1
|
D'Orso I. The HIV-1 Transcriptional Program: From Initiation to Elongation Control. J Mol Biol 2025; 437:168690. [PMID: 38936695 PMCID: PMC11994015 DOI: 10.1016/j.jmb.2024.168690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
A large body of work in the last four decades has revealed the key pillars of HIV-1 transcription control at the initiation and elongation steps. Here, I provide a recount of this collective knowledge starting with the genomic elements (DNA and nascent TAR RNA stem-loop) and transcription factors (cellular and the viral transactivator Tat), and later transitioning to the assembly and regulation of transcription initiation and elongation complexes, and the role of chromatin structure. Compelling evidence support a core HIV-1 transcriptional program regulated by the sequential and concerted action of cellular transcription factors and Tat to promote initiation and sustain elongation, highlighting the efficiency of a small virus to take over its host to produce the high levels of transcription required for viral replication. I summarize new advances including the use of CRISPR-Cas9, genetic tools for acute factor depletion, and imaging to study transcriptional dynamics, bursting and the progression through the multiple phases of the transcriptional cycle. Finally, I describe current challenges to future major advances and discuss areas that deserve more attention to both bolster our basic knowledge of the core HIV-1 transcriptional program and open up new therapeutic opportunities.
Collapse
Affiliation(s)
- Iván D'Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
2
|
Moezpoor MR, Stevenson M. Help or Hinder: Protein Host Factors That Impact HIV-1 Replication. Viruses 2024; 16:1281. [PMID: 39205255 PMCID: PMC11360189 DOI: 10.3390/v16081281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Interactions between human immunodeficiency virus type 1 (HIV-1) and the host factors or restriction factors of its target cells determine the cell's susceptibility to, and outcome of, infection. Factors intrinsic to the cell are involved at every step of the HIV-1 replication cycle, contributing to productive infection and replication, or severely attenuating the chances of success. Furthermore, factors unique to certain cell types contribute to the differences in infection between these cell types. Understanding the involvement of these factors in HIV-1 infection is a key requirement for the development of anti-HIV-1 therapies. As the list of factors grows, and the dynamic interactions between these factors and the virus are elucidated, comprehensive and up-to-date summaries that recount the knowledge gathered after decades of research are beneficial to the field, displaying what is known so that researchers can build off the groundwork of others to investigate what is unknown. Herein, we aim to provide a review focusing on protein host factors, both well-known and relatively new, that impact HIV-1 replication in a positive or negative manner at each stage of the replication cycle, highlighting factors unique to the various HIV-1 target cell types where appropriate.
Collapse
Affiliation(s)
- Michael Rameen Moezpoor
- Department of Microbiology and Immunology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Mario Stevenson
- Raymond F. Schinazi and Family Endowed Chair in Biomedicine; Professor of Medicine; Director, Institute of AIDS and Emerging Infectious Diseases; Department of Microbiology and Immunology, University of Miami Leonard M. Miller School of Medicine, Life Science Technology Park, 1951 NW 7th Avenue, Room 2331B, Suite 200, Miami, FL 33136, USA;
| |
Collapse
|
3
|
Jain J, Chaudhary Y, Gaur SK, Tembhurne P, Sekar SC, Dhanavelu M, Sehrawat S, Kaul R. Peste des petits ruminants virus non-structural V and C proteins interact with the NF-κB p65 subunit and modulate pro-inflammatory cytokine gene induction. J Gen Virol 2023; 104. [PMID: 37831061 DOI: 10.1099/jgv.0.001907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Peste des petits ruminants virus (PPRV) is known to induce transient immunosuppression in infected small ruminants by modulating several cellular pathways involved in the antiviral immune response. Our study shows that the PPRV-coded non-structural proteins C and V can interact with the cellular NF-κB p65 subunit. The PPRV-C protein interacts with the transactivation domain (TAD) while PPRV-V interacts with the Rel homology domain (RHD) of the NF-κB p65 subunit. Both viral proteins can suppress the NF-κB transcriptional activity and NF-κB-mediated transcription of cellular genes. PPRV-V protein expression can significantly inhibit the nuclear translocation of NF-κB p65 upon TNF-α stimulation, whereas PPRV-C does not affect it. The NF-κB-mediated pro-inflammatory cytokine gene expression is significantly downregulated in cells expressing PPRV-C or PPRV-V protein. Our study provides evidence suggesting a role of PPRV non-structural proteins V and C in the modulation of NF-κB signalling through interaction with the NF-κB p65 subunit.
Collapse
Affiliation(s)
- Juhi Jain
- Department of Microbiology, University of Delhi, South Campus, New Delhi, India
| | - Yash Chaudhary
- Department of Microbiology, University of Delhi, South Campus, New Delhi, India
| | - Sharad Kumar Gaur
- Department of Microbiology, University of Delhi, South Campus, New Delhi, India
| | | | | | | | - Sharvan Sehrawat
- Indian Institute of Science Education and Research, Mohali, India
| | - Rajeev Kaul
- Department of Microbiology, University of Delhi, South Campus, New Delhi, India
| |
Collapse
|
4
|
Albarnaz JD, Ren H, Torres AA, Shmeleva EV, Melo CA, Bannister AJ, Brember MP, Chung BYW, Smith GL. Molecular mimicry of NF-κB by vaccinia virus protein enables selective inhibition of antiviral responses. Nat Microbiol 2022; 7:154-168. [PMID: 34949827 PMCID: PMC7614822 DOI: 10.1038/s41564-021-01004-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 10/21/2021] [Indexed: 12/16/2022]
Abstract
Infection of mammalian cells with viruses activates NF-κB to induce the expression of cytokines and chemokines and initiate an antiviral response. Here, we show that a vaccinia virus protein mimics the transactivation domain of the p65 subunit of NF-κB to inhibit selectively the expression of NF-κB-regulated genes. Using co-immunoprecipitation assays, we found that the vaccinia virus protein F14 associates with NF-κB co-activator CREB-binding protein (CBP) and disrupts the interaction between p65 and CBP. This abrogates CBP-mediated acetylation of p65, after which it reduces promoter recruitment of the transcriptional regulator BRD4 and diminishes stimulation of NF-κB-regulated genes CXCL10 and CCL2. Recruitment of BRD4 to the promoters of NFKBIA and CXCL8 remains unaffected by either F14 or JQ1 (a competitive inhibitor of BRD4 bromodomains), indicating that BRD4 recruitment is acetylation-independent. Unlike other viral proteins that are general antagonists of NF-κB, F14 is a selective inhibitor of NF-κB-dependent gene expression. An in vivo model of infection demonstrated that F14 promotes virulence. Molecular mimicry of NF-κB may be conserved because other orthopoxviruses, including variola, monkeypox and cowpox viruses, encode orthologues of F14.
Collapse
Affiliation(s)
- Jonas D Albarnaz
- Department of Pathology, University of Cambridge, Cambridge, UK.
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| | - Hongwei Ren
- Department of Pathology, University of Cambridge, Cambridge, UK
- Department of Immunology and Inflammation, Imperial College London, Hammersmith Campus, London, UK
| | - Alice A Torres
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Evgeniya V Shmeleva
- Department of Pathology, University of Cambridge, Cambridge, UK
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK
| | - Carlos A Melo
- The Gurdon Institute, University of Cambridge, Cambridge, UK
| | | | | | - Betty Y-W Chung
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
5
|
Jin Y, Zhang M, Li M, Zhang H, Zhao L, Qian C, Li S, Zhang H, Gao M, Pan B, Li R, Wan X, Cao C. SIX1 Activation Is Involved in Cell Proliferation, Migration, and Anti-inflammation of Acute Ischemia/Reperfusion Injury in Mice. Front Mol Biosci 2021; 8:725319. [PMID: 34513929 PMCID: PMC8427868 DOI: 10.3389/fmolb.2021.725319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/11/2021] [Indexed: 11/13/2022] Open
Abstract
Nephrogenic proteins are re-expressed after ischemia/reperfusion (I/R) injury; however, the role of these proteins is still unknown. We found that sine oculis homeobox 1 (SIX1), a developmentally regulated homeoprotein, is reactivated in tubular epithelial cells after I/R injury associated with cell proliferation/migration and anti-inflammation. We demonstrated that SIX1 promoted cell proliferation by upregulating cyclin and glycolytic genes, and might increase cell migration by upregulating the expression of matrix metalloproteinase 9 (MMP9) directly or indirectly in the cell model. Notably, SIX1 targeted the promoters of the amino-terminal enhancer of split (AES) and fused in sarcoma (FUS), which are cofactors of nuclear factor-κB (NF-κB) subunit RELA, and then inhibited the transactivation function of RELA. The expression of monocyte chemotactic protein-1 (MCP-1) was decreased by the SIX1-mediated NF-κB pathway. Our results showed that the expression of cyclin, glycolytic genes, and MMP9 were significantly increased, and the infiltration of monocytes/macrophages (Mophs) was suppressed in SIX1 overexpression kidney at 1, 2, and 3 days after reperfusion. The overexpression of SIX1 resulted in reducing kidney damage from I/R injury in mice by promoting cell proliferation and migration and by inhibiting inflammation. Our study provides evidence that SIX1 involved in cell proliferation, migration, and anti-inflammation in the I/R model, which might be a potential therapeutic target that could be used to ameliorate kidney damage.
Collapse
Affiliation(s)
- Yong Jin
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Manling Zhang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Meishuang Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Hong Zhang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Lihua Zhao
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Cheng Qian
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Shensen Li
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Hao Zhang
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Min Gao
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Binbin Pan
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Rongfeng Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Xin Wan
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Changchun Cao
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Srinivasan M, Lahiri N, Thyagarajan A, Witek E, Hickman D, Lahiri DK. Nuclear factor-kappa B: Glucocorticoid-induced leucine zipper interface analogs suppress pathology in an Alzheimer's disease model. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2018; 4:488-498. [PMID: 30338290 PMCID: PMC6186959 DOI: 10.1016/j.trci.2018.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Glucocorticoid-induced leucine zipper is a regulatory protein that sequesters activated nuclear factor-kappa B p65. Previously, we showed that rationally designed analogs of the p65-binding domain of glucocorticoid-induced leucine zipper, referred to as glucocorticoid-induced leucine zipper analogs (GAs), inhibited amyloid β-induced metabolic activity and inflammatory cytokines in mixed brain cell cultures. Here, we investigate the therapeutic efficacy of GA in an Alzheimer's disease model. METHODS GA and control peptides were synthesized covalently as peptide amides with the cell-penetrating agent. C57Bl/6J mice induced with lipopolysaccharide-mediated neuroinflammation (250 mg/kg i.p/day for six days) were treated on alternate days with GA-1, GA-2, or control peptides (25 mg/kg i.v). Brain tissues were assessed for gliosis, cytokines, and antiapoptotic factors. RESULTS The brain tissues of GA-1- and GA-2-treated mice exhibited significantly reduced gliosis, suppressed inflammatory cytokines, and elevated antiapoptotic factors. DISCUSSION The antineuroinflammatory effects of GA suggest potential therapeutic application for Alzheimer's disease.
Collapse
Affiliation(s)
- Mythily Srinivasan
- Department of Oral Pathology, Medicine and Radiology, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Niloy Lahiri
- Provaidya LLC, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Anish Thyagarajan
- Provaidya LLC, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Emily Witek
- Stark Neuroscience Research Institute, Department of Psychiatry, Institute of Psychiatry Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Debra Hickman
- Stark Neuroscience Research Institute, Department of Psychiatry, Institute of Psychiatry Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Debomoy K. Lahiri
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indiana University–Purdue University Indianapolis, Indianapolis, IN, USA
| |
Collapse
|
7
|
Lecoq L, Raiola L, Chabot PR, Cyr N, Arseneault G, Legault P, Omichinski JG. Structural characterization of interactions between transactivation domain 1 of the p65 subunit of NF-κB and transcription regulatory factors. Nucleic Acids Res 2017; 45:5564-5576. [PMID: 28334776 PMCID: PMC5435986 DOI: 10.1093/nar/gkx146] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 02/25/2017] [Indexed: 01/27/2023] Open
Abstract
p65 is a member of the NF-κB family of transcriptional regulatory proteins that functions as the activating component of the p65-p50 heterodimer. Through its acidic transactivation domain (TAD), p65 has the capacity to form interactions with several different transcriptional regulatory proteins, including TFIIB, TFIIH, CREB-binding protein (CBP)/p300 and TAFII31. Like other acidic TADs, the p65 TAD contains two subdomains (p65TA1 and p65TA2) that interact with different regulatory factors depending on the target gene. Despite its role in controlling numerous NF-κB target genes, there are no high-resolution structures of p65TA1 bound to a target transcriptional regulatory factor. In this work, we characterize the interaction of p65TA1 with two factors, the Tfb1/p62 subunit of TFIIH and the KIX domain of CBP. In these complexes, p65TA1 transitions into a helical conformation that includes its characteristic ΦXXΦΦ motif (Φ = hydrophobic amino acid). Structural and functional studies demonstrate that the two binding interfaces are primarily stabilized by three hydrophobic amino acids within the ΦXXΦΦ motif and these residues are also crucial to its ability to activate transcription. Taken together, the results provide an atomic level description of how p65TA1 is able to bind different transcriptional regulatory factors needed to activate NF-κB target genes.
Collapse
Affiliation(s)
- Lauriane Lecoq
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Luca Raiola
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Philippe R Chabot
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Normand Cyr
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Geneviève Arseneault
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Pascale Legault
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - James G Omichinski
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
8
|
A heterochromatin-dependent transcription machinery drives piRNA expression. Nature 2017; 549:54-59. [PMID: 28847004 PMCID: PMC5590728 DOI: 10.1038/nature23482] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/14/2017] [Indexed: 12/30/2022]
Abstract
Nuclear small RNA pathways safeguard genome integrity by establishing transcription-repressing heterochromatin at transposable elements. This inevitably also targets the transposon-rich source loci of the small RNAs themselves. How small RNA source loci are efficiently transcribed while transposon promoters are potently silenced is not understood. Here we show that, in Drosophila, transcription of PIWI-interacting RNA (piRNA) clusters-small RNA source loci in animal gonads-is enforced through RNA polymerase II pre-initiation complex formation within repressive heterochromatin. This is accomplished through Moonshiner, a paralogue of a basal transcription factor IIA (TFIIA) subunit, which is recruited to piRNA clusters via the heterochromatin protein-1 variant Rhino. Moonshiner triggers transcription initiation within piRNA clusters by recruiting the TATA-box binding protein (TBP)-related factor TRF2, an animal TFIID core variant. Thus, transcription of heterochromatic small RNA source loci relies on direct recruitment of the core transcriptional machinery to DNA via histone marks rather than sequence motifs, a concept that we argue is a recurring theme in evolution.
Collapse
|
9
|
Pyrin-only protein 2 limits inflammation but improves protection against bacteria. Nat Commun 2017; 8:15564. [PMID: 28580947 PMCID: PMC5512670 DOI: 10.1038/ncomms15564] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 04/07/2017] [Indexed: 12/13/2022] Open
Abstract
Pyrin domain-only proteins (POPs) are recently evolved, primate-specific proteins demonstrated in vitro as negative regulators of inflammatory responses. However, their in vivo function is not understood. Of the four known POPs, only POP2 is reported to regulate NF-κB-dependent transcription and multiple inflammasomes. Here we use a transgenic mouse-expressing POP2 controlled by its endogenous human promotor to study the immunological functions of POP2. Despite having significantly reduced inflammatory cytokine responses to LPS and bacterial infection, POP2 transgenic mice are more resistant to bacterial infection than wild-type mice. In a pulmonary tularaemia model, POP2 enhances IFN-γ production, modulates neutrophil numbers, improves macrophage functions, increases bacterial control and diminishes lung pathology. Thus, unlike other POPs thought to diminish innate protection, POP2 reduces detrimental inflammation while preserving and enhancing protective immunity. Our findings suggest that POP2 acts as a high-order regulator balancing cellular function and inflammation with broad implications for inflammation-associated diseases and therapeutic intervention. Pyrin-only proteins (POPs) are primate-specific negative regulators of inflammasome activation. Here the authors generate transgenic mice expressing POP2 under the control of the human promoter, and show that POP2 is important for balancing antibacterial inflammatory responses in vivo.
Collapse
|
10
|
Vaine CA, Shin D, Liu C, Hendriks WT, Dhakal J, Shin K, Sharma N, Bragg DC. X-linked Dystonia-Parkinsonism patient cells exhibit altered signaling via nuclear factor-kappa B. Neurobiol Dis 2016; 100:108-118. [PMID: 28017799 DOI: 10.1016/j.nbd.2016.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/17/2016] [Accepted: 12/18/2016] [Indexed: 10/20/2022] Open
Abstract
X-linked Dystonia-Parkinsonism (XDP) is a progressive neurodegenerative disease involving the loss of medium spiny neurons within the striatum. An XDP-specific haplotype has been identified, consisting of seven sequence variants which cluster around the human TAF1 gene, but a direct relationship between any of these variants and disease pathogenesis has not yet been demonstrated. Because the pathogenic gene lesion remains unclear, it has been difficult to predict cellular pathways which are affected in XDP cells. To address that issue, we assayed expression of defined gene sets in XDP vs. control fibroblasts to identify networks of functionally-related transcripts which may be dysregulated in XDP patient cells. That analysis derived a 51-gene signature distinguishing XDP vs. control fibroblasts which mapped strongly to nuclear factor-kappa B (NFκB), a transcription factor pathway also implicated in the pathogenesis of other neurodegenerative diseases, including Parkinson's (PD) and Huntington's disease (HD). Constitutive and TNFα-evoked NFκB signaling was further evaluated in XDP vs. control fibroblasts based on luciferase reporter activity, DNA binding of NFκB subunits, and endogenous target gene transcription. Compared to control cells, XDP fibroblasts exhibited decreased basal NFκB activity and decreased levels of the active NFκB p50 subunit, but increased target gene expression in response to TNFα. NFκB signaling was further examined in neural stem cells differentiated from XDP and control induced pluripotent stem cell (iPSC) lines, revealing a similar pattern of increased TNFα responses in the patient lines compared to controls. These data indicate that an NFκB signaling phenotype is present in both patient fibroblasts and neural stem cells, suggesting this pathway as a site of dysfunction in XDP.
Collapse
Affiliation(s)
- Christine A Vaine
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Brain Science Initiative, Harvard Medical School, Boston, MA 02114, USA
| | - David Shin
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Brain Science Initiative, Harvard Medical School, Boston, MA 02114, USA
| | - Christina Liu
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Brain Science Initiative, Harvard Medical School, Boston, MA 02114, USA
| | - William T Hendriks
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Brain Science Initiative, Harvard Medical School, Boston, MA 02114, USA
| | - Jyotsna Dhakal
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Brain Science Initiative, Harvard Medical School, Boston, MA 02114, USA
| | - Kyle Shin
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Brain Science Initiative, Harvard Medical School, Boston, MA 02114, USA
| | - Nutan Sharma
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - D Cristopher Bragg
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Brain Science Initiative, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
11
|
Novel Nuclear Factor-KappaB Targeting Peptide Suppresses β-Amyloid Induced Inflammatory and Apoptotic Responses in Neuronal Cells. PLoS One 2016; 11:e0160314. [PMID: 27764084 PMCID: PMC5072831 DOI: 10.1371/journal.pone.0160314] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 07/18/2016] [Indexed: 11/19/2022] Open
Abstract
In the central nervous system (CNS), activation of the transcription factor nuclear factor-kappa B (NF-κβ) is associated with both neuronal survival and increased vulnerability to apoptosis. The mechanisms underlying these dichotomous effects are attributed to the composition of NF-κΒ dimers. In Alzheimer’s disease (AD), β-amyloid (Aβ) and other aggregates upregulate activation of p65:p50 dimers in CNS cells and enhance transactivation of pathological mediators that cause neuroinflammation and neurodegeneration. Hence selective targeting of activated p65 is an attractive therapeutic strategy for AD. Here we report the design, structural and functional characterization of peptide analogs of a p65 interacting protein, the glucocorticoid induced leucine zipper (GILZ). By virtue of binding the transactivation domain of p65 exposed after release from the inhibitory IκΒ proteins in activated cells, the GILZ analogs can act as highly selective inhibitors of activated p65 with minimal potential for off-target effects.
Collapse
|
12
|
The DEAD-Box RNA Helicase DDX3 Interacts with NF-κB Subunit p65 and Suppresses p65-Mediated Transcription. PLoS One 2016; 11:e0164471. [PMID: 27736973 PMCID: PMC5063347 DOI: 10.1371/journal.pone.0164471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 09/26/2016] [Indexed: 11/29/2022] Open
Abstract
RNA helicase family members exhibit diverse cellular functions, including in transcription, pre-mRNA processing, RNA decay, ribosome biogenesis, RNA export and translation. The RNA helicase DEAD-box family member DDX3 has been characterized as a tumour-associated factor and a transcriptional co-activator/regulator. Here, we demonstrate that DDX3 interacts with the nuclear factor (NF)-κB subunit p65 and suppresses NF-κB (p65/p50)-mediated transcriptional activity. The downregulation of DDX3 by RNA interference induces the upregulation of NF-κB (p65/p50)-mediated transcription. The regulation of NF-κB (p65/p50)-mediated transcriptional activity was further confirmed by the expression levels of its downstream cytokines, such as IL-6 and IL-8. Moreover, the binding of the ATP-dependent RNA helicase domain of DDX3 to the N-terminal Rel homology domain (RHD) of p65 is involved in the inhibition of NF-κB-regulated gene transcription. In summary, the results suggest that DDX3 functions to suppress the transcriptional activity of the NF-κB subunit p65.
Collapse
|
13
|
Hirata-Tsuchiya S, Fukushima H, Kokabu S, Kitamura C, Jimi E. Fine-tuning between BMP and NF-κB pathways regulates osteoblastic bone formation. J Oral Biosci 2016. [DOI: 10.1016/j.job.2016.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Graczyk D, White RJ, Ryan KM. Involvement of RNA Polymerase III in Immune Responses. Mol Cell Biol 2015; 35:1848-59. [PMID: 25776554 PMCID: PMC4405649 DOI: 10.1128/mcb.00990-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 08/11/2014] [Accepted: 03/06/2015] [Indexed: 12/12/2022] Open
Abstract
Inflammation in the tumor microenvironment has many tumor-promoting effects. In particular, tumor-associated macrophages (TAMs) produce many cytokines which can support tumor growth by promoting survival of malignant cells, angiogenesis, and metastasis. Enhanced cytokine production by TAMs is tightly coupled with protein synthesis. In turn, translation of proteins depends on tRNAs, short abundant transcripts that are made by RNA polymerase III (Pol III). Here, we connect these facts by showing that stimulation of mouse macrophages with lipopolysaccharides (LPS) from the bacterial cell wall causes transcriptional upregulation of tRNA genes. The transcription factor NF-κB is a key transcription factor mediating inflammatory signals, and we report that LPS treatment causes an increased association of the NF-κB subunit p65 with tRNA genes. In addition, we show that p65 can directly associate with the Pol III transcription factor TFIIIB and that overexpression of p65 induces Pol III-dependent transcription. As a consequence of these effects, we show that inhibition of Pol III activity in macrophages restrains cytokine secretion and suppresses phagocytosis, two key functional characteristics of these cells. These findings therefore identify a radical new function for Pol III in the regulation of macrophage function which may be important for the immune responses associated with both normal and malignant cells.
Collapse
Affiliation(s)
- Damian Graczyk
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Robert J White
- Department of Biology, University of York, York, United Kingdom
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| |
Collapse
|
15
|
Hävemeier A, Gramolelli S, Pietrek M, Jochmann R, Stürzl M, Schulz TF. Activation of NF-κB by the Kaposi's sarcoma-associated herpesvirus K15 protein involves recruitment of the NF-κB-inducing kinase, IκB kinases, and phosphorylation of p65. J Virol 2014; 88:13161-72. [PMID: 25187543 PMCID: PMC4249085 DOI: 10.1128/jvi.01766-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/26/2014] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED Kaposi's sarcoma herpesvirus (KSHV) (or human herpesvirus 8) is the cause of Kaposi's sarcoma, primary effusion lymphoma (PEL), and the plasma cell variant of multicentric Castleman's disease (MCD). The transmembrane K15 protein, encoded by KSHV, has been shown to activate NF-κB and the mitogen-activated protein kinases (MAPKs) c-jun-N-terminal kinase (JNK) and extracellular signal-regulated kinase (Erk) as well as phospholipase C gamma (PLCγ) and to contribute to KSHV-induced angiogenesis. Here we investigate how the K15 protein activates the NF-κB pathway. We show that activation of NF-κB involves the recruitment of NF-κB-inducing kinase (NIK) and IKK α/β to result in the phosphorylation of p65/RelA on Ser536. A K15 mutant devoid in NIK/IKK recruitment fails to activate NF-κB but remains proficient in the stimulation of both NFAT- and AP1-dependent promoters, showing that the structural integrity of the mutant K15 protein has not been altered dramatically. Direct recruitment of NIK represents a novel way for a viral protein to activate and manipulate the NF-κB pathway. IMPORTANCE KSHV K15 is a viral protein involved in the activation of proinflammatory and angiogenic pathways. Previous studies reported that K15 can activate the NF-κB pathway. Here we show the molecular mechanism underlying the activation of this signaling pathway by K15, which involves direct recruitment of the NF-κB-inducing kinase NIK to K15 as well as NIK-mediated NF-κB p65 phosphorylation on Ser536. K15 is the first viral protein shown to activate NF-κB through direct recruitment of NIK. These results indicate a new mechanism whereby a viral protein can manipulate the NF-κB pathway.
Collapse
Affiliation(s)
- Anika Hävemeier
- Institut für Virologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Silvia Gramolelli
- Institut für Virologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Marcel Pietrek
- Institut für Virologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Ramona Jochmann
- Chirurgische Klinik, Abteilung Molekulare und Experimentelle Chirurgie, Translational Research Center Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Stürzl
- Chirurgische Klinik, Abteilung Molekulare und Experimentelle Chirurgie, Translational Research Center Universitätsklinikum Erlangen, Erlangen, Germany
| | - Thomas F Schulz
- Institut für Virologie, Medizinische Hochschule Hannover, Hannover, Germany
| |
Collapse
|
16
|
Chung MH, Kim DH, Na HK, Kim JH, Kim HN, Haegeman G, Surh YJ. Genistein inhibits phorbol ester-induced NF-κB transcriptional activity and COX-2 expression by blocking the phosphorylation of p65/RelA in human mammary epithelial cells. Mutat Res 2014; 768:74-83. [PMID: 24742714 DOI: 10.1016/j.mrfmmm.2014.04.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 03/30/2014] [Accepted: 04/03/2014] [Indexed: 06/03/2023]
Abstract
Genistein, an isoflavone present in soy products, has chemopreventive effects on mammary carcinogenesis. In the present study, we have investigated the effects of genistein on phorbol ester-induced expression of cyclooxygenase-2 (COX-2) that plays an important role in the pathophysiology of inflammation-associated carcinogenesis. Pretreatment of cultured human breast epithelial (MCF10A) cells with genistein reduced COX-2 expression induced by 12-O-tetradecanoylphorbol-13-acetate (TPA). There are multiple lines of evidence supporting that the induction of COX-2 is regulated by the eukaryotic transcription factor NF-κB. Genistein failed to inhibit TPA-induced nuclear translocation and DNA binding of NF-κB as well as degradation of IκB. However, genistein abrogated the TPA-induced transcriptional activity of NF-κB as determined by the luciferase reporter gene assay. Genistein inhibited phosphorylation of the p65 subunit of NF-κB and its interaction with cAMP regulatory element-binding protein-binding protein (CBP)/p300 and TATA-binding protein (TBP). TPA-induced NF-κB phosphorylation was abolished by pharmacological inhibition of extracellular signal-regulated kinase (ERK). Likewise, pharmacologic inhibition or dominant negative mutation of ERK suppressed phosphorylation of p65. The above findings, taken together, suggest that genistein inhibits TPA-induced COX-2 expression in MCF10A cells by blocking ERK-mediated phosphorylation of p65 and its subsequent interaction with CBP and TBP.
Collapse
Affiliation(s)
- Myung-Hoon Chung
- Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Do-Hee Kim
- Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Hye-Kyung Na
- Department of Food and Nutrition, Sungshin Women's University, Seoul, South Korea
| | - Jung-Hwan Kim
- Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Ha-Na Kim
- Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | | | - Young-Joon Surh
- Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul, South Korea; Cancer Research Institute, Seoul National University, Seoul, South Korea.
| |
Collapse
|
17
|
Hirata-Tsuchiya S, Fukushima H, Katagiri T, Ohte S, Shin M, Nagano K, Aoki K, Morotomi T, Sugiyama G, Nakatomi C, Kokabu S, Doi T, Takeuchi H, Ohya K, Terashita M, Hirata M, Kitamura C, Jimi E. Inhibition of BMP2-induced bone formation by the p65 subunit of NF-κB via an interaction with Smad4. Mol Endocrinol 2014; 28:1460-70. [PMID: 25029242 DOI: 10.1210/me.2014-1094] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bone morphogenic proteins (BMPs) stimulate bone formation in vivo and osteoblast differentiation in vitro via a Smad signaling pathway. Recent findings revealed that the activation of nuclear factor-κB (NF-κB) inhibits BMP-induced osteoblast differentiation. Here, we show that NF-κB inhibits BMP signaling by directly targeting the Smad pathway. A selective inhibitor of the classic NF-κB pathway, BAY11-770682, enhanced BMP2-induced ectopic bone formation in vivo. In mouse embryonic fibroblasts (MEFs) prepared from mice deficient in p65, the main subunit of NF-κB, BMP2, induced osteoblastic differentiation via the Smad complex to a greater extent than that in wild-type MEFs. In p65(-/-) MEFs, the BMP2-activated Smad complex bound much more stably to the target element than that in wild-type MEFs without affecting the phosphorylation levels of Smad1/5/8. Overexpression of p65 inhibited BMP2 activity by decreasing the DNA binding of the Smad complex. The C-terminal region, including the TA2 domain, of p65 was essential for inhibiting the BMP-Smad pathway. The C-terminal TA2 domain of p65 associated with the MH1 domain of Smad4 but not Smad1. Taken together, our results suggest that p65 inhibits BMP signaling by blocking the DNA binding of the Smad complex via an interaction with Smad4. Our study also suggests that targeting the association between p65 and Smad4 may help to promote bone regeneration in the treatment of bone diseases.
Collapse
Affiliation(s)
- Shizu Hirata-Tsuchiya
- Department of Health Improvement (S.H.-T., G.S., C.N., S.K., H.T., E.J.) and Department of Oral Function (S.H.-T., T.M., C.K.), Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan; Department of Physiological Science and Molecular Biology (H.F.), Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan; Division of Pathophysiology (T.K., S.O., M.S.), Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan; Section of Pharmacology (K.N., K.A., K.O.), Department of Bio-Matrix, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan; Technology and Development Team for BioSignal Program (T.D.), Subteam for BioSignal Integration, RIKEN BioResource Center, Tsukuba-shi, Ibaraki 305-0074, Japan; Laboratory of Molecular and Cellular Biochemistry (M.H.), Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; and Center for Oral Biological Research (C.K., E.J.), Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kaminski R, Wollebo HS, Datta PK, White MK, Amini S, Khalili K. Interplay of Rad51 with NF-κB pathway stimulates expression of HIV-1. PLoS One 2014; 9:e98304. [PMID: 24847939 PMCID: PMC4029908 DOI: 10.1371/journal.pone.0098304] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/30/2014] [Indexed: 12/12/2022] Open
Abstract
Transcription from the HIV-1 promoter is controlled by a series of ubiquitous and inducible cellular proteins with the ability to enter the nucleus and interact with the promoter. A DNA sequence spanning nucleotides −120 to −80, which supports the association of the inducible NF-κB transcription factor, has received much attention. Here we demonstrate that the interplay between Rad51, a key regulator of the homologous recombination pathway of DNA repair and whose level is induced upon HIV-1 infection, with the NF-κB pathway, augments transcription of the viral promoter. Evidently, stimulation of the NF-κB pathway by PMA and/or TSA promotes association of Rad51 with the LTR DNA sequence and that the p65 subunit of NF-κB is important for this event. Our results also demonstrate that, similar to p65, Rad51 utilizes the NF-κB pathway to position itself in the nucleus as ectopic expression of an IκB mutant impedes its nuclear appearance and transcriptional activity upon the HIV-1 LTR. Treatment of peripheral blood mononuclear cells with small molecules that inhibit Rad51 activity results in greater than 50% decrease in the HIV-1 infection of cells. These observations provide evidence for the involvement of DNA repair factors in control of HIV-1 gene activation and offer a new avenue for the development of anti-viral therapeutics that affect viral gene transcription in latently infected cells.
Collapse
Affiliation(s)
- Rafal Kaminski
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Hassen S. Wollebo
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Prasun K. Datta
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Martyn K. White
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Shohreh Amini
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
19
|
Interaction of transactive response DNA binding protein 43 with nuclear factor κB in mild cognitive impairment with episodic memory deficits. Acta Neuropathol Commun 2014; 2:37. [PMID: 24690380 PMCID: PMC4230634 DOI: 10.1186/2051-5960-2-37] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/20/2014] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Transactive response DNA binding protein 43 (TDP-43) is detected in pathological inclusions in many cases of Alzheimer's disease (AD) and mild cognitive impairment (MCI), but its pathological role in AD and MCI remains unknown. Recently, TDP-43 was reported to contribute to pathogenesis in amyotrophic lateral sclerosis through its interaction with p65 nuclear factor κB (NF-κB) resulting in abnormal hyperactivation of this signaling pathway in motor neurons. Hence, we investigated the interaction of TDP-43 with p65 in the temporal cortex of subjects with a clinical diagnosis of MCI (n = 12) or AD (n = 12) as well as of age-matched controls with no cognitive impairment (NCI, n = 12). RESULTS Immunoprecipitation and immunofluorescence approaches revealed a robust interaction of TDP-43 with p65 in the nucleus of temporal lobe neurons in four individuals with MCI (named MCI-p). These MCI-p cases exhibited high expression levels of soluble TDP-43, p65, phosphorylated p65 and low expression levels of β-amyloid 40 when compared to AD or NCI cases. The analysis of cognitive performance tests showed that MCI-p individuals presented intermediate deficits of global cognition and episodic memory between those of AD cases and of NCI cases and MCI cases with no interaction of TDP-43 with p65. CONCLUSIONS From these results, we propose that enhanced NF-κB activation due to TDP-43 and p65 interaction may contribute to neuronal dysfunction in MCI individuals with episodic memory deficits. Accordingly, treatment with inhibitors of NF-κB activation may be considered for MCI individuals with episodic memory deficits.
Collapse
|
20
|
Diamant G, Dikstein R. Transcriptional control by NF-κB: elongation in focus. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:937-45. [PMID: 23624258 DOI: 10.1016/j.bbagrm.2013.04.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/15/2013] [Accepted: 04/17/2013] [Indexed: 01/01/2023]
Abstract
The NF-κB family of transcription factors governs the cellular reaction to a variety of extracellular signals. Following stimulation, NF-κB activates genes involved in inflammation, cell survival, cell cycle, immune cell homeostasis and more. This review focuses on studies of the past decade that uncover the transcription elongation process as a key regulatory stage in the activation pathway of NF-κB. Of interest are studies that point to the elongation phase as central to the selectivity of target gene activation by NF-κB. Particularly, the cascade leading to phosphorylation and acetylation of the NF-κB subunit p65 on serine 276 and lysine 310, respectively, was shown to mediate the recruitment of Brd4 and P-TEFb to many pro-inflammatory target genes, which in turn facilitate elongation and mRNA processing. On the other hand, some anti-inflammatory genes are refractory to this pathway and are dependent on the elongation factor DSIF for efficient elongation and mRNA processing. While these studies have advanced our knowledge of NF-κB transcriptional activity, they have also raised unresolved issues regarding the specific genomic and physiological contexts by which NF-κB utilizes different mechanisms for activation.
Collapse
Affiliation(s)
- Gil Diamant
- Dept. of Biological Chemistry, The Weizmann Institute of Science, Rehovot , Israel
| | | |
Collapse
|
21
|
TNFα induced FOXP3–NFκB interaction dampens the tumor suppressor role of FOXP3 in gastric cancer cells. Biochem Biophys Res Commun 2013. [DOI: 10.1016/j.bbrc.2012.11.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Modification of RelA by O-linked N-acetylglucosamine links glucose metabolism to NF-κB acetylation and transcription. Proc Natl Acad Sci U S A 2012; 109:16888-93. [PMID: 23027940 DOI: 10.1073/pnas.1208468109] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The molecular mechanisms linking glucose metabolism with active transcription remain undercharacterized in mammalian cells. Using nuclear factor-κB (NF-κB) as a glucose-responsive transcription factor, we show that cells use the hexosamine biosynthesis pathway and O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) to potentiate gene expression in response to tumor necrosis factor (TNF) or etoposide. Chromatin immunoprecipitation assays demonstrate that, upon induction, OGT localizes to NF-κB-regulated promoters to enhance RelA acetylation. Knockdown of OGT abolishes p300-mediated acetylation of RelA on K310, a posttranslational mark required for full NF-κB transcription. Mapping studies reveal T305 as an important residue required for attachment of the O-GlcNAc moiety on RelA. Furthermore, p300 fails to acetylate a full-length RelA(T305A) mutant, linking O-GlcNAc and acetylation events on NF-κB. Reconstitution of RelA null cells with the RelA(T305A) mutant illustrates the importance of this residue for NF-κB-dependent gene expression and cell survival. Our work provides evidence for a unique regulation where attachment of the O-GlcNAc moiety to RelA potentiates p300 acetylation and NF-κB transcription.
Collapse
|
23
|
Silvers R, Saxena K, Kudlinzki D, Schwalbe H. Recombinant expression and purification of human TATA binding protein using a chimeric fusion. Protein Expr Purif 2012; 85:142-7. [DOI: 10.1016/j.pep.2012.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 07/13/2012] [Accepted: 07/16/2012] [Indexed: 10/28/2022]
|
24
|
Suppression of IP-10/CXCL10 gene expression in LPS- and/or IFN-γ-stimulated macrophages by parasite-secreted products. Cell Immunol 2012; 276:101-9. [PMID: 22608126 DOI: 10.1016/j.cellimm.2012.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 04/06/2012] [Accepted: 04/09/2012] [Indexed: 01/22/2023]
Abstract
T helper (Th)2 polarized immune responses are characteristically dominant in helminth infections. The gene expression of interferon (IFN)-γ-inducible protein 10 (IP-10/CXCL10), which promotes Th1 responses, in mouse macrophages stimulated with lipopolysaccharide (LPS) and/or IFN-γ was suppressed by excretory/secretory (ES) products of Spirometra erinaceieuropaei plerocercoids. ES products suppressed LPS- and/or IFN-γ-induced transcriptional activities of a luciferase reporter gene under the control of a 243-bp fragment of the IP-10 gene promoter/enhancer, which contains an IFN-stimulated response element (ISRE) and two κB elements. Consistent with this result, ES products inhibited ISRE-dependent heterologous promoter activities and LPS- or IFN-γ-induced ISRE-binding activity. ES products also suppressed LPS-induced IFN-β gene expression. Furthermore, ES products suppressed nuclear factor (NF)-κB RelA (p65)-dependent transcriptional activity, whereas ES products had no effect on the κB-binding activity. These results suggest that ES products suppress the IP-10 gene expression by inhibiting the ISRE- and RelA-dependent transcriptional activities in mouse macrophages.
Collapse
|
25
|
Beauchef G, Bigot N, Kypriotou M, Renard E, Porée B, Widom R, Dompmartin-Blanchere A, Oddos T, Maquart FX, Demoor M, Boumediene K, Galera P. The p65 subunit of NF-κB inhibits COL1A1 gene transcription in human dermal and scleroderma fibroblasts through its recruitment on promoter by protein interaction with transcriptional activators (c-Krox, Sp1, and Sp3). J Biol Chem 2012; 287:3462-3478. [PMID: 22139845 PMCID: PMC3271000 DOI: 10.1074/jbc.m111.286443] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 11/04/2011] [Indexed: 11/05/2024] Open
Abstract
Transcriptional mechanisms regulating type I collagen genes expression in physiopathological situations are not completely known. In this study, we have investigated the role of nuclear factor-κB (NF-κB) transcription factor on type I collagen expression in adult normal human (ANF) and scleroderma (SF) fibroblasts. We demonstrated that NF-κB, a master transcription factor playing a major role in immune response/apoptosis, down-regulates COL1A1 expression by a transcriptional control involving the -112/-61 bp sequence. This 51-bp region mediates the action of two zinc fingers, Sp1 (specific protein-1) and Sp3, acting as trans-activators of type I collagen expression in ANF and SF. Knockdown of each one of these trans factors by siRNA confirmed the trans-activating effect of Sp1/Sp3 and the p65 subunit of NF-κB trans-inhibiting effect on COL1A1 expression. Despite no existing κB consensus sequence in the COL1A1 promoter, we found that Sp1/Sp3/c-Krox and NF-κB bind and/or are recruited on the proximal promoter in chromatin immunoprecipitation (ChIP) assays. Attempts to elucidate whether interactions between Sp1/Sp3/c-Krox and p65 are necessary to mediate the NF-κB inhibitory effect on COL1A1 in ANF and SF were carried out; in this regard, immunoprecipitation assays revealed that they interact, and this was validated by re-ChIP. Finally, the knockdown of Sp1/Sp3/c-Krox prevents the p65 inhibitory effect on COL1A1 transcription in ANF, whereas only the siRNAs targeting Sp3 and c-Krox provoked the same effect in SF, suggesting that particular interactions are characteristic of the scleroderma phenotype. In conclusion, our findings highlight a new mechanism for COL1A1 transcriptional regulation by NF-κB, and these data could allow the development of new antifibrotic strategies.
Collapse
Affiliation(s)
- Gallic Beauchef
- From the Laboratoire Matrice Extracellulaire et Pathologie, IFR ICORE 146, Université de Caen/Basse-Normandie, UFR de Médecine, CHU niveau 3, Avenue de la Côte de Nacre, 14032 Caen Cedex, France
| | - Nicolas Bigot
- From the Laboratoire Matrice Extracellulaire et Pathologie, IFR ICORE 146, Université de Caen/Basse-Normandie, UFR de Médecine, CHU niveau 3, Avenue de la Côte de Nacre, 14032 Caen Cedex, France
| | - Magdalini Kypriotou
- From the Laboratoire Matrice Extracellulaire et Pathologie, IFR ICORE 146, Université de Caen/Basse-Normandie, UFR de Médecine, CHU niveau 3, Avenue de la Côte de Nacre, 14032 Caen Cedex, France
| | - Emmanuelle Renard
- From the Laboratoire Matrice Extracellulaire et Pathologie, IFR ICORE 146, Université de Caen/Basse-Normandie, UFR de Médecine, CHU niveau 3, Avenue de la Côte de Nacre, 14032 Caen Cedex, France
| | - Benoît Porée
- From the Laboratoire Matrice Extracellulaire et Pathologie, IFR ICORE 146, Université de Caen/Basse-Normandie, UFR de Médecine, CHU niveau 3, Avenue de la Côte de Nacre, 14032 Caen Cedex, France
| | - Russell Widom
- the Department of Medicine, Arthritis Center, Boston University School of Medicine and Boston Veterans Affairs Medical Center, Boston, Massachusetts 02118
| | | | - Thierry Oddos
- Johnson & Johnson Consumer France, R&D Europe, Campus de Maigremont, 27106 Val de Reuil, France, and
| | - François-Xavier Maquart
- the Laboratoire de Biochimie Médicale et de Biologie Moléculaire, UMR CNRS/URCA 6237, Université de Reims/Champagne-Ardennes, 51095 Reims Cedex, France
| | - Magali Demoor
- From the Laboratoire Matrice Extracellulaire et Pathologie, IFR ICORE 146, Université de Caen/Basse-Normandie, UFR de Médecine, CHU niveau 3, Avenue de la Côte de Nacre, 14032 Caen Cedex, France
| | - Karim Boumediene
- From the Laboratoire Matrice Extracellulaire et Pathologie, IFR ICORE 146, Université de Caen/Basse-Normandie, UFR de Médecine, CHU niveau 3, Avenue de la Côte de Nacre, 14032 Caen Cedex, France
| | - Philippe Galera
- From the Laboratoire Matrice Extracellulaire et Pathologie, IFR ICORE 146, Université de Caen/Basse-Normandie, UFR de Médecine, CHU niveau 3, Avenue de la Côte de Nacre, 14032 Caen Cedex, France
| |
Collapse
|
26
|
Swarup V, Phaneuf D, Dupré N, Petri S, Strong M, Kriz J, Julien JP. Deregulation of TDP-43 in amyotrophic lateral sclerosis triggers nuclear factor κB-mediated pathogenic pathways. ACTA ACUST UNITED AC 2011; 208:2429-47. [PMID: 22084410 PMCID: PMC3256969 DOI: 10.1084/jem.20111313] [Citation(s) in RCA: 260] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
TDP-43 (TAR DNA-binding protein 43) inclusions are a hallmark of amyotrophic lateral sclerosis (ALS). In this study, we report that TDP-43 and nuclear factor κB (NF-κB) p65 messenger RNA and protein expression is higher in spinal cords in ALS patients than healthy individuals. TDP-43 interacts with and colocalizes with p65 in glial and neuronal cells from ALS patients and mice expressing wild-type and mutant TDP-43 transgenes but not in cells from healthy individuals or nontransgenic mice. TDP-43 acted as a co-activator of p65, and glial cells expressing higher amounts of TDP-43 produced more proinflammatory cytokines and neurotoxic mediators after stimulation with lipopolysaccharide or reactive oxygen species. TDP-43 overexpression in neurons also increased their vulnerability to toxic mediators. Treatment of TDP-43 mice with Withaferin A, an inhibitor of NF-κB activity, reduced denervation in the neuromuscular junction and ALS disease symptoms. We propose that TDP-43 deregulation contributes to ALS pathogenesis in part by enhancing NF-κB activation and that NF-κB may constitute a therapeutic target for the disease.
Collapse
Affiliation(s)
- Vivek Swarup
- Department of Psychiatry and Neuroscience, Research Centre of the University Hospital Centre of Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
27
|
Atianand MK, Harton JA. Uncoupling of Pyrin-only protein 2 (POP2)-mediated dual regulation of NF-κB and the inflammasome. J Biol Chem 2011; 286:40536-47. [PMID: 21976665 DOI: 10.1074/jbc.m111.274290] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Activation of transcription factor NF-κB and inflammasome-directed caspase-1 cleavage of IL-1β are key processes in the inflammatory response to pathogen or host-derived signals. Pyrin-only proteins (POPs) are restricted to Old World monkeys, apes, and humans and have previously been shown to impair inflammasome assembly and/or NF-κB p65 transcriptional activity in transfected epithelial cells. However, the biological role of POP2 and the molecular basis for its observed functions are not well understood. In this report we demonstrate that POP2 regulates TNFα and IL-1β responses in human monocytic THP-1 cells and in stable transfectants of mouse J774A.1 macrophages. Deletion analysis of POP2 revealed that the first α-helix (residues 1-19) is necessary and sufficient for both inflammasome and NF-κB inhibitory functions. Further, key acidic residues Glu(6), Asp(8), and Glu(16), believed critical for Pyrin/Pyrin domain interaction, are important for inflammasome inhibition. Moreover, these mutations did not reduce the effect of POP2 upon NF-κB, indicating that the inflammasome and NF-κB inhibitory properties of POP2 can be uncoupled mechanistically. Collectively, these data demonstrate that POP2 acts as a regulator of inflammatory signals and exerts its two known functions through distinct modalities employed by its first α-helix.
Collapse
Affiliation(s)
- Maninjay K Atianand
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York 12208, USA
| | | |
Collapse
|
28
|
Srinivasan M, Janardhanam S. Novel p65 binding glucocorticoid-induced leucine zipper peptide suppresses experimental autoimmune encephalomyelitis. J Biol Chem 2011; 286:44799-810. [PMID: 21965677 DOI: 10.1074/jbc.m111.279257] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multiple sclerosis (MS) is a neurological disease characterized by inflammatory demyelination in the brain and spinal cord. The immune-mediated inflammation involves well orchestrated intermolecular interactions that exhibit rapid binding kinetics. The binding interfaces of transient interactions frequently include proline residues that favor an extended conformation for molecular recognition. Linear interface peptides are excellent lead inhibitors of specific protein-protein interactions because only small segments of the interface contribute to the binding. Glucocorticoid-induced leucine zipper (GILZ), a recently identified molecule exhibits potent anti-inflammatory properties. Mechanistically, a proline-rich segment in the carboxyl terminus of GILZ physically binds the p65 subunit of nuclear factor-κB and inhibits the transactivation of inflammatory cytokines. Integrating knowledge derived from the mechanism of action of GILZ with in silico structure prediction identified an immunomodulatory peptide, the GILZ-P. Treatment with GILZ-P exhibited therapeutic efficacy in experimental autoimmune encephalomyelitis, a model for human MS.
Collapse
Affiliation(s)
- Mythily Srinivasan
- Department of Oral Pathology, Medicine and Radiology, School of Dentistry, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, USA.
| | | |
Collapse
|
29
|
Reboll MR, Schweda AT, Bartels M, Franke R, Frank R, Nourbakhsh M. Mapping of NRF binding motifs of NF-kappaB p65 subunit. J Biochem 2011; 150:553-62. [PMID: 21821668 DOI: 10.1093/jb/mvr099] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
NF-kappaB repressing factor (NRF) is a nuclear transcription factor that binds to a specific DNA sequence in NF-kappaB target promoters. Previous reports suggested that NRF interferes with the transcriptional activity of NF-kappaB binding sites through a direct interaction with NF-kappaB subunits. The aim of this study was to map specific NRF binding domains in the NF-kappaB proteins, p65 and p50. Our data demonstrate that NRF is able to interact with the p65 subunit and inhibit its transcription enhancing activity in reporter gene experiments. Using tandem affinity purifications (TAP), we show that NRF protein significantly binds to the endogenous p65, subunit but not to the p50 subunit. The selective binding activity of the NRF protein is consistently mediated by the N-terminal domain of NRF (Amino acids 1-380). Moreover, the Rel homology domain (RHD) of p65 is sufficient for binding to the N-terminal domain of NRF. Using detailed peptide mapping studies, we finally identify three peptide motifs in p65 RHD showing distinctive binding specificities for the NRF protein. According to the predicted structure of p65, all three peptide motifs align within an exposed region of p65 and might hint at promising targets for inhibitors.
Collapse
Affiliation(s)
- Marc R Reboll
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
30
|
A requirement for nuclear factor-kappaB in developmental and plasticity-associated synaptogenesis. J Neurosci 2011; 31:5414-25. [PMID: 21471377 DOI: 10.1523/jneurosci.2456-10.2011] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Structural plasticity of dendritic spines and synapses is a fundamental mechanism governing neuronal circuits and may form an enduring basis for information storage in the brain. We find that the p65 subunit of the nuclear factor-κB (NF-κB) transcription factor, which is required for learning and memory, controls excitatory synapse and dendritic spine formation and morphology in murine hippocampal neurons. Endogenous NF-κB activity is elevated by excitatory transmission during periods of rapid spine and synapse development. During in vitro synaptogenesis, NF-κB enhances dendritic spine and excitatory synapse density and loss of endogenous p65 decreases spine density and spine head volume. Cell-autonomous function of NF-κB within the postsynaptic neuron is sufficient to regulate the formation of both presynaptic and postsynaptic elements. During synapse development in vivo, loss of NF-κB similarly reduces spine density and also diminishes the amplitude of synaptic responses. In contrast, after developmental synaptogenesis has plateaued, endogenous NF-κB activity is low and p65 deficiency no longer attenuates basal spine density. Instead, NF-κB in mature neurons is activated by stimuli that induce demand for new synapses, including estrogen and short-term bicuculline, and is essential for upregulating spine density in response to these stimuli. p65 is enriched in dendritic spines making local protein-protein interactions possible; however, the effects of NF-κB on spine density require transcription and the NF-κB-dependent regulation of PSD-95, a critical postsynaptic component. Collectively, our data define a distinct role for NF-κB in imparting transcriptional regulation required for the induction of changes to, but not maintenance of, excitatory synapse and spine density.
Collapse
|
31
|
Zhang Z, Yao K, Ma J, Tang X. Anti-inflammatory effect of the alpha-melanocyte stimulating hormonein animal eyes undergoing extracapsular lens extraction. Mol Biol 2011. [DOI: 10.1134/s002689331006107x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Abstract
Activation of nuclear factor (NF)-κB, one of the most investigated transcription factors, has been found to control multiple cellular processes in cancer including inflammation, transformation, proliferation, angiogenesis, invasion, metastasis, chemoresistance and radioresistance. NF-κB is constitutively active in most tumor cells, and its suppression inhibits the growth of tumor cells, leading to the concept of 'NF-κB addiction' in cancer cells. Why NF-κB is constitutively and persistently active in cancer cells is not fully understood, but multiple mechanisms have been delineated including agents that activate NF-κB (such as viruses, viral proteins, bacteria and cytokines), signaling intermediates (such as mutant receptors, overexpression of kinases, mutant oncoproteins, degradation of IκBα, histone deacetylase, overexpression of transglutaminase and iNOS) and cross talk between NF-κB and other transcription factors (such as STAT3, HIF-1α, AP1, SP, p53, PPARγ, β-catenin, AR, GR and ER). As NF-κB is 'pre-active' in cancer cells through unrelated mechanisms, classic inhibitors of NF-κB (for example, bortezomib) are unlikely to mediate their anticancer effects through suppression of NF-κB. This review discusses multiple mechanisms of NF-κB activation and their regulation by multitargeted agents in contrast to monotargeted agents, thus 'one size does not fit all' cancers.
Collapse
|
33
|
Abstract
The interleukin-1 (IL-1) family of cytokines comprises 11 proteins (IL-1F1 to IL-1F11) encoded by 11 distinct genes in humans and mice. IL-1-type cytokines are major mediators of innate immune reactions, and blockade of the founding members IL-1alpha or IL-1beta by the interleukin-1 receptor antagonist (IL-1RA) has demonstrated a central role of IL-1 in a number of human autoinflammatory diseases. IL-1alpha or IL-1beta rapidly increase messenger RNA expression of hundreds of genes in multiple different cell types. The potent proinflammatory activities of IL-1alpha and IL-1beta are restricted at three major levels: (i) synthesis and release, (ii) membrane receptors, and (iii) intracellular signal transduction. This pathway summarizes extracellular and intracellular signaling of IL-1alpha or IL-1beta, including positive- and negative-feedback mechanisms that amplify or terminate the IL-1 response. In response to ligand binding of the receptor, a complex sequence of combinatorial phosphorylation and ubiquitination events results in activation of nuclear factor kappaB signaling and the JNK and p38 mitogen-activated protein kinase pathways, which, cooperatively, induce the expression of canonical IL-1 target genes (such as IL-6, IL-8, MCP-1, COX-2, IkappaBalpha, IL-1alpha, IL-1beta, MKP-1) by transcriptional and posttranscriptional mechanisms. Of note, most intracellular components that participate in the cellular response to IL-1 also mediate responses to other cytokines (IL-18 and IL-33), Toll-like-receptors (TLRs), and many forms of cytotoxic stresses.
Collapse
Affiliation(s)
- Axel Weber
- Rudolf-Buchheim-Institute of Pharmacology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | | | | |
Collapse
|
34
|
Ishaq M, Ma L, Wu X, Mu Y, Pan J, Hu J, Hu T, Fu Q, Guo D. The DEAD-box RNA helicase DDX1 interacts with RelA and enhances nuclear factor kappaB-mediated transcription. J Cell Biochem 2009; 106:296-305. [PMID: 19058135 DOI: 10.1002/jcb.22004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
DEAD-box RNA helicases constitute the largest family of RNA helicases and are involved in many aspects of RNA metabolism. In this study, we identified RelA (p65), a subunit of nuclear factor-kappaB (NF-kappaB), as a cellular co-factor of DEAD-box RNA helicase DDX1, through mammalian two hybrid system and co-immunoprecipitation assay. Additionally, confocal microscopy and chromatin immunoprecipitation assays confirmed this interaction. In NF-kappaB dependent reporter gene assay, DDX1 acted as a co-activator to enhance NF-kappaB-mediated transcription activation. The functional domains involved were mapped to the carboxy terminal transactivation domain of RelA and the amino terminal ATPase/helicase domain of DDX1. The DDX1 trans-dominant negative mutant lacking ATP-dependent RNA helicase activity lost it transcriptional inducer activity. Moreover, depletion of endogenous DDX1 by specific small interfering RNAs significantly reduced NF-kappaB-dependent transcription. Taken together, the results suggest that DDX1 may play an important role in NF-kappaB-mediated transactivation, and revelation of this regulatory pathway may help to explore the novel mechanisms for regulating NF-kappaB transcriptional activity.
Collapse
Affiliation(s)
- Musarat Ishaq
- State Key Laboratory of Virology and Modern Virology Research Centre, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kramer PR, Winger V, Reuben J. PI3K limits TNF-alpha production in CD16-activated monocytes. Eur J Immunol 2009; 39:561-70. [PMID: 19180470 DOI: 10.1002/eji.200838801] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
IgG complexes bind to Fc receptor family members FcgammaRI (CD64), FcgammaRII (CD32) and FcgammaRIII (CD16), activating cell MAPK and PI3K resulting in increased cytokine production from particular leukocytes. The signaling molecules involved in cytokine production after cross-linking CD16 have not been determined in monocytes. To address this question, TNF-alpha, IL-1beta and IL-6 were measured in activated monocytes after inhibiting MEK1/2, PI3K and glycogen synthase kinase-beta (GSK-3beta). The roles of GSK-3beta and NF-kappaB were then determined using reporter assays and siRNA treatment. The data suggested that an MAPK pathway stimulated TNF-alpha release but that active PI3K limited TNF-alpha, IL-1beta and IL-6 cytokine production after cross-linking CD16. PI3K was also shown to limit nuclear translocation of NF-kappaB. The limiting effect of PI3K on TNF-alpha production from activated monocytes depended on the decrease of GSK-3beta activity, which significantly reduced the transactivation of NF-kappaB. Moreover, the TNF-alpha production induced by CD16 cross-linking was reduced in monocytes after treatment with siRNA against NF-kappaB, implying that this transcription factor functioned in TNF-alpha production. The results suggest that CD16 cross-linking activated PI3K and that active PI3K limited TNF-alpha production by inhibiting GSK-3beta activity, that blocked the action of NF-kappaB.
Collapse
Affiliation(s)
- Phillip R Kramer
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, TX 75246, USA
| | | | | |
Collapse
|
36
|
Lees SJ, Zwetsloot KA, Booth FW. Muscle precursor cells isolated from aged rats exhibit an increased tumor necrosis factor- alpha response. Aging Cell 2009; 8:26-35. [PMID: 19053972 DOI: 10.1111/j.1474-9726.2008.00445.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Improving muscle precursor cell (MPC, muscle-specific stem cells) function during aging has been implicated as a key therapeutic target for improving age-related skeletal muscle loss. MPC dysfunction during aging can be attributed to both the aging MPC population and the changing environment in skeletal muscle. Previous reports have identified elevated levels of tumor necrosis factor- alpha (TNF- alpha ) in aging, both circulating and locally in skeletal muscle. The purpose of the present study was to determine if age-related differences exist between TNF- alpha -induced nuclear factor-kappa B (NF- kappaB) activation and expression of apoptotic gene targets. MPCs isolated from 32-month-old animals exhibited an increased NF- kappaB activation in response to 1, 5, and 20 ng mL(-1) TNF- alpha, compared to MPCs isolated from 3-month-old animals. No age differences were observed in the rapid canonical signaling events leading to NF- kappaB activation or in the increase in mRNA levels for TNF receptor 1, TNF receptor 2, TNF receptorassociated factor 2 (TRAF2), or Fas (CD95) observed after 2 h of TNF- alpha stimulation. Interestingly, mRNA levels for TRAF2 and the cell death-inducing receptor, Fas (CD95), were persistently upregulated in response to 24 h TNF- alpha treatment in MPCs isolated from 32-month-old animals, compared to 3-month-old animals. Our data indicate that age-related differences may exist in the regulatory mechanisms responsible for NF- kappaB inactivation, which may have an effect on TNF- alpha-induced apoptotic signaling. These findings improve our understanding of the interaction between aged MPCs and the changing environment associated with age, which is critical for the development of potential clinical interventions aimed at improving MPC function with age.
Collapse
Affiliation(s)
- Simon J Lees
- Department of Biomedical Sciences, University of Missouri-Columbia, USA.
| | | | | |
Collapse
|
37
|
Abstract
The RelA (p65) NF-kappaB (nuclear factor kappaB) subunit contains an extremely active C-terminal transcriptional activation domain, required for its cellular function. In the present article, we review our knowledge of this domain, its modifications and its known interacting proteins. Moreover, we discuss how analysis of its evolutionary conservation reveals distinct subdomains and conserved residues that might give insights into its regulation and function.
Collapse
|
38
|
Owen HR, Elser M, Cheung E, Gersbach M, Kraus WL, Hottiger MO. MYBBP1a is a Novel Repressor of NF-κB. J Mol Biol 2007; 366:725-36. [PMID: 17196614 DOI: 10.1016/j.jmb.2006.11.099] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 11/17/2006] [Accepted: 11/21/2006] [Indexed: 01/22/2023]
Abstract
NF-kappaB is an inducible transcription factor activated in many different cell types by inflammatory and stress signals. The transcription of a wide variety of NF-kappaB genes is regulated by the coordinated action of transcription co-activators and co-repressors. Previously we identified Myb binding protein 1a (MYBBP1a) as an interaction partner of the transcription activation domain of RelA/p65. MYBBP1a has been shown by others to regulate various transcription factors, through largely unknown mechanisms. Here we present evidence that MYBBP1a is a novel co-repressor of NF-kappaB. MYBBP1a interacted directly with RelA/p65 and expression of MYBBP1a in cells repressed NF-kappaB dependent reporter expression but did affect neither RelA/p65 nuclear translocation nor its DNA binding activity. In vitro, MYBBP1a inhibited transcription from chromatinized templates at a step before pre-initiation complex formation. MYBBP1a was found to compete with the histone acetyl transferase co-activator, p300, for interaction with the transcription activation domain of RelA/p65. Expression levels of MYBBP1a are dependent on the cell type, and are particularly high in Jurkat T cells. These results indicate that MYBBP1a is a novel NF-kappaB co-repressor of transcription that competes with p300 and may function to regulate cell type specific genes.
Collapse
Affiliation(s)
- Heather R Owen
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
39
|
Griffin B, Moynagh P. In vivo binding of NF-kappaB to the IkappaBbeta promoter is insufficient for transcriptional activation. Biochem J 2006; 400:115-25. [PMID: 16792530 PMCID: PMC1635438 DOI: 10.1042/bj20060786] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Despite certain structural and biochemical similarities, differences exist in the function of the NF-kappaB (nuclear factor kappaB) inhibitory proteins IkappaBalpha (inhibitory kappaBalpha) and IkappaBbeta. The functional disparity arises in part from variance at the level of gene regulation, and in particular from the substantial induction of IkappaBalpha, but not IkappaBbeta, gene expression post-NF-kappaB activation. In the present study, we probe the differential effects of IL (interleukin)-1beta on induction of IkappaBalpha and perform the first characterization of the human IkappaBbeta promoter. A consensus NF-kappaB-binding site, capable of binding NF-kappaB both in vitro and in vivo, is found in the IkappaBbeta gene 5' flanking region. However, the IkappaBbeta promoter was not substantially activated by pro-inflammatory cytokines, such as IL-1beta and tumour necrosis factor alpha, that are known to cause strong activation of NF-kappaB. Furthermore, in contrast with IkappaBalpha, NF-kappaB activation did not increase expression of endogenous IkappaBbeta as assessed by analysis of mRNA and protein levels. Unlike kappaB-responsive promoters, IkappaBbeta promoter-bound p65 inefficiently recruits RNA polymerase II, which stalls at the promoter. We present evidence that this stalling is likely due to the absence of transcription factor IIH engagement, a prerequisite for RNA polymerase II phosphorylation and transcriptional initiation. Differences in the conformation of promoter-bound NF-kappaB may underlie the variation in the ability to engage the basal transcriptional apparatus at the IkappaBbeta and kappaB-responsive promoters. This accounts for the differential expression of IkappaB family members in response to NF-kappaB activation and furthers our understanding of the mechanisms involved in transcription factor activity and IkappaBbeta gene regulation.
Collapse
Affiliation(s)
- Bryan D. Griffin
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Paul N. Moynagh
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
- To whom correspondence should be addressed (email )
| |
Collapse
|
40
|
Kaur H, Chen S, Xin X, Chiu J, Khan ZA, Chakrabarti S. Diabetes-induced extracellular matrix protein expression is mediated by transcription coactivator p300. Diabetes 2006; 55:3104-11. [PMID: 17065349 DOI: 10.2337/db06-0519] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Increased fibronectin expression is a key feature of diabetic angiopathy. We have previously shown that nuclear factor-kappaB (NF-kappaB) mediates fibronectin expression in endothelial cells and in organs affected by diabetes complications. p300, a transcription coactivator, may regulate NF-kappaB activity via poly(ADP-ribose) polymerase (PARP) activation. Hence, we examined the role of p300 in fibronectin expression in diabetes. High glucose induced fibronectin expression in the endothelial cells, which was associated with increased p300, PARP activity, and NF-kappaB activation. This p300 alteration is mediated by mitogen-activated protein kinase and protein kinase C and B. We then used p300 small interfering RNA (siRNA) and showed decreased fibronectin and PARP expression, as well as NF-kappaB activation, in the endothelial cells. Examination of the heart tissues of streptozotocin-induced diabetic mice revealed increased fibronectin and p300 mRNA. Intravenous injection of p300 siRNA resulted in decreased p300 levels and normalized fibronectin expression in the heart. We further investigated retinal tissues from streptozotocin-induced diabetic rats treated with intravitreal p300 siRNA injection. Similar to the heart, p300 siRNA inhibited fibronectin expression in the retina of the diabetic animals. These results indicate that transcriptional coactivator p300 may regulate fibronectin expression via PARP and NF-kappaB activation in diabetes.
Collapse
Affiliation(s)
- Harkiran Kaur
- Department of Pathology, 4011 Dental Sciences Building, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
41
|
George AA, Sharma M, Singh BN, Sahoo NC, Rao KVS. Transcription regulation from a TATA and INR-less promoter: spatial segregation of promoter function. EMBO J 2006; 25:811-21. [PMID: 16437157 PMCID: PMC1383549 DOI: 10.1038/sj.emboj.7600966] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Accepted: 12/23/2005] [Indexed: 11/09/2022] Open
Abstract
The mode of regulation of class II genes that lack the known core promoter elements is presently unclear. Here, we studied one such example, the murine CD80 gene. An unusual mechanism was revealed wherein the pre-initiation complex (PIC) first assembled on an upstream, NF-kappaB enhancer element. Notably, this assembly occurred independent of contributions from the core promoter domain, and resulted in a PIC that was competent for transcription initiation. Positioning was subsequently achieved by exploiting the intrinsic architecture of the promoter, by virtue of which the tethered PIC was spatially juxtaposed with the transcription initiation site. Bridging interactions then ensued, through protein-protein contacts, which then enabled the elongation phase of CD80 transcription.
Collapse
Affiliation(s)
- Anuja A George
- Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Manish Sharma
- Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Badri N Singh
- Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Naresh C Sahoo
- Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Kanury VS Rao
- Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
- Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India. Tel.: +91 11 2617 6680; Fax: +91 11 267 5114; E-mail:
| |
Collapse
|
42
|
Verschure PJ, Visser AE, Rots MG. Step out of the Groove: Epigenetic Gene Control Systems and Engineered Transcription Factors. ADVANCES IN GENETICS 2006; 56:163-204. [PMID: 16735158 DOI: 10.1016/s0065-2660(06)56005-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
At the linear DNA level, gene activity is believed to be driven by binding of transcription factors, which subsequently recruit the RNA polymerase to the gene promoter region. However, it has become clear that transcriptional activation involves large complexes of many different proteins, which not only directly recruit components of the transcription machinery but also affect the DNA folding. Such proteins, including various chromatin-modifying enzymes, alter among other processes nucleosome positioning and histone modifications and are potentially involved in changing the overall structure of the chromatin and/or the position of chromatin in the nucleus. These epigenetic regulatory features are now known to control and regulate gene expression, although the molecular mechanisms still need to be clarified in more detail. Several diseases are characterized by aberrant gene-expression patterns. Many of these diseases are linked to dysregulation of epigenetic gene-regulatory systems. To interfere with aberrant gene expression, a novel approach is emerging as a disease therapy, involving engineered transcription factors. Engineered transcription factors are based on, for example, zinc-finger proteins (ZFP) that bind DNA in a sequence-specific manner. Engineered transcription factors based on ZFP are fused to effector domains that function to normalize disrupted gene-expression levels. Zinc-finger proteins most likely also influence epigenetic regulatory systems, such as the complex set of chemical histone and DNA modifications, which control chromatin compaction and nuclear organization. In this chapter, we review how epigenetic regulation systems acting at various levels of packaging the genome in the cell nucleus add to gene-expression control at the DNA level. Since an increasing number of diseases are described to have a clear link to epigenetic dysregulation, we here highlight 10 examples of such diseases. In the second part, we describe the different effector domains that have been fused to ZFPs and are capable of activating or silencing endogenous genes, and we illustrate how these effector domains influence epigenetic control mechanisms. Finally, we speculate how accumulating knowledge about epigenetics can be exploited to make such zinc-finger-transcription factors (ZF-TF) even more effective.
Collapse
Affiliation(s)
- Pernette J Verschure
- Swammerdam Institute for Life Sciences, BioCentrum Amsterdam, University of Amsterdam, 1098SM Amsterdam, The Netherlands.
| | | | | |
Collapse
|
43
|
Lizzul PF, Aphale A, Malaviya R, Sun Y, Masud S, Dombrovskiy V, Gottlieb AB. Differential expression of phosphorylated NF-kappaB/RelA in normal and psoriatic epidermis and downregulation of NF-kappaB in response to treatment with etanercept. J Invest Dermatol 2005; 124:1275-83. [PMID: 15955104 DOI: 10.1111/j.0022-202x.2005.23735.x] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Etanercept, a recombinant human tumor necrosis factor (TNF) receptor fusion protein, is FDA approved for psoriasis and psoriatic arthritis. TNFalpha increases the synthesis of proinflammatory cytokines and leads to the activation of multiple signaling pathways, including nuclear factor kappa B (NF-kappaB). The Rel/NF-kappaB transcription factors play a central role in numerous cellular processes, including the stress response and keratinocyte proliferation and differentiation. Utilizing a phosphorylation-specific antibody, we examined the expression of active nuclear NF-kappaB/RelA via immunohistochemistry in normal skin, non-lesional psoriatic skin, lesional psoriatic skin, and lesional skin from patients treated with etanercept. There was no expression of active nuclear NF-kappaB in the normal epidermis, whereas a basal level of constitutive active phosphorylated NF-kappaB/RelA was present in uninvolved epidermis from psoriasis patients. There was also significant upregulation of active phosphorylated NF-kappaB/RelA in the epidermis from psoriatic plaques. Serial biopsies from psoriasis patients treated with etanercept at 1, 3, and 6 mo demonstrated a significant downregulation of phosphorylated NF-kappaB/RelA, which correlated with decreases in epidermal thickness, restoration of normal markers of keratinocyte differentiation, and clinical outcomes. These data suggest that activation of NF-kappaB plays a significant role in the pathogenesis of psoriasis and that a potential mechanism of action for TNF-targeting agents is downregulation of NF-kappaB transcriptional activity.
Collapse
Affiliation(s)
- Paul F Lizzul
- Clinical Research Center, UMDNJ-Robert Wood Johnson Medical School, New Brunswick, New Jersey 08901-0019, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The transcription factor nuclear factor-kappa B (NF-kappaB) subunit p65 is phosphorylated by IkappaB kinase (IKK) at S536 in transactivation domain (TAD) 1. In this study, we investigate the presence of IKK sites in TAD2 of p65. Recombinant IKKbeta, but not IKKalpha, phosphorylated a GST-p65 substrate in which TAD1 was deleted. Mutational analysis revealed S468 as the only IKK site in TAD2. S468 phosphorylation occurred rapidly after TNF-alpha and IL-1beta in T cell, B cell, cervix carcinoma, hepatoma, breast cancer, and astrocytoma lines and in primary hepatic stellate cells as well as peripheral blood mononuclear cells. S468-phosphorylated p65 coimmunoprecipitated with IkappaBalpha, indicating that p65 is phosphorylated while bound to IkappaBalpha. Dominant negative IKKbeta or pharmacological IKK inhibition blocked S468 phosphorylation after TNF-alpha or IL-1beta, whereas dominant negative IKKalpha or inhibitors of MEK, p38, JNK, PI-3 kinase, or GSK-3 had no effect. p65S468A-reconstituted p65-/- mouse embryonic fibroblasts (MEFs) showed a small, but significant, elevation of NF-kappaB-driven luciferase activity and RANTES mRNA levels after TNF-alpha and IL-1beta in comparison to wtp65-reconstituted MEFs. p65 nuclear translocation was not altered in p65S468A-expressing MEFs. In conclusion, our results indicate that 1) IKKbeta phosphorylates multiple p65 sites, 2) IKKbeta phosphorylates p65 in an IkappaB-p65 complex, and 3) S468 phosphorylation slightly reduces TNF-alpha- and IL-1beta-induced NF-kappaB activation.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Animals
- Binding Sites
- Blotting, Western
- Cell Line
- Cell Line, Tumor
- Cells, Cultured
- DNA Mutational Analysis
- Fibroblasts/metabolism
- Genes, Dominant
- Genes, Reporter
- HeLa Cells
- Humans
- I-kappa B Kinase/chemistry
- I-kappa B Kinase/physiology
- Immunoprecipitation
- Inflammation
- Interleukin-1/metabolism
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/metabolism
- Marine Toxins
- Mice
- Mice, Transgenic
- Microscopy, Fluorescence
- Mutagenesis, Site-Directed
- Mutation
- Oxazoles/pharmacology
- Phosphorylation
- Plasmids/metabolism
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Time Factors
- Transcription Factor RelA/chemistry
- Transcriptional Activation
- Transfection
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Robert F Schwabe
- Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, New York, USA.
| | | |
Collapse
|
45
|
Malphettes L, Weber CC, El-Baba MD, Schoenmakers RG, Aubel D, Weber W, Fussenegger M. A novel mammalian expression system derived from components coordinating nicotine degradation in arthrobacter nicotinovorans pAO1. Nucleic Acids Res 2005; 33:e107. [PMID: 16002786 PMCID: PMC1174900 DOI: 10.1093/nar/gni107] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We describe the design and detailed characterization of 6-hydroxy-nicotine (6HNic)-adjustable transgene expression (NICE) systems engineered for lentiviral transduction and in vivo modulation of angiogenic responses. Arthrobacter nicotinovorans pAO1 encodes a unique catabolic machinery on its plasmid pAO1, which enables this Gram-positive soil bacterium to use the tobacco alkaloid nicotine as the exclusive carbon source. The 6HNic-responsive repressor-operator (HdnoR-O(NIC)) interaction, controlling 6HNic oxidase production in A.nicotinovorans pAO1, was engineered for generic 6HNic-adjustable transgene expression in mammalian cells. HdnoR fused to different transactivation domains retained its O(NIC)-binding capacity in mammalian cells and reversibly adjusted transgene transcription from chimeric O(NIC)-containing promoters (P(NIC); O(NIC) fused to a minimal eukaryotic promoter [P(min)]) in a 6HNic-responsive manner. The combination of transactivators containing various transactivation domains with promoters differing in the number of operator modules as well as in their relative inter-O(NIC) and/or O(NIC)-P(min) spacing revealed steric constraints influencing overall NICE regulation performance in mammalian cells. Mice implanted with microencapsulated cells engineered for NICE-controlled expression of the human glycoprotein secreted placental alkaline phosphatase (SEAP) showed high SEAP serum levels in the absence of regulating 6HNic. 6HNic was unable to modulate SEAP expression, suggesting that this nicotine derivative exhibits control-incompatible pharmacokinetics in mice. However, chicken embryos transduced with HIV-1-derived self-inactivating lentiviral particles transgenic for NICE-adjustable expression of the human vascular endothelial growth factor 121 (VEGF121) showed graded 6HNic response following administration of different 6HNic concentrations. Owing to the clinically inert and highly water-soluble compound 6HNic, NICE-adjustable transgene control systems may become a welcome alternative to available drug-responsive homologs in basic research, therapeutic cell engineering and biopharmaceutical manufacturing.
Collapse
Affiliation(s)
- Laetitia Malphettes
- Institute for Chemical and Bio-Engineering (ICB), Swiss Federal Institute of Technology, ETH Hoenggerberg, HCI F115Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
| | | | - Marie Daoud El-Baba
- Département Génie Biologique, Institut Universitaire de Technologie, IUTA43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France
| | - Ronald G. Schoenmakers
- Institute for Chemical and Bio-Engineering (ICB), Swiss Federal Institute of Technology, ETH Hoenggerberg, HCI F115Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
- Integrative Bioscience Institute, Swiss Federal Institute of Technology LausanneCH-1015 Lausanne, Switzerland
| | - Dominique Aubel
- Département Génie Biologique, Institut Universitaire de Technologie, IUTA43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France
| | - Wilfried Weber
- Institute for Chemical and Bio-Engineering (ICB), Swiss Federal Institute of Technology, ETH Hoenggerberg, HCI F115Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
| | - Martin Fussenegger
- Institute for Chemical and Bio-Engineering (ICB), Swiss Federal Institute of Technology, ETH Hoenggerberg, HCI F115Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
- To whom correspondence should be addressed. Tel: +41 44 633 3448; Fax: +41 44 633 1234;
| |
Collapse
|
46
|
Koyanagi M, Hijikata M, Watashi K, Masui O, Shimotohno K. Centrosomal P4.1-associated protein is a new member of transcriptional coactivators for nuclear factor-kappaB. J Biol Chem 2005; 280:12430-7. [PMID: 15687488 DOI: 10.1074/jbc.m410420200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear factor-kappaB (NF-kappaB) is a transcription factor important for various cellular events such as inflammation, immune response, proliferation, and apoptosis. In this study, we performed a yeast two-hybrid screening using the N-terminal domain of the p65 subunit (RelA) of NF-kappaB as bait and isolated centrosomal P4.1-associated protein (CPAP) as a candidate for a RelA-associating partner. Glutathione S-transferase pull-down assays and co-immunoprecipitation experiments followed by Western blotting also showed association of CPAP with RelA. When overexpressed, CPAP enhanced NF-kappaB-dependent transcription induced by tumor necrosis factor-alpha (TNFalpha). Reduction of the protein level of endogenous CPAP by RNA interference resulted in decreased activation of NF-kappaB by TNFalpha. After treatment with TNFalpha, a portion of CPAP was observed to accumulate in the nucleus, although CPAP was found primarily in the cytoplasm without any stimulation. Moreover, CPAP was observed in a complex recruited to the transcriptional promoter region containing the NF-kappaB-binding motif. One hybrid assay showed that CPAP has the potential to activate gene expression when tethered to the transcriptional promoter. These data suggest that CPAP functions as a coactivator of NF-kappaB-mediated transcription. Since a physiological interaction between CPAP and the coactivator p300/CREB-binding protein was also observed and synergistic activation of NF-kappaB-mediated transcription was achieved by these proteins, CPAP-dependent transcriptional activation is likely to include p300/CREB-binding protein.
Collapse
Affiliation(s)
- Michiyo Koyanagi
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | |
Collapse
|
47
|
Lee HS, Kim HJ, Moon CS, Chong YH, Kang JL. Inhibition of c-Jun NH2-terminal kinase or extracellular signal-regulated kinase improves lung injury. Respir Res 2004; 5:23. [PMID: 15566575 PMCID: PMC538282 DOI: 10.1186/1465-9921-5-23] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Accepted: 11/27/2004] [Indexed: 11/24/2022] Open
Abstract
Background Although in vitro studies have determined that the activation of mitogen-activated protein (MAP) kinases is crucial to the activation of transcription factors and regulation of the production of proinflammatory mediators, the roles of c-Jun NH2-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) in acute lung injury have not been elucidated. Methods Saline or lipopolysaccharide (LPS, 6 mg/kg of body weight) was administered intratracheally with a 1-hour pretreatment with SP600125 (a JNK inhibitor; 30 mg/kg, IO), or PD98059 (an MEK/ERK inhibitor; 30 mg/kg, IO). Rats were sacrificed 4 hours after LPS treatment. Results SP600125 or PD98059 inhibited LPS-induced phosphorylation of JNK and ERK, total protein and LDH activity in BAL fluid, and neutrophil influx into the lungs. In addition, these MAP kinase inhibitors substantially reduced LPS-induced production of inflammatory mediators, such as CINC, MMP-9, and nitric oxide. Inhibition of JNK correlated with suppression of NF-κB activation through downregulation of phosphorylation and degradation of IκB-α, while ERK inhibition only slightly influenced the NF-κB pathway. Conclusion JNK and ERK play pivotal roles in LPS-induced acute lung injury. Therefore, inhibition of JNK or ERK activity has potential as an effective therapeutic strategy in interventions of inflammatory cascade-associated lung injury.
Collapse
Affiliation(s)
- Hui Su Lee
- Department of Physiology, Division of Cell Biology, Ewha Medical Research Institute, Ewha Womans University College of Medicine, 911-1 Mok-6-dong, Yangcheon-ku, Seoul 158-056, Korea
| | - Hee Jae Kim
- Department of Physiology, Division of Cell Biology, Ewha Medical Research Institute, Ewha Womans University College of Medicine, 911-1 Mok-6-dong, Yangcheon-ku, Seoul 158-056, Korea
| | - Chang Sook Moon
- Department of Physiology, Division of Cell Biology, Ewha Medical Research Institute, Ewha Womans University College of Medicine, 911-1 Mok-6-dong, Yangcheon-ku, Seoul 158-056, Korea
| | - Young Hae Chong
- Department of Microbiology, Division of Cell Biology, Ewha Medical Research Institute, Ewha Womans University College of Medicine, 911-1 Mok-6-dong, Yangcheon-ku, Seoul 158-056, Korea
| | - Jihee Lee Kang
- Department of Physiology, Division of Cell Biology, Ewha Medical Research Institute, Ewha Womans University College of Medicine, 911-1 Mok-6-dong, Yangcheon-ku, Seoul 158-056, Korea
| |
Collapse
|
48
|
Tetsuka T, Uranishi H, Sanda T, Asamitsu K, Yang JP, Wong-Staal F, Okamoto T. RNA helicase A interacts with nuclear factor κB p65 and functions as a transcriptional coactivator. ACTA ACUST UNITED AC 2004; 271:3741-51. [PMID: 15355351 DOI: 10.1111/j.1432-1033.2004.04314.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RNA helicase A (RHA), a member of DNA and RNA helicase family containing ATPase activity, is involved in many steps of gene expression such as transcription and mRNA export. RHA has been reported to bind directly to the transcriptional coactivator, CREB-binding protein, and the tumor suppressor protein, BRCA1, and links them to RNA Polymerase II holoenzyme complex. Using yeast two-hybrid screening, we have identified RHA as an interacting molecule of the p65 subunit of nuclear factor kappaB (NF-kappaB). The interaction between p65 and RHA was confirmed by glutathione-S transferase pull-down assay in vitro, and by co-immunoprecipitation assay in vivo. In transient transfection assays, RHA enhanced NF-kappaB dependent reporter gene expression induced by p65, tumor necrosis factor-alpha, or NF-kappaB inducing kinase. The mutant form of RHA lacking ATP-binding activity inhibited NF-kappaB dependent reporter gene expression induced by these activators. Moreover, depletion of RHA using short interfering RNA reduced the NF-kappaB dependent transactivation. These data suggest that RHA is an essential component of the transactivation complex by mediating the transcriptional activity of NF-kappaB.
Collapse
Affiliation(s)
- Toshifumi Tetsuka
- Department of Molecular and Cellular Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Cinar B, Yeung F, Konaka H, Mayo MW, Freeman MR, Zhau HE, Chung LWK. Identification of a negative regulatory cis-element in the enhancer core region of the prostate-specific antigen promoter: implications for intersection of androgen receptor and nuclear factor-kappaB signalling in prostate cancer cells. Biochem J 2004; 379:421-31. [PMID: 14715080 PMCID: PMC1224078 DOI: 10.1042/bj20031661] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Revised: 01/07/2004] [Accepted: 01/09/2004] [Indexed: 11/17/2022]
Abstract
The NF-kappaB (nuclear factor-kappaB) transcription factors mediate activation of a large number of gene promoters containing diverse kappaB-site sequences. Here, PSA (prostate-specific antigen) was used as an AR (androgen receptor)-responsive gene to examine the underlying mechanism by which the NF-kappaB p65 transcription factor down-regulates the transcriptional activity of AR in cells. We observed that activation of NF-kappaB by TNFalpha (tumour necrosis factor alpha) inhibited both basal and androgen-stimulated PSA expression, and that this down-regulation occurred at the promoter level, as confirmed by the super-repressor IkappaBalpha (S32A/S36A), a dominant negative inhibitor of NF-kappaB. Using a linker-scanning mutagenesis approach, we identified a cis -element, designated XBE (X-factor-binding element), in the AREc (androgen response element enhancer core) of the PSA promoter, which negatively regulated several AR-responsive promoters, including that of PSA. When three copies of XBE in tandem were juxtaposed to GRE4 (glucocorticoid response element 4), a 4-6-fold reduction of inducible GRE4 activity was detected in three different cell lines, LNCaP, ARCaP-AR and PC3-AR. Bioinformatics and molecular biochemical studies indicated that XBE is a kappaB-like element that binds specifically to the NF-kappaB p65 subunit; consistent with these observations, only NF-kappaB p65, but not the NF-kappaB p50 subunit, was capable of inhibiting AR-mediated PSA promoter transactivation in LNCaP cells. In addition, our data also showed that AR binds to XBE, as well as to the kappaB consensus site, and that the transfection of AR inhibits the kappaB-responsive promoter in transient co-transfection assays. Collectively, these data indicate that cross-modulation between AR and NF-kappaB p65 transcription factors may occur by a novel mechanism involving binding to a common cis -DNA element.
Collapse
Affiliation(s)
- Bekir Cinar
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Affiliation(s)
- Lin-Feng Chen
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, California 94141, USA
| | | |
Collapse
|