1
|
Soyuhos O, Moore T, Chaudhuri R, Chen X. Selective control of prefrontal neural timescales by parietal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.30.615928. [PMID: 39896639 PMCID: PMC11785006 DOI: 10.1101/2024.09.30.615928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Intrinsic neural timescales quantify how long a pattern of spontaneous neuronal activity persists, thereby capturing the dynamics of its endogenous fluctuations over time. We measured the intrinsic timescales of frontal eye field (FEF) neurons and examined their changes during posterior parietal cortex (PPC) inactivation. We observed two distinct classes of FEF neurons, those with short (~25ms) or long (~100ms) timescales. Short-timescale neurons showed stronger transient visual responses, whereas long-timescale neurons exhibited stronger sustained modulation by stimulus-driven attention. During PPC inactivation, intrinsic timescales increased in both neuron types, but occurred predominantly in short-timescale neurons. In addition, PPC inactivation reduced visual and attentional modulation, particularly impairing attentional modulation in long-timescale neurons. Our results provide the first causal evidence of a selective dependence of intrinsic local neural timescales on long-range connections. These findings suggest the presence of at least two network motifs with different timescales that contribute to neuronal dynamics and functional computations in the FEF.
Collapse
|
2
|
Zhou Y, Yu W, Ye Q, Xu Z, He Y, Yao Y, Pang Y, Zhong Y, Li Q, Feng L, Wen Y, Qiu X, Wang Z, Li J. Fixation Stability Deficits in Anisometropic Amblyopia. Invest Ophthalmol Vis Sci 2025; 66:14. [PMID: 39775696 PMCID: PMC11717132 DOI: 10.1167/iovs.66.1.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/06/2024] [Indexed: 01/11/2025] Open
Abstract
Purpose The purpose of this study was to investigate the relationship between fixation stability deficits in anisometropic amblyopia and various visual functions, as well as the underlying retinal structure. Methods All 164 patients with anisometropic amblyopia were recruited in this cross-sectional study. The contrast sensitivity function (CSF) was measured using the qCSF method, whereas the MP-3 microperimeter was used to assess fixation stability and locate the preferred retinal locus. Bivariate contour ellipse area (BCEA) of both the amblyopic and the fellow eyes was used as the dependent variable. Based on previous research and clinical practice, the following variables were selected as independent variables for regression modeling to explore potential influencing factors: gender, age, area under the log CSF (AULCSF), absolute interocular difference (IOD) in spherical equivalent refraction (SER), AULCSF-IOD, the eccentricity of the preferred retinal locus, patching history, and the log BCEA of the contralateral eye. Results A total of 161 participants (87 men and 74 women, average age = 20.26 ± 8.79 years, ranging from 5 to 51 years old) completed all examinations. Three participants were excluded due to their inability to complete the required examinations. There were significant differences between the amblyopic and the fellow eyes in terms of SER, best-corrected visual acuity, AULCSF, log BCEA, and the eccentricity of the preferred retinal locus (all P < 0.001). Both the amblyopic and the fellow eyes exhibited fixation stability deficits and eccentric fixation. The regression model showed that fixation stability in the amblyopic eye (log BCEA) was significantly associated with age, AULCSF of the amblyopic eye, AULCSF-IOD, eccentricity of the amblyopic eye, and log BCEA of the fellow eye (all P < 0.05). Fixation stability in the fellow eye (log BCEA) was significantly associated with eccentricity of the fellow eye, and log BCEA of the amblyopic eye (all P < 0.05). Conclusions Eccentric fixation and fixation stability deficits were observed in both the amblyopic and the fellow eyes, with fixation stability in both eyes being correlated with the eccentricity of the preferred retinal locus. These findings suggest that in the clinical management of amblyopia, attention should be given to the fixation stability and fixation characteristics of both the amblyopic and fellow eyes.
Collapse
Affiliation(s)
- Yusong Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Wentong Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Qingqing Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Zixuan Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Yunsi He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Ying Yao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Yangfei Pang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Yudan Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Qiuying Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Lei Feng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Yun Wen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Xuan Qiu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Zhonghao Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Jinrong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
3
|
Ramezanpour H, Kehoe DH, Schall JD, Fallah M. Dynamics of Saccade Trajectory Modulation by Distractors: Neural Activity Patterns in the Frontal Eye Field. J Neurosci 2024; 44:e0635242024. [PMID: 39353728 PMCID: PMC11561864 DOI: 10.1523/jneurosci.0635-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/08/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
The sudden appearance of a visual distractor shortly before saccade initiation can capture spatial attention and modulate the saccade trajectory in spite of the ongoing execution of the initial plan to shift gaze straight to the saccade target. To elucidate the neural correlates underlying these curved saccades, we recorded from single neurons in the frontal eye field of two male rhesus monkeys shifting gaze to a target while a distractor with the same eccentricity appeared either left or right of the target at various delays after target presentation. We found that the population level of presaccadic activity of neurons representing the distractor location encoded the direction of the saccade trajectory. Stronger activity occurred when saccades curved toward the distractor, and weaker when saccades curved away. This relationship held whether the distractor was ipsilateral or contralateral to the recorded neurons. Meanwhile, visually responsive neurons showed asymmetrical patterns of excitatory responses that varied with the location of the distractor and the duration of distractor processing relating to attentional capture and distractor inhibition. During earlier distractor processing, neurons encoded curvature toward the distractor. During later distractor processing, neurons encoded curvature away from the distractor. This was observed when saccades curved away from distractors contralateral to the recording site and when saccades curved toward distractors ipsilateral to the recording site. These findings indicate that saccadic motor planning involves dynamic push-pull hemispheric interactions producing attraction or repulsion for potential but unselected saccade targets.
Collapse
Affiliation(s)
- Hamidreza Ramezanpour
- Centre for Vision Research, York University, Toronto, Ontario M3J 1P3, Canada
- Department of Biology, Faculty of Science, York University, Toronto, Ontario M3J 1P3, Canada
- VISTA: Vision Science to Application, York University, Toronto, Ontario M3J 1P3, Canada
| | - Devin Heinze Kehoe
- Centre for Vision Research, York University, Toronto, Ontario M3J 1P3, Canada
- VISTA: Vision Science to Application, York University, Toronto, Ontario M3J 1P3, Canada
- Department of Neuroscience, University of Montréal, Montréal H3T 1J4, Canada
- Department of Psychology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Jeffrey D Schall
- Centre for Vision Research, York University, Toronto, Ontario M3J 1P3, Canada
- Department of Biology, Faculty of Science, York University, Toronto, Ontario M3J 1P3, Canada
- VISTA: Vision Science to Application, York University, Toronto, Ontario M3J 1P3, Canada
| | - Mazyar Fallah
- Centre for Vision Research, York University, Toronto, Ontario M3J 1P3, Canada
- VISTA: Vision Science to Application, York University, Toronto, Ontario M3J 1P3, Canada
- Department of Psychology, York University, Toronto, Ontario M3J 1P3, Canada
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
4
|
Goldstein AT, Stanford TR, Salinas E. Coupling of saccade plans to endogenous attention during urgent choices. eLife 2024; 13:RP97883. [PMID: 39495217 PMCID: PMC11534328 DOI: 10.7554/elife.97883] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
The neural mechanisms that willfully direct attention to specific locations in space are closely related to those for generating targeting eye movements (saccades). However, the degree to which the voluntary deployment of attention to a location necessarily activates a corresponding saccade plan remains unclear. One problem is that attention and saccades are both automatically driven by salient sensory events; another is that the underlying processes unfold within tens of milliseconds only. Here, we use an urgent task design to resolve the evolution of a visuomotor choice on a moment-by-moment basis while independently controlling the endogenous (goal-driven) and exogenous (salience-driven) contributions to performance. Human participants saw a peripheral cue and, depending on its color, either looked at it (prosaccade) or looked at a diametrically opposite, uninformative non-cue (antisaccade). By varying the luminance of the stimuli, the exogenous contributions could be cleanly dissociated from the endogenous process guiding the choice over time. According to the measured time courses, generating a correct antisaccade requires about 30 ms more processing time than generating a correct prosaccade based on the same perceptual signal. The results indicate that saccade plans elaborated during fixation are biased toward the location where attention is endogenously deployed, but the coupling is weak and can be willfully overridden very rapidly.
Collapse
Affiliation(s)
- Allison T Goldstein
- Department of Neurobiology and Anatomy, Wake Forest School of MedicineWinston-SalemUnited States
| | - Terrence R Stanford
- Department of Neurobiology and Anatomy, Wake Forest School of MedicineWinston-SalemUnited States
| | - Emilio Salinas
- Department of Neurobiology and Anatomy, Wake Forest School of MedicineWinston-SalemUnited States
| |
Collapse
|
5
|
Hallenbeck GE, Tardiff N, Sprague TC, Curtis CE. Prioritizing working memory resources depends on prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.593696. [PMID: 39484604 PMCID: PMC11526854 DOI: 10.1101/2024.05.11.593696] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
How the prefrontal cortex contributes to working memory remains controversial, as theories differ in their emphasis on its role in storing memories versus controlling their content. To adjudicate between these competing ideas, we tested how perturbations to the human (both sexes) lateral prefrontal cortex impact the storage and control aspects of working memory during a task that requires human subjects to allocate resources to memory items based on their behavioral priority. Our computational model made a strong prediction that disruption of this control process would counterintuitively improve memory for low-priority items. Remarkably, transcranial magnetic stimulation of retinotopically-defined superior precentral sulcus, but not intraparietal sulcus, unbalanced the prioritization of resources, improving memory for low-priority items as predicted by the model. Therefore, these results provide direct causal support for models in which the prefrontal cortex controls the allocation of resources that support working memory, rather than simply storing the features of memoranda.
Collapse
Affiliation(s)
| | | | - Thomas C. Sprague
- Department of Psychology, New York University
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, 93106
| | - Clayton E. Curtis
- Department of Psychology, New York University
- Center for Neural Science, New York University 6 Washington Place, New York, NY 10003, USA
| |
Collapse
|
6
|
Yokoyama O, Nishimura Y. Preselection of potential target spaces based on partial information by the supplementary eye field. Commun Biol 2024; 7:1215. [PMID: 39367079 PMCID: PMC11452695 DOI: 10.1038/s42003-024-06878-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 09/10/2024] [Indexed: 10/06/2024] Open
Abstract
Before selecting a saccadic target, we often acquire partial information about the location of the forthcoming target and preselect a region of visual space even before the target becomes visible. To determine whether the supplementary eye field (SEF) represents information signifying the potential target space, we examined neuronal activity in the SEF of monkeys performing a behavioral task designed to isolate the process of visuospatial preselection under uncertainty from the process of selecting a specified location. Our data showed that the activity of SEF neurons represented information about the potential target space instructed by symbolic cues. Increased activity of visuospatially selective SEF neurons encoded the potential target space, which could be a mechanism facilitating subsequent selection of an appropriate target. Furthermore, electrical stimulation of the SEF during the preselection period disrupted subsequent target selection. These results demonstrate that the SEF contributes to the preselection of potential target spaces based on partial information.
Collapse
Affiliation(s)
- Osamu Yokoyama
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Japan.
| | - Yukio Nishimura
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Japan
| |
Collapse
|
7
|
Goldstein AT, Stanford TR, Salinas E. Coupling of saccade plans to endogenous attention during urgent choices. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.583058. [PMID: 38496491 PMCID: PMC10942325 DOI: 10.1101/2024.03.01.583058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The neural mechanisms that willfully direct attention to specific locations in space are closely related to those for generating targeting eye movements (saccades). However, the degree to which the voluntary deployment of attention to a location necessarily activates a corresponding saccade plan remains unclear. One problem is that attention and saccades are both automatically driven by salient sensory events; another is that the underlying processes unfold within tens of milliseconds only. Here, we use an urgent task design to resolve the evolution of a visuomotor choice on a moment-by-moment basis while independently controlling the endogenous (goal-driven) and exogenous (salience-driven) contributions to performance. Human participants saw a peripheral cue and, depending on its color, either looked at it (prosaccade) or looked at a diametrically opposite, uninformative non-cue (antisaccade). By varying the luminance of the stimuli, the exogenous contributions could be cleanly dissociated from the endogenous process guiding the choice over time. According to the measured timecourses, generating a correct antisaccade requires about 30 ms more processing time than generating a correct prosaccade based on the same perceptual signal. The results indicate that saccade plans elaborated during fixation are biased toward the location where attention is endogenously deployed, but the coupling is weak and can be willfully overridden very rapidly.
Collapse
Affiliation(s)
- Allison T Goldstein
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157-1010, USA
| | - Terrence R Stanford
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157-1010, USA
| | - Emilio Salinas
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157-1010, USA
| |
Collapse
|
8
|
Olenick CE, Jordan H, Fallah M. Identifying a distractor produces object-based inhibition in an allocentric reference frame for saccade planning. Sci Rep 2024; 14:17534. [PMID: 39080430 PMCID: PMC11289134 DOI: 10.1038/s41598-024-68734-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
We investigated whether distractor inhibition occurs relative to the target or fixation in a perceptual decision-making task using a purely saccadic response. Previous research has shown that during the process of discriminating a target from distractor, saccades made to a target deviate towards the distractor. Once discriminated, the distractor is inhibited, and trajectories deviate away from the distractor. Saccade deviation magnitudes provide a sensitive measure of target-distractor competition dependent on the distance between them. While saccades are planned in an egocentric reference frame (locations represented relative to fixation), object-based inhibition has been shown to occur in an allocentric reference frame (objects represented relative to each other independent of fixation). By varying the egocentric and allocentric distances of the target and distractor, we found that only egocentric distances contributed to saccade trajectories shifts towards the distractor during active decision-making. When the perceptual decision-making process was complete, and the distractor was inhibited, both ego- and allocentric distances independently contributed to saccade trajectory shifts away from the distractor. This is consistent with independent spatial and object-based inhibitory mechanisms. Therefore, we suggest that distractor inhibition is maintained in cortical visual areas with allocentric maps which then feeds into oculomotor areas for saccade planning.
Collapse
Affiliation(s)
- Coleman E Olenick
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, ON, N1G 2W1, Canada.
- Canadian Action and Perception Network, Toronto, Canada.
| | - Heather Jordan
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Mazyar Fallah
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, ON, N1G 2W1, Canada
- Canadian Action and Perception Network, Toronto, Canada
| |
Collapse
|
9
|
Ueno T, Kumano H, Uka T. Attention facilitates initiation of perceptual decision making: a combined psychophysical and electroencephalography study. Exp Brain Res 2024; 242:1721-1730. [PMID: 38816552 PMCID: PMC11208218 DOI: 10.1007/s00221-024-06862-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
Humans can selectively process information and make decisions by directing their attention to desired locations in their daily lives. Numerous studies have shown that attention increases the rate of correct responses and shortens reaction time, and it has been hypothesized that this phenomenon is caused by an increase in sensitivity of the sensory signals to which attention is directed. The present study employed psychophysical methods and electroencephalography (EEG) to test the hypothesis that attention accelerates the onset of information accumulation. Participants were asked to discriminate the motion direction of one of two random dot kinematograms presented on the left and right sides of the visual field, one of which was cued by an arrow in 80% of the trials. The drift-diffusion model was applied to the percentage of correct responses and reaction times in the attended and unattended fields of view. Attention primarily increased sensory sensitivity and shortened the time unrelated to decision making. Next, we measured centroparietal positivity (CPP), an EEG measure associated with decision making, and found that CPP latency was shorter in attended trials than in unattended trials. These results suggest that attention not only increases sensory sensitivity but also accelerates the initiation of decision making.
Collapse
Affiliation(s)
- Tomohiro Ueno
- Department of Integrative Physiology, Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo-Shi, Yamanashi, Japan
| | - Hironori Kumano
- Department of Integrative Physiology, Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo-Shi, Yamanashi, Japan
| | - Takanori Uka
- Department of Integrative Physiology, Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo-Shi, Yamanashi, Japan.
| |
Collapse
|
10
|
Chang YT, Finkel EA, Xu D, O'Connor DH. Rule-based modulation of a sensorimotor transformation across cortical areas. eLife 2024; 12:RP92620. [PMID: 38842277 PMCID: PMC11156468 DOI: 10.7554/elife.92620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024] Open
Abstract
Flexible responses to sensory stimuli based on changing rules are critical for adapting to a dynamic environment. However, it remains unclear how the brain encodes and uses rule information to guide behavior. Here, we made single-unit recordings while head-fixed mice performed a cross-modal sensory selection task where they switched between two rules: licking in response to tactile stimuli while rejecting visual stimuli, or vice versa. Along a cortical sensorimotor processing stream including the primary (S1) and secondary (S2) somatosensory areas, and the medial (MM) and anterolateral (ALM) motor areas, single-neuron activity distinguished between the two rules both prior to and in response to the tactile stimulus. We hypothesized that neural populations in these areas would show rule-dependent preparatory states, which would shape the subsequent sensory processing and behavior. This hypothesis was supported for the motor cortical areas (MM and ALM) by findings that (1) the current task rule could be decoded from pre-stimulus population activity; (2) neural subspaces containing the population activity differed between the two rules; and (3) optogenetic disruption of pre-stimulus states impaired task performance. Our findings indicate that flexible action selection in response to sensory input can occur via configuration of preparatory states in the motor cortex.
Collapse
Affiliation(s)
- Yi-Ting Chang
- Solomon H. Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Brain Science Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Eric A Finkel
- Solomon H. Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Brain Science Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Duo Xu
- Solomon H. Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Brain Science Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Daniel H O'Connor
- Solomon H. Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Brain Science Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
11
|
Xia R, Chen X, Engel TA, Moore T. Common and distinct neural mechanisms of attention. Trends Cogn Sci 2024; 28:554-567. [PMID: 38388258 PMCID: PMC11153008 DOI: 10.1016/j.tics.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024]
Abstract
Despite a constant deluge of sensory stimulation, only a fraction of it is used to guide behavior. This selective processing is generally referred to as attention, and much research has focused on the neural mechanisms controlling it. Recently, research has broadened to include more ways by which different species selectively process sensory information, whether due to the sensory input itself or to different behavioral and brain states. This work has produced a complex and disjointed body of evidence across different species and forms of attention. However, it has also provided opportunities to better understand the breadth of attentional mechanisms. Here, we summarize the evidence that suggests that different forms of selective processing are supported by mechanisms both common and distinct.
Collapse
Affiliation(s)
- Ruobing Xia
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Xiaomo Chen
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA, USA
| | - Tatiana A Engel
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Tirin Moore
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
12
|
Fallah M, Haam J, Ledonne A. Editorial: Rising stars in systems neuroscience: 2022. Front Syst Neurosci 2024; 18:1414351. [PMID: 38808259 PMCID: PMC11131370 DOI: 10.3389/fnsys.2024.1414351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 05/30/2024] Open
Affiliation(s)
- Mazyar Fallah
- Visual Perception and Attention Lab, College of Biological Science, University of Guelph, Guelph, ON, Canada
| | - Juhee Haam
- Department of Biological Sciences, College of Science, Louisiana State University, Baton Rouge, LA, United States
| | - Ada Ledonne
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Department of Experimental Neuroscience, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
13
|
Finkel EA, Chang YT, Dasgupta R, Lubin EE, Xu D, Minamisawa G, Chang AJ, Cohen JY, O'Connor DH. Tactile processing in mouse cortex depends on action context. Cell Rep 2024; 43:113991. [PMID: 38573855 PMCID: PMC11097894 DOI: 10.1016/j.celrep.2024.113991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 12/08/2023] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
The brain receives constant tactile input, but only a subset guides ongoing behavior. Actions associated with tactile stimuli thus endow them with behavioral relevance. It remains unclear how the relevance of tactile stimuli affects processing in the somatosensory (S1) cortex. We developed a cross-modal selection task in which head-fixed mice switched between responding to tactile stimuli in the presence of visual distractors or to visual stimuli in the presence of tactile distractors using licking movements to the left or right side in different blocks of trials. S1 spiking encoded tactile stimuli, licking actions, and direction of licking in response to tactile but not visual stimuli. Bidirectional optogenetic manipulations showed that sensory-motor activity in S1 guided behavior when touch but not vision was relevant. Our results show that S1 activity and its impact on behavior depend on the actions associated with a tactile stimulus.
Collapse
Affiliation(s)
- Eric A Finkel
- Solomon H. Snyder Department of Neuroscience, Krieger Mind/Brain Institute, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yi-Ting Chang
- Solomon H. Snyder Department of Neuroscience, Krieger Mind/Brain Institute, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rajan Dasgupta
- Solomon H. Snyder Department of Neuroscience, Krieger Mind/Brain Institute, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Emily E Lubin
- Solomon H. Snyder Department of Neuroscience, Krieger Mind/Brain Institute, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Duo Xu
- Solomon H. Snyder Department of Neuroscience, Krieger Mind/Brain Institute, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Genki Minamisawa
- Solomon H. Snyder Department of Neuroscience, Krieger Mind/Brain Institute, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Anna J Chang
- Solomon H. Snyder Department of Neuroscience, Krieger Mind/Brain Institute, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jeremiah Y Cohen
- Solomon H. Snyder Department of Neuroscience, Krieger Mind/Brain Institute, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Daniel H O'Connor
- Solomon H. Snyder Department of Neuroscience, Krieger Mind/Brain Institute, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
14
|
Chang YT, Finkel EA, Xu D, O'Connor DH. Rule-based modulation of a sensorimotor transformation across cortical areas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.21.554194. [PMID: 37662301 PMCID: PMC10473613 DOI: 10.1101/2023.08.21.554194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Flexible responses to sensory stimuli based on changing rules are critical for adapting to a dynamic environment. However, it remains unclear how the brain encodes rule information and uses this information to guide behavioral responses to sensory stimuli. Here, we made single-unit recordings while head-fixed mice performed a cross-modal sensory selection task in which they switched between two rules in different blocks of trials: licking in response to tactile stimuli applied to a whisker while rejecting visual stimuli, or licking to visual stimuli while rejecting the tactile stimuli. Along a cortical sensorimotor processing stream including the primary (S1) and secondary (S2) somatosensory areas, and the medial (MM) and anterolateral (ALM) motor areas, the single-trial activity of individual neurons distinguished between the two rules both prior to and in response to the tactile stimulus. Variable rule-dependent responses to identical stimuli could in principle occur via appropriate configuration of pre-stimulus preparatory states of a neural population, which would shape the subsequent response. We hypothesized that neural populations in S1, S2, MM and ALM would show preparatory activity states that were set in a rule-dependent manner to cause processing of sensory information according to the current rule. This hypothesis was supported for the motor cortical areas by findings that (1) the current task rule could be decoded from pre-stimulus population activity in ALM and MM; (2) neural subspaces containing the population activity differed between the two rules; and (3) optogenetic disruption of pre-stimulus states within ALM and MM impaired task performance. Our findings indicate that flexible selection of an appropriate action in response to a sensory input can occur via configuration of preparatory states in the motor cortex.
Collapse
|
15
|
Monaco S, Menghi N, Crawford JD. Action-specific feature processing in the human cortex: An fMRI study. Neuropsychologia 2024; 194:108773. [PMID: 38142960 DOI: 10.1016/j.neuropsychologia.2023.108773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Sensorimotor integration involves feedforward and reentrant processing of sensory input. Grasp-related motor activity precedes and is thought to influence visual object processing. Yet, while the importance of reentrant feedback is well established in perception, the top-down modulations for action and the neural circuits involved in this process have received less attention. Do action-specific intentions influence the processing of visual information in the human cortex? Using a cue-separation fMRI paradigm, we found that action-specific instruction processing (manual alignment vs. grasp) became apparent only after the visual presentation of oriented stimuli, and occurred as early as in the primary visual cortex and extended to the dorsal visual stream, motor and premotor areas. Further, dorsal stream area aIPS, known to be involved in object manipulation, and the primary visual cortex showed task-related functional connectivity with frontal, parietal and temporal areas, consistent with the idea that reentrant feedback from dorsal and ventral visual stream areas modifies visual inputs to prepare for action. Importantly, both the task-dependent modulations and connections were linked specifically to the object presentation phase of the task, suggesting a role in processing the action goal. Our results show that intended manual actions have an early, pervasive, and differential influence on the cortical processing of vision.
Collapse
Affiliation(s)
- Simona Monaco
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Rovereto (TN), Italy.
| | - Nicholas Menghi
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - J Douglas Crawford
- Center for Vision Research, York University, Toronto, Ontario M3J 1P3, Canada; Vision: Science to Applications (VISTA) Program, Neuroscience Graduate Diploma Program and Departments of Psychology, Biology, and Kinesiology and Health Science, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
16
|
Yoo JH, Kang C, Lim JS, Wang B, Choi CH, Hwang H, Han DH, Kim H, Cheon H, Kim JW. Development of an innovative approach using portable eye tracking to assist ADHD screening: a machine learning study. Front Psychiatry 2024; 15:1337595. [PMID: 38426003 PMCID: PMC10902460 DOI: 10.3389/fpsyt.2024.1337595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction Attention-deficit/hyperactivity disorder (ADHD) affects a significant proportion of the pediatric population, making early detection crucial for effective intervention. Eye movements are controlled by brain regions associated with neuropsychological functions, such as selective attention, response inhibition, and working memory, and their deficits are related to the core characteristics of ADHD. Herein, we aimed to develop a screening model for ADHD using machine learning (ML) and eye-tracking features from tasks that reflect neuropsychological deficits in ADHD. Methods Fifty-six children (mean age 8.38 ± 1.58, 45 males) diagnosed with ADHD based on the Diagnostic and Statistical Manual of Mental Disorders, fifth edition were recruited along with seventy-nine typically developing children (TDC) (mean age 8.80 ± 1.82, 33 males). Eye-tracking data were collected using a digital device during the performance of five behavioral tasks measuring selective attention, working memory, and response inhibition (pro-saccade task, anti-saccade task, memory-guided saccade task, change detection task, and Stroop task). ML was employed to select relevant eye-tracking features for ADHD, and to subsequently construct an optimal model classifying ADHD from TDC. Results We identified 33 eye-tracking features in the five tasks with the potential to distinguish children with ADHD from TDC. Participants with ADHD showed increased saccade latency and degree, and shorter fixation time in eye-tracking tasks. A soft voting model integrating extra tree and random forest classifiers demonstrated high accuracy (76.3%) at identifying ADHD using eye-tracking features alone. A comparison of the model using only eye-tracking features with models using the Advanced Test of Attention or Stroop test showed no significant difference in the area under the curve (AUC) (p = 0.419 and p=0.235, respectively). Combining demographic, behavioral, and clinical data with eye-tracking features improved accuracy, but did not significantly alter the AUC (p=0.208). Discussion Our study suggests that eye-tracking features hold promise as ADHD screening tools, even when obtained using a simple digital device. The current findings emphasize that eye-tracking features could be reliable indicators of impaired neurobiological functioning in individuals with ADHD. To enhance utility as a screening tool, future research should be conducted with a larger sample of participants with a more balanced gender ratio.
Collapse
Affiliation(s)
- Jae Hyun Yoo
- Department of Psychiatry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - ChangSu Kang
- Department of Computer Science, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Joon Shik Lim
- Department of Computer Science, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Bohyun Wang
- Department of Computer Science, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Chi-Hyun Choi
- Department of Psychiatry, Seoul Metropolitan Government - Seoul National University (SMG-SNU) Boramae Medical Center, Seoul, Republic of Korea
| | - Hyunchan Hwang
- Department of Psychiatry, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Doug Hyun Han
- Department of Psychiatry, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | | | | | - Jae-Won Kim
- Division of Child and Adolescent Psychiatry, Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
17
|
Chandrasekaran AN, Vermani A, Gupta P, Steinmetz N, Moore T, Sridharan D. Dissociable components of attention exhibit distinct neuronal signatures in primate visual cortex. SCIENCE ADVANCES 2024; 10:eadi0645. [PMID: 38306428 PMCID: PMC10836731 DOI: 10.1126/sciadv.adi0645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 01/04/2024] [Indexed: 02/04/2024]
Abstract
Attention can be deployed in multiple forms and facilitates behavior by influencing perceptual sensitivity and choice bias. Attention is also associated with a myriad of changes in sensory neural activity. Yet, the relationship between the behavioral components of attention and the accompanying changes in neural activity remains largely unresolved. We examined this relationship by quantifying sensitivity and bias in monkeys performing a task that dissociated eye movement responses from the focus of covert attention. Unexpectedly, bias, not sensitivity, increased at the focus of covert attention, whereas sensitivity increased at the location of planned eye movements. Furthermore, neuronal activity within visual area V4 varied robustly with bias, but not sensitivity, at the focus of covert attention. In contrast, correlated variability between neuronal pairs was lowest at the location of planned eye movements, and varied with sensitivity, but not bias. Thus, dissociable behavioral components of attention exhibit distinct neuronal signatures within the visual cortex.
Collapse
Affiliation(s)
| | - Ayesha Vermani
- Centre for Neuroscience, Indian Institute of Science, Bangalore, KA, India
| | - Priyanka Gupta
- Centre for Neuroscience, Indian Institute of Science, Bangalore, KA, India
| | - Nicholas Steinmetz
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Tirin Moore
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Devarajan Sridharan
- Centre for Neuroscience, Indian Institute of Science, Bangalore, KA, India
- Computer Science and Automation, Indian Institute of Science, Bangalore, KA, India
| |
Collapse
|
18
|
Hüer J, Saxena P, Treue S. Pathway-selective optogenetics reveals the functional anatomy of top-down attentional modulation in the macaque visual cortex. Proc Natl Acad Sci U S A 2024; 121:e2304511121. [PMID: 38194453 PMCID: PMC10801865 DOI: 10.1073/pnas.2304511121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 10/07/2023] [Indexed: 01/11/2024] Open
Abstract
Spatial attention represents a powerful top-down influence on sensory responses in primate visual cortical areas. The frontal eye field (FEF) has emerged as a key candidate area for the source of this modulation. However, it is unclear whether the FEF exerts its effects via its direct axonal projections to visual areas or indirectly through other brain areas and whether the FEF affects both the enhancement of attended and the suppression of unattended sensory responses. We used pathway-selective optogenetics in rhesus macaques performing a spatial attention task to inhibit the direct input from the FEF to area MT, an area along the dorsal visual pathway specialized for the processing of visual motion information. Our results show that the optogenetic inhibition of the FEF input specifically reduces attentional modulation in MT by about a third without affecting the neurons' sensory response component. We find that the direct FEF-to-MT pathway contributes to both the enhanced processing of target stimuli and the suppression of distractors. The FEF, thus, selectively modulates firing rates in visual area MT, and it does so via its direct axonal projections.
Collapse
Affiliation(s)
- Janina Hüer
- Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen37077, Germany
- Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt60528, Germany
| | - Pankhuri Saxena
- Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen37077, Germany
| | - Stefan Treue
- Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen37077, Germany
- Faculty of Biology and Psychology, University of Göttingen, Göttingen37073, Germany
- Leibniz-ScienceCampus Primate Cognition, Göttingen37077, Germany
- Bernstein Center for Computational Neuroscience, Göttingen37073, Germany
| |
Collapse
|
19
|
Fan Y, Doi T, Gold JI, Ding L. Neural Representations of Post-Decision Accuracy and Reward Expectation in the Caudate Nucleus and Frontal Eye Field. J Neurosci 2024; 44:e0902232023. [PMID: 37963761 PMCID: PMC10860634 DOI: 10.1523/jneurosci.0902-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 11/16/2023] Open
Abstract
Performance monitoring that supports ongoing behavioral adjustments is often examined in the context of either choice confidence for perceptual decisions (i.e., "did I get it right?") or reward expectation for reward-based decisions (i.e., "what reward will I receive?"). However, our understanding of how the brain encodes these distinct evaluative signals remains limited because they are easily conflated, particularly in commonly used two-alternative tasks with symmetric rewards for correct choices. Previously we used a motion-discrimination task with asymmetric rewards to identify neural substrates of forming reward-biased perceptual decisions in the caudate nucleus (part of the striatum in the basal ganglia) and the frontal eye field (FEF, in prefrontal cortex). Here we leveraged this task design to partially decouple estimates of accuracy and reward expectation and examine their impacts on subsequent decisions and their representations in those two brain areas. We identified distinguishable representations of these two evaluative signals in individual caudate and FEF neurons, with regional differences in their distribution patterns and time courses. We observed that well-trained monkeys (both sexes) used both evaluative signals, infrequently but consistently, to adjust their subsequent decisions. We found further that these behavioral adjustments had reliable relationships with the neural representations of both evaluative signals in caudate, but not FEF. These results suggest that the cortico-striatal decision network may use diverse evaluative signals to monitor and adjust decision-making behaviors, adding to our understanding of the different roles that the FEF and caudate nucleus play in a diversity of decision-related computations.
Collapse
Affiliation(s)
- Yunshu Fan
- Neuroscience Graduate Group, Departments of Neuroscience
| | - Takahiro Doi
- Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Joshua I Gold
- Neuroscience Graduate Group, Departments of Neuroscience
| | - Long Ding
- Neuroscience Graduate Group, Departments of Neuroscience
| |
Collapse
|
20
|
Prahalad KS, Coates DR. Alterations to foveal crowding with microsaccade preparation. Vision Res 2024; 214:108338. [PMID: 37988923 DOI: 10.1016/j.visres.2023.108338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023]
Abstract
Visual stimuli presented around the time of a saccade have been shown to be perceived differently by the visual system, including a reduction in the harmful impact of flankers (crowding). However, whether the effects observed are due strictly to crowding remains controversial, and the effects have only been measured with large saccades in peripheral vision. Here we investigate how crowded stimuli placed 20 arc minutes from the center of gaze are affected by an upcoming microsaccade. The stimulus consisted of a rotated T of size 6.25 arcminutes that was either unflanked, surrounded by four flankers (Experiment 1), or surrounded by two flankers that were positioned either radially or tangentially (Experiments 2 and 3). In 80 % of trials, subjects made voluntary microsaccades to the target when cued, and in the remaining 20 % of the trials subjects continued to maintain fixation. In Experiments 1 and 2, subjects were required to saccade to the same location as the target, while in Experiment 3 subjects saccaded to a different location ∼ 20 arc min to the upper left of the target. Thus, we provide evidence for two separable pre-saccadic benefits for crowded parafoveal targets: one isotropizes the crowding zone for stimuli presented 200 to 125 ms before microsaccadic onset, and another provides a benefit exclusively for microsaccade targets surrounded by tangential flankers in the presence of imminent microsaccades. Two possible mechanisms are attentional enhancement and predictive remapping of receptive fields, respectively.
Collapse
Affiliation(s)
- Krishnamachari S Prahalad
- College of Optometry, University of Houston, USA; Brain and Cognitive Sciences, University of Rochester, USA.
| | | |
Collapse
|
21
|
Fei N, Wang Y, Yang B, Zhang C, Chang D, Liu Z, Cheng L, Fu T, Xian J. Structural and spontaneous functional brain changes in visual and oculomotor areas identified by functional localization task in intermittent exotropia children. Brain Res 2023; 1819:148543. [PMID: 37611887 DOI: 10.1016/j.brainres.2023.148543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
Intermittent exotropia (IXT) is characterizedby an intermittent outward deviation of the eyes. Yet, the neural substrates associated with IXT are not fully understood. This study investigated brain structure and spontaneous functional activity changes in children with IXT. All participants underwent detailed ophthalmological examinations and multimodal magnetic resonance imaging (MRI) scanning. During functional scanning, binocular visual stimuli were presented to subjects to determine brain areas involved in visual and oculomotor processing. Regions of interest(ROI) were subsequently selected based on functional activation to investigate brain structural and spontaneous functional differences between IXT children and healthy controls (HCs) using small volume correction (SVC). Reduced gray matter density (GMD) was found in the right frontal eye field (FEF) and bilateral inferior parietal lobe (IPL) in IXT children compared with HCs. Besides, reduced fractional amplitude of low-frequency fluctuations (fALFF) values were observed in the left lingual gyrus, right inferior occipital gyrus (IOG), bilateral IPL, and bilateral cerebellum in the IXT children compared to the HCs. IXT children with worse eye position control ability exhibited lower GMD and fALFF values in these areas. Finally, resting state functional connectivity (RSFC) was reduced in frontoparietal oculomotor processing areas in IXT children compared to HCs. In addition, increased cortical thickness was found in the right visual areas and bilateral IPL. These results showed that IXT-related structural and functional brain abnormalities occurred in childhood and may be related to underlying neuropathological mechanisms.
Collapse
Affiliation(s)
- Nanxi Fei
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, 100730 Beijing, China
| | - Yachen Wang
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, 100730 Beijing, China; Beijing Ophthalmology & Visual Sciences Key Laboratory, 100730 Beijing, China
| | - Bingbing Yang
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, 100730 Beijing, China
| | - Chen Zhang
- MR Scientific Marketing, Siemens Healthineers Ltd, 7, Wangjing Zhonghuan South Road, Chaoyang District, 100102 Beijing, China
| | - Di Chang
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, 100730 Beijing, China; Beijing Ophthalmology & Visual Sciences Key Laboratory, 100730 Beijing, China
| | - Zhihan Liu
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, 100730 Beijing, China; Beijing Ophthalmology & Visual Sciences Key Laboratory, 100730 Beijing, China
| | - Luyao Cheng
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, 100730 Beijing, China; Beijing Ophthalmology & Visual Sciences Key Laboratory, 100730 Beijing, China
| | - Tao Fu
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, 100730 Beijing, China; Beijing Ophthalmology & Visual Sciences Key Laboratory, 100730 Beijing, China.
| | - Junfang Xian
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, 100730 Beijing, China.
| |
Collapse
|
22
|
Uejima T, Mancinelli E, Niebur E, Etienne-Cummings R. The influence of stereopsis on visual saliency in a proto-object based model of selective attention. Vision Res 2023; 212:108304. [PMID: 37542763 PMCID: PMC10592191 DOI: 10.1016/j.visres.2023.108304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 08/07/2023]
Abstract
Some animals including humans use stereoscopic vision which reconstructs spatial information about the environment from the disparity between images captured by eyes in two separate adjacent locations. Like other sensory information, such stereoscopic information is expected to influence attentional selection. We develop a biologically plausible model of binocular vision to study its effect on bottom-up visual attention, i.e., visual saliency. In our model, the scene is organized in terms of proto-objects on which attention acts, rather than on unbound sets of elementary features. We show that taking into account the stereoscopic information improves the performance of the model in the prediction of human eye movements with statistically significant differences.
Collapse
Affiliation(s)
- Takeshi Uejima
- The Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, USA.
| | - Elena Mancinelli
- The Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Ernst Niebur
- The Solomon Snyder Department of Neuroscience and the Zanvyl Krieger Mind/Brain Institute, The Johns Hopkins University, Baltimore, MD, USA
| | - Ralph Etienne-Cummings
- The Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
23
|
Isabel Vanegas M, Akbarian A, Clark KL, Nesse WH, Noudoost B. Prefrontal activity sharpens spatial sensitivity of extrastriate neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.25.564095. [PMID: 37961256 PMCID: PMC10634826 DOI: 10.1101/2023.10.25.564095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Prefrontal cortex is known to exert its control over representation of visual signals in extrastriate areas such as V4. Frontal Eye Field (FEF) is suggested to be the proxy for the prefrontal control of visual signals. However, it is not known which aspects of sensory representation within extrastriate areas are under the influence of FEF activity. We employed a causal manipulation to examine how FEF activity contributes to spatial sensitivity of extrastriate neurons. Finding FEF and V4 areas with overlapping response field (RF) in two macaque monkeys, we recorded V4 responses before and after inactivation of the overlapping FEF. We assessed spatial sensitivity of V4 neurons in terms of their response gain, RF spread, coding capacity, and spatial discriminability. Unexpectedly, we found that in the absence of FEF activity, spontaneous and visually-evoked activity of V4 neurons both increase and their RFs enlarge. However, assessing the spatial sensitivity within V4, we found that these changes were associated with a reduction in the ability of V4 neurons to represent spatial information: After FEF inactivation, V4 neurons showed a reduced response gain and a decrease in their spatial discriminability and coding capacity. These results show the necessity of FEF activity for shaping spatial responses of extrastriate neurons and indicates the importance of FEF inputs in sharpening the sensitivity of V4 responses.
Collapse
Affiliation(s)
- M. Isabel Vanegas
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - Amir Akbarian
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - Kelsey L. Clark
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - William H. Nesse
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
- Department of Mathematics, University of Utah, Salt Lake City, UT 84132, USA
| | - Behrad Noudoost
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
| |
Collapse
|
24
|
Kehoe DH, Fallah M. Oculomotor feature discrimination is cortically mediated. Front Syst Neurosci 2023; 17:1251933. [PMID: 37899790 PMCID: PMC10600481 DOI: 10.3389/fnsys.2023.1251933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Eye movements are often directed toward stimuli with specific features. Decades of neurophysiological research has determined that this behavior is subserved by a feature-reweighting of the neural activation encoding potential eye movements. Despite the considerable body of research examining feature-based target selection, no comprehensive theoretical account of the feature-reweighting mechanism has yet been proposed. Given that such a theory is fundamental to our understanding of the nature of oculomotor processing, we propose an oculomotor feature-reweighting mechanism here. We first summarize the considerable anatomical and functional evidence suggesting that oculomotor substrates that encode potential eye movements rely on the visual cortices for feature information. Next, we highlight the results from our recent behavioral experiments demonstrating that feature information manifests in the oculomotor system in order of featural complexity, regardless of whether the feature information is task-relevant. Based on the available evidence, we propose an oculomotor feature-reweighting mechanism whereby (1) visual information is projected into the oculomotor system only after a visual representation manifests in the highest stage of the cortical visual processing hierarchy necessary to represent the relevant features and (2) these dynamically recruited cortical module(s) then perform feature discrimination via shifting neural feature representations, while also maintaining parity between the feature representations in cortical and oculomotor substrates by dynamically reweighting oculomotor vectors. Finally, we discuss how our behavioral experiments may extend to other areas in vision science and its possible clinical applications.
Collapse
Affiliation(s)
- Devin H. Kehoe
- Department of Psychology, York University, Toronto, ON, Canada
- Centre for Vision Research, York University, Toronto, ON, Canada
- VISTA: Vision Science to Applications, York University, Toronto, ON, Canada
- Canadian Action and Perception Network, Canada
- Département de Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Mazyar Fallah
- Department of Psychology, York University, Toronto, ON, Canada
- Centre for Vision Research, York University, Toronto, ON, Canada
- Canadian Action and Perception Network, Canada
- College of Biological Science, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
25
|
Tosoni A, Capotosto P, Baldassarre A, Spadone S, Sestieri C. Neuroimaging evidence supporting a dual-network architecture for the control of visuospatial attention in the human brain: a mini review. Front Hum Neurosci 2023; 17:1250096. [PMID: 37841074 PMCID: PMC10571720 DOI: 10.3389/fnhum.2023.1250096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
Neuroimaging studies conducted in the last three decades have distinguished two frontoparietal networks responsible for the control of visuospatial attention. The present review summarizes recent findings on the neurophysiological mechanisms implemented in both networks and describes the evolution from a model centered on the distinction between top-down and bottom-up attention to a model that emphasizes the dynamic interplay between the two networks based on attentional demands. The role of the dorsal attention network (DAN) in attentional orienting, by boosting behavioral performance, has been investigated with multiple experimental approaches. This research effort allowed us to trace a distinction between DAN regions involved in shifting vs. maintenance of attention, gather evidence for the modulatory influence exerted by the DAN over sensory cortices, and identify the electrophysiological correlates of the orienting function. Simultaneously, other studies have contributed to reframing our understanding of the functions of the ventral attention network (VAN) and its relevance for behavior. The VAN is not simply involved in bottom-up attentional capture but interacts with the DAN during reorienting to behaviorally relevant targets, exhibiting a general resetting function. Further studies have confirmed the selective rightward asymmetry of the VAN, proposed a functional dissociation along the anteroposterior axis, and suggested hypotheses about its emergence during the evolution of the primate brain. Finally, novel models of network interactions explain the expression of complex attentional functions and the emergence and restorations of symptoms characterizing unilateral spatial neglect. These latter studies emphasize the importance of considering patterns of network interactions for understanding the consequences of brain lesions.
Collapse
Affiliation(s)
- Annalisa Tosoni
- Department of Neuroscience, Imaging and Clinical Sciences (DNISC) and ITAB, Institute for Advanced Biomedical Technologies, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | | | | | | | | |
Collapse
|
26
|
Krause A, Poth CH. Maintaining eye fixation relieves pressure of cognitive action control. iScience 2023; 26:107520. [PMID: 37636052 PMCID: PMC10457444 DOI: 10.1016/j.isci.2023.107520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/23/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Cognitive control enables humans to behave guided by their current goals and intentions. Cognitive control in one task generally suffers when humans try to engage in another task on top. However, we discovered an additional task that supports conflict resolution. In two experiments, participants performed a spatial cognitive control task. For different blocks of trials, they either received no instruction regarding eye movements or were asked to maintain the eyes fixated on a stimulus. The additional eye fixation task did not reduce task performance, but selectively ameliorated the adverse effects of cognitive conflicts on reaction times (Experiment 1). Likewise, in urgent situations, the additional task reduced performance impairments due to stimulus-driven processing overpowering cognitive control (Experiment 2). These findings suggest that maintaining eye fixation locks attentional resources that would otherwise induce spatial cognitive conflicts. This reveals an attentional disinhibition that boosts goal-directed action by relieving pressure from cognitive control.
Collapse
Affiliation(s)
- Anika Krause
- Biopsychology and Cognitive Neuroscience, Department of Psychology, Bielefeld University, 33615 Bielefeld, Germany
- Neuro-Cognitive Psychology, Department of Psychology, Bielefeld University, 33615 Bielefeld, Germany
- Center for Cognitive Interaction Technology (CITEC), Bielefeld University, 33615 Bielefeld, Germany
| | - Christian H. Poth
- Neuro-Cognitive Psychology, Department of Psychology, Bielefeld University, 33615 Bielefeld, Germany
- Center for Cognitive Interaction Technology (CITEC), Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
27
|
Hanning NM, Fernández A, Carrasco M. Dissociable roles of human frontal eye fields and early visual cortex in presaccadic attention. Nat Commun 2023; 14:5381. [PMID: 37666805 PMCID: PMC10477327 DOI: 10.1038/s41467-023-40678-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/03/2023] [Indexed: 09/06/2023] Open
Abstract
Shortly before saccadic eye movements, visual sensitivity at the saccade target is enhanced, at the expense of sensitivity elsewhere. Some behavioral and neural correlates of this presaccadic shift of attention resemble those of covert attention, deployed during fixation. Microstimulation in non-human primates has shown that presaccadic attention modulates perception via feedback from oculomotor to visual areas. This mechanism also seems plausible in humans, as both oculomotor and visual areas are active during saccade planning. We investigated this hypothesis by applying TMS to frontal or visual areas during saccade preparation. By simultaneously measuring perceptual performance, we show their causal and differential roles in contralateral presaccadic attention effects: Whereas rFEF+ stimulation enhanced sensitivity opposite the saccade target throughout saccade preparation, V1/V2 stimulation reduced sensitivity at the saccade target only shortly before saccade onset. These findings are consistent with presaccadic attention modulating perception through cortico-cortical feedback and further dissociate presaccadic and covert attention.
Collapse
Affiliation(s)
- Nina M Hanning
- Department of Psychology & Center for Neural Sciences, New York University, New York, NY, USA.
- Institut für Psychologie, Humboldt Universität zu Berlin, Berlin, Germany.
| | - Antonio Fernández
- Department of Psychology & Center for Neural Sciences, New York University, New York, NY, USA
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - Marisa Carrasco
- Department of Psychology & Center for Neural Sciences, New York University, New York, NY, USA
| |
Collapse
|
28
|
Jonikaitis D, Noudoost B, Moore T. Dissociating the Contributions of Frontal Eye Field Activity to Spatial Working Memory and Motor Preparation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544653. [PMID: 37398433 PMCID: PMC10312624 DOI: 10.1101/2023.06.12.544653] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Neurons within dorsolateral prefrontal cortex of primates are characterized by robust persistent spiking activity exhibited during the delay period of working memory tasks. This includes the frontal eye field (FEF) where nearly half of the neurons are active when spatial locations are held in working memory. Past evidence has established the FEF's contribution to the planning and triggering of saccadic eye movements as well as to the control of visual spatial attention. However, it remains unclear if persistent delay activity reflects a similar dual role in movement planning and visuospatial working memory. We trained monkeys to alternate between different forms of a spatial working memory task which could dissociate remembered stimulus locations from planned eye movements. We tested the effects of inactivation of FEF sites on behavioral performance in the different tasks. Consistent with previous studies, FEF inactivation impaired the execution of memory-guided saccades, and impaired performance when remembered locations matched the planned eye movement. In contrast, memory performance was largely unaffected when the remembered location was dissociated from the correct eye movement response. Overall, the inactivation effects demonstrated clear deficits on eye movements, regardless of task type, but little or no evidence of a deficit in spatial working memory. Thus, our results indicate that persistent delay activity in the FEF contributes primarily to the preparation of eye movements and not to spatial working memory.
Collapse
Affiliation(s)
- Donatas Jonikaitis
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University, Stanford, CA
| | - Behrad Noudoost
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT
| | - Tirin Moore
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University, Stanford, CA
| |
Collapse
|
29
|
Shourkeshti A, Marrocco G, Jurewicz K, Moore T, Ebitz RB. Pupil size predicts the onset of exploration in brain and behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.541981. [PMID: 37292773 PMCID: PMC10245915 DOI: 10.1101/2023.05.24.541981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In uncertain environments, intelligent decision-makers exploit actions that have been rewarding in the past, but also explore actions that could be even better. Several neuromodulatory systems are implicated in exploration, based, in part, on work linking exploration to pupil size-a peripheral correlate of neuromodulatory tone and index of arousal. However, pupil size could instead track variables that make exploration more likely, like volatility or reward, without directly predicting either exploration or its neural bases. Here, we simultaneously measured pupil size, exploration, and neural population activity in the prefrontal cortex while two rhesus macaques explored and exploited in a dynamic environment. We found that pupil size under constant luminance specifically predicted the onset of exploration, beyond what could be explained by reward history. Pupil size also predicted disorganized patterns of prefrontal neural activity at both the single neuron and population levels, even within periods of exploitation. Ultimately, our results support a model in which pupil-linked mechanisms promote the onset of exploration via driving the prefrontal cortex through a critical tipping point where prefrontal control dynamics become disorganized and exploratory decisions are possible.
Collapse
Affiliation(s)
- Akram Shourkeshti
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Gabriel Marrocco
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Katarzyna Jurewicz
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Tirin Moore
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - R. Becket Ebitz
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
30
|
Bedini M, Olivetti E, Avesani P, Baldauf D. Accurate localization and coactivation profiles of the frontal eye field and inferior frontal junction: an ALE and MACM fMRI meta-analysis. Brain Struct Funct 2023; 228:997-1017. [PMID: 37093304 PMCID: PMC10147761 DOI: 10.1007/s00429-023-02641-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 04/08/2023] [Indexed: 04/25/2023]
Abstract
The frontal eye field (FEF) and the inferior frontal junction (IFJ) are prefrontal structures involved in mediating multiple aspects of goal-driven behavior. Despite being recognized as prominent nodes of the networks underlying spatial attention and oculomotor control, and working memory and cognitive control, respectively, the limited quantitative evidence on their precise localization has considerably impeded the detailed understanding of their structure and connectivity. In this study, we performed an activation likelihood estimation (ALE) fMRI meta-analysis by selecting studies that employed standard paradigms to accurately infer the localization of these regions in stereotaxic space. For the FEF, we found the highest spatial convergence of activations for prosaccade and antisaccade paradigms at the junction of the precentral sulcus and superior frontal sulcus. For the IFJ, we found consistent activations across oddball/attention, working memory, task-switching and Stroop paradigms at the junction of the inferior precentral sulcus and inferior frontal sulcus. We related these clusters to previous meta-analyses, sulcal/gyral neuroanatomy, and a comprehensive brain parcellation, highlighting important differences compared to their results and taxonomy. Finally, we leveraged the ALE peak coordinates as seeds to perform a meta-analytic connectivity modeling (MACM) analysis, which revealed systematic coactivation patterns spanning the frontal, parietal, and temporal cortices. We decoded the behavioral domains associated with these coactivations, suggesting that these may allow FEF and IFJ to support their specialized roles in flexible behavior. Our study provides the meta-analytic groundwork for investigating the relationship between functional specialization and connectivity of two crucial control structures of the prefrontal cortex.
Collapse
Affiliation(s)
- Marco Bedini
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Via delle Regole 101, 38123, Trento, Italy.
- Department of Psychology, University of California, San Diego, McGill Hall 9500 Gilman Dr, La Jolla, CA, 92093-0109, USA.
| | - Emanuele Olivetti
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Via delle Regole 101, 38123, Trento, Italy
- NILab, Bruno Kessler Foundation (FBK), Via delle Regole 101, 38123, Trento, Italy
| | - Paolo Avesani
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Via delle Regole 101, 38123, Trento, Italy
- NILab, Bruno Kessler Foundation (FBK), Via delle Regole 101, 38123, Trento, Italy
| | - Daniel Baldauf
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Via delle Regole 101, 38123, Trento, Italy
| |
Collapse
|
31
|
Zhang Z, Zagha E. Motor cortex gates distractor stimulus encoding in sensory cortex. Nat Commun 2023; 14:2097. [PMID: 37055425 PMCID: PMC10102016 DOI: 10.1038/s41467-023-37848-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/31/2023] [Indexed: 04/15/2023] Open
Abstract
Suppressing responses to distractor stimuli is a fundamental cognitive function, essential for performing goal-directed tasks. A common framework for the neuronal implementation of distractor suppression is the attenuation of distractor stimuli from early sensory to higher-order processing. However, details of the localization and mechanisms of attenuation are poorly understood. We trained mice to selectively respond to target stimuli in one whisker field and ignore distractor stimuli in the opposite whisker field. During expert task performance, optogenetic inhibition of whisker motor cortex increased the overall tendency to respond and the detection of distractor whisker stimuli. Within sensory cortex, optogenetic inhibition of whisker motor cortex enhanced the propagation of distractor stimuli into target-preferring neurons. Single unit analyses revealed that whisker motor cortex (wMC) decorrelates target and distractor stimulus encoding in target-preferring primary somatosensory cortex (S1) neurons, which likely improves selective target stimulus detection by downstream readers. Moreover, we observed proactive top-down modulation from wMC to S1, through the differential activation of putative excitatory and inhibitory neurons before stimulus onset. Overall, our studies support a contribution of motor cortex to sensory selection, in suppressing behavioral responses to distractor stimuli by gating distractor stimulus propagation within sensory cortex.
Collapse
Affiliation(s)
- Zhaoran Zhang
- Neuroscience Graduate Program, University of California Riverside, Riverside, CA, 92521, USA
| | - Edward Zagha
- Neuroscience Graduate Program, University of California Riverside, Riverside, CA, 92521, USA.
- Department of Psychology, University of California Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
32
|
Abstract
Sensory processing, short-term memory, and decision-making often deal with multiple items, or options, simultaneously. I review evidence suggesting that the brain handles such multiple items by "rhythmic attentional scanning (RAS)": each item is processed in a separate cycle of the theta rhythm, involving several gamma cycles, to reach an internally consistent representation in the form of a gamma-synchronized neuronal group. Within each theta cycle, items that are extended in representational space are scanned by traveling waves. Such scanning might go across small numbers of simple items linked into a chunk.
Collapse
Affiliation(s)
- Pascal Fries
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EN Nijmegen, the Netherlands.
| |
Collapse
|
33
|
Hanning NM, Fernández A, Carrasco M. Dissociable roles of human frontal eye fields and early visual cortex in presaccadic attention - evidence from TMS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529691. [PMID: 36865228 PMCID: PMC9980111 DOI: 10.1101/2023.02.23.529691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Shortly before each saccadic eye movement, presaccadic attention improves visual sensitivity at the saccade target 1-5 at the expense of lowered sensitivity at non-target locations 6-11 . Some behavioral and neural correlates of presaccadic attention and covert attention -which likewise enhances sensitivity, but during fixation 12 -are similar 13 . This resemblance has led to the debatable 13-18 notion that presaccadic and covert attention are functionally equivalent and rely on the same neural circuitry 19-21 . At a broad scale, oculomotor brain structures (e.g., FEF) are also modulated during covert attention 22-24 - yet by distinct neuronal subpopulations 25-28 . Perceptual benefits of presaccadic attention rely on feedback from oculomotor structures to visual cortices 29,30 ( Fig. 1a ); micro-stimulation of FEF in non-human primates affects activity in visual cortex 31-34 and enhances visual sensitivity at the movement field of the stimulated neurons 35-37 . Similar feedback projections seem to exist in humans: FEF+ activation precedes occipital activation during saccade preparation 38,39 and FEF TMS modulates activity in visual cortex 40-42 and enhances perceived contrast in the contralateral hemifield 40 . We investigated presaccadic feedback in humans by applying TMS to frontal or visual areas during saccade preparation. By simultaneously measuring perceptual performance, we show the causal and differential roles of these brain regions in contralateral presaccadic benefits at the saccade target and costs at non-targets: Whereas rFEF+ stimulation reduced presaccadic costs throughout saccade preparation, V1/V2 stimulation reduced benefits only shortly before saccade onset. These effects provide causal evidence that presaccadic attention modulates perception through cortico-cortical feedback and further dissociate presaccadic and covert attention.
Collapse
|
34
|
The effect of temporal expectation on the correlations of frontal neural activity with alpha oscillation and sensory-motor latency. Sci Rep 2023; 13:2012. [PMID: 36737634 PMCID: PMC9898494 DOI: 10.1038/s41598-023-29310-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/02/2023] [Indexed: 02/05/2023] Open
Abstract
In a dynamic environment, we seek to enhance behavioral responses by anticipating future events. Previous studies have shown that the probability distribution of the timing of future events could shape our expectation of event timing; furthermore, the modulation of alpha oscillation is known to be a critical neural factor. However, a link between the modulation of alpha oscillation by temporal expectation and single neural activity is missing. In this study, we investigated how temporal expectation modulated frontal neural activities and behavioral reaction time by recording neural activity from the frontal eye field smooth pursuit eye movement region of monkeys while they performed a smooth pursuit eye movement task. We found that the temporal expectation reduced the coherence between the neural spiking and alpha frequency of the local field potential, along with the trial-by-trial correlation between the neural spiking activity and pursuit latency. This result suggests that the desynchronization of alpha oscillation by temporal expectation would be related to the decorrelation of population neural activity, which could be the neural source of reaction time enhancement by temporal expectation.
Collapse
|
35
|
Aussel A, Fiebelkorn IC, Kastner S, Kopell NJ, Pittman-Polletta BR. Interacting rhythms enhance sensitivity of target detection in a fronto-parietal computational model of visual attention. eLife 2023; 12:e67684. [PMID: 36718998 PMCID: PMC10129332 DOI: 10.7554/elife.67684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 01/12/2023] [Indexed: 02/01/2023] Open
Abstract
Even during sustained attention, enhanced processing of attended stimuli waxes and wanes rhythmically, with periods of enhanced and relatively diminished visual processing (and subsequent target detection) alternating at 4 or 8 Hz in a sustained visual attention task. These alternating attentional states occur alongside alternating dynamical states, in which lateral intraparietal cortex (LIP), the frontal eye field (FEF), and the mediodorsal pulvinar (mdPul) exhibit different activity and functional connectivity at α, β, and γ frequencies-rhythms associated with visual processing, working memory, and motor suppression. To assess whether and how these multiple interacting rhythms contribute to periodicity in attention, we propose a detailed computational model of FEF and LIP. When driven by θ-rhythmic inputs simulating experimentally-observed mdPul activity, this model reproduced the rhythmic dynamics and behavioral consequences of observed attentional states, revealing that the frequencies and mechanisms of the observed rhythms allow for peak sensitivity in visual target detection while maintaining functional flexibility.
Collapse
Affiliation(s)
- Amélie Aussel
- Cognitive Rhythms Collaborative, Boston UniversityBostonUnited States
- Department of Mathematics and Statistics, Boston UniversityRochesterUnited States
| | - Ian C Fiebelkorn
- Department of Neuroscience and Del Monte Institute for Neuroscience, University of Rochester Medical Center, University of RochesterRochesterUnited States
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Sabine Kastner
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
- Department of Psychology, Princeton UniversityPrincetonUnited States
| | - Nancy J Kopell
- Cognitive Rhythms Collaborative, Boston UniversityBostonUnited States
- Department of Mathematics and Statistics, Boston UniversityRochesterUnited States
| | - Benjamin Rafael Pittman-Polletta
- Cognitive Rhythms Collaborative, Boston UniversityBostonUnited States
- Department of Mathematics and Statistics, Boston UniversityRochesterUnited States
| |
Collapse
|
36
|
Ouerfelli-Ethier J, Comtois Bona I, Fournet R, Pisella L, Khan AZ. Pre-saccadic attention relies more on suppression than does covert attention. J Vis 2023; 23:1. [PMID: 36595283 PMCID: PMC9819743 DOI: 10.1167/jov.23.1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
During covert and pre-saccadic attentional shifts, it is unclear how facilitation and suppression processes interact for target selection. A recent countermanding task pointed to greater suppression at unattended locations during trials with saccades compared to trials without saccades (i.e., fixation and successful stop trials), whereas target facilitation did not differ. It is unknown whether this finding is restricted to countermanding paradigms that involve inhibitory processes. To test this, we adapted Gaspelin and colleagues (2015)'s attention capture task where, within the same block, one location was primed with frequent line discrimination trials, and all locations were occasionally probed using letters report trials. Participants also performed a baseline condition without priming. We tested 15 participants and examined how performance at non-primed locations was affected by covert versus pre-saccadic attention in blocks of four or six items, as well as by position from the primed location and timing from saccade onset. For both attention conditions, letter report at non-primed locations was worse compared to baseline, demonstrating suppression, and letter report at primed location was better, demonstrating facilitation. In saccades trials, letter report was better at primed locations and worse at non-primed locations compared to fixation trials. The timing of this additional pre-saccadic suppression differed from saccadic suppression. In both attention conditions, suppression was greater when primed and non-primed locations were within the same hemifield or in diagonal opposite quadrants. These results confirmed that attention preceding saccade execution suppressed non-primed locations to a larger extent than covert attention, with the same spatial quadrant effect.
Collapse
Affiliation(s)
- Julie Ouerfelli-Ethier
- School of Optometry, University of Montreal, Montreal, Canada.,Lyon Neuroscience Research Center, Trajectoires team, University of Lyon I Claude-Bernard, Bron, France.,
| | | | - Romain Fournet
- School of Optometry, University of Montreal, Montreal, Canada.,
| | - Laure Pisella
- Lyon Neuroscience Research Center, Trajectoires team, University of Lyon I Claude-Bernard, Bron, France.,
| | | |
Collapse
|
37
|
Killian O, Hutchinson M, Reilly R. Neuromodulation in Dystonia - Harnessing the Network. ADVANCES IN NEUROBIOLOGY 2023; 31:177-194. [PMID: 37338702 DOI: 10.1007/978-3-031-26220-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Adult-onset isolated focal dystonia (AOIFD) is a network disorder characterised by abnormalities of sensory processing and motor control. These network abnormalities give rise to both the phenomenology of dystonia and the epiphenomena of altered plasticity and loss of intracortical inhibition. Existing modalities of deep brain stimulation effectively modulate parts of this network but are limited both in terms of targets and invasiveness. Novel approaches using a variety of non-invasive neuromodulation techniques including transcranial stimulation and peripheral stimulation present an interesting alternative approach and may, in conjunction with rehabilitative strategies, have a role in tailored therapies targeting the underlying network abnormality behind AOIFD.
Collapse
Affiliation(s)
- Owen Killian
- The Dublin Neurological Institute, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Michael Hutchinson
- Department of Neurology, St Vincent's University Hospital, Dublin, Ireland
| | - Richard Reilly
- School of Medicine, Trinity College, The University of Dublin, Dublin, Ireland.
| |
Collapse
|
38
|
Bleau M, Paré S, Chebat DR, Kupers R, Nemargut JP, Ptito M. Neural substrates of spatial processing and navigation in blindness: An activation likelihood estimation meta-analysis. Front Neurosci 2022; 16:1010354. [PMID: 36340755 PMCID: PMC9630591 DOI: 10.3389/fnins.2022.1010354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022] Open
Abstract
Even though vision is considered the best suited sensory modality to acquire spatial information, blind individuals can form spatial representations to navigate and orient themselves efficiently in space. Consequently, many studies support the amodality hypothesis of spatial representations since sensory modalities other than vision contribute to the formation of spatial representations, independently of visual experience and imagery. However, given the high variability in abilities and deficits observed in blind populations, a clear consensus about the neural representations of space has yet to be established. To this end, we performed a meta-analysis of the literature on the neural correlates of spatial processing and navigation via sensory modalities other than vision, like touch and audition, in individuals with early and late onset blindness. An activation likelihood estimation (ALE) analysis of the neuroimaging literature revealed that early blind individuals and sighted controls activate the same neural networks in the processing of non-visual spatial information and navigation, including the posterior parietal cortex, frontal eye fields, insula, and the hippocampal complex. Furthermore, blind individuals also recruit primary and associative occipital areas involved in visuo-spatial processing via cross-modal plasticity mechanisms. The scarcity of studies involving late blind individuals did not allow us to establish a clear consensus about the neural substrates of spatial representations in this specific population. In conclusion, the results of our analysis on neuroimaging studies involving early blind individuals support the amodality hypothesis of spatial representations.
Collapse
Affiliation(s)
- Maxime Bleau
- École d’Optométrie, Université de Montréal, Montreal, QC, Canada
| | - Samuel Paré
- École d’Optométrie, Université de Montréal, Montreal, QC, Canada
| | - Daniel-Robert Chebat
- Visual and Cognitive Neuroscience Laboratory (VCN Lab), Department of Psychology, Faculty of Social Sciences and Humanities, Ariel University, Ariel, Israel
- Navigation and Accessibility Research Center of Ariel University (NARCA), Ariel University, Ariel, Israel
| | - Ron Kupers
- École d’Optométrie, Université de Montréal, Montreal, QC, Canada
- Institute of Neuroscience, Faculty of Medicine, Université de Louvain, Brussels, Belgium
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | | | - Maurice Ptito
- École d’Optométrie, Université de Montréal, Montreal, QC, Canada
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- *Correspondence: Maurice Ptito,
| |
Collapse
|
39
|
Zhang Y, Ryali S, Cai W, Supekar K, Pasumarthy R, Padmanabhan A, Luna B, Menon V. Developmental maturation of causal signaling hubs in voluntary control of saccades and their functional controllability. Cereb Cortex 2022; 32:4746-4762. [PMID: 35094063 PMCID: PMC9627122 DOI: 10.1093/cercor/bhab514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 02/01/2023] Open
Abstract
The ability to adaptively respond to behaviorally relevant cues in the environment, including voluntary control of automatic but inappropriate responses and deployment of a goal-relevant alternative response, undergoes significant maturation from childhood to adulthood. Importantly, the maturation of voluntary control processes influences the developmental trajectories of several key cognitive domains, including executive function and emotion regulation. Understanding the maturation of voluntary control is therefore of fundamental importance, but little is known about the underlying causal functional circuit mechanisms. Here, we use state-space and control-theoretic modeling to investigate the maturation of causal signaling mechanisms underlying voluntary control over saccades. We demonstrate that directed causal interactions in a canonical saccade network undergo significant maturation between childhood and adulthood. Crucially, we show that the frontal eye field (FEF) is an immature causal signaling hub in children during control over saccades. Using control-theoretic analysis, we then demonstrate that the saccade network is less controllable in children and that greater energy is required to drive FEF dynamics in children compared to adults. Our findings provide novel evidence that strengthening of causal signaling hubs and controllability of FEF are key mechanisms underlying age-related improvements in the ability to plan and execute voluntary control over saccades.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Srikanth Ryali
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Weidong Cai
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kaustubh Supekar
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ramkrishna Pasumarthy
- Department of Electrical Engineering, Robert Bosch Center of Data Sciences and Artificial Intelligence, Network Systems Learning, Control and Evolution Group, Indian Institute of Technology Madras, Chennai 600036, India
| | - Aarthi Padmanabhan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bea Luna
- Department of Psychiatry and Behavioral Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
- Wu Tsai Neuroscience Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
40
|
Dynamic and stable population coding of attentional instructions coexist in the prefrontal cortex. Proc Natl Acad Sci U S A 2022; 119:e2202564119. [PMID: 36161937 DOI: 10.1073/pnas.2202564119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A large body of recent work suggests that neural representations in prefrontal cortex (PFC) are changing over time to adapt to task demands. However, it remains unclear whether and how such dynamic coding schemes depend on the encoded variable and are influenced by anatomical constraints. Using a cued attention task and multivariate classification methods, we show that neuronal ensembles in PFC encode and retain in working memory spatial and color attentional instructions in an anatomically specific manner. Spatial instructions could be decoded both from the frontal eye field (FEF) and the ventrolateral PFC (vlPFC) population, albeit more robustly from FEF, whereas color instructions were decoded more robustly from vlPFC. Decoding spatial and color information from vlPFC activity in the high-dimensional state space indicated stronger dynamics for color, across the cue presentation and memory periods. The change in the color code was largely due to rapid changes in the network state during the transition to the delay period. However, we found that dynamic vlPFC activity contained time-invariant color information within a low-dimensional subspace of neural activity that allowed for stable decoding of color across time. Furthermore, spatial attention influenced decoding of stimuli features profoundly in vlPFC, but less so in visual area V4. Overall, our results suggest that dynamic population coding of attentional instructions within PFC is shaped by anatomical constraints and can coexist with stable subspace coding that allows time-invariant decoding of information about the future target.
Collapse
|
41
|
Kienitz R, Kouroupaki K, Schmid MC. Microstimulation of visual area V4 improves visual stimulus detection. Cell Rep 2022; 40:111392. [PMID: 36130494 PMCID: PMC9513802 DOI: 10.1016/j.celrep.2022.111392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/30/2022] [Accepted: 08/29/2022] [Indexed: 11/26/2022] Open
Abstract
Neuronal activity in visual area V4 is well known to be modulated by selective attention, and there are reports on V4 lesions leading to attentional deficits. However, it remains unclear whether V4 microstimulation can elicit attentional benefits. To test this hypothesis, we performed local microstimulation in area V4 and explored its spatial and time dynamics in two macaque monkeys performing a visual detection task. Microstimulation was delivered via chronically implanted multi-electrode arrays. We found that microstimulation increases average performance by 35% and reduces luminance detection thresholds by −30%. This benefit critically depends on the onset of microstimulation relative to the stimulus, consistent with known dynamics of endogenous attention. These results show that local microstimulation of V4 can improve behavior and highlight the critical role of V4 for attention. Microstimulation of visual area V4 improves visual stimulus detection Effects of V4 microstimulation extend to the other hemifield Microstimulation effects are time dependent and consistent with attention dynamics
Collapse
Affiliation(s)
- Ricardo Kienitz
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe University, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany; Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstrasse 46, 60528 Frankfurt, Germany; Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Kleopatra Kouroupaki
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstrasse 46, 60528 Frankfurt, Germany
| | - Michael C Schmid
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstrasse 46, 60528 Frankfurt, Germany; Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK; Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, 1700 Fribourg, Switzerland.
| |
Collapse
|
42
|
Kroell LM, Rolfs M. Foveal vision anticipates defining features of eye movement targets. eLife 2022; 11:e78106. [PMID: 36082940 PMCID: PMC9581528 DOI: 10.7554/elife.78106] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 09/03/2022] [Indexed: 11/13/2022] Open
Abstract
High-acuity foveal processing is vital for human vision. Nonetheless, little is known about how the preparation of large-scale rapid eye movements (saccades) affects visual sensitivity in the center of gaze. Based on findings from passive fixation tasks, we hypothesized that during saccade preparation, foveal processing anticipates soon-to-be fixated visual features. Using a dynamic large-field noise paradigm, we indeed demonstrate that defining features of an eye movement target are enhanced in the pre-saccadic center of gaze. Enhancement manifested as higher Hit Rates for foveal probes with target-congruent orientation and a sensitization to incidental, target-like orientation information in foveally presented noise. Enhancement was spatially confined to the center of gaze and its immediate vicinity, even after parafoveal task performance had been raised to a foveal level. Moreover, foveal enhancement during saccade preparation was more pronounced and developed faster than enhancement during passive fixation. Based on these findings, we suggest a crucial contribution of foveal processing to trans-saccadic visual continuity: Foveal processing of saccade targets commences before the movement is executed and thereby enables a seamless transition once the center of gaze reaches the target.
Collapse
Affiliation(s)
- Lisa M Kroell
- Department of Psychology, Humboldt-Universität zu BerlinBerlinGermany
- Berlin School of Mind and Brain, Humboldt-Universität zu BerlinBerlinGermany
| | - Martin Rolfs
- Department of Psychology, Humboldt-Universität zu BerlinBerlinGermany
- Berlin School of Mind and Brain, Humboldt-Universität zu BerlinBerlinGermany
- Exzellenzcluster Science of Intelligence, Technische Universität BerlinBerlinGermany
- Bernstein Center for Computational Neuroscience BerlinBerlinGermany
| |
Collapse
|
43
|
Sheehan TC, Serences JT. Attractive serial dependence overcomes repulsive neuronal adaptation. PLoS Biol 2022; 20:e3001711. [PMID: 36067148 PMCID: PMC9447932 DOI: 10.1371/journal.pbio.3001711] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 06/14/2022] [Indexed: 01/12/2023] Open
Abstract
Sensory responses and behavior are strongly shaped by stimulus history. For example, perceptual reports are sometimes biased toward previously viewed stimuli (serial dependence). While behavioral studies have pointed to both perceptual and postperceptual origins of this phenomenon, neural data that could elucidate where these biases emerge is limited. We recorded functional magnetic resonance imaging (fMRI) responses while human participants (male and female) performed a delayed orientation discrimination task. While behavioral reports were attracted to the previous stimulus, response patterns in visual cortex were repelled. We reconciled these opposing neural and behavioral biases using a model where both sensory encoding and readout are shaped by stimulus history. First, neural adaptation reduces redundancy at encoding and leads to the repulsive biases that we observed in visual cortex. Second, our modeling work suggest that serial dependence is induced by readout mechanisms that account for adaptation in visual cortex. According to this account, the visual system can simultaneously improve efficiency via adaptation while still optimizing behavior based on the temporal structure of natural stimuli.
Collapse
Affiliation(s)
- Timothy C. Sheehan
- Neurosciences Graduate Program, University of California San Diego, La Jolla, California, United States of America
| | - John T. Serences
- Neurosciences Graduate Program, University of California San Diego, La Jolla, California, United States of America
- Department of Psychology, University of California San Diego, La Jolla, California, United States of America
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
44
|
Boshra R, Kastner S. Attention control in the primate brain. Curr Opin Neurobiol 2022; 76:102605. [PMID: 35850060 DOI: 10.1016/j.conb.2022.102605] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 11/03/2022]
Abstract
Attention is fundamental to all cognition. In the primate brain, it is implemented by a large-scale network that consists of areas spanning across all major lobes, also including subcortical regions. Classical attention accounts assume that control over the selection process in this network is exerted by 'top-down' mechanisms in the fronto-parietal cortex that influence sensory representations via feedback signals. More recent studies have expanded this view of attentional control. In this review, we will start from a traditional top-down account of attention control, and then discuss more recent findings on feature-based attention, thalamic influences, temporal network dynamics, and behavioral dynamics that collectively lead to substantial modifications. We outline how the different emerging accounts can be reconciled and integrated into a unified theory.
Collapse
Affiliation(s)
- Rober Boshra
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA.
| | - Sabine Kastner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA; Department of Psychology, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
45
|
Warsi NM, Wong SM, Suresh H, Arski ON, Yan H, Ebden M, Kerr E, Smith ML, Ochi A, Otsubo H, Sharma R, Jain P, Donner EJ, Snead OC, Ibrahim GM. Interictal discharges delay target-directed eye movements and impair attentional set-shifting in children with epilepsy. Epilepsia 2022; 63:2571-2582. [PMID: 35833751 DOI: 10.1111/epi.17365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The theory of transient cognitive impairment in epilepsy posits that lapses in attention result from ephemeral disruption of attentional circuitry by interictal events. Eye movements are intimately associated with human attention and can be monitored in real -time using eye-tracking technologies. Here, we sought to characterize the associations between interictal discharges (IEDs), gaze, and attentional behaviour in children with epilepsy. METHODS Eleven consecutive children undergoing invasive monitoring with stereotactic electrodes for localization-related epilepsy performed an attentional set-shifting task while tandem intracranial electroencephalographic signals and eye-tracking data were recorded. Using an established algorithm, IEDs were detected across all intracranial electrodes on a trial-by-trial basis. Hierarchical mixed-effects modelling was performed to delineate associations between trial reaction time (RT), eye movements, and IEDs. RESULTS Hierarchical mixed-effects modelling revealed that both the presence of an IED (β±SE=72.74±24.21ms, p=0.003) and the frequency of epileptiform events (β±SE=67.54±17.30ms, p<0.001) were associated with prolonged RT on the attentional set-shifting task. IED occurrence at the time of stimulus presentation was associated with delays in gaze initiation toward the visual targets (p=0.017). SIGNIFICANCE The occurrence of epileptiform activity in close temporal association with stimulus presentation is associated with delays in target-directed gaze and prolonged response time, hallmarks of momentary lapses in attention. These findings provide novel insights into the mechanisms of transient impairments in children and support the use of visual tracking as a correlate of higher-order attentional behaviour.
Collapse
Affiliation(s)
- Nebras M Warsi
- Division of Neurosurgery, Hospital for Sick Children, Toronto, ON.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON
| | - Simeon M Wong
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON.,Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON
| | - Hrishikesh Suresh
- Division of Neurosurgery, Hospital for Sick Children, Toronto, ON.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON
| | - Olivia N Arski
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON
| | - Han Yan
- Division of Neurosurgery, Hospital for Sick Children, Toronto, ON.,Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON
| | - Mark Ebden
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON
| | - Elizabeth Kerr
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON
| | - Mary Lou Smith
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON
| | - Ayako Ochi
- Division of Neurology, Hospital for Sick Children, Toronto, ON
| | - Hiroshi Otsubo
- Division of Neurology, Hospital for Sick Children, Toronto, ON
| | - Roy Sharma
- Division of Neurology, Hospital for Sick Children, Toronto, ON
| | - Puneet Jain
- Division of Neurology, Hospital for Sick Children, Toronto, ON
| | | | - O Carter Snead
- Division of Neurology, Hospital for Sick Children, Toronto, ON
| | - George M Ibrahim
- Division of Neurosurgery, Hospital for Sick Children, Toronto, ON.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON.,Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON
| |
Collapse
|
46
|
Zhang Q, Huang Z, Li L, Li S. Visual search training benefits from the integrative effect of enhanced covert attention and optimized overt eye movements. J Vis 2022; 22:7. [PMID: 35838486 PMCID: PMC9296888 DOI: 10.1167/jov.22.8.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Training serves as an effective approach to improve visual search performance when the target does not automatically pop out from the distractors. In the present study, we trained participants on a conjunction visual search task and examined the training effects in behavior and eye movement. The results of Experiments 1 to 4 showed that training improved behavioral performance and reduced the number of saccades and overall scanning time. Training also increased the search initiation time before the first saccade and the proportion of trials in which the participants correctly identified the target without any saccade, but these effects were modulated by stimulus’ parameters. In Experiment 5, we simultaneously recorded eye movements and electroencephalography signals and the results revealed significant N2 posterior contralateral (N2pc) components after the stimulus onset (i.e., stimulus-locked) and before the first saccade (i.e., saccade-locked) when the search target was the trained one. These N2pc components can be considered as the neural signatures for the enhanced covert attention to the trained target. Together with the training-induced increase in functional visual field, these mechanisms could support the beneficial effects of increased search initiation time and reduced number of saccades. These findings suggest that visual search training enhanced covert attention to target and optimized overt eye movements to facilitate search performance.
Collapse
Affiliation(s)
- Qi Zhang
- School of Educational Science, Minnan Normal University, Zhangzhou, China.,
| | - Zhibang Huang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, PKU-IDG/McGovern Institute for Brain Research, Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing, China.,
| | - Liang Li
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China.,
| | - Sheng Li
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, PKU-IDG/McGovern Institute for Brain Research, Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing, China.,
| |
Collapse
|
47
|
Oguchi M, Sakagami M. Dissecting the Prefrontal Network With Pathway-Selective Manipulation in the Macaque Brain-A Review. Front Neurosci 2022; 16:917407. [PMID: 35677354 PMCID: PMC9168219 DOI: 10.3389/fnins.2022.917407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Macaque monkeys are prime animal models for studying the neural mechanisms of decision-making because of their close kinship with humans. Manipulation of neural activity during decision-making tasks is essential for approaching the causal relationship between the brain and its functions. Conventional manipulation methods used in macaque studies are coarse-grained, and have worked indiscriminately on mutually intertwined neural pathways. To systematically dissect neural circuits responsible for a variety of functions, it is essential to analyze changes in behavior and neural activity through interventions in specific neural pathways. In recent years, an increasing number of studies have applied optogenetics and chemogenetics to achieve fine-grained pathway-selective manipulation in the macaque brain. Here, we review the developments in macaque studies involving pathway-selective operations, with a particular focus on applications to the prefrontal network. Pathway selectivity can be achieved using single viral vector transduction combined with local light stimulation or ligand administration directly into the brain or double-viral vector transduction combined with systemic drug administration. We discuss the advantages and disadvantages of these methods. We also highlight recent technological developments in viral vectors that can effectively infect the macaque brain, as well as the development of methods to deliver photostimulation or ligand drugs to a wide area to effectively manipulate behavior. The development and dissemination of such pathway-selective manipulations of macaque prefrontal networks will enable us to efficiently dissect the neural mechanisms of decision-making and innovate novel treatments for decision-related psychiatric disorders.
Collapse
Affiliation(s)
- Mineki Oguchi
- Brain Science Institute, Tamagawa University, Tokyo, Japan
| | | |
Collapse
|
48
|
Ramezanpour H, Fallah M. The role of temporal cortex in the control of attention. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100038. [PMID: 36685758 PMCID: PMC9846471 DOI: 10.1016/j.crneur.2022.100038] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/05/2022] [Accepted: 04/01/2022] [Indexed: 01/25/2023] Open
Abstract
Attention is an indispensable component of active vision. Contrary to the widely accepted notion that temporal cortex processing primarily focusses on passive object recognition, a series of very recent studies emphasize the role of temporal cortex structures, specifically the superior temporal sulcus (STS) and inferotemporal (IT) cortex, in guiding attention and implementing cognitive programs relevant for behavioral tasks. The goal of this theoretical paper is to advance the hypothesis that the temporal cortex attention network (TAN) entails necessary components to actively participate in attentional control in a flexible task-dependent manner. First, we will briefly discuss the general architecture of the temporal cortex with a focus on the STS and IT cortex of monkeys and their modulation with attention. Then we will review evidence from behavioral and neurophysiological studies that support their guidance of attention in the presence of cognitive control signals. Next, we propose a mechanistic framework for executive control of attention in the temporal cortex. Finally, we summarize the role of temporal cortex in implementing cognitive programs and discuss how they contribute to the dynamic nature of visual attention to ensure flexible behavior.
Collapse
Affiliation(s)
- Hamidreza Ramezanpour
- Centre for Vision Research, York University, Toronto, Ontario, Canada,School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada,VISTA: Vision Science to Application, York University, Toronto, Ontario, Canada,Corresponding author. Centre for Vision Research, York University, Toronto, Ontario, Canada.
| | - Mazyar Fallah
- Centre for Vision Research, York University, Toronto, Ontario, Canada,School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada,VISTA: Vision Science to Application, York University, Toronto, Ontario, Canada,Department of Psychology, Faculty of Health, York University, Toronto, Ontario, Canada,Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, Ontario, Canada,Corresponding author. Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
49
|
Stokes JD, Rizzo A, Geng JJ, Schweitzer JB. Measuring Attentional Distraction in Children With ADHD Using Virtual Reality Technology With Eye-Tracking. FRONTIERS IN VIRTUAL REALITY 2022; 3:855895. [PMID: 35601272 PMCID: PMC9119405 DOI: 10.3389/frvir.2022.855895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Objective Distractions inordinately impair attention in children with Attention-Deficit Hyperactivity Disorder (ADHD) but examining this behavior under real-life conditions poses a challenge for researchers and clinicians. Virtual reality (VR) technologies may mitigate the limitations of traditional laboratory methods by providing a more ecologically relevant experience. The use of eye-tracking measures to assess attentional functioning in a VR context in ADHD is novel. In this proof of principle project, we evaluate the temporal dynamics of distraction via eye-tracking measures in a VR classroom setting with 20 children diagnosed with ADHD between 8 and 12 years of age. Method We recorded continuous eye movements while participants performed math, Stroop, and continuous performance test (CPT) tasks with a series of "real-world" classroom distractors presented. We analyzed the impact of the distractors on rates of on-task performance and on-task, eye-gaze (i.e., looking at a classroom whiteboard) versus off-task eye-gaze (i.e., looking away from the whiteboard). Results We found that while children did not always look at distractors themselves for long periods of time, the presence of a distractor disrupted on-task gaze at task-relevant whiteboard stimuli and lowered rates of task performance. This suggests that children with attention deficits may have a hard time returning to tasks once those tasks are interrupted, even if the distractor itself does not hold attention. Eye-tracking measures within the VR context can reveal rich information about attentional disruption. Conclusions Leveraging virtual reality technology in combination with eye-tracking measures is well-suited to advance the understanding of mechanisms underlying attentional impairment in naturalistic settings. Assessment within these immersive and well-controlled simulated environments provides new options for increasing our understanding of distractibility and its potential impact on the development of interventions for children with ADHD.
Collapse
Affiliation(s)
- Jared D. Stokes
- MIND Institute, University of California, Davis, Sacramento, CA, United States
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, CA, United States
- Center for Mind and Brain, University of California, Davis, Davis, CA, United States
| | - Albert Rizzo
- Institute for Creative Studies, University of Southern California, Los Angeles, CA, United States
| | - Joy J. Geng
- Center for Mind and Brain, University of California, Davis, Davis, CA, United States
- Department of Psychology, University of California, Davis, Davis, CA, United States
| | - Julie B. Schweitzer
- MIND Institute, University of California, Davis, Sacramento, CA, United States
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, CA, United States
| |
Collapse
|
50
|
Moon SJ, Park CH, Jung SI, Yu JW, Son EC, Lee HN, Jeong H, Jang S, Park E, Jung TD. Effects of an Eye-Tracking Linkage Attention Training System on Cognitive Function Compared to Conventional Computerized Cognitive Training System in Patients with Stroke. Healthcare (Basel) 2022; 10:healthcare10030456. [PMID: 35326934 PMCID: PMC8953431 DOI: 10.3390/healthcare10030456] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 01/25/2023] Open
Abstract
Objective: The purpose of the study was to investigate the effects of an eye-tracking linkage attention training system on cognitive function compared to a conventional computerized cognitive training system in stroke patients with cognitive impairment. Methods: This retrospective study was enrolled 40 stroke patients who received cognitive rehabilitation. The intervention consisted of 30 sessions and 30 min per session. Before and after the intervention, we assessed cognitive functions by Mini-Mental State Examination (MMSE-K) and activities of daily living by Modified Barthel Index (K-MBI) and administered a computerized neuropsychological test (CNT). Results: In both groups, there were significant improvements in MMSE-K and K-MBI (p < 0.05). In the visual and auditory attention test of the CNT, the eye-tracking linkage attention training group was significantly improved after intervention (p < 0.05). However, there were no significant differences in the conventional computerized cognitive training group. In addition, there were significant improvements in all memory tests of the CNT in the eye-tracking linkage attention training group. However, in the conventional computerized cognitive training group, there were significant improvements in some memory tests of the CNT. Conclusions: The training of poststroke cognitive impairment patients using an eye-tracking linkage attention training system may improve visuospatial attention and may be helpful for the improvement of short-term memory and independent performances in daily life activities.
Collapse
Affiliation(s)
- Sung-Jun Moon
- Unit of Rehabilitation Therapy, Department of Rehabilitation Medicine, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea; (S.-J.M.); (S.I.J.); (J.-W.Y.); (E.-C.S.); (H.N.L.); (H.J.); (S.J.)
| | - Chan-Hee Park
- Department of Rehabilitation Medicine, Kyungpook National University Hospital, Daegu 41944, Korea;
| | - Sang In Jung
- Unit of Rehabilitation Therapy, Department of Rehabilitation Medicine, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea; (S.-J.M.); (S.I.J.); (J.-W.Y.); (E.-C.S.); (H.N.L.); (H.J.); (S.J.)
| | - Ja-Won Yu
- Unit of Rehabilitation Therapy, Department of Rehabilitation Medicine, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea; (S.-J.M.); (S.I.J.); (J.-W.Y.); (E.-C.S.); (H.N.L.); (H.J.); (S.J.)
| | - Eun-Chul Son
- Unit of Rehabilitation Therapy, Department of Rehabilitation Medicine, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea; (S.-J.M.); (S.I.J.); (J.-W.Y.); (E.-C.S.); (H.N.L.); (H.J.); (S.J.)
| | - Hye Na Lee
- Unit of Rehabilitation Therapy, Department of Rehabilitation Medicine, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea; (S.-J.M.); (S.I.J.); (J.-W.Y.); (E.-C.S.); (H.N.L.); (H.J.); (S.J.)
| | - Hyeonggi Jeong
- Unit of Rehabilitation Therapy, Department of Rehabilitation Medicine, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea; (S.-J.M.); (S.I.J.); (J.-W.Y.); (E.-C.S.); (H.N.L.); (H.J.); (S.J.)
| | - Sueun Jang
- Unit of Rehabilitation Therapy, Department of Rehabilitation Medicine, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea; (S.-J.M.); (S.I.J.); (J.-W.Y.); (E.-C.S.); (H.N.L.); (H.J.); (S.J.)
| | - Eunhee Park
- Department of Rehabilitation Medicine, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea
- Department of Rehabilitation Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Correspondence: (E.P.); (T.-D.J.); Tel.: +82-53-200-3265 (E.P.); +82-53-200-2167 (T.-D.J.)
| | - Tae-Du Jung
- Department of Rehabilitation Medicine, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea
- Department of Rehabilitation Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Correspondence: (E.P.); (T.-D.J.); Tel.: +82-53-200-3265 (E.P.); +82-53-200-2167 (T.-D.J.)
| |
Collapse
|