1
|
Luo Y, An C, Zhong K, Zhou P, Li D, Liu H, Guo Q, Wei W, Pan H, Min Z, Li R, Yu Y, Fan Y. Exploring the impacts of senescence on implantation and early embryonic development using totipotent cell-derived blastoids. J Adv Res 2025; 68:115-129. [PMID: 38402947 PMCID: PMC11785586 DOI: 10.1016/j.jare.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/18/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/27/2024] Open
Abstract
INTRODUCTION Advanced maternal age is associated with reduced implantation and pregnancy rates, yet the underlying mechanisms remain poorly understood, and research models are limited. OBJECTIVES Here, we aim to elucidate the impacts of senescence on implantation ability by employing blastoids to construct a novel research model. METHODS We used a novel three-dimensional system with totipotent blastomere-like cells (TBLCs) to construct TBL-blastoids and established senescence-related embryo models derived from oxidative stress-induced TBLCs. RESULTS Morphological and transcriptomic analyses revealed that TBL-blastoids exhibited characteristic blastocyst morphology, cell lineages, and a higher consistency in developmental rate. TBL-blastoids demonstrated the ability to develop into postimplantation structures in vitro and successfully implanted into mouse uteri, inducing decidualization and forming embryonic tissues. Importantly, senescence impaired the implantation potential of TBL-blastoids, effectively mimicking the impaired implantation ability and reduced pregnancy rates associated with advanced age. Furthermore, analysis of differentially expressed genes (DEGs) in human homologous deciduae revealed enrichment in multiple fertility-related diseases and other complications of pregnancy. The genes implicated in these diseases and the common DEGs identified in the lineage-like cells of the two types of TBL-blastoids and deciduae may represent potential targets for addressing impaired implantation potential. CONCLUSION These results unveiled that TBL blastoids are an improved model for investigating implantation and early postimplantation, offering valuable insights into pregnancy-related disorders in women with advanced age and potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Yuxin Luo
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing 100191, China
| | - Chenrui An
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Ke Zhong
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Ping Zhou
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing 100191, China
| | - Dan Li
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Hui Liu
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Qing Guo
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Wei Wei
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Hen Pan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing 100191, China
| | - Zheying Min
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China.
| | - Rong Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing 100191, China.
| | - Yang Yu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China.
| | - Yong Fan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China.
| |
Collapse
|
2
|
Sun ED, Nagvekar R, Pogson AN, Brunet A. Brain aging and rejuvenation at single-cell resolution. Neuron 2025; 113:82-108. [PMID: 39788089 PMCID: PMC11842159 DOI: 10.1016/j.neuron.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/26/2024] [Revised: 11/16/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
Brain aging leads to a decline in cognitive function and a concomitant increase in the susceptibility to neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. A key question is how changes within individual cells of the brain give rise to age-related dysfunction. Developments in single-cell "omics" technologies, such as single-cell transcriptomics, have facilitated high-dimensional profiling of individual cells. These technologies have led to new and comprehensive characterizations of brain aging at single-cell resolution. Here, we review insights gleaned from single-cell omics studies of brain aging, starting with a cell-type-centric overview of age-associated changes and followed by a discussion of cell-cell interactions during aging. We highlight how single-cell omics studies provide an unbiased view of different rejuvenation interventions and comment on the promise of combinatorial rejuvenation approaches for the brain. Finally, we propose new directions, including models of brain aging and neural stem cells as a focal point for rejuvenation.
Collapse
Affiliation(s)
- Eric D Sun
- Department of Genetics, Stanford University, Stanford, CA, USA; Department of Biomedical Data Science, Stanford University, Stanford, CA, USA; Biomedical Informatics Graduate Program, Stanford University, Stanford, CA, USA
| | - Rahul Nagvekar
- Department of Genetics, Stanford University, Stanford, CA, USA; Genetics Graduate Program, Stanford University, Stanford, CA, USA
| | - Angela N Pogson
- Department of Genetics, Stanford University, Stanford, CA, USA; Developmental Biology Graduate Program, Stanford University, Stanford, CA, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Alrouji M, Anwar S, Venkatesan K, Shahwan M, Hassan MI, Islam A, Shamsi A. Iron homeostasis and neurodegeneration in the ageing brain: Insight into ferroptosis pathways. Ageing Res Rev 2024; 102:102575. [PMID: 39515619 DOI: 10.1016/j.arr.2024.102575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/26/2024] [Revised: 10/25/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Ageing is a major risk factor for various chronic diseases and offers a potential target for developing novel and broadly effective preventatives or therapeutics for age-related conditions, including those affecting the brain. Mechanisms contributing to ageing have been summarized as the hallmarks of ageing, with iron imbalance being one of the major factors. Ferroptosis, an iron-mediated lipid peroxidation-induced programmed cell death, has recently been implicated in neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). Addressing ferroptosis offers both opportunities and challenges for treating neurodegenerative diseases, though the specific mechanisms remain unclear. This research explores the key processes behind how ferroptosis contributes to brain ageing, with a focus on the complex signaling networks that are involved. The current article aims to uncover that how ferroptosis, a specific type of cell death, may drive age-related changes in the brain. Additionally, the article also unveils its role in neurodegenerative diseases, discussing how understanding these mechanisms could open up new therapeutic avenues.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia.
| | - Saleha Anwar
- Center for Global Health Research, Saveetha medical college, Saveetha institute of Medical and Technical Sciences, Chennai, India.
| | - Kumar Venkatesan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia.
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, United Arab Emirates.
| | - Md Imtaiyaz Hassan
- Center for Interdsicplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
| | - Asimul Islam
- Center for Interdsicplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
| | - Anas Shamsi
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, United Arab Emirates.
| |
Collapse
|
4
|
Bhagar R, Gill SS, Le-Niculescu H, Yin C, Roseberry K, Mullen J, Schmitz M, Paul E, Cooke J, Tracy C, Tracy Z, Gettelfinger AS, Battles D, Yard M, Sandusky G, Shekhar A, Kurian SM, Bogdan P, Niculescu AB. Next-generation precision medicine for suicidality prevention. Transl Psychiatry 2024; 14:362. [PMID: 39242534 PMCID: PMC11379963 DOI: 10.1038/s41398-024-03071-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/13/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
Suicidality remains a clear and present danger in society in general, and for mental health patients in particular. Lack of widespread use of objective and/or quantitative information has hampered treatment and prevention efforts. Suicidality is a spectrum of severity from vague thoughts that life is not worth living, to ideation, plans, attempts, and completion. Blood biomarkers that track suicidality risk provide a window into the biology of suicidality, as well as could help with assessment and treatment. Previous studies by us were positive. Here we describe new studies we conducted transdiagnostically in psychiatric patients, starting with the whole genome, to expand the identification, prioritization, validation and testing of blood gene expression biomarkers for suicidality, using a multiple independent cohorts design. We found new as well as previously known biomarkers that were predictive of high suicidality states, and of future psychiatric hospitalizations related to them, using cross-sectional and longitudinal approaches. The overall top increased in expression biomarker was SLC6A4, the serotonin transporter. The top decreased biomarker was TINF2, a gene whose mutations result in very short telomeres. The top biological pathways were related to apoptosis. The top upstream regulator was prednisolone. Taken together, our data supports the possibility that biologically, suicidality is an extreme stress-driven form of active aging/death. Consistent with that, the top subtypes of suicidality identified by us just based on clinical measures had high stress and high anxiety. Top therapeutic matches overall were lithium, clozapine and ketamine, with lithium stronger in females and clozapine stronger in males. Drug repurposing bioinformatic analyses identified the potential of renin-angiotensin system modulators and of cyclooxygenase inhibitors. Additionally, we show how patient reports for doctors would look based on blood biomarkers testing, personalized by gender. We also integrated with the blood biomarker testing social determinants and psychological measures (CFI-S, suicidal ideation), showing synergy. Lastly, we compared that to machine learning approaches, to optimize predictive ability and identify key features. We propose that our findings and comprehensive approach can have transformative clinical utility.
Collapse
Affiliation(s)
- R Bhagar
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - S S Gill
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- MindX Sciences, Indianapolis, IN, USA
| | - H Le-Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Psychiatry, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - C Yin
- University of Southern California, Los Angeles, CA, USA
| | - K Roseberry
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - J Mullen
- IT Core, Indiana University, Indianapolis, IN, USA
| | - M Schmitz
- MindX Sciences, Indianapolis, IN, USA
| | - E Paul
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- VA Medical Center, Indianapolis, IN, USA
| | - J Cooke
- VA Medical Center, Indianapolis, IN, USA
| | - C Tracy
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- VA Medical Center, Indianapolis, IN, USA
| | - Z Tracy
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- VA Medical Center, Indianapolis, IN, USA
| | - A S Gettelfinger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - D Battles
- Marion County Coroner's Office, Indianapolis, USA
| | - M Yard
- INBRAIN, Indianapolis, IN, USA
| | | | - A Shekhar
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Office of the Dean, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - P Bogdan
- University of Southern California, Los Angeles, CA, USA
| | - A B Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA.
- MindX Sciences, Indianapolis, IN, USA.
- VA Medical Center, Indianapolis, IN, USA.
- INBRAIN, Indianapolis, IN, USA.
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Psychiatry, University of Arizona College of Medicine, Phoenix, AZ, USA.
| |
Collapse
|
5
|
Abdul-Rahman T, Ghosh S, Kalmanovich JB, Awuah AW, Zivcevska M, Khalifa S, Bassey EE, Ali NA, Ferreira MMDS, Umar TP, Garg N, Nweze VN, Inturu VSS, Abdelwahab MM, Kurian S, Alexiou A, Alfaleh M, Alqurashi TMA, Ashraf GM. The role of membrane trafficking and retromer complex in Parkinson's and Alzheimer's disease. J Neurosci Res 2024; 102:e25261. [PMID: 38284858 DOI: 10.1002/jnr.25261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/16/2023] [Revised: 09/16/2023] [Accepted: 10/03/2023] [Indexed: 01/30/2024]
Abstract
Membrane trafficking is a physiological process encompassing different pathways involved in transporting cellular products across cell membranes to specific cell locations via encapsulated vesicles. This process is required for cells to mature and function properly, allowing them to adapt to their surroundings. The retromer complex is a complex composed of nexin proteins and peptides that play a vital role in the endosomal pathway of membrane trafficking. In humans, any interference in normal membrane trafficking or retromer complex can cause profound changes such as those seen in neurodegenerative disorders such as Alzheimer's and Parkinson's. Several studies have explored the potential causative mechanisms in developing both disease processes; however, the role of retromer trafficking in their pathogenesis is becoming increasingly significant with promising therapeutic applications. This manuscript describes the processes involved in membrane transport and the roles of the retromer in the onset and progression of Alzheimer's and Parkinson's. Moreover, we will also explore how these aberrant mechanisms may serve as possible avenues for treatment development in both diseases and the prospect of its future application.
Collapse
Affiliation(s)
| | - Shankhaneel Ghosh
- Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan, Bhubaneswar, India
| | | | | | - Marija Zivcevska
- Liberty University College of Osteopathic Medicine, Lynchburg, Virginia, USA
| | - Samar Khalifa
- Clinical Psychology Department, Faculty of Arts, Kafrelsheikh University, Kafr Elsheikh, Egypt
| | | | | | | | - Tungki Pratama Umar
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London, London, UK
| | - Neil Garg
- Rowan-Virtua School of Osteopathic Medicine, One Medical Center Drive Stratford, Stratford, New Jersey, USA
| | | | | | | | | | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, New South Wales, Australia
- AFNP Med, Wien, Austria
| | - Mohammed Alfaleh
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thamer M A Alqurashi
- Department of Pharmacology, Medical College, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
6
|
Johnson M, Bell A, Lauing KL, Ladomersky E, Zhai L, Penco-Campillo M, Shah Y, Mauer E, Xiu J, Nicolaides T, Drumm M, McCortney K, Elemento O, Kim M, Bommi P, Low JT, Memon R, Wu J, Zhao J, Mi X, Glantz MJ, Sengupta S, Castro B, Yamini B, Horbinski C, Baker DJ, Walunas TL, Schiltz GE, Lukas RV, Wainwright DA. Advanced Age in Humans and Mouse Models of Glioblastoma Show Decreased Survival from Extratumoral Influence. Clin Cancer Res 2023; 29:4973-4989. [PMID: 37725593 PMCID: PMC10690140 DOI: 10.1158/1078-0432.ccr-23-0834] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/24/2023] [Revised: 08/03/2023] [Accepted: 09/14/2023] [Indexed: 09/21/2023]
Abstract
PURPOSE Glioblastoma (GBM) is the most common aggressive primary malignant brain tumor in adults with a median age of onset of 68 to 70 years old. Although advanced age is often associated with poorer GBM patient survival, the predominant source(s) of maladaptive aging effects remains to be established. Here, we studied intratumoral and extratumoral relationships between adult patients with GBM and mice with brain tumors across the lifespan. EXPERIMENTAL DESIGN Electronic health records at Northwestern Medicine and the NCI SEER databases were evaluated for GBM patient age and overall survival. The commercial Tempus and Caris databases, as well as The Cancer Genome Atlas were profiled for gene expression, DNA methylation, and mutational changes with varying GBM patient age. In addition, gene expression analysis was performed on the extratumoral brain of younger and older adult mice with or without a brain tumor. The survival of young and old wild-type or transgenic (INK-ATTAC) mice with a brain tumor was evaluated after treatment with or without senolytics and/or immunotherapy. RESULTS Human patients with GBM ≥65 years of age had a significantly decreased survival compared with their younger counterparts. While the intra-GBM molecular profiles were similar between younger and older patients with GBM, non-tumor brain tissue had a significantly different gene expression profile between young and old mice with a brain tumor and the eradication of senescent cells improved immunotherapy-dependent survival of old but not young mice. CONCLUSIONS This work suggests a potential benefit for combining senolytics with immunotherapy in older patients with GBM.
Collapse
Affiliation(s)
- Margaret Johnson
- Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina
| | - April Bell
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Kristen L. Lauing
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
- Department of Neurological Surgery at Loyola University Medical Center, Maywood, Illinois
| | | | - Lijie Zhai
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
- Department of Neurological Surgery at Loyola University Medical Center, Maywood, Illinois
| | - Manon Penco-Campillo
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
- Department of Neurological Surgery at Loyola University Medical Center, Maywood, Illinois
| | - Yajas Shah
- Institute of Computational Biomedicine, Weill Cornell Medicine, New York, New York
| | | | | | | | - Michael Drumm
- Department of Neurological Surgery, Feinberg School of Medicine, Chicago, Illinois
| | - Kathleen McCortney
- Department of Neurological Surgery, Feinberg School of Medicine, Chicago, Illinois
| | - Olivier Elemento
- Institute of Computational Biomedicine, Weill Cornell Medicine, New York, New York
| | - Miri Kim
- Department of Neurological Surgery at Loyola University Medical Center, Maywood, Illinois
| | - Prashant Bommi
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
- Department of Neurological Surgery at Loyola University Medical Center, Maywood, Illinois
| | - Justin T. Low
- Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina
| | - Ruba Memon
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Jennifer Wu
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Junfei Zhao
- Department of Systems Biology, Herbert Irving Comprehensive Center, Columbia University, New York, New York
- Department of Biomedical Informatics, Columbia University, New York, New York
| | - Xinlei Mi
- Department of Preventive Medicine-Division of Biostatistics at Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Michael J. Glantz
- Department of Neurosurgery, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Soma Sengupta
- Departments of Neurology, Neurosurgery, and the Lineberger Cancer Center, University of North Carolina Chapel Hill, Chapel Hill, North Carolina
| | - Brandyn Castro
- Department of Neurological Surgery, University of Chicago, Chicago, Illinois
| | - Bakhtiar Yamini
- Department of Neurological Surgery, University of Chicago, Chicago, Illinois
| | - Craig Horbinski
- Department of Neurological Surgery, Feinberg School of Medicine, Chicago, Illinois
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Darren J. Baker
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
- Paul F. Glenn Center for the Biology of Aging at Mayo Clinic, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Theresa L. Walunas
- Department of Medicine-Division of General Internal Medicine and Geriatrics at Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Gary E. Schiltz
- Department of Chemistry, Northwestern University, Evanston, Illinois
| | - Rimas V. Lukas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Derek A. Wainwright
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
- Department of Neurological Surgery at Loyola University Medical Center, Maywood, Illinois
- Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, Illinois
| |
Collapse
|
7
|
Lee JY, Harney DJ, Teo JD, Kwok JB, Sutherland GT, Larance M, Don AS. The major TMEM106B dementia risk allele affects TMEM106B protein levels, fibril formation, and myelin lipid homeostasis in the ageing human hippocampus. Mol Neurodegener 2023; 18:63. [PMID: 37726834 PMCID: PMC10510131 DOI: 10.1186/s13024-023-00650-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/19/2022] [Accepted: 08/17/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND The risk for dementia increases exponentially from the seventh decade of life. Identifying and understanding the biochemical changes that sensitize the ageing brain to neurodegeneration will provide new opportunities for dementia prevention and treatment. This study aimed to determine how ageing and major genetic risk factors for dementia affect the hippocampal proteome and lipidome of neurologically-normal humans over the age of 65. The hippocampus was chosen as it is highly susceptible to atrophy with ageing and in several neurodegenerative diseases. METHODS Mass spectrometry-based proteomic and lipidomic analysis of CA1 hippocampus samples from 74 neurologically normal human donors, aged 66-104, was used in combination with multiple regression models and gene set enrichment analysis to identify age-dependent changes in the proteome and lipidome. ANOVA was used to test the effect of major dementia risk alleles in the TMEM106B and APOE genes on the hippocampal proteome and lipidome, adjusting for age, gender, and post-mortem interval. Fibrillar C-terminal TMEM106B fragments were isolated using sarkosyl fractionation and quantified by immunoblotting. RESULTS Forty proteins were associated with age at false discovery rate-corrected P < 0.05, including proteins that regulate cell adhesion, the cytoskeleton, amino acid and lipid metabolism, and ribosomal subunits. TMEM106B, a regulator of lysosomal and oligodendrocyte function, was regulated with greatest effect size. The increase in TMEM106B levels with ageing was specific to carriers of the rs1990622-A allele in the TMEM106B gene that increases risk for frontotemporal dementia, Alzheimer's disease, Parkinson's disease, and hippocampal sclerosis with ageing. Rs1990622-A was also associated with higher TMEM106B fibril content. Hippocampal lipids were not significantly affected by APOE genotype, however levels of myelin-enriched sulfatides and hexosylceramides were significantly lower, and polyunsaturated phospholipids were higher, in rs1990622-A carriers after controlling for APOE genotype. CONCLUSIONS Our study demonstrates that TMEM106B protein abundance is increased with brain ageing in humans, establishes that dementia risk allele rs1990622-A predisposes to TMEM106B fibril formation in the hippocampus, and provides the first evidence that rs1990622-A affects brain lipid homeostasis, particularly myelin lipids. Our data suggests that TMEM106B is one of a growing list of major dementia risk genes that affect glial lipid metabolism.
Collapse
Affiliation(s)
- Jun Yup Lee
- Charles Perkins Centre, Camperdown, NSW, 2006, Australia
- School of Medical Sciences, Camperdown, NSW, 2006, Australia
| | - Dylan J Harney
- Charles Perkins Centre, Camperdown, NSW, 2006, Australia
- School of Medical Sciences, Camperdown, NSW, 2006, Australia
| | - Jonathan D Teo
- Charles Perkins Centre, Camperdown, NSW, 2006, Australia
- School of Medical Sciences, Camperdown, NSW, 2006, Australia
| | - John B Kwok
- School of Medical Sciences, Camperdown, NSW, 2006, Australia
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Greg T Sutherland
- Charles Perkins Centre, Camperdown, NSW, 2006, Australia
- School of Medical Sciences, Camperdown, NSW, 2006, Australia
| | - Mark Larance
- Charles Perkins Centre, Camperdown, NSW, 2006, Australia
- School of Medical Sciences, Camperdown, NSW, 2006, Australia
| | - Anthony S Don
- Charles Perkins Centre, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
8
|
LaForce GR, Philippidou P, Schaffer AE. mRNA isoform balance in neuronal development and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1762. [PMID: 36123820 PMCID: PMC10024649 DOI: 10.1002/wrna.1762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/29/2022] [Revised: 07/11/2022] [Accepted: 08/15/2022] [Indexed: 11/07/2022]
Abstract
Balanced mRNA isoform diversity and abundance are spatially and temporally regulated throughout cellular differentiation. The proportion of expressed isoforms contributes to cell type specification and determines key properties of the differentiated cells. Neurons are unique cell types with intricate developmental programs, characteristic cellular morphologies, and electrophysiological potential. Neuron-specific gene expression programs establish these distinctive cellular characteristics and drive diversity among neuronal subtypes. Genes with neuron-specific alternative processing are enriched in key neuronal functions, including synaptic proteins, adhesion molecules, and scaffold proteins. Despite the similarity of neuronal gene expression programs, each neuronal subclass can be distinguished by unique alternative mRNA processing events. Alternative processing of developmentally important transcripts alters coding and regulatory information, including interaction domains, transcript stability, subcellular localization, and targeting by RNA binding proteins. Fine-tuning of mRNA processing is essential for neuronal activity and maintenance. Thus, the focus of neuronal RNA biology research is to dissect the transcriptomic mechanisms that underlie neuronal homeostasis, and consequently, predispose neuronal subtypes to disease. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Geneva R LaForce
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Polyxeni Philippidou
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ashleigh E Schaffer
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
9
|
Taraszkiewicz A, Sinkiewicz I, Sommer A, Staroszczyk H. The biological role of prolyl oligopeptidase and the procognitive potential of its peptidic inhibitors from food proteins. Crit Rev Food Sci Nutr 2023; 64:6567-6580. [PMID: 36798052 DOI: 10.1080/10408398.2023.2170973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/18/2023]
Abstract
Prolyl oligopeptidase (POP) is a conserved serine protease belonging to proline-specific peptidases. It has both enzymatic and non-enzymatic activity and is involved in numerous biological processes in the human body, playing a role in e.g., cellular growth and differentiation, inflammation, as well as the development of some neurodegenerative and neuropsychiatric disorders. This article describes the physiological and pathological aspects of POP activity and the state-of-art of its peptidic inhibitors originating from food proteins, with a particular focus on their potential as cognition-enhancing agents. Although some milk, meat, fish, and plant protein-derived peptides have the potential to be applied as natural, procognitive nutraceuticals, their effectiveness requires further evaluation, especially in clinical trials. We demonstrated that the important features of the most promising POP-inhibiting peptides are very short sequence, high content of hydrophobic amino acids, and usually the presence of proline residue.
Collapse
Affiliation(s)
- Antoni Taraszkiewicz
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Izabela Sinkiewicz
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Agata Sommer
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Hanna Staroszczyk
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| |
Collapse
|
10
|
Lee JY, Harney D, Kwok J, Larance M, Don AS. The major TMEM106B dementia risk allele affects TMEM106B protein levels and myelin lipid homeostasis in the ageing human hippocampus. RESEARCH SQUARE 2023:rs.3.rs-2392941. [PMID: 36711721 PMCID: PMC9882607 DOI: 10.21203/rs.3.rs-2392941/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 01/18/2023]
Abstract
Background The risk for dementia increases exponentially from the seventh decade of life. Identifying and understanding the biochemical changes that sensitize the ageing brain to neurodegeneration will provide new opportunities for dementia prevention and treatment. This study aimed to determine how ageing and major genetic risk factors for dementia affect the hippocampal proteome and lipidome of neurologically-normal humans over the age of 65. The hippocampus was chosen as it is highly susceptible to atrophy with ageing and in several neurodegenerative diseases. Methods Mass spectrometry-based proteomic and lipidomic analysis of CA1 hippocampus samples from 74 neurologically normal human donors, aged 66-104, was used in combination with multiple regression models and gene set enrichment analysis to identify age-dependent changes in the proteome and lipidome. ANOVA was used to test the effect of major dementia risk alleles in the TMEM106B and APOE genes on the hippocampal proteome and lipidome, adjusting for age, gender, and post-mortem interval. Results Forty proteins were associated with age at false discovery rate-corrected P < 0.05, including proteins that regulate cell adhesion, the cytoskeleton, amino acid and lipid metabolism, and ribosomal subunits. Transmembrane protein 106B (TMEM106B), a regulator of lysosomal and oligodendrocyte function, was regulated with greatest effect size. The increase in TMEM106B levels with age was specific to carriers of the rs1990622-A allele in the TMEM106B gene that is associated with increased risk for frontotemporal dementia, Alzheimer's disease, Parkinson's disease, and hippocampal sclerosis with ageing. Hippocampal lipids were not significantly affected by APOE genotype, however levels of myelin-enriched sulfatides and hexosylceramides were significantly lower, and polyunsaturated phospholipids were higher, in rs1990622-A carriers after controlling for APOE genotype. Conclusions Our study provides the first evidence that TMEM106B protein abundance is increased with brain ageing in humans, and the first evidence that the major TMEM106B dementia risk allele affects brain lipid homeostasis, with a clear effect on myelin lipid content. Our data implies that TMEM106B is one of a growing list of major dementia risk genes that affect glial lipid metabolism.
Collapse
Affiliation(s)
- Jun Yup Lee
- The University of Sydney SMS: The University of Sydney School of Medical Sciences
| | | | - John Kwok
- The University of Sydney SMS: The University of Sydney School of Medical Sciences
| | - Mark Larance
- The University of Sydney SMS: The University of Sydney School of Medical Sciences
| | | |
Collapse
|
11
|
Zhang X, An H, Chen Y, Shu N. Neurobiological Mechanisms of Cognitive Decline Correlated with Brain Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1419:127-146. [PMID: 37418211 DOI: 10.1007/978-981-99-1627-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Academic Contribution Register] [Indexed: 07/08/2023]
Abstract
Cognitive decline has emerged as one of the greatest health threats of old age. Meanwhile, aging is the primary risk factor for Alzheimer's disease (AD) and other prevalent neurodegenerative disorders. Developing therapeutic interventions for such conditions demands a greater understanding of the processes underlying normal and pathological brain aging. Despite playing an important role in the pathogenesis and incidence of disease, brain aging has not been well understood at a molecular level. Recent advances in the biology of aging in model organisms, together with molecular- and systems-level studies of the brain, are beginning to shed light on these mechanisms and their potential roles in cognitive decline. This chapter seeks to integrate the knowledge about the neurological mechanisms of age-related cognitive changes that underlie aging.
Collapse
Affiliation(s)
- Xiaxia Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
| | - Haiting An
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
- Beijing Neurosurgical Institute, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Yuan Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
| | - Ni Shu
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China.
| |
Collapse
|
12
|
Tonoki A, Nagai S, Yu Z, Yue T, Lyu S, Hou X, Onuki K, Yabana K, Takahashi H, Itoh M. Nitric oxide-soluble guanylyl cyclase pathway as a contributor to age-related memory impairment in Drosophila. Aging Cell 2022; 21:e13691. [PMID: 35963012 PMCID: PMC9470885 DOI: 10.1111/acel.13691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/14/2022] [Accepted: 07/27/2022] [Indexed: 01/25/2023] Open
Abstract
Age-related changes in the transcriptome lead to memory impairment. Several genes have been identified to cause age-dependent memory impairment (AMI) by changes in their expression, but genetic screens to identify genes critical for AMI have not been performed. The fruit fly is a useful model for studying AMI due to its short lifespan and the availability of consistent techniques and environments to assess its memory ability. We generated a list of candidate genes that act as AMI regulators by performing a comprehensive analysis of RNAsequencing data from young and aged fly heads and genome-wide RNAi screening data to identify memory-regulating genes. A candidate screen using temporal and panneuronal RNAi expression was performed to identify genes critical for AMI. We identified the guanylyl cyclase β-subunit at 100B (gycβ) gene, which encodes a subunit of soluble guanylyl cyclase (sGC), the only intracellular nitric oxide (NO) receptor in fruit flies, as a negative regulator of AMI. RNAi knockdown of gycβ in neurons and NO synthase (NOS) in glia or neurons enhanced the performance of intermediate-term memory (ITM) without apparent effects on memory acquisition. We also showed that pharmacological inhibition of sGC and NOS enhanced ITM in aged individuals, suggesting the possibility that age-related enhancement of the NO-sGC pathway causes memory impairment.
Collapse
Affiliation(s)
- Ayako Tonoki
- Department of Biochemistry, Graduate School of Pharmaceutical SciencesChiba UniversityChibaJapan
| | - Saki Nagai
- Department of Biochemistry, Graduate School of Pharmaceutical SciencesChiba UniversityChibaJapan
| | - Zhihua Yu
- Department of Biochemistry, Graduate School of Pharmaceutical SciencesChiba UniversityChibaJapan
| | - Tong Yue
- Department of Biochemistry, Graduate School of Pharmaceutical SciencesChiba UniversityChibaJapan
| | - Sizhe Lyu
- Department of Biochemistry, Graduate School of Pharmaceutical SciencesChiba UniversityChibaJapan
| | - Xue Hou
- Department of Biochemistry, Graduate School of Pharmaceutical SciencesChiba UniversityChibaJapan
| | - Kotomi Onuki
- Department of Biochemistry, Graduate School of Pharmaceutical SciencesChiba UniversityChibaJapan
| | - Kaho Yabana
- Department of Biochemistry, Graduate School of Pharmaceutical SciencesChiba UniversityChibaJapan
| | | | - Motoyuki Itoh
- Department of Biochemistry, Graduate School of Pharmaceutical SciencesChiba UniversityChibaJapan
| |
Collapse
|
13
|
Eteläinen TS, Kilpeläinen TP, Ignatius A, Auno S, De Lorenzo F, Uhari-Väänänen JK, Julku UH, Myöhänen TT. Removal of proteinase K resistant αSyn species does not correlate with cell survival in a virus vector-based Parkinson's disease mouse model. Neuropharmacology 2022; 218:109213. [PMID: 35964686 DOI: 10.1016/j.neuropharm.2022.109213] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/28/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 10/31/2022]
Abstract
Parkinson's disease (PD) is characterized by degeneration of nigrostriatal dopaminergic neurons and accumulation of α-synuclein (αSyn) as Lewy bodies. Currently, there is no disease-modifying therapy available for PD. We have shown that a small molecular inhibitor for prolyl oligopeptidase (PREP), KYP-2047, relieves αSyn-induced toxicity in various PD models by inducing autophagy and preventing αSyn aggregation. In this study, we wanted to study the effects of PREP inhibition on different αSyn species by using cell culture and in vivo models. We used Neuro2A cells with transient αSyn overexpression and oxidative stress or proteasomal inhibition-induced αSyn aggregation to assess the effect of KYP-2047 on soluble αSyn oligomers and on cell viability. Here, the levels of soluble αSyn were measured by using ELISA, and the impact of KYP-2047 was compared to anle138b, nilotinib and deferiprone. To evaluate the effect of KYP-2047 on αSyn fibrillization in vivo, we used unilateral nigral AAV1/2-A53T-αSyn mouse model, where the KYP-2047 treatment was initiated two- or four-weeks post injection. KYP-2047 and anle138b protected cells from αSyn toxicity but interestingly, KYP-2047 did not reduce soluble αSyn oligomers. In AAV-A53T-αSyn mouse model, KYP-2047 reduced significantly proteinase K-resistant αSyn oligomers and oxidative damage related to αSyn aggregation. However, the KYP-2047 treatment that was initiated at the time of symptom onset, failed to protect the nigrostriatal dopaminergic neurons. Our results emphasize the importance of whole αSyn aggregation process in the pathology of PD and raise an important question about the forms of αSyn that are reasonable targets for PD drug therapy.
Collapse
Affiliation(s)
- Tony S Eteläinen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland
| | - Tommi P Kilpeläinen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland
| | - Adele Ignatius
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland
| | - Samuli Auno
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland
| | - Francesca De Lorenzo
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland
| | - Johanna K Uhari-Väänänen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland
| | - Ulrika H Julku
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland
| | - Timo T Myöhänen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Finland.
| |
Collapse
|
14
|
Hsieh CJ, Hou C, Zhu Y, Lee JY, Kohli N, Gallagher E, Xu K, Lee H, Li S, McManus MJ, Mach RH. [ 18F]ROStrace detects oxidative stress in vivo and predicts progression of Alzheimer's disease pathology in APP/PS1 mice. EJNMMI Res 2022; 12:43. [PMID: 35895177 PMCID: PMC9329498 DOI: 10.1186/s13550-022-00914-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/06/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Oxidative stress is implicated in the pathogenesis of the most common neurodegenerative diseases, such as Alzheimer's disease (AD). However, tracking oxidative stress in the brain has proven difficult and impeded its use as a biomarker. Herein, we investigate the utility of a novel positron emission tomography (PET) tracer, [18F]ROStrace, as a biomarker of oxidative stress throughout the course of AD in the well-established APP/PS1 double-mutant mouse model. PET imaging studies were conducted in wild-type (WT) and APP/PS1 mice at 3 different time points, representing early (5 mo.), middle (10 mo.), and advanced (16 mo.) life (n = 6-12, per sex). Semi-quantitation SUVRs of the plateau phase (40-60 min post-injection; SUVR40-60) of ten brain subregions were designated by the Mirrione atlas and analyzed by Pmod. Statistical parametric mapping (SPM) was used to distinguish brain regions with elevated ROS in APP/PS1 relative to WT in both sexes. The PET studies were validated by ex vivo autoradiography and immunofluorescence with the parent compound, dihydroethidium. RESULTS [18F]ROStrace retention was increased in the APP/PS1 brain compared to age-matched controls by 10 mo. of age (p < 0.0001) and preceded the accumulation of oxidative damage in APP/PS1 neurons at 16 mo. (p < 0.005). [18F]ROStrace retention and oxidative damages were higher and occurred earlier in female APP/PS1 mice as measured by PET (p < 0.001), autoradiography, and immunohistochemistry (p < 0.05). [18F]ROStrace differences emerged midlife, temporally and spatially correlating with increased Aβ burden (r2 = 0.36; p = 0.0003), which was also greatest in the female brain (p < 0.001). CONCLUSIONS [18F]ROStrace identifies increased oxidative stress and neuroinflammation in APP/PS1 female mice, concurrent with increased amyloid burden midlife. Differences in oxidative stress during this crucial time may partially explain the sexual dimorphism in AD. [18F]ROStrace may provide a long-awaited tool to stratify at-risk patients who may benefit from antioxidant therapy prior to irreparable neurodegeneration.
Collapse
Affiliation(s)
- Chia-Ju Hsieh
- grid.25879.310000 0004 1936 8972Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Catherine Hou
- grid.25879.310000 0004 1936 8972Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Yi Zhu
- grid.239552.a0000 0001 0680 8770Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA ,grid.239552.a0000 0001 0680 8770Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Ji Youn Lee
- grid.25879.310000 0004 1936 8972Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Neha Kohli
- grid.239552.a0000 0001 0680 8770Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA ,grid.239552.a0000 0001 0680 8770Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Evan Gallagher
- grid.25879.310000 0004 1936 8972Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA ,grid.239552.a0000 0001 0680 8770Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA ,grid.239552.a0000 0001 0680 8770Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Kuiying Xu
- grid.25879.310000 0004 1936 8972Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Hsiaoju Lee
- grid.25879.310000 0004 1936 8972Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Shihong Li
- grid.25879.310000 0004 1936 8972Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Meagan J. McManus
- grid.239552.a0000 0001 0680 8770Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA ,grid.239552.a0000 0001 0680 8770Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Robert H. Mach
- grid.25879.310000 0004 1936 8972Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
15
|
Hajdarovic KH, Yu D, Hassell LA, Evans S, Packer S, Neretti N, Webb AE. Single-cell analysis of the aging female mouse hypothalamus. NATURE AGING 2022; 2:662-678. [PMID: 36285248 PMCID: PMC9592060 DOI: 10.1038/s43587-022-00246-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/06/2021] [Accepted: 06/02/2022] [Indexed: 01/15/2023]
Abstract
Alterations in metabolism, sleep patterns, body composition, and hormone status are all key features of aging. While the hypothalamus is a well-conserved brain region that controls these homeostatic and survival-related behaviors, little is known about the intrinsic features of hypothalamic aging. Here, we perform single nuclei RNA-sequencing of 40,064 hypothalamic nuclei from young and aged female mice. We identify cell type-specific signatures of aging in neuronal subtypes as well as astrocytes and microglia. We uncover changes in cell types critical for metabolic regulation and body composition, and in an area of the hypothalamus linked to cognition. Our analysis also reveals an unexpected female-specific feature of hypothalamic aging: the master regulator of X-inactivation, Xist, is elevated with age, particularly in hypothalamic neurons. Moreover, using machine learning, we show that levels of X-chromosome genes, and Xist itself, can accurately predict cellular age. This study identifies critical cell-specific changes of the aging hypothalamus in mammals, and uncovers a potential marker of neuronal aging in females.
Collapse
Affiliation(s)
- Kaitlyn H Hajdarovic
- Neuroscience Graduate Program, Brown University, Providence, RI, 02912, USA
- These authors contributed equally: Kaitlyn H. Hajdarovic, Doudou Yu
| | - Doudou Yu
- Molecular Biology, Cell Biology, and Biochemistry Graduate Program, Brown University, Providence, RI 02912, USA
- These authors contributed equally: Kaitlyn H. Hajdarovic, Doudou Yu
| | - Lexi-Amber Hassell
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Shane Evans
- Graduate program in Computational Biology, Brown University, Providence, RI, 02912, USA
| | - Sarah Packer
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Nicola Neretti
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
- Center on the Biology of Aging, Brown University, Providence, RI 02912, USA
| | - Ashley E Webb
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
- Center on the Biology of Aging, Brown University, Providence, RI 02912, USA
- Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
- Center for Translational Neuroscience, Brown University, Providence, RI 02912, USA
| |
Collapse
|
16
|
Tran LT, Park S, Kim SK, Lee JS, Kim KW, Kwon O. Hypothalamic control of energy expenditure and thermogenesis. Exp Mol Med 2022; 54:358-369. [PMID: 35301430 PMCID: PMC9076616 DOI: 10.1038/s12276-022-00741-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/19/2021] [Revised: 12/05/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
Energy expenditure and energy intake need to be balanced to maintain proper energy homeostasis. Energy homeostasis is tightly regulated by the central nervous system, and the hypothalamus is the primary center for the regulation of energy balance. The hypothalamus exerts its effect through both humoral and neuronal mechanisms, and each hypothalamic area has a distinct role in the regulation of energy expenditure. Recent studies have advanced the understanding of the molecular regulation of energy expenditure and thermogenesis in the hypothalamus with targeted manipulation techniques of the mouse genome and neuronal function. In this review, we elucidate recent progress in understanding the mechanism of how the hypothalamus affects basal metabolism, modulates physical activity, and adapts to environmental temperature and food intake changes. The hypothalamus is a key regulator of metabolism, controlling resting metabolism, activity levels, and responses to external temperature and food intake. The balance between energy intake and expenditure must be tightly controlled, with imbalances resulting in metabolic disorders such as obesity or diabetes. Obin Kwon at Seoul National University College of Medicine and Ki Woo Kim at Yonsei University College of Dentistry, Seoul, both in South Korea, and coworkers reviewed how metabolism is regulated by the hypothalamus, a small hormone-producing brain region. They report that hormonal and neuronal signals from the hypothalamus influence the ratio of lean to fatty tissue, gender-based differences in metabolism, activity levels, and weight gain in response to food intake. They note that further studies to untangle cause-and-effect relationships and other genetic factors will improve our understanding of metabolic regulation.
Collapse
Affiliation(s)
- Le Trung Tran
- Departments of Oral Biology and Applied Biological Science, BK21 Four, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Sohee Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.,Departments of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Seul Ki Kim
- Departments of Oral Biology and Applied Biological Science, BK21 Four, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Jin Sun Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.,Departments of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Ki Woo Kim
- Departments of Oral Biology and Applied Biological Science, BK21 Four, Yonsei University College of Dentistry, Seoul, 03722, Korea.
| | - Obin Kwon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea. .,Departments of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea.
| |
Collapse
|
17
|
Gu J, Chen L, Sun R, Wang JL, Wang J, Lin Y, Lei S, Zhang Y, Lv D, Jiang F, Deng Y, Collman JP, Fu L. Plasmalogens Eliminate Aging-Associated Synaptic Defects and Microglia-Mediated Neuroinflammation in Mice. Front Mol Biosci 2022; 9:815320. [PMID: 35281262 PMCID: PMC8906368 DOI: 10.3389/fmolb.2022.815320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/15/2021] [Accepted: 02/02/2022] [Indexed: 12/31/2022] Open
Abstract
Neurodegeneration is a pathological condition in which nervous system or neuron losses its structure, function, or both leading to progressive neural degeneration. Growing evidence strongly suggests that reduction of plasmalogens (Pls), one of the key brain lipids, might be associated with multiple neurodegenerative diseases, including Alzheimer’s disease (AD). Plasmalogens are abundant members of ether-phospholipids. Approximately 1 in 5 phospholipids are plasmalogens in human tissue where they are particularly enriched in brain, heart and immune cells. In this study, we employed a scheme of 2-months Pls intragastric administration to aged female C57BL/6J mice, starting at the age of 16 months old. Noticeably, the aged Pls-fed mice exhibited a better cognitive performance, thicker and glossier body hair in appearance than that of aged control mice. The transmission electron microscopic (TEM) data showed that 2-months Pls supplementations surprisingly alleviate age-associated hippocampal synaptic loss and also promote synaptogenesis and synaptic vesicles formation in aged murine brain. Further RNA-sequencing, immunoblotting and immunofluorescence analyses confirmed that plasmalogens remarkably enhanced both the synaptic plasticity and neurogenesis in aged murine hippocampus. In addition, we have demonstrated that Pls treatment inhibited the age-related microglia activation and attenuated the neuroinflammation in the murine brain. These findings suggest for the first time that Pls administration might be a potential intervention strategy for halting neurodegeneration and promoting neuroregeneration.
Collapse
Affiliation(s)
- Jinxin Gu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Lixue Chen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ran Sun
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jie-Li Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Juntao Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yingjun Lin
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Shuwen Lei
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Lv
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Faqin Jiang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - James P. Collman
- Department of Chemistry, Stanford University, Stanford, CA, United States
| | - Lei Fu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou, China
- *Correspondence: Lei Fu,
| |
Collapse
|
18
|
Kluever V, Fornasiero EF. Principles of brain aging: Status and challenges of modeling human molecular changes in mice. Ageing Res Rev 2021; 72:101465. [PMID: 34555542 DOI: 10.1016/j.arr.2021.101465] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/30/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 01/22/2023]
Abstract
Due to the extension of human life expectancy, the prevalence of cognitive impairment is rising in the older portion of society. Developing new strategies to delay or attenuate cognitive decline is vital. For this purpose, it is imperative to understand the cellular and molecular events at the basis of brain aging. While several organs are directly accessible to molecular analysis through biopsies, the brain constitutes a notable exception. Most of the molecular studies are performed on postmortem tissues, where cell death and tissue damage have already occurred. Hence, the study of the molecular aspects of cognitive decline largely relies on animal models and in particular on small mammals such as mice. What have we learned from these models? Do these animals recapitulate the changes observed in humans? What should we expect from future mouse studies? In this review we answer these questions by summarizing the state of the research that has addressed cognitive decline in mice from several perspectives, including genetic manipulation and omics strategies. We conclude that, while extremely valuable, mouse models have limitations that can be addressed by the optimal design of future studies and by ensuring that results are cross-validated in the human context.
Collapse
|
19
|
Drulis-Fajdasz D, Gostomska-Pampuch K, Duda P, Wiśniewski JR, Rakus D. Quantitative Proteomics Reveals Significant Differences between Mouse Brain Formations in Expression of Proteins Involved in Neuronal Plasticity during Aging. Cells 2021; 10:2021. [PMID: 34440790 PMCID: PMC8393337 DOI: 10.3390/cells10082021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 12/22/2022] Open
Abstract
Aging is associated with a general decline in cognitive functions, which appears to be due to alterations in the amounts of proteins involved in the regulation of synaptic plasticity. Here, we present a quantitative analysis of proteins involved in neurotransmission in three brain regions, namely, the hippocampus, the cerebral cortex and the cerebellum, in mice aged 1 and 22 months, using the total protein approach technique. We demonstrate that although the titer of some proteins involved in neurotransmission and synaptic plasticity is affected by aging in a similar manner in all the studied brain formations, in fact, each of the formations represents its own mode of aging. Generally, the hippocampal and cortical proteomes are much more unstable during the lifetime than the cerebellar proteome. The data presented here provide a general picture of the effect of physiological aging on synaptic plasticity and might suggest potential drug targets for anti-aging therapies.
Collapse
Affiliation(s)
- Dominika Drulis-Fajdasz
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland; (D.D.-F.); (P.D.)
| | - Kinga Gostomska-Pampuch
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; (K.G.-P.); (J.R.W.)
- Department of Biochemistry and Immunochemistry, Wrocław Medical University, Chałubińskiego 10, 50-368 Wrocław, Poland
| | - Przemysław Duda
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland; (D.D.-F.); (P.D.)
| | - Jacek Roman Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; (K.G.-P.); (J.R.W.)
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland; (D.D.-F.); (P.D.)
| |
Collapse
|
20
|
Ntostis P, Swanson G, Kokkali G, Iles D, Huntriss J, Pantou A, Tzetis M, Pantos K, Picton HM, Krawetz SA, Miller D. The effects of aging on molecular modulators of human embryo implantation. iScience 2021; 24:102751. [PMID: 34278260 PMCID: PMC8271113 DOI: 10.1016/j.isci.2021.102751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/08/2020] [Revised: 02/26/2021] [Accepted: 06/16/2021] [Indexed: 01/04/2023] Open
Abstract
Advancing age has a negative impact on female fertility. As implantation rates decline during the normal maternal life course, age-related, embryonic factors are altered and our inability to monitor these factors in an unbiased genome-wide manner in vivo has severely limited our understanding of early human embryo development and implantation. Our high-throughput methodology uses trophectoderm samples representing the full spectrum of maternal reproductive ages with embryo implantation potential examined in relation to trophectoderm transcriptome dynamics and reproductive maternal age. Potential embryo-endometrial interactions were tested using trophectoderm sampled from young women, with the receptive uterine environment representing the most 'fertile' environment for successful embryo implantation. Potential roles for extracellular exosomes, embryonic metabolism and regulation of apoptosis were revealed. These biomarkers are consistent with embryo-endometrial crosstalk/developmental competency, serving as a mediator for successful implantation. Our data opens the door to developing a diagnostic test for predicting implantation success in women undergoing fertility treatment.
Collapse
Affiliation(s)
- Panagiotis Ntostis
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
- Genetics Department, Medical school, National and Kapodistrian University of Athens, Athens, 115 27, Greece
| | - Grace Swanson
- Department of Obstetrics and Gynecology and the Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Georgia Kokkali
- Genesis Athens Clinic, Reproductive Medicine Unit, Athens, 152 32, Greece
| | - David Iles
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - John Huntriss
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Agni Pantou
- Genesis Athens Clinic, Reproductive Medicine Unit, Athens, 152 32, Greece
| | - Maria Tzetis
- Genetics Department, Medical school, National and Kapodistrian University of Athens, Athens, 115 27, Greece
| | | | - Helen M. Picton
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Stephen A. Krawetz
- Department of Obstetrics and Gynecology and the Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - David Miller
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
21
|
Gostomska-Pampuch K, Drulis-Fajdasz D, Gizak A, Wiśniewski JR, Rakus D. Absolute Proteome Analysis of Hippocampus, Cortex and Cerebellum in Aged and Young Mice Reveals Changes in Energy Metabolism. Int J Mol Sci 2021; 22:ijms22126188. [PMID: 34201282 PMCID: PMC8229959 DOI: 10.3390/ijms22126188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/14/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 01/03/2023] Open
Abstract
Aging is associated with a general decline of cognitive functions, and it is widely accepted that this decline results from changes in the expression of proteins involved in regulation of synaptic plasticity. However, several lines of evidence have accumulated that suggest that the impaired function of the aged brain may be related to significant alterations in the energy metabolism. In the current study, we employed the label-free "Total protein approach" (TPA) method to focus on the similarities and differences in energy metabolism proteomes of young (1-month-old) and aged (22-month-old) murine brains. We quantified over 7000 proteins in each of the following three analyzed brain structures: the hippocampus, the cerebral cortex and the cerebellum. To the best of our knowledge, this is the most extensive quantitative proteomic description of energy metabolism pathways during the physiological aging of mice. The analysis demonstrates that aging does not significantly affect the abundance of total proteins in the studied brain structures, however, the levels of proteins constituting energy metabolism pathways differ significantly between young and aged mice.
Collapse
Affiliation(s)
- Kinga Gostomska-Pampuch
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany;
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wrocław, Poland
| | - Dominika Drulis-Fajdasz
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, 50-335 Wroclaw, Poland; (D.D.-F.); (A.G.)
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, 50-335 Wroclaw, Poland; (D.D.-F.); (A.G.)
| | - Jacek R. Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany;
- Correspondence: (J.R.W.); (D.R.)
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, 50-335 Wroclaw, Poland; (D.D.-F.); (A.G.)
- Correspondence: (J.R.W.); (D.R.)
| |
Collapse
|
22
|
Eteläinen T, Kulmala V, Svarcbahs R, Jäntti M, Myöhänen TT. Prolyl oligopeptidase inhibition reduces oxidative stress via reducing NADPH oxidase activity by activating protein phosphatase 2A. Free Radic Biol Med 2021; 169:14-23. [PMID: 33838285 DOI: 10.1016/j.freeradbiomed.2021.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 02/09/2021] [Revised: 03/19/2021] [Accepted: 04/01/2021] [Indexed: 10/21/2022]
Abstract
Oxidative stress (OS) is a common toxic feature in various neurodegenerative diseases. Therefore, reducing OS could provide a potential approach to achieve neuroprotection. Prolyl oligopeptidase (PREP) is a serine protease that is linked to neurodegeneration, as endogenous PREP inhibits autophagy and induces the accumulation of detrimental protein aggregates. As such, inhibition of PREP by a small-molecular inhibitor has provided neuroprotection in preclinical models of neurodegenerative diseases. In addition, PREP inhibition has been shown to reduce production of reactive oxygen species (ROS) and the absence of PREP blocks stress-induced ROS production. However, the mechanism behind PREP-related ROS regulation is not known. As we recently discovered PREP's physiological role as a protein phosphatase 2A (PP2A) regulator, we wanted to characterize PREP inhibition as an approach to reduce OS. We studied the impact of a PREP inhibitor, KYP-2047, on hydrogen peroxide and ferrous chloride induced ROS production and on cellular antioxidant response in HEK-293 and SH-SY5Y cells. In addition, we used HEK-293 and SH-SY5Y PREP knock-out cells to validate the role of PREP on stress-induced ROS production. We were able to show that absence of PREP almost entirely blocks the stress-induced ROS production in both cell lines. Reduced ROS production and smaller antioxidant response was also seen in both cell lines after PREP inhibition by 10 μM KYP-2047. Our results also revealed that the OS reducing mechanism of PREP inhibition is related to reduced activation of ROS producing NADPH oxidase through enhanced PP2A activation. In conclusion, our results suggest that PREP inhibition could also provide neuroprotection by reducing OS, thus broadening the scope of its beneficial effects on neurodegeneration.
Collapse
Affiliation(s)
- T Eteläinen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland
| | - V Kulmala
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland
| | - R Svarcbahs
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland
| | - M Jäntti
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland
| | - T T Myöhänen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland; Integrative Physiology and Pharmacology Unit, Institute of Biotechnology, Faculty of Medicine, University of Turku, Finland; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Finland.
| |
Collapse
|
23
|
Vieira N, Rito T, Correia-Neves M, Sousa N. Sorting Out Sorting Nexins Functions in the Nervous System in Health and Disease. Mol Neurobiol 2021; 58:4070-4106. [PMID: 33931804 PMCID: PMC8280035 DOI: 10.1007/s12035-021-02388-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/11/2021] [Accepted: 04/05/2021] [Indexed: 12/18/2022]
Abstract
Endocytosis is a fundamental process that controls protein/lipid composition of the plasma membrane, thereby shaping cellular metabolism, sensing, adhesion, signaling, and nutrient uptake. Endocytosis is essential for the cell to adapt to its surrounding environment, and a tight regulation of the endocytic mechanisms is required to maintain cell function and survival. This is particularly significant in the central nervous system (CNS), where composition of neuronal cell surface is crucial for synaptic functioning. In fact, distinct pathologies of the CNS are tightly linked to abnormal endolysosomal function, and several genome wide association analysis (GWAS) and biochemical studies have identified intracellular trafficking regulators as genetic risk factors for such pathologies. The sorting nexins (SNXs) are a family of proteins involved in protein trafficking regulation and signaling. SNXs dysregulation occurs in patients with Alzheimer’s disease (AD), Down’s syndrome (DS), schizophrenia, ataxia and epilepsy, among others, establishing clear roles for this protein family in pathology. Interestingly, restoration of SNXs levels has been shown to trigger synaptic plasticity recovery in a DS mouse model. This review encompasses an historical and evolutionary overview of SNXs protein family, focusing on its organization, phyla conservation, and evolution throughout the development of the nervous system during speciation. We will also survey SNXs molecular interactions and highlight how defects on SNXs underlie distinct pathologies of the CNS. Ultimately, we discuss possible strategies of intervention, surveying how our knowledge about the fundamental processes regulated by SNXs can be applied to the identification of novel therapeutic avenues for SNXs-related disorders.
Collapse
Affiliation(s)
- Neide Vieira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Teresa Rito
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
24
|
Arora S, Layek B, Singh J. Design and Validation of Liposomal ApoE2 Gene Delivery System to Evade Blood-Brain Barrier for Effective Treatment of Alzheimer's Disease. Mol Pharm 2021; 18:714-725. [PMID: 32787268 PMCID: PMC10292003 DOI: 10.1021/acs.molpharmaceut.0c00461] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/06/2023]
Abstract
Targeting gene-based therapeutics to the brain is a strategy actively sought to treat Alzheimer's disease (AD). Recent findings discovered the role of apolipoprotein E (ApoE) isoforms in the clearance of toxic amyloid beta proteins from the brain. ApoE2 isoform is beneficial for preventing AD development, whereas ApoE4 is a major contributing factor to the disease. In this paper, we demonstrated efficient brain-targeted delivery of ApoE2 encoding plasmid DNA (pApoE2) using glucose transporter-1 (glut-1) targeted liposomes. Liposomes were surface-functionalized with a glut-1 targeting ligand mannose (MAN) and a cell-penetrating peptide (CPP) to enhance brain-targeting and cellular internalization, respectively. Among various CPPs, rabies virus glycoprotein peptide (RVG) or penetratin (Pen) was selected as a cell-penetration enhancer. Dual (RVGMAN and PenMAN)-functionalized liposomes were cytocompatible at 100 nM phospholipid concentration and demonstrated significantly higher expression of ApoE2 in bEnd.3 cells, primary neurons, and astrocytes compared to monofunctionalized and unmodified (plain) liposomes. Dual-modified liposomes also showed ∼2 times higher protein expression than other formulation controls in neurons cultured below the in vitro BBB model. These results translated well to in vivo efficacy study with significantly higher transfection of pApoE2 in the C57BL/6 mice brain following single tail vein administration of RVGMAN and PenMAN functionalized liposomes without any noticeable signs of toxicity. These results illustrate the potential of surface-modified liposomes for safe and brain-targeted delivery of the pApoE2 gene for effective AD therapy.
Collapse
Affiliation(s)
- Sanjay Arora
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, 58105 North Dakota, United States
| | - Buddhadev Layek
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, 58105 North Dakota, United States
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, 58105 North Dakota, United States
| |
Collapse
|
25
|
Hiramoto K, Yamate Y, Matsuda K, Sugiyama D, Iizuka Y. Tranexamic Acid Improves Memory and Learning Abilities in Aging Mice. J Exp Pharmacol 2020; 12:653-663. [PMID: 33376415 PMCID: PMC7755347 DOI: 10.2147/jep.s284532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/01/2020] [Accepted: 11/26/2020] [Indexed: 12/21/2022] Open
Abstract
Purpose Although the onset mechanism of Alzheimer’s disease, which co-occurs with aging, has been extensively studied, no effective methods that improve the decline in memory and learning abilities following aging have been developed. Tranexamic acid provided promising results for ameliorating photo-aging and extending the natural lifespan. However, it is unknown whether it affects the decline in memory and learning abilities due to aging. In this study, we examined the effect of tranexamic acid on memory and learning abilities of naturally aging mice. Methods ICR mice were orally administered with tranexamic acid (12 mg/kg/day) three times weekly for 2 years, and their memory and learning abilities were compared between the tranexamic acid-treated and non-treated groups. Results The decline in memory and learning abilities due to aging was ameliorated by tranexamic acid administration. The expression of plasmin and amyloid-β decreased following the treatment with tranexamic acid. Furthermore, the number of M1-type brain macrophages diminished and that of M2 macrophages increased. In addition, administration of tranexamic acid decreased the concentrations of interleukin (IL)-1β and tumor necrosis factor-α, while it increased the levels of IL-10 and transforming growth factor-α in the brain. Conclusion These results indicated that tranexamic acid suppressed the secretion of the inflammatory cytokines aging M1-type macrophages, thereby improving age-related memory and learning abilities.
Collapse
Affiliation(s)
- Keiichi Hiramoto
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670, Japan
| | - Yurika Yamate
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670, Japan
| | - Kazunari Matsuda
- R&D Department, Daiichi Sankyo Healthcare Co., LTD, Shinagawa-ku, Tokyo 103-8234, Japan
| | - Daijiro Sugiyama
- R&D Department, Daiichi Sankyo Healthcare Co., LTD, Shinagawa-ku, Tokyo 103-8234, Japan
| | - Yasutaka Iizuka
- R&D Department, Daiichi Sankyo Healthcare Co., LTD, Shinagawa-ku, Tokyo 103-8234, Japan
| |
Collapse
|
26
|
Shin T, Hiraoka Y, Yamasaki T, Marth JD, Penninger JM, Kanai-Azuma M, Tanaka K, Kofuji S, Nishina H. MKK7 deficiency in mature neurons impairs parental behavior in mice. Genes Cells 2020; 26:5-17. [PMID: 33098150 PMCID: PMC7839552 DOI: 10.1111/gtc.12816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/08/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 11/28/2022]
Abstract
c‐Jun N‐terminal kinases (JNKs) are constitutively activated in mammalian brains and are indispensable for their development and neural functions. MKK7 is an upstream activator of all JNKs. However, whether the common JNK signaling pathway regulates the brain's control of social behavior remains unclear. Here, we show that female mice in which Mkk7 is deleted specifically in mature neurons (Mkk7flox/floxSyn‐Cre mice) give birth to a normal number of pups but fail to raise them due to a defect in pup retrieval. To explore the mechanism underlying this abnormality, we performed comprehensive behavioral tests. Mkk7flox/floxSyn‐Cre mice showed normal locomotor functions and cognitive ability but exhibited depression‐like behavior. cDNA microarray analysis of mutant brain revealed an altered gene expression pattern. Quantitative RT‐PCR analysis demonstrated that mRNA expression levels of genes related to neural signaling pathways and a calcium channel were significantly different from controls. In addition, loss of neural MKK7 had unexpected regulatory effects on gene expression patterns in oligodendrocytes. These findings indicate that MKK7 has an important role in regulating the gene expression patterns responsible for promoting normal social behavior and staving off depression.
Collapse
Affiliation(s)
- Tadashi Shin
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuichi Hiraoka
- Department of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tokiwa Yamasaki
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Jamey D Marth
- Center for Nanomedicine, Department of Molecular, Cellular and Developmental Biology, SBP Medical Discovery Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria.,Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Masami Kanai-Azuma
- Department of Experimental Animal Model for Human Disease, Center for Experimental Animals, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kohichi Tanaka
- Department of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Satoshi Kofuji
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hiroshi Nishina
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
27
|
Rostami J, Jäntti M, Cui H, Rinne MK, Kukkonen JP, Falk A, Erlandsson A, Myöhänen T. Prolyl oligopeptidase inhibition by KYP-2407 increases alpha-synuclein fibril degradation in neuron-like cells. Biomed Pharmacother 2020; 131:110788. [PMID: 33152946 DOI: 10.1016/j.biopha.2020.110788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/05/2020] [Revised: 09/04/2020] [Accepted: 09/17/2020] [Indexed: 01/01/2023] Open
Abstract
Growing evidence emphasizes insufficient clearance of pathological alpha-synuclein (αSYN) aggregates in the progression of Parkinson's disease (PD). Consequently, cellular degradation pathways represent a potential therapeutic target. Prolyl oligopeptidase (PREP) is highly expressed in the brain and has been suggested to increase αSYN aggregation and negatively regulate the autophagy pathway. Inhibition of PREP with a small molecule inhibitor, KYP-2407, stimulates autophagy and reduces the oligomeric species of αSYN aggregates in PD mouse models. However, whether PREP inhibition has any effects on intracellular αSYN fibrils has not been studied before. In this study, the effect of KYP2407 on αSYN preformed fibrils (PFFs) was tested in SH-SY5Y cells and human astrocytes. Immunostaining analysis revealed that both cell types accumulated αSYN PFFs intracellularly but KYP-2047 decreased intracellular αSYN deposits only in SH-SY5Y cells, as astrocytes did not show any PREP activity. Western blot analysis confirmed the reduction of high molecular weight αSYN species in SH-SY5Y cell lysates, and secretion of αSYN from SH-SY5Y cells also decreased in the presence of KYP-2407. Accumulation of αSYN inside the SH-SY5Y cells resulted in an increase of the auto-lysosomal proteins p62 and LC3BII, as well as calpain 1 and 2, which have been shown to be associated with PD pathology. Notably, treatment with KYP-2407 significantly reduced p62 and LC3BII levels, indicating an increased autophagic flux, and calpain 1 and 2 levels returned to normal in the presence of KYP-2407. Our findings indicate that PREP inhibition can potentially be used as therapy to reduce the insoluble intracellular αSYN aggregates.
Collapse
Affiliation(s)
- Jinar Rostami
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Rudbeck Laboratory, Uppsala University, 751 85, Uppsala, Sweden
| | - Maria Jäntti
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00014, University of Helsinki, Finland
| | - Hengjing Cui
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00014, University of Helsinki, Finland
| | - Maiju K Rinne
- Division of Pharmaceutical Chemistry and Technology/Drug Research Program, Faculty of Pharmacy, P.O. Box 56, 00014, University of Helsinki, Finland
| | - Jyrki P Kukkonen
- Department of Pharmacology, Institute of Biomedicine, Faculty of Medicine, P.O. Box 63, 00014, University of Helsinki, Finland
| | - Anna Falk
- Department of Neuroscience, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Anna Erlandsson
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Rudbeck Laboratory, Uppsala University, 751 85, Uppsala, Sweden
| | - Timo Myöhänen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00014, University of Helsinki, Finland; Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, 20014, University of Turku, Finland.
| |
Collapse
|
28
|
Creighton SD, Stefanelli G, Reda A, Zovkic IB. Epigenetic Mechanisms of Learning and Memory: Implications for Aging. Int J Mol Sci 2020; 21:E6918. [PMID: 32967185 PMCID: PMC7554829 DOI: 10.3390/ijms21186918] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/28/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022] Open
Abstract
The neuronal epigenome is highly sensitive to external events and its function is vital for producing stable behavioral outcomes, such as the formation of long-lasting memories. The importance of epigenetic regulation in memory is now well established and growing evidence points to altered epigenome function in the aging brain as a contributing factor to age-related memory decline. In this review, we first summarize the typical role of epigenetic factors in memory processing in a healthy young brain, then discuss the aspects of this system that are altered with aging. There is general agreement that many epigenetic marks are modified with aging, but there are still substantial inconsistencies in the precise nature of these changes and their link with memory decline. Here, we discuss the potential source of age-related changes in the epigenome and their implications for therapeutic intervention in age-related cognitive decline.
Collapse
Affiliation(s)
- Samantha D. Creighton
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; (S.D.C.); (G.S.)
| | - Gilda Stefanelli
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; (S.D.C.); (G.S.)
| | - Anas Reda
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S, Canada;
| | - Iva B. Zovkic
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; (S.D.C.); (G.S.)
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S, Canada;
| |
Collapse
|
29
|
Bayer C, Pitschelatow G, Hannemann N, Linde J, Reichard J, Pensold D, Zimmer-Bensch G. DNA Methyltransferase 1 (DNMT1) Acts on Neurodegeneration by Modulating Proteostasis-Relevant Intracellular Processes. Int J Mol Sci 2020; 21:E5420. [PMID: 32751461 PMCID: PMC7432412 DOI: 10.3390/ijms21155420] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/11/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
The limited regenerative capacity of neurons requires a tightly orchestrated cell death and survival regulation in the context of longevity, as well as age-associated and neurodegenerative diseases. Subordinate to genetic networks, epigenetic mechanisms, such as DNA methylation and histone modifications, are involved in the regulation of neuronal functionality and emerge as key contributors to the pathophysiology of neurodegenerative diseases. DNA methylation, a dynamic and reversible process, is executed by DNA methyltransferases (DNMTs). DNMT1 was previously shown to act on neuronal survival in the aged brain, whereby a DNMT1-dependent modulation of processes relevant for protein degradation was proposed as an underlying mechanism. Properly operating proteostasis networks are a mandatory prerequisite for the functionality and long-term survival of neurons. Malfunctioning proteostasis is found, inter alia, in neurodegenerative contexts. Here, we investigated whether DNMT1 affects critical aspects of the proteostasis network by a combination of expression studies, live cell imaging, and protein biochemical analyses. We found that DNMT1 negatively impacts retrograde trafficking and autophagy, with both being involved in the clearance of aggregation-prone proteins by the aggresome-autophagy pathway. In line with this, we found that the transport of GFP-labeled mutant huntingtin (HTT) to perinuclear regions, proposed to be cytoprotective, also depends on DNMT1. Depletion of Dnmt1 accelerated perinuclear HTT aggregation and improved the survival of cells transfected with mutant HTT. This suggests that mutant HTT-induced cytotoxicity is at least in part mediated by DNMT1-dependent modulation of degradative pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Geraldine Zimmer-Bensch
- Division of Functional Epigenetics in the Animal Model, Institute for Biology II, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (C.B.); (G.P.); (N.H.); (J.L.); (J.R.); (D.P.)
| |
Collapse
|
30
|
Hahn A, Pensold D, Bayer C, Tittelmeier J, González-Bermúdez L, Marx-Blümel L, Linde J, Groß J, Salinas-Riester G, Lingner T, von Maltzahn J, Spehr M, Pieler T, Urbach A, Zimmer-Bensch G. DNA Methyltransferase 1 (DNMT1) Function Is Implicated in the Age-Related Loss of Cortical Interneurons. Front Cell Dev Biol 2020; 8:639. [PMID: 32793592 PMCID: PMC7387673 DOI: 10.3389/fcell.2020.00639] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/06/2020] [Accepted: 06/25/2020] [Indexed: 01/19/2023] Open
Abstract
Increased life expectancy in modern society comes at the cost of age-associated disabilities and diseases. Aged brains not only show reduced excitability and plasticity, but also a decline in inhibition. Age-associated defects in inhibitory circuits likely contribute to cognitive decline and age-related disorders. Molecular mechanisms that exert epigenetic control of gene expression contribute to age-associated neuronal impairments. Both DNA methylation, mediated by DNA methyltransferases (DNMTs), and histone modifications maintain neuronal function throughout lifespan. Here we provide evidence that DNMT1 function is implicated in the age-related loss of cortical inhibitory interneurons. Dnmt1 deletion in parvalbumin-positive interneurons attenuates their age-related decline in the cerebral cortex. Moreover, conditional Dnmt1-deficient mice show improved somatomotor performance and reduced aging-associated transcriptional changes. A decline in the proteostasis network, responsible for the proper degradation and removal of defective proteins, is implicated in age- and disease-related neurodegeneration. Our data suggest that DNMT1 acts indirectly on interneuron survival in aged mice by modulating the proteostasis network during life-time.
Collapse
Affiliation(s)
- Anne Hahn
- Department of Functional Epigenetics, Institute of Human Genetics, University Hospital Jena, Jena, Germany
| | - Daniel Pensold
- Department of Functional Epigenetics, Institute of Human Genetics, University Hospital Jena, Jena, Germany.,Department of Functional Epigenetics in the Animal Model, Institute of Biology II, RWTH Aachen University, Aachen, Germany
| | - Cathrin Bayer
- Department of Functional Epigenetics, Institute of Human Genetics, University Hospital Jena, Jena, Germany.,Department of Functional Epigenetics in the Animal Model, Institute of Biology II, RWTH Aachen University, Aachen, Germany
| | - Jessica Tittelmeier
- Department of Functional Epigenetics, Institute of Human Genetics, University Hospital Jena, Jena, Germany
| | - Lourdes González-Bermúdez
- Department of Functional Epigenetics, Institute of Human Genetics, University Hospital Jena, Jena, Germany
| | - Lisa Marx-Blümel
- Department of Functional Epigenetics, Institute of Human Genetics, University Hospital Jena, Jena, Germany
| | - Jenice Linde
- Department of Functional Epigenetics in the Animal Model, Institute of Biology II, RWTH Aachen University, Aachen, Germany.,Research Training Group 2416 MultiSenses - MultiScales, RWTH Aachen University, Aachen, Germany
| | - Jonas Groß
- Department of Functional Epigenetics, Institute of Human Genetics, University Hospital Jena, Jena, Germany
| | - Gabriela Salinas-Riester
- Transcriptome and Genome Analysis Laboratory (TAL), Department of Developmental Biochemistry, University of Göttingen, Göttingen, Germany
| | - Thomas Lingner
- Transcriptome and Genome Analysis Laboratory (TAL), Department of Developmental Biochemistry, University of Göttingen, Göttingen, Germany
| | - Julia von Maltzahn
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Marc Spehr
- Research Training Group 2416 MultiSenses - MultiScales, RWTH Aachen University, Aachen, Germany.,Department of Chemosensation, Institute of Biology II, RWTH Aachen University, Aachen, Germany
| | - Tomas Pieler
- Centre for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Department of Developmental Biochemistry, University of Göttingen, Göttingen, Germany
| | - Anja Urbach
- Institute of Neurology, University Hospital Jena, Jena, Germany
| | - Geraldine Zimmer-Bensch
- Department of Functional Epigenetics, Institute of Human Genetics, University Hospital Jena, Jena, Germany.,Department of Functional Epigenetics in the Animal Model, Institute of Biology II, RWTH Aachen University, Aachen, Germany.,Research Training Group 2416 MultiSenses - MultiScales, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
31
|
Won JH, Kim M, Youn J, Park H. Prediction of age at onset in Parkinson's disease using objective specific neuroimaging genetics based on a sparse canonical correlation analysis. Sci Rep 2020; 10:11662. [PMID: 32669683 PMCID: PMC7363828 DOI: 10.1038/s41598-020-68301-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/05/2020] [Accepted: 06/22/2020] [Indexed: 01/19/2023] Open
Abstract
The age at onset (AAO) is an important determinant in Parkinson’s disease (PD). Neuroimaging genetics is suitable for studying AAO in PD as it jointly analyzes imaging and genetics. We aimed to identify features associated with AAO in PD by applying the objective-specific neuroimaging genetics approach and constructing an AAO prediction model. Our objective-specific neuroimaging genetics extended the sparse canonical correlation analysis by an additional data type related to the target task to investigate possible associations of the imaging–genetic, genetic–target, and imaging–target pairs simultaneously. The identified imaging, genetic, and combined features were used to construct analytical models to predict the AAO in a nested five-fold cross-validation. We compared our approach with those from two feature selection approaches where only associations of imaging–target and genetic–target were explored. Using only imaging features, AAO prediction was accurate in all methods. Using only genetic features, the results from other methods were worse or unstable compared to our model. Using both imaging and genetic features, our proposed model predicted the AAO well (r = 0.5486). Our findings could have significant impacts on the characterization of prodromal PD and contribute to diagnosing PD early because genetic features could be measured accurately from birth.
Collapse
Affiliation(s)
- Ji Hye Won
- Department of Electronic and Computer Engineering, Sungkyunkwan University, Suwon, Korea.,Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea
| | - Mansu Kim
- Department of Electronic and Computer Engineering, Sungkyunkwan University, Suwon, Korea.,Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea
| | - Jinyoung Youn
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Irwon-ro 81, Gangnam-gu, Seoul, 06351, Korea. .,Neuroscience Center, Samsung Medical Center, Seoul, Korea.
| | - Hyunjin Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea. .,School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, 16419, Korea.
| |
Collapse
|
32
|
Proteomic Profile of Mouse Brain Aging Contributions to Mitochondrial Dysfunction, DNA Oxidative Damage, Loss of Neurotrophic Factor, and Synaptic and Ribosomal Proteins. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5408452. [PMID: 32587661 PMCID: PMC7301248 DOI: 10.1155/2020/5408452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 12/16/2019] [Revised: 03/19/2020] [Accepted: 04/07/2020] [Indexed: 12/16/2022]
Abstract
The deleterious effects of aging on the brain remain to be fully elucidated. In the present study, proteomic changes of young (4-month) and aged (16-month) B6129SF2/J male mouse hippocampus and cerebral cortex were investigated by using nano liquid chromatography tandem mass spectrometry (NanoLC-ESI-MS/MS) combined with tandem mass tag (TMT) labeling technology. Compared with the young animals, 390 hippocampal proteins (121 increased and 269 decreased) and 258 cortical proteins (149 increased and 109 decreased) changed significantly in the aged mouse. Bioinformatic analysis indicated that these proteins are mainly involved in mitochondrial functions (FIS1, DRP1), oxidative stress (PRDX6, GSTP1, and GSTM1), synapses (SYT12, GLUR2), ribosome (RPL4, RPS3), cytoskeletal integrity, transcriptional regulation, and GTPase function. The mitochondrial fission-related proteins FIS1 and DRP1 were significantly increased in the hippocampus and cerebral cortex of the aged mice. Further results in the hippocampus showed that ATP content was significantly reduced in aged mice. A neurotrophin brain-derived neurotrophic factor (BNDF), a protein closely related with synaptic plasticity and memory, was also significantly decreased in the hippocampus of the aged mice, with the tendency of synaptic protein markers including complexin-2, synaptophysin, GLUR2, PSD95, NMDAR2A, and NMDAR1. More interestingly, 8-hydroxydeoxyguanosine (8-OHdG), a marker of DNA oxidative damage, increased as shown by immunofluorescence staining. In summary, we demonstrated that aging is associated with systemic changes involving mitochondrial dysfunction, energy reduction, oxidative stress, loss of neurotrophic factor, synaptic proteins, and ribosomal proteins, as well as molecular deficits involved in various physiological/pathological processes.
Collapse
|
33
|
Chakraborty A, Banerjee S, Mukherjee B, Poddar MK. Calorie restriction improves aging-induced impairment of cognitive function in relation to deregulation of corticosterone status and brain regional GABA system. Mech Ageing Dev 2020; 189:111248. [PMID: 32339520 DOI: 10.1016/j.mad.2020.111248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/11/2019] [Revised: 03/16/2020] [Accepted: 04/05/2020] [Indexed: 12/21/2022]
Abstract
Aging is known to affect adversely the corticosterone status and the brain function including cognition. Calorie restricted (CR) diet has been found to improve brain aging. The objective of the present investigation is to study the effect of short-term CR diet without any food deprivation on aging-induced impairment of cognitive function in relation to the corticosterone status and the brain regional GABA system. The result showed that aging-induced deregulation of the brain regional GABA system, increase in plasma and adrenal corticosterone levels and cognitive impairment were attenuated with short-term CR diet supplementation for consecutive 1 and 2 months to the aged (18 and 24 months) rats. But in young rats (4 months) consumption of the same CR diet under similar conditions reversibly affected those above-mentioned parameters. These results, thus suggest that (a) aging down-regulates brain regional GABA system with an up-regulation of corticosterone status and impairment of cognitive function, (b) CR diet consumption improves this aging-induced deregulation of brain regional GABA system, corticosterone status, and cognitive function, (c) these attenuating effects of CR diet are greater with a longer period of consumption but (d) CR diet consumption is harmful to young rats as observed in those parameters.
Collapse
Affiliation(s)
- Apala Chakraborty
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S.C. Mallick Road, Kolkata, 700032, India
| | - Soumyabrata Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S.C. Mallick Road, Kolkata, 700032, India
| | - Biswajit Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S.C. Mallick Road, Kolkata, 700032, India
| | - Mrinal Kanti Poddar
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S.C. Mallick Road, Kolkata, 700032, India.
| |
Collapse
|
34
|
Singhal G, Morgan J, Jawahar MC, Corrigan F, Jaehne EJ, Toben C, Breen J, Pederson SM, Manavis J, Hannan AJ, Baune BT. Effects of aging on the motor, cognitive and affective behaviors, neuroimmune responses and hippocampal gene expression. Behav Brain Res 2020; 383:112501. [PMID: 31987935 DOI: 10.1016/j.bbr.2020.112501] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/21/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 12/15/2022]
Abstract
The known effects of aging on the brain and behavior include impaired cognition, increases in anxiety and depressive-like behaviors, and reduced locomotor activity. Environmental exposures and interventions also influence brain functions during aging. We investigated the effects of normal aging under controlled environmental conditions and in the absence of external interventions on locomotor activity, cognition, anxiety and depressive-like behaviors, immune function and hippocampal gene expression in C57BL/6 mice. Healthy mice at 4, 9, and 14 months of age underwent behavioral testing using an established behavioral battery, followed by cellular and molecular analysis using flow cytometry, immunohistochemistry, and quantitative PCR. We found that 14-month-old mice showed significantly reduced baseline locomotion, increased anxiety, and impaired spatial memory compared to younger counterparts. However, no significant differences were observed for depressive-like behavior in the forced-swim test. Microglia numbers in the dentate gyrus, as well as CD8+ memory T cells increased towards late middle age. Aging processes exerted a significant effect on the expression of 43 genes of interest in the hippocampus. We conclude that aging is associated with specific changes in locomotor activity, cognition, anxiety-like behaviors, neuroimmune responses and hippocampal gene expression.
Collapse
Affiliation(s)
- Gaurav Singhal
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, The University of Adelaide, Adelaide, SA, Australia.
| | - Julie Morgan
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, The University of Adelaide, Adelaide, SA, Australia.
| | - Magdalene C Jawahar
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, The University of Adelaide, Adelaide, SA, Australia.
| | - Frances Corrigan
- Division of Health Sciences, The University of South Australia, Adelaide, SA, Australia.
| | - Emily J Jaehne
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, The University of Adelaide, Adelaide, SA, Australia; School of Psychology and Public Health, LIMS2, Room 204, La Trobe University, Bundoora, Melbourne, Vic, Australia.
| | - Catherine Toben
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, The University of Adelaide, Adelaide, SA, Australia.
| | - James Breen
- Robinson Research Institute, The University of Adelaide, SA, Australia; Bioinformatics Hub, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia.
| | - Stephen M Pederson
- Bioinformatics Hub, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia.
| | - Jim Manavis
- Centre for Neurological Diseases, School of Medicine, Faculty of Health, The University of Adelaide, Adelaide, SA, Australia.
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.
| | - Bernhard T Baune
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia; Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia; Department of Psychiatry, University of Münster, Münster, Germany.
| |
Collapse
|
35
|
Rozycka A, Charzynska A, Misiewicz Z, Maciej Stepniewski T, Sobolewska A, Kossut M, Liguz-Lecznar M. Glutamate, GABA, and Presynaptic Markers Involved in Neurotransmission Are Differently Affected by Age in Distinct Mouse Brain Regions. ACS Chem Neurosci 2019; 10:4449-4461. [PMID: 31556991 DOI: 10.1021/acschemneuro.9b00220] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022] Open
Abstract
Molecular synaptic aging perturbs neurotransmission and decreases the potential for neuroplasticity. The direction and degree of changes observed in aging are often region or cell specific, hampering the generalization of age-related effects. Using real-time PCR and Western blot analyses, we investigated age-related changes in several presynaptic markers (Vglut1, Vglut2, Gad65, Gad67, Vgat, synaptophysin) involved in the initial steps of glutamatergic and GABAergic neurotransmission, in several cortical regions, in young (3-4 months old), middle-aged (1 year old), and old (2 years old) mice. We found age-related changes mainly in protein levels while, apart from the occipital cortex, virtually no significant changes in mRNA levels were detected, which suggests that aging acts on the investigated markers mainly through post-transcriptional mechanisms depending on the brain region. Principal component analysis (PCA) of protein data revealed that each brain region possessed a type of "biochemical distinctiveness" (each analyzed brain region was best characterized by higher variability level of a particular synaptic marker) that was lost with age. Analysis of glutamate and γ-aminobutyric acid (GABA) levels in aging suggested that mechanisms keeping an overall balance between the two amino acids in the brain are weakened in the hippocampus. Our results unravel the differences in mRNA/protein interactions in the aging brain.
Collapse
Affiliation(s)
- Aleksandra Rozycka
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Agata Charzynska
- Laboratory of Bioinformatics, Neurobiology Center, Nencki Institute of Experimental Biology Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland
| | - Zuzanna Misiewicz
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki FI-00014, Finland
| | - Tomasz Maciej Stepniewski
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
- Research Programme on Biomedical Informatics (GRIB) - Department of Experimental and Health Sciences, Hospital del Mar Medical Research Institute, Pompeu Fabra University, 08002 Barcelona, Spain
| | - Alicja Sobolewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Str., 02-957 Warsaw, Poland
| | - Malgorzata Kossut
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
- Faculty of Psychology, SWPS University of Social Sciences and Humanities, 03-815 Warsaw, Poland
| | - Monika Liguz-Lecznar
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
| |
Collapse
|
36
|
Duda P, Wójcicka O, Wiśniewski JR, Rakus D. Global quantitative TPA-based proteomics of mouse brain structures reveals significant alterations in expression of proteins involved in neuronal plasticity during aging. Aging (Albany NY) 2019; 10:1682-1697. [PMID: 30026405 PMCID: PMC6075443 DOI: 10.18632/aging.101501] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/25/2018] [Accepted: 07/15/2018] [Indexed: 01/17/2023]
Abstract
Aging is believed to be the result of alterations of protein expression and accumulation of changes in biomolecules. Although there are numerous reports demonstrating changes in protein expression in brain during aging, only few of them describe global changes at the protein level. Here, we present the deepest quantitative proteomic analysis of three brain regions, hippocampus, cortex and cerebellum, in mice aged 1 or 12 months, using the total protein approach technique. In all the brain regions, both in young and middle-aged animals, we quantitatively measured over 5,200 proteins. We found that although the total protein expression in middle-aged brain structures is practically unaffected by aging, there are significant differences between young and middle-aged mice in the expression of some receptors and signaling cascade proteins proven to be significant for learning and memory formation. Our analysis demonstrates that the hippocampus is the most variable structure during natural aging and that the first symptoms of weakening of neuronal plasticity may be observed on protein level in middle-aged animals.
Collapse
Affiliation(s)
- Przemysław Duda
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Wroclaw 50-137, Poland
| | - Olga Wójcicka
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Wroclaw 50-137, Poland
| | - Jacek R Wiśniewski
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried 82152, Germany
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Wroclaw 50-137, Poland
| |
Collapse
|
37
|
Singhal G, Morgan J, Jawahar MC, Corrigan F, Jaehne EJ, Toben C, Breen J, Pederson SM, Hannan AJ, Baune BT. The effects of short-term and long-term environmental enrichment on locomotion, mood-like behavior, cognition and hippocampal gene expression. Behav Brain Res 2019; 368:111917. [DOI: 10.1016/j.bbr.2019.111917] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/15/2018] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 02/07/2023]
|
38
|
Chen J, Zou Q, Lv D, Raza MA, Wang X, Li P, Chen Y, Xi X, Wen A, Zhu L, Tang G, Li M, Li X, Jiang Y. Comprehensive transcriptional profiling of porcine brain aging. Gene 2019; 693:1-9. [PMID: 30695714 DOI: 10.1016/j.gene.2019.01.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/06/2018] [Revised: 12/27/2018] [Accepted: 01/22/2019] [Indexed: 10/27/2022]
Abstract
The brain as an important organ can be affected largely by aging, and the comprehensive transcriptional underpinnings of brain aging remain poorly understood. Here, we performed a high throughput RNA sequencing to evaluate the expression profiles of messenger RNA (mRNA), long non-coding RNAs (lncRNAs), micro RNAs (miRNAs), and circular RNAs (circRNAs) in porcine brain. We have identified 714 mRNAs, 38lncRNAs, 41miRNAs, and 148circRNAs were age-related genes in the porcine cerebral cortex. The lncRNAs, miRNAs and circRNAs have effect on the age of porcine brain due to the much changes of expression level as noncoding RNAs. The up-regulated genes were significantly enriched for stress response, reproductive regulatory process, immune response and metabolic process, and the down-regulated genes were related to neurologic function, stress response and signaling pathway. The synaptic transmission pathway may be the key role in aging of porcine brain that it was co-enriched for in both differentially expressed mRNAs and lncRNAs. Moreover, some lncRNAs and their target genes were also differentially expressed during brain aging. We further assessed the multi-group cooperative control relationships and constructed circRNA-miRNA co-expression networks during brain aging. We also selected 2 mRNAs, 2 lncRNAs, 2 miRNAs, and 1 circRNAs to perform the q-PCR, and the expression patterns were highly consistent between the two methods confirming the high reproducibility and reliability of the gene expression profiling in our study. In conclusion, our findings will contribute to understand the transcriptional underpinnings of brain aging and provide a foundation for future studies on the molecular mechanisms underlying brain aging.
Collapse
Affiliation(s)
- Jianning Chen
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Qin Zou
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Daojun Lv
- Sichuan Weimu Modern Agricultural Science and Technology Co., Ltd., Chengdu, Sichuan 611130, China
| | - Muhammad Ali Raza
- Department of Crop Cultivation and Farming System, College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xue Wang
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Peilin Li
- Sichuan Weimu Modern Agricultural Science and Technology Co., Ltd., Chengdu, Sichuan 611130, China
| | - Yan Chen
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Xiaoyu Xi
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Anxiang Wen
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Li Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Guoqing Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Mingzhou Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xuewei Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yanzhi Jiang
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China.
| |
Collapse
|
39
|
New tricks of prolyl oligopeptidase inhibitors - A common drug therapy for several neurodegenerative diseases. Biochem Pharmacol 2019; 161:113-120. [PMID: 30660495 DOI: 10.1016/j.bcp.2019.01.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/28/2018] [Accepted: 01/15/2019] [Indexed: 12/14/2022]
Abstract
Changes in prolyl oligopeptidase (PREP) expression levels, protein distribution, and activity correlate with aging and are reported in many neurodegenerative conditions. Together with decreased neuropeptide levels observed in aging and neurodegeneration, and PREP's ability to cleave only small peptides, PREP was identified as a druggable target. Known PREP non-enzymatic functions were disregarded or attributed to PREP enzymatic activity, and several potent small molecule PREP inhibitors were developed during early stages of PREP research. These showed a lot of potential but with variable results in experimental memory models, however, the initial excitement was short-lived and all of the clinical trials were discontinued in either Phase I or II clinical trials for unknown reasons. Recently, PREP's ability to form protein-protein interactions, alter cell proliferation and autophagy has gained more attention than earlier recognized catalytical activity. Of new findings, particularly the aggregation of alpha-synuclein (aSyn) that is seen in the presence of PREP is especially interesting because PREP inhibitors are capable of altering aSyn-PREP interaction in a manner that reduces the aSyn dimerization process. Therefore, it is possible that PREP inhibitors that are altering interactions could have different characteristics than those aimed for strong inhibition of catalytic activity. Moreover, PREP co-localization with aSyn, tau, and amyloid-beta hints to PREP's possible role not only in the synucleinopathies but in other neurodegenerative diseases as well. This commentary will focus on less well-acknowledged non-enzymatic functions of PREP that may provide a better approach for the development of PREP inhibitors for the treatment of neurodegenerative disorders.
Collapse
|
40
|
The PKC-β selective inhibitor, Enzastaurin, impairs memory in middle-aged rats. PLoS One 2018; 13:e0198256. [PMID: 29870545 PMCID: PMC5988320 DOI: 10.1371/journal.pone.0198256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/03/2018] [Accepted: 05/16/2018] [Indexed: 01/14/2023] Open
Abstract
Enzastaurin is a Protein Kinase C-β selective inhibitor that was developed to treat cancers. Protein Kinase C-β is an important enzyme for a variety of neuronal functions; in particular, previous rodent studies have reported deficits in spatial and fear-conditioned learning and memory with lower levels of Protein Kinase C-β. Due to Enzastaurin's mechanism of action, the present study investigated the consequences of Enzastaurin exposure on learning and memory in 12-month-old Fischer-344 male rats. Rats were treated daily with subcutaneous injections of either vehicle or Enzastaurin, and behaviorally tested using the spatial reference memory Morris Water Maze. Rats treated with Enzastaurin exhibited decreased overnight retention and poorer performance on the latter testing day, indicating a mild, but significant, memory impairment. There were no differences during the probe trial indicating that all animals were able to spatially localize the platform to the proper quadrant by the end of testing. RNA isolated from the hippocampus was analyzed using Next Generation Sequencing (Illumina). No statistically significant transcriptional differences were noted. Our findings suggest that acute Enzastaurin treatment can impair hippocampal-based learning and memory performance, with no effects on transcription in the hippocampus. We propose that care should be taken in future clinical trials that utilize Protein Kinase C-ß inhibitors, to monitor for possible cognitive effects, future research should examine if these effects are fully reversible.
Collapse
|
41
|
Differential effects of chronic stress in young-adult and old female mice: cognitive-behavioral manifestations and neurobiological correlates. Mol Psychiatry 2018; 23:1432-1445. [PMID: 29257131 DOI: 10.1038/mp.2017.237] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/09/2016] [Revised: 10/01/2017] [Accepted: 10/10/2017] [Indexed: 02/07/2023]
Abstract
Stress-related psychopathology is highly prevalent among elderly individuals and is associated with detrimental effects on mood, appetite and cognition. Conversely, under certain circumstances repeated mild-to-moderate stressors have been shown to enhance cognitive performance in rodents and exert stress-inoculating effects in humans. As most stress-related favorable outcomes have been reported in adolescence and young-adulthood, this apparent disparity could result from fundamental differences in how aging organisms respond to stress. Furthermore, given prominent age-related alterations in sex hormones, the effect of chronic stress in aging females remains a highly relevant yet little studied issue. In the present study, female C57BL/6 mice aged 3 (young-adult) and 20-23 (old) months were subjected to 8 weeks of chronic unpredictable stress (CUS). Behavioral outcomes were measured during the last 3 weeks of the CUS protocol, followed by brain dissection for histological and molecular end points. We found that in young-adult female mice, CUS resulted in decreased anxiety-like behavior and enhanced cognitive performance, whereas in old female mice it led to weight loss, dysregulated locomotion and memory impairment. These phenotypes were paralleled by differential changes in the expression of hypothalamic insulin and melanocortin-4 receptors and were consistent with an age-dependent reduction in the dynamic range of stress-related changes in the hippocampal transcriptome. Supported by an integrated microRNA (miRNA)-mRNA expression analysis, the present study proposes that, when confronted with ongoing stress, neuroprotective mechanisms involving the upregulation of neurogenesis, Wnt signaling and miR-375 can be harnessed more effectively during young-adulthood. Conversely, we suggest that aging alters the pattern of immune activation elicited by stress. Ultimately, interventions that modulate these processes could reduce the burden of stress-related psychopathology in late life.
Collapse
|
42
|
Li Y, Chen H, Jiang X, Li X, Lv J, Li M, Peng H, Tsien JZ, Liu T. Transcriptome Architecture of Adult Mouse Brain Revealed by Sparse Coding of Genome-Wide In Situ Hybridization Images. Neuroinformatics 2018; 15:285-295. [PMID: 28608010 DOI: 10.1007/s12021-017-9333-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023]
Abstract
Highly differentiated brain structures with distinctly different phenotypes are closely correlated with the unique combination of gene expression patterns. Using a genome-wide in situ hybridization image dataset released by Allen Mouse Brain Atlas, we present a data-driven method of dictionary learning and sparse coding. Our results show that sparse coding can elucidate patterns of transcriptome organization of mouse brain. A collection of components obtained from sparse coding display robust region-specific molecular signatures corresponding to the canonical neuroanatomical subdivisions including fiber tracts and ventricular systems. Other components revealed finer anatomical delineation of domains previously considered homogeneous. We also build an open-access informatics portal that contains the detail of each component along with its ontology and expressed genes. This portal allows intuitive visualization, interpretation and explorations of the transcriptome architecture of a mouse brain.
Collapse
Affiliation(s)
- Yujie Li
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, USA
| | - Hanbo Chen
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, USA
| | - Xi Jiang
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, USA
| | - Xiang Li
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, USA
| | - Jinglei Lv
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, USA.,School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Meng Li
- Brain and Behavior Discovery Institute, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | | | - Joe Z Tsien
- Brain and Behavior Discovery Institute, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, USA.
| |
Collapse
|
43
|
Long Non-Coding RNAs in Neuronal Aging. Noncoding RNA 2018; 4:ncrna4020012. [PMID: 29670042 PMCID: PMC6027360 DOI: 10.3390/ncrna4020012] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/28/2018] [Revised: 04/06/2018] [Accepted: 04/10/2018] [Indexed: 02/07/2023] Open
Abstract
The expansion of long non-coding RNAs (lncRNAs) in organismal genomes has been associated with the emergence of sophisticated regulatory networks that may have contributed to more complex neuronal processes, such as higher-order cognition. In line with the important roles of lncRNAs in the normal functioning of the human brain, dysregulation of lncRNA expression has been implicated in aging and age-related neurodegenerative disorders. In this paper, we discuss the function and expression of known neuronal-associated lncRNAs, their impact on epigenetic changes, the contribution of transposable elements to lncRNA expression, and the implication of lncRNAs in maintaining the 3D nuclear architecture in neurons. Moreover, we discuss how the complex molecular processes that are orchestrated by lncRNAs in the aged brain may contribute to neuronal pathogenesis by promoting protein aggregation and neurodegeneration. Finally, this review explores the possibility that age-related disturbances of lncRNA expression change the genomic and epigenetic regulatory landscape of neurons, which may affect neuronal processes such as neurogenesis and synaptic plasticity.
Collapse
|
44
|
Menotta M, Orazi S, Gioacchini AM, Spapperi C, Ricci A, Chessa L, Magnani M. Proteomics and transcriptomics analyses of ataxia telangiectasia cells treated with Dexamethasone. PLoS One 2018; 13:e0195388. [PMID: 29608596 PMCID: PMC5880408 DOI: 10.1371/journal.pone.0195388] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/24/2017] [Accepted: 03/21/2018] [Indexed: 12/21/2022] Open
Abstract
Ataxia telangiectasia (A-T) is an incurable and rare hereditary syndrome. In recent times, treatment with glucocorticoid analogues has been shown to improve the neurological symptoms that characterize this condition, but the molecular mechanism of action of these analogues remains unknown. Hence, the aim of this study was to gain insight into the molecular mechanism of action of glucocorticoid analogues in the treatment of A-T by investigating the role of Dexamethasone (Dexa) in A-T lymphoblastoid cell lines. We used 2DE and tandem MS to identify proteins that were influenced by the drug in A-T cells but not in healthy cells. Thirty-four proteins were defined out of a total of 746±63. Transcriptome analysis was performed by microarray and showed the differential expression of 599 A-T and 362 wild type (WT) genes and a healthy un-matching between protein abundance and the corresponding gene expression variation. The proteomic and transcriptomic profiles allowed the network pathway analysis to pinpoint the biological and molecular functions affected by Dexamethasone in Dexa-treated cells. The present integrated study provides evidence of the molecular mechanism of action of Dexamethasone in an A-T cellular model but also the broader effects of the drug in other tested cell lines.
Collapse
Affiliation(s)
- Michele Menotta
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Sara Orazi
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | | | - Chiara Spapperi
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Anastasia Ricci
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Luciana Chessa
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| |
Collapse
|
45
|
Brown CJ, Kaufman T, Trinidad JC, Clemmer DE. Proteome changes in the aging Drosophila melanogaster head. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2018; 425:36-46. [PMID: 30906200 PMCID: PMC6426325 DOI: 10.1016/j.ijms.2018.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/13/2023]
Abstract
A combination of liquid chromatography, ion mobility spectrometry, mass spectrometry, and database searching techniques were used to characterize the proteomes of four biological replicates of adult Drosophila melanogaster heads at seven time points across their lifespans. Based on the detection of tryptic peptides, the identities of 1281 proteins were determined. An estimate of the abundance of each protein, based on the three most intense peptide ions, shows that the quantified species vary in concentration over a factor of ~103. Compared to initial studies in the field of Drosophila proteomics, our current results show an eight-fold higher temporal protein coverage with increased quantitative accuracy. Across the lifespan, we observe a range of trends in the abundance of different proteins, including: an increase in abundance of proteins involved in oxidative phosphorylation, and the tricarboxylic acid cycle; a decrease in proteasomal proteins, as well as ribosomal proteins; and, many types of proteins, which remain relatively unchanged. For younger flies, proteomes are relatively similar within their age group. For older flies, proteome similarity decreases within their age group. These combined results illustrate a correlation between increasing age and decreasing proteostasis.
Collapse
Affiliation(s)
- Christopher J. Brown
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, United States
| | - Thomas Kaufman
- Department of Biology, Indiana University, Bloomington, IN, 47405, United States
| | - Jonathan C. Trinidad
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, United States
| | - David E. Clemmer
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, United States
| |
Collapse
|
46
|
Khan AM, Grant AH, Martinez A, Burns GAPC, Thatcher BS, Anekonda VT, Thompson BW, Roberts ZS, Moralejo DH, Blevins JE. Mapping Molecular Datasets Back to the Brain Regions They are Extracted from: Remembering the Native Countries of Hypothalamic Expatriates and Refugees. ADVANCES IN NEUROBIOLOGY 2018; 21:101-193. [PMID: 30334222 PMCID: PMC6310046 DOI: 10.1007/978-3-319-94593-4_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
Abstract
This article focuses on approaches to link transcriptomic, proteomic, and peptidomic datasets mined from brain tissue to the original locations within the brain that they are derived from using digital atlas mapping techniques. We use, as an example, the transcriptomic, proteomic and peptidomic analyses conducted in the mammalian hypothalamus. Following a brief historical overview, we highlight studies that have mined biochemical and molecular information from the hypothalamus and then lay out a strategy for how these data can be linked spatially to the mapped locations in a canonical brain atlas where the data come from, thereby allowing researchers to integrate these data with other datasets across multiple scales. A key methodology that enables atlas-based mapping of extracted datasets-laser-capture microdissection-is discussed in detail, with a view of how this technology is a bridge between systems biology and systems neuroscience.
Collapse
Affiliation(s)
- Arshad M Khan
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, TX, USA.
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA.
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, USA.
| | - Alice H Grant
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, TX, USA
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
- Graduate Program in Pathobiology, University of Texas at El Paso, El Paso, TX, USA
| | - Anais Martinez
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, TX, USA
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
- Graduate Program in Pathobiology, University of Texas at El Paso, El Paso, TX, USA
| | - Gully A P C Burns
- Information Sciences Institute, Viterbi School of Engineering, University of Southern California, Marina del Rey, CA, USA
| | - Brendan S Thatcher
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Vishwanath T Anekonda
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Benjamin W Thompson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Zachary S Roberts
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Daniel H Moralejo
- Division of Neonatology, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - James E Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
47
|
Bonasera SJ, Arikkath J, Boska MD, Chaudoin TR, DeKorver NW, Goulding EH, Hoke TA, Mojtahedzedah V, Reyelts CD, Sajja B, Schenk AK, Tecott LH, Volden TA. Age-related changes in cerebellar and hypothalamic function accompany non-microglial immune gene expression, altered synapse organization, and excitatory amino acid neurotransmission deficits. Aging (Albany NY) 2017; 8:2153-2181. [PMID: 27689748 PMCID: PMC5076456 DOI: 10.18632/aging.101040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/08/2016] [Accepted: 09/07/2016] [Indexed: 11/25/2022]
Abstract
We describe age-related molecular and neuronal changes that disrupt mobility or energy balance based on brain region and genetic background. Compared to young mice, aged C57BL/6 mice exhibit marked locomotor (but not energy balance) impairments. In contrast, aged BALB mice exhibit marked energy balance (but not locomotor) impairments. Age-related changes in cerebellar or hypothalamic gene expression accompany these phenotypes. Aging evokes upregulation of immune pattern recognition receptors and cell adhesion molecules. However, these changes do not localize to microglia, the major CNS immunocyte. Consistent with a neuronal role, there is a marked age-related increase in excitatory synapses over the cerebellum and hypothalamus. Functional imaging of these regions is consistent with age-related synaptic impairments. These studies suggest that aging reactivates a developmental program employed during embryogenesis where immune molecules guide synapse formation and pruning. Renewed activity in this program may disrupt excitatory neurotransmission, causing significant behavioral deficits.
Collapse
Affiliation(s)
- Stephen J Bonasera
- Division of Geriatrics, University of Nebraska Medical Center, Durham Research Center II, Omaha, NE 68198, USA
| | - Jyothi Arikkath
- Monroe-Meyer Institute, University of Nebraska Medical Center, Durham Research Center II, Omaha, NE 68198, USA
| | - Michael D Boska
- Department of Radiology, University of Nebraska Medical Center, College of Medicine, Omaha, NE 68198, USA
| | - Tammy R Chaudoin
- Division of Geriatrics, University of Nebraska Medical Center, Durham Research Center II, Omaha, NE 68198, USA
| | - Nicholas W DeKorver
- Division of Geriatrics, University of Nebraska Medical Center, Durham Research Center II, Omaha, NE 68198, USA
| | - Evan H Goulding
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL 60611, USA
| | - Traci A Hoke
- Division of Geriatrics, University of Nebraska Medical Center, Durham Research Center II, Omaha, NE 68198, USA
| | | | - Crystal D Reyelts
- Division of Geriatrics, University of Nebraska Medical Center, Durham Research Center II, Omaha, NE 68198, USA
| | - Balasrinivasa Sajja
- Department of Radiology, University of Nebraska Medical Center, College of Medicine, Omaha, NE 68198, USA
| | - A Katrin Schenk
- Department of Physics, Randolph College, Lynchburg, VA 24503, USA
| | - Laurence H Tecott
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Tiffany A Volden
- Division of Geriatrics, University of Nebraska Medical Center, Durham Research Center II, Omaha, NE 68198, USA
| |
Collapse
|
48
|
Khan SS, Singer BD, Vaughan DE. Molecular and physiological manifestations and measurement of aging in humans. Aging Cell 2017; 16:624-633. [PMID: 28544158 PMCID: PMC5506433 DOI: 10.1111/acel.12601] [Citation(s) in RCA: 278] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 03/15/2017] [Indexed: 12/11/2022] Open
Abstract
Biological aging is associated with a reduction in the reparative and regenerative potential in tissues and organs. This reduction manifests as a decreased physiological reserve in response to stress (termed homeostenosis) and a time-dependent failure of complex molecular mechanisms that cumulatively create disorder. Aging inevitably occurs with time in all organisms and emerges on a molecular, cellular, organ, and organismal level with genetic, epigenetic, and environmental modulators. Individuals with the same chronological age exhibit differential trajectories of age-related decline, and it follows that we should assess biological age distinctly from chronological age. In this review, we outline mechanisms of aging with attention to well-described molecular and cellular hallmarks and discuss physiological changes of aging at the organ-system level. We suggest methods to measure aging with attention to both molecular biology (e.g., telomere length and epigenetic marks) and physiological function (e.g., lung function and echocardiographic measurements). Finally, we propose a framework to integrate these molecular and physiological data into a composite score that measures biological aging in humans. Understanding the molecular and physiological phenomena that drive the complex and multifactorial processes underlying the variable pace of biological aging in humans will inform how researchers assess and investigate health and disease over the life course. This composite biological age score could be of use to researchers seeking to characterize normal, accelerated, and exceptionally successful aging as well as to assess the effect of interventions aimed at modulating human aging.
Collapse
Affiliation(s)
- Sadiya S. Khan
- Department of MedicineNorthwestern University Feinberg School of MedicineChicagoIL60611USA
| | - Benjamin D. Singer
- Department of MedicineNorthwestern University Feinberg School of MedicineChicagoIL60611USA
| | - Douglas E. Vaughan
- Department of MedicineNorthwestern University Feinberg School of MedicineChicagoIL60611USA
| |
Collapse
|
49
|
Balivada S, Ganta CK, Zhang Y, Pawar HN, Ortiz RJ, Becker KG, Khan AM, Kenney MJ. Microarray analysis of aging-associated immune system alterations in the rostral ventrolateral medulla of F344 rats. Physiol Genomics 2017; 49:400-415. [PMID: 28626023 PMCID: PMC5582943 DOI: 10.1152/physiolgenomics.00131.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/20/2016] [Revised: 06/12/2017] [Accepted: 06/12/2017] [Indexed: 11/22/2022] Open
Abstract
The rostral ventrolateral medulla (RVLM) is an area of the brain stem that contains diverse neural substrates that are involved in systems critical for physiological function. There is evidence that aging affects some neural substrates within the RVLM, although age-related changes in RVLM molecular mechanisms are not well established. The goal of the present study was to characterize the transcriptomic profile of the aging RVLM and to test the hypothesis that aging is associated with altered gene expression in the RVLM, with an emphasis on immune system associated gene transcripts. RVLM tissue punches from young, middle-aged, and aged F344 rats were analyzed with Agilent's whole rat genome microarray. The RVLM gene expression profile varied with age, and an association between chronological age and specific RVLM gene expression patterns was observed [P < 0.05, false discovery rate (FDR) < 0.3]. Functional analysis of RVLM microarray data via gene ontology profiling and pathway analysis identified upregulation of genes associated with immune- and stress-related responses and downregulation of genes associated with lipid biosynthesis and neurotransmission in aged compared with middle-aged and young rats. Differentially expressed genes associated with the complement system and microglial cells were further validated by quantitative PCR with separate RVLM samples (P < 0.05, FDR < 0.1). The present results have identified age-related changes in the transcriptomic profile of the RVLM, modifications that may provide the molecular backdrop for understanding age-dependent changes in physiological regulation.
Collapse
Affiliation(s)
- Sivasai Balivada
- Department of Biological Sciences, College of Science, University of Texas at El Paso, El Paso, Texas;
| | - Chanran K Ganta
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, Kansas; and
| | - Yongqing Zhang
- Gene Expression and Genomics Unit, National Institute on Aging, Baltimore, Maryland
| | - Hitesh N Pawar
- Department of Biological Sciences, College of Science, University of Texas at El Paso, El Paso, Texas
| | - Richard J Ortiz
- Department of Biological Sciences, College of Science, University of Texas at El Paso, El Paso, Texas
| | - Kevin G Becker
- Gene Expression and Genomics Unit, National Institute on Aging, Baltimore, Maryland
| | - Arshad M Khan
- Department of Biological Sciences, College of Science, University of Texas at El Paso, El Paso, Texas
| | - Michael J Kenney
- Department of Biological Sciences, College of Science, University of Texas at El Paso, El Paso, Texas
| |
Collapse
|
50
|
Discover mouse gene coexpression landscapes using dictionary learning and sparse coding. Brain Struct Funct 2017; 222:4253-4270. [DOI: 10.1007/s00429-017-1460-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/31/2016] [Accepted: 06/13/2017] [Indexed: 11/25/2022]
|