergo T cell differentiation. These identical sequences largely encoded intact and functional Env proteins. Our results are consistent with a model in which X4 HIV strains infect and potentially establish latency in naive and CM CD4+ T cells through direct infection, in addition to maintenance of the reservoir through differentiation and proliferation of infected cells.IMPORTANCE In people living with HIV (PLWH) on suppressive ART, latent HIV can be found in a diverse range of CD4+ T cells, including quiescent naive and central memory cells that are typically difficult to infect in vitro It is currently unclear how latency is established in these cells in vivo We show that in CD4+ T cells from PLWH on suppressive ART, the use of the coreceptor CXCR4 was prevalent among viruses amplified from naive and central memory CD4+ T cells. Furthermore, we found that expanded numbers of identical viral sequences were most common in the effector memory population, and these identical sequences were also found in multiple different CD4+ T cell subsets. Our results help to shed light on how a range of CD4+ T cell subsets come to harbor HIV DNA, which is one of the major barriers to eradicating the virus from PLWH.
Collapse
|
14
|
Inhibition of HIV-1 envelope-dependent membrane fusion by serum antilymphocyte autoantibodies is associated with low plasma viral load. Immunol Lett 2019; 211:33-40. [PMID: 31059733 DOI: 10.1016/j.imlet.2019.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/12/2019] [Accepted: 05/02/2019] [Indexed: 01/02/2023]
Abstract
The HIV-1 envelope protein (Env) mediates the membrane fusion process allowing virus entry to target cells and the efficiency to induce membrane fusion is an important determinant of HIV-1 pathogenicity. In addition to virus receptors, other adhesion/signaling molecules on infected and target cells and virus particles can enhance fusion. The presence of antilymphocyte autoantibodies (ALA) in HIV patients' serum suggests that they may contribute to the inhibition of Env-mediated membrane fusion. Here, sera from 38 HIV-1 infected treatment-naïve men and 30 healthy donors were analyzed for the presence of IgG and IgM able to bind to CD4-negative Jurkat cells. The use of CD4-negative cells precluded the binding of virus-antibody immune complexes, and allowed detection of ALA different from anti-CD4 antibodies. IgG and IgM antibodies binding to Jurkat CD4-negative cells was detected in 74% and 84% of HIV-positive sera, respectively. Then, the activity of sera on fusion of CD4+ with HIV Env+ Jurkat cells was determined before and after their adsorption on CD4-negative Jurkat cells to remove ALA. Sera inhibited fusion at variable extents, and inhibitory activity decreased in 58% of serum samples after adsorption, indicating that ALA contributed to fusion inhibition in these sera (herein called fusion inhibitory ALA). The contribution of ALA to fusion inhibition in individual sera was highly variable, with an average of 33%. IgG purified from a pool of HIV+ sera inhibited fusion of primary CD4 T lymphocytes with Jurkat Env+, and adsorption of IgG on CD4-negative Jurkat cells diminished the fusion inhibitory activity. Thus, the inhibitory activity of sera was related to IgG ALA. Our observations suggest that fusion inhibitory ALA other than anti-CD4 antibodies may contribute significantly to the inhibition of Env-mediated cell-cell fusion. Fusion inhibitory ALA, but not total ALA levels, associated with low plasma viral loads, suggesting that specific ALA may participate in virus containment by inhibiting virus-cell fusion in a significant fraction of HIV-infected patients.
Collapse
|
15
|
Swanstrom AE, Del Prete GQ, Deleage C, Elser SE, Lackner AA, Hoxie JA. The SIV Envelope Glycoprotein, Viral Tropism, and Pathogenesis: Novel Insights from Nonhuman Primate Models of AIDS. Curr HIV Res 2019; 16:29-40. [PMID: 29173176 DOI: 10.2174/1570162x15666171124123116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cellular tropism of human immunodeficiency virus (HIV-1) is closely linked to interactions between the viral envelope glycoprotein (Env) with CD4 and chemokine receptor family members, CCR5 and CXCR4. This interaction plays a key role in determining anatomic sites that are infected in vivo and the cascade of early and late events that result in chronic immune activation, immunosuppression and ultimately, AIDS. CD4+ T cells are critical to adaptive immune responses, and their early and rapid infection in gut lamina propria and secondary lymphoid tissues in susceptible hosts likely contributes to viral persistence and progression to disease. CD4+ macrophages are also infected, although their role in HIV-1 pathogenesis is more controversial. METHODS Pathogenic infection by simian immunodeficiency viruses (SIV) in Asian macaques as models of HIV-1 infection has enabled the impact of cellular tropism on pathogenesis to be directly probed. This review will highlight examples in which experimental interventions during SIV infection or the introduction of viral mutations have altered cellular tropism and, subsequently, pathogenesis. RESULTS Alterations to the interaction of Env and its cellular receptors has been shown to result in changes to CD4 dependence, coreceptor specificity, and viral tropism for gut CD4+ T cells and macrophages. CONCLUSION Collectively, these findings have yielded novel insights into the critical role of the viral Env and tropism as a driver of pathogenesis and host control and have helped to identify new areas for targeted interventions in therapy and prevention of HIV-1 infection.
Collapse
Affiliation(s)
- Adrienne E Swanstrom
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, United States
| | - Gregory Q Del Prete
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, United States
| | - Claire Deleage
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, United States
| | - Samra E Elser
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Andrew A Lackner
- Tulane National Primate Research Center, Covington, LA, United States
| | - James A Hoxie
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
16
|
Tsukamoto T. HIV Impacts CD34 + Progenitors Involved in T-Cell Differentiation During Coculture With Mouse Stromal OP9-DL1 Cells. Front Immunol 2019; 10:81. [PMID: 30761146 PMCID: PMC6361802 DOI: 10.3389/fimmu.2019.00081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/11/2019] [Indexed: 12/21/2022] Open
Abstract
HIV-1 causes the loss of CD4+ T cells via depletion or impairment of their production. The latter involves infection of thymocytes, but the involvement of hematopoietic CD34+ cells remains unclear even though HIV-positive patients frequently manifest myelosuppression. In order to have a closer look at the impact of HIV-1 on T-lineage differentiation, this study utilized the OP9-DL1 coculture system, which supports in vitro T-lineage differentiation of human hematopoietic stem/progenitor cells. In the newly developed in vitro OP9-DL1/HIV-1 model, cord-derived CD34+ cells were infected with CXCR4-tropic HIV-1NL4−3 and cocultured. The HIV-infected cocultures exhibited reduced CD4+ T-cell growth at weeks 3–5 post infection compared to autologous uninfected cocultures. Further assays and analyses revealed that CD34+CD7+CXCR4+ cells can be quickly depleted as early as 1 week after infection of the subset, and this was accompanied by the emergence of rare CD34+CD7+CD4+ cells. A subsequent theoretical model analysis suggested potential influence of HIV-1 on the differentiation rate or death rate of lymphoid progenitor cells. These results indicate that CXCR4-tropic HIV-1 strains may impact the dynamics of CD34+CD7+ lymphoid progenitor cell pools, presumably leading to impaired T-cell production potential.
Collapse
Affiliation(s)
- Tetsuo Tsukamoto
- The Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, NSW, Australia.,Center for AIDS Research, Kumamoto University, Kumamoto, Japan.,Department of Immunology, Faculty of Medicine, Kindai University, Osaka, Japan
| |
Collapse
|
17
|
Song H, Ou W, Feng Y, Zhang J, Li F, Hu J, Peng H, Xing H, Ma L, Tan Q, Li D, Wang L, Wu B, Shao Y. Disparate impact on CD4 T cell count by two distinct HIV-1 phylogenetic clusters from the same clade. Proc Natl Acad Sci U S A 2019; 116:239-244. [PMID: 30559208 PMCID: PMC6320496 DOI: 10.1073/pnas.1814714116] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
HIV-1 evolved into various genetic subtypes and circulating recombinant forms (CRFs) in the global epidemic. The same subtype or CRF is usually considered to have similar phenotype. Being one of the world's major CRFs, CRF01_AE infection was reported to associate with higher prevalence of CXCR4 (X4) viruses and faster CD4 decline. However, the underlying mechanisms remain unclear. We identified eight phylogenetic clusters of CRF01_AE in China and hypothesized that they may have different phenotypes. In the National HIV Molecular Epidemiology Survey, we discovered that people infected by CRF01_AE cluster 4 had significantly lower CD4 counts (391 vs. 470, P < 0.0001) and higher prevalence of X4-using viruses (17.1% vs. 4.4%, P < 0.0001) compared with those infected by cluster 5. In an MSM cohort, X4-using viruses were only isolated from seroconvertors in cluster 4, which was associated with low a CD4 count within the first year of infection (141 vs. 440, P = 0.003). Using a coreceptor binding model, we identified unique V3 signatures in cluster 4 that favor CXCR4 use. We demonstrate that the HIV-1 phenotype and pathogenicity can be determined at the phylogenetic cluster level in the same subtype. Since its initial spread to humans from chimpanzees, estimated to be the first half of the 20th century, HIV-1 continues to undergo rapid evolution in larger and more diverse populations. The divergent phenotype evolution of two major CRF01_AE clusters highlights the importance of monitoring the genetic evolution and phenotypic shift of HIV-1 to provide early warning of the appearance of more pathogenic strains.
Collapse
Affiliation(s)
- Hongshuo Song
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 102206 Beijing, China
| | - Weidong Ou
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 102206 Beijing, China
| | - Yi Feng
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 102206 Beijing, China
| | - Junli Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 102206 Beijing, China
| | - Fan Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 102206 Beijing, China
| | - Jing Hu
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 102206 Beijing, China
| | - Hong Peng
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 102206 Beijing, China
| | - Hui Xing
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 102206 Beijing, China
| | - Liying Ma
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 102206 Beijing, China
| | - Qiuxiang Tan
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203 Shanghai, China
| | - Dongliang Li
- Chaoyang Center for Disease Control and Prevention, 100021 Beijing, China
| | - Lijuan Wang
- Chaoyang Center for Disease Control and Prevention, 100021 Beijing, China
| | - Beili Wu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203 Shanghai, China
| | - Yiming Shao
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 102206 Beijing, China;
- Center of Infectious Diseases, Peking University, 100191 Beijing, China
- The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003 Hangzhou, China
| |
Collapse
|
18
|
CCR5 Revisited: How Mechanisms of HIV Entry Govern AIDS Pathogenesis. J Mol Biol 2018; 430:2557-2589. [PMID: 29932942 DOI: 10.1016/j.jmb.2018.06.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/10/2018] [Accepted: 06/13/2018] [Indexed: 01/01/2023]
Abstract
The chemokine receptor CCR5 has been the focus of intensive studies since its role as a coreceptor for HIV entry was discovered in 1996. These studies lead to the development of small molecular drugs targeting CCR5, with maraviroc becoming in 2007 the first clinically approved chemokine receptor inhibitor. More recently, the apparent HIV cure in a patient transplanted with hematopoietic stem cells devoid of functional CCR5 rekindled the interest for inactivating CCR5 through gene therapy and pharmacological approaches. Fundamental research on CCR5 has also been boosted by key advances in the field of G-protein coupled receptor research, with the realization that CCR5 adopts a variety of conformations, and that only a subset of these conformations may be targeted by chemokine ligands. In addition, recent genetic and pathogenesis studies have emphasized the central role of CCR5 expression levels in determining the risk of HIV and SIV acquisition and disease progression. In this article, we propose to review the key properties of CCR5 that account for its central role in HIV pathogenesis, with a focus on mechanisms that regulate CCR5 expression, conformation, and interaction with HIV envelope glycoproteins.
Collapse
|
19
|
Prior Puma Lentivirus Infection Modifies Early Immune Responses and Attenuates Feline Immunodeficiency Virus Infection in Cats. Viruses 2018; 10:v10040210. [PMID: 29677149 PMCID: PMC5923504 DOI: 10.3390/v10040210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/09/2018] [Accepted: 04/12/2018] [Indexed: 11/25/2022] Open
Abstract
We previously showed that cats that were infected with non-pathogenic Puma lentivirus (PLV) and then infected with pathogenic feline immunodeficiency virus (FIV) (co-infection with the host adapted/pathogenic virus) had delayed FIV proviral and RNA viral loads in blood, with viral set-points that were lower than cats infected solely with FIV. This difference was associated with global CD4+ T cell preservation, greater interferon gamma (IFN-γ) mRNA expression, and no cytotoxic T lymphocyte responses in co-infected cats relative to cats with a single FIV infection. In this study, we reinforced previous observations that prior exposure to an apathogenic lentivirus infection can diminish the effects of acute infection with a second, more virulent, viral exposure. In addition, we investigated whether the viral load differences that were observed between PLV/FIV and FIV infected cats were associated with different immunocyte phenotypes and cytokines. We found that the immune landscape at the time of FIV infection influences the infection outcome. The novel findings in this study advance our knowledge about early immune correlates and documents an immune state that is associated with PLV/FIV co-infection that has positive outcomes for lentiviral diseases.
Collapse
|
20
|
Profile of Respiratory and Extra-Respiratory Tuberculosis in Patients Living with HIV in Dolj County between 2005-2015. CURRENT HEALTH SCIENCES JOURNAL 2017; 43:220-225. [PMID: 30595879 PMCID: PMC6284831 DOI: 10.12865/chsj.43.03.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 09/16/2017] [Indexed: 12/02/2022]
Abstract
Introduction: Tuberculosis (TB) is the commonest and the deadliest opportunistic infection in patients living with HIV/ AIDS. Purpose: The paper aims to assess patients with and without TB-HIV coinfection in Dolj county registered in Regional and National database in order to identify risk factors for progression to active TB for immunodepresive patients. Material and method: We performed a retrospective descriptive study using records of 336 patients infected with HIV (PIH)-data from medical charts between 2005-2015 and we compared with the data for 1120 patients without HIV between 2005-2012. Results: 64,1% were females and 35,89% were males. Most cases were from rural areas (61,54%) most of them graduating primary (17,94%) and secondary school (48,71%). Most of them don’t have a job (87%) and are supported by state with a monthly miminum income. Majority is born between 1980-1990 (64,1%), with predominance of Romanians (92.31%) compared to the Roma. Regarding all TB diagnoses (pulmonary and extrapulmonary) 117 had at least one episode of active TB. TB and HIV have been diagnosed almost at the same time in 25,64% cases. At the time of TB diagnosis 87% of patients had CD4+lymphocytes count <200cel/ml. We also noticed the absence of prophylaxis for TB in PIH, high incidence of hepatitis B among those with HIV/TB coinfection (34%). Conclusions: Active TB in patients with HIV infection is correlated with severe immunosuppression, poor education, and atypical clinical expression and radiological findings and more cases of extrapulmonary TB.
Collapse
|
21
|
Beauparlant D, Rusert P, Magnus C, Kadelka C, Weber J, Uhr T, Zagordi O, Oberle C, Duenas-Decamp MJ, Clapham PR, Metzner KJ, Günthard HF, Trkola A. Delineating CD4 dependency of HIV-1: Adaptation to infect low level CD4 expressing target cells widens cellular tropism but severely impacts on envelope functionality. PLoS Pathog 2017; 13:e1006255. [PMID: 28264054 PMCID: PMC5354460 DOI: 10.1371/journal.ppat.1006255] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/16/2017] [Accepted: 02/22/2017] [Indexed: 02/07/2023] Open
Abstract
A hallmark of HIV-1 infection is the continuously declining number of the virus' predominant target cells, activated CD4+ T cells. With diminishing CD4+ T cell levels, the capacity to utilize alternate cell types and receptors, including cells that express low CD4 receptor levels such as macrophages, thus becomes crucial. To explore evolutionary paths that allow HIV-1 to acquire a wider host cell range by infecting cells with lower CD4 levels, we dissected the evolution of the envelope-CD4 interaction under in vitro culture conditions that mimicked the decline of CD4high target cells, using a prototypic subtype B, R5-tropic strain. Adaptation to CD4low targets proved to severely alter envelope functions including trimer opening as indicated by a higher affinity to CD4 and loss in shielding against neutralizing antibodies. We observed a strikingly decreased infectivity on CD4high target cells, but sustained infectivity on CD4low targets, including macrophages. Intriguingly, the adaptation to CD4low targets altered the kinetic of the entry process, leading to rapid CD4 engagement and an extended transition time between CD4 and CCR5 binding during entry. This phenotype was also observed for certain central nervous system (CNS) derived macrophage-tropic viruses, highlighting that the functional perturbation we defined upon in vitro adaptation to CD4low targets occurs in vivo. Collectively, our findings suggest that CD4low adapted envelopes may exhibit severe deficiencies in entry fitness and shielding early in their evolution. Considering this, adaptation to CD4low targets may preferentially occur in a sheltered and immune-privileged environment such as the CNS to allow fitness restoring compensatory mutations to occur.
Collapse
Affiliation(s)
- David Beauparlant
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Peter Rusert
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Carsten Magnus
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Claus Kadelka
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Jacqueline Weber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Therese Uhr
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Osvaldo Zagordi
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Corinna Oberle
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Maria J. Duenas-Decamp
- Program in Molecular Medicine, Biotech II, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Paul R. Clapham
- Program in Molecular Medicine, Biotech II, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Karin J. Metzner
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Huldrych F. Günthard
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
22
|
Martínez-Bonet M, González-Serna A, Clemente MI, Morón-López S, Díaz L, Navarro M, Puertas MC, Leal M, Ruiz-Mateos E, Martinez-Picado J, Muñoz-Fernández MA. Relationship between CCR5 (WT/Δ32) heterozygosity and HIV-1 reservoir size in adolescents and young adults with perinatally acquired HIV-1 infection. Clin Microbiol Infect 2016; 23:318-324. [PMID: 28042001 DOI: 10.1016/j.cmi.2016.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 12/09/2016] [Accepted: 12/18/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Several host factors contribute to human immunodeficiency virus (HIV) disease progression in the absence of combination antiretroviral therapy (cART). Among them, the CC-chemokine receptor 5 (CCR5) is known to be the main co-receptor used by HIV-1 to enter target cells during the early stages of an HIV-1 infection. OBJECTIVE We evaluated the association of CCR5(WT/Δ32) heterozygosity with HIV-1 reservoir size, lymphocyte differentiation, activation and immunosenescence in adolescents and young adults with perinatally acquired HIV infection receiving cART. METHODS CCR5 genotype was analysed in 242 patients with vertically transmitted HIV-1 infection from Paediatric Spanish AIDS Research Network Cohort (coRISpe). Proviral HIV-1 DNA was quantified by digital-droplet PCR, and T-cell phenotype was evaluated by flow cytometry in a subset of 24 patients (ten with CCR5(Δ32/WT) genotype and 14 with CCR5(WT/WT) genotype). RESULTS Twenty-three patients were heterozygous for the Δ32 genotype but none was homozygous for the mutated CCR5 allele. We observed no difference in the HIV-1 reservoir size (455 and 578 copies of HIV-1 DNA per million CD4+ T cells in individuals with CCR5(WT/WT) and CCR5(Δ32/WT) genotypes, respectively; p 0.75) or in the immune activation markers between both genotype groups. However, we found that total HIV-1 DNA in CD4+ T cells correlated with the percentage of memory CD4+ T cells: a direct correlation in CCR5(WT/Δ32) patients but an inverse correlation in those with the CCR5(WT/WT) genotype. CONCLUSIONS This finding suggests a differential distribution of the viral reservoir compartment in CCR5(WT/Δ32) patients with perinatal HIV infection, which is a characteristic that may affect the design of strategies for reservoir elimination.
Collapse
Affiliation(s)
- M Martínez-Bonet
- Laboratory of Immuno Molecular Biology, Section of Immunology, Hospital General Universitario Gregorio Marañon, IiSGM, Madrid, Spain; Spanish HIV HGM BioBank, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - A González-Serna
- Laboratory of Immuno Molecular Biology, Section of Immunology, Hospital General Universitario Gregorio Marañon, IiSGM, Madrid, Spain; Laboratory of Immunovirology, Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - M I Clemente
- Laboratory of Immuno Molecular Biology, Section of Immunology, Hospital General Universitario Gregorio Marañon, IiSGM, Madrid, Spain; Spanish HIV HGM BioBank, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - S Morón-López
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - L Díaz
- Laboratory of Immuno Molecular Biology, Section of Immunology, Hospital General Universitario Gregorio Marañon, IiSGM, Madrid, Spain; Spanish HIV HGM BioBank, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - M Navarro
- Department of Infection Disease Section, Paediatric Service, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - M C Puertas
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - M Leal
- Laboratory of Immunovirology, Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - E Ruiz-Mateos
- Laboratory of Immunovirology, Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - J Martinez-Picado
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain; Universitat de Vic - Universitat Central de Catalunya (UVic-UCC), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| | - M A Muñoz-Fernández
- Laboratory of Immuno Molecular Biology, Section of Immunology, Hospital General Universitario Gregorio Marañon, IiSGM, Madrid, Spain; Spanish HIV HGM BioBank, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.
| |
Collapse
|
23
|
Puertas MC, Noguera-Julian M, Massanella M, Pou C, Buzon MJ, Clotet B, Stevenson M, Paredes R, Blanco J, Martinez-Picado J. Lack of concordance between residual viremia and viral variants driving de novo infection of CD4(+) T cells on ART. Retrovirology 2016; 13:51. [PMID: 27484989 PMCID: PMC4970251 DOI: 10.1186/s12977-016-0282-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/13/2016] [Indexed: 12/20/2022] Open
Abstract
Background In most patients, current antiretroviral therapy (ART) regimens can rapidly reduce plasma viral load. However, even after years of effective treatment, a significant proportion of patients show residual plasma viremia below the clinical detection limit. Although residual viremia might be associated with increased chronic immune activation and morbidity, its origin and its potential role in the replenishment of the viral reservoir during suppressive ART is not completely understood. We performed an in-depth genetic analysis of the total and episomal cell-associated viral DNA (vDNA) repertoire in purified CD4+ T cell subsets of three HIV-infected individuals, and used phylogenetic analysis to explore its relationship with plasma viruses. Results The predominant proviral reservoir was established in naïve or memory (central and transitional) CD4+ T cell subsets in patients harboring X4- or R5-tropic viruses, respectively. Regardless of the viral tropism, most plasma viruses detected under suppressive ART resembled the proviral reservoir identified in effector and transitional memory CD4+ T-cell subsets in blood, suggesting that residual viremia originates from these cells in either blood or lymphoid tissue. Most importantly, sequences in episomal vDNA in CD4+ T-cells were not well represented in residual viremia. Conclusions Viral tropism determines the differential distribution of viral reservoir among CD4+ T-cell subsets. In spite of viral tropism, the effector and transitional memory CD4+ T-cells subsets are the main source of residual viremia during suppressive ART, even though their contribution to the total proviral pool is small. However, the lack of concordance between residual viremia and viral variants driving de novo infection of CD4+ T cells on ART may reflect the predominance of defective plasma HIV RNA genomes. These findings highlight the need for monitoring the multiple viral RNA/DNA persistence markers, based on their differential contribution to viral persistence. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0282-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria C Puertas
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Marc Noguera-Julian
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.,Universitat de Vic - Universitat Central de Catalunya (UVic-UCC), Vic, Spain
| | - Marta Massanella
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.,Département de Microbiologie, Infectiologie et Immunologie, Centre de Recherche du CHUM et Université de Montréal, Montreal, Canada
| | - Christian Pou
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.,Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Maria J Buzon
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.,Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Bonaventura Clotet
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.,"Lluita Contra la Sida" Foundation, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.,Universitat de Vic - Universitat Central de Catalunya (UVic-UCC), Vic, Spain
| | - Mario Stevenson
- Division of Infectious Diseases, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Roger Paredes
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.,"Lluita Contra la Sida" Foundation, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.,Universitat de Vic - Universitat Central de Catalunya (UVic-UCC), Vic, Spain
| | - Julià Blanco
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.,Universitat de Vic - Universitat Central de Catalunya (UVic-UCC), Vic, Spain
| | - Javier Martinez-Picado
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain. .,Universitat de Vic - Universitat Central de Catalunya (UVic-UCC), Vic, Spain. .,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
24
|
Lin N, Gonzalez OA, Registre L, Becerril C, Etemad B, Lu H, Wu X, Lockman S, Essex M, Moyo S, Kuritzkes DR, Sagar M. Humoral Immune Pressure Selects for HIV-1 CXC-chemokine Receptor 4-using Variants. EBioMedicine 2016; 8:237-247. [PMID: 27428434 PMCID: PMC4919596 DOI: 10.1016/j.ebiom.2016.04.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 11/26/2022] Open
Abstract
Although both C-C chemokine receptor 5 (CCR5)- and CXC chemokine receptor 4 (CXCR4)-using HIV-1 strains cause AIDS, the emergence of CXCR4-utilizing variants is associated with an accelerated decline in CD4+ T cells. It remains uncertain if CXCR4-using viruses hasten disease or if these variants only emerge after profound immunological damage. We show that exclusively CXCR4- as compared to cocirculating CCR5-utilizing variants are less sensitive to neutralization by both contemporaneous autologous plasma and plasma pools from individuals that harbor only CCR5-using HIV-1. The CXCR4-utilizing variants, however, do not have a global antigenic change because they remain equivalently susceptible to antibodies that do not target coreceptor binding domains. Studies with envelope V3 loop directed antibodies and chimeric envelopes suggest that the neutralization susceptibility differences are potentially influenced by the V3 loop. In vitro passage of a neutralization sensitive CCR5-using virus in the presence of autologous plasma and activated CD4+ T cells led to the emergence of a CXCR4-utilizing virus in 1 of 3 cases. These results suggest that in some but not necessarily all HIV-1 infected individuals humoral immune pressure against the autologous virus selects for CXCR4-using variants, which potentially accelerates disease progression. Our observations have implications for using antibodies for HIV-1 immune therapy.
Collapse
Affiliation(s)
- Nina Lin
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Oscar A Gonzalez
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Ludy Registre
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Carlos Becerril
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, United States
| | - Behzad Etemad
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Hong Lu
- Aaron Diamond AIDS Research Center, New York, NY, United States
| | - Xueling Wu
- Aaron Diamond AIDS Research Center, New York, NY, United States
| | - Shahin Lockman
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, United States; Harvard School of Public Health, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Myron Essex
- Harvard School of Public Health, Boston, MA, United States; Botswana Harvard AIDS Institute, Gaborone, Botswana
| | | | - Daniel R Kuritzkes
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Manish Sagar
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, United States.
| |
Collapse
|
25
|
Impact of HIV-1 tropism on the emergence of non-AIDS events in HIV-infected patients receiving fully suppressive antiretroviral therapy. AIDS 2016; 30:731-41. [PMID: 26595543 PMCID: PMC4937812 DOI: 10.1097/qad.0000000000000977] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Objective: The impact of HIV-1 tropism on the emergence of non-AIDS events was evaluated in a cohort of 116 antiretroviral therapy (ART) responder patients. Methods: The patients were followed for the emergence of hypertension, renal impairment, metabolic and bone disorders (defined as non-AIDS events) each 8 weeks at standard visits. A V3 plasma sequence genotype analysis was performed at the time of ART initiation and the geno2pheno algorithm with the results that defines the false-positive rate (FPR) was used to infer HIV tropism. The associations between the non-AIDS events and the FPR at baseline were evaluated using the χ2 test for trend. A Cox-regression analysis using the counting process formulation of Andersen and Gill was performed to define whether the emergence of non-AIDS events was correlated to FPR. Results: The prevalence of at least one non-AIDS event resulted higher in patients with a FPR below 10% than in patients with a R5 virus (P = 0.033). Patients with a FPR below 5.0% most frequently developed non-AIDS events during ART (P = 0.01). A higher prevalence of patients with at least two AIDS events was found in the group of patients with a FPR below 5.0% with respect to the others (P < 0.001). At multivariate Cox-regression analysis, having an X4 virus and age were independently associated with a higher probability of non-AIDS event development. Conclusion: This study shows that an X4 virus, particularly a FPR less than 5%, is related to non-AIDS events development. Further studies are warranted to understand the mechanisms underlying this phenomenon.
Collapse
|
26
|
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection occurs throughout the body and can have dramatic physical effects, such as neurocognitive impairment in the central nervous system (CNS). Furthermore, examining the virus that resides in the CNS is challenging due to its location and can only be done using samples collected either at autopsy, indirectly form the cerebral spinal fluid (CSF), or through the use of animal models. The unique milieu of the CNS fosters viral compartmentalization as well as evolution of viral sequences, allowing for new cell types, such as macrophages and microglia, to be infected. Treatment must also cross the blood-brain barrier adding additional obstacles in eliminating viral populations in the CNS. These long-lived infected cell types and treatment barriers may affect functional cure strategies in people on highly active antiretroviral therapy (HAART).
Collapse
|
27
|
Simian Immunodeficiency Virus SIVagm Efficiently Utilizes Non-CCR5 Entry Pathways in African Green Monkey Lymphocytes: Potential Role for GPR15 and CXCR6 as Viral Coreceptors. J Virol 2015; 90:2316-31. [PMID: 26656714 DOI: 10.1128/jvi.02529-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/04/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED African green monkeys (AGM) are natural hosts of simian immunodeficiency virus (SIV), and infection in these animals is generally nonpathogenic, whereas infection of nonnatural hosts, such as rhesus macaques (RM), is commonly pathogenic. CCR5 has been described as the primary entry coreceptor for SIV in vivo, while human-derived CXCR6 and GPR15 also appear to be used in vitro. However, sooty mangabeys that are genetically deficient in CCR5 due to an out-of-frame deletion are infectible with SIVsmm, indicating that SIVsmm can use alternative coreceptors in vivo. In this study, we examined the CCR5 dependence of SIV strains derived from vervet AGM (SIVagmVer) and the ability of AGM-derived GPR15 and CXCR6 to serve as potential entry coreceptors. We found that SIVagmVer replicated efficiently in AGM and RM peripheral blood mononuclear cells (PBMC) in the presence of the CCR5 antagonist maraviroc, despite the fact that maraviroc was capable of blocking the CCR5-tropic strains SIVmac239, SIVsmE543-3, and simian-human immunodeficiency virus SHIV-AD8 in RM PBMC. We also found that AGM CXCR6 and AGM GPR15, to a lesser extent, supported entry of pseudotype viruses bearing SIVagm envelopes, including SIVagm transmitted/founder envelopes. Lastly, we found that CCR5, GPR15, and CXCR6 mRNAs were detected in AGM and RM memory CD4(+) T cells. These results suggest that GPR15 and CXCR6 are expressed on AGM CD4(+) T cells and are potential alternative coreceptors for SIVagm use in vivo. These data suggest that the use of non-CCR5 entry pathways may be a common feature of SIV replication in natural host species, with the potential to contribute to nonpathogenicity in these animals. IMPORTANCE African green monkeys (AGM) are natural hosts of SIV, and infection in these animals generally does not cause AIDS, whereas SIV-infected rhesus macaques (RM) typically develop AIDS. Although it has been reported that SIV generally uses CD4 and CCR5 to enter target cells in vivo, other molecules, such as GPR15 and CXCR6, also function as SIV coreceptors in vitro. In this study, we investigated whether SIV from vervet AGM can use non-CCR5 entry pathways, as has been observed in sooty mangabeys. We found that SIVagmVer efficiently replicated in AGM and RM peripheral blood mononuclear cells in the presence of the CCR5 antagonist maraviroc, suggesting that non-CCR5 entry pathways can support SIVagm entry. We found that AGM-derived GPR15 and CXCR6 support SIVagmVer entry in vitro and may serve as entry coreceptors for SIVagm in vivo, since their mRNAs were detected in AGM memory CD4(+) T cells, the preferred target cells of SIV.
Collapse
|
28
|
Nankya IL, Tebit DM, Abraha A, Kyeyune F, Gibson R, Jegede O, Nickel G, Arts EJ. Defining the fitness of HIV-1 isolates with dual/mixed co-receptor usage. AIDS Res Ther 2015; 12:34. [PMID: 26435727 PMCID: PMC4592561 DOI: 10.1186/s12981-015-0066-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 07/28/2015] [Indexed: 02/08/2023] Open
Abstract
Background CCR5-using (r5) HIV-1 predominates during asymptomatic disease followed by occasional emergence of CXCR4-using (x4) or dual tropic (r5x4) virus. We examined the contribution of the x4 and r5 components to replicative fitness of HIV-1 isolates. Methods Dual tropic r5x4 viruses were predicted from average HIV-1 env sequences of two primary subtype C HIV-1 isolates (C19 and C27) and from two patient plasma samples (B12 and B19). Chimeric Env viruses with an NL4-3 backbone were constructed from the B12 and B19 env sequences. To determine replicative fitness, these primary and chimeric dual tropic HIV-1 were then competed against HIV-1 reference isolates in U87.CD4 cells expressing CXCR4 or CCR5 or in PBMCs ± entry inhibitors. Contribution of the x4 and r5 clones within the quasispecies of these chimeric or primary HIV-1 isolates were then compared to the frequency of x4, r5, and dual tropic clones within the quasispecies as predicted by phenotypic assays, clonal sequencing, and 454 deep sequencing. Results In the primary HIV-1 isolates (C19 and C27), subtype C dual tropic clones dominated over x4 clones while pure r5 clones were absent. In two subtype B chimeric viruses (B12 and B19), r5 clones were >100-fold more abundant than x4 or r5/x4 clones. The dual tropic C19 and C27 HIV-1 isolates outcompeted r5 primary HIV-1 isolates, B2 and C3 in PBMCs. When AMD3100 was added or when only U87.CD4.CCR5 cells were used, the B2 and C3 reference viruses now out-competed the r5 component of the dual tropic C19 and C27. In contrast, the same replicative fitness was observed with dualtropic B12 and B19 HIV-1 isolates relative to x4 HIV-1 A8 and E6 or the r5 B2 and C3 viruses, even when the r5 or x4 component was inhibited by maraviroc (or AMD3100) or in U87.CD4.CXCR4 (or CCR5) cells. Conclusions In the dual tropic HIV-1 isolates, the x4 replicative fitness is higher than r5 clones but the x4 or x4/r5 clones are typically at low frequency in the intrapatient virus population. Ex vivo HIV propagation promotes outgrowth of the x4 clones and provides an over-estimate of x4 dominance in replicative fitness within dual tropic viruses. Electronic supplementary material The online version of this article (doi:10.1186/s12981-015-0066-7) contains supplementary material, which is available to authorized users.
Collapse
|
29
|
Choi JY, Chaillon A, Oh JO, Ahn JY, Ann HW, Jung IY, Ahn MY, Jeon YD, Ku NS, Smith DM, Kim JM. HIV migration between blood plasma and cellular subsets before and after HIV therapy. J Med Virol 2015; 88:606-13. [PMID: 26348372 DOI: 10.1002/jmv.24375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2015] [Indexed: 01/29/2023]
Abstract
The cellular source of HIV RNA circulating in blood plasma remains unclear. Here, we investigated whether sequence analysis of HIV RNA populations circulating before combination antiretroviral therapy (cART) and HIV DNA populations in cellular subsets (CS) after cART could identify the cellular sources of circulating HIV RNA. Blood was collected from five subjects at cART initiation and again 6 months later. Naïve CD4+ T cells, resting central memory and effector memory CD4+ T cells, activated CD4+ T cells, monocytes, and natural killer cells were sorted using a fluorescence-activated cell sorter. HIV-1 env C2V3 sequences from HIV RNA in blood plasma and HIV DNA in CSs were generated using single genome sequencing. Sequences were evaluated for viral compartmentalization (Fst test) and migration events (MEs; Slatkin Maddison and cladistic measures) between blood plasma and each CS. Viral compartmentalization was observed in 88% of all cellular subset comparisons (range: 77-100% for each subject). Most observed MEs were directed from blood plasma to CSs (52 MEs, 85.2%). In particular, there was only viral movement from plasma to NK cells (15 MEs), monocytes (seven MEs), and naïve cells (five ME). We observed a total of nine MEs from activated CD4 cells (2/9 MEs), central memory T cells (3/9 MEs), and effector memory T cells (4/9 MEs) to blood plasma. Our results revealed that the HIV RNA population in blood plasma plays an important role in seeding various cellular reservoirs and that the cellular source of the HIV RNA population is activated central memory and effector memory T cells.
Collapse
Affiliation(s)
- Jun Yong Choi
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea.,AIDS Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Antoine Chaillon
- Department of Medicine, University of California San Diego, La Jolla, California.,Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Jin Ok Oh
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Young Ahn
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea.,AIDS Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Hae Won Ann
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea.,AIDS Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - In Young Jung
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Mi-Young Ahn
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong Duk Jeon
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Nam Su Ku
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea.,AIDS Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Davey M Smith
- Department of Medicine, University of California San Diego, La Jolla, California.,Veterans Affairs San Diego Healthcare System, San Diego, California
| | - June Myung Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea.,AIDS Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
30
|
Syncytial apoptosis signaling network induced by the HIV-1 envelope glycoprotein complex: an overview. Cell Death Dis 2015; 6:e1846. [PMID: 26247731 PMCID: PMC4558497 DOI: 10.1038/cddis.2015.204] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/17/2015] [Accepted: 06/17/2015] [Indexed: 02/07/2023]
Abstract
Infection by human immunodeficiency virus-1 (HIV-1) is associated with a progressive decrease in CD4 T-cell numbers and the consequent collapse of host immune defenses. The major pathogenic mechanism of AIDS is the massive apoptotic destruction of the immunocompetent cells, including uninfected cells. The latter process, also known as by-stander killing, operates by various mechanisms one of which involves the formation of syncytia which undergo cell death by following a complex pathway. We present here a detailed and curated map of the syncytial apoptosis signaling network, aimed at simplifying the whole mechanism that we have characterized at the molecular level in the last 15 years. The map was created using Systems Biology Graphical Notation language with the help of CellDesigner software and encompasses 36 components (proteins/genes) and 54 interactions. The simplification of this complex network paves the way for the development of novel therapeutic strategies to eradicate HIV-1 infection. Agents that induce the selective death of HIV-1-elicited syncytia might lead to the elimination of viral reservoirs and hence constitute an important complement to current antiretroviral therapies.
Collapse
|
31
|
Aiamkitsumrit B, Sullivan NT, Nonnemacher MR, Pirrone V, Wigdahl B. Human Immunodeficiency Virus Type 1 Cellular Entry and Exit in the T Lymphocytic and Monocytic Compartments: Mechanisms and Target Opportunities During Viral Disease. Adv Virus Res 2015; 93:257-311. [PMID: 26111588 DOI: 10.1016/bs.aivir.2015.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During the course of human immunodeficiency virus type 1 infection, a number of cell types throughout the body are infected, with the majority of cells representing CD4+ T cells and cells of the monocyte-macrophage lineage. Both types of cells express, to varying levels, the primary receptor molecule, CD4, as well as one or both of the coreceptors, CXCR4 and CCR5. Viral tropism is determined by both the coreceptor utilized for entry and the cell type infected. Although a single virus may have the capacity to infect both a CD4+ T cell and a cell of the monocyte-macrophage lineage, the mechanisms involved in both the entry of the virus into the cell and the viral egress from the cell during budding and viral release differ depending on the cell type. These host-virus interactions and processes can result in the differential targeting of different cell types by selected viral quasispecies and the overall amount of infectious virus released into the extracellular environment or by direct cell-to-cell spread of viral infectivity. This review covers the major steps of virus entry and egress with emphasis on the parts of the replication process that lead to differences in how the virus enters, replicates, and buds from different cellular compartments, such as CD4+ T cells and cells of the monocyte-macrophage lineage.
Collapse
Affiliation(s)
- Benjamas Aiamkitsumrit
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Neil T Sullivan
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Vanessa Pirrone
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
32
|
Nolte MA, van der Meer JWM. Inflammatory responses to infection: the Dutch contribution. Immunol Lett 2014; 162:113-20. [PMID: 25455597 PMCID: PMC7132409 DOI: 10.1016/j.imlet.2014.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
At any given moment, our body is under attack by a large variety of pathogens, which aim to enter and use our body to propagate and disseminate. The extensive cellular and molecular complexity of our immune system enables us to efficiently eliminate invading pathogens or at least develop a condition in which propagation of the microorganism is reduced to a minimum. Yet, the evolutionary pressure on pathogens to circumvent our immune defense mechanisms is immense, which continuously leads to the development of novel pathogenic strains that challenge the health of mankind. Understanding this battle between pathogen and the immune system has been a fruitful area of immunological research over the last century and will continue to do so for many years. In this review, which has been written on the occasion of the 50th anniversary of the Dutch Society for Immunology, we provide an overview of the major contributions that Dutch immunologists and infection biologists have made in the last decades on the inflammatory response to viral, bacterial, fungal or parasitic infections. We focus on those studies that have addressed both the host and the pathogen, as these are most interesting from an immunological point of view. Although it is not possible to completely cover this comprehensive research field, this review does provide an interesting overview of Dutch research on inflammatory responses to infection.
Collapse
Affiliation(s)
- Martijn A Nolte
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Jos W M van der Meer
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
33
|
Suppression of Foxo1 activity and down-modulation of CD62L (L-selectin) in HIV-1 infected resting CD4 T cells. PLoS One 2014; 9:e110719. [PMID: 25330112 PMCID: PMC4199762 DOI: 10.1371/journal.pone.0110719] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/16/2014] [Indexed: 01/10/2023] Open
Abstract
HIV-1 hijacks and disrupts many processes in the cells it infects in order to suppress antiviral immunity and to facilitate its replication. Resting CD4 T cells are important early targets of HIV-1 infection in which HIV-1 must overcome intrinsic barriers to viral replication. Although resting CD4 T cells are refractory to infection in vitro, local environmental factors within lymphoid and mucosal tissues such as cytokines facilitate viral replication while maintaining the resting state. These factors can be utilized in vitro to study HIV-1 replication in resting CD4 T cells. In vivo, the migration of resting naïve and central memory T cells into lymphoid tissues is dependent upon expression of CD62L (L-selectin), a receptor that is subsequently down-modulated following T cell activation. CD62L gene transcription is maintained in resting T cells by Foxo1 and KLF2, transcription factors that maintain T cell quiescence and which regulate additional cellular processes including survival, migration, and differentiation. Here we report that HIV-1 down-modulates CD62L in productively infected naïve and memory resting CD4 T cells while suppressing Foxo1 activity and the expression of KLF2 mRNA. Partial T cell activation was further evident as an increase in CD69 expression. Several other Foxo1- and KLF2-regulated mRNA were increased or decreased in productively infected CD4 T cells, including IL-7rα, Myc, CCR5, Fam65b, S1P1 (EDG1), CD52, Cyclin D2 and p21CIP1, indicating a profound reprogramming of these cells. The Foxo1 inhibitor AS1842856 accelerated de novo viral gene expression and the sequella of infection, supporting the notion that HIV-1 suppression of Foxo1 activity may be a strategy to promote replication in resting CD4 T cells. As Foxo1 is an investigative cancer therapy target, the development of Foxo1 interventions may assist the quest to specifically suppress or activate HIV-1 replication in vivo.
Collapse
|
34
|
Johnson EL, Howard CL, Thurman J, Pontiff K, Johnson ES, Chakraborty R. Cytomegalovirus upregulates expression of CCR5 in central memory cord blood mononuclear cells, which may facilitate in utero HIV type 1 transmission. J Infect Dis 2014; 211:187-96. [PMID: 25081935 DOI: 10.1093/infdis/jiu424] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Administration of combination antiretroviral therapy to human immunodeficiency virus type 1 (HIV-1)-infected pregnant women significantly reduces vertical transmission. In contrast, maternal co-opportunistic infection with primary or reactivated cytomegalovirus (CMV) or other pathogens may facilitate in utero transmission of HIV-1 by activation of cord blood mononuclear cells (CBMCs). Here we examine the targets and mechanisms that affect fetal susceptibility to HIV-1 in utero. Using flow cytometry, we demonstrate that the fraction of CD4(+)CD45RO(+) and CD4(+)CCR5(+) CBMCs is minimal, which may account for the low level of in utero HIV-1 transmission. Unstimulated CD4(+) CBMCs that lack CCR5/CD45RO showed reduced levels of HIV-1 infection. However, upon in vitro stimulation with CMV, CBMCs undergo increased proliferation to upregulate the fraction of T central memory cells and expression of CCR5, which enhances susceptibility to HIV-1 infection in vitro. These data suggest that activation induced by CMV in vivo may alter CCR5 expression in CD4(+) T central memory cells to promote in utero transmission of HIV-1.
Collapse
Affiliation(s)
- Erica L Johnson
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Chanie L Howard
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Joy Thurman
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Kyle Pontiff
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Elan S Johnson
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Rana Chakraborty
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
35
|
Jiao Y, Song J, Sun X, Zhu W, Wang R, Zhang Y, Li W, Zhang T, Chen D, Wu H. Higher HIV DNA in CD4+ naïve T-cells during acute HIV-1 infection in rapid progressors. Viral Immunol 2014; 27:316-8. [PMID: 24892927 DOI: 10.1089/vim.2014.0037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
AbFew reports have shown the relationship between the distribution of human immunodeficiency virus type 1 (HIV-1) proviral DNA in CD4 subsets during acute HIV-1 infection and HIV disease progression. In this study, we enrolled two groups with distinct differences in disease progression. The CD4 counts of one group fell below 200 cells/μL within 2 years (rapid progressors), whereas the other group maintained CD4 counts above 500 cells/μL (slow progressors). We collected blood samples during Fiebig stage III-IV of the two groups, and sorted CD4+ naïve, central memory, and effector memory lymphocytes. Real-time polymerase chain reaction was used to quantify HIV-1 DNA of the subsets. We found that HIV-1 DNA content was higher in memory T-cells than in naïve cells in both groups, and a higher HIV DNA content was found in naïve CD4+ T-cells during acute HIV-1 infection in rapid progressors. This suggests that higher HIV DNA in naïve CD4+ T-cells may associated with rapid progression.
Collapse
|
36
|
|
37
|
Tsuchiya K, Ode H, Hayashida T, Kakizawa J, Sato H, Oka S, Gatanaga H. Arginine insertion and loss of N-linked glycosylation site in HIV-1 envelope V3 region confer CXCR4-tropism. Sci Rep 2014; 3:2389. [PMID: 23925152 PMCID: PMC3737504 DOI: 10.1038/srep02389] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 07/24/2013] [Indexed: 12/02/2022] Open
Abstract
The third variable region (V3) of HIV-1 envelope glycoprotein gp120 plays a key role in determination of viral coreceptor usage (tropism). However, which combinations of mutations in V3 confer a tropism shift is still unclear. A unique pattern of mutations in antiretroviral therapy-naive HIV-1 patient was observed associated with the HIV-1 tropism shift CCR5 to CXCR4. The insertion of arginine at position 11 and the loss of the N-linked glycosylation site were indispensable for acquiring pure CXCR4-tropism, which were confirmed by cell-cell fusion assay and phenotype analysis of recombinant HIV-1 variants. The same pattern of mutations in V3 and the associated tropism shift were identified in two of 53 other patients (3.8%) with CD4+ cell count <200/mm3. The combination of arginine insertion and loss of N-linked glycosylation site usually confers CXCR4-tropism. Awareness of this rule will help to confirm the tropism prediction from V3 sequences by conventional rules.
Collapse
Affiliation(s)
- Kiyoto Tsuchiya
- AIDS Clinical Center, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Torres-Castro I, Cortés-Rubio CN, Sandoval G, Lamoyi E, Larralde C, Huerta L. Flow cytometry analysis of cell population dynamics and cell cycle during HIV-1 envelope-mediated formation of syncytia in vitro. In Vitro Cell Dev Biol Anim 2014; 50:453-63. [DOI: 10.1007/s11626-013-9724-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/09/2013] [Indexed: 02/01/2023]
|
39
|
Aiamkitsumrit B, Dampier W, Antell G, Rivera N, Martin-Garcia J, Pirrone V, Nonnemacher MR, Wigdahl B. Bioinformatic analysis of HIV-1 entry and pathogenesis. Curr HIV Res 2014; 12:132-61. [PMID: 24862329 PMCID: PMC4382797 DOI: 10.2174/1570162x12666140526121746] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 03/18/2014] [Accepted: 05/06/2014] [Indexed: 02/07/2023]
Abstract
The evolution of human immunodeficiency virus type 1 (HIV-1) with respect to co-receptor utilization has been shown to be relevant to HIV-1 pathogenesis and disease. The CCR5-utilizing (R5) virus has been shown to be important in the very early stages of transmission and highly prevalent during asymptomatic infection and chronic disease. In addition, the R5 virus has been proposed to be involved in neuroinvasion and central nervous system (CNS) disease. In contrast, the CXCR4-utilizing (X4) virus is more prevalent during the course of disease progression and concurrent with the loss of CD4(+) T cells. The dual-tropic virus is able to utilize both co-receptors (CXCR4 and CCR5) and has been thought to represent an intermediate transitional virus that possesses properties of both X4 and R5 viruses that can be encountered at many stages of disease. The use of computational tools and bioinformatic approaches in the prediction of HIV-1 co-receptor usage has been growing in importance with respect to understanding HIV-1 pathogenesis and disease, developing diagnostic tools, and improving the efficacy of therapeutic strategies focused on blocking viral entry. Current strategies have enhanced the sensitivity, specificity, and reproducibility relative to the prediction of co-receptor use; however, these technologies need to be improved with respect to their efficient and accurate use across the HIV-1 subtypes. The most effective approach may center on the combined use of different algorithms involving sequences within and outside of the env-V3 loop. This review focuses on the HIV-1 entry process and on co-receptor utilization, including bioinformatic tools utilized in the prediction of co-receptor usage. It also provides novel preliminary analyses for enabling identification of linkages between amino acids in V3 with other components of the HIV-1 genome and demonstrates that these linkages are different between X4 and R5 viruses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA 19102.
| |
Collapse
|
40
|
Gijsbers EF, van Sighem A, Harskamp AM, Welkers MRA, de Wolf F, Brinkman K, Prins JM, Schuitemaker H, van ’t Wout AB, Kootstra NA. The presence of CXCR4-using HIV-1 prior to start of antiretroviral therapy is an independent predictor of delayed viral suppression. PLoS One 2013; 8:e76255. [PMID: 24098454 PMCID: PMC3787987 DOI: 10.1371/journal.pone.0076255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 08/22/2013] [Indexed: 12/04/2022] Open
Abstract
The emergence of CXCR4-using HIV variants (X4-HIV) is associated with accelerated disease progression in the absence of antiretroviral therapy. However, the effect of X4-HIV variants on the treatment response remains unclear. Here we determined whether the presence of X4-HIV variants influenced the time to undetectable viral load and CD4+ T cell reconstitution after initiation of cART in 732 patients. The presence of X4-HIV variants was determined by MT-2 assay prior to cART initiation and viral load and CD4+ T cell counts were analyzed every 3 to 6 months during a three year follow-up period. Kaplan-Meier and Cox proportional hazard analyses were performed to compare time to viral suppression and the absolute CD4+ T cell counts and increases in CD4+ T cell counts during follow-up were compared for patients with and without X4-HIV at start of cART. Patients harboring X4-HIV variants at baseline showed a delay in time to achieve viral suppression below the viral load detection limit. This delay in viral suppression was independently associated with high viral load and the presence of X4-HIV variants. Furthermore, the absolute CD4+ T cell counts were significantly lower in patients harboring X4-HIV variants at all time points during follow-up. However, no differences were observed in the increase in absolute CD4+ T cell numbers after treatment initiation, indicating that the reconstitution of CD4+ T cells is independent of the presence of X4-HIV variants. The emergence of X4-HIV has been associated with an accelerated CD4+ T cell decline during the natural course of infection and therefore, patients who develop X4-HIV variants may benefit from earlier treatment initiation in order to obtain faster reconstitution of the CD4+ T cell population to normal levels.
Collapse
Affiliation(s)
- Esther F. Gijsbers
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory and Center for Infectious Diseases and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Agnes M. Harskamp
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory and Center for Infectious Diseases and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Matthijs R. A. Welkers
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory and Center for Infectious Diseases and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Frank de Wolf
- Stichting HIV Monitoring, Amsterdam, The Netherlands
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Kees Brinkman
- Department of Internal Medicine, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands
| | - Jan M. Prins
- Department of Internal Medicine, Center for Infectious Diseases and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hanneke Schuitemaker
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory and Center for Infectious Diseases and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Angélique B. van ’t Wout
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory and Center for Infectious Diseases and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Neeltje A. Kootstra
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory and Center for Infectious Diseases and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
41
|
Treatment failure and drug resistance is more frequent in HIV-1 subtype D versus subtype A-infected Ugandans over a 10-year study period. AIDS 2013; 27:1899-909. [PMID: 23727942 DOI: 10.1097/qad.0b013e3283610ec7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To determine the impact of HIV-1 subtype on treatment outcomes and the emergence of drug resistance in the resource limited setting of Kampala, Uganda. DESIGN The Joint Clinical Research Centre (JCRC) in Kampala, Uganda has provided over 2000 drug-resistant genotypes (DRGs) over the past 10 years as standard of care for patients failing therapy and 1403 from treatment-naive and experienced patients over the past 10 years have been analyzed for this study. METHOD Viral loads, CD4 cell count, treatment histories and other relevant clinical data was compared with the infecting HIV-1 subtype and DRGs of Ugandan patients failing treatment. RESULTS Patients failing HAART with DRGs (n = 937) were more frequently infected with subtype D than expected on the basis of the subtype distribution in the treatment-naive population (n = 655) in Kampala (P < 0.001). Higher proportions of treatment failures among subtype D-infected patients were driven by resistance to nucleoside reverse transcriptase inhibitors (NRTI) (P < 0.0002) more than to non-NRTIs (P > 0.04) or protease inhibitors. CONCLUSION Higher rates of treatment failure among subtype D as compared with subtype A-infected Ugandans was analogous to the faster disease progression in subtype D-infected patients. The mechanism(s) by which drug resistance may emerge faster in subtype D HIV-1 may relate to higher replicative fitness and increased propensity for a CXCR4 tropism.
Collapse
|
42
|
Abbas W, Herbein G. T-Cell Signaling in HIV-1 Infection. Open Virol J 2013; 7:57-71. [PMID: 23986795 PMCID: PMC3751038 DOI: 10.2174/1874357920130621001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 05/31/2013] [Accepted: 06/04/2013] [Indexed: 12/20/2022] Open
Abstract
HIV exploits the T-cell signaling network to gain access to downstream cellular components, which serves as effective tools to break the cellular barriers. Multiple host factors and their interaction with viral proteins contribute to the complexity of HIV-1 pathogenesis and disease progression. HIV-1 proteins gp120, Nef, Tat and Vpr alter the T-cell signaling pathways by activating multiple transcription factors including NF-ĸB, Sp1 and AP-1. HIV-1 evades the immune system by developing a multi-pronged strategy. Additionally, HIV-1 encoded proteins influence the apoptosis in the host cell favoring or blocking T-cell apoptosis. Thus, T-cell signaling hijacked by viral proteins accounts for both viral persistence and immune suppression during HIV-1 infection. Here, we summarize past and present studies on HIV-1 T-cell signaling with special focus on the possible role of T cells in facilitating viral infection and pathogenesis
Collapse
Affiliation(s)
- Wasim Abbas
- Department of Virology, Pathogens & Inflammation Laboratory, UPRES EA4266, SFR FED 4234, University of Franche-Comte, CHRU Besançon, F-25030 Besançon, France
| | | |
Collapse
|
43
|
Peters PJ, Richards K, Clapham P. Human immunodeficiency viruses: propagation, quantification, and storage. CURRENT PROTOCOLS IN MICROBIOLOGY 2013; Chapter 15:Unit 15J.1. [PMID: 23408133 DOI: 10.1002/9780471729259.mc15j01s28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Described in this unit are basic protocols frequently used in the research of human immunodeficiency viruses (HIVs). Provided are methods for propagating and quantifying HIV, as well as recommendations for long-term storage. Background information about these methods is also provided and includes their advantages, disadvantages, and troubleshooting.
Collapse
Affiliation(s)
- Paul J Peters
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | | |
Collapse
|
44
|
Pan X, Baldauf HM, Keppler OT, Fackler OT. Restrictions to HIV-1 replication in resting CD4+ T lymphocytes. Cell Res 2013; 23:876-85. [PMID: 23732522 PMCID: PMC3698640 DOI: 10.1038/cr.2013.74] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CD4+ T lymphocytes represent the main target cell population of human immunodeficiency virus (HIV). In an activated state, CD4+ T cells residing in lymphoid organs are a major reservoir of ongoing HIV-1 replication in infected individuals. In contrast, resting CD4+ T cells are highly resistant to productive HIV-1 infection, yet are massively depleted during disease progression and represent a substantial latent reservoir for the virus in vivo. Barriers preventing replication of HIV-1 in resting CD4+ T cells include a rigid layer of cortical actin and, early after HIV-1 entry, a block that limits reverse transcription of incoming viral RNA genomes. Defining the molecular bases of these restrictions has remained one of the central open questions in HIV research. Recent advances unraveled mechanisms by which HIV-1 bypasses the entry block and established the host cell restriction factor SAMHD1, a deoxynucleoside triphosphate triphosphohydrolase, as a central determinant of the cellular restriction to HIV-1 reverse transcription in resting CD4+ T cells. This review summarizes our current molecular and pathophysiological understanding of the multi-faceted interactions of HIV-1 with resting CD4+ T lymphocytes.
Collapse
Affiliation(s)
- Xiaoyu Pan
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
45
|
Bacchus C, Cheret A, Avettand-Fenoël V, Nembot G, Mélard A, Blanc C, Lascoux-Combe C, Slama L, Allegre T, Allavena C, Yazdanpanah Y, Duvivier C, Katlama C, Goujard C, Seksik BCP, Leplatois A, Molina JM, Meyer L, Autran B, Rouzioux C. A single HIV-1 cluster and a skewed immune homeostasis drive the early spread of HIV among resting CD4+ cell subsets within one month post-infection. PLoS One 2013; 8:e64219. [PMID: 23691172 PMCID: PMC3653877 DOI: 10.1371/journal.pone.0064219] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/10/2013] [Indexed: 12/30/2022] Open
Abstract
Optimizing therapeutic strategies for an HIV cure requires better understanding the characteristics of early HIV-1 spread among resting CD4+ cells within the first month of primary HIV-1 infection (PHI). We studied the immune distribution, diversity, and inducibility of total HIV-DNA among the following cell subsets: monocytes, peripheral blood activated and resting CD4 T cells, long-lived (naive [TN] and central-memory [TCM]) and short-lived (transitional-memory [TTM] and effector-memory cells [TEM]) resting CD4+T cells from 12 acutely-infected individuals recruited at a median 36 days from infection. Cells were sorted for total HIV-DNA quantification, phylogenetic analysis and inducibility, all studied in relation to activation status and cell signaling. One month post-infection, a single CCR5-restricted viral cluster was massively distributed in all resting CD4+ subsets from 88% subjects, while one subject showed a slight diversity. High levels of total HIV-DNA were measured among TN (median 3.4 log copies/million cells), although 10-fold less (p = 0.0005) than in equally infected TCM (4.5), TTM (4.7) and TEM (4.6) cells. CD3−CD4+ monocytes harbored a low viral burden (median 2.3 log copies/million cells), unlike equally infected resting and activated CD4+ T cells (4.5 log copies/million cells). The skewed repartition of resting CD4 subsets influenced their contribution to the pool of resting infected CD4+T cells, two thirds of which consisted of short-lived TTM and TEM subsets, whereas long-lived TN and TCM subsets contributed the balance. Each resting CD4 subset produced HIV in vitro after stimulation with anti-CD3/anti-CD28+IL-2 with kinetics and magnitude varying according to subset differentiation, while IL-7 preferentially induced virus production from long-lived resting TN cells. In conclusion, within a month of infection, a clonal HIV-1 cluster is massively distributed among resting CD4 T-cell subsets with a flexible inducibility, suggesting that subset activation and skewed immune homeostasis determine the conditions of viral dissemination and early establishment of the HIV reservoir.
Collapse
Affiliation(s)
- Charline Bacchus
- Pierre-and-Marie-Curie University Paris 06, Laboratory Immunity and Infection UMR_S 945, F-75013, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Laboratory Immunity and Infection UMR_S 945, F-75013, Paris, France
| | - Antoine Cheret
- Paris-Descartes University, Sorbonne Paris-Cité, EA 3620, Virology Laboratory, Necker Enfants-Malades Hospital, Paris, France
- Infectious Diseases Department, Gustave Dron Hospital, Tourcoing, France
| | - Véronique Avettand-Fenoël
- Paris-Descartes University, Sorbonne Paris-Cité, EA 3620, Virology Laboratory, Necker Enfants-Malades Hospital, Paris, France
| | - Georges Nembot
- Epidemiology and Public Health Department, Inserm U1018, Le Kremlin-Bicêtre Hospital, Paris, France
| | - Adeline Mélard
- Paris-Descartes University, Sorbonne Paris-Cité, EA 3620, Virology Laboratory, Necker Enfants-Malades Hospital, Paris, France
| | - Catherine Blanc
- CyPS Flow Cytometry Platform, Pierre & Marie Curie University, Pitié-Salpêtrière Hospital, Paris, France
| | - Caroline Lascoux-Combe
- Infectious Diseases Department, Assistance Publique - Hôpitaux de Paris, Saint-Louis Hospital, Paris, France
| | - Laurence Slama
- Infectious Diseases Department, Assistance Publique - Hôpitaux de Paris, Tenon Hospital, Paris, France
| | - Thierry Allegre
- Department of Hematology, Aix-en-Provence Hospital, Aix-en-Provence, France
| | | | - Yazdan Yazdanpanah
- Infectious Diseases Department, Gustave Dron Hospital, Tourcoing, France
| | - Claudine Duvivier
- Pasteur Institute, Medical Center, Necker-Pasteur Infectious Diseases Center, Paris, France
| | - Christine Katlama
- Infectious Diseases Department, Assistance Publique - Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris, France
| | - Cécile Goujard
- Internal Medicine and Infectious Diseases Department, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre Hospital, Paris, France
| | - Bao Chau Phung Seksik
- Infectious Diseases Department, Assistance Publique - Hôpitaux de Paris, Bichat Hospital, Paris, France
| | - Anne Leplatois
- Infectious Diseases Department, L’Archet Hospital, Nice, France
| | - Jean-Michel Molina
- Sorbonne Paris-Cité University, Institut National de la Santé et de la Recherche Médicale U941, Infectious Diseases Unit, Saint-Louis Hospital, Paris, France
| | - Laurence Meyer
- Epidemiology and Public Health Department, Inserm U1018, Le Kremlin-Bicêtre Hospital, Paris, France
| | - Brigitte Autran
- Pierre-and-Marie-Curie University Paris 06, Laboratory Immunity and Infection UMR_S 945, F-75013, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Laboratory Immunity and Infection UMR_S 945, F-75013, Paris, France
- * E-mail:
| | - Christine Rouzioux
- Paris-Descartes University, Sorbonne Paris-Cité, EA 3620, Virology Laboratory, Necker Enfants-Malades Hospital, Paris, France
| | | |
Collapse
|
46
|
Mulinge M, Lemaire M, Servais JY, Rybicki A, Struck D, da Silva ES, Verhofstede C, Lie Y, Seguin-Devaux C, Schmit JC, Bercoff DP. HIV-1 tropism determination using a phenotypic Env recombinant viral assay highlights overestimation of CXCR4-usage by genotypic prediction algorithms for CRF01_AE and CRF02_AG [corrected]. PLoS One 2013; 8:e60566. [PMID: 23667426 PMCID: PMC3648519 DOI: 10.1371/journal.pone.0060566] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 02/28/2013] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Human Immunodeficiency virus type-1 (HIV) entry into target cells involves binding of the viral envelope (Env) to CD4 and a coreceptor, mainly CCR5 or CXCR4. The only currently licensed HIV entry inhibitor, maraviroc, targets CCR5, and the presence of CXCX4-using strains must be excluded prior to treatment. Co-receptor usage can be assessed by phenotypic assays or through genotypic prediction. Here we compared the performance of a phenotypic Env-Recombinant Viral Assay (RVA) to the two most widely used genotypic prediction algorithms, Geno2Pheno[coreceptor] and webPSSM. METHODS Co-receptor tropism of samples from 73 subtype B and 219 non-B infections was measured phenotypically using a luciferase-tagged, NL4-3-based, RVA targeting Env. In parallel, tropism was inferred genotypically from the corresponding V3-loop sequences using Geno2Pheno[coreceptor] (5-20% FPR) and webPSSM-R5X4. For discordant samples, phenotypic outcome was retested using co-receptor antagonists or the validated Trofile® Enhanced-Sensitivity-Tropism-Assay. RESULTS The lower detection limit of the RVA was 2.5% and 5% for X4 and R5 minority variants respectively. A phenotype/genotype result was obtained for 210 samples. Overall, concordance of phenotypic results with Geno2Pheno[coreceptor] was 85.2% and concordance with webPSSM was 79.5%. For subtype B, concordance with Geno2pheno[coreceptor] was 94.4% and concordance with webPSSM was 79.6%. High concordance of genotypic tools with phenotypic outcome was seen for subtype C (90% for both tools). Main discordances involved CRF01_AE and CRF02_AG for both algorithms (CRF01_AE: 35.9% discordances with Geno2Pheno[coreceptor] and 28.2% with webPSSM; CRF02_AG: 20.7% for both algorithms). Genotypic prediction overestimated CXCR4-usage for both CRFs. For webPSSM, 40% discordance was observed for subtype A. CONCLUSIONS Phenotypic assays remain the most accurate for most non-B subtypes and new subtype-specific rules should be developed for non-B subtypes, as research studies more and more draw conclusions from genotypically-inferred tropism, and to avoid unnecessarily precluding patients with limited treatment options from receiving maraviroc or other entry inhibitors.
Collapse
Affiliation(s)
- Martin Mulinge
- Laboratory of Retrovirology, Centre Recherche Public de la Santé, Luxembourg, Luxembourg
| | - Morgane Lemaire
- Laboratory of Retrovirology, Centre Recherche Public de la Santé, Luxembourg, Luxembourg
| | - Jean-Yves Servais
- Laboratory of Retrovirology, Centre Recherche Public de la Santé, Luxembourg, Luxembourg
| | - Arkadiusz Rybicki
- Laboratory of Retrovirology, Centre Recherche Public de la Santé, Luxembourg, Luxembourg
| | - Daniel Struck
- Laboratory of Retrovirology, Centre Recherche Public de la Santé, Luxembourg, Luxembourg
| | | | | | - Yolanda Lie
- Monogram Biosciences Inc., South San Francisco, California, United States of America
| | - Carole Seguin-Devaux
- Laboratory of Retrovirology, Centre Recherche Public de la Santé, Luxembourg, Luxembourg
| | - Jean-Claude Schmit
- Laboratory of Retrovirology, Centre Recherche Public de la Santé, Luxembourg, Luxembourg
- Service National des Maladies Infectieuses, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Danielle Perez Bercoff
- Laboratory of Retrovirology, Centre Recherche Public de la Santé, Luxembourg, Luxembourg
| |
Collapse
|
47
|
Higuita EA, Jaimes FA, Rugeles MT, Montoya CJ. In vivo effect of statins on the expression of the HIV co-receptors CCR5 and CXCR4. AIDS Res Ther 2013; 10:10. [PMID: 23634877 PMCID: PMC3668251 DOI: 10.1186/1742-6405-10-10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 04/06/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND During the HIV-1 replication cycle, several molecules including chemokine receptors and cholesterol are crucial, and are therefore potential targets for therapeutic intervention. Indeed statins, compounds that inhibit cellular synthesis of cholesterol and have anti-inflammatory and immunomodulatory properties were shown to inhibit HIV-1 infection by R5 tropic strains but not by X4 strains in vitro, mainly by altering the chemokine receptor/ligands axes. Therefore, the objective of this study was to characterize in vivo, the capacity of statins to modulate in HIV seronegative and chronically HIV-1-infected adults the expression of CCR5 and CXCR4, of their ligands and the tropism of circulating HIV-1 strains. METHODS Samples from asymptomatic HIV-1-infected adults enrolled in a clinical trial aimed at evaluating the antiretroviral activity of lovastatin were used to evaluate in vivo the modulation by lovastatin of CCR5, CXCR4, their ligands, and the shift in plasma viral tropism over one year of intervention. In addition, ten HIV negative adults received a daily oral dose of 40 mg of lovastatin or 20 mg of atorvastatin; seven other HIV negative individuals who received no treatment were followed as controls. The frequency and phenotype of immune cells were determined by flow-cytometry; mRNA levels of chemokine receptors and their ligands were determined by real-time PCR. Viral tropism was determined by PCR and sequencing, applying the clonal and clinical model of analyses. RESULTS Our study shows that long-term administration of lovastatin in HIV-infected individuals does not induce a shift in viral tropism, or induce a significant modulation of CCR5 and CXCR4 on immune cells in HIV-infected patients. Similar results were found in HIV seronegative control subjects, treated with lovastatin or atorvastatin, but a significant increase in CCL3 and CCL4 transcription was observed in these individuals. CONCLUSIONS These findings suggest that long-term administration of statins at therapeutic doses, does not significantly affect the expression of HIV-1 co-receptors or of their ligands. In addition it is important to point out that based on the results obtained, therapeutic administration of statins in HIV-infected patients with lipid disorders is safe in terms of selecting X4 strains.
Collapse
|
48
|
Sehgal M, Khan ZK, Talal AH, Jain P. Dendritic Cells in HIV-1 and HCV Infection: Can They Help Win the Battle? Virology (Auckl) 2013; 4:1-25. [PMID: 25512691 PMCID: PMC4222345 DOI: 10.4137/vrt.s11046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Persistent infections with human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) are a major cause of morbidity and mortality worldwide. As sentinels of our immune system, dendritic cells (DCs) play a central role in initiating and regulating a potent antiviral immune response. Recent advances in our understanding of the role of DCs during HIV-1 and HCV infection have provided crucial insights into the mechanisms employed by these viruses to impair DC functions in order to evade an effective immune response against them. Modulation of the immunological synapse between DC and T-cell, as well as dysregulation of the crosstalk between DCs and natural killer (NK) cells, are emerging as two crucial mechanisms. This review focuses on understanding the interaction of HIV-1 and HCV with DCs not only to understand the immunopathogenesis of chronic HIV-1 and HCV infection, but also to explore the possibilities of DC-based immunotherapeutic approaches against them. Host genetic makeup is known to play major roles in infection outcome and rate of disease progression, as well as response to anti-viral therapy in both HIV-1 and HCV-infected individuals. Therefore, we highlight the genetic variations that can potentially affect DC functions, especially in the setting of chronic viral infection. Altogether, we address if DCs’ potential as critical effectors of antiviral immune response could indeed be utilized to combat chronic infection with HIV-1 and HCV.
Collapse
Affiliation(s)
- Mohit Sehgal
- Department of Microbiology and Immunology, and the Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Zafar K Khan
- Department of Microbiology and Immunology, and the Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Andrew H Talal
- Center for the Study of Hepatitis C, Weill Cornell Medical College, New York, NY
| | - Pooja Jain
- Department of Microbiology and Immunology, and the Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW HIV-1 infects tissue macrophages, microglia and other mononuclear phagocytes which represent an important cellular reservoir for viral replication and persistence in macrophage-rich tissue. This compartmentalization allows the virus to exist as genetically distinct quasi-species that can have capacities to use different coreceptors for cell entry. This review assesses the tropism of HIV-1 in different human compartments. RECENT FINDINGS The majority of HIV infection occurs with R5-tropic viruses probably due to the selective expression of the R5 cell-surface protein on the target cells in the genital muscosa. There is a large concordance of tropism use between blood cell-associated proviral DNA and RNA plasma viruses, allowing the use of CC chemokine receptor 5 (CCR5) antagonists in patients who have undetectable viral load and for whom HIV tropism was determined in DNA. Most of HIV strains in central nervous system remain R5-tropic allowing the use of CCR5 antagonists. SUMMARY There are many clinical situations in which the use of CCR5 antagonists can be used and several ways to determine HIV tropism in most of the compartments.
Collapse
|
50
|
Abstract
Transmission of HIV-1 results in the establishment of a new infection, typically starting from a single virus particle. That virion replicates to generate viremia and persistent infection in all of the lymphoid tissue in the body. HIV-1 preferentially infects T cells with high levels of CD4 and those subsets of T cells that express CCR5, particularly memory T cells. Most of the replicating virus is in the lymphoid tissue, yet most of samples studied are from blood. For the most part the tissue and blood viruses represent a well-mixed population. With the onset of immunodeficiency, the virus evolves to infect new cell types. The tropism switch involves switching from using CCR5 to CXCR4 and corresponds to an expansion of infected cells to include naïve CD4(+) T cells. Similarly, the virus evolves the ability to enter cells with low levels of CD4 on the surface and this potentiates the ability to infect macrophages, although the scope of sites where infection of macrophages occurs and the link to pathogenesis is only partly known and is clear only for infection of the central nervous system. A model linking viral evolution to these two pathways has been proposed. Finally, other disease states related to immunodeficiency may be the result of viral infection of additional tissues, although the evidence for a direct role for the virus is less strong. Advancing immunodeficiency creates an environment in which viral evolution results in viral variants that can target new cell types to generate yet another class of opportunistic infections (i.e., HIV-1 with altered tropism).
Collapse
Affiliation(s)
- Ronald Swanstrom
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|